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Abstract
Agricultural commodity prices frequently exhibit inherent noise and volatility, at-

tributable to market dynamics. This paper undertakes a comprehensive analysis of price
volatility concerning key oil seed crops (Safflower, Mustard, Groundnut) and pulses (Lentil,
Chickpea, Green gram) across two markets for each commodity in the Indian agricultural
sector. The present study aims to improve the accuracy of price forecasting by utilizing
the Bivariate Auto Regressive Integrated Moving Average (ARIMA)-Generalized Auto Re-
gressive Conditional Heteroskedasticity (GARCH) type-Copula model. Monthly agricultural
commodity price datasets for key oil seed crops and pulse crops spanning January 2010 to
December 2022 have been used to evaluate the predictive performance of this model. Com-
parative evaluations are carried out against conventional time series models, namely Multi-
variate GARCH (MGARCH)-Dynamic Conditional Correlation (DCC) model and the Uni-
variate ARIMA-GARCH model. Empirical findings demonstrate that the Bivariate ARIMA-
GARCH type-Copula model outperformed the conventional time series models considered
in forecasting performance. This superiority is evidenced by evaluation metrics, including
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Per-
centage Error (MAPE). Moreover, this study utilized the Diebold–Mariano test to highlight
the predictive accuracy of the Bivariate ARIMA-GARCH type-Copula model for the dataset
under consideration, surpassing conventional time series models. The integration of Cop-
ulas with the ARIMA-GARCH type model shows promise for enhancing price forecasting
accuracy, offering valuable insights for researchers and policymakers navigating the dynamic
agricultural market landscape in India.
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1. Introduction

Agriculture is a crucial component of the Indian economy, supporting over 47% of the
population’s livelihood. As stated in the 2022-23 Indian Economic Survey, the agricultural
sector has demonstrated consistent growth, averaging an annual rate of 4.6% over the past
six years. Agricultural commodities price data are often characterized by inherent noise and
volatility due to the nature of the market. This is largely due to the rapid response of these
prices to changes in supply and demand conditions, as well as the impact of weather-related
factors on farm production. Moreover, asymmetric phenomena can also arise in price series,
where prices tend to behave differently during economic downturns as opposed to periods
of growth. It is common for agricultural price series to exhibit periods of stability, followed
by periods of high volatility. These fluctuations are a common feature of the agricultural
commodity market. Monitoring volatility in agricultural commodity prices can have a signif-
icant impact on a nation’s overall economic performance. As such, agricultural commodity
price forecasts are essential in enabling decision-makers to formulate economic policies and
strategies that are in line with anticipated changes (Bhardwaj et al. (2014)).

One of the predominant statistical methodologies employed in forecasting price series
is the Auto Regressive Integrated Moving Average (ARIMA) model as established by Box
and Jenkins (1970). Nevertheless, the inherent assumptions of linearity and homoscedastic
error variance within the ARIMA framework might not adequately accommodate the fore-
casting challenges posed by volatile agricultural commodity prices. In recognition of this lim-
itation, Engle (1982) introduced the Auto Regressive Conditional Heteroscedastic (ARCH)
model, subsequently refined by Bollerslev (1986) into the Generalized ARCH (GARCH)
model. Volatility within agricultural commodity price series often exhibit both symmetric
and asymmetric patterns. Although the GARCH model effectively captures the magnitude
of shocks, it may not fully capture the directional characteristics of these shocks. Conse-
quently, alternative asymmetric GARCH-type models have been devised, such as the Ex-
ponential GARCH (EGARCH) model proposed by Nelson (1991), the GJR-GARCH model
introduced by Glosten et al. (1993), and the Asymmetric Power ARCH (APARCH) model
presented by Ding et al. (1993). Various studies have endeavored to apply both ARIMA
and GARCH models in forecasting agricultural commodity prices. Examples of such inves-
tigations include those conducted by Paul et al. (2009), Bhardwaj et al. (2014) and Dinku
(2021). Moreover, the integration of ARIMA and GARCH methodologies, known as ARIMA-
GARCH models, has emerged as a viable approach for forecasting agricultural commodity
prices. This fusion has been demonstrated in research conducted by (Mitra and Paul (2017)
and Merabet et al. (2021)).

The dynamics of agricultural price volatilities exhibit interdependency across com-
modities and markets, prompting an increased scholarly emphasis on quantifying the inter-
dependence within agricultural price series data. However, conventional Time Series (TS)
models, such as ARIMA and GARCH models, often neglect the pivotal aspect of interde-
pendency among different series. To address this deficiency, the Vector Auto Regressive
(VAR) model was introduced, enabling the exploration of linear interrelationships among
multiple TS. VAR model’s efficacy in capturing the volatile nature of TS data is limited. In
response, the Multivariate GARCH (MGARCH) model emerged as a potential solution to
this challenge.
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A variety of MGARCH models have been developed over time. Engle and Kroner
(1995) introduced the BEKK (Baba, Engle, Kraft, and Kroner) model, which represents a
multivariate extension of the GARCH model and offers substantial flexibility in modeling.
Bollerslev (1990) proposed the Constant Conditional Correlation (CCC) model, providing a
relatively flexible approach that combines univariate GARCH models while assuming con-
stant correlation among series over time. Additionally, Engle (2002) introduced the Dynamic
Conditional Correlation (DCC) model, a novel class of Multivariate GARCH (MGARCH)
model that combines the flexibility of univariate GARCH models with a parsimonious para-
metric framework for modeling correlations. Several studies have demonstrated the superi-
ority of MGARCH models compared to univariate GARCH models in forecasting agricul-
tural commodity prices (Wang and Wu (2012); Aziz and Iqbal (2016)). The application of
MGARCH models for modeling the degree of interactions among various volatile agricul-
tural commodities and markets is widely documented in the literature (Musunuru (2014);
Sanjuán-López and Dawson (2017)).

MGARCH models often rely on assumptions of Multivariate Normal (MVN) distribu-
tion or Multivariate t (MV-t) distributions for the innovations. MVN distributions assume
that each variable follows a univariate normal distribution, which may not hold true in many
real world situations where variables exhibit non-normal distributions or complex relation-
ships. Additionally, the Pearson correlation coefficient used in MVN distribution assumes
linearity in the relationships between variables, limiting its ability to capture non-linear re-
lationships that are often present. This limitation extends to MV-t distributions as well. To
address these shortcomings, Copula-GARCH models have been introduced, where GARCH
model combined with Copula model. The Copula is employed to capture dependency be-
tween related TS by focusing on their joint distribution and offering flexibility in modeling
complex nonlinear dependencies. Sklar (1959)’s theorem is central to the theory of Copulas
which states that “any multivariate distribution function can be represented as a composi-
tion of its univariate marginal distributions and a Copula”, where the Copula captures all
the dependencies in the joint distribution. In other words, Copula-based modelling provides
the capacity to isolate the dependence structure from marginal distributions of the related
TS. Various applications of Copula-GARCH model for portfolio risk estimation on financial
TS data can be found in Weiß (2013); Lu et al. (2014); Karmakar (2017).

Previous studies utilized the ARIMA-GARCH copula model, initially fitting individ-
ual TS data and then employing residuals to model Copulas for joint distributions. These
copula models used to analyze correlations among different TS, exploring various statistical
measures such as skewness, kurtosis, and fat-tails (Li et al. (2020); Shahriari et al. (2023)).
However, an evident research gap exists as copula models have not been utilized for forecast-
ing future data points. Understanding the price dynamics is crucial, especially in agriculture.
The present study pioneers using the Bivariate Copula-GARCH type model for forecasting
agricultural prices. After fitting individual TS data to the ARIMA-GARCH type model,
residuals are used to fit copula models for joint distributions. Future data points are fore-
casted by simulating observations from the estimated bivariate distribution function. This
advanced modeling technique enhances forecasting accuracy for the data under consideration.

The rest of the manuscript is organized as follows: Section 2 presents a description of
the models utilized, Section 3 discusses empirical findings, and Section 4 offers concluding
remarks.
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2. Material and methods

2.1. ARIMA model

The Box Jenkins ARIMA model, represented in Eq. (1), stands as the predominant
technique for forecasting TS data:

ϕp(B)(1 − B)dyt = c + θq(B)εt (1)

where,
ϕp(B) = 1 − ϕ1B − ϕ2B

2 − · · · − ϕpBp

θq(B) = 1 − θ1B − θ2B
2 − · · · − θqB

q

Here, yt represents the value of current time; c is the constant term; B denotes
backward shift operator; εt represents the error term; ϕ1, ϕ2, . . . , ϕp denote Auto-Regressive
(AR) coefficients of order p; θ1, θ2, . . . , θq represent Moving Average (MA) coefficients of
order q; d is the order of differencing.

2.2. ARCH and GARCH models

ARIMA models are limited in their ability to capture the volatility inherent in TS
data and cannot adequately describe changes in conditional variances observed in real-world
datasets. To address the inadequacies of ARIMA model, Engle (1982) proposed Auto Re-
gressive Conditional Heteroscedastic (ARCH) model represented in Eq. (2). The ARCH
model for the series {εt} is characterized by defining the conditional distribution of εt given
the information available up to time t − 1, denoted as Ψt−1. The ARCH model for the series
εt can be expressed as:

εt|Ψt−1 ∼ N(0, ht) and εt =
√

htνt

where ht is conditional variance, νt is identically and independently distributed (iid)
innovations with zero mean and unit variance. The conditional variance ht is defined as

ht = α0 +
q∑

i=1
αiε

2
t−i (2)

The conditions of α0 > 0, αi ≥ 0∀i and ∑q
i=1 αi < 1 are necessary and sufficient

to guarantee non-negativity and a finite conditional variance for ht. Here, αi denotes the
coefficients indicating the impact of past shocks on the current volatility.

In response to certain shortcomings of the ARCH model, such as the rapid decay of
the unconditional autocorrelation function of squared residuals, non-parsimony etc., Boller-
slev (1986) introduced the Generalized ARCH (GARCH) model. The variance equation of
GARCH model is represented in Eq. 3 as:
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ht = α0 +
q∑

i=1
αiε

2
t−i +

p∑
j=1

βjht−j (3)

where α0 > 0, αi ≥ 0∀i, βj ≥ 0∀j. Here, βj denotes the coefficients indicating the impact
of past volatilities on the current volatility. While the GARCH model excels at capturing
overall volatility in TS, it falls short when it comes to asymmetric impacts of positive and
negative events. To address this limitation, various asymmetric GARCH-type of models
have evolved namely EGARCH, GJR-GARCH and APARCH model stated subsequently.

2.3. Asymmetric GARCH-type models

2.3.1. EGARCH model

EGARCH model addresses asymmetric volatility without parameter constraints. It
models the conditional variance, ht, as an asymmetric function of lagged disturbances, de-
fined by Eq. (4).

ln(ht) = α0 +
p∑

j=1
βj ln(ht−j) +

q∑
i=1

(
αi

∣∣∣∣∣ εt−i√
ht−i

∣∣∣∣∣+ λi
εt−i√
ht−i

)
(4)

where λi represents the asymmetric parameter, capturing asymmetric effects due to external
shocks.

2.3.2. GJR-GARCH model

GJR-GARCH model considers the impact of ε2
t−1 on the conditional variance, de-

pending on the sign of εt−1. They introduced an indicator variable to capture this sign
dependence. The GJR-GARCH model is represented in Eq. (5).

ht = α0 +
p∑

j=1
βjht−j +

q∑
i=1

αiε
2
t−i + γε2

t−1It−1 (5)

where γ (−1 < γ < 1) denote the asymmetric parameter, and It−1 is the indicator variable,
such that

It−1 =
{

1 if εt−1 < 0
0 if εt−1 ≥ 0

2.3.3. APARCH model

The APARCH model incorporates asymmetric power into the conditional variance,
specified as represented in Eq. (6).
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h
δ/2
t = α0 +

p∑
j=1

βjh
δ/2
t−j +

q∑
i=1

αi (|εt−i| − γεt−i)δ (6)

where γ (−1 < γ < 1) denotes the asymmetric parameter, and δ(> 0) denotes the power
term parameter. An application of different asymmetric GARCH type models can be found
in Rakshit et al. (2021).

2.4. ARIMA-GARCH type models

ARIMA-GARCH type models integrate ARIMA for capturing linear dynamics and
various GARCH models (e.g., GARCH, EGARCH, GJR-GARCH, and APARCH) to address
volatility clustering. The ARIMA component accounts for linear behaviour in the first stage,
thereby leaving nonlinear components in residuals. Paul et al. (2014) developed formulae for
out-of-sample forecast using ARIMA-GARCH model. Paul (2015) applied ARIMA-GARCH
model for forecasting volatility in agricultural crop yield.

The presence of serial autocorrelation in residuals from the ARIMA model is typically
assessed using the Ljung-Box test, a statistical test proposed by Ljung and Box (1978).
Meanwhile, the existence of heteroscedasticity in these residuals is evaluated through the
ARCH Lagrange Multiplier (LM) test, introduced by Engle (1982). If serial correlation and
heteroscedasticity are detected in the residuals based on the results of the Ljung-Box test
and ARCH-LM tests, respectively, the residuals are then subjected to a GARCH model.
GARCH is employed to model these residual patterns comprehensively, thereby capturing
both mean and volatility dynamics effectively. This approach ensures a thorough analysis of
both linear and nonlinear components in the data, enhancing the overall modelling accuracy
and robustness. The schematic representation of ARIMA-GARCH type model is illustrated
in Figure 1.

Figure 1: ARIMA-GARCH type model

2.5. Copula

Copulas have been introduced by applied mathematician, Sklar (1959). Copula comes
from the Latin word “copulature” which means “to join together”. Copulas are handled by
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utilizing Probability Integral Transformation (PIT) and Inverse Probability Integral Trans-
formation (Inverse PIT) which are described subsequently.

PIT: Suppose that a random variable X has a continuous distribution for which the
Cumulative Distribution Function (CDF) is FX . Then the random variable U defined by
PIT as U = FX(X) has a standard uniform distribution.

Inverse PIT: Given a continuous standard uniform variable U and an invertible CDF
G−1

X , the random variable X defined by Inverse PIT X = G−1
X (U) has distribution function

GX .

Accordingly, the formal definition of Copula is as follows: Let X = (X1, X2, . . . , Xd)
be a vector of random variables with their marginal CDFs F1, F2, . . . , Fd as continuous func-
tions. By applying the PIT to each component, obtain the U vector containing U1, U2, . . . , Ud

random variables; here each variable will follow standard uniform distribution as

U = (U1, U2, . . . , Ud) = [F1(X1), F2(X2), . . . , Fd(Xd)]

Then, Copula C is a joint cumulative distribution function of d random variables
given by

C(U1, U2, . . . , Ud) = H[G−1
1 (U1), G−1

2 (U2), . . . , G−1
d (Ud)]

To overcome the limitation of Pearson correlation coefficient, Copula modeling utilizes
Spearman’s rank correlation coefficient, a nonparametric measure of correlation. It avoids
distributional assumptions and linear relationships. Nonparametric correlation measures
allow flexible analysis, accommodating non-linear patterns and non-normal data.

2.5.1. Bivariate gaussian copula

Let Φxy be the distribution function of a standardised bivariate normal CDF and Φ−1

be the inverse of standard normal CDF, and ρ is the Spearman rank correlation coefficient
(i.e. dependence parameter) between the components. Then the bivariate Gaussian Copula
CDF is expressed as shown in Eq. (7).

Cρ(u1, u2) = Φxy[Φ−1(u1), Φ−1(u2); ρ] (7)

Let s = Φ−1(u1) and t = Φ−1(u2), then the Gaussian Copula density is given by Eq.
(8).

cρ(u1, u2) = 1√
1 − ρ2 exp

{
−(ρ2s2 + ρ2t2 − 2ρst)

2(1 − ρ2)

}
(8)

2.5.2. Bivariate Student-t copula

When the interest focuses on modelling data which exhibits heavy-tailed behaviour,
the Student-t Copula may be used instead of the Gaussian Copula.

Let txy be the distribution function of a standardised bivariate Student-t CDF and
t−1 be the inverse of standard Student’s t CDF with η degrees of freedom and ρ dependence
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parameter is the Spearman rank correlation coefficient between the components, then the
bivariate Student-t Copula CDF is expressed as shown in Eq. (9).

Cρη(u1, u2) = txy[t−1
η (u1), t−1

η (u2); ρ] (9)

Let s = t−1
η (u1) and r = t−1

η (u2), then the Student-t Copula density is given by Eq.
(10) as follows:

cηρ(u1, u2) =
Γ
(

η+2
2

)
Γ
(

η
2

)
√

1 − ρ2Γ2
(

η+1
2

) {(1 + s2

η

)(
1 + r2

η

)}(η+1)/2 (
1 + s2 + r2 − 2ρsr

η(1 − ρ2)

)−(η+2)/2

(10)

2.6. Bivariate ARIMA-GARCH type-Copula model

2.6.1. ARIMA-GARCH type model selection

ARIMA-GARCH type models, viz., ARIMA-GARCH, ARIMA-EGARCH, ARIMA-
GJR-GARCH and ARIMA-APARCH, are fitted to the two TS data independently. The
optimal ARIMA-GARCH type model is selected based on minimum value of Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC) for the two TS. From the
optimal ARIMA-GARCH type model, mean and volatility forecasts are obtained for both
TS. While these models capture temporal dependency within the individual TS, a Copula
model is employed to capture dependency between two TS.

2.6.2. Copula modeling

The residuals of the fitted ARIMA-GARCH type models for the two TS are employed
for Copula modeling. The Spearman rank correlation coefficient ρ is utilized to assess the
relationship between the residuals of the two TS. If the residuals of the two fitted TS are not
significantly correlated, then the forecasts from the optimal ARIMA-GARCH type models
for each TS are considered the final predictions. However, if the residuals are significantly
correlated, Copula modeling is employed. In Copula modeling, the residuals of both TS are
transformed using the PIT. The transformed values and estimated dependence parameter ρ
of copula are then utilized to fit both Gaussian Copula and Student-t Copula functions. The
optimal Copula function is selected based on the AIC and BIC criteria. The schematic repre-
sentation of the methodology of Bivariate ARIMA-GARCH type-Copula model is illustrated
in Figure 2.

2.6.3. One day ahead forecast through simulation

The optimal Copula function used to obtain the bivariate distribution (joint distribu-
tion) of residuals from an ARIMA-GARCH-type model is applied to two TS. By simulating
a large number of observations from the estimated bivariate distribution function through
random sampling, multiple potential future scenarios are generated. These scenarios incorpo-
rate uncertainty, variability, and the complex relationships between the residuals of the two
TS, helping capture the range of possible future outcomes more comprehensively. The step
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Figure 2: Flow chart of Bivariate ARIMA-GARCH type-Copula

by step algorithm to obtain one day ahead forecast through simulation can be summarized
as follows:

1. Simulate n pairs of random samples (û1,i, û2,i) from the estimated Optimal Copula
function. Here û1,i and û2,i denote the simulated values for the residuals of the optimal
ARIMA-GARCH type models of the first and second TS, respectively, where 1 ≤ i ≤ n.

2. To ensure that the simulated values of residuals are in their respective original scales,
inverse PIT is applied to obtain transformed values (v̂1,i, v̂2,i).

3. Multiply v̂1,i by the respective predicted one-day ahead volatility
√

h1,t from the optimal
GARCH type model for the first TS, and multiply v̂2,i by the respective predicted one-
day ahead volatility

√
h2,t from the optimal GARCH type model for the second TS.
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ε̂1,i = v̂1,i

√
h1,t and ε̂2,i = v̂2,i

√
h2,t

4. Obtain (µ̂1,i, µ̂2,i) by adding the mean forecast from the ARIMA model for the first
and second TS to the ε̂1,i and ε̂2,i respectively.

µ̂1,i = µ̂1,t + ε̂1,i and µ̂2,i = µ̂2,t + ε̂2,i

5. Take average to obtain one day ahead forecasts (k̂1,t, k̂2,t) of both TS

k̂1,t = 1
n

n∑
i=1

µ̂1,i and k̂2,t = 1
n

n∑
i=1

µ̂2,i

k̂1,t and k̂2,t are considered as one day ahead forecasts from Bivariate ARIMA-GARCH
type-Copula model for first and second TS, respectively.

3. Data and empirical findings

3.1. Data description

In this study, we collected monthly agricultural commodity price data for three oilseed
crops and three pulse crops from two primary markets for each commodity. The data was
obtained from the AGMARKNET portal of the Ministry of Agriculture and Farmers Welfare,
Government of India (https://agmarknet.gov.in/), covering the period from January 2010
to December 2022. The selection of major markets was based on their significant arrival
quantities. The chosen markets are detailed below:

Oilseeds:

• Safflower: Latur (Maharashtra) and Kalaburagi (Karnataka)

• Mustard: Sri Ganganagar (Rajasthan) and Satna (Madhya Pradesh)

• Groundnut: Gondal (Gujarat) and Bikaner (Rajasthan)

Pulses:

• Lentil: Banda (Uttar Pradesh) and Narsinghpur (Madhya Pradesh)

• Chickpea: Hinganghat (Maharashtra) and Dewas (Madhya Pradesh)

• Green gram: Bhagat Ki Kothi (Rajasthan) and Kalaburagi (Karnataka)

Each agricultural commodity price dataset contained 156 observations, the series
was divided into training and testing sets. The training set consisted of 144 months of
observations, which were used for model building. The last 12 months of observations were

https://agmarknet.gov.in/
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Table 1: Descriptive statistics of monthly agricultural commodity price data

Commodity Markets Mean S.D. C.V (%) Skew Kurt Minimum Maximum
Safflower Latur 3301.18 844.03 25.57 0.81 0.08 1985.71 5755.00

Kalaburagi 3236.95 940.20 29.05 0.71 -0.12 1795.95 5944.72
Mustard Sri Ganganagar 3922.62 1268.29 32.33 1.16 0.72 2153.15 7679.16

Satna 3690.72 1246.44 33.77 1.18 0.72 1900.00 7397.23
Groundnut Gondal 4518.99 1065.89 23.59 0.28 -0.90 2796.08 6933.18

Bikaner 4055.43 951.53 23.46 0.49 -0.41 2456.59 6540.67
Lentil Banda 4328.20 1220.39 28.20 0.45 -0.76 2279.00 7277.69

Narsinghpur 4255.75 1183.62 27.81 0.45 -0.93 2466.35 7022.16
Chickpea Hinganghat 3627.42 1090.69 30.07 0.89 1.81 1835.11 7629.75

Dewas 3859.89 1260.67 32.66 1.13 2.84 1835.09 8871.43
Green gram Bhagat Ki Kothi 5413.40 1267.25 23.41 -0.18 -0.75 2025.00 8270.67

Kalaburagi 5254.95 1125.54 21.42 -0.21 -0.68 2612.50 8132.74
S.D.: Standard Deviation, C.V.: Coefficient of Variation, Skew: Skewness, Kurt: Kurtosis

kept for validating the model. The Table 1 presents key statistics for various commodities
across different markets.

Green gram in Bhagat Ki Kothi market stands out with the highest mean price, while
safflower in Kalaburagi market records the lowest. Mustard in Satna market exhibits the
highest coefficient of variation (C.V.), indicating considerable price variability, while green
gram in Kalaburagi shows the lowest. Dewas for Chickpea reports the highest maximum
price, and safflower in Kalaburagi reflects the lowest minimum. Positively skewed distribu-
tions are observed in most of the agricultural commodity markets except the green gram
market in Bhagat Ki Kothi and Kalaburagi, which display negative skewness. Leptokurtic
distributions are evident in Mustard in Sri Ganganagar, Satna, Chickpea in Hinganghat
and Dewas, while Safflower in Latur exhibit approximately mesokurtic distributions. The
remaining commodities markets demonstrate platykurtic distributions.

3.2. Test for normality

To evaluate normality of agricultural commodity price data, most widely used statis-
tical tests, viz., Jarque-Bera test (Jarque and Bera (1987)) and Shapiro-Wilk test (Shapiro
and Wilk (1965)) were employed. The results of these normality tests are presented in Table
2, indicating that the majority of agricultural commodity markets show significant deviations
from normality at 1% level as evidenced by low p-values (<0.01), the Green gram prices in
the Bhagat Ki Kothi and Kalaburagi markets are significant at the 5% level with p-value
below 0.05 from the Jarque-Bera test and Shapiro-Wilk tests. Hence all the agricultural
commodity markets price data considered were non-normal.

3.3. Test for stationarity

The stationarity of data is a crucial property of TS analysis. A series is considered
stationary if it maintains a constant mean and variance over time. To assess stationarity,
several statistical tests namely the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller
(1979)), the Phillips-Perron (PP) test (Phillips and Perron (1988)) and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al. (1992)) were employed. The null
hypothesis for the ADF and PP tests states that the series is non-stationary, while for the
KPSS test, it suggests that the series is stationary. Table 3 presents stationarity test results
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Table 2: Normality test results of agricultural commodity price data of different
markets

Commodity Markets Jarque-Bera test Shapiro-Wilk test
Statistic p-value Statistic p-value

Safflower Latur 17.322 0.0002 0.936 < 0.0001
Kalaburagi 13.489 0.0012 0.944 < 0.0001

Mustard Sri Ganganagar 39.849 < 0.0001 0.871 < 0.0001
Satna 40.732 < 0.0001 0.861 < 0.0001

Groundnut Gondal 17.056 0.0029 0.966 0.0008
Bikaner 17.397 0.0025 0.967 0.0009

Lentil Banda 8.978 0.0113 0.957 0.0002
Narsinghpur 10.663 0.0048 0.944 < 0.0001

Chickpea Hinganghat 44.062 < 0.0001 0.932 < 0.0001
Dewas 89.206 < 0.0001 0.915 < 0.0001

Green gram Bhagat Ki Kothi 8.185 0.0124 0.978 0.0154
Kalaburagi 8.948 0.0138 0.978 0.0168

for agricultural commodity price data across various markets. All agricultural commodity
markets price series are deemed non-stationary, as indicated by the p-values.

Table 3: Stationarity test results of agricultural commodity price data of different
markets

Commodity Markets ADF test PP test KPSS test
Statistic p-value Statistic p-value Statistic p-value

Safflower Latur -2.042 0.559 -4.202 0.874 1.788 < 0.01
Kalaburagi -2.012 0.572 -8.827 0.608 2.251 < 0.01

Mustard Sri Ganganagar -2.283 0.458 -8.068 0.652 2.179 < 0.01
Satna -2.357 0.427 -6.532 0.741 2.163 < 0.01

Groundnut Gondal -2.224 0.483 -17.24 0.125 1.566 < 0.01
Bikaner -2.232 0.479 -9.945 0.495 1.941 < 0.01

Lentil Banda -1.820 0.651 -9.350 0.578 1.586 < 0.01
Narsinghpur -1.789 0.663 -8.301 0.638 1.474 < 0.01

Chickpea Hinganghat -3.109 0.114 -16.948 0.142 1.201 < 0.01
Dewas -2.731 0.272 -14.232 0.298 1.111 < 0.01

Green gram Bhagat Ki Kothi -1.967 0.596 -16.988 0.195 0.985 < 0.01
Kalaburagi -2.918 0.193 -12.751 0.383 0.868 < 0.01

3.4. Residual analysis

Suitable ARIMA model is selected based on minimum AIC and BIC criteria and also
observing the significance of autocorrelation and partial autocorrelation functions. Subse-
quently, the residuals from the ARIMA model undergo diagnostics measures.

3.4.1. Ljung-Box test for serial autocorrelation

The Ljung-Box test is utilized to assess the presence of serial autocorrelation in resid-
uals from the ARIMA model. The null hypothesis suggests that the residuals exhibit no
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autocorrelation for a fixed number of lags. A rejection of this hypothesis indicates the pres-
ence of serial autocorrelation. Table 4 presents Ljung-Box test results, revealing significant
autocorrelation in agricultural commodity price data from all specified markets.

3.4.2. ARCH lagrange multiplier (LM) test for heteroscedasticity

The ARCH LM test is employed to evaluate the existence of heteroscedasticity in
residuals. It examines whether the variance of the residuals is constant over time or not.
The null hypothesis states that the residuals are homoscedastic, while a rejection of null
hypothesis suggests the presence of heteroscedasticity. In addition Table 4 presents ARCH-
LM test results, indicating heteroscedasticity in agricultural commodity price data across all
specified markets.

Table 4: Ljung-Box and ARCH-LM test statistic results of agricultural commod-
ity price data of different markets

Commodity Markets Ljung-Box ARCH-LM
Safflower Latur 10.23 44.19

Kalaburagi 14.51 37.82
Mustard Sri Ganganagar 6.88 58.44

Satna 6.95 78.67
Groundnut Gondal 7.81 28.57

Bikaner 12.91 41.36
Lentil Banda 10.45 27.47

Narsinghpur 10.94 46.33
Chickpea Hinganghat 22.14 40.34

Dewas 12.16 62.04
Green gram Bhagat Ki Kothi 7.28 23.98

Kalaburagi 14.76 20.36
Note: The test statistics provided in the table lead to p-values of less than 0.01 for all cases.

3.4.3. Broock-Dechert-Scheinkman (BDS) test for nonlinearity

The nonparametric Broock-Dechert-Scheinkman (BDS) test (Broock et al. (1996))
is utilized to test the nonlinearity of the residual series. This test assesses whether the
residuals exhibit nonlinear dependence. The null hypothesis assumes that the residuals
are independently and identically distributed (iid). A rejection of this hypothesis indicates
nonlinearity in the residuals. The results of the BDS test, presented in Table 5, indicate
the possible presence of nonlinear patterns in the residuals of the ARIMA model at 1%
significance level in all the agricultural markets price series.

It is evident that autocorrelation, heteroscedasticity, and nonlinearity is detected
in the residuals based on the results of the aforementioned tests, hence residuals are then
subjected to a GARCH type models such as standard GARCH, EGARCH, GJR-GARCH,
and APARCH. Through rigorous evaluation, the optimal ARIMA-GARCH model is selected
based on criteria such as the AIC and the BIC, as outlined in Table 6. Subsequently, the
estimated parameters of the best-fitted model are detailed in Table 7.
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Table 5: BDS test results of agricultural commodity price data of different mar-
kets

Commodity Markets Dimension (m)
0.5σ 1.0σ 1.5σ 2.0σ

Safflower Latur 10.73 8.40 7.50 5.48
Kalaburagi 7.21 7.05 4.14 1.11

Safflower Latur 16.45 10.01 8.34 6.58
Kalaburagi 13.13 11.22 7.34 2.47

Mustard Sri Ganganagar 5.18 7.14 7.46 5.18
Satna 8.16 9.42 9.32 6.95

Mustard Sri Ganganagar 9.25 10.86 10.57 7.89
Satna 9.03 11.31 11.77 9.31

Groundnut Gondal 10.56 5.81 3.95 2.54
Bikaner 10.96 9.81 5.85 4.69

Groundnut Gondal 21.56 11.31 8.45 6.83
Bikaner 17.26 13.04 7.95 7.24

Lentil Banda 9.94 7.43 5.70 3.59
Narsinghpur 4.62 4.09 3.21 2.09

Lentil Banda 13.45 9.84 7.60 5.14
Narsinghpur 11.01 8.82 7.02 4.27

Chickpea Hinganghat 20.41 10.74 7.21 6.58
Dewas 14.29 9.36 7.43 6.70

Chickpea Hinganghat 25.08 12.06 8.28 7.94
Dewas 23.37 13.91 10.15 8.94

Green gram Bhagat Ki Kothi 21.21 14.81 10.87 7.55
Kalaburagi 5.71 5.38 5.21 5.64

Green gram Bhagat Ki Kothi 28.27 18.66 12.74 8.44
Kalaburagi 11.21 9.69 7.81 6.84

Note: The test statistics provided in the table lead to p-values less than 0.01 for all cases.

The correlation between the residuals of ARIMA-GARCH type models for two mar-
kets of the same agricultural commodity is examined through Spearman’s rank correlation,
and the results are shown in Table 8, indicating a significant correlation between the residu-
als of ARIMA-GARCH type models for two markets of all agricultural commodities at the
one percent level. Subsequently, the residuals of the two markets were transformed via the
PIT. The transformed values are then utilized to fit both Gaussian Copula and Student-t
Copula models, and their AIC and BIC values are presented in Table 9. The results indicate
that in all cases, the Student-t Copula model is the optimal Copula, with the lowest AIC and
BIC values. This suggests that the Student-t Copula model provides a better goodness-of-fit
compared to the Gaussian Copula.

After fitting the Student-t Copula model to the residuals of the optimal ARIMA-
GARCH models for the two considered markets, proceed to simulate n = 1000 pairs of
random samples from the estimated Student-t Copula function. Next, obtain one-day-ahead
forecasts from the Bivariate ARIMA-GARCH-Copula model using algorithm 2.6.3. Repeat
this one-day-ahead forecast procedure for each day in the test dataset, employing algorithm
2.6.3.
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Table 6: Optimal ARIMA-GARCH type model for different commodity markets

Commodity Markets Optimal ARIMA-GARCH type model AIC BIC
Safflower Latur ARIMA (2,1,1) - GARCH (1,1) 12.107 12.211

Kalaburagi ARIMA (2,1,0) - APARCH (1,0) 13.121 13.268
Mustard Sri Ganganagar ARIMA (1,1,0) - GARCH (1,1) 13.797 13.902

Satna ARIMA (2,1,1) - APARCH (1,0) 13.103 13.270
Groundnut Gondal ARIMA (2,1,0) - APARCH (1,0) 13.231 13.398

Bikaner ARIMA (1,1,0) - APARCH (1,0) 14.461 14.628
Lentil Banda ARIMA (2,1,1) - APARCH (1,1) 14.165 14.290

Narsinghpur ARIMA (2,1,0) - APARCH (1,1) 14.139 14.293
Chickpea Hinganghat ARIMA (2,1,0) - GARCH (1,1) 14.539 14.664

Dewas ARIMA (2,1,0) - GARCH (1,1) 14.838 14.922
Green gram Bhagat Ki Kothi ARIMA (2,1,1) - APARCH (1,1) 15.088 15.213

Kalaburagi ARIMA (2,1,1) - APARCH (1,1) 14.779 14.904

Table 7: Parameter estimates of ARIMA-GARCH type models

Commodity Markets ϕ1 ϕ2 θ1 α1 β1 γ δ

Safflower Latur 0.364 0.638 0.747 0.686 0.206 - -
(<0.001) (<0.001) (<0.001) (<0.001) (0.009) - -

Kalaburagi 1.207 -0.239 - 0.418 - 0.178 3.218
(<0.001) (0.003) - (<0.001) - (<0.001) (<0.001)

Mustard Sri Ganganagar 0.913 - - 0.362 0.589 - -
(<0.001) - - (<0.001) (<0.001) - -

Satna 1.327 -0.438 0.104 0.633 - 0.057 3.499
(<0.001) (<0.001) (0.031) (<0.001) - (<0.001) (<0.001)

Groundnut Gondal 1.284 -0.406 - 0.503 - 0.242 3.072
(<0.001) (<0.001) - (<0.001) - (<0.001) (<0.001)

Bikaner 0.887 - - 0.087 - 0.952 3.500
(<0.001) - - (<0.001) - (<0.001) (<0.001)

Lentil Banda 0.885 -0.148 0.510 0.099 0.567 0.480 3.127
(<0.001) (0.018) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Narsinghpur 0.978 -0.189 - 0.049 0.493 0.898 3.358
(<0.001) (0.014) - (<0.001) (<0.001) (<0.001) (<0.001)

Chickpea Hinganghat 1.198 -0.294 - 0.384 0.581 - -
(<0.001) (0.003) - (<0.001) (<0.001) - -

Dewas 0.758 0.249 0.911 0.272 0.702 - -
(<0.001) (0.002) (<0.001) (<0.001) (<0.001) - -

Green gram Bhagat Ki Kothi 0.433 0.570 0.674 0.340 0.058 0.254 3.445
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Kalaburagi 1.054 -0.548 -0.523 0.395 0.108 0.104 3.268
(<0.001) (<0.001) (0.046) (<0.001) (<0.001) (<0.001) (<0.001)

Note: The values in the parenthesis indicates the p-value

In evaluating the forecasting performance of the ARIMA-GARCH type-Copula, a
comparative analysis is conducted against established traditional methodologies. Specifically,
the efficacy of the ARIMA-GARCH-Copula model is compared with that of the Univariate
ARIMA-GARCH type and MGARCH-DCC models. The assessment of accuracy utilizes key
evaluation metrics, namely Root Mean Square Error (RMSE) (Eq.11), Mean Absolute Error
(MAE) (Eq.12), and Mean Absolute Percentage Error (MAPE) (Eq.13), applied to the test
dataset.
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Table 8: Correlation analysis of ARIMA-GARCH type models

Commodity Markets Spearman’s Rank Correlation Coefficient
Safflower Latur and Kalaburagi 0.644
Mustard Sri Ganganagar and Satna 0.554
Groundnut Gondal and Bikaner 0.469
Lentil Banda and Narsinghpur 0.674
Chickpea Hinganghat and Dewas 0.577
Green gram Bhagat Ki Kothi and Kalaburagi 0.527

Note: p-values of correlation coefficient are less than 0.01 for all cases.

Table 9: Comparison of Copula models

Commodity Markets Gaussian Copula Student-t Copula
AIC BIC AIC BIC

Safflower Latur and Kalaburagi -352.43 -346.33 -354.36 -351.31
Mustard Sri Ganganagar and Satna -476.47 -473.42 -481.54 -475.44
Groundnut Gondal and Bikaner -272.15 -269.10 -278.62 -272.52
Lentil Banda and Narsinghpur -444.05 -441.00 -495.60 -489.50
Chickpea Hinganghat and Dewas -351.78 -348.73 -393.26 -387.16
Green gram Bhagat Ki Kothi and Kalaburagi -224.19 -221.14 -250.90 -244.80

RMSE =
√√√√ 1

m

m∑
t=1

(yt − ŷt)2 (11)

MAE = 1
m

m∑
t=1

|yt − ŷt| (12)

MAPE = 1
m

m∑
t=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣× 100 (13)

where yi and ŷi represent the actual and predicted values, respectively, and m is the number
of observations in test dataset.

Table 10 provides a comparison of model forecasting performance considering RMSE,
MAE and MAPE. The findings consistently reveal that the Bivariate ARIMA-GARCH type-
Copula model outperforms both the MGARCH-DCC model and the Univariate ARIMA-
GARCH type model across all agricultural commodity market price series. This superiority
is underscored by the model’s ability to achieve the lowest RMSE, MAE and MAPE values.

In addition to traditional accuracy metrics, the Diebold-Mariano (DM) test proposed
by Diebold and Mariano (2002) is used to compare the forecasting performance of two com-
peting models. The fundamental premise of the DM test lies in its null hypothesis, which
posits that both forecasting models exhibit the same level of accuracy. By comparing the
forecast errors of the Bivariate ARIMA-GARCH type–Copula model and benchmark models
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Table 10: Comparison of forecasting performance of different models

Commodity Markets BAGC model MGARCH-DCC model UAGC model
RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

Safflower Latur 147.43 102.34 1.96 208.72 159.94 3.07 415.67 354.97 6.78
Kalaburagi 367.02 293.90 5.49 422.53 343.90 6.54 453.45 392.31 7.58

Mustard Sri Ganganagar 279.00 212.94 3.36 474.58 418.43 7.43 1065.31 978.72 15.55
Satna 257.06 195.56 3.19 355.44 310.18 4.98 447.56 358.06 6.01

Groundnut Gondal 329.16 224.28 3.58 522.77 510.90 7.94 933.32 766.58 11.82
Bikaner 462.97 368.28 6.72 642.34 479.93 8.93 1078.72 982.64 16.43

Lentil Banda 179.07 147.05 2.29 331.77 281.12 4.46 538.12 431.15 6.53
Narsinghpur 260.87 227.61 3.68 527.40 490.60 8.01 751.30 655.51 10.59

Chickpea Hinganghat 221.58 167.26 3.95 300.89 263.71 6.29 608.56 463.61 10.94
Dewas 206.01 167.42 3.76 422.29 345.91 8.01 589.72 475.63 10.26

Green gram Bhagat Ki Kothi 283.54 239.46 3.86 388.31 352.34 5.51 761.36 632.49 9.89
Kalaburagi 234.50 202.74 3.27 502.84 378.53 5.87 848.16 704.32 11.35

Note: BAGCM:Bivariate ARIMA-GARCH type -Copula model; MGARCH-DCC: Multivariate GARCH
DCC model; UAGCM: Univariate ARIMA-GARCH type-Copula

Table 11: Diebold-Mariano test for pairwise comparison of Copula based model
with benchmark models

Commodity Markets Benchmark Models
MGARCH-DCC model Univariate ARIMA-GARCH type model

Safflower Latur -3.3075 (0.0052) -8.5562 (<0.0001)
Kalaburagi -2.2874 (0.0385) -7.2749 (<0.0001)

Mustard Sri Ganganagar -4.7645 (0.0003) -6.5871 (<0.0001)
Satna -4.7203 (0.0004) -8.467 (<0.0001)

Groundnut Gondal -4.862 (0.0003) -10.504 (<0.0001)
Bikaner -5.5891 (<0.0001) -11.713 (<0.0001)

Lentil Banda -3.1998 (0.0064) -4.9542 (0.0002)
Narsinghpur -3.8288 (0.0018) -6.0619 (<0.0001)

Chickpea Hinganghat -3.6141 (0.0028) -8.5482 (<0.0001)
Dewas -2.1141 (0.0428) -12.388 (<0.0001)

Green gram Bhagat Ki Kothi -3.6864 (0.0025) -5.8317 (<0.0001)
Kalaburagi -2.1669 (0.0479) -4.7079 (0.0004)

(MGARCH-DCC model and Univariate ARIMA-GARCH type model), the DM test evalu-
ates whether there exists a statistically significant difference in their predictive capabilities.
Table 11 presents the statistic values and their corresponding p-values (in parentheses) of the
DM test, comparing the predictive accuracy of the Bivariate ARIMA-GARCH type–Copula
model with benchmark models on the test datasets. The results suggest that the forecasting
performance of the Bivariate ARIMA-GARCH type–Copula model significantly outperforms
both the MGARCH-DCC model and the Univariate ARIMA-GARCH type model.

4. Conclusions

This study focused on analyzing the price volatility of oilseed crops viz., safflower,
mustard, and groundnut, as well as pulses viz., lentil, chickpea, and green gram across two
markets for each commodity. By employing the Bivariate ARIMA-GARCH type-Copula
model, the accuracy of price forecasting in the agricultural sector was studied. This study
highlights the importance of incorporating Copulas into advanced modeling techniques to
capture the complex interdependencies and joint distributions of agricultural commodity



214 MANJUNATHA ET AL. [Vol. 23, No. 1

prices. The research findings demonstrate that the Bivariate ARIMA-GARCH type-Copula
model surpassed both the MGARCH-DCC model and the Univariate ARIMA-GARCH type
model in terms of forecasting performance. The evaluation metrics viz., RMSE, MAPE, and
MAE, consistently indicated the superior predictive ability of the Bivariate ARIMA-GARCH
type-Copula model across all agricultural commodity market price series. Furthermore, the
Diebold-Mariano (DM) test results provided additional validation of the Bivariate ARIMA-
GARCH type-Copula model’s outperformance compared to the alternative models. This
signifies the robustness and reliability of Bivariate ARIMA-GARCH type-Copula model in
capturing the joint distribution of commodity prices and improving forecasting accuracy.
In the dynamic realm of agriculture, understanding price dynamics and volatility drivers is
paramount. Combining Copulas with the ARIMA-GARCH model holds promise for better
price predictions. By using advanced modeling, researchers and policymakers can improve
forecasting accuracy. This study underscores the importance of continuous monitoring and
analysis of agricultural commodity prices to mitigate risks and optimize market strategies in
the ever-evolving landscape of the Indian economy.
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