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Abstract

This paper develops a Bayesian Generalised Pareto Regression (GPR) model to fore-
cast extreme losses in Indian equity markets, with a focus on the Nifty 50 index. Extreme
negative returns, though rare, can cause significant financial disruption, and accurate mod-
elling of such events is essential for effective risk management. Traditional Generalised Pareto
Distribution (GPD) models often ignore market conditions; in contrast, our framework links
the scale parameter to covariates using a log-linear function, allowing tail risk to respond
dynamically to market volatility. We examine four prior choices for Bayesian regularisation
of regression coefficients: Cauchy, Lasso (Laplace), Ridge (Gaussian), and Zellner’s g-prior.
Simulation results suggest that the Cauchy prior delivers the best trade-off between pre-
dictive accuracy and model simplicity, achieving the lowest RMSE, AIC, and BIC values.
Empirically, we apply the model to large negative returns (exceeding 5%) in the Nifty 50
index. Volatility measures from the Nifty 50, S&P 500, and gold are used as covariates to
capture both domestic and global risk drivers. Our findings show that tail risk increases
significantly with higher market volatility. In particular, both S&P 500 and gold volatilities
contribute meaningfully to crash prediction, highlighting global spillover and flight-to-safety
effects. The proposed GPR model offers a robust and interpretable approach for tail risk
forecasting in emerging markets. It improves upon traditional EVT-based models by incor-
porating real-time financial indicators, making it useful for practitioners, policymakers, and
financial regulators concerned with systemic risk and stress testing.

All codes and datasets for this paper are available in the following GitHub repository: https:
//github.com/sourish-cmi/quant/tree/main/Predicting_Stock_Market_Crash
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1. Introduction

Stock market crashes have significant economic implications, often resulting in large
wealth erosion, investor panic, and long-lasting financial instability, see Liu et al. (2021); Song
et al. (2022). Understanding and anticipating such extreme events is vital for effective risk
management, financial regulation, and economic forecasting, see Dai et al. (2021). During
the COVID-19 crash, for instance, Giglio et al. (2020) document a sharp decline in short-
term investor expectations and a surge in disagreement about future market performance.
Mazur et al. (2021) further highlight that while sectors like healthcare and software showed
resilience, others such as hospitality and energy experienced extreme negative returns and
asymmetric volatility, accompanied by varied corporate responses.

Extreme Value Theory (EVT) provides a principled framework for modelling the sta-
tistical behaviour of rare but severe events, particularly through the Generalised Pareto Dis-
tribution (GPD), which is commonly used for modelling exceedances over a high threshold,
see Smith (1985). In the context of financial crashes, Fry (2008) presents a comprehensive
investigation into bubbles, volatility, and contagion, deriving a GPD-based model for market
drawdowns to analyse tail risk dynamics.

Several studies have applied the GPD to model extreme financial phenomena. Malev-
ergne et al. (2006) and Das and Halder (2016) use EVT to characterise financial extremes,
but their models lack covariate inputs, limiting their capacity to account for underlying
market conditions such as volatility or liquidity. Liu (2011) advances the field by detecting
structural breaks in tail behaviour using a transformed GPD and fluctuation tests, highlight-
ing the need for flexible models when estimating extreme quantiles under changing market
regimes.

More recent work by Rai et al. (2022) analyses the statistical behaviour of aftershocks
in stock market crashes and finds that tail patterns and inter-occurrence times vary depend-
ing on the nature of the crash. This supports the hypothesis that covariate information,
such as macroeconomic signals, volatility, or liquidity, can influence the shape and scale of
extreme return distributions.

Motivated by these findings, we extend the standard GPD framework by modelling
the scale parameter as a function of covariates through a log-linear link. This Generalised
Pareto Regression (GPR) model enhances both interpretability and predictive capacity by
incorporating market-relevant features directly into the tail distribution.

Earlier examples of GPR models include Das et al. (2010), who model extreme alcohol
consumption events using a covariate-linked scale parameter within a GPD framework. In
the operational risk domain, Hambuckers et al. (2018) employ a regularised GPD regression
where both the scale and shape parameters vary with covariates. While flexible, such mod-
els risk overparameterisation and identifiability issues. To maintain parsimony and model
explainability, we assume a common shape parameter across observations and model only
the scale parameter as a function of predictors.

While it is possible to model the shape parameter ¢ as a function of covariates, we
keep it constant across observations to ensure model parsimony and stability. Varying ¢ with
covariates substantially increases model complexity and introduces identifiability challenges,
especially with limited tail data. Our preliminary experiments indicated that such extensions
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did not significantly improve predictive performance but led to unstable estimates. Hence,
we opt for a simpler model with a shared shape parameter across all observations.

Next in Section 2 we present the data description and exploratory data analysis.
In Section 3 we present the Bayesian methodology for Generalised Pareto Regression. In
Section 4, we present a thorough simulation study to evaluate the performance of different
methodologies. In Section 5, we present the Bayesian analysis of Indian market crash events.
Section 6 conclude the paper.

2. Data insight

We analyse the Nifty 50 index over the period from 17 September 2007 to 13 June
2025. Figure 1(a) shows the daily closing prices of the Nifty 50, and Figure 1(b) displays the
corresponding log-returns. The blue dashed line marks the —2% threshold and the red dashed
line indicates the —5% threshold in returns. During this period, the index experienced a few
sharp declines exceeding 5%, most notably during the 2008 global financial crisis and the
COVID-19 pandemic. Given that the daily volatility of log-returns is approximately 1.32%,
a drop of more than 2% is typically regarded as a significant shock. The choice of 2% as the
lower threshold aligns with commonly used multiples of standard deviation in financial risk
literature, indicating a statistically significant deviation.

The 5% threshold corresponds to historically observed crash magnitudes, such as those
during the 2008 financial crisis and COVID-19 market panic, and serves as a benchmark for
severe market stress. These thresholds were also supported by exploratory diagnostics that
revealed natural separation in the distribution of extreme returns. A decline exceeding 5%
in a single day can trigger widespread panic, often resulting in substantial margin calls in the
derivatives market, particularly in futures and options, which may lead to forced liquidations
and amplified market instability.

Figure 1(c) displays the empirical volatility of daily returns. This is computed us-
ing an exponentially weighted moving average (EWMA) method that considers past return
variance over a rolling window of k = 21 trading days. Specifically, the conditional variance
at time ¢ is calculated as

of =a-siy+(1—a)rf,
where 7, is the daily return, s? | is the sample variance of returns over the previous k — 1
days, and o« = 0.9 is the smoothing parameter; see Sen and Das (2023). The resulting
daily volatility is annualised by multiplying by /250, reflecting the approximate number of
trading days in a year. This approach yields a more adaptive and responsive measure of
recent market volatility compared to traditional historical estimates.

Figure 1(d) presents the Garman-Klass estimate of intraday volatility. This estimator
offers a more efficient measure of daily volatility by incorporating high, low, opening, and
closing prices, see Garman and Klass (1980). It reduces estimation variance by using price
range data instead of just closing prices. The Garman-Klass volatility is defined as

= (o (1)) -t 1 (5

where O, H, L, and C denote the opening, high, low, and closing prices, respectively. This



124 SOURISH DAS [SPL. PROC.

Nifty 50
log-retum
Empirical Volatility

Garman-Klass Volatility

|

1 Ll bl \ihlﬂ r‘

Garman-Klass Volatility
Log(Garman-Klass Volatility)

® Empirical Volatilty “ Log(Empirical Volatility)
(e) (f)

Figure 1: Visual summary of Nifty50 prices and volatility measures: (a) closing
price, (b) log-return, (c) empirical volatility, (d) Garman-Klass volatility, (e)
empirical vs GK volatility, and (f) log-transformed comparison of empirical vs
GK volatility.

formula assumes zero drift and the absence of overnight jumps, making it well suited for
capturing intraday risk characteristics.

Figure 1(e) shows the scatter plot of empirical volatility against Garman-Klass volatil-
ity. Figure 1(f) presents the same comparison on a logarithmic scale. The correlation be-
tween the logarithms of empirical and Garman-Klass intra-day volatility is approximately
0.71, suggesting a strong association in the log scale, and highlighting consistency between
the two methods of volatility estimation.

In addition, we incorporate the S&P 500 index and gold prices into our analysis to
capture global market volatility and assess its influence on the Indian stock market. To study
the tail behaviour of returns, we focus on large daily losses in the Nifty 50 index, specifically,
those drops, exceeding 2% level, and examine their relationship with daily empirical volatility.
Figure 2 visualises this association across three dimensions of volatility: panel (a) presents the
Nifty’s own empirical volatility, panel (b) shows S&P 500 volatility, and panel (c¢) depicts
gold volatility. The plots reveal that large negative returns often coincide with elevated
volatility, both domestically and globally. The strong alignment with S&P 500 volatility
suggests the presence of spillover effects from global equity markets, while the relationship
with gold volatility may reflect investor flight-to-safety behaviour during periods of financial
stress.
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Figure 2: Relationship between large losses (negative returns) in the Nifty 50
and empirical volatility measures: (a) own volatility of Nifty 50, (b) S&P 500
volatility, and (c) gold volatility. Dashed lines indicate thresholds at 2% and 5%
loss levels.

3. Methodology

Suppose D = {(y;,x;) | i = 1,2,--- ,n} is the observed dataset, where y; follows a
Generalised Pareto Distribution (GPD), i.e.,

yiNGPD(M;Uz‘,f)a Z:1a27 , 1,

with probability density function:

/e
flon) = — (1+22)

0;

and x; = {1, T, -, 7} are the covariates associated with the i observation. The
threshold g is assumed known; the shape parameter ¢ is same across observations, and the
scale parameter o; is modelled as a log-linear function of covariates:

log(a:) = x; B.
The support of Y; is (u,00) if £ < 0, and (u, u + 0;/€) if & > 0. The special case £ = 0

corresponds to the exponential distribution with mean o;, interpreted as the limit as & — 0.
The survival function of the GPD regression model is:

B E(yo — ) )¢
P(Y > Yo | Y > :u) - <]‘ eXp( ﬂ))

1+ o)

In financial applications, if Y represents the daily negative return (in percentage), and a
market crash is defined as a daily drop exceeding yo = 5%, then this survival function



126 SOURISH DAS [SPL. PROC.

quantifies the conditional probability of a crash, given that a drop of, say, u = 2% has
already occurred. The conditional expectation of Y; given the covariates is:

o0, 5 Z 17
E(Y; | Yi>u) =
(Yi | Yi = p) M+exp( B)y £<1.
1-¢
The variance exists only when £ < 0.5 and is given by:

exp(2x; B)
(1-¢)2(1-28)
This characterisation highlights the influence of covariates on the first two moments of the
tail distribution and emphasises the model’s ability to capture heavy-tailed behaviour.

Var(Y; | Vi = p) =

3.1. Log-likelihood function
The log-likelihood function of the GPD regression model is:

log L(€, B) = ZXTB+<§—1>ZI‘)g [erxp( ﬁ>]

This formulation treats the exceedances y; > p as GPD-distributed with covariate-dependent
scale. The shape parameter £ governs the heaviness of the tail, while the covariates modulate
the scale of exceedance. In particular, the conditional mean:

exp(x; B)

1-¢
exists only for & < 1, and the variance exists only if & < 0.5. This structure provides a
coherent framework for modelling the magnitude of extreme outcomes while adjusting for
covariate information. As shown in Smith (1985), the maximum likelihood estimator (MLE)

exists asymptotically when ¢ < 1 and is consistent, asymptotically normal, and efficient
provided £ < 0.5.

EY; |Yi>p)=p+———

3.2. Truncated Cauchy prior on ¢

The truncated Cauchy(0,1) prior truncated from above at 1, i.e., the support is
& < 1. The probability density function of the standard Cauchy distribution is:

1
p(§) = 0+ § € (—00,00).
We define the truncated density:
1 1
runc = =" 5 f 1
Dt (g) 7 7T(1 + 52) or g <

where Z is the normalising constant, 7.e. the total probability over the truncated domain:

1 1 1 1 1 1 _1 _1
Z = [m mdf = [tan (S)LOO =_ (tan (1) — tan (—oo))

- 1G-3)- Y 0
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Now plug in Z = %:
4

ptrunc(x) = 7371_(1 +£2), 6 < 1.

The pdf of truncated Cauchy(0,1) prior density, with upper truncation at £ = 1.

4

p(§) = m, for £ <1

3.3. Cauchy prior on

In our Bayesian regression framework, we assign a standard Cauchy prior to the
regression coefficients 8, see Gelman et al. (2008). The Cauchy distribution is symmetric
and heavy-tailed, making it well-suited for scenarios where large effect sizes are plausible or
when robust shrinkage is needed. The standard Cauchy prior has the following probability
density function:

1

p(B) = m,

B e R.

A key property of the Cauchy distribution is that it lacks a finite mean, variance, and higher
moments. This feature makes it a particularly attractive choice as a weakly informative
prior, see Berger (1985). It imposes minimal structure on the parameter space, allowing the
data to dominate the posterior inference, while still penalising extremely large values less
severely than priors with finite variance, such as the Gaussian. Consequently, the Cauchy
prior provides a balance between regularisation and flexibility, making it suitable for sparse
or high-dimensional regression models where robustness and parsimony are desired.

3.4. Lasso prior on 3

An alternative to the Cauchy prior is the Lasso prior, which corresponds to a Laplace
(double-exponential) distribution on the regression coefficients 8, see Hastie et al. (2009),
Park and Casella (2008). The Lasso prior encourages sparsity in the estimated coefficients by
applying stronger shrinkage towards zero, making it particularly useful for high-dimensional
models or when variable selection is of interest. The probability density function of the
Laplace distribution with scale parameter A > 0 is given by:

p(5) = Sexp(-MBl). AEE.

This prior has a sharp peak at zero and heavier tails than the Gaussian, enabling it to shrink
small coefficients more aggressively while allowing larger coefficients to remain relatively
unaffected. The result is a sparse posterior mode, with many coefficients estimated as exactly
zero, aligning with the behaviour of the classical Lasso estimator. Unlike the Cauchy prior,
the Laplace distribution has finite mean and variance, making it more suitable when a
moderate degree of regularisation is desired without the extreme heavy tails of the Cauchy
prior. Its effectiveness in automatic variable selection and computational tractability makes
the Lasso prior a popular choice in Bayesian sparse regression models.
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3.5. Ridge prior on 3

The Ridge prior assumes a Gaussian (normal) distribution on the regression coefhi-
cients A, offering smooth shrinkage without inducing sparsity, Hastie et al. (2009). It is
commonly used when multicollinearity is present or when all predictors are believed to have
small, non-zero effects. The probability density function of the Ridge prior with precision

parameter T is:
T T
p(B) = /5= exp (—52> , BeR
2m 2

This is equivalent to placing an independent A/(0, 771) prior on each coefficient 3. The Ridge
prior results in posterior estimates that are biased toward zero, but unlike the Lasso prior,
it does not set any coefficients exactly to zero. Consequently, it is well-suited for settings
where all predictors contribute weakly to the response.

In the Bayesian framework, the Ridge prior leads to a conjugate posterior when
combined with a Gaussian likelihood, allowing for closed-form posterior inference in linear
models. Its computational simplicity and regularising effect make it a widely used choice in
models where interpretability through sparsity is not essential but stabilisation of estimates
is desired.

3.6. Zellner’s g-prior on 3

Zellner’s g-prior is a popular conjugate prior used in Bayesian linear regression, par-
ticularly when the design matrix X is fixed and known, see Zellner (1986),Sabanés Bové and
Held (2011). It imposes a multivariate normal prior on the regression coefficients B, with
the covariance structure informed by the design matrix:

/8 NN(Oa g(XTX)_1>7

where g > 0 is a scalar hyperparameter controlling the strength of the prior relative to the
likelihood. This prior has several attractive properties:

o It is invariant under linear transformations of the design matrix.

e The posterior mean shrinks toward zero as g — 0, while as g — oo, the prior becomes
non-informative.

o The use of (X"X)~! ensures the prior reflects the geometry of the predictors.

Zellner’s g-prior is especially useful for Bayesian model comparison and variable se-
lection, as it facilitates closed-form expressions for marginal likelihoods and Bayes factors.
However, care must be taken in the choice of g, as it significantly influences the inference.
Empirical Bayes, fixed ¢, or hierarchical models placing a hyperprior on g are common
approaches to address this.

3.7. MAP estimation for efficient Bayesian model exploration

Maximum a Posteriori (MAP) estimation provides a computationally efficient alter-
native to full Bayesian inference, especially when exploring different model specifications or
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prior structures. Unlike posterior summaries such as the posterior mean or credible intervals
that rely on Markov Chain Monte Carlo (MCMC) methods, MAP estimation avoids the com-
putational burden of sampling by framing inference as an optimisation problem. Formally,
the MAP estimate is defined as:

Oriap = arg max p(0 | D) = arg max logp(D | 0) + log p(0)],

where D denotes the observed data, p(D | ) is the likelihood function, and p(6) is the prior
distribution. In our case 6 = (8, ¢). This above expression highlights that MAP estimation
balances the fit to the data and the influence of prior information, analogous to penalised
likelihood methods in the frequentist setting.

MAP estimation is often preferred in high-dimensional problems or when computa-
tional resources are limited, as it offers faster and more stable inference than MCMC, which
can suffer from slow convergence and poor mixing. Moreover, it enables quick evaluation of
multiple models or regularisation schemes, such as Lasso or Ridge, where priors play the role
of sparsity-inducing penalties.

Importantly, MAP estimation is well-suited for the model exploration phase. Once
a final model is selected, based on predictive performance or interpretability, one may then
employ MCMC on that specific model to obtain a full characterisation of the posterior
distribution. In this way, MAP provides an efficient screening tool, while full Bayesian
inference is reserved for the final model of interest.

4. Simulation study of frequentist properties

To evaluate the performance of different regularised Generalised Pareto Distribution
(GPD) regression models, we conduct a simulation study comparing four Bayesian prior
structures on the regression coefficients: the Cauchy prior, Lasso (¢; penalty), Ridge (¢,
penalty), and Zellner’s g-prior. Our aim is to assess and compare their predictive accuracy,
estimation error, model complexity (via AIC and BIC), and computational efficiency.

We simulate N = 100 datasets, each consisting of n = 100 observations. For each
dataset, the covariate matrix X € R"*P is generated from a multivariate normal distribution
with identity covariance, where the number of predictors is p = 5. The true regression coef-
ficients [ are sampled from a standard normal distribution, and the GPD shape parameter
¢ is drawn from a uniform distribution on the interval (—0.5,0.5). The response variable y is
generated from a GPD model with a fixed location parameter ;4 = 2 and a scale parameter
o = exp(X ). Each dataset is then split into a training set (80%) and a testing set (20%).

Each of the four models is estimated using maximum a posteriori (MAP) estimation
via the BFGS optimisation algorithm. The Cauchy prior is specified as a weakly informative
heavy-tailed prior on the coefficients 3, along with a truncated Cauchy prior on the shape
parameter £. The Lasso model imposes an ¢; penalty on the regression coefficients, while the
Ridge model uses an /5 penalty; in both cases, the regularisation parameter is chosen using 5-
fold cross-validation. The Zellner’s g-prior assumes a prior of the form 8 ~ N(0,g(X T X)™1),
and the hyperparameter g is selected through cross-validation.

We assess model performance using several metrics. These include the root mean
squared error (RMSE) of predictions on the test data, as well as the RMSE for recovering



130 SOURISH DAS [SPL. PROC.

the true coefficient vector § and the shape parameter £&. We also compute the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC), both based on
the negative log-likelihood (excluding the contribution of the prior). In addition, we record
the computational time taken to fit each model, and express it as a multiple relative to the
time taken for the Cauchy prior model, which serves as the baseline.

Table 1: Simulation comparison of GPD regression models with different priors

Metric Cauchy | Lasso | Ridge | g-prior
RMSE (y) 11.36 10.37 | 10.65 10.43
RMSE (B) 0.10 0.16 0.16 0.18
RMSE (§) 0.08 0.08 0.09 0.11
AIC 162.67 | 177.15 | 175.74 | 180.94
BIC 176.97 | 191.44 | 190.03 | 195.24
Time (sec) 0.00 0.60 0.53 8.45
Time (relative) 1.00 175.64 | 155.69 | 2476.86

Finally, the results across the 100 simulations are aggregated using the median to
ensure robustness. The outcome is summarised in the Table 1, displaying predictive accu-
racy, parameter estimation error, model complexity, and computational cost for each prior,
facilitating a comprehensive evaluation of their relative performance.

5. Empirical study of market crashes

In this section, we investigate the application of Generalised Pareto Distribution
(GPD) regression for modelling extreme negative returns in the Indian equity market. Our
analysis is based on daily returns of the NSE Nifty 50 index, augmented with realised volatil-
ity measures derived from domestic and global financial assets. The central objective is to
assess the predictive performance and interpretability of GPD regression models under a
range of prior assumptions on the regression coefficients, within a Bayesian framework for
financial tail risk modelling.

All codes and datasets for this paper are available in the following GitHub reposi-
tory: https://github.com/sourish-cmi/quant/tree/main/Predicting_Stock_Market _
Crash

Data description and preprocessing

We work with a cleaned dataset comprising daily log-returns of the NSE Nifty 50
index, with all missing entries removed. Denoting the daily return at time ¢ as r;, we
extract a subset of observations where r; < —2%, corresponding to the left tail of the return
distribution. This subset constitutes approximately 4.6% of all trading days. Among these
tail events, 11.6% show losses exceeding 5%, indicating the presence of disproportionately
large market crashes within the extreme left tail.

To facilitate interpretation and estimation, negative returns are transformed into
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absolute values, i.e., y; = |r¢| for r < —2%. We construct covariates based on (i) empirical
volatility and (ii) Garman-Klass (GK) volatility for the Nifty 50, S&P 500, and gold. These
volatility variables are standardised to have mean zero and unit variance. The baseline
model includes only the intercept and Nifty empirical volatility, while richer covariate sets
are examined in subsequent analyses.

Predictive evaluation and model comparison

We randomly split the dataset into training (80%) and test (20%) sets. Out-of-sample
predictive performance is assessed via Root Mean Squared Error (RMSE), and in-sample fit
is evaluated using Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC), both computed from the negative log-likelihood (excluding prior terms). For the
Lasso model, degrees of freedom are adjusted to reflect the number of non-zero coefficients.

Table 2: Model evaluation using RMSE, AIC, and BIC.

Prior Models RMSE AIC BIC

Cauchy 1.58  298.06 322.20
Lasso 1.80 311.57 335.71
Ridge 1.73 302.07 326.20

Zellner’s g-prior 1.94 308.12  332.25

Among all models, the Cauchy prior delivers the best fit, achieving the lowest AIC and
BIC values, along with the smallest RMSE, suggesting strong predictive accuracy and robust
in-sample performance. The Ridge and g-prior models provide competitive alternatives,
whereas the Lasso model performs relatively poorly, possibly due to over-shrinkage.

To understand the economic implications of volatility on tail risk, we compute both
the conditional expectation E[Y | Y > pu,z] and the conditional exceedance probability
P(Y >5|Y > 2,x) under the fitted Cauchy model. Results show a nonlinear increase in
both quantities with rising volatility. At the lower end (e.g., 10th percentile of volatility),
expected losses are around 2.4 with tail event probabilities below 5%. At the upper end
(90th percentile), expected losses exceed 7 with crash probabilities above 65%.

Figure 3 presents three visual diagnostics. Panel (a) plots the fitted vs. observed
tail losses on the log scale, with colour indicating empirical Nifty volatility. The upward
trend and colour gradient affirm that higher volatility coincides with more severe losses,
though dispersion increases in the tail. Panels (b) and (c) display the fitted probability
P(Y >5|Y > 2,xy) as a function of Nifty volatility, coloured by the S&P 500 and gold
volatilities, respectively. These plots reveal clear global spillover effects: both SEP 500 and
gold volatilities enhance the likelihood of extreme losses in the Indian market, the former via
market correlation and the latter via flight-to-safety dynamics.

This empirical exercise highlights that the tail behaviour of Indian equity returns is
jointly shaped by local volatility conditions and global financial signals. The GPD model
with a Cauchy prior not only provides superior predictive performance but also captures the
nonlinear and interactive effects of volatility on extreme losses. These findings underscore
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Figure 3: Relationship between extreme tail events in the Nifty 50 index and
market volatility. Panel (a) compares the log-fitted tail losses from the GPD
model under a Cauchy prior with actual observed losses. Panels (b) and (c) show
the model-based conditional tail probabilities as functions of Nifty volatility,
coloured by S&P 500 and gold volatilities, respectively.

the importance of robust regularisation and the inclusion of international covariates and
global spill-over effect in tail risk modelling of Indian stock market.

6. Conclusion

In this study, we developed and applied a Bayesian Generalised Pareto Regression
(GPR) framework to model and predict extreme negative returns in the Indian equity market,
particularly focusing on the Nifty 50 index. The core innovation lies in modelling the scale
parameter of the Generalised Pareto Distribution as a log-linear function of market volatility
indicators, while keeping the shape parameter same for all data points. This allows the model
to adapt to changing volatility regimes while preserving interpretability and parsimony.

Our theoretical development was supported by a thorough simulation study compar-
ing different regularisation strategies, including Cauchy, Lasso, Ridge, and Zellner’s g-prior;
within a MAP estimation framework. Among these, the Cauchy prior emerged as the most
effective in balancing predictive accuracy and model complexity. This observation was fur-
ther validated in the empirical analysis of actual market crash events, where the Cauchy
prior achieved the lowest AIC, BIC, and RMSE values.

Empirical findings highlight a strong nonlinear association between volatility and the
likelihood and magnitude of extreme losses. We demonstrated that both domestic (Nifty)
and global (S&P 500, gold) volatility measures significantly influence the tail risk. The
inclusion of global covariates like S&P 500 and gold volatilities proved crucial in capturing
spillover and flight-to-safety effects during periods of financial stress.

Visual diagnostics revealed that in high-volatility regimes, the conditional probability
of a crash; defined as a loss exceeding 5% given a 2% drop; can exceed 60%, with expected
losses rising sharply. These insights underscore the importance of incorporating volatility-
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sensitive covariates and flexible modelling strategies when forecasting rare but impactful
financial events.

Overall, our study demonstrates that Bayesian GPD regression, particularly under
heavy-tailed priors like the Cauchy, provides a powerful and interpretable tool for tail risk
modelling in financial markets. It holds promise for future applications in systemic risk
monitoring, stress testing, and portfolio tail risk management. Future research could explore
dynamic extensions, integrate macroeconomic signals, and investigate hierarchical Bayesian
formulations that allow for time-varying shape parameters or latent volatility drivers.
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