Statistics and Applications {ISSN 2454-7395 (online)} Volume 23, No. 2, 2025 (New Series), pp 151–168 http://www.ssca.org.in/journal



# Advancements in Power Inverse Rayleigh Modeling: Exploring Applications in Environmental and Medical Domains

## Aadil Ahmad Mir<sup>1</sup>, S. P. Ahmad<sup>1</sup> and A. A. Bhat<sup>2</sup>

<sup>1</sup>Department of Statistics, University of Kashmir, Srinagar, Jammu and Kashmir, India <sup>2</sup>Department of Mathematical Sciences, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India

Received: 02 September 2024; Revised: 16 November 2024; Accepted: 19 November 2024

#### Abstract

In this manuscript, a novel probability distribution, known as the MTI inverse power Rayleigh distribution (MTI-IPRD), is obtained through the use of the MTI transformation. This new distribution fits data better than many existing models. A number of statistical features are examined in detail. The maximum likelihood estimation (MLE) procedure is employed to estimate the unknown parameters. An extensive simulation study is carried out to illustrate the behaviour of MLEs on the basis of mean square errors. In addition, the suggested distribution's flexibility and importance are assessed in comparison to existing probability distributions using three real data sets.

Key words: MTI transformation; Rayleigh distribution; Moments; Renyi entropy; Stress strength reliability; Maximum likelihood estimation.

AMS Subject Classifications: 62K05, 05B05

#### 1. Introduction

Lifetime phenomena modelling and analysis are essential components of statistical work in many scientific and technological fields. Lifetime data analysis has had tremendous growth and progress in terms of theory, applications, and technique. Various generalisation or transformation techniques together with continuous probability distributions have been presented to simulate real-life situations. The model's acceptability and applicability are enhanced by these generalisations for a variety of uses. These can be achieved by altering the distribution's functional form or by including one or more shape factors.

Corresponding Author: Aadil Ahmad Mir

 $Email:\ stataadil 29@gmail.com$ 

One popular lifetime probability model for explaining skewed data is the Rayleigh distribution (RD). Lord Rayleigh (1880) is the inspiration behind its name. The statistical literature contains numerous proposals for extending the Rayleigh distribution (RD). Surles and Padgett (2001) studied exponentiated RD (ERD). Using various estimating techniques, Kundu and Raqab (2005) investigated and evaluated the parameters of the generalised RD. Abd Elfattah  $et\ al.\ (2006)$  investigated the effectiveness of MLE under different censored sampling strategies for the RD. The odd Lindley power RD was extended by Bhat  $et\ al.\ (2023)$ , who also examined its characteristics and assessed parameter estimate approaches using Bayesian and classical approaches. Using the power transformation technique, Bhat and Ahmad (2020) presented a new generalisation of the RD. The sine power RD was presented and its features and applications were explored by Mir and Ahmad (2024). By Voda (1972), the inverse  $RD\ (IRD)$  was proposed. Additionally, the parameters were estimated by Gharraph (1993) and Soliman  $et\ al.\ (2010)$  utilising various classical and Bayesian estimation techniques. For instance, Merovci (2013) and Merovci (2014) created transmuted inverse RD and transmuted RD, respectively, using the QRTM.

This paper's primary goal is to suggest and investigate a new lifetime model based on the MTI approach, known as the MTI inverse power Rayleigh distribution (MTI-IPRD). The main goal of the new model is to give the hazard and density functions more flexibility and other desirable qualities through the addition of a parameter. Furthermore, when applied to three real data sets, the suggested model performs better than a few well-known models. This article's remaining sections are organised as follows. The MTI-IPRD is introduced in Section 2. The reliability analysis is covered in Section 3. Its statistical properties are discussed in Section 4. The objective of Section 5 is to estimate the unknown parameters using the maximum likelihood technique. The outcomes of the simulation are shown in Section 6. In Section 7, the model's applicability is illustrated. Lastly, Section 8 presents conclusions.

## 2. MTI inverse power Rayleigh distribution (MTI-IPRD)

The CDF and PDF of the MTI transformation method proposed by Lone  $et\ al.\ (2022)$  are defined by

$$F_{MTI}(y) = \frac{\eta F(y)}{\eta - \log \eta \, \bar{F}(y)} \quad ; \qquad y \in \mathbb{R}, \eta \in \mathbb{R}^+$$
 (1)

where  $\bar{F}(y) = 1 - F(y)$ .

$$f_{MTI}(y) = \frac{\eta(\eta - \log \eta)f(y)}{(\eta - \log \eta \bar{F}(y))^2} \quad ; \qquad y \in \mathbb{R}, \eta \in \mathbb{R}^+$$
 (2)

Where the CDF and PDF of the baseline distribution are denoted by F(y) and f(y) in the Eqs. (1) and (2) respectively.

Bhat et al. (2022) proposed the inverse power Rayleigh distribution (IPRD) with PDF and CDF, respectively, given by

$$g(y;\zeta,\delta) = \frac{\zeta}{\delta^2} y^{-(2\zeta+1)} \exp\left(-\frac{y^{-2\zeta}}{2\delta^2}\right); \quad \zeta,\delta > 0$$
 (3)

$$G(y;\zeta,\delta) = \exp\left(-\frac{y^{-2\zeta}}{2\delta^2}\right); \quad \zeta,\delta > 0$$
 (4)

We now present the MTI technique. The CDF of the MTI-IPRD can be obtained by using (4) in (1), where  $G(y; \zeta, \delta)$  is considered to represent the CDF of the IPRD and is given by

$$F(y;\eta,\zeta,\delta) = \begin{cases} \frac{\eta e^{-\frac{y^{-2\zeta}}{2\delta^2}}}{\eta - \log(\eta) \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)} & ; y > 0, \eta \neq 1, \eta, \zeta, \delta > 0\\ \exp\left(-\frac{y^{-2\zeta}}{2\delta^2}\right) & ; \eta = 1, \zeta, \delta > 0 \end{cases}$$

$$(5)$$

The corresponding PDF of MTI-IPRD is obtained as:

$$f(y;\eta,\zeta,\delta) = \begin{cases} \frac{\eta\zeta}{\delta^2} y^{-(2\zeta+1)} \frac{(\eta - \log(\eta))e^{-\frac{y^{-2\zeta}}{2\delta^2}}}{\left(\eta - \log(\eta)\left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)\right)^2} & ; y > 0, \eta \neq 1, \eta, \zeta, \delta > 0\\ \frac{\zeta}{\delta^2} y^{-(2\zeta+1)} \exp\left(-\frac{y^{-2\zeta}}{2\delta^2}\right) & ; \eta = 1, \zeta, \delta > 0 \end{cases}$$
(6)

Figure 1 shows the PDF of the MTI-IPRD for various parameter values of  $\eta$ ,  $\zeta$ , and  $\delta$ . This example highlights the versatility of the MTI-IPRD by showing PDFs that can have increasing and decreasing density functions, be symmetric, or be right-skewed. These variants demonstrate how well the model may represent a variety of data patterns found in lifespan distributions.

## 3. Reliability analysis of MTI-IPRD

#### 3.1. Reliability function

The Reliability function for MTI-IPRD is given as

$$R(y; \eta, \zeta, \delta) = \frac{(\eta - \log(\eta)) \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)}{\eta - \log(\eta) \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)}$$
(7)

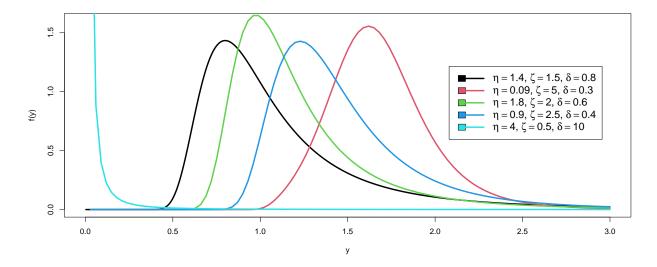


Figure 1: Plots of the pdf of the MTI-IPRD

#### 3.2. Hazard rate

The hazard rate for MTI-IPRD is obtained as

$$h(y; \eta, \zeta, \delta) = \frac{\eta \zeta \ y^{-(2\zeta+1)} \ e^{-\frac{y^{-2\zeta}}{2\delta^2}}}{\delta^2 \left(\eta - \log(\eta) \ \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)\right) \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)}$$
(8)

The hazard rate graphs for the MTI-IPRD for various parameter values are shown in Figure 2. The proposed distribution is extremely flexible and can take on a number of shapes, as shown in Figure 2.

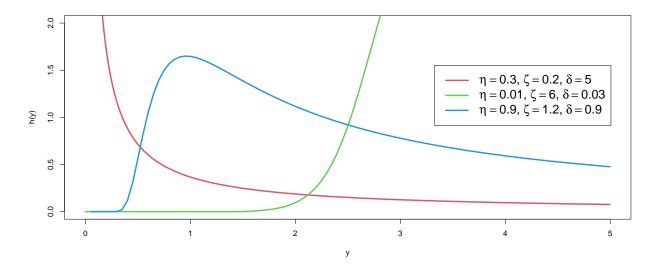


Figure 2: Plots of the hazard rate of the model MTI-IPRD

#### 3.3. Reverse hazard rate

The reverse hazard rate for MTI-IPRD is obtained as

$$h_r(\eta, \zeta, \delta) = \frac{\zeta(\eta - \log(\eta)) \ y^{-(2\zeta+1)}}{\delta^2 \left(\eta - \log(\eta) \ \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)\right)}$$
(9)

#### 3.4. Cumulative hazard function

The cumulative hazard function for MTI-IPRD is is determined as

$$\Lambda(y; \eta, \zeta, \delta) = \log \left\{ \frac{\eta - \log(\eta) \left( 1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}} \right)}{\eta \left( \eta - \log(\eta) \right) \left( 1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}} \right)} \right\}$$
(10)

#### 3.5. Mills ratio

The mills ratio for MTI-IPRD is obtained as

$$M.R = \frac{\eta \ e^{-\frac{y^{-2\zeta}}{2\delta^2}}}{\eta - \log(\eta) \ \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)}$$
(11)

#### 4. Statistical properties of MTI-IPRD

The main statistical and distributional aspects of the suggested model are examined in this Section.

#### 4.1. Quantile function

**Theorem 1:** If  $Y \sim MTI$ - $IPRD(\eta, \zeta, \delta)$ , then the quantile function of Y is given as

$$y = \left[ -2\delta^2 \log \left( \frac{m(\eta - \log(\eta))}{\eta - m \log(\eta)} \right) \right]^{\frac{-1}{2\zeta}}$$
 (12)

where M is a uniform random variable, 0 < m < 1.

**Proof:** Let  $F(y; \eta, \zeta, \delta) = m$ . The quantile function of the *MTI-IPRD* can be obtained by using (4) in (1) as follows:

$$\frac{\eta e^{-\frac{y^{-2\zeta}}{2\delta^2}}}{\eta - \log(\eta) \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)} = m$$

Taking the logarithm on both sides and simplifying further, we obtain the required quantile function as

$$y = \left[ -2\delta^2 \log \left( \frac{m(\eta - \log(\eta))}{\eta - m \log(\eta)} \right) \right]^{\frac{-1}{2\zeta}}$$
 (13)

By setting  $m=\frac{1}{4},\frac{1}{2},$  and  $\frac{3}{4}$  in (13), respectively, one can derive the first quartile  $(Q_1)$ , median  $(Q_2)$ , and third quartile  $(Q_3)$ .

#### 4.2. Moments

**Theorem 2:** If  $Y \sim MTI\text{-}IPRD(\eta, \zeta, \delta)$ , then the  $r^{th}$  moment of the MTI-IPRD about the origin is given as

$$\mu_r' = \frac{(\eta - \log(\eta))(2\delta^2)^{\frac{-r}{2\zeta}}}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^p \frac{\Gamma\left(1 - \frac{r}{2\eta}\right)}{(q+1)^{1 - \frac{r}{2\eta}}}; \quad r < 2\eta$$
 (14)

**Proof:** Utilising the subsequent series representation, the  $r^{th}$  moment of the MTI-IPRD is found.

$$(1-v)^{-2} = \sum_{q=0}^{\infty} (q+1)v^q \; ; \quad |v| < 1, \tag{15}$$

$$(1-v)^p = \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} v^q \tag{16}$$

The  $r^{th}$  moment of Y is given by

$$\mu_r' = \int_0^\infty y^r \frac{\eta \zeta}{\delta^2} y^{-(2\zeta+1)} \frac{(\eta - \log(\eta)) e^{-\frac{y^{-2\zeta}}{2\delta^2}}}{\left(\eta - \log(\eta) \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)\right)^2} dy.$$
 (17)

By substituting  $\frac{y^{-2\zeta}}{2\delta^2} = z$  in (17), we get

$$\mu_r' = \frac{(\eta - \log(\eta))(2\delta^2)^{\frac{-r}{2\zeta}}}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^p \left(\int_0^{\infty} z^{1-\frac{r}{2\eta}-1} e^{-(q+1)z} dz\right)$$
(18)

The final expression is

$$\mu_r' = \frac{(\eta - \log(\eta))(2\delta^2)^{\frac{-r}{2\zeta}}}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^p \frac{\Gamma\left(1 - \frac{r}{2\eta}\right)}{(q+1)^{1 - \frac{r}{2\eta}}}; \quad r < 2\eta$$
 (19)

Setting r = 1 in (19), the mean of the MTI-IPRD is computed as

$$\mu_1' = \frac{(\eta - \log(\eta))(2\delta^2)^{-\frac{1}{2\zeta}}}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^p \frac{\Gamma\left(1 - \frac{1}{2\eta}\right)}{(q+1)^{1 - \frac{1}{2\eta}}}; \quad \eta > \frac{1}{2}$$
 (20)

Similarly, substituting r=2,3,4 in (19), the second, third, and fourth moments about the origin of the MTI-IPRD are obtained, respectively.

## 4.3. Moment generating function of MTI-IPRD

**Theorem 3:** If  $Y \sim MTI$ -IPRD $(\eta, \zeta, \delta)$ , then the moment generating function,  $M_Y(t)$ , is

$$M_Y(t) = \frac{(\eta - \log(\eta))}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \sum_{r=0}^{\infty} \frac{t^r}{r!} (-1)^q \binom{p}{q} (p+1) (2\delta^2)^{\frac{-r}{2\zeta}} \left(\frac{\log(\eta)}{\eta}\right)^p \frac{\Gamma\left(1 - \frac{r}{2\eta}\right)}{(q+1)^{1 - \frac{r}{2\eta}}}; \quad r < 2\eta$$
(21)

**Proof:** The MTI-IPRD moment generating function is described as

$$M_Y(t) = \int_0^\infty e^{ty} f(y; \eta, \zeta, \delta) \, dy \tag{22}$$

By utilizing the series representation of  $e^{ty}$ , we have

$$M_Y(t) = \sum_{r=0}^{\infty} \frac{t^r}{r!} E(Y^r)$$
(23)

Substituting (19) in (23), we get

$$M_{Y}(t) = \frac{(\eta - \log(\eta))}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \sum_{r=0}^{\infty} \frac{t^{r}}{r!} (-1)^{q} {p \choose q} (p+1) (2\delta^{2})^{\frac{-r}{2\zeta}} \left(\frac{\log(\eta)}{\eta}\right)^{p} \frac{\Gamma\left(1 - \frac{r}{2\eta}\right)}{(q+1)^{1 - \frac{r}{2\eta}}}; \quad r < 2\eta$$
(24)

#### 4.4. Conditional moments and associated measures

**Lemma 1:** Assume we have a random variable  $Y \sim MTI$ - $IPRD(\eta, \zeta, \delta)$  with PDF given in (6), and let  $\phi_r(z) = \int_0^z y^r f(y; \eta, \zeta, \delta) \, dy$  denote the  $r^{th}$  incomplete moment, then we have

$$\phi_r(z) = \frac{(\eta - \log(\eta))(2\delta^2)^{\frac{-r}{2\zeta}}}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^p \frac{\gamma\left(\left(1 - \frac{r}{2\eta}\right), \frac{q+1}{2\delta^2} z^{-2\zeta}\right)}{(q+1)^{1 - \frac{r}{2\eta}}} ; r < 2\eta$$
(25)

where  $\gamma(m,n)=\int_0^n z^{m-1}e^{-z}dz$  represents the lower incomplete gamma function.

**Proof:** By utilizing the PDF of MTI-IPRD provided by (6), we have

$$\phi_r(z) = \int_0^z y^r f(y; \eta, \zeta, \delta) \, dy = \frac{\eta \zeta(\eta - \log(\eta))}{\delta^2} \int_0^z y^r y^{-(2\zeta + 1)} \frac{e^{-\frac{y^{-2\zeta}}{2\delta^2}}}{\left(\eta - \log(\eta) \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)\right)^2} \, dy$$
(26)

On simplification, we obtain the  $r^{th}$  incomplete moment as

$$\phi_r(z) = \frac{(\eta - \log(\eta))(2\delta^2)^{\frac{-r}{2\zeta}}}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^p \frac{\gamma\left(\left(1 - \frac{r}{2\eta}\right), \frac{q+1}{2\delta^2} z^{-2\zeta}\right)}{(p+1)^{1 - \frac{r}{2\eta}}}; r < 2\eta$$
(27)

Setting r = 1 in (27) will provide the first incomplete moment as given by

$$\phi_{1}(z) = \frac{(\eta - \log(\eta))(2\delta^{2})^{\frac{-1}{2\zeta}}}{\eta} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^{q} \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^{p} \frac{\gamma\left(\left(1 - \frac{1}{2\eta}\right), \frac{q+1}{2\delta^{2}}z^{-2\zeta}\right)}{(q+1)^{1-\frac{1}{2\eta}}} ; \eta > \frac{1}{2}$$
(28)

## 4.4.1. Lorenz and Bonferroni inequality curves

An important use of the first incomplete moment is found in the curves of Lorenz and Bonferroni inequality. For a specific probability distribution, they are defined as follows:

$$L_{w} = \frac{1}{E(Y)} \int_{0}^{t} y f(y; \eta, \zeta, \delta) dy = \frac{\phi_{1}(t)}{E(Y)}$$

$$L_{w} = \frac{\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^{q} {p \choose q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^{p} \gamma \left(\left(1 - \frac{1}{2\zeta}\right), \frac{q+1}{2\delta^{2}} t^{-2\zeta}\right)}{\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^{q} {p \choose q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^{p} \Gamma \left(1 - \frac{1}{2\zeta}\right)} ; \quad \eta > \frac{1}{2}$$

Similarly,

$$B_{w} = \frac{1}{wE(Y)} \int_{0}^{t} y f(y; \eta, \zeta, \delta) \, dy = \frac{\phi_{1}(t)}{wE(Y)}$$

$$B_{w} = \frac{\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^{q} {p \choose q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^{p} \gamma \left(\left(1 - \frac{1}{2\zeta}\right), \frac{q+1}{2\delta^{2}} t^{-2\zeta}\right)}{w \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^{q} {p \choose q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^{p} \Gamma \left(1 - \frac{1}{2\zeta}\right)} ; \quad \eta > \frac{1}{2}$$

# 4.4.2. $r^{th}$ Conditional moment and $r^{th}$ reversed conditional moment of MTI-IPRD

The  $r^{th}$  conditional moment of the MTI-IPRD is calculated by

$$E[Y^r \mid y > t] = \frac{1}{R(t)} \int_t^\infty y^r f(y; \eta, \zeta, \delta) \, dy = \frac{1}{R(t)} [E(Y^r) - \phi_r(t)]$$

Inserting the value's of (7), (19), and (27), we obtain

$$E\left[Y^{r} \mid y > t\right] = \frac{\left(\eta - \log(\eta)\left(1 - e^{-\frac{t^{-2\zeta}}{2\delta^{2}}}\right)\right)}{\eta\left(1 - e^{-\frac{t^{-2\zeta}}{2\delta^{2}}}\right)} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^{q} \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^{p} \frac{(2\delta^{2})^{\frac{-r}{2\zeta}}}{(q+1)^{1-\frac{r}{2\zeta}}} \times \left[\Gamma\left(1 - \frac{r}{2\zeta}\right) - \gamma\left(\left(1 - \frac{r}{2\zeta}\right), \frac{q+1}{2\delta^{2}}t^{-2\zeta}\right)\right] ; \quad r < 2\eta$$

$$(29)$$

Likewise, the MTI-IPRD's  $r^{th}$  reversed conditional moment is determined by

$$E[Y^r \mid y \le t] = \frac{1}{F(t)} \int_0^t y^r f(y; \eta, \zeta, \delta) \, dy = \frac{\phi_r(t)}{F(t)}$$

$$\begin{split} E\left[Y^{r} \mid y \leq t\right] &= \frac{(\eta - \log(\eta)) \left(\eta - \log(\eta) \left(1 - e^{-\frac{t^{-2\zeta}}{2\delta^{2}}}\right)\right)}{\eta^{2} \ e^{-\frac{t^{-2\zeta}}{2\delta^{2}}}} \times \\ &\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^{q} \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^{p} \frac{(2\delta^{2})^{\frac{-r}{2\zeta}}}{(q+1)^{1-\frac{r}{2\zeta}}} \gamma \left(\left(1 - \frac{r}{2\zeta}\right), \frac{q+1}{2\delta^{2}} t^{-2\zeta}\right); r < 2\eta \end{split}$$

## 4.4.3. Mean residual life (textitMRL) and mean waiting time (MWT)

The MRL, say  $\mu(t)$ , of MTI-IPRD can be acquired in the manner described below:

$$\mu(t) = \frac{1}{R(t)} \left[ E(Y) - \int_0^t y f(y; \eta, \zeta, \delta) \, dy \right] - t = \frac{1}{R(t)} \left[ E(Y) - \phi_1(t) \right] - t$$

Following the insertion of the value's of (19), (20), and (28), we derive the necessary mean residual life expression as

$$\mu(t) = \frac{\left(\eta - \log(\eta) \left(1 - e^{-\frac{t^{-2\zeta}}{2\delta^2}}\right)\right)}{\eta \left(1 - e^{-\frac{t^{-2\zeta}}{2\delta^2}}\right)} \times \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^p \frac{(2\delta^2)^{\frac{-1}{2\zeta}}}{(q+1)^{1-\frac{1}{2\zeta}}} \left[\Gamma\left(1 - \frac{1}{2\zeta}\right) - \gamma\left(\left(1 - \frac{1}{2\zeta}\right), \frac{q+1}{2\delta^2} t^{-2\zeta}\right)\right] - t$$

$$(30)$$

The MWT of Y, say  $\overline{\mu}(t)$ , is determined by

$$\overline{\mu}(t) = t - \frac{1}{F(t)} \int_0^t y f(y; \eta, \zeta, \delta) \, dy = t - \frac{\phi_1(t)}{F(t)}$$

$$\overline{\mu}(t) = t - \frac{(\eta - \log(\eta)) \left(\eta - \log(\eta) \left(1 - e^{-\frac{t^{-2\zeta}}{2\delta^2}}\right)\right)}{\eta^2 e^{-\frac{t^{-2\zeta}}{2\delta^2}}} \times \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q \binom{p}{q} (p+1) \left(\frac{\log(\eta)}{\eta}\right)^p \frac{(2\delta^2)^{\frac{-1}{2\zeta}}}{(q+1)^{1-\frac{1}{2\zeta}}} \gamma \left(\left(1 - \frac{1}{2\zeta}\right), \frac{q+1}{2\delta^2} t^{-2\zeta}\right)$$

## 4.5. Renyi Entropy

**Theorem 4:** If  $X \sim MTI$ - $IPRD(\eta, \zeta, \delta)$ , then the MTI-IPRD's Renyi entropy is provided by

$$RE_X(v) = \frac{1}{1-v} \log \left\{ \left( \frac{\zeta(\eta - \log(\eta))}{\eta \delta^2} \right)^v \frac{1}{2\eta} \right\}$$

$$+ \frac{1}{1-v} \log \left\{ \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q {2v \choose p} {p \choose q} \left( \frac{\log(\eta)}{\eta} \right)^p \left( \frac{2\delta^2}{v+q} \right)^{\frac{(2\eta+1)v-1}{2\eta}} \Gamma\left( \frac{(2\eta+1)v-1}{2\eta} \right) \right\}$$

**Proof:** The Rényi entropy, say  $RE_X(v)$ , of MTI-IPRD can be defined as

$$RE_X(v) = \frac{1}{1-v} \log \left( \int_0^\infty f^v(y) \, dy \right); \quad v > 0, \quad v \neq 1$$
(31)

Substituting (6) in (31), we get

$$RE_X(v) = \frac{1}{1 - v} \log \left\{ \left( \frac{\zeta(\eta - \log(\eta))}{\eta \delta^2} \right)^v \int_0^\infty y^{-v(2\zeta + 1)} \frac{e^{-v\frac{y^{-2\zeta}}{2\delta^2}}}{\left(\eta - \log(\eta)\left(1 - e^{-\frac{y^{-2\zeta}}{2\delta^2}}\right)\right)^{2v}} dy \right\}$$
(32)

Using (16), the Renyi entropy of MTI-IPRD is given by

$$RE_X(v) = \frac{1}{1-v} \log \left\{ \left( \frac{\zeta(\eta - \log(\eta))}{\eta \delta^2} \right)^v \frac{1}{2\eta} \right\}$$

$$+ \frac{1}{1-v} \log \left\{ \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^q {2v \choose p} {p \choose q} \left( \frac{\log(\eta)}{\eta} \right)^p \left( \frac{2\delta^2}{v+q} \right)^{\frac{(2\eta+1)v-1}{2\eta}} \Gamma\left( \frac{(2\eta+1)v-1}{2\eta} \right) \right\}$$

### 4.6. Stress Strength Reliability

**Theorem 5:** When  $Y_1 \sim MTI$ - $IPRD(\eta_1, \zeta, \delta_1)$  and  $Y_2 \sim MTI$ - $IPRD(\eta_2, \zeta, \delta_2)$ , where  $Y_1$  and  $Y_2$  denote the independent random variables for stress and strength, respectively, then the MTI-IPRD's stress strength reliability  $P(Y_1 > Y_2)$  is

$$SSR = \frac{\delta_2^2(\eta_1 - \log(\eta_1))}{\eta_1} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (-1)^{r+s} \binom{p}{q} \binom{q}{s} \left(\frac{\log(\eta_1)}{\eta_1}\right)^p \left(\frac{\log(\eta_2)}{\eta_2}\right)^q$$

$$\frac{(p+1)}{(s+1)\delta_1^2 + (r+1)\delta_2^2}$$

**Proof:** The stress strength reliability  $P(Y_1 > Y_2)$  of the MTI-IPRD, say SSR, can be acquired as

$$SSR = \int_{0}^{\infty} f_1(y)F_2(y) dy. \tag{33}$$

Using (5) and (6) in (33), SSR can be acquired as

$$SSR = \frac{\zeta(\eta_1 - \log(\eta_1))}{\delta_1^2 \eta_1} \int_0^\infty y^{-(2\zeta+1)} e^{-\frac{y^{-2\zeta}}{2\delta_1^2}} e^{-\frac{y^{-2\zeta}}{2\delta_2^2}} \left(1 - \frac{\log(\eta_1)}{\eta_1} \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta_1^2}}\right)\right)^{-2} \times \left(1 - \frac{\log(\eta_2)}{\eta_2} \left(1 - e^{-\frac{y^{-2\zeta}}{2\delta_2^2}}\right)\right)^{-1} dy.$$

Using the same method as in (19), we obtain the stress strength reliability for MTI-IPRD in its final expression as

$$SSR = \frac{\delta_2^2(\eta_1 - \log(\eta_1))}{\eta_1} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (-1)^{r+s} \binom{p}{q} \binom{q}{s} \left(\frac{\log(\eta_1)}{\eta_1}\right)^p \left(\frac{\log(\eta_2)}{\eta_2}\right)^q$$
$$\frac{(p+1)}{(s+1)\delta_1^2 + (r+1)\delta_2^2}$$

#### 5. Estimation

#### 5.1. Maximum likelihood estimation

Assuming a random sample  $y_1, y_2, \ldots, y_n$  from MTI-IPRD with parameters  $\eta, \zeta, \delta > 0$ , the likelihood function of MTI-IPRD may be expressed as follows:

$$l = n \log(\zeta) + n \log(\eta(\eta - \log(\eta))) - 2n \log(\delta) - (2\zeta + 1) \sum_{a=1}^{n} \log(y_a) - \frac{1}{2\delta^2} \sum_{a=1}^{n} y_a^{-2\zeta} - 2 \sum_{a=1}^{n} \log\left(\eta - \log(\eta) \left(1 - e^{-\frac{y_a^{-2\zeta}}{2\delta^2}}\right)\right)$$
(34)

The partial differentiation (34) of  $\eta$ ,  $\zeta$ , and  $\delta$  leads to their *MLEs* by equating to zero

and partially differentiating with regard to the required parameters. As we have

$$\frac{\partial l}{\partial \eta} = \frac{n(2\eta - \log(\eta) - 1)}{\eta(\eta - \log(\eta))} - \frac{2}{\eta} \sum_{a=1}^{n} \left[ \frac{e^{-\frac{y_a^{-2\zeta}}{2\delta^2}} + \eta - 1}{\eta - \log(\eta) \left(1 - e^{-\frac{y_a^{-2\zeta}}{2\delta^2}}\right)} \right] = 0$$
 (35)

$$\frac{\partial l}{\partial \zeta} = \frac{n}{\zeta} + \frac{\sum_{a=1}^{n} y_a^{-2\zeta} \log(y_a)}{\delta^2} - 2\sum_{a=1}^{n} \log(y_i) - 2\log(\eta) \sum_{a=1}^{n} \left[ \frac{y_a^{-2\zeta} \log(y_a) e^{-\frac{y_a^{-2\zeta}}{2\delta^2}}}{\eta - \log(\eta) \left(1 - e^{-\frac{y_a^{-2\zeta}}{2\delta^2}}\right)} \right] = 0$$
(36)

$$\frac{\partial l}{\partial \delta} = \frac{1}{\delta^3} \sum_{a=1}^n y_a^{-2\zeta} - \frac{2n}{\delta} + \frac{2\log(\eta)}{\delta^3} \sum_{a=1}^n \left[ \frac{y_a^{-2\zeta} e^{-\frac{y_a^{-2\zeta}}{2\delta^2}}}{\eta - \log(\eta) \left(1 - e^{-\frac{y_a^{-2\zeta}}{2\delta^2}}\right)} \right] = 0$$
 (37)

The solutions to the nonlinear equations 35, 36, and 37 are not in closed form. To estimate the parameters, these equations will be solved using the R software.

## 6. Simulation study

Here, R software is utilised to perform a simulation study to examine how MLEs behave for various sample sizes. We generate random samples in the following sizes: 25, 75, 150, 300, and 500 using MTI-IPRD. The procedure is then carried out a thousand times using R software. Various combinations of parameters are chosen in relation to the standard order  $(\eta, \zeta, \delta)$ , such as (0.55, 0.35, 0.25) and (0.25, 0.85, 0.65). For every scenario, mean squared errors (MSEs), bias, and average MLE values were calculated. Tables 1 and 2 display the outcomes. The estimations are consistent and fairly close to the real parameter values, as these Tables show. Furthermore, in every scenario, the MSE falls as sample size increases.

Table 1: *MLE*, *Bias*, and *MSE* for the parameters  $\eta$ ,  $\zeta$ , and  $\delta$ 

| Sample size    | Pa     | ramet | ers  |                  | MLE           |                |                  | Bias          |                |                  | MSE           |                |  |
|----------------|--------|-------|------|------------------|---------------|----------------|------------------|---------------|----------------|------------------|---------------|----------------|--|
| $\overline{n}$ | $\eta$ | ζ     | δ    | $\widehat{\eta}$ | $\hat{\zeta}$ | $\hat{\delta}$ | $\widehat{\eta}$ | $\hat{\zeta}$ | $\hat{\delta}$ | $\widehat{\eta}$ | $\hat{\zeta}$ | $\hat{\delta}$ |  |
| 25             | 0.55   | 0.35  | 0.25 | 1.00576          | 0.37845       | 0.25182        | 0.70285          | 0.07355       | 0.05670        | 1.10630          | 0.00898       | 0.00710        |  |
| 75             |        |       |      | 0.79346          | 0.36203       | 0.25491        | 0.45981          | 0.04886       | 0.03320        | 0.58870          | 0.00370       | 0.00233        |  |
| 150            |        |       |      | 0.69982          | 0.35489       | 0.25209        | 0.31398          | 0.03863       | 0.02263        | 0.30394          | 0.00221       | 0.00088        |  |
| 300            |        |       |      | 0.63625          | 0.35171       | 0.25137        | 0.21134          | 0.02780       | 0.01704        | 0.13579          | 0.00121       | 0.00052        |  |
| 500            |        |       |      | 0.58196          | 0.35025       | 0.25055        | 0.13613          | 0.02123       | 0.01277        | 0.04363          | 0.00072       | 0.00028        |  |

| Sample size    | Pa     | ramet | ers  | MLE          |               | Bias           |                  |               | MSE            |                  |               |                |
|----------------|--------|-------|------|--------------|---------------|----------------|------------------|---------------|----------------|------------------|---------------|----------------|
| $\overline{n}$ | $\eta$ | ζ     | δ    | $\hat{\eta}$ | $\hat{\zeta}$ | $\hat{\delta}$ | $\widehat{\eta}$ | $\hat{\zeta}$ | $\hat{\delta}$ | $\widehat{\eta}$ | $\hat{\zeta}$ | $\hat{\delta}$ |
| 25             | 0.25   | 0.85  | 0.65 | 0.62927      | 0.89377       | 0.68999        | 0.46417          | 0.14567       | 0.24876        | 0.69750          | 0.03404       | 0.12298        |
| 75             |        |       |      | 0.37205      | 0.88736       | 0.66497        | 0.20624          | 0.10320       | 0.17098        | 0.15497          | 0.01667       | 0.05673        |
| 150            |        |       |      | 0.29298      | 0.86108       | 0.66084        | 0.11332          | 0.07061       | 0.12175        | 0.03297          | 0.00797       | 0.02595        |
| 300            |        |       |      | 0.27159      | 0.85840       | 0.65621        | 0.07223          | 0.04908       | 0.08378        | 0.00980          | 0.00388       | 0.01193        |
| 500            |        |       |      | 0.25904      | 0.85237       | 0.65178        | 0.05570          | 0.03895       | 0.06778        | 0.00541          | 0.00238       | 0.00802        |

Table 2: *MLE*, *Bias*, and *MSE* for the parameters  $\eta$ ,  $\zeta$ , and  $\delta$ 

## 7. Applications to real life data

In this section, three actual data sets have been used to assess the newly created distribution's efficacy. As the new distribution is compared to alpha-power exponentiated inverse RD (APEIRD) Ali et al. (2021), inverse RD (IPRD) Bhat et al. (2022), modified IRD (MIRD) Khan (2014), and transmuted IRD (TIRD) Ahmad et al. (2014), it turns out that the newly created distribution provides a suitable fit. AIC, BIC, AICC, and KS are only a few of the metrics used to compare the fitted models. The p-value for each model is also given. It is considered better to have a distribution with a high p-value and lower AIC, BIC, AICC, and KS.

**Data set 1:** The first data set consists of thirty observations for the rainfall (in inches) of March in Minneapolis/St. Paul Hinkley (1977). The data are as follows:

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90 and 2.05

**Data set 2:** The second data set consists of average annual percent change in private health insurance premiums. The data has been previously used by Malik and Ahmad (2024). and is given as follows:

 $14.4,\ 14.0,\ 15.4,\ 9.4,\ 11.7,\ 15.0,\ 24.9,\ 20.7,\ 12.5, 14.9,\ 12.6,\ 16.7,\ 13.8,\ 11.0,\ 12.9,\ 10.1,\ 1.9,\ 8.5,\ 16.5,\ 15.3,\ 13.3,\ 9.8,\ 8.4,\ 7.9,\ 3.7, 5.1,\ 4.6,\ 4.4,\ 5.4,\ 6.1,\ 8.0,\ 10.0,\ 11.2,\ 10.1,\ 6.4,\ 6.7,\ 5.7,\ 5.8.$ 

**Data set 3:** The third data set consists of 150 observations and is related to the Reddit advertising data. The data has been previously used by Shen *et al.* (2022). and is given as follows:

 $\begin{array}{c} 11.340,\ 6.296,\ 5.136,\ 7.292,\ 6.700,\ 3.648,\ 7.272,\ 5.140,\ 2.980,\ 6.336,\ 5.128,\ 7.564,\ 6.180,\\ 5.588,\ 8.760,\ 11.560,\ 5.192,\ 10.032,\ 6.660,\ 7.932,\ 7.536,\ 4.436,\ 17.580,\ 9.836,\ 5.580,\ 6.092,\\ 7.912,\ 6.760,\ 10.096,\ 5.948,\ 11.156,\ 6.936,\ 5.424,\ 8.532,\ 4.980,\ 6.536,\ 13.012,\ 6.668,\ 5.540,\\ 11.184,\ 7.052,\ 9.336,\ 10.624,\ 7.148,\ 4.892,\ 6.584,\ 4.436,\ 11.696,\ 7.868,\ 4.040,\ 6.748,\ 5.336,\\ 9.056,\ 11.496,\ 11.548,\ 12.392,\ 3.636,\ 7.380,\ 8.940,\ 9.068,\ 4.536,\ 13.060,\ 8.940,\ 7.900,\ 9.972,\\ 5.740,\ 5.560,\ 6.136,\ 10.904,\ 7.960,\ 9.380,\ 6.484,\ 3.512,\ 4.792,\ 8.980,\ 5.512,\ 2.392,\ 5.336,\ 3.440,\\ 4.580,\ 6.704,\ 7.296,\ 4.600,\ 5.592,\ 9.292,\ 7.816,\ 7.068,\ 8.492,7.556,\ 8.836,\ 5.960,\ 3.696,\ 9.816,\\ 10.908,\ 5.636,\ 8.536,\ 6.260,\ 7.912,\ 12.492,\ 8.880,\ 6.188,\ 11.900,\ 7.692,\ 7.496,\ 10.340,\ 9.636,\\ 3.784,\ 5.068,\ 2.940,\ 9.992,\ 7.252,\ 10.956,\ 7.512,\ 8.108,\ 7.796,\ 6.928,\ 6.236,\ 4.924,\ 8.056,\ 3.468,\\ 7.904,\ 3.780,\ 5.912,\ 7.756,\ 9.900,\ 5.472,\ 3.956,\ 5.044,\ 12.676,\ 5.376. \end{array}$ 

When compared to other competing models, the MTI-IPRD achieves the lowest values

for AIC, BIC, and AICC, as shown in Tables 6, 7, and 8. As a result, the MTI-IPRD performs better than the other competing models listed as well as the base model. Additional evidence for these conclusions may be found in Figures 3, 4 and 5.

#### 8. Conclusion

In this paper, we present a new model for data analysis with real support, which extends the IPRD and we call it MTI-IPRD. More modelling flexibility for real-world data is the primary objective of generalising a standard distribution. Key statistical properties of the proposed model have been inferred. The new distribution's hazard rate function exhibits more flexibility and complex forms. The MLE performs well, as demonstrated by a simulation analysis that shows it to be accurate and consistent. To estimate the parameters, the MLE approach is applied. In comparison to other competing distributions, the suggested model might offer a superior fit given its application. In the field of statistics, we believe that the suggested method will find wide usage.

## Acknowledgements

I am indeed grateful to the Editors for their guidance and counsel. I am very grateful to the reviewer for valuable comments and suggestions of generously listing many useful references.

#### Conflict of interest

The authors do not have any financial or non-financial conflict of interest to declare for the research work included in this article.

#### References

- Abd Elfattah, A., Hassan, A. S., and Ziedan, D. (2006). Efficiency of maximum likelihood estimators under different censored sampling schemes for Rayleigh distribution. *Interstat*, 1, 1–16.
- Ahmad, A., Ahmad, S., and Ahmed, A. (2014). Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution. *Mathematical Theory and Modeling*, 4, 90–98.
- Ali, M., Khalil, A., Ijaz, M., and Saeed, N. (2021). Alpha-power exponentiated inverse Rayleigh distribution and its applications to real and simulated data. *PloS one*, **16**, e0245253.
- Bhat, A., Ahmad, S., and Mudasir, S. (2022). A novel extension of power Rayleigh distribution with properties. *International Journal of Statistics and Reliability Engineering*, **9**, 518–529.

- Bhat, A., Ahmad, S. P., Almetwally, E. M., Yehia, N., Alsadat, N., and Tolba, A. H. (2023). The odd Lindley power Rayleigh distribution: properties, classical and Bayesian estimation with applications. *Scientific African*, **20**, e01736.
- Bhat, A. A. and Ahmad, S. P. (2020). A new generalization of Rayleigh distribution: Properties and applications. *Pakistan Journal of Statistics*, **36**.
- Gharraph, M. (1993). Comparison of estimators of location measures of an inverse Rayleigh distribution. *The Egyptian Statistical Journal*, **37**, 295–309.
- Hinkley, D. (1977). On quick choice of power transformation. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, **26**, 67–69.
- Khan, M. S. (2014). Modified inverse Rayleigh distribution. *International Journal of Computer Applications*, **87**, 28–33.
- Kundu, D. and Raqab, M. Z. (2005). Generalized Rayleigh distribution: different methods of estimations. *Computational Statistics & Data Analysis*, **49**, 187–200.
- Lone, M. A., Dar, I. H., and Jan, T. (2022). An innovative method for generating distributions: Applied to weibull distribution. *Journal of Scientific Research*, **66**.
- Malik, A. S. and Ahmad, S. (2024). Generalized inverted Kumaraswamy-Rayleigh distribution: Properties and application. *Journal of Modern Applied Statistical Methods*, 23.
- Merovci, F. (2013). Transmuted Rayleigh distribution. Austrian Journal of statistics, 42, 21–31.
- Merovci, F. (2014). Transmuted generalized Rayleigh distribution. *Journal of Statistics Applications & Probability*, **3**, 9.
- Mir, A. A. and Ahmad, S. (2024). Modeling and analysis of sine power Rayleigh distribution: Properties and applications. *Reliability: Theory & Applications*, **19**, 703–716.
- Rayleigh, L. (1880). Xii. on the resultant of a large number of vibrations of the same pitch and of arbitrary phase. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, **10**, 73–78.
- Shen, Z., Alrumayh, A., Ahmad, Z., Abu-Shanab, R., Al-Mutairi, M., and Aldallal, R. (2022). A new generalized Rayleigh distribution with analysis to big data of an online community. *Alexandria Engineering Journal*, **61**, 11523–11535.
- Soliman, A., Amin, E. A., and Abd-El Aziz, A. A. (2010). Estimation and prediction from inverse Rayleigh distribution based on lower record values. *Applied Mathematical Sciences*, 4, 3057–3066.
- Surles, J. and Padgett, W. (2001). Inference for reliability and stress-strength for a scaled burn type x distribution. *Lifetime Data Analysis*, 7, 187–200.
- Voda, V. G. (1972). On the inverse Rayleigh distributed random variable. Reports of Statistical Application Research, 19, 13–21.

## **ANNEXURE**

Table 3: MLEs of MTI-IPRD and competing models with corresponding SE (given in parentheses) for data Set 1

| Model    | $\hat{\eta}$ | ζ          | $\hat{\delta}$ | $\hat{\lambda}$ |
|----------|--------------|------------|----------------|-----------------|
| MTI-IPRD | 0.05897      | 1.35728    | 3.04861        |                 |
|          | (0.10150)    | (0.22783)  | (3.23500)      |                 |
| APEIRD   | 35.35513     | 0.59188    | 0.61802        |                 |
|          | (67.35165)   | (43.43911) | (45.35775)     |                 |
| IPRD     | -            | 0.77479    | 0.69834        |                 |
|          |              | (0.10132)  | (0.06737)      |                 |
| MIRD     | 0.35977      | 0.58811    |                |                 |
|          | (0.37454)    | (0.29747)  |                |                 |
| TIRD     |              | -          | 0.85914        | 0.00100         |
|          |              |            | (0.21365)      | (0.40164)       |

Table 4: MLEs of MTI-IPRD and competing models with corresponding SE (given in parentheses) for data Set 2

| Model    | $\hat{\eta}$ | $\hat{\zeta}$ | $\hat{\delta}$ | $\hat{\lambda}$ |
|----------|--------------|---------------|----------------|-----------------|
| MTI-IPRD | 0.01321      | 1.68518       | 0.27327        | -               |
|          | (0.01977)    | (0.22194)     | (0.25462)      |                 |
| APEIRD   | 168.36874    | 4.11696       | 3.12876        | -               |
|          | (375.38918)  | (1498.48126)  | (1138.8015)    |                 |
| IPRD     | -            | 0.82199       | 0.14022        | -               |
|          |              | (0.08939)     | (0.02346)      |                 |
| MIRD     | 0.00100      | 44.25819      |                |                 |
|          | (2.949399)   | (17.271966)   |                |                 |
| TIRD     |              | -             | 44.28455       | 0.00100         |
|          |              |               | (13.91961)     | (0.56670)       |

Table 5: MLEs of MTI-IPRD and competing models with corresponding SE (given in parentheses) for data Set 3

| Model    | $\hat{\eta}$ | $\hat{\zeta}$ | $\hat{\delta}$ | $\hat{\lambda}$ |
|----------|--------------|---------------|----------------|-----------------|
| MTI-IPRD | 0.00266      | 2.09448       | 0.57909        |                 |
|          | (0.00040)    | (0.19230)     | (0.23767)      |                 |
| APEIRD   | 0.06374      | 8.10089       | 7.90391        |                 |
|          | (0.03970)    | (107.03792)   | (104.43518)    |                 |
| IPRD     | -            | 1.30989       | 0.07160        |                 |
|          |              | (0.08066)     | (0.00950)      |                 |
| MIRD     | 0.00100      | 36.17014      |                |                 |
|          | (2.41996)    | (9.48393)     |                |                 |
| TIRD     |              | -             | 54.68699       | 1.00000         |
|          |              |               | (11.3787766)   | (0.69597)       |

Table 6: Comparison of MTI-IPRD and competitive models for data set 1

| Model        | -2ll                | AIC                 | BIC                 | AICC                | K-S                | p-value            |
|--------------|---------------------|---------------------|---------------------|---------------------|--------------------|--------------------|
| MTI-IPRD     | 77.5967             | 83.5967             | 87.8003             | 84.5198             | 0.0737             | 0.9968             |
| APEIRD       | 80.8098             | 86.8098             | 91.0134             | 87.7329             | 0.1224             | 0.7593             |
| IPRD         | 83.8340             | 87.8340             | 90.6364             | 88.2784             | 0.1523             | 0.4893             |
| MIRD<br>TIRD | 87.2598<br>88.28373 | 91.2598<br>92.28373 | 94.0622<br>95.08613 | 91.7043<br>92.72818 | $0.1832 \\ 0.2398$ | $0.2662 \\ 0.0634$ |

Table 7: Comparison of MTI-IPRD and competitive models for data set 2

| Model        | -2ll     | AIC                  | BIC      | AICC     | K-S    | p-value            |
|--------------|----------|----------------------|----------|----------|--------|--------------------|
| MTI-IPRD     | 228.8583 | 234.8583             | 239.7711 | 235.5642 | 0.0901 | 0.9172             |
| APEIRD       | 236.2966 | 242.2966             | 247.2094 | 243.0025 | 0.1551 | 0.3196             |
| IPRD         | 243.6060 | 247.6060             | 250.8812 | 247.9488 | 0.1673 | 0.2377             |
| MIRD<br>TIRD |          | 251.3570<br>251.3682 |          |          |        | $0.0674 \\ 0.0671$ |

Table 8: Comparison of MTI-IPRD and competitive models for data set 3

| Model        | -2ll                 | AIC      | BIC                  | AICC     | K-S    | p-value         |
|--------------|----------------------|----------|----------------------|----------|--------|-----------------|
| MTI-IPRD     | 616.3947             | 622.3947 | 630.9973             | 622.5851 | 0.0577 | 0.7781          |
| APEIRD       | 639.0906             | 645.0906 | 653.6932             | 645.2810 | 0.0875 | 0.2724          |
| IPRD         | 640.2807             | 644.2807 | 650.0158             | 644.3752 | 0.1020 | 0.1331          |
| MIRD<br>TIRD | 656.4957<br>625.8180 |          | 666.2308<br>635.5531 |          |        | 0.0003 $0.4599$ |

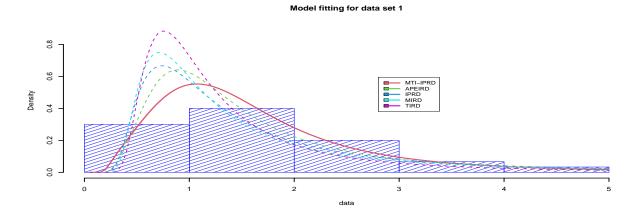


Figure 3: Fitted density plots for data set 1

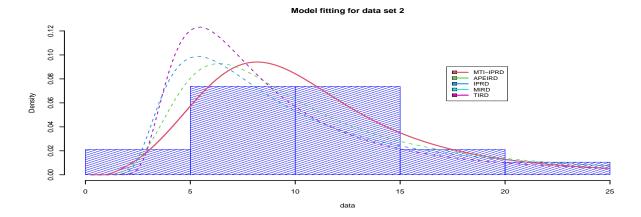


Figure 4: Fitted density plots for data set 2

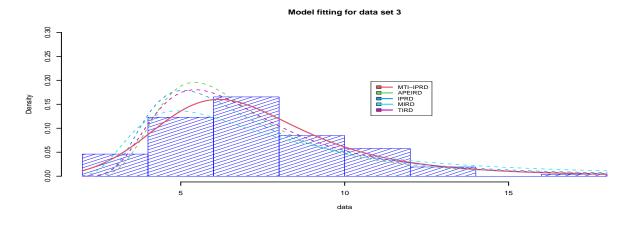


Figure 5: Fitted density plots for data set 3