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Abstract

The task of counting the number of ones in a bit sequence, known as the “Popu-
lation Count,” is essential in various domains such as cryptography, database information
retrieval, and machine learning. Traditional methods, whether hardware or software-based,
often require direct interaction with the binary representation of data, which can be compu-
tationally intensive. This paper introduces a new technique, the Virtual Tree for Population
Count Method (VTPC), which can calculate the population count of a number by leverag-
ing a virtual tree structure without converting the number to its binary form. This method
significantly reduces time complexity compared to existing algorithms. Our approach is
evaluated against traditional methods, demonstrating its efficiency and accuracy in com-
puting the population count. By eliminating the need to convert numbers to their binary
form, VTPC streamlines processes and can lead to faster, more scalable implementations in
various high-performance computing environments.

Key words: Population count; Virtual tree method; Bit counting; Cryptography; Algorithm
efficiency.
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1. Introduction

Bit-counting, a crucial computer operation, involves determining the number of ‘1’s
in a bit sequence. This operation is fundamental for various applications that utilize bitsets
or bitmaps, necessitating frequent population counts. The term “population count” (often
abbreviated as ‘popcount’) also refers to the cardinality of a bitset, indicating the number of
‘1’ bits representing elements in the set. The efficiency of bit-counting operations significantly
impacts the performance of file systems, databases, machine learning algorithms, search
engines, and information security systems.

In cryptography, population count functions are employed for randomness tests and
generating pseudo-random permutations, aiding in the identification of duplicated web pages.
Additionally, they are widely used in bioinformatics, ecology, chemistry, and various other
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fields. As noted by Mu la et al. (2018), recent developments have seen population count
instructions integrated into fast sorting algorithms by researchers like Gueron and Krasnov.

Population count techniques are broadly classified into two categories: hardware im-
plementations and software-based techniques. Hardware implementations involve specialized
circuitry to execute popcount functions efficiently, whereas software-based techniques encom-
pass a range of algorithms that do not require additional hardware. This paper focuses on
proposing a novel software-based technique for bit-counting, which predicts the population
count of a number directly from its decimal representation without converting it into bi-
nary form. The proposed method aims to improve the time complexity of population count
operations compared to existing algorithms. The following is a detailed overview of some
prominent existing methods for population count.

1. Näıve Method: As shown in Rosen (2019), the näıve approach involves examining
each bit in a binary sequence individually. This method iterates through all bits of an
integer, checking if each bit is set, and increments a count if it is. For a 32-bit integer,
this approach may require up to 32 iterations in the worst case, making it relatively
inefficient. The time complexity is O(M), where M is the number of bits in the integer.

2. Table Lookup: A more efficient method involves precomputing the population counts
for all possible byte values (0 to 255) and storing them in a lookup table, as explained
by Fateman (1989). Each byte of the input number is then checked against this table,
and the results are summed. This method reduces the number of required operations
significantly. For larger chunks of data, a 16-bit or even larger lookup table can be
used, though this increases memory usage. The time complexity is O(M/L), where L
is the number of bits processed in each lookup operation.

3. Divide and Conquer Strategy: Knuth (2014) introduced the divide and conquer method,
that breaks down the problem into smaller parts, summing bits in a hierarchical man-
ner. Initially, pairs of bits are summed, then these results are summed in pairs, and
so on. This technique leverages the hierarchical nature of binary numbers and can
perform the population count in log2(M) steps, where M is the number of bits. This
method is efficient for systems that can perform parallel operations on bits.

4. Carry-Save Adder (CSA): The CSA technique uses a bitwise parallel carry-save adder,
a hardware construct often used in binary multipliers, as shown by Mu la et al. (2018).
This approach processes elements in groups, reducing three words to two and then
applying the population count operation to these two words. The final population
count is obtained by summing the outputs. This method is particularly useful for
handling large arrays of data efficiently.

5. Population Count Operations on Logical Results: In many practical applications, the
population count is performed based on the result of logical operations, such as AND,
OR, or XOR between two bitsets, as shown by Marton et al. (2017). This involves
loading input bytes, generating temporary words through logical operations, and then
determining their population count. These operations can be performed by either
software methods or hardware implementations, depending on the specific application
requirements.
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Moreover, Polychroniou et al. (2015) noted that multiple recent advancements include
vectorized algorithms that leverage modern microprocessor capabilities to process multiple
bits in parallel These algorithms can significantly enhance performance by utilizing SIMD
(Single Instruction, Multiple Data) instructions available in many modern processors. Vec-
torized methods are especially effective for large datasets and high-performance computing
applications.

Furthermore, many solutions apply hardware implementations of population count
functions involving specialized circuitry designed to perform bit-counting efficiently, as shown
by Klarqvist (2021). Many modern processors include dedicated instructions for population
count, such as the POPCNT instruction in x86 architectures. These implementations offer
high-speed bit-counting by leveraging hardware-level parallelism and optimized circuitry.

These existing techniques highlight the diversity of approaches to the population
count problem, each suited to different scenarios and performance requirements. The pro-
posed Virtual Tree for Population Count Method (VTPC) aims to offer a novel software-
based solution that improves upon the time complexity and practical implementation chal-
lenges associated with these traditional methods.

2. Virtual tree for population count method (VTPC)

Algorithm 1 Population count algorithm using VTPC
Require: n (a positive integer in decimal number system)
Ensure: m (the number of 1’s present in the binary representation of n)

1: mask size← 4
2: mask← [0, 1, 1, 2]
3: m← 0
4: i← 0
5: d← ⌈logmask size(n)⌉
6: e← mask sized

7: r ← n
8: while d ≥ 0 do
9: i← ⌊(r/e)×mask size⌋

10: r ← r −
(

e
mask size × i

)
11: e← e/mask size
12: m← m + mask[i]
13: d← d− 1
14: end while
15: return m

The VTPC method calculates the population count of a given number using a search
operation on a virtual tree structure as given in Algorithm 1. Here, each node within this
tree is represented by a vector of integers. The root node is termed the “mask vector,” and
each element within this vector corresponds to a child node. The mask vector has a length
of 2L, where L is any natural number. The elements of the mask vector are the first 2L

numbers in the sequence of population counts.

For example, using a mask vector of ⟨0, 1, 1, 2⟩, which represents the first four numbers
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in the population count sequence of integers (population count of numbers 0, 1, 2 and 3),
each child node is generated by adding the corresponding integer from the parent node to
every integer in the mask vector. This resultant vector forms the child node. The leaf nodes
of this virtual tree represent the population counts of the integers.

The algorithm uses a variable, i, to track and generate the necessary child node by
skipping the appropriate number of elements to reach the desired position in the sequence.
The algorithm operates in two main phases: selection and generation. During the selection
phase, items from the current node are chosen for expansion. In the generation phase, the
next node is generated by adding the selected element to the mask vector. This process
iterates log(n) + 1 times, where s is the length of the mask vector, and n is the input
number. With each iteration, a new child node is generated, replacing its parent node, and
the cycle continues until a leaf node is reached.

3. Case studies and simulation setup

Figure 1: Complete virtual tree of depth 1 generated to compute population
count of number 13. Integers of leaf nodes represent the population count se-
ries. The bottom most series in the figure represents the corresponding natural
numbers from 0 to 15.

To illustrate the VTPC Method, we consider a case study to examine how the al-
gorithm computes the population count for the number 13. Figure 1 presents the virtual
tree for this problem. In the first iteration, the algorithm selects the fourth integer from the
root node, which is 2. The child node is then generated by adding 2 to each integer in the
mask vector, resulting in the vector ⟨2, 3, 3, 4⟩. Although Figure 1 displays all potential leaf
nodes for demonstration purposes, the algorithm only generates the required child node at
each step. During the second iteration, the algorithm selects the second integer from the
current node ⟨2, 3, 3, 4⟩, which is 3. In the final iteration, the algorithm recognizes that the
current node is a leaf node, indicating the end of the process. Consequently, the algorithm
terminates its execution. The whole calculation process can be described as follows:

1. Initialization:

(a) The mask vector is ⟨0, 1, 1, 2⟩.
(b) The input number n is 13.
(c) Initialize m (the population count) to 0.
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(d) Calculate d as ⌈log4(13)⌉, which determines the depth or number of iterations.
For n = 13, d is 2 because log4(13) is approximately 1.85, and the ceiling function
rounds it up to 2.

(e) Calculate e as 4d = 42 = 16.
(f) Initialize r (remainder) to 13.

2. First Iteration:

(a) Calculate the index i using the formula: i =
⌊

r
e
× 4

⌋
.

(b) Substituting the values: i =
⌊

13
16 × 4

⌋
.

(c) Simplifying further: i = ⌊0.8125× 4⌋ = ⌊3.25⌋ = 3.

3. Selection: According to the mask vector ⟨0, 1, 1, 2⟩, the element at index 3 (0-based
index) is 2.

4. Updating Values:

(a) Update r by subtracting
(

e
4 × i

)
from it: r = 13−

(
16
4 × 3

)
= 13− 12 = 1.

(b) Update e by dividing it by 4: e = 16
4 = 4.

(c) Update m by adding the selected mask element ‘2’ to it: m = 0 + 2 = 2.
(d) Decrease d by 1: d = 2− 1 = 1.

5. Second Iteration: In the second iteration, again the value of ‘m’ is updated using the
above equations, and the resultant value ‘13’ is outputted.

The selection of the fourth integer ‘2’ in the first iteration is driven by the calculated
index i. This calculation ensures that the algorithm navigates correctly through the virtual
tree to determine the population count of the input number. This step-by-step process
ensures that the population count of the number 13 is accurately determined by navigating
through the virtual tree and selecting the appropriate child nodes at each iteration.

The time complexity of the proposed algorithm is O(logs(n)), where s is the size of
the mask vector and n is the input number. This is because the while loop in the algorithm
executes logs(n) + 1 times. An important aspect of the algorithm is its efficient space
utilization. To search through the entire virtual tree, only the space for a single node is
required at any given time. The algorithm uses the variable m to keep track of the integer
to be added to the mask vector to generate the next child node. By increasing the size of
the mask vector, the execution time can be reduced, as larger masks decrease the number
of iterations needed. However, this improvement in time complexity comes at the cost of
increased space consumption. To further illustrate this, consider an example where the input
number is 368. Figure 2 demonstrates the virtual tree generated by the algorithm to find the
population count of 368. This example shows how the algorithm navigates and constructs
the tree efficiently, balancing time and space requirements based on the chosen mask size.

Figure 2 also illustrates the values of the algorithm’s variables after each iteration.
Initially, before the first iteration, the mask vector is set to the root node. The value of d is
calculated to be 4, and it decrements by one with each iteration.
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Figure 2: Virtual tree generated to find the population count of 368 (execution
starts with the mask as root node). Execution Sequence of the algorithm to find
the population count of the number 368. ‘i’ gives the position of the selected
integer for next generation, ‘d’ controls the iterations, ‘m’ keeps track of the
generated node and after the execution, it carries the output.

In the first iteration, the algorithm selects the integer ‘1’ from the root node for
expansion. This selection is based on the calculation described in the algorithm. After
generating the first child node, the current node is updated to ⟨1, 2, 2, 3⟩. Using the formula
outlined in the algorithm, the next integer chosen from the current node is ‘2’. This selection
leads to the generation of the child node ⟨2, 3, 3, 4⟩. In the following iteration, the algorithm
selects ‘3’, resulting in the generation of the node ⟨3, 4, 4, 5⟩. Finally, in the last iteration,
‘4’ is selected from the current node, generating the node ⟨4, 5, 5, 6⟩. In the last step, the
algorithm identifies ‘4’ as the first element of the final node, which is chosen as the population
count result. This detailed step-by-step process shows how the algorithm navigates through
the virtual tree, updating nodes and selecting elements based on predefined calculations to
arrive at the final population count.

The proposed VTPC Method is evaluated through a simulation that verifies its ac-
curacy across a range of integers from 0 to 10,000. The evaluation process involves the
following steps (Algorithm 2). First, for each integer in the range, the population count is
first calculated using the näıve method, which involves counting the number of set bits (‘1’s)
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in the binary representation of the integer. Next, the population count for the same integer
is then computed using the proposed VTPC method. Later, the results from both methods
are compared. If the population counts match for every integer in the range, the evaluation
algorithm returns ‘1’. If there is any mismatch, the algorithm returns ‘0’. In the conducted
simulation, the evaluation algorithm consistently returns ‘1’, indicating that the proposed
VTPC algorithm produces accurate population count results for all tested integers. This
validation confirms the correctness and reliability of the VTPC method.

Algorithm 2 Simulation for evaluation of the proposed VTPC approach
Require: R (number of simulation cycles to be executed)
Ensure: 1 if VTPC approach passes the evaluation, otherwise 0

1: i← 0
2: while i ≤ R do
3: d1 ← Näıve pop count(i)
4: d2 ← VTPC pop count(i)
5: if d1 ̸= d2 then
6: return 0
7: end if
8: i← i + 1
9: end while

10: return 1

4. Time complexity comparison

The näıve method for population count involves examining each bit of the register
individually, resulting in a time complexity of O(M), where M is the total number of bits
representing the input number. The lookup table method improves upon this by checking
chunks of bits at a time. In this approach, the worst-case time complexity is O(M/L),
where L is the number of bits evaluated in each lookup operation. The Divide and Conquer
technique offers further efficiency, with a time complexity of O(log2(M)). This is because
the number of calculations required is halved at each step. The Carry-Save Adder (CSA)
method operates similarly to the Divide and Conquer approach. It reduces the number of
calculations by half after every iteration, achieving comparable efficiency. The proposed
Virtual Tree for Population Count (VTPC) method has a worst-case time complexity of
O(logS(N)), where N is the input number in decimal number system, and S is the size of
the mask vector. Table 1 presents a comparison of the worst-case time complexities for these
different algorithms, including the proposed VTPC algorithm, highlighting the efficiency
gains of each method.

The line plot in Figure 3 illustrates the theoretical trade-off between space complexity
(on the x-axis) and time complexity (on the y-axis) for the VTPC algorithm, across different
values of N (8, 32, 128, and 512). Here N represents the decimal number corresponding
to which the population count is to be calculated. From the figure, it is noted that for
all values of N , as space complexity increases, time complexity decreases. This indicates a
typical trade-off where more memory usage (space complexity) can reduce the time required
to run the algorithm. Moreover, the decrease in time complexity becomes less significant
as space complexity continues to increase. After a certain point (around 10–15 units of
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Table 1: Comparison with different techniques based on their time com-
plexity. Here, ‘M’ is the number of bits used to represent the input
number ‘N’, ‘L’ is the number of bits used to address the elements of the
lookup table, and ‘S’ is the size of the mask vector used in VTPC.

S. No. Algorithm Time Complexity
1 Näıve Method O(M)
2 Look-up Table O(M/L)
3 Divide and Conquer O(log2(M))
4 CSA O(log2(M))
5 VTPC O(logS(N))

space complexity), the time complexity levels off, suggesting that additional space does not
significantly improve time efficiency. In addition, higher values of N (larger data sizes)
result in a higher baseline for time complexity at lower space complexities. However, the
overall shape of the curve remains similar for each N , with each curve flattening at higher
space complexity levels. As N increases, the benefit of increasing space complexity is more
pronounced at lower levels of space complexity. This suggests that for larger problem sizes,
allocating additional memory initially has a larger impact on reducing time complexity, but
this benefit diminishes as more space is allocated.

Figure 3: The trade-off between theoretical space complexity and time complex-
ity by the VTPC algorithm.

In this context, Figure 4 shows a line plot that illustrates the relationship between
mask size (representing a form of space complexity on the x-axis) and execution time (time
complexity on the y-axis, measured in seconds) for different values of N (1000, 10,000,
100,000, and 1,000,000). The simulation for this study was implemented and executed using
a Python 3.0 script on the Google Colab platform, running on a system equipped with a
dual Intel® Xeon® CPU @ 2.20 GHz, 13 GB of RAM, and 108 GB of disk space.

From the figure, it is observed that for all values of N , there is a steep drop in execu-
tion time as the mask size increases from 0 to around 20. This suggests that increasing mask
size significantly improves execution time initially, likely because additional memory allows
for more efficient processing. Beyond a mask size of approximately 20, the execution time
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Figure 4: The trade-off between space complexity and time complexity observed
through the simulation results.

stabilizes and does not show significant changes as the mask size continues to increase up
to 120. This indicates diminishing returns, where increasing the mask size further does not
result in noticeable improvements in execution time. Moreover, similar to Figure 3 observa-
tions, in Figure 4 also it is is observed that the higher values of N tend to have a slightly
higher baseline execution time, but the general pattern of improvement with increasing mask
size is similar across all values of N . This suggests that the relationship between mask size
and execution time is consistent across different data sizes, with similar diminishing returns
for larger datasets.

In summary, the simulation results demonstrate that while increasing mask size (space
complexity) initially improves execution time (time complexity), the benefits taper off beyond
a certain mask size. This relationship is corroborated by the theoretical time and space
complexity graph shown in Figure 3. Furthermore, this trend is consistent across different
dataset sizes, showing that the simulation reaches a point of optimal efficiency where further
increases in mask size no longer reduce execution time.

The VTPC algorithm, as a software-based population counting method, falls within
the complexity class P , meaning it can be solved in polynomial time. By aiming to improve
time complexity over traditional population counting methods, VTPC could potentially offer
a more efficient approach within this class, especially for large data sets. While it does not
shift the problem into a different complexity class, its optimizations could impact practical
applications by making previously infeasible or slower computations more accessible and
efficient, possibly narrowing the performance gap in applications that require rapid bit-
counting, such as cryptography and big data processing.

The VTPC method could also be adapted for parallelization by distributing segments
of the bit sequence across multiple cores, allowing each core to independently compute partial
population counts. Leveraging multi-core processors, the VTPC algorithm can perform bit-
counting concurrently across different parts of the data, aggregating results at the end for a
final count. This parallel approach would significantly improve processing speed, especially
for large datasets or high-throughput applications.
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Furthermore, the VTPC method could be adapted for quantum algorithms by lever-
aging quantum parallelism to evaluate multiple branches of the virtual tree simultaneously,
potentially enhancing population count speed. Quantum algorithms like Grover’s search or
amplitude amplification might be incorporated to efficiently locate and count ‘1’ bits within
superposition states, potentially achieving a faster, more scalable solution for large-scale
population count tasks.

5. Conclusion

The need for efficient population counting arises across cryptography, database man-
agement, and machine learning, prompting the development of the Virtual Tree for Pop-
ulation Count Method (VTPC) as a faster, hardware-independent solution, streamlining
processes and enhancing scalability in high-performance computing environments. The pro-
posed VTPC method offers an innovative approach to calculating the population count of
integers. By leveraging a virtual tree structure and mask vector, the VTPC method effi-
ciently navigates through the population count sequence, reducing the time complexity to
O(logS(N)), where N is the input number and S is the size of the mask vector. This stands
in contrast to traditional methods such as the näıve bit-by-bit approach, lookup tables, and
Divide and Conquer techniques, all of which exhibit higher time complexities under certain
conditions. The accuracy and reliability of the VTPC algorithm were validated through a
comprehensive simulation, which compared its results with those of the näıve method across
a wide range. The consistent match of results underscores the correctness of the VTPC
method. Moreover, the VTPC algorithm balances time and space complexity effectively.
While increasing the mask size can further reduce execution time, it is essential to consider
the corresponding increase in space consumption. The method’s flexibility allows it to be
tailored to specific application needs, ensuring optimal performance. Overall, the VTPC
method represents a significant advancement in population count algorithms, providing a
robust, efficient, and accurate solution suitable for various computational tasks. Future
work can explore further optimizations and extensions of this approach to other domains
requiring efficient bit-level operations.
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