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Abstract
Typically survey data have responses with gaps, outliers and ties, which we call GOT

data, and the distributions of the responses might be skewed. Our application is on body
mass index (BMI) data, which have these features, and inference is required about the 85th
and 95th finite population percentiles. Because the data are collected using a two-stage
sample design, usually predictive inference is done using a two-level Bayesian model with
normality at both levels (responses and random effects). This is the Scott-Smith (S-S)
model and it might not be robust against these GOT features. We use a two-level non-
parametric Bayesian model, called the Dirichlet process Gaussian (DPG) model, with several
independent Dirichlet processes at the first stage and a normal distribution on the random
effects to accommodate the GOT data. The DPG model is different from the more popular
two-level Dirichlet process mixture (DPM) model that has a single Dirichlet process on the
random effects and independent normal distributions at the first level. Clearly, this DPM
model has a shortcoming for survey data because the first stage has a normal distribution.
We use our application on BMI GOT data and a very limited simulation study to compare
the three models (S-S, DPM, DPG), which show, with the appropriate data, that the DPG
model is preferred.

Key words: Bayesian computation; DPM model; GOT data; Predictive inference; Robust
model; Survey data.

1. Introduction

When samples are selected from a finite population, the most commonly used method
for making inferences in current statistical literature is design-based. This method is non-
parametric and it requires large sample sizes for reliable inference. Model-based inference for
finite populations has been proposed as an alternative to the design-based theory. Typically
survey data have responses with gaps, outliers and ties, and the distributions of the responses
might be skewed. Henceforth, we use the acronym, GOT, to describe these features of
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our data, and here we focus on a nonparametric Bayesian analysis of GOT data. [For
convenience, all acronyms, which are used in the paper, are presented in Table 1.] The
United States’ National Center of Health Statistics has been collecting health data since the
1950’s and one of them, body mass index (BMI) data that we discuss, has these features.
We consider three two-level models with the first level accommodating the responses and
the second level accounting for heterogeneity of groups of data.

We assume that data are obtained from a two-stage sample survey, for example, a
two-stage cluster sampling, stratified or post-stratified sampling that is often seen in small
area problems. The sampled values are observed and the nonsampled values are to be
predicted using the two-level models. To gain robustness, these models start with a simple
idea that uses a random distribution (e.g., a Dirichlet process) in the model instead of some
parametric distributions. Assuming a specific parametric form is typically motivated by
technical convenience rather than by genuine prior beliefs.

In many surveys, we want to estimate quantities not only for the population as a whole,
but also for sub-populations (e.g., to estimate the average income for every county in the
United States in order to allocate funds for needed areas). Once a hierarchical model is
specified, inferences can be drawn from available data for the population quantities at any
level. From a Bayesian perspective, these estimators which can be regarded as posterior
means often have better properties than area-specific direct estimators. This makes two-
level, and more generally hierarchical Bayesian models, useful in the problem of small area
estimation (SAE) (e.g., Rao and Molina 2015). That is, the sample size for a given area or
domain may be too small to provide reliable estimates for themselves and it may be needed
to borrow information from neighboring areas, or from areas with similar characteristics.
Typically, in this two-level model, the first level accommodates the response data and the
second level is used to accommodate random effects or means (i.e., the small areas).

BMI is a person’s weight in kilograms divided by the square of her/his height in meters
and it is used as a screening tool for overweight or obesity. A high BMI can be an indicator
of high body fatness. If your BMI is less than 18.5, it falls within the underweight range. If
your BMI is 18.5 to 24.9, it falls within the normal or healthy weight range. If your BMI
is 25.0 to 29.9, it falls within the overweight range. If your BMI is 30.0 or higher, it falls
within the obese range. A child’s weight status is determined using an age- and sex-specific
percentile for BMI rather than BMI categories used for adults. Overweight is defined as a
BMI at or above the 85th percentile and below the 95th percentile for children and teens
of the same age and sex. Obesity is defined as a BMI at or above the 95th percentile for
children and teens of the same age and sex.

The Expert Committee on Clinical Guidelines for Overweight in Adolescent Prevention
Services published criteria for overweight to be integrated into routine screening of adoles-
cents. BMI should be used routinely to screen for overweight and obesity in children and
adolescents. Several disorders have been linked to overweight in childhood. A potential
increase in type 2 diabetes mellitus is related to the increased prevalence of overweight in
children (Fagot-Campagna 2000), as are cardiovascular risk factors, high cholesterol levels,
and abnormal glucose levels.
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We provide a Bayesian analysis of BMI data from the third National Health and Nutri-
tion Examination Survey (NHANES III), conducted during the period October 1988 through
September 1994. Due to confidentiality reasons, the final data set for this study uses only
the 35 largest counties with population sizes at least 500,000. The sample sizes are less than
0.02% of the population sizes; see also Flegal et al. (2005, 2007) for discussions of other as-
pects of the NHANES III data. Kuczmarski et al. (2002) developed 85th and 95th percentile
growth curves for US boys and girls age 2–20 years. Youths with a BMI in at least the
95th percentile for age and sex, or at least 30 (World Health Organization Consultation of
Obesity 2000) should be considered overweight and referred for in depth medical follow-up
to explore underlying diagnoses. Adolescents with a BMI with at least the 85th percentile
(25) but below the 95th percentile (30) should be considered at risk of overweight and re-
ferred for a second-level screen; these are different for adults. (See Himes and Dietz 1994
for a summary of this discussion.) Dietz (1998) discussed health consequences of obesity in
youth and childhood predictors of adult disease. Currently, obesity is one of the most serious
health problems facing the world.

Nandram and Choi (2005) obtained finite population mean for children and young
adults under a nonignorable nonresponse model for small domains. But the 85th and the
95th percentiles are more important and informative for BMI data. So Nandram and Choi
(2010), using BMI data from NHANES III, showed how to predict these finite population
percentiles of BMI for some US counties, incorporating additional measures to minimize
possible biases. These measures are the inclusion of survey weights into the nonignorable
nonresponse model to reflect the higher probabilities of selection among black, non-Hispanics
and Hispanic-Americans. Here, we perform a Bayesian analysis of BMI data from NHANES
III to obtain the 85th and 95th finite population percentiles for adults older than twenty
years. We do not incorporate survey weights or covariates (age, race, sex) into our analysis.
A related objective might be to estimate the proportion of obese individuals using logistic
regression (e.g., Nandram, Chen, Fu and Manandhar 2018), but this is far from our main
objective in this paper. Here, our main objective is to compare the performance of the three
two-level Bayesian models for the analysis of these data.

In Figure 1, we have shown dot plots of the BMI data by county. We can see that
there are many gaps, ties and outliers in all counties. A gap occurs because no value exists
between two adjacent values. For example, because the BMI values are recorded to one
decimal place, there are no values between 20.0 and 20.1 (gaps), there are several values at
24.0 (ties) and there are extreme values in the right tails of the dot plots (outliers). This is
why we are troubled by GOT data. Other data, such as income, when they are elicited in
surveys, are also GOT data.

However, we often know very little about the specific parametric forms of the distribu-
tions, and it is also difficult to completely validate the parametric assumptions. The para-
metric Bayesian models based on distributional assumptions may be problematic because
inferences are sensitive to such assumptions. It may be more appealing to use a nonpara-
metric Bayesian approach because we are interested in extreme percentiles. For example,
as stated already, for BMI data interest is usually on the 85th and 95th finite population
percentiles. These are in the extreme right tails of the BMI distribution, and because the
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BMI data have ties, outliers and gaps, it is dubious for normal distribution to represent
them.

Here, we discuss the statistical modeling associated with the analysis of two-level survey
data. Our intention is to propose nonparametric Bayesian alternatives using the Dirichlet
process (DP). This permits robustification of inference by embedding parametric models in
nonparametric models, thereby avoiding critical dependence on parametric assumptions and
to allow for heterogeneity, gaps, outliers, ties, etc.

The existence of the DP was established by Ferguson (1973). It is a distribution over
distributions; each draw from a DP itself is a distribution (i.e., operating on functional
spaces). The DP has gained a lot of attention recently. It has nice properties such as
clustering and borrowing information which is attractive to SAE, and it can be used to
address the nonparametric analysis of GOT data. The Dirichlet process mixture (DPM)
model has normality on the responses (not appropriate for GOT data) and a DP on the
random effects.

The more appropriate model, introduced by Yin and Nandram (2020), has several
Dirichlet processes on the response data and a normal distribution for the random effects;
therefore, we call it the DPG model. The Scott-Smith (Scott and Smith 1969, S-S) model
has normality on both levels. The difference between the DPM model and the DPG model
is that DPM model (normality on the responses) does not accommodate GOT data but its
main strength is its clustering property among the small areas (i.e., random effects). The
DPM model is actually the opposite of the DPG model, and they are both different from
the S-S model that has normality at both levels. In this paper, we compare the analysis of
BMI data using the three models (S-S, DPM and DPG); our contribution is not theoretical
nor methodological. Incorporating the survey weights into the DPM or the DPG needs new
theory and methodology.

In Section 2, we briefly review the Scott-Smith (S-S) model and the DPM model. In
Section 3, we discuss the DPG model. Section 3.1 describes the DPG model and its compu-
tation. Section 3.2 shows how to do prediction of the finite population quantities under the
DPG model. In Section 4, to compare the three models, we present an analysis of BMI GOT
data and in the appendix a limited simulation study. In Section 5, we present our conclusions.

2. Scott-Smith Model and Dirichlet Process Mixture Model

In Section 2.1, we first review the S-S model, a two-level parametric model. It is used
as a baseline model for the other two nonparametric models that we wish to discuss. In
Section 2.2, we present a review of the Dirichlet process mixture (DPM) model. It is worth
noting here that the S-S model is not robust against outliers in the data (e.g., Gershunskaya
and Lahiri 2018). This is also true for the DPM model. In addition, they do not make any
adjustments for gaps and ties in the responses.

We assume that there are ` areas, and within the ith area there are Ni (known) indi-
viduals. A sample of ni individuals is available from the ith area, and the remaining Ni− ni
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values are unknown. Inference is required for extreme percentiles (85th and 95th) of each
area.

It is convenient to momentarily describe some notations. Let yij denote the value
for the jth unit within the ith area, i = 1, . . . , `, j = 1, . . . , Ni. We assume that yij,
i = 1, . . . , `, j = 1, . . . , ni, are observed, and inference is required for the two finite popula-
tion percentiles of the ith area. Let y

˜
= (y

˜
s, y

˜
ns), where y

˜
s = {yij, i = 1, . . . , `, j = 1, . . . , ni}

is the vector of observed values and y
˜
ns = {yij, i = 1, . . . , `, j = ni + 1, . . . , Ni} vector of

unobserved values.

2.1. Two-stage Scott-Smith (S-S) parametric model

We describe the Bayesian version of the model of Scott and Smith (1969). This S-S
model was developed by Nandram, Toto and Choi (2011) for continuous data yij, where i =
1, . . . , `, j = 1, . . . , Ni. Letting δ2 = ρ

1−ρσ
2, our two-level normal model (baseline parametric

model) is then

yij|µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , Ni, (1)

µi
ind∼ N

(
θ,

ρ

1− ρσ
2
)
, (2)

π(θ, σ2, ρ) = 1
π(1 + θ2)

1
(1 + σ2)2 , −∞ < θ <∞, σ2 > 0, 0 ≤ ρ ≤ 1.

Here, we consider a reparameterization of the S-S model, (1) and (2), together with proper
non-informative priors that can allow computation of marginal likelihood and Bayes fac-
tors. We replace δ2 by ρ

(1−ρ)σ
2 to gain some analytical and computational simplicity. Note

that ρ = δ2/(δ2 + σ2) is a common intra-class correlation; see Toto and Nandram (2010),
Nandram, Toto and Choi (2011) and Molina, Nandram and Rao (2014). We have used the
Cauchy prior centered at 0 for θ; one can use a location-scale Cauchy prior distribution (e.g.,
Gelman, Jakulin, Pittau and Su, 2008), but one would need to specify the location and scale
parameters using the data (double using the data is forbidden in Bayesian statistics). The
prior on σ2 is a standard shrinkage prior (almost noninformative). The sampling impor-
tance resampling (SIR) algorithm is used to draw samples from the posterior distribution
π(µ

˜
, θ, σ2, ρ|y

˜
s); see Yin and Nandram (2020).

2.2. Dirichlet process mixture model

As pointed out by a reviewer, the Dirichlet process (DP) is well known and there is no
need to review it. However, to set the stage, we need a brief description. First, we note that
Binder (1982) was the first to introduce this model to survey sampling; more recently, see
Nandram and Yin (2016 a,b). Let (Θ,B) be a measurable space, with G0 a baseline measure
(nonrandom) on the space; see Ferguson (1973) for a definition of the DP.

A Dirichlet process, DP(α,G0), is defined as the distribution of a random probabil-
ity measure G over (Θ,B) such that, for any finite measurable partition of the measur-
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able space Θ, {Ai}ni=1, {G(A1), . . . , G(An)} ∼ Dirichlet {αG0(A1), . . . , αG0(An)} . We write
G ∼ DP(α,G0), if G is a random probability measure with a distribution given by the DP,
where α is the concentration parameter. Sethuraman (1994) presented an enormously useful
representation of DP in the form of a stick-breaking algorithm.

Another implied representation of the DP is the generalized Polya urn scheme, which
is obtained by integrating out the random measure, G. Now considering the predictive
distribution for θn+1 conditioned on θ1, . . . , θn with G integrated out, we have

θn+1|θ1, . . . , θn ∼
α

α + n
G0(θn+1) + 1

α + n

n∑
i=1

∆θi
(θn+1),

where ∆a(x) is the cdf of a point mass at a. The sequence of predictive distributions for
θ1, θ2, . . . is called the generalized Polya urn scheme (Blackwell and MacQueen 1973). Here,
it is interesting that the probability measure G is discrete with probability one, but the
k distinct values θ∗1, . . . , θ∗k

iid∼ G0, a continuous measure (i.e., the θi are continuous, yet
θi = θj, i 6= j). There is also a slightly more compressed form that we use for prediction.

In many applications, the almost sure discreteness of the DP measure may be inap-
propriate. As we noted, the most popular application of the DP is in clustering data using
mixture models. There is a set of latent variables, {µ1, . . . , µ`}, and as for finite populations,
the model is

yij|µi, φ
ind∼ h(yij;µi, φ), j = 1, . . . , Ni, i = 1, . . . , `, (3)

µi|G ∼ G,

G ∼ DP(α,G0).

This model is referred to as a Dirichlet process mixture (DPM) model; see Lo (1984) where
the DPM was introduced. There are numerous applications of the DPM but see Nandram
and Choi (2004) and Polettini (2017) for applications on SAE. Each µi is a latent parameter
modeling yij, while G is the unknown distribution over parameters modeled using a DP. It
can be seen as a Dirichlet process mixture of h(yij;µi, φ), where yij’s with the same value
of µi belong to the same cluster. The DPM model removes the constraint from discrete
measures. It is worth noting that the DPM model for the response data is usually normal,
and so it will not fit the GOT data very well. The corresponding parametric baseline model
with G0 replacing the random probability measure G is,

yij|µi, φ
ind∼ h(yij;µi, φ), j = 1, . . . , Ni, i = 1, . . . , `,

µi ∼ G0.

Kalli, Griffin and Walker (2011), who suggested slice-efficient samplers, gave an improved
slice sampling scheme to fit the DPM model that we use in our work, and it is based on
the stick-breaking construction (Sethuraman 1994) without truncation error. The idea is to
introduce latent variables that permit sampling a finite number of variables at each iteration.
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In our context, DPM model is

yij|µi, σ2 ind∼ Normal(µi, σ2), j = 1, . . . , Ni, (4)
µi|G ∼ G, i = 1, . . . , `,

G | θ, σ2, γ, ρ ∼ DP
{
γ,Normal(θ, ρ

1− ρσ
2)
}
, (5)

π(θ, σ2, γ, ρ) = 1
π(1 + θ2)

1
(1 + σ2)2

1
(1 + γ)2 , (6)

where −∞ < θ < ∞, σ2 > 0, γ > 0, 0 ≤ ρ ≤ 1, and γ is the concentration
parameter. In this formulation the S-S model is a baseline model; the DPM model is cen-
tered on the S-S model and γ controls how close DPM model gets to the S-S model. Here,
G is a random distribution function, discrete with probability one, with distribution DP (·, ·).

3. Dirichlet Process Gaussian (DPG) Model

Since there are gaps, outliers and ties (GOT) in survey data, it is reasonable to use a
random distribution drawn from the DP for the sampling population. One drawback of the
S-S model is over-shrinkage; the posterior mean of certain areas may be shrunk too much
towards the overall mean. Using the DP allows borrowing information moderately within
some of the areas instead of all. Moreover, since there are gaps, outliers and ties in the sur-
vey data, it is reasonable to use a random distribution drawn from the DP for the sampling
population. Thus, it is important to use a nonparametric procedure.

3.1. Model and computation

We consider a nonparametric hierarchical Bayesian extension of the parametric baseline
model with the uncertainty on the distribution of our sampling population. Using DPs in
the first level and a parametric distribution as prior gives

yij|Gi
ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni, (7)

Gi|µi
ind∼ DP{αi, G0(µi)},

µi
iid∼ H0(·),

where G0(µi) and H0(·) can be any parametric distributions. When we have strong beliefs
that the area means are from a normal distribution, we may choose to use the normal
likelihood in the second level. In particular, we consider G0 = N(µi, σ2) and H0(·) =
N(θ, δ2), where δ2 = ρ

1−ρσ
2 in (7) to be consistent with the two-level normal model. A full

Bayesian model can be obtained by adding prior distributions. For example, we can use
proper non-informative priors,

π(αi) = 1
(αi + 1)2 , αi > 0, i = 1, . . . , `, (8)

π(θ, σ2, ρ) = 1
π(1 + θ2)

1
(1 + σ2)2 ,

−∞ < θ <∞, 0 < σ2 <∞, 0 ≤ ρ ≤ 1, (9)
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with independence. Generally, it is not sensible to assume that the αi are identically dis-
tributed because they can be very different. As apparent, we have been calling (7), (8) and
(9) the DPG model.

Inference of the DPG model can be easily performed. We denote (µ
˜
, θ, σ2, ρ) as ψ

˜
and

α
˜

= {α1, . . . , α`}. The posterior density of αi are independent with other parameters ψ
˜

in the
model, conditioning on only the distinct values. Let ki denote the number of distinct values
for each area in the observed data, k

˜
= {ki, i = 1, . . . , `} be the vector of ki, y∗i1, . . . , y∗iki

be
the ki distinct sample values for each i and y

˜
∗ = {y∗i1, . . . , y∗iki

, i = 1, . . . , `} be the vector of
y∗ij. Thus the joint posterior density is

π(α
˜
, ψ
˜
| k

˜
, y
˜
∗) =

[∏̀
i=1

π(αi | ki)
]
π(ψ

˜
| y

˜
∗), (10)

where π(αi|ki) ∝ π(ki | αi)π(αi). For the other parameters ψ
˜

, we have

y∗ij|µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , ki, (11)

µi
iid∼ N

(
θ,

ρ

1− ρσ
2
)
,

π(θ, σ2, ρ) = 1
π(1 + θ2)

1
(1 + σ2)2 ,−∞ < θ <∞, 0 < σ2 <∞, 0 ≤ ρ ≤ 1.

Therefore, the algorithm for the DPG model is
Step 1 : For each i (i = 1, . . . , `), draw αi from π(αi|ki) ∝ αki Γ(αi)

Γ(αi+ni)
1

(αi+1)2 (Antoniak 1974).
Step 2: Draw ψ

˜
from the parametric model (11) which is easy to fit.

Finally, we highlight how the DPG model takes care of GOT responses; this is apparent
in the sampling process. When we integrate out the random probability measure (Blackwell
and MacQueen, 1973), we get

f(y
˜i
| µi, σ2, αi) = 1

σ
φ(yi1 − µi

σ
)

×
ni∏
k=2

{
k − 1

αi + k − 1

∑k−1
j=1 δyij

(yik)
k − 1 + αi

αi + k − 1
1
σ
φ(yik − µi

σ
)
}
, (12)

where δa(b) means that b is a point mass at a; so ties are accommodated. Therefore, in each
area we are mixing the distributions in (12) using normal mixing distributions in the DPG
model. The DPM is different being a Dirichlet process mixture of normals. The DPM model
actually produces ties among the random effects or area means (clustering), which is its ma-
jor strength. But it does not model gaps, outliers, ties and skewness among the responses.
By putting DPs on the responses in different areas, we are attempting to accommodate the
GOT data.
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3.2. Prediction for the finite population

We have a simple random sample of size ni from a finite population of size Ni, i =
1, . . . , `. Let yi1, . . . , yini

denote the sampled values. We want to predict yini+1, . . . , yiNi
, the

nonsampled values, and obtain the posterior predictive distributions for the 85th and 95th
finite population percentiles for each area. The sampling process is

yij|Gi
ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni,

Gi|µi
ind∼ DP{αi, G0(µi)}.

Predictive inference for the DPG model simply uses the generalized Polya urn scheme
(Blackwell and MacQueen 1973) for each area, since all areas are independent (see Nandram
and Yin 2016 a,b). Once we have obtained the nonsampled yij, j = ni+1, . . . , Ni, i = 1, . . . , `,
we can now calculate any finite population quantity of interest. For example, for BMI data,
we are interested in the finite population 85th percentile (overweight individuals) and the
95th percentile (obese individuals). The Ni are assumed known, and they are obtained from
the 1990 census. To obtain the percentiles, one simply sort all the data (sample values and
predicted non-sample values) in increasing order. Then, for the 85th percentile, pick the
value at .85Ni (nearest integer) position, and for the 95th percentile, pick the value at .95Ni

(nearest integer) position. Also, it is more difficult to estimate the two percentiles because
they are in the right tail of the posterior distributions.

Because the Ni are very large (Ni = ni/.0002), it takes relatively more time to compute
the percentiles than other finite population quantities. One needs to sort yi1, . . . , yiNi

at each
iteration, and the observed values can take different positions in the sorting. Prediction is
relatively easier in the S-S and DPM models because it is done under normality, whereas in
the DPG model, it is done under the Polya urn scheme.

4. Application to Body Mass Index Data

We fit the three models (S-S, DPM and DPG) to the BMI data. Our objective is mainly
to compare the three models. As we mentioned in previous sections, survey data tend to
have gaps, outliers and ties. The BMI data set is an example because in practice, BMI is
rounded to one decimal place which creates many ties, and therefore the BMI data are a
prime example of GOT data. We present the dot plots for all thirty-five areas (see Figure
1). The observations are more concentrated and having ties within the range around 25.
It is also clear that the data are clustered and present gaps. Especially outside the normal
weight range, the data become sparse and present bigger gaps.

The Gibbs sampler is needed for only the DPM model; for the S-S model and DPG
model, we use random samplers, and therefore no monitoring is required. For the DPM
model, we ran 10, 000 iterations, used 5, 000 as a “burn in” and thin every 5th to obtain
1, 000 converged posterior samples. We have computed the p values of the Geweke test
and the effective sample sizes for the parameters σ2, θ, δ2 and γ for the DPM model. The
p values are respectively .48, .41, .46, .62 and the effective sample sizes are respectively
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1000, 1000, 698, 1085, thereby showing that the chain is stationary and strongly mixing.
Also, trace plots and auto-correlation plots indicate that the chains converge.

For model assessment, we computed the delete-one cross validation (CV) divergence
measure (Wang et al. 2012). The CV, obtained by predicting yij when it is deleted to obtain
y
˜(ij), is

CV = 1∑`
i=1 ni

∑̀
i

ni∑
j=1
|yij − E(yij|y˜(ij))|,

E(yij|y˜(ij)) = EΩ|y
˜(ij)E(yij | y˜(ij),Ω) =

∫
E(yij | y˜(ij),Ω)f(Ω|y

˜(ij))dΩ.

where Ω is the set of all parameters. A Monte Carlo estimator of E(yij|y˜(ij)) is

̂E(yij|y˜(ij)) =
∑M
h=1{f(yij | y˜(ij),Ω(h))}−1E(yij | y˜(ij),Ω(h))∑M

h=1{f(yij | y˜(ij),Ω(h))}−1 ,

j = 1, . . . , ni, i = 1, . . . , `. Note that this measure is essentially a weighted average of the
E(yij | y˜(ij),Ω(h)) (i.e., a prediction-based measure), it is not based directly on a likelihood
function. For the S-S model, DPM model and DPG model the CVs are respectively 0.765,
0.766 and 0.772. So based on this measure, there is virtually no difference among these
models.

We have studied other likelihood-based measures. However, when a parametric model
is nested in a nonparametric alternative, any likelihood-based diagnostics (e.g., deviance
information criterion, Bayesian predictive p values, log-pseudo-marginal likelihood, Bayes
factor) will be misleading because we are comparing infinite dimensional distributions. One
possible explanation of this fact is that the DP generates discrete distributions with prob-
ability one. This phenomenon can arise, more generally, in different contexts (e.g., using
the DP in goodness of fit testing). Carota and Parmiginani (1996) and Petrone and Raftery
(1997) pointed out that the discreteness of the DP can have a large effect on inferences of
posterior distributions and Bayes factors, when the data are partially exchangeable with an
unknown partition.

We perform the predictive inference of the 85th and 95th finite population percentiles
for each area using the three models (S-S, DPM and DPG). We also use a Bayesian bootstrap
(e.g., Yin and Nandram 2020) to do prediction in each county individually without borrowing
across counties as a comparison (i.e., the assumption of similarity across counties is not used).
Note that for the county level, all sample sizes are roughly 100, about .02% of the population
sizes. We have compared the DPG model to the S-S model, the DPM model and Bayesian
bootstrap.

In Tables 2 and 3, we present summary statistics, posterior mean (PM) and posterior
standard deviation (PSD), of the 85th and 95th finite population percentiles for each county of
BMI data under the three models (S-S, DPM and DPG) and Bayesian bootstrap respectively.
Again, the bootstrap does not allow for pooling.

First, consider the 85th percentile in Table 2. The PMs are roughly the same with
those for the DPG model slightly higher, thereby showing how the DPG model takes care
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of the data in the right tail of the data distribution. The PSDs under bootstrap are always
larger than those under the three models, sometimes as much as two times. This shows that
pooling of information across counties is helpful. However, the PSDs under the three models
are roughly in increasing order: S-S model, DPM model and DPG model; the PSDs under
the DPG model are always the largest, again showing how the DPG model takes care of the
data in the right tail of the data distribution.

Second, we note that there are similar results in Table 3, but the differences are sharper.
For example, the PSDs under the bootstrap are much too large and they are much larger
under the DPG model than under the S-S model and DPM model.

In short, Tables 2 and 3 are very informative. It is not true that because the PSDs
under the DPG model are larger than those under the S-S and DPM model, the DPG is
worse. On the contrary, it is true that the DPG model has higher PSDs because it takes care
of the GOT features of the BMI data. The S-S model and DPM model understate the PSDs
because they do not take care of the gaps, outliers and ties in the data; the DPG model has
a stochastic mechanism that accounts for the gaps, outliers and ties.

In Figures 2 and 3, we present plots of the posterior means with credible bands versus
direct estimates for BMI data. The predictive inferences of the population percentiles are
similar under the S-S model and DPM model. However, the DPG model tends to have higher
predictions of the population percentiles with similar credible bands as compared with the
other models. We suspect that S-S model and DPM model might underestimate the 85th
and 95th finite population percentile when the GOT data are right skewed. In both Figures
2 and 3, we notice that the points under the DPG model are closer to the 45-degree straight
line than those under the S-S model and DPM model. This effect is more intense in Figure
3 than in Figure 2, where the points under the S-S model and the DPM model appear to be
more horizontally spread out. This is an important point because it shows that there is too
much pooling in the S-S model and the DPM model. In particular, it shows that because
the DPG model takes care of the GOT features of the BMI data, it is able to represent the
pooling effect the best, and without the restrictive parametric assumptions in the sampling
process, the DPG model tends to provide less biased estimation.

Finally, in Appendix A, we have performed a limited simulation study. We have gen-
erated data like the BMI data using the DPG model and then we fit all three models (S-S,
DPM, DPG) to it. All we need from the simulation study is to describe when the DPG
model performs better than the S-S model and the DPM model. We have shown that when
posterior inference is performed for the 85th and 95th finite population percentiles, the DPG
model performs much better than the S-S model and the DPM models, as required; see
Appendix A.

Since BMI data are right skewed with gaps, outliers in the right tails and ties, the
estimations given by parametric models may be incorrect. Thus based on a belief that the
parametric model is too restrictive, we prefer the analysis based on the nonparametric DPG
model.
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5. Concluding Remarks

Bayesian nonparametric methods are motivated by the desire to avoid overly restrictive
parametric assumptions. For GOT data (gaps, outliers and ties), we believe that our DPG
model will play an important role for future analysis of “continuous” survey data. The S-S
model and the DPM model have normality assumption on the response data, and hence they
do not address the problem of GOT data. Based on the analyses, we have positive view of
the DPG model.

Our main conclusion is that when data come from the DPG model, it will do much
better than the S-S model and the DPM model. The DPM model, while nonparametric
(good), it has the DP on the wrong level (random effects) for GOT responses. The S-S
model has normality on both levels. Normality on the responses is not appropriate for GOT
data. Hence, neither of these two models can accommodate GOT responses. Based on this
point, we believe that among the three models (S-S, DPM, DPG), it is the DPG model that
is most appropriate to represent the BMI GOT data. The DPG model is more important
when interest is on the 85th and 95th finite population percentiles because there are larger
gaps in the right tails of the data distributions (i.e., outliers). However, the DPM model is
attractive for an important reason; it provides clustering among the small areas but not the
data. This clustering among the small areas can be accommodated in the DPG model; see
Nandram and Yin (2019).

It is important to include survey weights in the DPG model. This can be done using a
standardized composite likelihood. Covariates can also be incorporated into the DPG model.
However, our main contribution in this paper has been to demonstrate the superiority of the
DPG model when it is fitted to the BMI GOT data.
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APPENDIX A: Simulation Study Showing the Strength
of the DPG Model

We conduct a limited simulation study. We have simulated a single data set from the
DPG model and we fitted all three models (S-S, DPM, DPG) to this data set.

We choose ` = 50 and the sample sizes, ni, for 50 areas. The sample sizes are 35 for
each of the first 10 areas, 50 for each of the second 10 areas, 100 for each of the third 10
areas, 200 for each of the fourth 10 areas and 500 for each of the last 10 areas. Then, the
population sizes are selected as Ni = 100ni, i = 1, . . . , `. These are comparable to the BMI
data. For convenience, to simulate the data set, we have taken θ = 0.0, σ2 = 0.01, δ2 = 0.04,
thereby making ρ = 0.8. For the concentration parameters of the Dirichlet processes, we
have selected αi ind∼ 0.5 + Beta(5, 5), i = 1, . . . , `. These choices allow us to have data similar
to the BMI data with some flexibility to get gaps, outliers and ties when data are simulated
from the DPG model.

We use absolute bias (AB) and posterior root mean squared error (PRMSE) to compare
the models. We know the true values of the finite population quantities, denoted by T . Then,
AB =| PM − T | and PRMSE =

√
(PM − T )2 + PSD2. We compute these quantities for

each of the fifty counties for the 85th and 95th finite population percentiles, and respectively
we average them over the fifty counties. We present AB and PRMSE in Table 4 for the
case in which data are generated from the DPG model (i.e., for GOT data). It is nice that
AB and PRMSE are manyfold smaller under the DPG model than the other two models
(S-S, DPM). Therefore, it is clear that the DPG model performs much better than the S-S
model and the DPM model, when inference is made about the 85th and 95th finite population
percentiles. This is exactly what we want to happen.

Table 1: Acronyms used in the Presentation

Acronym Meaning

GOT gaps, outliers and ties
BMI body mass index
SAE small area estimation
S-S Scott-Smith
DP Diriclet process
DPM Dirichlet process mixture
DPG Dirichlet process Gaussian
AB absolute bias
PRMSE posterior root mean squared error
PM posterior mean
PSD posterior standard deviation
CV cross validation
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Table 2: Comparison of posterior mean (PM) and posterior standard deviation
(PSD) of the finite population 85th percentile for each county of body mass index
(BMI) data by te three models (S-S, DPM, DPG) and Bayesian bootstrap

Bootstrap S-S DPM DPG
PM PSD PM PSD PM PSD PM PSD

1 32.14 0.50 32.48 0.35 32.50 0.39 32.46 0.47
2 34.76 1.24 32.93 0.45 32.95 0.43 34.08 0.82
3 30.76 0.78 32.05 0.39 32.00 0.44 31.94 0.63
4 31.57 1.07 31.97 0.43 31.93 0.42 32.48 0.61
5 30.51 0.90 31.75 0.47 31.75 0.45 31.87 0.72
6 33.82 1.22 33.42 0.44 33.35 0.44 33.55 0.67
7 31.59 0.85 32.58 0.36 32.58 0.39 32.45 0.72
8 32.25 0.67 32.46 0.36 32.48 0.42 32.70 0.53
9 32.81 1.18 33.03 0.41 33.01 0.42 33.15 0.75

10 34.01 0.74 33.07 0.39 33.08 0.36 33.73 0.48
11 32.75 0.54 32.78 0.26 32.79 0.27 32.90 0.49
12 30.26 0.80 31.67 0.42 31.67 0.38 31.45 0.53
13 31.91 0.88 32.34 0.36 32.32 0.43 32.64 0.57
14 32.37 0.38 32.80 0.19 32.82 0.20 32.50 0.37
15 33.39 0.50 32.84 0.40 32.85 0.41 33.39 0.42
16 32.21 0.75 32.72 0.37 32.71 0.40 32.73 0.62
17 30.88 0.83 31.95 0.40 31.91 0.42 32.07 0.72
18 31.18 0.80 32.29 0.39 32.28 0.49 32.21 0.85
19 32.03 0.97 32.09 0.38 32.08 0.42 32.77 0.56
20 32.71 0.96 32.50 0.39 32.52 0.42 33.08 0.61
21 33.08 0.98 32.57 0.40 32.58 0.44 33.28 0.56
22 32.06 0.72 32.65 0.36 32.68 0.37 32.57 0.57
23 31.18 0.77 31.85 0.42 31.81 0.42 32.19 0.70
24 32.66 0.66 32.64 0.37 32.68 0.40 32.96 0.52
25 31.63 0.98 32.37 0.39 32.39 0.42 32.47 0.73
26 32.02 0.96 32.34 0.40 32.30 0.45 32.77 0.57
27 31.56 0.44 32.34 0.31 32.36 0.39 32.16 0.50
28 33.51 1.51 32.87 0.39 32.89 0.40 33.33 0.80
29 31.53 0.97 32.30 0.45 32.31 0.49 32.57 0.80
30 30.62 0.94 31.89 0.43 31.83 0.45 32.13 0.71
31 32.36 0.57 33.02 0.38 32.99 0.38 32.72 0.49
32 33.24 0.89 32.96 0.37 32.96 0.37 33.31 0.62
33 30.54 0.51 32.03 0.37 32.01 0.42 31.61 0.57
34 32.48 0.49 32.78 0.31 32.82 0.31 32.71 0.45
35 31.78 1.04 32.40 0.35 32.41 0.42 32.54 0.75
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Table 3: Comparison of posterior mean (PM) and posterior standard deviation
(PSD) of the finite population 95th percentile for each county of body mass index
(BMI) data by the three models (S-S, DPM, DPG) and Bayesian bootstrap

Bootstrap S-S DPM DPG
PM PSD PM PSD PM PSD PM PSD

1 35.52 1.27 35.79 0.42 35.81 0.45 36.21 0.88
2 40.88 2.32 36.45 0.46 36.47 0.45 38.83 1.54
3 34.90 2.58 35.36 0.47 35.32 0.51 36.16 1.43
4 35.59 1.12 35.31 0.45 35.27 0.45 36.26 0.85
5 35.82 1.61 35.19 0.51 35.19 0.50 36.53 0.92
6 39.32 1.58 37.00 0.44 36.94 0.44 38.45 0.74
7 35.93 1.12 35.95 0.40 35.94 0.44 36.50 0.69
8 37.32 1.49 35.90 0.43 35.92 0.48 37.26 0.86
9 38.76 1.54 36.55 0.45 36.53 0.46 38.02 0.84

10 39.82 1.64 36.48 0.41 36.48 0.41 38.32 1.14
11 37.49 0.94 36.19 0.28 36.21 0.29 37.36 0.71
12 35.84 1.50 35.17 0.47 35.18 0.44 36.46 0.89
13 36.13 1.20 35.68 0.40 35.66 0.45 36.65 0.93
14 36.90 0.80 36.16 0.22 36.19 0.23 36.96 0.69
15 36.04 1.47 36.00 0.48 36.03 0.49 36.64 0.89
16 36.44 1.40 36.08 0.41 36.08 0.44 36.79 0.93
17 34.70 0.99 35.27 0.44 35.23 0.45 35.77 0.83
18 35.57 0.81 35.68 0.38 35.65 0.46 36.16 0.78
19 34.88 0.88 35.31 0.40 35.30 0.44 35.85 0.78
20 37.08 1.89 35.82 0.42 35.84 0.46 37.11 1.14
21 35.75 1.03 35.75 0.44 35.77 0.47 36.30 0.84
22 35.56 1.08 35.94 0.43 35.98 0.42 36.12 0.89
23 36.46 1.46 35.29 0.45 35.24 0.46 36.84 0.92
24 37.80 2.17 36.02 0.44 36.06 0.45 37.40 1.33
25 37.29 2.60 35.76 0.43 35.77 0.46 37.23 1.47
26 36.18 1.92 35.67 0.52 35.62 0.55 36.90 1.10
27 36.09 1.30 35.75 0.38 35.77 0.44 36.51 0.78
28 40.33 1.37 36.50 0.44 36.53 0.46 38.84 0.96
29 35.71 1.10 35.66 0.52 35.67 0.52 36.43 0.78
30 34.57 1.11 35.20 0.48 35.15 0.49 35.87 0.83
31 35.43 1.06 36.28 0.39 36.26 0.39 36.01 0.68
32 39.12 1.40 36.43 0.41 36.43 0.40 38.24 1.00
33 34.10 0.83 35.31 0.42 35.30 0.46 35.32 0.88
34 35.98 1.02 36.09 0.36 36.12 0.36 36.36 0.85
35 37.83 1.13 35.92 0.38 35.92 0.44 37.57 0.92
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Table 4: Comparison of absolute bias (AB) and posterior root mean squared
error (PRMSE) of the finite population 85th percentile and 95th percentile for the
simulated data from DPG model averaged over areas

S-S Model DPM Model DPG Model
AB PRMSE AB PRMSE AB PRMSE

85th percentile 379.0 385.9 384.1 394.6 18.05 40.0
95th percentile 550.2 556.3 555.3 563.7 35.5 101.0

NOTE: Data are generated from the DPG model, and all three models (S-S, DPM, DPG)
are fitted to the data. The numbers in the table must be multiplied by 10−4.
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Figure 1: Dot plots of body mass index (BMI) for thirty-five counties
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Figure 2: Comparison for body mass index (BMI) data (posterior means with
credible bands versus direct estimates): the predictive inference of the finite
population 85th percentile for each county under the three models (S-S, DPM,
DPG)
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Figure 3: Comparison for body mass index (BMI) data (posterior means with
credible bands versus direct estimates): the predictive inference of the finite
population 95th percentile for each county under the three models (S-S, DPM,
DPG)


