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Abstract 

 

Ranked Set Sampling (RSS) is a sampling scheme, which is mainly used under the 

condition that the measurement of units are difficult or time consuming but the ranking of 

the units by some methods other than actual measurements (e.g. visual inspection) is 

relatively easy. This paper provides a critical review of the major developments and issues in 

RSS since its inception by McIntyre (1952) and suggests a new initiative on extreme RSS 

Samawi et al. (1996). 
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__________________________________________________________________________ 

 

1 Introduction 

 

Understanding environmental issues and conducting related research is beset with 

certain peculiar problems, especially those that require data and their subsequent analysis. 

One of the basic objectives of researchers engaged in environmental and ecological studies 

is to obtain optimum precision with a reasonable cost and time associated with field and 

laboratory experiments. In many studies, it is observed that the measurement of the units 

depends upon a host of extraneous factors like difficulty of reaching the sampling unit, costs 

involved, destruction of the sampling unit (especially when repeated measurements need to 

be taken), etc. For example, in research related to entomology (infestation of bark eating 

caterpillar Inderbela quadrinotato in Populus deltoides commonly known as poplar), 

assessment of infestation of plant species by insect pests is regularly done, the measurement 

of each sampled tree is not only difficult but costly as well because larva of this caterpillar 

makes tunnel into the trunk of the tree and feeds bark tissues covering them with fecal 

ribbons. It is compulsory to remove the ribbon made by the caterpillar to confirm the 

presence of active insects inside which requires more resources in terms of effort, cost and 

time. The conventional sampling techniques like simple random sampling (SRS) fails here 

because the actual measurement of active insects present in each tree is not feasible. 

However, the ranking of the trees based upon the ribbon made by this insect is relatively 

easy. The number of ribbons and their sizes can easily be seen in the tree and hence the 

ranking based upon visual inspection can be done for all the sampled trees [Figure 1]. For 

such situations, an environmental sampling scheme introduced by McIntyre (1952), known 

as Ranked Set Sampling (RSS), is most appropriate and can be utilized to potentially 

increase the precision and reduce costs when actual measurements of the variable of interest 
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is costly and / or time-consuming but the ranking of the set of items according to the variable 

can be done without actual measurements.  

 

 

Figure 1: (A) larva of I. quadrinotata (B) Ribbon symptom made by I. quadrinotata (C) 

Heavy attach of I. quadrinotata in the poplar plantation field (D) Healthy poplar 

plantation in the field. 

 

Patil (2002), in a note in Encyclopedia of Environmetrics, described the method of 

RSS in details. In order to obtain a ranked set sample of size n=km, where k is the number of 

sample units selected in each cycle (set size) and m is the total number of cycles, the 

following steps are carried out: 

1. The k2 units are randomly selected from the population 

2. The k2 units are then allocated as randomly as possible into k sets, each of size k. 

3. The units within each set are then ranked based on a perception of relative values for 

the variable under interest. This may be done based on personal judgment, expert 

judgment or measurement of a covariate correlated with the variable under interest 

(concomitant variable) whose actual measurement is relatively easier and inexpensive. 

4. Actual analysis is carried out on the sample obtained by including the smallest ranked 

unit in the first set, second smallest unit in the second set and so on up to the largest 

unit in the kth set. 

5. Repeat steps 1 to 4 for m cycles until the desired sample size n=km [Figure 2], is 

obtained for analysis. 
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Figure 2: Elucidation of k2 units in k sets each of size k for cycle j 
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 This is the case of balanced RSS (i.e. the number of measurements made on each 

ranked units is same for all the ranks), which maintains the unbiasedness of SRS and, in 

addition, increases its representativeness of the true underlying population. An unbiased 

estimator of population mean under RSS (McIntyre, 1952) is given by, 

,
1

1 1

):()( 
 


k

i

m

j

jkiRSSk Y
km

Y  
(1) 

where, jkiY ):( represents the measured value of the ith rank order statistic under jth cycle. 

Takahasi and Wakimoto (1968) proved that under the perfect ranking, the relative precision 

(RP) lies between 1 and 2/)1( k . It was established by Dell and Clutter (1972) that the RSS 

performs better than SRS even in presence of the ranking errors, which shows that the 

balanced RSS is never less precise than SRS. 

  

 An unbalanced RSS or RSS with unequal allocation is one in which the ranked order 

statistics are not measured the same number of times. Kaur et al. (1994, 1997) proposed the 

near optimum allocation models for skewed distributions to overcome the certain difficulties 

found in Neyman’s optimum allocation procedure in which the knowledge of standard 

deviations of the order statistics were unknown. Their allocation procedure does not provide 

the integer allocation values. To overcome this difficulty, Tiwari and Chandra (2011) 

suggested new allocation procedure which ensures the gain of RSS quite closer to the above 

models. RP of these models for two skewed distributions, LN (0, 1) and Pareto (3), are 

shown in Table 1 and Table 2, respectively (Tiwari and Chandra, 2011). 

 

Table 1: RP of different models of LN (0, 1) for k = 2(1)8. 

Set size (k) 2 3 4 5 6 7 8 

Balanced RSS 1.1872 1.3393 1.4711 1.5891 1.6971 1.7974 1.8914 

Kaur et al (t-model) 1.482 2.039 2.324 2.714 3.098 3.266 3.656 

Kaur et al ((s, t)-model)  2.039 2.595 3.030 3.283 3.815 4.198 

Neyman’s Model 1.482 2.039 2.595 3.088 3.560 4.067 4.532 

Tiwari and Chandra model 1.482 1.859 2.174 2.449 2.695 2.920 3.128 

 

Table 2: RP of different models of Pareto (3) for k = 2(1)8. 

Set size (k) 2 3 4 5 6 7 8 

Balanced RSS 1.136 1.242 1.330 1.407 1.475 1.537 1.594 

Kaur et al (t-model) 1.449 2.055 2.466 2.632 3.156 3.463 3.629 

Kaur et al ((s, t)-model)  2.055 2.591 3.099 3.487 3.800 4.272 

Neyman’s Model 1.449 2.055 2.591 3.099 3.631 4.114 4.619 

Tiwari and Chandra model 1.449 1.772 2.026 2.236 2.416 2.575 2.718 

 

For symmetric distributions, Kaur et al. (2000) suggested an optimal allocation 

model and compared it with the equal and Neyman allocation models in terms of the RP of 

the estimator of population mean. This model had a disadvantage that it does not contain all 

the order statistics and depends only on extreme or median order statistics. Chandra et al. 

(2015) proposed a systematic model for symmetric distributions to overcome the drawbacks 

in Kaur et al. (2000) model in the sense that measurements are made upon each rank order. 

RP of this method was found to be very close to the optimum allocation model and better 

than the balanced RSS and Neyman’s model (See, Table 3 and Table 4 for two symmetric 

distributions). Yanagawa and Chen (1980) suggested a minimum variance linear unbiased 

median-mean estimator of population mean for a family of symmetric distributions. 
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Shirahata (1982) examined more general procedures that are unbiased for symmetric 

distributions. 

 

Table 3: RP of different models for uniform distribution for k = 2(1)8 

Set size (k) 2 3 4 5 6 7 8 

Balanced RSS 1.500 2.000 2.500 3.000 3.500 4.000 4.500 

Neyman’s Model 1.500 1.846 2.381 2.983 3.500 4.081 4.563 

Kaur et al model 1.500 2.222 3.125 4.200 5.445 6.857 8.437 

Chandra et al. model 1.500 2.111 2.778 3.458 4.265 4.982 5.909 

 

Table 4: RP of different models for normal distribution for k = 2(1)8 

Set size (k) 2 3 4 5 6 7 8 

Balanced RSS 1.467 1.914 2.347 2.770 3.186 3.595 3.999 

Neyman’s model 1.467 1.747 2.199 2.656 3.186 3.633 3.932 

Kaur et al. model 1.467 2.229 2.774 3.486 4.062 4.752 5.342 

Chandra et al. model 1.467 2.008 2.527 3.085 3.624 4.187 4.735 

 

For the unbalanced RSS, Takahasi and Wakimoto (1968) showed that the RP of RSS relative 

to SRS lies between 0 and k. 

 

2 RSS Versus Other Classical Designs 
 

Since the inception of RSS by McIntyre (1952), there had been a large number of 

developments in the area of RSS. It has been compared with the other classical methods viz. 

SRS, stratified sampling, systematic sampling, multistage sampling etc. theoretically as well 

as on the basis of real applications in forestry, environmental sciences, epidemiology, 

agriculture etc. In this section, we shall critically discuss the differences between RSS and 

the other classical designs being frequently used in sample surveys. Relative advantages and 

disadvantages of these designs shall be revisited. 

 

With the classical designs, the entire selection of sample units in the sample is made 

by the actual measurement of each of the selected units. For example, in SRS, the selected 

units require measurement cost and time towards each and every unit of the population to get 

a SRS selected. This does not guarantee to have an optimum sample due to the equal 

probabilities of selection of each unit of the population. Similar situations also prevail in 

other classical designs. With RSS, however, the researcher has a greater advantage of saving 

time and money on the selection of units. Despite this advantage, the objective is the same, 

that is, to select the unit (based on actual measurement or ranking method) and then estimate 

some function  yZ  (or equivalently the population total,   
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For many classical sampling plans, the measurement of all the sampled units is 

compulsory to estimate the parameters under study. On the other hand, for RSS, the 

measurement of all sampled units is not compulsory and there is drastic reduction in the 

number of units for actual measurement. RSS gains the advantages of the stratified random 

sampling, in which, the sampling unit from various order statistics are for measurement.  

Another important advantage of RSS is that classical estimators used in conjunction with 



2019]     NEW INITIATIVE ON EXTREME RANKED SET SAMPLING       125 

RSS are unbiased. There are numerous other advantages that RSS may have over the 

classical designs. In many instances RSS can be a more efficient design, i.e. the variances of 

estimators will be smaller for an equivalent amount of sampling effort (Takahasi and 

Wakimoto, 1968).  

 

Furthermore, beyond the cost effectiveness, RSS has other advantages. It may be 

implemented in any of the situations where classical designs are used for drawing the valid 

inferences but the procedure, formulae and data computations may differ while using RSS. 

For example, if RSS data are used in non-parametric inferences, the Wilcoxon Rank Sum 

test will be used to test for differences in the medians of two populations, and as such the 

computations for the Wilcoxon Rank Sum test described in Bohn and Wolfe (1992, 1994) 

should be used rather than the standard computations [Gibbons and Chakraborty (2010)] that 

would have been used if the data had been obtained using SRS. 

 

3 RSS in Estimating Various Population Parameters 

 

In this section, we shall discuss the use of RSS in estimating various population 

parameters. For the sake of convenience and clarity, this section has been divided into five 

sub-sections to categorize the various population parameters under consideration. 

 

3.1 Population Mean, Variance and Distribution Functions 
 

A substantial work has been carried out by many researchers in estimation of mean 

for finite and infinite populations after McIntyre (1952). This was based upon the original 

RSS and its modifications. Takahasi and Wakimoto (1968) provided the complete theory of 

estimation of mean using RSS. The problem of estimating mean of lognormal distribution 

with known coefficient of variation has been studied by Shen (1994). It was shown that the 

use of RSS and its modifications results in improved estimators compared to the SRS. 

Samawi et al. (1996) suggested a variety of extreme RSS for mean estimation. Muttlak 

(1997) introduced a median RSS to estimate population mean. Similarly other researchers 

discussed the mean estimation using other versions of RSS. For example, using random 

selection in RSS (Li et al., 1999), double extreme RSS Samawi (2002), double RSS 

procedure Al-Saleh and Al-Kadiri (2000), moving extremes RSS Al-Saleh and Al-Hadhrami 

(2003), weighted modified RSS Muttlak and Abu-Dayyeh (2004), missing observation in 

RSS Bouza (2008), and folded RSS Bani- Mustafa et al. (2011). Singh et al. (2014) 

introduced a general procedure for estimation of mean using RSS. 

 

Dell (1969) and Dell and Clutter (1972) provided various expressions of the variance 

of RSS. Estimating the population variance based on judgment ordered ranked set samples 

was considered by Stokes (1980). A nonparametric study was considered by Perron and 

Sinha (2004) for estimation of population variance under RSS. Biswas et al. (2013) proposed 

variance estimation in RSS based on finite population framework using the Jackknife 

technique. On estimation of population variance, one may refer to MacEachern et al. (2002), 

Al-Hadhrami and Al-Omari (2006) and Chen and Lim (2011). 

 

The kernel estimators of probability density functions using RSS were suggested by 

Barabesi and Fattorini (2002) and Lim et al. (2014). Lam et al. (2002) suggested 

nonparametric estimators for the distribution function and the mean using the auxiliary 

information and concomitant variable in RSS process. Frey (2014) considered bootstrap 

confidence bands for the CDF using RSS. Other researchers who studied on the estimation 
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of distribution function in details are Abu-Dayyeh et al. (2002), Wolfe (2004), Baraneso and 

Fattorini (2002), and Huang (1972). Sengupta and Mukhuti (2006) studied the unbiased 

estimation of an exponential distribution variance using RSS. 

 

3.2 RSS in Estimating Population Ratio 

 

 The case of estimating population proportion from an unbalanced RSS under perfect 

ranking was considered by Chen et al. (2006). The probabilities of success for order 

statistics were the functions of the underlying population proportion. They have shown that 

the Neyman’s allocation is optimal as it leads to minimum variance within the class of RSS 

estimators that are simple averages of the means of order statistics. Other versions of RSS, 

such as Median RSS (Samawi and Muttlak, 2001) and Double median RSS (Samawi and 

Tawalbeh, 2002), were also used to estimate the population ratio.  For details about the ratio 

estimation in RSS, one may refer to Samawi and Saeid (2004), Al-Omari et al. (2009), 

Kadilar et al. (2009), Al-Omari (2012) and Mandowara and Mehta (2014). 

 

3.3 RSS in Estimating Quantiles 
 

The problem of quantile estimation for any distribution function using unbalanced 

RSS has already been discussed by Chen (2001) and Zhu and Wang (2005). If 
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 Zhu and Wang (2005) suggested a new weighted estimator of p by overcoming the 

certain shortcomings in Chen (2001). They suggested that as each i̂ , ki ,...2,1= was a 

consistent estimator of p , therefore a weighted estimator could be constructed by 
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combining them and assigning some weights to each i̂ , where, ( ) { }pxFxx ii ≥)(ˆ:infˆ
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3.4 RSS in Non-Parametric Inference 
 

 An alternative to non-parametric Mann-Whitney-Wilcoxon (MWW) estimation and 

testing procedures using ranked set empirical distribution function was discussed by Bohn 

and Wolfe (1992). They gave the tables of the null distribution for perfect ranking and 

presented asymptotic relative efficiency comparisons between SRS MWW procedures and 

their ranked set analogues. Bohn (1996) further examined other non-parametric tests like 

sign test and signed rank test for ranked set samples while discussing the similarities and 

differences in the properties of the RSS procedures. Ozturk and Wolfe (2000) have 

investigated the effects of different RSS protocols on the sign test statistic under different 

sampling protocols like sequential, mid-range and fixed sampling designs. They have shown 

that the introduction of any correlation structure in quantified observation leads to a 

reduction in the Pitman efficiency of the design. Koti and Babu (1996) computed the exact 

null distribution of the RSS sign test. They compared power of this test with the SRS sign 

test for some continuous symmetric distributions and demonstrated the superiority of RSS 

over SRS. Kvan and Samaniego (1994) studied the nonparametric MLE of CDF F and 

demonstrated its existence and uniqueness.  

 

3.5 Location and Scale Parameters of Specified Distributions 
 

Many environmental data such as species abundance, length of abundant periods of 

infectious diseases, distribution of mineral resources in the Earth’s crust, average 

concentration of an air pollutant such as sulfur dioxide, carbon monoxide, nitrous oxide etc. 

often approximately follows highly skewed distributions like lognormal distribution 

(Aitchison and Brown, 1957; Crow and Shimizu, 1988; Lee, 1992; Johnson et al., 1994; 

Sachs, 1997; Larsen, 1969). With the intention of adding content to the above literature, 

Chandra and Tiwari (2012) estimated the location and scale parameters of lognormal 

distribution using RSS. It was shown that with the increase of sample size, the use of RSS 

results in much improved estimator compared to the use of a SRS (Table 5). 

 

Table 5: RP of RSS against SRS for the estimation in location and scale parameters of 

lognormal distribution for sample size n = 2(1)10. 

n 2 3 4 5 6 7 8 9 10 

RP (location 

parameter)

 
0.633 0.682 0.772 0.870 0.968 1.064 1.157 1.249 1.339 

RP (scale 

parameter)

 
0.813 0.995 1.231 1.486 1.749 2.016 2.286 2.557 2.829 
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Fei et al. (1994) estimated the parameters of Weibull distribution by the use of RSS. 

Lam et al. (1994) used RSS to estimate the location and scale parameters of the exponential 

distribution. With a generalized geometric distribution, Bhoj and Ahsanullah (1996) showed 

that the RP of the estimates of the parameters of the generalized geometric distribution 

obtained by using the RSS procedure are higher than those of the ordered least square 

estimates. Adatia (2000) generalized the RSS and used it for estimating the location and 

scale parameters of half-logistic distribution. Abu-Dayyeh et al. (2004) studied the 

estimation of the logistic distribution parameters using SRS and RSS with some of its 

modifications as extreme RSS and median RSS. Tiwari et al. (2015) estimated the location 

and scale parameters of the normal distribution. The utility of RSS and Partial RSS (PRSS) 

over the SRS had been demonstrated with the help of numerical illustration and their 

generalized variances were also calculated. Chandra et al. (2016) also used PRSS in 

estimation of location and scale parameters of lognormal distribution. 

 

4 Comparisons of RSS With Other Classical Designs 

 

Yu and Lam (1997) suggested the regression RSS estimators in the case of double 

sampling. It was shown that the RSS regression estimator was more efficient than ordinary 

RSS and SRS naïve estimators unless the correlation between study and concomitant 

variable is low (less than 0.4). The Bayes risk of the Bayes estimator using RSS method was 

found less than the Bayes risk of the Bayes estimator using SRS Al-Saleh et al. (2000). The 

performance of RSS using maximum likelihood estimator for estimation of the correlation 

coefficients in a bivariate normal distribution in comparison with other classical designs was 

investigated by Stokes (1980a). The asymptotic variance of the maximum likelihood 

estimator of correlation coefficient based only on the extreme study variable and their 

concomitant variables was less than that from random samples. 

 

While estimating rare plant or animal species, Adaptive Cluster Sampling (ACS) was 

found appropriate (Thompson, 1990). Chandra et al. (2011) used RSS in the first phase of 

ACS and found that the proposed design appears to perform better than the existing 

procedures of ACS.  This design was appropriate for the situation in which the value of the 

characteristic under study on the sampled places is low or negligible but the neighborhoods 

of these places may have a few scattered pockets of the same. The various estimators like 

those based on only initial sample, based on initial intersection probabilities and 

improvement of the estimators using the Rao-Blackwell theorem were attempted under this 

design.  

 

5 Important Case Studies Using Rss 
 

 Under the application part of RSS, following studies have been carried out by various 

researchers: 

 

 Evans (1967) applied the RSS to regeneration surveys in areas direct-seeded to 

longleaf pine. He noted that despite of means based on both of RSS and SRS methods being 

not significantly different, the variances of the mean based upon RSS were significantly 

different than based upon SRS. Martin et al. (1980) applied the RSS procedure for 

estimating shrub phytomass in Appalachian Oak forests. Cobby et al. (1985) conducted four 

experiments at Hurley (UK) during 1983 to investigate the performance of RSS relative to 

SRS for estimation of herbage mass in pure grass swards, and of herbage mass and clover 

content in mixed grass-clover swards. Johnson et al. (1993) applied RSS method to estimate 
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the mean of forest, grassland and other vegetation resources. Nussbaum and Sinha (1997) 

successfully used RSS in estimating mean Reid vapor pressure. Mode et al. (1999) 

investigated the conditions under which RSS becomes a cost-effective sampling method for 

ecological and environmental field studies where the rough but cheap measurement has a 

cost. They found that RSS estimates of the mean pool area for 20 of 21 streams were more 

precise than estimates of the pool area that would be obtained by physically measuring pool 

areas selected using SRS. Al-Saleh and Al-Shrafat (2001) studied the performance of RSS in 

estimation milk yield based on 402 sheep. Al-Saleh and Al-Omari (2002) used the 

multistage RSS to estimate the average of Olive yields in a field in West of Jordan. Husby et 

al. (2005) investigated the use of RSS in estimating the mean and median of a population 

using the crop production dataset from the United State Department of Agriculture. They 

found that the gain in efficiency for mean estimation using RSS is better for symmetric 

distribution than for asymmetric distribution, and vice versa in the case of median 

estimation. Kowalczyk (2005) applied the RSS procedure in market and consumer surveys. 

Ganeslingam and Ganesh (2006) applied the RSS method to estimate the population mean 

and the ratio using a real data set on body measurement. The authors used the data of the 

weight and height of 507 individuals. Halls and Dell (1966) coined McIntyre’s method as 

RSS and applied it for estimating the weights of browse and herbage in a pine-hardwood 

forest of east Texas, USA. Wang et al. (2009) used the RSS in fisheries research. Tiwari and 

Pandey (2013) applied RSS in environmental investigations for real data set. Chandra et al. 

(2018) attempted a study in response estimation of the developmental programs 

implemented by the government and non-government organizations in successive phases by 

the use of RSS. For a detailed study about the applications of RSS in real life situations, the 

readers may refer to Dong et al. (2012) and Chen et al. (2004). 

 

6 Perfect Versus Imperfect Rankings.  
 

 Clearly, RSS procedures perform best in the absence of any errors in the ranking 

process (perfect rankings). In many practical applications, however, we are faced with errors 

in ranking due to the use of rough and inexpensive measures. This is known as imperfect 

ranking. Minimal uncertainty in the rankings may not cause an excessive increase in the 

variance, but if the ranking process is not very reliable, the precision of RSS estimators 

(particularly unbalanced ones) may be reduced. Al-Omari and Bouza (2014) discussed the 

impact of perfect and imperfect ranking in details. Bohn and Wolf (1992) also discussed 

MWW procedures under imperfect ranking proposing a model for the probabilities of 

imperfect judgment rankings based on the concept of expected spacing and have used this 

model to study the properties of tests based on the ranked set analogue of the MWW 

statistic. Greater precision in the RSS estimator requires more accurate rankings in each set 

David and Levine (1972), Barnett and Moore (1997), Stark and Wolfe (2002).  

 

 Much of the literature detailing the improvements from RSS estimation is based on 

the assumption of perfect rankings. This is the natural starting point for developing theory, 

but it is not realistic in practice. With imperfect rankings, the precision of the unbalanced 

RSS estimator may actually be worse than that for the SRS estimator. This suggests that 

unbalanced RSS should not be used without first considering the settings of the study. If the 

amount of error in the ranking procedure is expected to be only minor, then it is safe to use 

RSS, balanced or unbalanced, to improve estimation. When considerable uncertainty exists 

regarding the exactness of rankings in the procedure, balanced RSS may be the safest 

approach to take. 
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7 A New Initiative on Extreme Ranked Set Sampling (Erss) 

 

ERSS was introduced by Samawi et al. (1996) to avoid the imperfect ranking as the  

ranking of extreme rank order statistics (only first and last order statistics in case of even set 

size and additional of ranking of mid order statistics for the case of odd set size) was found 

rather easy. This method provides unbiased estimator of population mean if the nature of 

distribution of the population is symmetric and is found to be more efficient than SRS. 

However, the estimator of this method is not unbiased when the distribution is skewed. In 

the method of Samawi et al. (1996) first and last order statistics are allocated equal times, 

i.e. n/2 each, when n is even and for the case when n is odd, they proposed a method that 

allocates (n-1)/2 times each to first and last order statistics and one time to the middle rank 

order statistics. 

 

In what follows, we discuss a new initiative on ERSS by proposing an Unbalanced 

ERSS (UERSS) procedure and propose an improved estimator for the case of skewed 

distributions when exact distribution is unknown. The proposed method results in increased 

efficiency in comparison to that obtained through the method of Samawi et al. (1996) for 

skewed distribution. The proposed UERSS procedure is explained as under: 

 

In UERSS, lowest and highest order statistics are measured 
1m and 

)1(12  aamm times, respectively, such that the sample size   11 man  . Let n sets of 

units, each of size 
1m , are drawn from the unknown infinite skewed population )(xF with 

mean  and variance 2 . From the first set of 
1m units, lowest ranked unit is selected for 

measurement. From the second set of 
1m units, largest ranked unit is selected for 

measurement. From the third set of 
1m units, the smallest ranked unit is selected for 

measurement. This process is continued until the 
1m smallest and 

1m largest ranked units are 

selected for measurements. From the remaining 
12mn  sets, 

12mn  largest ranked unit, one 

from each set, is selected for measurements. The unordered
1nm units can be written as 

1
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where, the rows are showing n independent random sets each of size 
1m and ijy denotes the 

value of jth unit of the ith set, 
1...,,2,1,...,,2,1 mjni  . Let )()2()1( 1

...,,, miii yyy denote the 

values of ordered statistics of ith sample  ni ...,,2,1 . Then the RSS shall be 

...,,...,,, )2(2)1(1)()2(2)1(1 1111  mmmm yyyyy ; ERSS (Samawi et al., 1996) shall be (a) 

)()1(1)1(3)(2)1(1 11
,...,,, mnnm yyyyy  (if n is even) and (b) 

 )()1()(1)1(3)(2)1(1 111 2

1
,...,,,, mnnmnm yyyyyy  (if n is odd); UERSS shall be 

)()(1)(12)(2)1(12)1(3)(2)1(1 11111111
,...,,,,...,,,, mnmnmmmmmm yyyyyyyy  , irrespective of n is even or 

odd. 
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As usual, based upon SRS in which first observation is measured from each set (say), 

unbiased estimator of  is  
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The estimator of  based upon UERSS is 
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Here it is to be noted that, )1(12)1(3)1(1 1
...,,, myyy are independently and identically 

distributed with mean and variance )1(  
and 

2

)1( , respectively. Similarly the units 

)()(12)(2)(4)(2 1111111
...,,,...,,, mnmmmmmm yyyyy  are independently and identically distributed with 

mean and variance )( 1m
 

and 
2

)( 1m , respectively. Also the units in 
1T  and 

2T  are 

independent. 

 

Therefore, we may easily have 
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For symmetric distributions, we have )1()( 1  imi  and 
2

)1(

2

)( 1  imi  , where, 

)(i and 
2

)(i  denotes the mean and variance of ith order statistics. Therefore, for the 

symmetric distribution,  

  0UERSSYE  and  
 11

2
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
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
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This means that UERSSY  is an unbiased estimator of  for standard symmetric 

distribution. For the non-standard symmetric distributions, UERSSY  is biased with bias = 
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It is to be noted that if 2/1 nm  (for n is even), then UERSSY  becomes ERSSY  

(estimator based upon the ordinary ERSS). 

 

The unbiased estimator of  based upon RSS is given by  
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with   



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measurement   1...,,2,1 ml   and na
m
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Now, RP of UERSS with respect to ERSS is given by (for the sake of convenience of 

calculation we took n as even) 
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Our aim is to find the optimum value of a such that UERSSRP  is maximum. 

To maximize UERSSRP  means equivalently maximize 
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Similarly for odd n, the similar results may be obtained. 
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From above one may show that  1UERSSRP  , if 
 

 
 

1

)()1()1(

1)()1(

2

)(

2

)1()1( 1

1

12
mm

m

m

m 



 





 holds,  

or, 2
)(

)1(

)1(

)(

1

1 
m

m








. 

The values of RPs for four skewed distributions (Pareto (2.5), Lognormal (0, 1), Weibull 

(0.5) and Gamma (0.5)) are shown in Table 6 to Table 9 respectively.  
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Table 6: Bias and RPs of UERSS and ERSS for Pareto (2.5) distribution with k=2(1)8 

Set size  1mk   2 3 4 5 6 7 8 

Bias(UERSS) 0 -0.1121 -0.2243 -0.3284 -0.4243 -0.5132 -0.5960 

Bias(ERSS) 0 0.1042 0.2243 0.3246 0.4243 0.5110 0.5960 

MSE(UERSS) 0.0937 0.0507 0.0719 0.1221 0.1903 0.2711 0.3614 

MSE(ERSS) 0.1425 0.0756 0.0898 0.1320 0.1997 0.2761 0.3673 

RP(UERSS) 1.6499 1.0334 0.3445 0.1148 0.0465 0.0220 0.0120 

RP(ERSS) 1.0847 0.6927 0.2758 0.1062 0.0443 0.0216 0.0118 

 

Table 7: Bias and RPs of UERSS and ERSS for lognormal (0, 1) distribution with 

k=2(1)8 

Set size  1mk   2 3 4 5 6 7 8 

Bias(UERSS) 0 -0.1984 -0.3969 -0.5790 -0.7450 -0.8968 -1.0367 

Bias(ERSS) 0 0.1844 0.3969 0.5723 0.7450 0.8930 1.0367 

MSE(UERSS) 0.2152 0.1152 0.1964 0.3591 0.5712 0.8159 1.0837 

MSE(ERSS) 0.2736 0.1445 0.2198 0.3671 0.5827 0.8176 1.0906 

RP(UERSS) 1.5092 0.9550 0.2651 0.0821 0.0326 0.0154 0.0084 

RP(ERSS) 1.1872 0.7614 0.2369 0.0803 0.0319 0.0154 0.0083 

 

Table 8: Bias and RPs of UERSS and ERSS for Weibull (0.5) distribution with k=2(1)8 

Set size  1mk   2 3 4 5 6 7 8 

Bias(UERSS) 0 -0.4722 -0.9444 -1.3786 -1.7747 -2.1378 -2.4727 

Bias(ERSS) 0 0.4388 0.9444 1.3625 1.7747 2.1286 2.4727 

MSE(UERSS) 0.8478 0.5319 1.0569 2.0047 3.2218 4.6227 6.1551 

MSE(ERSS) 1.2343 0.7202 1.1982 2.0539 3.2893 4.6334 6.1943 

RP(UERSS) 1.6403 0.8858 0.2109 0.0629 0.0247 0.0116 0.0063 

RP(ERSS) 1.1268 0.6541 0.1861 0.0614 0.0242 0.0116 0.0063 

 

Table 9: Bias and RPs of UERSS and ERSS for Gamma (0.5) distribution with k=2(1)8 

Set size  1mk   2 3 4 5 6 7 8 

Bias(UERSS) 0.0000 -0.0741 -0.1477 -0.2142 -0.2733 -0.3261 -0.3736 

Bias(ERSS) 0.0000 0.0689 0.1477 0.2117 0.2733 0.3246 0.3736 

MSE(UERSS) 0.0253 0.0129 0.0252 0.0478 0.0759 0.1071 0.1401 

MSE(ERSS) 0.0279 0.0148 0.0270 0.0479 0.0768 0.1068 0.1406 

RP(UERSS) 1.3757 0.9108 0.2214 0.0661 0.0263 0.0125 0.0069 

RP(ERSS) 1.2448 0.7971 0.2064 0.0659 0.0260 0.0126 0.0069 

 

It is evident from tables 6-9 that for all the four skewed distributions considered by 

us, the proposed UERSS method performs better than the method proposed by Samawi et al. 

(1996) in terms of RPs for small set sizes. 

 

8 Conclusion and Discussion 
 

Since the introduction of RSS by McIntyre (1952), significant theoretical work has 

been carried out in this area. Many suitable modifications of RSS are also available in the 

literature. Important areas from parametric setup to non parametric setup, estimation of 

mean, proportion, location, variances, scale and shape parameters of the distributions, 
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correlation coefficients, distribution functions, density function etc. have been studied using 

RSS. Now, there is a time to implement RSS in the surveys in agriculture, forestry, 

environmental, ecological, medical, paramedical studies etc. and achieve the advantages of 

RSS over the other conventional sampling methods.  This paper provides major 

advancement of theoretical work on RSS along with the important case studies.  As a new 

initiative, UERSS has been proposed in Section 7 and the efficiency of the proposed 

estimator has been compared with the ERSS for four skewed distributions. The estimators 

obtained under ERSS for skewed distributions (Samawi et al., 1996) were biased but at the 

same time the possibility of ranking error was reduced. While using the UERSS, the small 

set size is recommended to retain the increased efficiency. The application of UERSS may 

be helpful in many real life situations with the advantage of avoiding improper ranking and 

increase in efficiency. 
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