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Abstract

We propose using periodic binary sequences with optimal correlation energy (CE) to
generate nearE(s2)-optimal supersaturated designs (SSDs) and nearD-optimal 2-symbol frac-
tional factorial designs for the all main effects and the intercept model. We derive a lower
bound for the CE of odd length periodic sequences and provide previously unknown odd
length periodic sequences with optimal CE up to length 43.

Key words: Factorial designs; Supersaturated designs; Binary periodic sequences; Correlation
energy.

1. Introduction

In this section, we provide the background material on binary periodic sequences, their
periodic autocorrelations and correlation energy (CE). We also introduce the group ring no-
tation for investigating periodic sequences. Such sequences with optimal CE generate near
E(s2)-optimal 2-symbol supersaturated designs (SSDs) and near D-optimal 2-symbol frac-
tional factorial designs for the all main effects and the intercept model. In Section 2, we derive
a lower bound for the CE of odd length periodic sequences. In Section 3, we provide previ-
ously unknown odd length periodic sequences with optimal CE up to length 43.

1.1 Sequences and Their Periodic Autocorrelations

A sequence a = (ai), where i = 0, 1, ..., v − 1, is called periodic with period (length) v
if ai = ai+v for all i. Such a sequence is also called a Zv-sequence. In this paper, we consider
binary sequences consisting of entries in {−1, 1}. Let

Ca,b(t) =
v−1∑
i=0

a(i+t) mod v b̄i,
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where b̄i is the complex conjugate of bi. Then Ca,b(t) is called the periodic cross-correlation
function of a and b, where the special case Ca,a(t) is called the periodic autocorrelation func-
tion (ACF) of a. The sequence {Ca,a(t)}∞t=0 is again periodic with period (length) v. It is
also easy to verify that Ca,a(t) = Ca,a(−t). Hence, it suffices to find the autocorrelation co-
efficients Ca,a(t) for t ∈ {0, 1, . . . , bv/2c}. The ACF provides a measure of how much the
original sequence differs from its translates. Define D = {0 ≤ i ≤ v − 1 : ai = 1} and
dD(t) = |(t + D) ∩ D|. Then dD(t) = |(t + D) ∩ D| is called the difference function of
D ⊆ Zv. It is easy to show that

Ca,a(t) = v − 4(k − dD(t)), (1)

where k = |D|. From equation (1) we readily get Ca,a(t) ≡ v (mod 4). We call Ca,a(v),
Ca,a(2v), Ca,a(3v), . . . the main lobes, and the remaining Ca,a(i) side lobes. The value
maxg∈G |Ca,a(g)| is called the peak side lobe. A sequence a is said to have good matched
autocorrelation properties if the peak side lobes in the autocorrelation are small and the sum
of the squares of the side lobes in the autocorrelation is small.

Definition 1. The periodic merit factor (PMF) of a sequence a is defined to be

PMF =
C2

a,a(0)∑v−1
l=1 C

2
a,a(l)

.

It is desirable to have a large PMF . Hence, our goal is to find sequences with the
maximum PMF . Maximizing the PMF is analogous to maximizing the Golay merit factor,
where the only difference is that the Golay merit factor is based on a sequence’s aperiodic
autocorrelation function Green and Green (2002).

Definition 2. The correlation energy (CE) of a sequence a is defined by

CE(a) =
v−1∑
l=1

C2
a,a(l).

Maximizing the PMF of a {−1, 1} sequence is equivalent to minimizing its CE. A
sequence that minimizes the CE is called CE-optimal. We seek to identify what {−1, 1}
sequence(s) are CE-optimal. A {−1, 1} CE-optimal sequence with Ca,a(i) = 0 for i =
1, 2, . . . , v − 1 is called a perfect sequence. The only perfect sequence known is a row of the
circulant Hadamard matrix of order 4. For v ≡ 2 (mod 4) CE optimality is guaranteed to
occur when Ca,a(i) = ±2. For v ≡ 1 (mod 4) and v ≡ 3 (mod 4) CE optimality is likely to
occur if each Ca,a(i) for i = 1, 2, . . . , v − 1 is in {−3, 1} and {−1, 3}.

Next, we introduce the group ring notation that is needed in deriving our results.

Definition 3. Let G be a finite group and R a ring, where G = {g0, g1, . . . , gn−1}. Then the
group ring of G over R is the set denoted by R[G] defined as:

R[G] =

{∑
g∈G

agg | ag ∈ R

}
.
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When working with the group ring notation, multiplication and addition are defined in a
way similar to those of polynomials. We further define the power of a group ring element in
the following way.

Definition 4. If W =
∑

g∈G agg is an element of R[G], and t is some integer, then(∑
g∈G

agg

)(t)

=
∑
g∈G

agg
t.

When we refer to a binary Zv-sequence, we mean a Zv-sequence with entries from
{−1, 1} or {0, 1}. By abuse of notation, we identify a Zv-sequence a with the group ring
element S =

∑
g∈Zv

agg. Also, for a {0, 1} Zv-sequence, we identify the group ring element∑
g∈A g with the set A. In particular, Zv identifies

∑
g∈Zv

g. For a multiplicatively (additively)
written cyclic group we use 1 (0) as the identity element. The group ring elements that corre-
spond to Zv-sequences are used to calculate the autocorrelation of a Zv-sequence a, where

Ca,a(g) = coefficient of g in SS(−1).

Let A = {d0, d1, . . . , dk−1} ⊆ Zv. For each g ∈ Zv let ag be the number of times g
appears in A and S =

∑
g∈Zv

agg. Then A is a (v, k, λ) difference set DS(v, k, λ) if

SS(−1) = (k − λ)0 + λZv ∈ Z[Zv],

and A is a (v, k, λ, λ+ 1) almost difference set ADS(v, k, λ, λ+ 1) if

SS(−1) = k0 + λB + (λ+ 1)(Zv −B − 0) ∈ Z[Zv],

for some B ⊂ Zv \ {0}.

Remark 1. Difference sets and almost difference sets are studied in the more general group
theoretic context. The term “array” is used instead of the term “sequence” when the group in
question is non-cyclic.

For more on sequences, arrays, and their interplay with group developed combinatorial
designs see Arasu (2011) and Arasu et al. (2019).

1.2 Using CE-optimal Zv-sequences to Construct Near D-optimal Designs and Near
E(s2)-optimal SSDs

The Hadamard maximum determinant problem seeks an N ×N matrix of ±1s with the
largest possible determinant. Such matrices are called D-optimal matrices. An online source
for this problem can be found at Orrick and Solomon (2018). Multiplying a row or a column
of a matrix by−1 does not change its determinant. Hence, an N ×N D-optimal design whose
first column is the all 1s column always exists. The last N − 1 columns of an N × N D-
optimal matrix whose first column is the all 1s column can be used as an N row, N −1 column
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2-symbol factorial design for estimating the all main effects and the intercept model. In fact,
such a design minimizes the determinant of the variance-covariance matrix among all possible
N row, N − 1 column, 2-symbol factorial designs for the all main effects and the intercept
model.

An N row, k factor, 2-symbol factorial design is called a supersaturated design (SSD)
if N < k + 1, i.e., if it does not have enough rows to estimate the all main effects and the
intercept model. Most of the literature on SSDs assumes that each column in a 2-symbol
SSD is balanced, i.e. has an equal number for 1s and −1s. However, recently Bulutoglu et
al.Bulutoglu et al. (2019) considered {−1, 1} SSDs with a prespecified distribution of column
sums. Let X = [x1,x2, . . . ,xm] be an N row, m column, 2-symbol SSD with symbols from
{−1, 1}. Then the E(s2) value of X is defined as

E(s2) =

∑
i 6=j s

2
ij

m(m− 1)
,

where sij = xT
i xj for 1 ≤ i < j ≤ m. The E(s2) value criterion is used to compare

two 2-symbol SSDs with the same number of rows and columns, where the SSD with the
smaller E(s2) is more desirable Georgiou (2014). An SSD with the smallest possible E(s2) is
calledE(s2)-optimal. For the best knownE(s2)-lower bounds of balanced SSDs, see Georgiou
(2014) and Bulutoglu et al.Bulutoglu et al. (2019) for unbalanced SSDs.

A {−1, 1} Zv-sequence a of length v can be used to generate a v × v matrix of ±1s by
taking the sequence as the first column and obtaining the other columns as cyclic shifts. The
resulting v × v matrix A is called the corresponding design to a. Then a can either be used to
generate a fractional factorial design or as an SSD. In the first case, a subset of A’s rows are
multiplied by −1 so that its first column is the all 1s column. The remaining v − 1 columns of
A constitute a v row, v− 1 column factorial design that can be used for estimating the all main
effects and the intercept model. When A is used as an SSD, the matrix A is taken as the v row,
v column SSD, and the relation

CE(a)

v − 1
= E(s2)

connects the E(s2) of A to CE(a). Hence, a CE-optimal sequence a can be used to generate
an SSD that is near E(s2)-optimal.

It is well known that a v×v matrix A that has smallE(s2) tends to have large determinant
Bulutoglu et al. (2019). Hence, we expect that if A is used to generate a fractional factorial
design, then the resulting factorial design will be near D-optimal for estimating the all main
effects and the intercept model.

2. CE Lower Bounds

It is easy to see that x is a CE-optimal {0, 1} sequence if and only if 2x − 1 is a CE-
optimal {−1, 1} sequence, where 1 is the all 1s sequence. We say that a {0, 1} sequence x
corresponds to a {−1, 1} sequence y if y = 2x − 1. It is easy to see that the autocorrelation
function of a {0, 1} sequence is dD(t). We will use the notation Ca,a(t) for {−1, 1} sequences.
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If we refer to Ca,a(t) of a {0, 1} sequence, we mean the autocorrelation function of its corre-
sponding {−1, 1} sequence. To find CE-optimal {0, 1} sequences, we first investigate {0, 1}
sequences of odd length having at most three-valued dD(t)s (at most two distinct non-trivial λs
that differ by 1). For such a {0, 1} sequence a indexed by Zv we have

SS(−1) = k0 + λB + (λ+ 1)(Zv −B − 0) (2)

for some B ⊂ Zv \ {0} with |B| = t. Then, by applying the principal character to both sides
of equation (2), we get

χ0

(
SS(−1)) =χ0 (k0 + λB + (λ+ 1)(Zv −B − 0))

|A|2 =k + λ|B|+ (λ+ 1)(|Zv| − |B| − 1)

k2 =k + λt+ (λ+ 1)(v − t− 1). (3)

We refer to equation (3) as the group ring equation. By equation (1)

λ1 = λ =
4k − v + γ1

4
and λ2 = λ+ 1 =

4k − v + γ2
4

, (4)

where γj = Ca,a(ij) for some ij such that ij 6= v for j ∈ {1, 2}. Observe that γ2 = γ1 + 4.
Upon substituting the right hand side of (4) to the group ring equation we get

k2 = k +

(
4k − v + γ1

4

)
t+

(
4k − v + γ1

4
+ 1

)
(v − t− 1).

We solve for t(v, k, γ):

k2 = k +

(
4k − v + γ

4

)
t(v, k, γ) +

(
4k − v + γ

4
+ 1

)
(v − t(v, k, γ)− 1)

t(v, k, γ) = k − k2 +

(
4k − v + γ

4
+ 1

)
(v − 1)

t(v, k, γ) = k − k2 +

(
4k − v + γ + 4

4

)
(v − 1). (5)

Now, max(|γ1|, |γ2|) depends on v (mod 4).

Case 1: v ≡ 1 (mod 4), max(|γ1|, |γ2|) = max(|γ1|, |γ1 + 4|) = |γ1|, where γ1 = −3.
Then

t(v, k,−3) = k − k2 +

(
4k − v + 1

4

)
(v − 1).

In this case, minimizing the CE is equivalent to minimizing t(v, k,−3). Solving for k when
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t(v, k,−3) = 0, we get

0 = k − k2 +

(
4k − v + 1

4

)
(v − 1)

k2 − k =

(
4k − v + 1

4

)
(v − 1)

4k2 − 4k = (4k − v + 1)(v − 1)

4k2 − 4vk + (v − 1)2 = 0

k =
4v ±

√
16v2 − 16(v − 1)2

8

k =
v ±
√

2v − 1

2
. (6)

Hence, k should be rounded to the closest integer k∗ to

v ±
√

2v − 1

2

so that t(v, k∗,−3) is a nonnegative integer less than v.

Case 2: v ≡ 3 (mod 4), max(|γ1|, |γ2|) = max(|γ2 − 4|, |γ2|) = |γ2|, where γ2 = 3.
Thus, we have to minimize

t∗(v, k, 3) = v − t(v, k, 3)− 1 = v −
(
k − k2 +

(
4k − v + 3 + 4

4

)
(v − 1)

)
− 1

= v − k + k2 −
(

4k − v + 7

4

)
(v − 1)− 1

= k2 − k −
(

4k − v + 7

4

)
(v − 1)− 1.

Now t∗(v, k, 3) has a minimum at

k = −−1− (v − 1)

2
=
v

2
. (7)

In light of equations (6) and (7), we determine what number of elements are required to mini-
mize the CE for a given length. So, k should be rounded to the closest integer k∗ to v/2 such
that t(k∗) is a nonnegative integer less than v. Based on the knowledge gained thus far, we
provide the following table for the parameters of the odd length sequences up to length 49 that
are CE-optimal when they exist.

Theorem 1. When a sequence with the parameters in a row of Table 1 exists, then it is CE-
optimal.

Proof. The result is obvious for cases in which the correlation |γj| = 3 count is 0 or 2. For
all the remaining cases, v ≡ 1 (mod 4). So, for each of these cases the next best possibility
with Ca,a(t′) /∈ {−3, 1} for some t′ is when the frequency of Ca,a(t) = γ2 = 5 is 2 and the
frequency of Ca,a(t) = γ1 = 1 is v − 3. For each v such that the correlation |γj| = 3 count is
4 or larger, the CE of a sequence with the frequency of γ2 = 5 equal to 2 is larger or equal to
the corresponding CE in Table 1.
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Table 1: The optimal parameters for odd length sequences up to length 49

v k∗ Correlation |γj| = 3 count CE
5 1 0 4
7 4 0 6
9 3 2 24

11 6 0 10
13 4 0 12
15 8 0 14
17 6 2 32
19 10 0 18
21 8 4 52
23 12 0 22
25 9 0 24
27 14 0 26
29 11 2 44
31 16 0 30
33 13 4 64
35 18 0 34
37 15 6 84
39 20 0 38
41 16 0 40
43 22 0 42
45 18 2 60
47 24 0 46
49 20 4 80

3. CE-optimal Sequences

We present Table 2 containing sequences with minimum CE (maximum periodic merit
factor) by length, v. The remaining columns show the elements of the sequence that are 1, CE,
number of 1s k in the sequence, and a column indicating if the sequence is optimal and has the
parameters in Table 1. All lengths for which the column labeled “Conform?” is answered with
“Y” are optimal as each has a set of parameters that appears in Table 1. If the column contains
an “N”, then the sequence listed is still optimal, it just does not have the parameters in Table 1.
In other words, just because the equations indicate a particular parameter set as being optimal
does not mean that such a sequence exists.

The length v = 17 is the shortest length for in which the Table 1 hypothetical opti-
mal sequence fails to exist. The Table 1 hypothetical optimal sequence for this length should
have k = 6 and a CE of 32. The indices of the 1 entries of such a sequence constitutes an
ADS(17, 6, 1, 2). However, a computer search revealed that this sequence does not exist. To
search for a sequence with the next best possibleCE, we must add an element to a hypothetical
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ADS(17, 6, 1, 2). For k = 7 the group ring equation

49 = 7 + 2t+ 3(17− t− 1)

gives t = 6, and a sequence with the next best possible CE is an ADS(17, 7, 2, 3) with CE =
64. We found such a sequence by using a computer search.

For v = 39 and v = 41, the group ring equations and arguments for the CE-optimal
sequences indicate that each of DS(39, 20, 10) and DS(41, 16, 6) is CE-optimal if it exists.
Both of these are known not to exist by the Mann test Baumert and Gordon (2004). The
nonexistence of DS(39, 20, 10) requires that we look for a sequence with two different non-
trivial autocorrelation values. The group ring equations give that the next best possible case is
when k = 18, and from

182 = 18 + 8t+ 9(39− t− 1)

we get that t = 36. This particular sequence was not found by an exhaustive computer search.
The next best case can be found by removing another element from the set making k = 17.
Using the group ring equation,

172 = 17 + 7t+ 8(39− t− 1)

gives that t = 32. This sequence was found and is listed in Table 2.

A CE-optimal solution to the length v = 41 case has been open Luke and Schotten
(2003). An optimal solution based on a DS(41, 16, 6) is known not to exist Lander (1983). If
we decrease k by 1 to k = 15, then the group ring equation

152 = 15 + 4t+ 5(41− t− 1)

implies t = −10. This is not possible. Thus, we must increase k by 1 to k = 17. When k = 17,

172 = 17 + 6t+ 7(41− t− 1)

giving t = 8. Such a sequence was found and is listed in Table 2. The autocorrelation of
our length 41 {−1, 1} sequence contains 8 −3s and 32 +1s. There is another distribution of
autocorrelation values with 2 −3s, 2 +5s, 36 +1s, and CE = 104. A computer search proved
that such a sequence does not exist.

A DS(25, 9, 3) does not exist by the Mann test Baumert and Gordon (2004). A DS(27, 14,
7) does not exist Lander (1983). We proved that an ADS(29, 11, 3, 4) does not exist by an
exhaustive computer search. In fact, to check the correctness of our exhaustive search imple-
mentation, we proved the existence/non-existence of each of the corresponding hypothetical
difference set or almost difference set in each row of Table 1 by using our computer pro-
gram. Hence, none of the hypothetical CE-optimal sequences in Table 1 for v = 25, 27, 29
exists. The solutions in Table 2 for the v = 25, 27, 29 cases are constructed similar to the
v = 17, 39, 41 cases.

Theorem 2. Each sequence in Table 2 is CE-optimal.
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Table 2: Optimal sequences of odd length up to length 43

v Sequence elements CE k Conform?
5 {0} 4 1 Y
7 {1,2,4} 6 3 Y
9 {0,1,3} 24 3 Y

11 {1,3,4,5,9} 10 5 Y
13 {0,1,5,11} 12 4 Y
15 {0,1,2,7,9,12,13} 14 7 Y
17 {0,1,2,3,5,8,12} 64 7 N
19 {1,4,5,6,7,9,11,16,17} 18 9 Y
21 {7,9,12,13,16,18,19,20} 52 8 Y
23 {1,2,3,4,6,8,9,12,13,16,18} 22 11 Y
25 {0,9,10,12,15,16,18,20,23,24} 72 10 N
27 {0,9,11,12,13,16,18,19,22,24,26} 74 11 N
29 {0,9,10,13,15,18,21,22,23,25,27,28} 92 12 N
31 {1,2,4,7,8,14,15,16,19,23,25,27,28,29,30} 30 15 Y
33 {0,9,13,14,15,19,21,22,24,26,29,30,32} 64 13 Y
35 {0,1,3,4,7,9,11,12,13,14,16,17,21,27,28,29,33} 34 17 Y
37 {0,6,12,14,17,19,23,24,27,28,31,33,34,35,36} 84 15 Y
39 {2,4,5,7,9,10,11,14,15,16,23,24,25,27,31,35,38} 86 17 N
41 {0,9,11,14,15,21,22,24,27,29,31,32,33,35,36,39,40} 104 17 N
43 {1,4,6,9,10,11,13,14,15,16,17,21,23,24,25,31,35,36,38,40,41} 42 21 Y

The CE-optimal sequences constructed in this paper can be used to construct ±1 ma-
trices with large determinants. These matrices can be used to construct fractional factorial
designs that are near D-optimal for estimating the all main effects and the intercept model. In
particular, the largest known determinant for ±1 matrices of order 39 is given by Tamura in
Tamura (2006) using group divisible designs. Tamura’s record holding matrix has a determi-
nant of 243 × 336 × 5. While we can not beat this record, we come surprisingly close by using
our optimal sequence of length 39. By creating a matrix whose first row is the sequence itself
followed by each of the next 38 rows being a right-circulant shift of the previous, we generate
a circulant matrix of order 39. This matrix has a determinant of 236×36×5×7×293×33313.
This is 95.7% of Tamura’s determinant.
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Appendix

Proof of Theorem 2

The only cases that are not covered by Theorem 1 are when v = 17, 25, 27, 29, 39, 41. For
each of these cases no solution with parameters in Theorem 1 exists. For a {−1, 1} sequence
a it is easy to show that

v−1∑
t=0

Ca,a(t) = (2k − v)2.



2019] NEAR OPTIMAL 2-SYMBOL FACTORIAL DESIGNS 97

Let a be a CE-optimal sequence. We first consider the cases when Ca,a(t) ∈ {−3,−1, 1, 3}
for each nonnegative t(v, k, γ∗), where

γ∗ =

{
−3 if v ≡ 1 (mod 4),

3 if v ≡ 3 (mod 4).

Let
α(v, k, γ∗) = number of −3s in {Ca,a(t)}v−1t=0 .

Observe that α(v, k, γ∗) completely determines {Ca,a(t)}v−1t=0 . Then, for v ≡ 1 (mod 4)

α + β = v − 1

−3α + β = (2k − v)2 − v

and

α(v, k,−3) =
(2v − 1)− (2k − v)2

4
.

For fixed v > 0, α(v, k,−3) is a quadratic function of k with a maximum at k = v/2. Similarly,
for v ≡ 3 (mod 4)

α + β = v − 1

3α− β = (2k − v)2 − v

and

α(v, k, 3) =
(2k − v)2 − 1

4
.

For fixed v > 0, α(v, k,−3) is a quadratic function of k with a minimum at k = v/2.

In both v ≡ 1 (mod 4) and v ≡ 3 (mod 4) cases α(v, k, γ∗) must be a nonnegative integer
as small as possible. Moreover, t(v, k, γ∗) as in equation (5) must be a nonnegative integer.
Also, since Ca,a(t) = Ca,a(−t), α(v, k, γ∗) must be even. Then for each fixed v ∈ Z≥0, a
solution to the integer nonlinear program (INLP)

min
k

α(v, k, γ∗)

subject to: t(v, k, γ∗) = y,
v − 1 ≥ α(v, k, γ∗) = 2x ≥ 0, v − 1 ≥ k ≥ 2,
v − 1 ≥ y ≥ 0 x, y, k ∈ Z,
a sequence a with {Ca,a(t)}v−1t=0 determined by α(v, k, γ∗) exists

(8)

describes a CE-optimal sequence among all sequences with {Ca,a(t)}v−1t=0 ∈ {−3, 3, 1,−1} for
each t. Let k∗ be a solution of the INLP (8). Then,

k∗ =

{
an integer farthest to v/2 satisfying constraints of INLP (8) if v ≡ 1 (mod 4),
an integer closest to v/2 satisfying constraints of INLP (8) if v ≡ 3 (mod 4).

(9)

For v ∈ {17, 25, 27, 29, 39, 41}, each value of k in Table 2 satisfies condition (9), and the
corresponding sequence is CE-optimal among all sequences a of the same length such that



98 K.T. ARASU, D.A. BULUTOGLU AND J.R. HOLLON [Vol. 17, No. 2

Ca,a(t) ∈ {−3,−1, 1, 3} for t = 1, 2, . . . , v − 1. For cases v = 17, 25, 29, 41, the next best
possibility with Ca,a(t′) /∈ {−3, 1} for some t′ is when the frequency of Ca,a(t) = γ2 = 5 is
2 and the frequency of Ca,a(t) = γ1 = 1 is v − 3. The CE resulting from this distribution of
autocorrelations is smaller than the CE of the corresponding sequence in Table 2 only when
v = 41. Hence, the length 17, 25, 29 sequences listed in Table 2 are all CE-optimal. Then, for
v = 41 the distribution of autocorrelations of a sequence with a smaller CE is given by 38 +1s
and 2 +5s. However, by examining the group ring equation and using equations (4) we find
that

k2 = k + 38

(
4k − 41 + 1

4

)
+ 2

(
4k − 41 + 5

4

)
. (10)

Equation (10) has no integer solutions. Thus, the length 41 sequence listed in Table 2 is CE-
optimal with CE = 104.

For cases v = 27, 39, the next best possibility with Ca,a(t′) /∈ {−1, 3} for some t′ is
when the frequency of Ca,a(t) = γ2 = −1 is v − 3 and the frequency of Ca,a(t) = γ1 = −5
is 2. The CE resulting from this distribution of autocorrelations is equal to the CE of the
corresponding sequence listed in Table 2 for both v = 27 and v = 39 cases.


