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Abstract

In this manuscript, a novel probability distribution, known as the MTI inverse power
Rayleigh distribution (MTI-IPRD), is obtained through the use of the MTI transformation.
This new distribution fits data better than many existing models. A number of statistical
features are examined in detail. The maximum likelihood estimation (MLE) procedure is
employed to estimate the unknown parameters. An extensive simulation study is carried
out to illustrate the behaviour of MLEs on the basis of mean square errors. In addition,
the suggested distribution’s flexibility and importance are assessed in comparison to existing
probability distributions using three real data sets.
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1. Introduction

Lifetime phenomena modelling and analysis are essential components of statistical
work in many scientific and technological fields. Lifetime data analysis has had tremendous
growth and progress in terms of theory, applications, and technique. Various generalisation
or transformation techniques together with continuous probability distributions have been
presented to simulate real-life situations. The model’s acceptability and applicability are
enhanced by these generalisations for a variety of uses. These can be achieved by altering
the distribution’s functional form or by including one or more shape factors.
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One popular lifetime probability model for explaining skewed data is the Rayleigh
distribution (RD). Lord Rayleigh (1880) is the inspiration behind its name. The statistical
literature contains numerous proposals for extending the Rayleigh distribution (RD). Surles
and Padgett (2001) studied exponentiated RD (ERD). Using various estimating techniques,
Kundu and Raqab (2005) investigated and evaluated the parameters of the generalised RD.
Abd Elfattah et al. (2006) investigated the effectiveness of MLE under different censored
sampling strategies for the RD. The odd Lindley power RD was extended by Bhat et al.
(2023), who also examined its characteristics and assessed parameter estimate approaches
using Bayesian and classical approaches. Using the power transformation technique, Bhat
and Ahmad (2020) presented a new generalisation of the RD. The sine power RD was pre-
sented and its features and applications were explored by Mir and Ahmad (2024). By Voda
(1972), the inverse RD (IRD) was proposed. Additionally, the parameters were estimated
by Gharraph (1993) and Soliman et al. (2010) utilising various classical and Bayesian es-
timation techniques. For instance, Merovci (2013) and Merovci (2014) created transmuted
inverse RD and transmuted RD, respectively, using the QRTM.

This paper’s primary goal is to suggest and investigate a new lifetime model based
on the MTI approach, known as the MTI inverse power Rayleigh distribution (MTI-IPRD).
The main goal of the new model is to give the hazard and density functions more flexibility
and other desirable qualities through the addition of a parameter. Furthermore, when applied
to three real data sets, the suggested model performs better than a few well-known models.
This article’s remaining sections are organised as follows. The MTI-IPRD is introduced
in Section 2. The reliability analysis is covered in Section 3. Its statistical properties are
discussed in Section 4. The objective of Section 5 is to estimate the unknown parameters
using the maximum likelihood technique. The outcomes of the simulation are shown in
Section 6. In Section 7, the model’s applicability is illustrated. Lastly, Section 8 presents
conclusions.

2. MTI inverse power Rayleigh distribution (MTI-IPRD)

The CDF and PDF of the MTI transformation method proposed by Lone et al. (2022)
are defined by

FMTI(y) = ηF (y)
η − log η F̄ (y)

; y ∈ R, η ∈ R+ (1)

where F̄ (y) = 1 − F (y).

fMTI(y) = η(η − log η)f(y)
(η − log η F̄ (y))2

; y ∈ R, η ∈ R+ (2)

Where the CDF and PDF of the baseline distribution are denoted by F (y) and f(y) in the
Eqs. (1) and (2) respectively.
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Bhat et al. (2022) proposed the inverse power Rayleigh distribution (IPRD) with
PDF and CDF, respectively, given by

g(y; ζ, δ) = ζ

δ2 y−(2ζ+1) exp
(

−y−2ζ

2δ2

)
; ζ, δ > 0 (3)

G(y; ζ, δ) = exp
(

−y−2ζ

2δ2

)
; ζ, δ > 0 (4)

We now present the MTI technique. The CDF of the MTI-IPRD can be obtained by using
(4) in (1), where G(y; ζ, δ) is considered to represent the CDF of the IPRD and is given by

F (y; η, ζ, δ) =


η e

− y−2ζ

2δ2

η−log(η)
(

1−e
− y−2ζ

2δ2

) ; y > 0, η ̸= 1, η, ζ, δ > 0

exp
(
−y−2ζ

2δ2

)
; η = 1, ζ, δ > 0

(5)

The corresponding PDF of MTI-IPRD is obtained as:

f(y; η, ζ, δ) =


ηζ
δ2 y−(2ζ+1) (η−log(η))e

− y−2ζ

2δ2(
η−log(η)

(
1−e

− y−2ζ

2δ2

))2 ; y > 0, η ̸= 1, η, ζ, δ > 0

ζ
δ2 y−(2ζ+1) exp

(
−y−2ζ

2δ2

)
; η = 1, ζ, δ > 0

(6)

Figure 1 shows the PDF of the MTI-IPRD for various parameter values of η, ζ, and δ. This
example highlights the versatility of the MTI-IPRD by showing PDFs that can have in-
creasing and decreasing density functions, be symmetric, or be right-skewed. These variants
demonstrate how well the model may represent a variety of data patterns found in lifespan
distributions.

3. Reliability analysis of MTI-IPRD

3.1. Reliability function

The Reliability function for MTI-IPRD is given as

R(y; η, ζ, δ) =
(η − log(η))

(
1 − e− y−2ζ

2δ2

)
η − log(η)

(
1 − e− y−2ζ

2δ2

) (7)
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Figure 1: Plots of the pdf of the MTI-IPRD

3.2. Hazard rate

The hazard rate for MTI-IPRD is obtained as

h(y; η, ζ, δ) = ηζ y−(2ζ+1) e− y−2ζ

2δ2

δ2
(

η − log(η)
(

1 − e− y−2ζ

2δ2

))(
1 − e− y−2ζ

2δ2

) (8)

The hazard rate graphs for the MTI-IPRD for various parameter values are shown in Figure
2. The proposed distribution is extremely flexible and can take on a number of shapes, as
shown in Figure 2.
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Figure 2: Plots of the hazard rate of the model MTI-IPRD
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3.3. Reverse hazard rate

The reverse hazard rate for MTI-IPRD is obtained as

hr(η, ζ, δ) = ζ(η − log(η)) y−(2ζ+1)

δ2
(

η − log(η)
(

1 − e− y−2ζ

2δ2

)) (9)

3.4. Cumulative hazard function

The cumulative hazard function for MTI-IPRD is is determined as

Λ(y; η, ζ, δ) = log


η − log(η)

(
1 − e− y−2ζ

2δ2

)
η (η − log(η))

(
1 − e− y−2ζ

2δ2

)
 (10)

3.5. Mills ratio

The mills ratio for MTI-IPRD is obtained as

M.R = η e− y−2ζ

2δ2

η − log(η)
(

1 − e− y−2ζ

2δ2

) (11)

4. Statistical properties of MTI-IPRD

The main statistical and distributional aspects of the suggested model are examined
in this Section.

4.1. Quantile function

Theorem 1: If Y ∼ MTI-IPRD(η, ζ, δ), then the quantile function of Y is given as

y =
[
−2δ2 log

(
m(η − log(η))
η − m log(η)

)]−1
2ζ

(12)

where M is a uniform random variable, 0 < m < 1.

Proof: Let F (y; η, ζ, δ) = m. The quantile function of the MTI-IPRD can be obtained by
using (4) in (1) as follows:

η e− y−2ζ

2δ2

η − log(η)
(

1 − e− y−2ζ

2δ2

) = m
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Taking the logarithm on both sides and simplifying further, we obtain the required quantile
function as

y =
[
−2δ2 log

(
m(η − log(η))
η − m log(η)

)]−1
2ζ

(13)

By setting m = 1
4 , 1

2 , and 3
4 in (13), respectively, one can derive the first quartile

(Q1), median (Q2), and third quartile (Q3).

4.2. Moments

Theorem 2: If Y ∼ MTI-IPRD(η, ζ, δ), then the rth moment of the MTI-IPRD about the
origin is given as

µ′
r = (η − log(η))(2δ2)

−r
2ζ

η

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p Γ
(
1 − r

2η

)
(q + 1)1− r

2η
; r < 2η (14)

Proof: Utilising the subsequent series representation, the rth moment of the MTI-IPRD is
found.

(1 − v)−2 =
∞∑

q=0
(q + 1)vq ; |v| < 1, (15)

(1 − v)p =
∞∑

q=0
(−1)q

(
p

q

)
vq (16)

The rth moment of Y is given by

µ′
r =

� ∞

0
yr ηζ

δ2 y−(2ζ+1) (η − log(η)) e− y−2ζ

2δ2(
η − log(η)

(
1 − e− y−2ζ

2δ2

))2 dy. (17)

By substituting y−2ζ

2δ2 = z in (17), we get

µ′
r = (η − log(η))(2δ2)

−r
2ζ

η

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p (� ∞

0
z1− r

2η
−1e−(q+1)zdz

)
(18)

The final expression is

µ′
r = (η − log(η))(2δ2)

−r
2ζ

η

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p Γ
(
1 − r

2η

)
(q + 1)1− r

2η
; r < 2η (19)

Setting r = 1 in (19), the mean of the MTI-IPRD is computed as

µ′
1 = (η − log(η))(2δ2)− 1

2ζ

η

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p Γ
(
1 − 1

2η

)
(q + 1)1− 1

2η

; η >
1
2 (20)

Similarly, substituting r = 2, 3, 4 in (19), the second, third, and fourth moments about the
origin of the MTI-IPRD are obtained, respectively.
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4.3. Moment generating function of MTI-IPRD

Theorem 3: If Y ∼ MTI-IPRD(η, ζ, δ), then the moment generating function, MY (t), is

MY (t) = (η − log(η))
η

∞∑
p=0

∞∑
q=0

∞∑
r=0

tr

r! (−1)q

(
p

q

)
(p + 1)(2δ2)

−r
2ζ

(
log(η)

η

)p Γ
(
1 − r

2η

)
(q + 1)1− r

2η
; r < 2η

(21)

Proof: The MTI-IPRD moment generating function is described as

MY (t) =
� ∞

0
etyf(y; η, ζ, δ) dy (22)

By utilizing the series representation of ety, we have

MY (t) =
∞∑

r=0

tr

r!E(Y r) (23)

Substituting (19) in (23), we get

MY (t) = (η − log(η))
η

∞∑
p=0

∞∑
q=0

∞∑
r=0

tr

r! (−1)q

(
p

q

)
(p + 1)(2δ2)

−r
2ζ

(
log(η)

η

)p Γ
(
1 − r

2η

)
(q + 1)1− r

2η
; r < 2η

(24)

4.4. Conditional moments and associated measures

Lemma 1: Assume we have a random variable Y ∼ MTI-IPRD(η, ζ, δ) with PDF given in
(6), and let ϕr(z) =

� z

0 yrf(y; η, ζ, δ) dy denote the rth incomplete moment, then we have

ϕr(z) = (η − log(η))(2δ2)
−r
2ζ

η

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p γ
((

1 − r
2η

)
, q+1

2δ2 z−2ζ
)

(q + 1)1− r
2η

; r < 2η

(25)
where γ(m, n) =

� n

0 zm−1e−zdz represents the lower incomplete gamma function.

Proof: By utilizing the PDF of MTI-IPRD provided by (6), we have

ϕr(z) =
� z

0
yrf(y; η, ζ, δ) dy = ηζ(η − log(η))

δ2

� z

0
yry−(2ζ+1) e− y−2ζ

2δ2(
η − log(η)

(
1 − e− y−2ζ

2δ2

))2 dy

(26)
On simplification, we obtain the rth incomplete moment as

ϕr(z) = (η − log(η))(2δ2)
−r
2ζ

η

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p γ
((

1 − r
2η

)
, q+1

2δ2 z−2ζ
)

(p + 1)1− r
2η

; r < 2η

(27)
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Setting r = 1 in (27) will provide the first incomplete moment as given by

ϕ1(z) = (η − log(η))(2δ2)
−1
2ζ

η

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p γ
((

1 − 1
2η

)
, q+1

2δ2 z−2ζ
)

(q + 1)1− 1
2η

; η >
1
2

(28)

4.4.1. Lorenz and Bonferroni inequality curves

An important use of the first incomplete moment is found in the curves of Lorenz and
Bonferroni inequality. For a specific probability distribution, they are defined as follows:

Lw = 1
E(Y )

� t

0
yf(y; η, ζ, δ) dy = ϕ1(t)

E(Y )

Lw =
∑∞

p=0
∑∞

q=0(−1)q
(

p
q

)
(p + 1)

(
log(η)

η

)p
γ
((

1 − 1
2ζ

)
, q+1

2δ2 t−2ζ
)

∑∞
p=0

∑∞
q=0(−1)q

(
p
q

)
(p + 1)

(
log(η)

η

)p
Γ
(
1 − 1

2ζ

) ; η >
1
2

Similarly,

Bw = 1
wE(Y )

� t

0
yf(y; η, ζ, δ) dy = ϕ1(t)

wE(Y )

Bw =
∑∞

p=0
∑∞

q=0(−1)q
(

p
q

)
(p + 1)

(
log(η)

η

)p
γ
((

1 − 1
2ζ

)
, q+1

2δ2 t−2ζ
)

w
∑∞

p=0
∑∞

q=0(−1)q
(

p
q

)
(p + 1)

(
log(η)

η

)p
Γ
(
1 − 1

2ζ

) ; η >
1
2

4.4.2. rth Conditional moment and rth reversed conditional moment of MTI-
IPRD

The rth conditional moment of the MTI-IPRD is calculated by

E [Y r | y > t] = 1
R(t)

� ∞

t

yr f(y; η, ζ, δ) dy = 1
R(t) [E(Y r) − ϕr(t)]

Inserting the value’s of (7), (19), and (27), we obtain

E [Y r | y > t] =

(
η − log(η)

(
1 − e− t−2ζ

2δ2

))
η
(

1 − e− t−2ζ

2δ2

) ∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p (2δ2)
−r
2ζ

(q + 1)1− r
2ζ

×

[
Γ
(

1 − r

2ζ

)
− γ

((
1 − r

2ζ

)
,
q + 1
2δ2 t−2ζ

)]
; r < 2η

(29)
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Likewise, the MTI-IPRD’s rth reversed conditional moment is determined by

E [Y r | y ≤ t] = 1
F (t)

� t

0
yrf(y; η, ζ, δ) dy = ϕr(t)

F (t)

E [Y r | y ≤ t] =
(η − log(η))

(
η − log(η)

(
1 − e− t−2ζ

2δ2

))
η2 e− t−2ζ

2δ2
×

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p (2δ2)
−r
2ζ

(q + 1)1− r
2ζ

γ

((
1 − r

2ζ

)
,
q + 1
2δ2 t−2ζ

)
; r < 2η

4.4.3. Mean residual life (textitMRL) and mean waiting time (MWT)

The MRL, say µ(t), of MTI-IPRD can be acquired in the manner described below:

µ(t) = 1
R(t)

[
E(Y ) −

� t

0
yf(y; η, ζ, δ) dy

]
− t = 1

R(t) [E(Y ) − ϕ1(t)] − t

Following the insertion of the value’s of (19), (20), and (28), we derive the necessary mean
residual life expression as

µ(t) =

(
η − log(η)

(
1 − e− t−2ζ

2δ2

))
η
(

1 − e− t−2ζ

2δ2

) ×

∞∑
p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p (2δ2)
−1
2ζ

(q + 1)1− 1
2ζ

[
Γ
(

1 − 1
2ζ

)
− γ

((
1 − 1

2ζ

)
,
q + 1
2δ2 t−2ζ

)]
− t

(30)
The MWT of Y , say µ(t), is determined by

µ(t) = t − 1
F (t)

� t

0
yf(y; η, ζ, δ) dy = t − ϕ1(t)

F (t)

µ(t) = t −
(η − log(η))

(
η − log(η)

(
1 − e− t−2ζ

2δ2

))
η2 e− t−2ζ

2δ2

×
∞∑

p=0

∞∑
q=0

(−1)q

(
p

q

)
(p + 1)

(
log(η)

η

)p (2δ2)
−1
2ζ

(q + 1)1− 1
2ζ

γ

((
1 − 1

2ζ

)
,
q + 1
2δ2 t−2ζ

)
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4.5. Renyi Entropy

Theorem 4: If X ∼ MTI-IPRD(η, ζ, δ), then the MTI-IPRD’s Renyi entropy is provided
by

REX(v) = 1
1 − v

log
{(

ζ(η − log(η))
ηδ2

)v 1
2η

}

+ 1
1 − v

log


∞∑

p=0

∞∑
q=0

(−1)q

(
2v

p

)(
p

q

)(
log(η)

η

)p ( 2δ2

v + q

) (2η+1)v−1
2η

Γ
(

(2η + 1)v − 1
2η

)
Proof: The Rényi entropy, say REX(v), of MTI-IPRD can be defined as

REX(v) = 1
1 − v

log
(� ∞

0
f v(y) dy

)
; v > 0, v ̸= 1 (31)

Substituting (6) in (31), we get

REX(v) = 1
1 − v

log


(

ζ(η − log(η))
ηδ2

)v � ∞

0
y−v(2ζ+1) e−v y−2ζ

2δ2(
η − log(η)

(
1 − e− y−2ζ

2δ2

))2v dy


(32)

Using (16), the Renyi entropy of MTI-IPRD is given by

REX(v) = 1
1 − v

log
{(

ζ(η − log(η))
ηδ2

)v 1
2η

}

+ 1
1 − v

log


∞∑

p=0

∞∑
q=0

(−1)q

(
2v

p

)(
p

q

)(
log(η)

η

)p ( 2δ2

v + q

) (2η+1)v−1
2η

Γ
(

(2η + 1)v − 1
2η

)

4.6. Stress Strength Reliability

Theorem 5: When Y1 ∼ MTI-IPRD(η1, ζ, δ1) and Y2 ∼ MTI-IPRD(η2, ζ, δ2), where Y1 and
Y2 denote the independent random variables for stress and strength, respectively, then the
MTI-IPRD’s stress strength reliability P (Y1 > Y2) is

SSR =δ2
2(η1 − log(η1))

η1

∞∑
p=0

∞∑
q=0

∞∑
r=0

∞∑
s=0

(−1)r+s

(
p

q

)(
q

s

)(
log(η1)

η1

)p ( log(η2)
η2

)q

(p + 1)
(s + 1)δ2

1 + (r + 1)δ2
2
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Proof: The stress strength reliability P (Y1 > Y2) of the MTI-IPRD, say SSR, can be
acquired as

SSR =
∞�

0

f1(y)F2(y) dy. (33)

Using (5) and (6) in (33), SSR can be acquired as

SSR =ζ(η1 − log(η1))
δ2

1η1

∞�

0

y−(2ζ+1)e
− y−2ζ

2δ2
1 e

− y−2ζ

2δ2
2

1 − log(η1)
η1

1 − e
− y−2ζ

2δ2
1

−2

×

1 − log(η2)
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dy.

Using the same method as in (19), we obtain the stress strength reliability for MTI-
IPRD in its final expression as

SSR =δ2
2(η1 − log(η1))
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∞∑
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∞∑
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2

5. Estimation

5.1. Maximum likelihood estimation

Assuming a random sample y1, y2, . . . , yn from MTI-IPRD with parameters η, ζ, δ > 0,
the likelihood function of MTI-IPRD may be expressed as follows:

l = n log(ζ) + n log(η(η − log(η))) − 2n log(δ) − (2ζ + 1)
n∑

a=1
log(ya) − 1

2δ2

n∑
a=1

y−2ζ
a

− 2
n∑

a=1
log

(
η − log(η)

(
1 − e− y

−2ζ
a
2δ2

))
(34)

The partial differentiation (34) of η, ζ, and δ leads to their MLEs by equating to zero
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and partially differentiating with regard to the required parameters. As we have

∂l

∂η
= n(2η − log(η) − 1)

η(η − log(η)) − 2
η

n∑
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a
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 = 0 (35)

∂l

∂ζ
= n

ζ
+
∑n

a=1 y−2ζ
a log(ya)
δ2 − 2

n∑
a=1

log(yi) − 2 log(η)
n∑

a=1

 y−2ζ
a log(ya)e− y

−2ζ
a
2δ2

η − log(η)
(

1 − e− y
−2ζ
a
2δ2

)
 = 0

(36)
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 = 0 (37)

The solutions to the nonlinear equations 35, 36, and 37 are not in closed form. To
estimate the parameters, these equations will be solved using the R software.

6. Simulation study

Here, R software is utilised to perform a simulation study to examine how MLEs
behave for various sample sizes. We generate random samples in the following sizes: 25, 75,
150, 300, and 500 using MTI-IPRD. The procedure is then carried out a thousand times using
R software. Various combinations of parameters are chosen in relation to the standard order
(η, ζ, δ), such as (0.55, 0.35, 0.25) and (0.25, 0.85, 0.65). For every scenario, mean squared
errors (MSEs), bias, and average MLE values were calculated. Tables 1 and 2 display the
outcomes. The estimations are consistent and fairly close to the real parameter values, as
these Tables show. Furthermore, in every scenario, the MSE falls as sample size increases.

Table 1: MLE, Bias, and MSE for the parameters η, ζ, and δ

Sample size Parameters MLE Bias MSE

n η ζ δ η̂ ζ̂ δ̂ η̂ ζ̂ δ̂ η̂ ζ̂ δ̂

25 0.55 0.35 0.25 1.00576 0.37845 0.25182 0.70285 0.07355 0.05670 1.10630 0.00898 0.00710
75 0.79346 0.36203 0.25491 0.45981 0.04886 0.03320 0.58870 0.00370 0.00233
150 0.69982 0.35489 0.25209 0.31398 0.03863 0.02263 0.30394 0.00221 0.00088
300 0.63625 0.35171 0.25137 0.21134 0.02780 0.01704 0.13579 0.00121 0.00052
500 0.58196 0.35025 0.25055 0.13613 0.02123 0.01277 0.04363 0.00072 0.00028



2025] POWER INVERSE RAYLEIGH MODELING 163

Table 2: MLE, Bias, and MSE for the parameters η, ζ, and δ

Sample size Parameters MLE Bias MSE

n η ζ δ η̂ ζ̂ δ̂ η̂ ζ̂ δ̂ η̂ ζ̂ δ̂

25 0.25 0.85 0.65 0.62927 0.89377 0.68999 0.46417 0.14567 0.24876 0.69750 0.03404 0.12298
75 0.37205 0.88736 0.66497 0.20624 0.10320 0.17098 0.15497 0.01667 0.05673
150 0.29298 0.86108 0.66084 0.11332 0.07061 0.12175 0.03297 0.00797 0.02595
300 0.27159 0.85840 0.65621 0.07223 0.04908 0.08378 0.00980 0.00388 0.01193
500 0.25904 0.85237 0.65178 0.05570 0.03895 0.06778 0.00541 0.00238 0.00802

7. Applications to real life data

In this section, three actual data sets have been used to assess the newly created
distribution’s efficacy. As the new distribution is compared to alpha-power exponentiated
inverse RD (APEIRD) Ali et al. (2021), inverse RD (IPRD) Bhat et al. (2022), modified
IRD (MIRD) Khan (2014), and transmuted IRD (TIRD) Ahmad et al. (2014), it turns out
that the newly created distribution provides a suitable fit. AIC, BIC, AICC, and KS are
only a few of the metrics used to compare the fitted models. The p-value for each model is
also given. It is considered better to have a distribution with a high p-value and lower AIC,
BIC, AICC, and KS.
Data set 1 : The first data set consists of thirty observations for the rainfall (in inches) of
March in Minneapolis/St. Paul Hinkley (1977). The data are as follows:
0.77 , 1.74 ,0.81, 1.20, 1.95 ,1.20, 0.47, 1.43 ,3.37 ,2.20 ,3.00 ,3.09 ,1.51 ,2.10 ,0.52, 1.62, 1.31,
0.32 ,0.59, 0.81, 2.81, 1.87, 1.18 ,1.35, 4.75 ,2.48, 0.96 ,1.89, 0.90 and 2.05
Data set 2 : The second data set consists of average annual percent change in private health
insurance premiums. The data has been previously used by Malik and Ahmad (2024). and
is given as follows:
14.4, 14.0, 15.4, 9.4, 11.7, 15.0, 24.9, 20.7, 12.5,14.9, 12.6, 16.7, 13.8, 11.0, 12.9, 10.1, 1.9,
8.5, 16.5, 15.3, 13.3, 9.8, 8.4, 7.9, 3.7,5.1, 4.6, 4.4, 5.4, 6.1, 8.0, 10.0, 11.2, 10.1, 6.4, 6.7, 5.7,
5.8.
Data set 3: The third data set consists of 150 observations and is related to the Reddit
advertising data. The data has been previously used by Shen et al. (2022). and is given as
follows:
11.340, 6.296, 5.136, 7.292, 6.700, 3.648, 7.272, 5.140, 2.980, 6.336, 5.128, 7.564, 6.180,
5.588, 8.760, 11.560, 5.192, 10.032, 6.660, 7.932, 7.536, 4.436, 17.580, 9.836, 5.580, 6.092,
7.912, 6.760, 10.096, 5.948, 11.156, 6.936, 5.424, 8.532, 4.980, 6.536, 13.012, 6.668, 5.540,
11.184, 7.052, 9.336, 10.624, 7.148, 4.892, 6.584, 4.436, 11.696, 7.868, 4.040, 6.748, 5.336,
9.056, 11.496, 11.548, 12.392, 3.636, 7.380, 8.940, 9.068, 4.536, 13.060, 8.940, 7.900, 9.972,
5.740, 5.560, 6.136, 10.904, 7.960, 9.380, 6.484, 3.512, 4.792, 8.980, 5.512, 2.392, 5.336, 3.440,
4.580, 6.704, 7.296, 4.600, 5.592, 9.292, 7.816, 7.068, 8.492,7.556, 8.836, 5.960, 3.696, 9.816,
10.908, 5.636, 8.536, 6.260, 7.912, 12.492, 8.880, 6.188, 11.900, 7.692, 7.496, 10.340, 9.636,
3.784, 5.068, 2.940, 9.992, 7.252, 10.956, 7.512, 8.108, 7.796, 6.928, 6.236, 4.924, 8.056, 3.468,
7.904, 3.780, 5.912, 7.756, 9.900, 5.472, 3.956, 5.044, 12.676, 5.376.

When compared to other competing models, the MTI-IPRD achieves the lowest values
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for AIC, BIC, and AICC, as shown in Tables 6, 7, and 8. As a result, the MTI-IPRD performs
better than the other competing models listed as well as the base model. Additional evidence
for these conclusions may be found in Figures 3, 4 and 5.

8. Conclusion

In this paper, we present a new model for data analysis with real support, which
extends the IPRD and we call it MTI-IPRD. More modelling flexibility for real-world data
is the primary objective of generalising a standard distribution. Key statistical properties
of the proposed model have been inferred. The new distribution’s hazard rate function
exhibits more flexibility and complex forms. The MLE performs well, as demonstrated by a
simulation analysis that shows it to be accurate and consistent. To estimate the parameters,
the MLE approach is applied. In comparison to other competing distributions, the suggested
model might offer a superior fit given its application. In the field of statistics, we believe
that the suggested method will find wide usage.
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ANNEXURE

Table 3: MLEs of MTI-IPRD and competing models with corresponding SE
(given in parentheses) for data Set 1

Model η̂ ζ̂ δ̂ λ̂
MTI-IPRD 0.05897 1.35728 3.04861

(0.10150) (0.22783) (3.23500)
APEIRD 35.35513 0.59188 0.61802

(67.35165) (43.43911) (45.35775)
IPRD - 0.77479 0.69834

(0.10132) (0.06737)
MIRD 0.35977 0.58811

(0.37454) (0.29747)
TIRD - - 0.85914 0.00100

(0.21365) (0.40164)

Table 4: MLEs of MTI-IPRD and competing models with corresponding SE
(given in parentheses) for data Set 2

Model η̂ ζ̂ δ̂ λ̂
MTI-IPRD 0.01321 1.68518 0.27327 -

(0.01977) (0.22194) (0.25462)
APEIRD 168.36874 4.11696 3.12876 -

(375.38918) (1498.48126) (1138.8015)
IPRD - 0.82199 0.14022 -

(0.08939) (0.02346)
MIRD 0.00100 44.25819

(2.949399) (17.271966)
TIRD - - 44.28455 0.00100

(13.91961) (0.56670)
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Table 5: MLEs of MTI-IPRD and competing models with corresponding SE
(given in parentheses) for data Set 3

Model η̂ ζ̂ δ̂ λ̂
MTI-IPRD 0.00266 2.09448 0.57909

(0.00040) (0.19230) (0.23767)
APEIRD 0.06374 8.10089 7.90391

(0.03970) (107.03792) (104.43518)
IPRD - 1.30989 0.07160

(0.08066) (0.00950)
MIRD 0.00100 36.17014

(2.41996) (9.48393)
TIRD - - 54.68699 1.00000

(11.3787766) (0.69597)

Table 6: Comparison of MTI-IPRD and competitive models for data set 1

Model −2ll AIC BIC AICC K-S p-value
MTI-IPRD 77.5967 83.5967 87.8003 84.5198 0.0737 0.9968
APEIRD 80.8098 86.8098 91.0134 87.7329 0.1224 0.7593

IPRD 83.8340 87.8340 90.6364 88.2784 0.1523 0.4893
MIRD 87.2598 91.2598 94.0622 91.7043 0.1832 0.2662
TIRD 88.28373 92.28373 95.08613 92.72818 0.2398 0.0634

Table 7: Comparison of MTI-IPRD and competitive models for data set 2

Model −2ll AIC BIC AICC K-S p-value
MTI-IPRD 228.8583 234.8583 239.7711 235.5642 0.0901 0.9172
APEIRD 236.2966 242.2966 247.2094 243.0025 0.1551 0.3196

IPRD 243.6060 247.6060 250.8812 247.9488 0.1673 0.2377
MIRD 247.3570 251.3570 254.6322 251.6999 0.2111 0.0674
TIRD 247.3682 251.3682 254.6434 251.7110 0.2113 0.0671

Table 8: Comparison of MTI-IPRD and competitive models for data set 3

Model −2ll AIC BIC AICC K-S p-value
MTI-IPRD 616.3947 622.3947 630.9973 622.5851 0.0577 0.7781
APEIRD 639.0906 645.0906 653.6932 645.2810 0.0875 0.2724

IPRD 640.2807 644.2807 650.0158 644.3752 0.1020 0.1331
MIRD 656.4957 660.4957 666.2308 660.5902 0.1834 0.0003
TIRD 625.8180 629.8180 635.5531 629.9125 0.0748 0.4599
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Model fitting for data set 1
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Figure 3: Fitted density plots for data set 1

Model fitting for data set 2
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Figure 4: Fitted density plots for data set 2

Model fitting for data set 3
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Figure 5: Fitted density plots for data set 3
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