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Abstract 
The empirical plug-in predictor (EP) under an area level version of the 

generalized linear mixed model (GLMM) with logit link function is extensively used 
in small area estimation (SAE) for proportions. However, this model assumes that the 
fixed effect parameters are spatially invariant and does not account for the presence of 
spatial non-stationarity in the data. This paper describes a spatially non-stationary 
extension of the area level version of GLMM (NSGLMM) and SAE under this model.  
In particular, the empirical plug-in predictor for small area proportions (NSEP) under 
the area level version of NSGLMM with logit link function is delineated. The NSEP 
method is then applied to estimate the extent of household poverty in different 
districts of the rural part of the state of Uttar Pradesh using data from the 2011-12 
Household Consumer Expenditure Survey collected by the National Sample Survey 
Office of India, and the 2011 population Census. A poverty map for State of Uttar 
Pradesh is also produced which provides an important information for analysis of 
spatial distribution of poverty in the state.  
 
Keywords: Spatial non-stationarity, Binary data, MSE estimation, Poverty mapping. 
 
1 Introduction 

Sample surveys are generally planned to produce estimates for populations, 
sub-populations or larger domains. Sample sizes are fixed to provide reliable and 
representative estimates with a pre-determined level of precision for such planned 
domains. However, policy planners, researchers, government and public agencies 
often require estimates for unplanned domains. Such unplanned domains can be small 
geographic areas (e.g. municipalities, developmental blocks, tehsils, gram panchayats, 
etc.) or small demographic groups (e.g. age-sex-race groups within larger 
geographical areas) or a cross classification of both. The sample sizes for such 
unplanned domains in the available survey data may be very small or even zero. A 
domain is regarded as small if the domain-specific sample size is not large enough to 
ensure that a direct survey estimator has adequate precision. In such cases it becomes 
necessary to employ indirect small area estimators that make use of the sample data 
from related areas or domains through linking models, thus increasing the effective 
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sample size in the small areas. Such estimators can have significantly smaller 
coefficient of variation than direct estimators, provided the linking models are valid. 
The statistical methodology that tackles this problem of small sample sizes is often 
referred as small area estimation (SAE) theory in the survey literature, see Rao and 
Molina (2015). Based on the level of auxiliary information available, the models used 
in SAE are categorized as area level or unit level. Area-level modelling is typically 
used when unit-level data are unavailable, or, as is often the case, where model 
covariates (e.g. census variables) are only available in aggregate form. The Fay–
Herriot model (Fay and Herriot, 1979) is a widely used area level model in SAE that 
assumes area-specific survey estimates are available, and that these follow an area 
level linear mixed model with area random effects.  

 
When the variable of interest is binary, the use of standard SAE methods 

based on linear mixed models becomes problematic. In this context, generalized linear 
mixed model (GLMM) with logit link function (also referred as the logistic linear 
mixed model) is commonly used. When only area level data are available, an area 
level version of a GLMM can be used for SAE, see Johnson et al. (2010) and Chandra 
et al. (2011). The fixed effect parameters in GLMM is assumed to be spatially 
invariant. However there are situations where this assumption is inappropriate, and 
the parameters associated with the model covariates vary spatially. This paper 
describes a spatial nonstationary extension of the area level version of GLMM to 
incorporate spatial non-stationarity (referred as the NSGLMM), and then used this 
model in SAE via its corresponding empirical predictor (NSEP), see for example 
Chandra et al. (2017).  

 
The structure of the paper is as follows. Section 2 describes the data from the 

2011-12 Household Consumer Expenditure Survey of the National Sample Survey 
Office (NSSO) of India and the 2011 Indian Population Census that will be used to 
estimate the district level incidence of household poverty in the rural part of the 
Indian State of Uttar Pradesh. In Section 3 we set out the theoretical background of 
the area level version of the GLMM which is then used to define the plug-in empirical 
predictor (EP) for small areas. The extension of the area level GLMM to spatially 
nonstationary data (the NSGLMM) is defined in Section 4 and SAE using the plug-in 
empirical predictor (the NSEP) based on this model is presented. Section 5 
demonstrates the application of the NSEP to poverty mapping in Uttar Pradesh. 
Finally, section 6 summarizes the main conclusions. 
 

2 Data Description 
This section introduces the basic sources of the data, i.e. the 2011-12 

Household Consumer Expenditure Survey (HCES) of the National Sample Survey 
Office (NSSO) for rural areas of the State of Uttar Pradesh in India and the 2011 
Population Census, used in the small area application reported in this paper. Data 
obtained from these sources are then used to estimate the proportion of poor 
households at district level in Uttar Pradesh. The State of Uttar Pradesh is the most 
populous State in the country and accounts for about 16.16 per cent of India’s 
population. It covers 243,290 square km, equal to 6.88% of the total area of the 
country. Poverty estimates in India are produced for all the States separately for both 
rural and urban sectors. Our analysis is restricted to the rural areas of Uttar Pradesh 
because about 78% of the population of this State live in rural areas according to 2011 
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Population Census. The NSSO conducts nationwide HCE surveys at regular intervals 
as part of its “rounds”, with the duration of each round normally being a year. These 
surveys are aimed at generating estimates of average household monthly per capita 
consumer expenditure (MPCE), the distribution of households and persons over the 
MPCE range, and the break-up of average MPCE by commodity group, separately for 
the rural and urban sectors of the country, for States and Union Territories, and for 
different socio-economic groups. These indicators are amongst the most important 
measures of the living conditions of the relevant domains of the population. The 
sampling design used in the NSSO survey is stratified multi-stage random sampling 
with districts as strata, villages as first stage units and households as second stage 
units. Although, these surveys provide reliable and representative state and national 
level estimates, they cannot be used directly to produce reliable estimates at the 
district level due to small sample sizes. In the 2011-12 HCES, a total of 5916 
households from the 71 districts of Uttar Pradesh were surveyed. The district sample 
sizes ranged from 32 to 128 with average of 83. It is evident that these district level 
sample sizes are relatively small, with an average sampling fraction of 0.0002. As a 
consequence, it is difficult to generate reliable district level direct survey estimates 
with associated standard errors from this survey.  
 
The target variable Y at the unit (household) level in the published survey data file is 
binary, corresponding to whether a household is poor or not. In our application 
however we focus on estimation where the available data are the corresponding 
counts of the number of poor households in sample in each district. In this context a 
household having MPCE below the state poverty line is defined as being poor. The 
poverty line used in this study (Rs. 768) is the same as that set by the Planning 
Commission, Govt. of India, for 2011-12. The parameter of interest is then the 
proportion of poor rural households within each district. The auxiliary variables 
(covariates) used in our analysis are taken from the Indian Population Census of 2011. 
These auxiliary variables are only available as counts at district level, and so SAE 
methods based on area level small area models, as described in next section, must be 
employed to derive the small area estimates. There are approximately 50 such 
covariates that are available for use in SAE analysis. We therefore carried out a 
preliminary data analysis in order to define appropriate covariates for SAE modelling, 
using Principal Component Analysis (PCA) to derive composite scores for selected 
groups of variables. In particular, we carried out PCA separately on three groups of 
variables, all measured at district level and identified as G1, G2 and G3 below. The 
first group (G1) consisted of literacy rates by gender and proportions of worker 
population by gender. The first principal component for this group explained 51% of 
the variability in the G1 group, while adding the second principal component (G12) 
increased explained variability to 85%. The second group (G2) consisted of the 
proportions of main worker by gender, proportions of main cultivator by gender and 
proportions of main agricultural labourer by gender. The first principal component 
(G21) for this second group explained 49% of the variability in the G2 group, while 
adding the second component (G22) increased explained variability to 67%. Finally, 
the third group (G3) consisted of proportions of marginal cultivator by gender and 
proportions of marginal agriculture labourers by gender. The first principal 
component (G31) for this third group explained 61% of the variability in the S3 
group, while adding the second component (G22) increased explained variability to 
78%. Using the methods detailed in the following sections, we fitted a generalised 
linear model using direct survey estimates of proportions of poor rural households as 
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the response variable and the six principal component scores G11, G12, G21, G22, 
G31 and G32 as potential covariates. The final selected model included the three 
covariates G11, G21 and G31, with residual deviance and AIC values of 327.18 and 
636.89, respectively. This final model was then used to produce district wise 
estimates of rural poverty incidence, i.e. estimates of the head count ratio (HCR) at 
this level.  
 
3 Small Area Estimation under the Area Level GLMM 

We assume that a probability sampling method is used to draw a sample s of 
size n from a finite population  of size N, which consists of m non-overlapping 
domains . We refer to these domains as small areas or just areas. 
Furthermore, we assume that there is a known number  of population units in small 
area i, with  of these sampled. The total number of units in the population is 

, with corresponding total sample size . We use s to denote 

the collection of units in sample, with  the subset drawn from small area i (i.e. 
), and use expressions like  and  to refer to the units making up 

small area i and sample s, respectively. Similarly,  denotes the set of units in small 
area i that are not in sample, with  and  Let  denotes the 
value of the variable of interest for unit j  in area i. The variable of 
interest, with values , is binary (e.g.,  if household j in area i is poor 
household and 0 otherwise), and the aim is to estimate the small area population 
count, , or equivalently the small area proportion, , in 

area  The direct survey estimator (denoted by direct) for  is 

, where  is the normalized survey weight for unit j 

in area i with  and  is the survey weight for unit j in area i. The 

estimated design-based variance of direct is approximated by 
. This formula for the variance estimator of direct 

is obtained from Särndal et al. (1992; see pp. 43, 185 and 391), with the 
simplifications ,  and  where  is the first order 

inclusion probability of unit j in area i and  is the second order inclusion 
probability of units j and k in area i. Under simple random sampling (SRS), 

 and direct is then , with estimated variance 

, where  denotes the sample count in area i.  

 
Suppose now that the available data consist of the sample aggregates  (i.e. 

the sample counts of poor households), together with the values of area specific 
contextual covariates. That is, for area i we observe the count  together with a p-
vector of area-specific covariates  derived from secondary data sources (e.g. the 
census or administrative registers). If we ignore the sampling design, the sample count 
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 in area i can be assumed to follow a Binomial distribution with parameters  and 
, i.e. , where  is the probability of occurrence of an event for a 

population unit in area i or the probability of prevalence in area i. Following Johnson 
et al. (2010) and Chandra et al. (2011), the model linking the probability  with the 
covariates  is the logistic linear mixed model of form 

,      (1) 

with . Under this model, the mean of  

given  is . Here  is the p-vector of regression 

coefficients, often referred to as the vector of fixed effects, and  is the area-specific 
random effect, with . Note that the estimation of the fixed effect 
parameter and the area specific random effects in model (1) uses the data from all 
small areas. Without loss of generality we focus on the Binomial case and put 

 and . We assume that  is a  
vector of area random effects which has a Gaussian distribution with zero mean 
vector and covariance matrix . Here  is the identity matrix of order m. 
We adopt a Penalized Quasi-Likelihood method of estimation for the parameters  
and u in the GLMM (2), combined with restricted maximum likelihood estimation of 
the variance parameter . See Manteiga et al. (2007). Under (1), a plug-in empirical 
predictor (EP) of the population count  in area i is 

.     (2) 

An estimate of the corresponding proportion or rate in area i is obtained as 
. For areas with zero sample sizes, the conventional approach to 

estimating area proportions is synthetic estimation, based on a suitable GLMM fitted 
to the counts from the sampled areas. For non-sampled area i with associated vector 
of covariates , the synthetic estimator of  is .  

 
4 Small Area Estimation under the Area Level NSGLMM 

The vector of fixed effect parameters  in (1) is spatially invariant. However 
there are situations where this assumption is inappropriate, and the parameters 
associated with the model covariates vary spatially. We introduce a spatial 
nonstationary extension of (1) that can be used in such situations. Let  denote the 
coordinates of an arbitrary spatial location (longitude and latitude) in area i. Typically, 
this will be its centroid. Let  denote the corresponding m-vector of 
such spatial locations, and let  be the probability of occurrence of a 
characteristic of interest in area i, defined relative to the location . A model for a 
nonstationary GLMM (NSGLMM) for  is then  

,     (3) 
where we assume that non-stationarity is characterised by an area-specific vector of 
fixed effects ;  is the area-specific random effect, assumed to 
follow a Gaussian distribution with zero mean and variance ; and 
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 is a spatially correlated vector-valued random process with 

 and such that . Here  is 

the spatial distance between locations  and  and  is a p-vector of unknown 

positive constants that satisfies the conditions for the  matrix  

to be a covariance matrix, with  defining the matrix of distances 

between the sample areas, and where  denotes Kronecker product. We can write 
the population level version of (4) as 

       (4) 

where ,  is a  matrix 
and  is a  vector of spatial Gaussian random effects that capture the spatial 
non-stationarity in the data. We assume that  has a zero mean vector and a 

covariance matrix . In general, the only constraint on the vector c is 

that  is symmetric and non-negative definite. In practice  and c are 
unknown and have to be estimated from the data. We restrict ourselves to the simple 
specification  so that , where  

and  denotes the unit vector of order p. In this case, we assume that the distance 

metric used to define  is such that the matrix  is positive 
semidefinite, with the parameter  then reflecting the 'intensity' of spatial clustering 
in the data, so  corresponds to the situation where the model is spatially 
homogeneous. Given this specification, there are just 2 parameters (  and ) that 
need to be estimated. Replacing these unknown parameters by their estimated values 

 and , and denoting subsequent plug-in estimators by a 'hat', we define the 
nonstationary empirical predictor (NSEP) of the population count in area i as 

.    (5) 

Here  is the i-th row of Z. A nonstationary empirical predictor of the proportion in 

area i is . The synthetic prediction for a non-sample area is also 
straightforward. We set the estimated area effect to zero in this case, and evaluate (5) 
at the location  of the non-sampled area. The result is a nonstationary synthetic 
predictor (NSSYN) of the total count for the area of the form 

.  

In practice, the variance components that define the matrices  and  are 
unknown and must be estimated from the sample data. It is well known that the 
maximum penalised quasi-likelihood (MPQL) estimates of these variance components 
are biased, and that this bias increases with the relative contributions of the associated 
random effects to overall variability. Consequently, this approach is not 
recommended. Alternative estimates based on a hybrid of MPQL for fixed and 
random effects and maximum likelihood (ML) or restricted maximum likelihood 
(REML) for variance components can be defined. These can reduce, but not 
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( ){ }ˆ ˆˆ ˆexpit ( )NSEP T T
i si i i i i i iy y N n d ué ù= + - + +ë ûx zb g

T
iz

1ˆ ˆEP EP
i i ip N y-=

di

{ }, ,
ˆˆ ˆˆ expit ( ) ( )NSSYN T T

i i i i out i out i iy N d dhé ù= = +ë ûx zb g

uS gS



 SMALL AREA ESTIMATION OF POVERTY INCIDENCE 35 

eliminate, the aforementioned bias. Since prediction of small area quantities, rather 
than parameter estimation, is our focus, we use the hybrid approach. Under the hybrid 
approach, parameter estimates for the NSGLMM are obtained by a two-stage iterative 
process. At the first stage, MPQL estimates of ,  and  are calculated based on 
specified values of  and , and at the second stage  and  are estimated via 
ML or REML given these MPQL estimates. This hybrid approach, where MPQL 
estimation is combined with ML or REML estimation in generalized linear mixed 
models is due to McGilchrist (1994). Readers may refer to Chandra et al. (2017) for 
further details about the algorithm for estimation of the parameters. 

 
Chandra et al. (2017) also suggetsed a diagnostic for spatial nonstationarity in 

the NSGLMM. In particular, they describe a bootstrap procedure to test the spatial 
nonstationarity hypothesis in the context of the simple one parameter NSGLMM (4) 
considered, i.e. the hypothesis  versus the one-sided alternative . 
Two models are fitted, first without spatial random effects, and second with these 
effects. The test then involves comparing the restricted log-likelihoods under each 
hypothesis.  

 
Turning now to mean squared error (MSE) estimation of EP and NSEP 

predictors of small area proportions. Analytic estimation of the MSE of the small area 
empirical predictor EP (2) follows from the Johnson et al. (2010), Chandra et al. 
(2011). A corresponding analytic approach to estimating the MSE of the NSEP (5) 
under the NSGLMM (4) is developed in Chandra et al. (2017). This MSE is a second 
order approximation to the MSE of the NSEP. 

 
5 Application to Small Area Poverty Estimation  

In this section, we use NSEP under NSGLMM (3) to obtain estimates of the 
proportions of poor households at District level in the State of Uttar Pradesh. We use 
survey data from the Household Consumer Expenditure Survey 2011-12 of NSSO 
68th round and the Population Census 2011. Section 2 illustrates the data and model 
specification for this application. Figure 1 shows contour maps of the estimated 
District-specific intercepts and slopes from a geographically weighted regression 
(GWR) fit (Fotheringham et al., 2002) to the sample proportions for the different 
Districts. These maps support the case for spatial non-stationarity in the NSSO data. 
In particular, we see that the coefficients for G11, G21 and G31 in the GWR fit vary 
considerably, ranging from −1.3 to 2.9 for G11, from -1.2 to 2.8 for G21 and from -
0.9 to 4.3 for G31. Moreover the contour map of the intercept coefficients also shows 
considerable spatial variation, ranging from -5.3 (South-East) to 0.2 (Centre-West). 

 
The diagnostic procedure for testing for the presence of spatial non-

stationarity, that is, the hypothesis  versus the one-sided alternative 
, was also applied to the NSSO data. The test statistic value that was 

generated was highly significant (p-value = 0.00), indicating strong evidence for non-
stationarity, with the estimated value of the variance component  characterising the 
intensity of this non-stationarity equal to . Hence, we applied the NSEP method 
to produce estimates of the proportions of poor households (Head Count Ratio, or 
HCR) by District across Uttar Pradesh. Table 1 shows the estimates of the regression 
coefficients for the global GLMM as well as descriptive statistics for the District-
specific estimated parameter coefficients produced under the NSGLMM. The G11 
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and G21 variables had both negative and positive parameter values, although most 
values are negative. In contrast, all parameter values for the G31 variable are positive. 
As one would expect, the NSGLMM is an improvement over the GLMM for 
predicting HCR, with the NSGLMM log-likelihood (2375.5) significantly larger than 
the corresponding log-likelihood generated by the GLMM (-2970.2). The contour 
maps shown in Figure 2 support the non-stationarity hypothesis. Here we see that the 
fitted regression coefficents in the NSGLMM applied to the district level data change 
substantially over the study space. Although not reported here, the fitted distributions 
of the predicted random effects in the NSGLMM applied to the survey data were also 
produced. These include histograms as well as Normal q-q plots of District residuals 
as well as the spatial random effects. These indicate that the Gaussian assumption fits 
reasonably well for this application.  

 
Figure 1. Maps showing the spatial variation in the District specific intercept and 
slope estimates that are generated when the GWR model is fitted to the NSSO data. 

Table 1. Summary statistics for the NSGLMM parameter estimates, including the 
overall percentages of negative (% –) and positive (% +) values and parameter 
estimates for the global GLMM 
 Intercept G11 G21 G31 
Descriptive Statistics NSGLMM 
Minimum -2.01 -0.33 -0.54 0.00 
Q1 -1.67 -0.21 -0.16 0.10 
Mean -1.32 -0.12 -0.09 0.17 
Median -1.26 -0.13 -0.09 0.16 
Q3 -1.01 -0.04 -0.02 0.19 
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Maximum -0.70 0.14 0.21 0.53 
% – 100 90.2 77.5 0 
% + 0 9.8 22.5 100 

 GLMM 
GLMM Model -1.35 -0.21 -0.10 0.36 

 

 
Figure 2. Maps showing the spatial variation of estimated regression coefficients 

 when NSGLMM model is fitted to the NSSO data.  

Brown et al. (2001) discuss diagnostics for SAE, rather than diagnostics for 
model fit.  They note that small area estimates should be (a) consistent with unbiased 
direct survey estimates, i.e. they should provide an approximation to the direct survey 
estimates that is consistent with these values being "close" to the expected values of 
the direct estimates and (b) more precise than direct survey estimates, as evidenced by 
lower MSE estimates. We, therefore, consider three commonly used diagnostics 
developed by these authors for this purpose: the bias diagnostic, the goodness of fit 
(GOF) statistic and the percent coefficient of variation (CV) diagnostic.  

 
The basic idea underpinning the bias diagnostic is that since direct estimates 

are unbiased, their regression on the true values should be linear and correspond to the 
identity line. If model-based small area estimates are close to these true values the 
regression of the direct estimates on these model-based estimates should be similar. 
We therefore plot direct estimates (y-axis) vs. model-based small area estimates (x-
axis) and we looked for divergence of the fitted least squares regression line from the 
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line of equality. The scatter plot of the District-level direct estimates against the 
corresponding NSEP estimates is shown in Figure 3, with fitted least squares 
regression line (dashed line) and line of equality (solid line) superimposed.  

 
Inspection of Figure 3 reveals that the District estimates generated by NSEP 

are less extreme than the direct survey estimates, demonstrating the typical SAE 
outcome of shrinkage towards the average. However, it is also clear that the NSEP 
estimates deviate somewhat from the line of equality at the extremes of their 
distribution. This is not unexpected, since the NSEP estimates are random variables 
and so the regression of the direct estimates on the NSEP estimates is biased for a test 
of common expected values. Such a test is provided by the GOF statistic, which is 
equivalent to a Wald test for whether the differences  have a zero 

mean, and is computed as , where  is the 

synthetic version NSSYN of the NSEP, defined following (5). See Brown et al. 
(2001). Under the assumption that  and  are independently distributed, 
which is not unreasonable for large sample sizes, the value of W can be compared 
with an appropriate critical value from a chi square distribution with degrees of 
freedom D equal to the number of Districts. For our analysis, D = 71, with a critical 
value of 91.7 at a 5% level of significance. Here, we conclude that the NSEP 
estimates are consistent with the direct estimates.  

 

 
Figure 3. Bias diagnostic plot with y = x line (solid) and regression line (dotted) for 
proportion of poor households in Uttar Pradesh: NSEP estimates versus direct 
estimates. 
 

The final SAE diagnostic that we compute compares the extent to which the 
model-based small area estimates (EP and NSEP) improve in precision compared to 
the direct survey estimates (direct). We assess precision via the percentage CV of an 
estimate. Summary percentage CV values for the different SAE methods are shown in 
Table 2, while Figure 4 displays the District level values of percentage CV for the 
direct, EP and NSEP methods. These show that the direct survey estimators for the 
proportion of poor households within each District are unstable, with CVs varying 
from 8.67% to 232.44 %. Furthermore, the CVs of the direct estimators are greater 
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than 20% (40%) in 36 (16) out of the 71 Districts (Figure 4). Two small area 
estimators (EP and NSEP) are better than the direct estimator with respect to CV, with 
the NSEP outperforming the EP. In particular, the NSEP records smaller CVs than the 
EP in 53 of the 71 Districts of Uttar Pradesh. 

 
Figure 5 is a map showing the proportions of poor households by District for 

Uttar Pradesh, estimated by the NSEP method. This clearly shows an east-west divide 
in the distribution of household poverty. For example, in the western part of Uttar 
Pradesh there are many districts with low poverty incidence (Saharanpur, Hathras, 
Meerut, Baghpat, Muzaffarnagar, Bulandshahar, etc). Similarly, in the eastern part 
and in the Bundelkhand region (north-east) we see many districts (Azamgarh, Sitapur, 
Chitrakoot, Bahraich, Siddharthnagar, Banda, Fatehpur, Basti and Kaushambi, etc) 
with high poverty incidence. This is an example of a "poverty map" showing reliable 
estimates of poverty incidence across a region of interest. This type of map is a useful 
aid for policy planners and administrators charged with taking effective financial and 
administrative decisions that can impact differentially across the region. 

 
Table 2. Summary of area distributions of percentage coefficients of variation (CV, 
%) for different SAE methods applied to NSSO data.  

Values Direct EP NSEP 
Minimum 8.67 6.72 6.54 
Q1 13.94 12.70 11.42 
Mean 32.61 21.58 20.67 
Median 19.97 17.93 15.41 
Q3 33.32 28.05 26.04 
Maximum 232.40 57.38 70.02 

 
 
 
 

 
Figure 4. Percentage coefficients of variation (CV, %) by District for direct (dotted 
line, o) , EP (thin line, Ñ) and NSEP( solid line, •) estimators applied to NSSO data. 
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Figure 5. NSEP estimates showing the spatial distribution of proportions of poor 
households by District in Uttar Pradesh. 
 
 
6  Conclusions 

This paper describes plug-in non-stationary empirical predictor (NSEP) and 
plug-in empirical predictor (EP) for small area proportions. Our empirical results 
show that the NSEP is efficient than the EP in NSSO data with evidence of spatial 
non-stationarity. We therefore used the NSEP method to produce a poverty map 
showing how household poverty incidence varies by District across the State of Uttar 
Pradesh in India. We conclude by observing that the estimates and spatial distribution 
of poverty incidence generated from this research should be useful for meeting the 
data requirements for policy research and strategic planning by different international 
organizations and by Departments and Ministries in the Government of India. 
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