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Abstract
In this paper, network node with self-similar priority based input traffic is modeled

into finite buffer single server queuing system, and is analyzed through level dependent quasi
birth-death (QBD) process with preemptive priority mechanism. Here, input process follows
transient Markovian arrival process (MAP), and service time (packet lengths) follows Phase
type (PH) distribution, which is more general than deterministic and exponential distri-
butions. The queuing behavior of the system at arbitrary times through the performance
metrics, namely, queue length, mean waiting time, and packet loss probability is investi-
gated. For this, time dependent state probability vector of transition rate matrix is obtained
using method of product integrals which in turn gives performance measures, and compu-
tational complexity of analysis is presented. This type of analysis is useful in dimensioning
the network node to provide Quality of Service (QoS) guarantee.

Key words: Self-similar; Quasi birth and death process; Markovain arrival process; Phase
type; Transition rate matrix; Waiting time; Loss probability.
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1. Introduction

Performance of communication system depends on network nodes. The network nodes
namely, switch, router, and multiplexer in B-ISDN (Broadband Integrated Switching Digital
Network), play a vital role in communication, and therefore it is essential to analyze the
performance of nodes for providing QoS. In general, analysis of network nodes is made by
queueing methods, and this queueing based analysis has a long history of success in plan-
ning and dimensioning of networks. The fundamental studies of network traffic namely LAN
(Leland et al., 1994), WAN (Paxson and Floyd, 1995), and WWW (Crovella and Bestavros,
1997) at AT & T Bell labs disclosed that these traffic are self-similar, and degrade perfor-
mance of system. It is clear that self-similar nature of traffic is emulated by homogeneous
Markovian Modulated Poisson process which was superposition of Interrupted Poisson Pro-
cess (IPP) or Switched Poisson Process (SPP) over different time scales. In the papers
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(Andersen and Nielsen, 1998; Yoshihara et al., 2001; Shao et al., 2005), performance anal-
ysis was made under steady state conditions, as such is not so useful for real time network
traffic analysis. Recently, Abhilash and Malla Reddy (2022) proposed a fitting procedure
for time dependent Markovian process, namely, MMPP with Sinusoidal arrival rates based
on second order statistics, and proved that resultant MMPP emulates self-similar nature of
network traffic in prescribed time scales. On the other hand, in B-ISDN, high demand causes
congestion, and pertinent issues can be handled using priority queueing mechanism. Priori-
tization based on the importance is most common feature in all modern internet applications
to offer QoS. Priority mechanism is a concept of scheduling of different classes of arrivals to
a single server. It has wide range of applications not only in engineering, but in inventory of
manufacturing industries and health care systems (Zhao and Alfa, 1995; Brahimi and Wor-
thington, 1991; Cohen et al., 1988). There are different priority disciplines like preemptive,
non-preemptive and discretionary priority. Each discipline has a scheduling procedure. In
the literature, there are number of supplements based on priority scheduling, the outline
of few fundamental priority queueing models in continuous-time was evident in the papers
(Miller, 1960; Kleinrock, 1976; Takagi, 1991) and references therein. White and Christie
(1958) studied M/M/1 queues with multiclass arrivals using preemptive priorities and anal-
ysis is made by generating functions of state probabilities. Later, Marks (1973) proposed an
algorithm for computing probabilities of queue length. Sandhu and Posner (1989) analyzed
voice/data communication using priority M/G/1 queue. Boxma et al. (1999) worked on
heavy traffic using M/G/1 queue with priority classes and regularly varying heavy tailed
service time distributions. Sharma and Virtamo (2002) consider finite buffer queue with
priorities to model the system in the internet and obtain algorithms for workload, waiting
time, and packet loss. Takine and Hasegawa (1994) derived LST of waiting time of customers
based on MAP/G/1 queue with state dependent service time distributions. Takahashi and
Miyazawa (1994) gave relation between queue length and waiting time distribution in a pri-
ority queue with batch arrivals. Takada and Miyazawa (2002) obtain moments of buffer
contents for a Markov modulated fluid queue with preemptions. Jin and Min (2007) pro-
pose a novel analytical model for priority queueing system with heterogeneous LRD input
traffic. Tarabia (2007) investigated the impact of catastrophes on single server preemp-
tive priority queue using generating functions. Sampath et al. (2013)studied performance
of wavelength division multiplexing optical packet switch employing wave length conversion
techniques under self-similar input traffic. Zhao et al. (2015) analyzed sojourn time of two
classes of customers using MAP/PH/1 queue with discretionary priority based on service
stages. Ravi Kumar et al. (2017) evaluated performance of self-similar traffic input model in
terms of high priority and low priority packet loss probabilities using MMPP/PH/c/K queu-
ing system. Also, Malla Reddy and Ravi Kumar (2014, 2016, 2021)explored performance of
network routers (synchronous and asynchronous) with self-similar input traffic using vari-
ous multiserver queueing systems employing priority mechanism in the papers. From above
cited papers, one can observe that priority discipline was used in various contexts to analyze
systems, but in all the above cases performance analysis was made under steady state with
homogeneous arrival and service processes, which are not realistic. As mentioned earlier,
in present work, a network node with self-similar input traffic is modeled into transient
MAP/PH/1/N queue with preemptive priority mechanism. Time dependent analysis of the
system is made by level dependent quasi birth and death process, and arrival process follows
MMPP with sinusoidal arrival rates (which is a special case of MAP). Performance measures,
namely, queue length, mean waiting time, and packet loss of high priority and low priority



2024] STUDY OF PRIORITY BASED NETWORK NODES 171

packets are presented numerically.

The paper is organized as follows: Queueing model description is given in section
2. In section 3, performance analysis of system is presented. In section 4, computation
complexity of algorithm is presented, and numerical results are illustrated in section 5.
Finally, conclusions are given in section 6.

2. Queuing model

It is assumed that the packet arrivals are of high priority (Type I) and low priority
(Type II) packets. Assume that Type I packet arrivals follows the MMPP characterized
by (QI , ΛI(t)), where QI , ΛI(t) are matrices of order nI . Where as, Type II packet arrivals
follow the MMPP characteriazed by (QII , ΛII(t)), where QII , ΛII(t) are matrices of order
nII . Here nI , nII represent number of states of underlying Markov chains of Type I and
Type II arrivals, respectively. As in Andersen and Nielsen (1998); Yoshihara et al. (2001);
Shao et al. (2005); Abhilash and Malla Reddy (2022), modeling of self-similar traffic involves
superposition of two-state MMPPs (In particular IPPs). The ith IPP of Type I and Type II
arrival process are given as follows:

QI
i =

[
−c1i c1i

c2i −c2i

]
, ΛI

i (t) =
[
λI

i (t) 0
0 0

]

and, QII
i =

[
−d1i d1i

d2i −d2i

]
, ΛII

i (t) =
[
λII

i (t) 0
0 0

]
, 1 ≤ i ≤ r (1)

The superposition of r IPPs and a Poisson process of Type I and Type II arrival process are,
respectively, given as

QI = QI
1
⊕

QI
2
⊕

· · ·
⊕

QI
r

ΛI = ΛI
1(t)

⊕
ΛI

2(t)
⊕

· · ·
⊕

ΛI
r(t)

⊕
λI

p(t)
QII = QII

1
⊕

QII
2
⊕

· · ·
⊕

QII
r

ΛII = ΛII
1 (t)

⊕
ΛII

2 (t)
⊕

· · ·
⊕

ΛII
r (t)

⊕
λII

p (t) (2)

Here, ⊕,
⊗ represent Kronecker’s sum and product respectively, and λI

p(t), λII
p (t)

are time dependent Poisson arrival rates of Type I and Type II arrivals. The superpo-
sition of MMPPs (QI , ΛI(t)), (QII , ΛII(t)) is turned into a MAP with representation of
(D0, D1(t), D2(t)), where D0 = DI

0
⊕

DII
0 denote transitions of no arrival in both types,

D1(t) = ΛI(t)⊗ InII
and D2(t) = InI

⊗ΛII(t) denotes transitions corresponding to Type I
and Type II arrivals, respectively, where DII

0 = QII − ΛII(t), DI
0 = QI − ΛI(t). The mean

arrival rate of Type I and Type II packets are given by (Abhilash and Malla Reddy, 2022)

λI
m(t) = 1

t

(
π

� t

0
D1(x) dx e

)
, λII

m (t) = 1
t

(
π

� t

0
D2(x) dx e

)
(3)

where e represents column vector of 1’s with appropriate size, and π is unique vector satis-
fying π(QI + QII) = 0, πe = 1. The system is modeled into a single server queue with finite
buffer capacity. Server provides priority scheduled service for Type I and Type II packets
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with preemptive discipline. That is, if Type I packet arrives, when Type II packet is in
service, service process is interrupted, and after completion of the service, if there are no
Type I packets, it starts processing of left over Type II packet as it is new one. Otherwise, it
would go for another Type I packet. Assume that service process of the Type I and Type II
packets follows continuous-time PH distributions denoted by (α, T ) and (β, S) respectively,
with same dimension p , where, α, β are vectors of size 1 × p, T, S are p × p matrices, and
t0 = −Te, s0 = −Se . The mean service time of Type I and Type II packets are obtained
by µI = −αT −1e, µII = −βS−1e , respectively. Buffer capacity of system is taken to be
N . Finally, the resultant queueing system of network node is MAP/PH/1/N queue with
preemptive priority. LetNII(t)(NI(t)) be the number of Type II (Type I) packets in the
system at time t, including packet in service. The thresholds for Type I and Type II packets
are K1, K2 respectively, where N equals to K1 + K2 . The arrival phase of superposed MAP
at time t is denoted by A(t) , and service phase of system is denoted by B(t). Therefore,
arrival process of system is characterized by a multi-dimensional continuous time Markov
chain F (t) = {N I(t), N II(t), A(t), B(t), t ≥ 0}, The state space of is given by:

F1 = {(0, 0, a, 0), a = 1, . . . , n}
F2 = {(mI , 0, a, b), mII > 0; a = 1, . . . , n; b = 1, . . . , p}
F3 = {(0, mII , a, b), mII > 0; a = 1, . . . , n; b = 1, . . . , p}
F4 = {(mI , mII , a, b), mI > 0, mII > 0; a = 1, . . . , n; b = 1, . . . , p}

Here, F1 represents idle state of server with arrival at phase at a. F2 represent mI(> 0)
Type I packets and no Type II packets in queue. F3 represent mII(> 0) Type II packets and
no Type I packet in queue. F4 represent there are mI(> 0), mII(> 0) of Type I and Type
II packets are in queue. In three cases, arrival is in phase a, and service is in phase b. If
stages of F (t) are arranged in lexicographical order. The level dependent block tridiagonal
generator matrix of system occupancy at time t is given by

Q(t) =



A0(t) A1(t) 0 0 . . . 0 0 0
B2(t) A0(t) A1(t) 0 . . . 0 0 0

0 A2(t) A0(t) A1(t) . . . 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 . . . A2(t) A0(t) A1(t)
0 0 0 0 . . . 0 A2(t) A0(t) + A1(t)


where all block matrices in Q(t) are square matrices of finite order, and are defined as follows,

A0(t) =



D0 D2(t)
⊗

β 0 0 . . . 0 0 0
I
⊗

s0 D0
⊕

S D2(t)
⊗

I . . . 0 0 0
0 I

⊗
s0β D0

⊕
S D2(t)

⊗
I . . . 0 0 0

... ... ... ... . . . ... ... ...
0 0 0 0 . . . I

⊗
s0β D0

⊕
S D2(t)

⊗
I

0 0 0 0 . . . 0 I
⊗

s0β M



A0(t) =


D0

⊕
T D1(t)

⊗
I 0 0 0 0

0 D0
⊕

T D1(t)
⊗

I 0 0 0
... ... ... . . . ... ...
0 0 0 0 D0

⊕
T D1(t)

⊗
I

0 0 0 0 0 D0
⊕

T + D1(t)
⊗

I


(K2+1)×(K2+1)
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A1(t) =


D1(t)

⊗
α 0 0 0

0 D1(t)
⊗

I 0 0
0 0 . . . 0
0 0 0 D1(t)

⊗
I


(K2+1)×(K2+1)

B2(t) =


I
⊗

t0 0 0 0
0 I

⊗
t0α 0 0

0 0 . . . 0
0 0 0 I

⊗
t0α


(K2+1)×(K2+1)

A1(t) = diag[D1(t)
⊗

I, D1(t)
⊗

I, . . . , D1(t)
⊗

I]K2+1,

A2(t) = diag[I
⊗

t0α, I
⊗

t0α, . . . , I
⊗

t0α]K2+1,

where M = D0
⊕

S + D2(t)
⊗

I, I is an identity matrix of an appropriate order and A0(t)
is of order (K2 + 1) × (K2 + 1).

3. Performance analysis

Let π(t) = (π0(t), π1(t), . . . , πK1(t)) be transient state probability vector of Q(t). That
is, π(t) satisfies (Stewart, 1994)

d

dt
π(t) = Q(t)π(t) (4)

=⇒ π(t) = π(0) exp

(� t

0
Q(x) dx

)
(5)

By using Theorem. 2.4.3 in (Slav́ık, 2007), one can get

π(t) = π(0)
n∏

k=0
(I + Q(tk)h) (6)

where h = tk − tk−1, n is number of partitions of the interval (0, t] , and π(0) is state
probability vector at time t = 0 . Here, each πj(t) is vector corresponding to the set of states
with j Type I packets, and is in the form of πj(t) = (πj0(t), πj1(t), . . . , πjK2(t). Each πjk(t)
represents the probability that there exist j Type I packets, and k Type II packets are in
the system. The performance measures are given as follows:
The Mean waiting time of Type I packets (Zhao et al., 2015)

MWTT ypeI = E[N I(t)]
λI

m(t) = 1
λI

m(t)

K1∑
j=1

jπj(t)e (7)

Let assume Y = ∑K1
i=1 πj(t), and Y = {Y:0(t), Y:1(t), . . . , Y:K2(t)}, where each Y:mII

(t) is a
row vector corresponding to mII Type II customers in the system. The Mean waiting time
of Type II packets is

MWTT ypeII = E[N II(t)]
λII

m (t) = 1
λII

m (t)

K2∑
k=1

k (Y:k(t) + π0k(t)) e

 (8)
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Since, buffer capacity is finite, If Type I (Type II) packet arrives, and finds that there are
K1 (K2) packets in system, then the packet is lost. The loss probability of Type I and Type
II packets (Zhao et al., 2015) in small time duration ∆ are, respectively

P I
loss = 1

λI
m(t + ∆)

[
πK1(t)

(� t+∆

t

(
D1(x)

⊗
I
)

dx

)
e

]
(9)

P II
loss = 1

λII
m (t + ∆)

[
(Y:K2(t) + π0K2(t))

(� t+∆

t

(
D2(x)

⊗
I
)

dx

)
e

]
(10)

4. Computational complexity

In this section, one can present computational complexity of performance measures
(Malla Reddy and Ravi Kumar, 2016; Chen et al., 2007; Wang et al., 2000), namely, mean
waiting time and packet loss probability of Type I and Type II packets, which are given in
Eqs.(7-10). The complexity of MWTT ypeI , MWTT ypeII is of the order O ((K2 + 1)nm), O
((K1 + 1)nm) respectively, due to it involves product of several row and column vectors. The
complexity of P I

loss, P II
loss is of the order O ((K2 + 1)2n2m2), O ((K1 + 1)2n2m2) respectively.

But, the Eqs. (7-10) involves transient state probability vector of generator matrix Q(t) (with
dimensions((K1 + 1)(K2 + 1)nm), which is obtained by using method of Product integrals,
and it is given in Eq. 6. Since, the problem of finding state probability vector involves
addition and product of matrix Q(t) several times. The computational complexity of finding

product
n∏

i=0
(I + Q(ti)h) is of the order O

(
((K1 + 1)(K2 + 1)nm)2.37

)
(using Coppersmith-

Winograd algorithm), and complexity of addition is of the order O((K1 + 1)2(K2 + 1)2n2m2).
Therefore, the overall computation complexity of the algorithm according to Big-O analysis
is of order O

(
((K1 + 1)(K2 + 1)nm)2.37

)
.

5. Numerical results

In this section, performance measures of the system are presented numerically. For
arrival process of Type I and Type II packets, the numerical values given in Table 1 and
2 are used. The number superposed MMPPs are taken to be 2, and sinusoidal arrival
rates are taken in the form of a + bjsint , where a is whole arrival rate and bj varies in
between (0, 1). For Type I packet arrivals transition rates are given in Table 1 and arrival
rates are same for three samples (based on traffic parameters) of Type I packets, these are
λI

1(t) = 1 + 0.3 × sin t, λI
2(t) = 1 + 0.7 × sin t. For Type II packet arrivals transition rates are

given in Table 2, and arrival rates are same for three samples (based on traffic parameters),
these are λII

1 (t) = 1 + 0.4 × sin t, λII
2 (t) = 1 + 0.8 × sin t. Assume that service distribution

follows two phase distribution, i.e, Erlang distribution(E2) with varying service rates. Figs.
1-6 show that waiting time and packet loss for Type I and Type II packets increases as traffic
intensity increases at every time instant, and also represent that waiting time and packet
loss increase as Hurst parameter (H) increases. From Figures 7 and 8, one can observe that
mean waiting time increases, and packet loss decreases as threshold of Type I increases at
every particular instant of time for H = 0.9.
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Table 1: Values of traffic parameters and fitting parameters of Type I
arrival rates

Sample Parameters of Self-similar Input Traffic r=2
c11 c21

Sample 1 H = 0.7, λw(t) = 1, and σ2 = 0.6 0.196 0.001
Sample 2 H = 0.8, λw(t) = 1, and σ2 = 0.6 0.0102 0.000188
Sample 3 H = 0.9, λw(t) = 1, and σ2 = 0.6 0.005198 0.0005

Table 2: Values of traffic parameters and fitting parameters of Type II
arrival rates

Sample Parameters of Self-similar Input Traffic r=2
d11 d21

Sample 1 H = 0.7, λw(t) = 1, and σ2 = 0.6 0.23 0.0013
Sample 2 H = 0.8, λw(t) = 1, and σ2 = 0.6 0.05 0.00092
Sample 3 H = 0.9, λw(t) = 1, and σ2 = 0.6 0.003 0.000272

Figure 1: Traffic intensity vs mean waiting time with N = 10, t = 1

Figure 4: Traffic intensity vs packet loss with N = 10, t = 3, ∆ = 0.5
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Figure 2: Traffic intensity vs packet loss with N = 10, t = 1, ∆ = 0.5

Figure 3: Traffic intensity vs mean waiting time with N = 10, t = 3

Figure 5: Traffic intensity vs mean waiting time with N = 10, t = 5
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Figure 6: Traffic intensity vs packet loss of Type II packets with N = 10, t =
5, ∆ = 0.5

Figure 7: Traffic intensity vs mean waiting time of Type I packets with t = 3, H =
0.9

6. Conclusions

In this paper, network nodes with self-similar input priority based traffic are modeled
into transient MAP/PH/1 queueing system, and its performance analysis is made by using
level dependent quasi-birth and process with preemptive priority mechanism. The system
is approximated by a finite buffer and transient state probability vector is obtained by
the method of product integrals. Numerical results show that how traffic intensity, Hurst
parameter, and threshold effects mean waiting time and packet loss of HP and LP packet
arrivals at different time instants.
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Figure 8: Traffic intensity vs packet loss of Type I packets with t = 3, H = 0.9, ∆ =
0.5
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