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Professor Calyampudi Radhakrishna Rao
(September 10, 1920 – August 22, 2023)

“He [My Dad] loved Nrityero Tale Tale. He made me learn that dance
at the Manipuri dance school that was on the Indian Statistical Institute (ISI)
campus in the Manipuri style although I was a Bharatanatyam and Kuchipudi
dancer. Years later I taught it to one of my students here in Buffalo and she
performed it during her graduation show. It continues to be one of my favorites
too. Dad took me to several Bengali Plays in the theatres in Shyambazar. I
think some of the ISI faculty used to act in those plays. You* probably know
that he also spoke Bengali.”

... Tejaswini

[*indicates – an Email correspondence to Bikas Kumar Sinha on September
23, 2024].
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From Chair Editor’s Desk....

When the world of statistical fraternity, and the world of scientists across all disci-
plines of sciences, art and commerce, got this sad news of this noble and pious soul leaving
the body of Professor Calyampudi Radhakrishna Rao and seeking shelter in the paradise,
everyone was moved and touched and was in tears. The world had lost an all-time great
visionary, a researcher and a gem with humane values. Everybody felt that this loss has
created a void that will not be easy to fill.

Professor C. R. Rao, a Doyen in the domain of Statistical Sciences, was blessed
by a super power to ignite the lamp of his soul while he descended on the Earth! He
was extraordinarily talented and he roamed over various upcoming areas in the domain of
statistical sciences with extreme ease and command and served the broader statistical world
in a wide variety of leadership positions. Known to most of us as simply ‘CRR’, his name
remains a byword for excellence.

The present Chair Editor of Statistics and Applications (S&A), Vinod Kumar Gupta,
expressed a strong desire to Bikas Kumar Sinha and twin brother Bimal Kumar Sinha to
bring out a Special Issue (SI) of the journal S&A in the honour of and to pay rich and befitting
tributes to the fond memory of CRR. The twin brothers immediately responded in affirmation
and the three decided that the December Issue of 2024 will be a SI to commemorate and pay
our huge respect to this doyen of statistical sciences by bringing out a special issue having
research papers echoing the research interests of CRR by those who have been his family,
his students, his colleagues and collaborators and his friends and well wishers. The editorial
board of the S&A resolved to appoint a team of Guest Editors (GEs) led by Bikas K. Sinha
and twin brother Bimal K. Sinha and supported by the Chair Editor Vinod K. Gupta for this
SI covering different areas of expertise and succeeded in having some of them from around
the globe with direct personal contacts with CRR. The other important GEs of the team
comprised of Shyamal Peddada, Thomas Mathew, Tapan K. Nayak, Bhramar Mukherjee,
Nairanjana Dasgupta, and S. Ejaz Ahmed.

The team of GEs in their wisdom decided that this SI will be called as “Life and
Work of CR Rao (1920-2023): The Revolutionary of Statistical Sciences.”

When this project [publication of special issue of S&A as a tribute to the fond mem-
ory of Late CRR] was to be launched, the GEs got spontaneous responses from several
dozen contributors across the continents who were forthcoming with contributions related
to the research interests of CRR. A good number of the contributors also had their personal

http://www.ssca.org.in/journal.html


experiences to narrate.

We decided to add a special feature to this SI. CRR lived for 19 days short of 103
years. To highlight this significant event, we have compiled a list of 103 research papers
of CRR that had impacted the furtherance of research in those times and in the chosen
areas. The selection of 103 research papers is a representative sample of the total number of
research papers of CRR, including some of his early-life path breaking research. We could
trace his earliest paper in 1941 (perhaps among the earliest papers published at the age of
21 years). We made an effort to have at least one paper for each of the years from 1941
till 2020. Unfortunately, we could not find any journal publications for the years 2011, 2015
and 2019, respectively. Towards this compilation, we received tremendous help and useful
documents from T. J. Rao, B. L. S. Prakasa Rao and T. Krishna Kumar. This help is
gratefully acknowledged.

The 37 papers that appear in this SI have been classified into two broad categories.
The Part I comprises of eight (8) papers describing the “Facets of Professor C. R. Rao.”
These papers are mostly non-technical in nature. We start with an account of ‘THE FAMILY
MAN’ - as CRR had been! This comes from his daughter Tejaswini. She has also obliged us
by providing some unique family pictures. Then we have accounts of personal experiences
of CRR’s associates, collaborators, students [direct/indirect].

The Part II comprises of 29 “Regular Research Papers” covering a wide range
of theoretical topics and applicational areas. The contributors had freedom to make their
own choice of the topics and deal with their contribution in the best possible way leading
to innovative research. The selection of the topics was essentially dictated by the research
interests of CRR and every paper in a way addressed one of these research interests. Of
course, in the name of CRR, the motivation has been research-oriented and every contributor
tried to focus on the use of latest available tools and techniques – at times developing new
techniques.

Upon our request, BLS Prakasa Rao spontaneously agreed to write the Preface for
this CRR Memorial SI. We are deeply obliged to him for his contribution. The Preface itself
is his experience and vision about the life and work of CRR.

We are highly indebted to the GEs for rendering their valuable support in the prepa-
ration of this SI. Their choice of topics and contributors in different areas is praiseworthy.
They maintained the timeline very strictly and this is the reason we have been able to bring
out this SI in time.

Our heartfelt thanks and gratitude go to all the contributors, the distinguished au-
thors, who have enriched the volume with their thought-provoking and illuminating contri-
butions across various topics in theory and applicational areas. Their contributions have
added value to this SI. Their unflinching support to maintain time schedule in submitting
their original contribution, then preparing the revised version based upon the reviewers sug-
gestions and formatting the paper as per the journal requirements are unparalled. We are
grateful to all the contributors for this.

iv



The reviewers, an unobservable layer without whom the process of journal publication
cannot function at all, have also been prompt and thorough. Their suggestions helped
in improving the quality and presentation of the contents. We are indebted to all the
reviewers and thank them sincerely for their support. We would like to place on record
our highest admiration for the Executive Council of SSCA and the Editorial Board of S&A
for their support and for entrusting their faith on the GEs for bringing out this special
issue as a tribute to Professor C. R. Rao. The help received from Baidya N. Mandal and R.
Vishnu Vardhan, Managing Editors, Jyoti Gangwani, Production Executive and Siva G., who
helped with the latex template, for bringing the papers in the format of the journal is highly
appreciated. This SI contains papers of high academic standards covering a wide spectrum of
statistical research. We are confident that the readers would find these papers enjoyable and a
resource for generating newer ideas for advancing research in statistical sciences. We reiterate
that the 36 papers in this SI are by CRR’s family, former students, colleagues, collaborators,
friends, and others who have been influenced by his research, teaching, mentoring, and
generous friendship.

This SI is our sincere endeavor to pay homage and rich tributes to this giant doyen
of statistical sciences with a towering stature, filled with traits of humanity like gentleness,
kindness, humbleness and gratitude along with passion, vigor, enthusiasm, and zeal to enrich
statistical sciences with fresh and fragrant ideas.

It may not be out pf place to mention here that the Society of Statistics, Computer
and Applications (SSCA) was founded in 1998 to honour great legendary Professor M. N.
Das. Since then, the SSCA has been organizing National / International Conferences every
year along the length and breadth of the country. It has organized thus far 26 conferences.
The SSCA, among other scientific activities, also brings out this journal called Statistics
and Applications (S&A). The journal is available at https://ssca.org.in/journal.html. The
Issue (No. 3) of the Volume 22 of S&A has been brought out as a tribute to an all-time
great legendry and father of modern statistics CRR, who at the age of 18 days short of 103
years (10 September 1920 – 22 August 2023), left for his heavenly abode. We fervently hope
that this endeavor serves as a rich tribute to this dynamic and passionate researcher who
revolutionized statistical sciences with his original path-breaking research. The statistical
fraternity is poorer in his loss.

Bikas Kumar Sinha
Bimal Kumar Sinha

December 2024 Vinod Kumar Gupta

v
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6. Bhramar Mukherjee – Member
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8. Syed Ejaz Ahmed – Member
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PREFACE

Professor Bikas Kumar Sinha, who is the Leader of the Guest Editors Panel for this
special issue of “Statistics and Applications”, invited me to write a preface for this special
issue of the journal to be released in memory of Late Professor C. R. Rao. I am honored to
be a part of the group as I was a student of Professor C. R. Rao in the very first batch of M.
Stat. program at the Indian Statistical Institute, Calcutta (now Kolkata) during the years
1960-62 and was his colleague at the Indian Statistical Institute, New Delhi during the years
1976-79 before he left for USA. The contributors to this volume are well known specialists in
their chosen branches or areas of statistics and their contributions reflect the areas to which
Professor C. R. Rao has made significant contributions.

Calyampudi Radhakrishna Rao (aka) as C. R. Rao needs no introduction to statisti-
cians, mathematicians, scientists or communication engineers. In the volume “Glimpses of
Indian Statistical Heritage”, edited by J. K. Ghosh, S. K. Mitra and K. R. Parthasarathy
(Wiley Eastern Limited, New Delhi (1992)), who are themselves distinguished statisticians
and probabilists, C. R. Rao wrote an autobiographical account highlighting the circum-
stances and influences that led him to a career in statistics and probability. He titled his
autobiographical account as “Statistics as a Last Resort”. It is appropriate to mention that
he came into statistics by chance. By spending a life time putting chance to work, he has
built an inspiring legacy.

C. R. Rao was born on September 10, 1920 in Huvvina Hadagalli, then in the inte-
grated Madras province and now in the state of Karnataka. His father C. Doraiswamy Naidu
was an Inspector of Police and his mother was A. Laxmikanthamma and Rao grew up in a
family environment. Rao was admitted in class 2 (second grade) in 1925 when he was only 5
years old. Since Rao’s father was an inspector of police, the job required the family to move
from place to place once in every two or three years.

Rao completed his classes 2 and 3 in a town named Gudur, classes 4 and 5 in Nuzvid
and first and second forms in Nandigama all in the present state of Andhra Pradesh. At
this stage, his father retired and decided to settle down in Visakhapatnam. Rao finished
his high school and joined the Andhra University for obtaining his first college degree in
Visakhapatnam. Rao’s early childhood involved frequent moves from one place to another
but that did not affect his studies . His parents provided him guidance and environment
conducive to studying and instilled in him work ethics that endowed him to achieve higher
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goals in life. As a student, his ambition was to keep on learning. He said that he has
inherited his father’s analytical ability and his mother’s zeal and industry.

Rao said that his mother was instrumental in instilling a sense of discipline in him.
In his book on “Statistics and Truth: Putting Chance to work”, Rao acknowledges her
contribution to his life with the dedication “For instilling in me the quest for knowledge, I
owe to my mother, A. Laxmikanthamma, who, in my younger days, woke me up every day
at four in the morning and lit the oil lamp for me to study in the quiet hours of the morning
when the mind is fresh”.

Rao graduated with the B.A. (Hons) degree in Mathematics at the Andhra Univer-
sity in Vizag. It was at the Andhra University as a seventeen year old that Rao developed
research interest in mathematics. His most inspiring teacher was a Cambridge trained math-
ematician Dr. Vommi Ramaswami who was the head of the Department of Mathematics.
Rao finished the B.A. (Hons) course at the age of 19 and wanted to pursue a research ca-
reer in mathematics. With a first class and first rank in B.A. (Hons) degree, Rao thought
he would qualify for a scholarship for doing research in mathematics. He did not get the
scholarship for bureaucratic reasons. He was in search of a job and saw an advertisement for
a mathematician for the army survey unit. He went to Calcutta to appear for an interview
for the job but was not successful. During his stay in Calcutta, he met one Subramanian
who was employed in Bombay but had been sent to Calcutta for training in statistics at
the Indian statistical institute (ISI). Rao joined ISI at his suggestion. As they say “Rest is
history”.

Rao obtained his Ph.D. degree from the Cambridge University and became a professor
at ISI at the age of 29 years. After retiring from ISI in 1980, he moved to USA and worked
for another forty three years and was a research professor at the University of Buffalo in USA
till the time of his passing away. He received several awards including the Bhatnagar award,
India Science award from the Government of India, National Medal of Science from USA
and elected as Fellow of several academies in India and abroad. He received 39 honorary
doctorates from universities in India and abroad. Several students received Ph.D. under his
guidance.

As they say “Statistics is the poetry of sciences”. Statistics is the soul of scientific
inquiry. It is applied by researchers across a spectrum of science, engineering, business,
technology, medical, government and financial settings to name some. These applications
lead ultimately to tangible benefits that improve the well being of humanity. With the
increasing role of information technology, the society has been inundated by a data deluge
and statisticians are the society’s experts for extracting usable information from the mass
of noise in those data sets. Statistics and statisticians make the science better. It is an
invisible science. It is said that “A physicist solves a problem in physics using the available
knowledge in physics, a chemist does the same thing in chemistry, so also a biologist and an
engineer. There is nothing like a statistical problem a statistician is trying to solve with the
available knowledge of statistics. His or her job is to help the scientists to solve problems in
their discipline by applying available statistical methodology, but more often by developing
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appropriate new statistical methodology”.

C. R. Rao was among the world wide leaders in statistical science over the last several
decades.

Rao’s career in statistics is dotted with remarkable achievements. The first result in
statistics to bear Rao’s name was proven by him, while still at ISI, at the age of 25 and
came to be known as the Cramer-Rao inequality. In his remarkable 1945 paper published
in the Bulletin of the Calcutta Mathematical Society, Rao demonstrated three fundamental
results that paved the way for the modern field of statistics and provided statistical tools
heavily used in science. The first now known as the Cramer-Rao lower bound provides a
means of knowing when a method for estimating a quantity is as good as any method can be.
The second result named as the Rao-Blackwell theorem provides a means of transforming an
estimate into a better, in fact optimal, estimate. Together, these results form a foundation
on which much of statistics is built. And the third result provides insights that pioneered a
new interdisciplinary field that has come to be known as information geometry. Combined,
these results help scientists extract information from data efficiently. The monumental work
by Rao has not only revolutionized statistical thinking in its time but also continues to exert
influence on human understanding of sciences across wide spectrum of disciplines according
to the Chair of the International Prize in Statistics which Rao received . Rao made distinct
and extensive contributions to several branches of the subject of statistics and its applications
leading to efficient methods of statistical analysis.

Once a doctor examining him for some stomach ailment told Rao that the food for
each individual in stomach would be a variable and normally distributed..(a term familiar to
the statisticians). Rao told “the doctor was trying to give me a lecture in statistics, which I
had been teaching to my students for over 25 years ...(at that time).” Rao lost his baggage
during one of his international travels. One of the agents of the airlines called Rao next day
and said “Good News Mr. Cramer Rao, we found your baggage” thinking that Cramer Rao
is Rao’s name but it is the lower bound named after him and Professor Cramer who have
discovered the result.

In multivariate analysis, one has to deal with extraction of information from a large
number of measurements made on each sample unit. Not all measurements carry independent
information. It is possible that a subset of measurements may lead to procedures which are
more efficient than using the whole set of measurements. Rao developed a test to ascertain
whether or not the information contained in a subset is the same as that given in the complete
set. He also developed a method for studying clustering and other inter-relationships among
individuals or populations. Using general diversity measures applicable to both qualitative
and quantitative data, the method of analysis of diversity was developed by Rao for which
he introduced the concept of quadratic entropy in the analysis of diversity.

Combinatorial arrangements known as orthogonal arrays were introduced by Rao for
use in the design of experiments. These arrangements are widely used in multi-factorial
experiments to determine the optimum combinations of factors to solve industrial problems.
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These have also applications in coding theory. An important result of practical interest
resulting from this novel approach is the Hamming-Rao bound associated with orthogonal
arrays.

Rao’s work was done in India and his intellect shaped statistics worldwide. He was
among the worldwide leaders in statistical science. His research, scholarship and profes-
sional service had a profound influence in the theory and applications of statistics and are
incorporated into standard references for statistical study and practice.

When Rao joined the ISI in early forties, statistics was not considered as an in-
dependent subject and no university offered courses at the Masters level. Rao developed
numerous courses in statistics over the years which were later converted into bachelor’s and
masters degree at ISI when ISI was declared as an Institute of National Importance by an
act of Parliament in 1959. Rao also initiated the Ph.D. program in theoretical statistics and
probability. Rao guided the research work of over fifty students for Ph.D.

As the Head of Research and Training School at the ISI, Rao developed a variety
of courses to train statisticians to work in different applied areas. Rao established research
units in ISI to work on special projects in subjects such as economics, sociology, psychology,
genetics, anthropology, geology and related areas. The idea of establishing these applied
research units is to provide interaction between statisticians and scientists to promote the
application of statistical methods in research in other areas and to develop new statistical
methods motivated by real problems.

Pandit Jawaharlal Nehru, who was the Prime Minister at that time, was greatly in-
terested in development of statistics. He visited ISI a number of times at the invitation of
Professor Mahalanobis and Rao had the opportunity of discussing with him the national sta-
tistical system and training of statisticians to work in state statistical bureaus. Nehru moved
a resolution in the parliament in 1959 declaring ISI as an Institute of National Importance.

Rao was the author of 14 books. Two of his books were translated into several
European, Japanese and Chinese languages. Rao received 39 honorary doctorates from
universities in 19 countries spanning over all continents. Rao received several awards and
medals. Some of them are the National Medal of Science, the highest award given to a
scientist in USA in 2002, India Science award in 2009, the highest award given to a scientist
in India and the Guy Medal in Gold from the Royal Statistical Society in 2011, the highest
award given to a statistician in UK.

Rao has received the Bhatnagar award in 1963 and International Mahalanobis prize in
2003 for lifetime achievement in statistics and the promotion of best statistical practice from
the International Statistical Institute. The Ministry of Statistics and Program Implementa-
tion (MOSPI), Government of India has instituted a National award in honor of C. R. Rao.
He was elected as a Fellow of the Royal Society (FRS)in UK, Fellow of the Indian National
Science Academy (FNA), Fellow of the Indian Academy of Sciences (FASc), Fellow of the
National Academy of Sciences (FNASc) in India, and Fellow of the Third world Academy of
Sciences besides several others. Rao celebrated his 102nd birthday on September 10, 2022.
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C. R. Rao, a professor whose work more than 75 years ago continued to exert a
profound influence on science, has been awarded the 2023 International Statistics Prize in his
102nd year. Awarded biennially at the World Congress of International Statistical Institute,
the International Statistics Prize in Statistics is managed by a foundation consisting of
five major statistical societies: American Statistical Association, Institute of Mathematical
Statistics, International Biometric Society, International Statistical Institute and the Royal
Statistical Society.

A scientist visiting ISI from the former Soviet Union went to meet Dr. Rao (as he
is known to all the workers at ISI) when he was in Calcutta at his residence. He was told
that Rao was repairing his car. He met him in the office room later when Dr. Rao was with
his students, then saw him playing badminton outdoors in the evening and had dinner with
him in the night. The scientist remarked that “I have seen the mechanic, the athlete, the
scholar and the perfect host, all in one day.” He was an enthusiastic photographer and was
very much interested in spreading dance forms such as Kuchipudi.

I have also graduated from the Department of Mathematics from the Andhra Uni-
versity in 1960 as Professor C. R. Rao and later joined ISI as a student during the years
1960-62 for my Masters program in Statistics. I met Professor Rao as a student at the age of
17 and attended courses given by him. I was his colleague at the Indian Statistical Institute,
New Delhi during the years 1976-79 and later joined the CR Rao Advanced Institute of
Mathematics, Statistics and Computer science, Hyderabad as Ramanujan chair Professor at
his invitation. I had the privilege of participating in a Zoom meeting honoring him across
continents during his centenary year. ISI Retired Employees Association has released a book
entitled “A Tribute to the Legend of C. R. Rao, The Centenary Volume”. Professor T. J.
Rao, who is a well-known survey sampling expert, and I were both students of Professor C.
R. Rao at the ISI and all the three of us are alumni from the Department of Mathematics
at the Andhra University, Vizag.

Rao passed away on August 22, 2023 at the age of 102 just about two weeks before
his 103rd birthday on September 10, 2023. He was a Research Professor at the University at
Buffalo, USA till the last day. India has lost a distinguished statistician and a great scientist.

I am happy to note that the journal “Statistics and Applications” has taken the
initiative to bring out this special issue in memory of Late Professor C. R. Rao and happy to
be a part of this activity to pay my homage as his student, his colleague and his admirer.”

B. L. S. Prakasa Rao

August 12, 2024 Hyderabad, India
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Calyampudi Radhakrishna Rao, popularly known as CR Rao and henceforth ad-
dressed as Rao in this text, was first and foremost a loving and devoted family man. He
married Bhargavi in 1948 and since that day their relationship was one of mutual admiration
and respect, and unwavering support. Rao took great pride in his wife’s competence, aca-
demic achievements, her intelligence and ability to articulate her opinion on a wide variety of
topics. Bhargavi was his constant companion, traveling the world over with him, creating the
supportive atmosphere needed for pursuing his academic activities, and providing the social
environment to foster his relationships with his colleagues and students. Many remember
evenings at the Rao’s home filled with lively conversation and debates, sumptuous meals,
and warm hospitality. Bhargavi was truly the love of his life in many ways. The Rao family
grew to include their daughter Tejaswini and son-in-law Vincent O’Neill, son Veerendra and
daughter-in-law Malini, grandsons Amar, and his wife Mitra along with a great grandson
Khai, and Rohith and his partner Hannah Garfield. Rao, despite his busy days filled with
teaching, research, administration, and travels took personal interest in overseeing the ac-
tivities of his children. His children thought of him as being quiet and serious when they
were young but soon as young adults realized and recognized his sensitive, caring, and hu-
morous nature that nurtured them. His grandchildren were a source of boundless joy whom
he entertained with trips to the park and conversation involving interesting and amusing
questions. They remember their grandfather not as the renowned scientist or the stoic face
seen in many of his photographs but as the kind, generous, funny, and mischievous man that
he really was. Rao and his great grandson had a special bond, Rao a 102-year-old man and
Khai less than a year old. Their faces lit up when they saw each other and they enjoyed each
other’s company in a beautiful silence filled with affectionate smiles and gurgling laughs.
Rao was very fond of children and the feelings were mutual. He would regale them with
riddles and jokes that many of them remember and talk about until today as adults. He was
a Pied Piper as his colleague’s children would follow him and Bhargavi during their evening
walks with the added attraction of finding candy in Uncle Rao’s pockets.

Rao was a creature of habit, cherishing daily walks with his wife and the morning
ritual of reading his newspaper. After moving to the US, every evening, like clockwork,
he would indulge in a glass of wine at exactly 7 pm while watching Jeopardy and Wheel of
Fortune or his favorite sport, tennis with his family. Rao enjoyed watching all forms of sports
and considered himself quite the badminton player. One of his favorite pastimes while living
on the Indian Statistical Institute campus in Kolkata was playing badminton with colleagues
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and friends after his evening walks. Rao loved the arts, especially dance. He saw Ram Gopal
perform in London when he was a student in Cambridge in the early 1940s. This event started
his lifelong interest in dance. He promoted many Indian classical dancers as a member of
various cultural associations in Calcutta and Delhi, and he also served as president of the
Kuchipudi Academy in Delhi. In addition, he enrolled Tejaswini in dance classes as a five
year old and she became an accomplished performer of two Indian classical dance styles,
Bharata Natyam and Kuchipudi. He fostered his love for the arts in his children, enriching
their lives. Rao also had a passion for photography, capturing his international travels with
Bhargavi in film from the early 1950’s, taking hundreds of treasured photographs of his
family, colleagues, and friends. He loved giving his friends enlargements of photographs he
had taken of them. Many of his photographs have appeared in magazines and newspapers.
Rao’s other interests were gardening, writing humorous articles, and a little bit of cooking as
well. He had a green thumb and could grow any flower or vegetable from seeds. Mothering
each of the plants and watching them spring to life was a source of relaxation and pleasure.
His subtle sense of humor that he is known for is also reflected in published articles that he
has written on everyday incidents that he has observed. So the powerful sense of observation
that made him the scientist that he was extended to every aspect of his life. Rao enjoyed
occasionally giving instructions on how to prepare a dish, doing all the prep work and took
delight in teasing Bhargavi that he taught her to cook.

Rao valued the importance of education and established educational scholarships in
many universities for talented and disadvantaged students. He also instituted medals at
various Institutions to recognize accomplished Statisticians. Acute sense of observation and
discipline made Rao the remarkable scientist and statistician but family and friends best
remember him for his humility, affectionate and compassionate heart, gentle nature, and a
mischievous sense of humor that never failed to bring a smile.
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I first heard of Calyampudi Radhakrishna Rao (hereafter addressed as Rao) when
our Professor at University of Bombay recommended two texts, one by Herold Cramer and
the other by C. R. Rao. I bought both the books. I did not know that the two names were
connected by the famous Cramer-Rao inequality.

In 1959 I applied for admission to the Research and Training School (RTS) of the
Indian Statistical Institute (ISI) and I was very excited to receive a letter of admission signed
“C. R. Rao”. That signature is still fresh in my mind.

I joined RTS in August 1959. That was before the Parliament passed the Indian
Statistical Institute Act, 1959, which gave ISI authority to confer degrees. So, the RTS
had full freedom to innovate and to experiment. We could even set an exam where all the
students failed. And these were very bright students. Professor R. R. Bahadur set an exam
on Sophistication and asked me to mark it to find out if the students were more sophisticated
than the teachers! All this freedom vanished the following year when the degree programs
were started.

Professor P. C. Mahalanobis had a very broad vision of Statistics. He wanted to
explore applications of statistics across all sciences. Rao was entrusted with the task of
incorporating this vision in undergraduate courses when the ISI started degree courses in
1960.

It was an exciting place full of enthusiasm. World renowned scientists visited ISI.
I remember that to accommodate the travel plans of a famous scientist who was passing
through Calcutta, Dr. Rao arranged a seminar at 11:00 PM and it was well attended.

The place had world renowned statisticians such as Mahalanobis, Haldane, Bahadur
and Basu, to name a few. Any teacher or research student would announce a seminar for
researchers interested in the topic. Varadarajan gave a series of lectures on Metric Topology,
and it was attended only by Varadhan and me.

Research students did not have any prescribed course work nor any comprehensive
exams. Students studied a topic and had discussions with other students and faculty. They
would even give a series of seminars on the topic they were studying. They would find their
own research topic and choose a faculty member to supervise the thesis
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Rao was a great leader. He gave research students complete freedom. Faculty and
research students could work on any area of mathematics or statistics. Research units were
created for scientists working in special areas of applied statistics.

Rao took teaching very seriously. It was regarded as a sacred duty. Research students
also took teaching responsibilities. They were groomed by senior teachers when they assisted
by playing various roles. They set term tests and marked these. When they became more
experienced, they would even teach a course independently.

Typically, at the RTS the teacher did not take any notes to assist in teaching. I too
developed this habit when I started to teach.

During my first year at the RTS, I was asked to assist Rao in his Design of Experiments
class. I attended the classes. I thought that I knew the subject, but I found that I knew only
the mathematics associated with the subject but not the subject. He was a great teacher.
He would call a student and ask him to work through a problem on the blackboard and help
the student solve it on the blackboard.

During my second year he asked me to teach a one term course on Linear Estimation
in six weeks saying that it could be done. When I agreed with this, he asked me to go ahead
and do this. He gave me ten minutes to prepare and then to go and teach. After six weeks,
he took over and taught the full course. The students learnt the niceties of the subject and
I learnt how to improve my teaching.

I was intimidated by the brilliance of my fellow research students though nobody did
anything to make me feel this way. I mentioned this to Rao and he did his best to allay my
fears and concerns. He said that many research students go through such lean phases and
eventually come out of it. This went a long way in building my confidence and getting me
started.

To further build up my confidence, he assigned me some administrative tasks. ISI had
just started a summer institute for Statistics teachers at the various Universities to expose
them to current research in many areas of Statistics. Initially, he asked me to help organize
this and later gave me the designation of Program Director to run this. He also gave me
more latitude in later years.

Rao also encouraged me to join the tea club at the RTS. I did not know that research
students could join. I looked forward to the teatime in the afternoon. The atmosphere was
very relaxed, and the research students got to know the faculty better.

Kolmogoroff’s visit in 1962 was an exciting event. We celebrated his 60th birthday
during his visit. He came to Bangalore for the next summer course. Since he did not wish
to stay at a hotel, he occupied the main guest room in the ISI building at 4, Richmond
Road. Rest of us, including Rao and Adhikary, and I, occupied small rooms there. Since
Kolmogoroff did not speak English, Adhikary interpreted his lectures.

Staying with these dignitaries under the same roof was an exciting time. Kolmogo-
roff’s comments on the social structure and on individuals he came across were very insightful.

Next Summer Course was held on the campus of Andhra University in Waltair. I
paid a courtesy call to the Vice Chancellor who introduced me to another person present as
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an outstanding statistician. Obviously he mistook me for Rao but it was embarrassing to
correct him. Rao, Basu, Varadarajan and my family occupied individual cottages in Motel
Ocean View. It was a very pleasant time. He got to know Daksha (my wife) much better
and took fatherly interest in her. This continued through the years. My daughter Swati was
sixteen months old and did not yet walk. Rao would encourage us to accompany him and
others to join them in evening walk on the beach saying that he would carry Swati, which
he initially did and later on passed on the burden to others. During this stay at Waltair,
Basu became seriously ill. Fortunately, he recovered soon.

Because of these two summer courses, Rao and my family got to know each other
better.

I started working with J. Roy at the RTS and this continued for a year and a half.
We wrote a couple of research papers jointly. After that he took charge of the new computer
unit and would have no time to see me. I carried on with my work, found my thesis problem
and solved it. When I showed this to Rao, he was quite pleased.

Throughout his career in India, he combined research with heavy administrative du-
ties. He could do this because he had the ability to move from one to the other seamlessly.
I would knock at his door and enter when he was deeply involved in a research problem. My
purpose was to seek his guidance on some administrative issues. He would listen to me and
give his advice. Next minute he would be back studying the research problem where he left
it.

Rao took interest in students who graduated from ISI even after they left the Institute.
In many cases he did this all through their career and helped them get appropriate positions.

I left ISI in 1964 to join Michigan State University as a visiting faculty. I returned to
ISI in 1967 and then left for Waterloo in 1968 where I stayed till 2005 even though I formally
retired in 2002.

Rao set up a branch of ISI in New Delhi where Graduate degree courses were given.
I visited there during one of the early years of this and stayed a full year. He nurtured this
branch in the same way as he did nurture the RTS in Kolkata.

A few years later he retired from ISI and spent the rest of his career in the U.S.

Rao visited Michigan State University during my stay there and visited Waterloo
several times when I was there. He and Mrs. Rao stayed with us during one of these visits.
Additionally, I met him at various conferences. Hardly a year went by during which we did
not meet. His interest in me and his guidance continued.

He was a professor at various universities in the U.S before his retirement at Buffalo
where he stayed with his daughter Tejaswini. I visited him there several times. The painful
expression on his face when he saw me with my left arm amputated, touched me deeply.

Tejaswini did a great job in preserving and organizing photos of Rao with several dig-
nitaries throughout his illustrious career. She arranged these and other documents associated
with his career like a museum.

She also did a superb job in arranging 100th birthday celebrations for Rao. Unfortu-
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nately, because of covid this had to be done on Zoom. It was a memorable event.

In conclusion, I must say that I feel very lucky to have known him. He touched so
many lives and mine was one of these.
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Abstract
C. R. Rao has long been one of the most visible names in statistics and beyond.

Even now that he is no longer with us, his work will provide inspiration for researchers for
many years to come. After a few broad observations about C. R. Rao’s incredible impact on
statistics and science, we focus on two areas of contribution by C. R. Rao that are perhaps
not as broadly known: Orthogonal arrays and sampling plans for excluding contiguous units.
These areas, which overlap with our own interests, demonstrate how C. R. Rao’s search for
better solutions to statistical problems led him towards defining and studying combinatorial
structures.

Key words: Orthogonal arrays; Sampling plans excluding contiguous units

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Statistical science houses many distinguished researchers who have made highly in-
fluential contributions. If a hundred experienced statistical researchers were asked to make
a list of 20 giants in the field, past or present, these lists would probably all look very im-
pressive. But, most likely, there would only be few names that appeared on virtually every
list. Those would be the names of the superstars, the visionaries, the trailblazers, the titans
of the discipline. One of those very few names would be that of Calyampudi Radhakrishna
Rao, better known to most as C. R. Rao (shortened to CR Rao from hereon).

With his many seminal contributions to statistics, CR Rao has been an inspiration
to uncountable number of researchers, and will continue to be so for many more years
to come. The staying power of his contributions, many of which were far ahead of their
time, is astonishing and a testament to the depth and influence of the contributions. These
contributions will live on and many will be taught to future generations of statisticians and
scientists. CR Rao will undoubtedly be a statistician for the ages.
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As others have noted, the impact of CR Rao’s contributions were not limited to the
field of statistics alone. This is, for example, crystal clear from the citation for his National
Medal of Science awarded by US President George W. Bush. It reads:

“For his pioneering contributions to the foundations of statistical theory and multivariate
statistical methodology, and their applications, enriching the physical, biological, mathemat-
ical, economic and engineering sciences.”

It is therefore no surprise that journals like Science (Banks and Clarke, 2023) and
Nature (Peddada and Khattree, 2023) are among the many that paid tribute to CR Rao
shortly after his death. CR Rao’s devotion to science, along with his perspective on statistics,
is also captured in the quotation featured on the website of the CR Rao Advanced Institute
of Mathematics, Statistics and Computer Science (AIMSCS) on the University of Hyderabad
Campus:

“We study physics to solve problems in physics, chemistry to solve problems in chemistry,
and botany to solve problems in botany. There are no statistical problems that we solve
using statistics. We use statistics to provide a course of action with minimum risk in all
areas of human endeavor with unavailable evidence.”

For those interested to learn more about the life of CR Rao, about the person that
he was, about his major contributions, and about his many awards, the AIMSCS web pages
at https://crraoaimscs.res.in/ and various publications (e.g., Bera and Ghosh, 2021,
and O’Grady, 2023) provide stories and perspectives that are more interesting and informed
than anything we can offer on these aspects. Therefore, while we have benefited greatly and
drawn enormous inspiration from many of CR Rao’s contributions, we reminisce briefly on
two areas of common research interest.

2. Orthogonal arrays

Just as for various other seminal contributions by CR Rao, he introduced orthogonal
arrays (OAs) in the 1940s. In fact, as communicated by CR Rao in his Foreword in Hedayat,
Sloane and Stufken (1999), he introduced a subclass of OAs in a chapter of his MS thesis in
1943. Rao (1946) reports on this subclass, which he called hypercubes of strength d. This
was followed by Rao (1947, 1949), in which the complete class of OAs was studied even
though the name orthogonal arrays had not yet been introduced.

Based on CR Rao’s writing in the aforementioned Foreword, when he joined ISI in
1941 to study statistics, he was surprised to see a broad research interest in combinatorial
structures, which was primarily fueled by the interests of RC Bose and his collaborators.
With a strong background in mathematics, CR Rao was quickly able to become an important
contributor in this arena, leading to his work on hypercubes of strength d (Rao, 1946) and
a collaboration with K.R. Nair (Nair and Rao, 1948). He formulated the more general
definition of OAs not until 1947, after having moved to study in Cambridge, UK.

Formally, an OA of strength t based on s symbols, N runs and k factors is an N × k
array with entries from the set of s symbols so that for every N × t subarray every possible
t-tuple based on the s symbols appears equally often as a row of the subarray. Given that
there are st possible t-tuples, this common number must be N/st, which is also known as the

https://crraoaimscs.res.in/
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index of the OA. Such an array is often denoted by OA(N, k, s, t), while the index is often
written as λ.

CR Rao introduced OAs because of their properties for use in fractional factorial
experiments. This interest is visible in Nair and Rao (1948), as also in Rao (1947). The
bounds for the number of runs in an OA given by Rao (1947) are easily understood if
one understands the relationship between the strength of an OA and models for which all
parameters are estimable when using the runs of an OA to form a fractional factorial. While
statistical properties motivated CR Rao, he was also interested in combinatorial aspects of
OAs, as is clearly shown by Rao (1949). Various methods of construction are discussed
there, including a simplified construction of OAs that already appeared in Rao (1946). A
similar idea appeared shortly afterwards in Hamming (1950) for the construction of error-
correcting codes, which led Hedayat, Sloane, and Stufken (1999) to refer to these arrays as
Rao-Hamming OAs.

CR Rao returned to his interest in OAs on several later occasions, such as in Rao
(1961, 1973).

After so many years since their introduction, OAs remain an active area of research,
both in statistics and mathematics. They also continue to be used frequently in factorial
experiments.

3. Sampling plans excluding contiguous units

When sampling from a finite population U = {1, . . . , N}, a fixed-size n sampling
plan, where n < N , can be presented as {(sℓ, pℓ), ℓ = 1, 2, ..., m}, where the sℓ’s are distinct
subsets of size n from U , pℓ is the probability that sℓ is the sample outcome, and m is the
support size of the sampling plan. The first-order inclusion probability πi for unit i ∈ U is
defined as the probability that unit i is in the selected sample, and can be computed as

πi =
∑
sℓ∋i

pℓ, i = 1, . . . , N.

Similarly, for two distinct units i and j, the second-order inclusion probability πij is the
probability that both the units are in the selected sample. Thus,

πij =
∑

sℓ∋i,j

pℓ, i, j = 1, . . . , N, i ̸= j.

A fixed-size n sampling plan for which πi = n/N and πij = n(n − 1)/(N(N − 1)) has,
with respect to the first- and second-order inclusion probabilities, the same characteristics
as simple random sampling (SRS). The plan is identical to SRS if m =

(
N
n

)
, so that the sℓ’s

consist of all subsets of U of size n, and pℓ = 1/m for every ℓ.

A common problem would assume that unit i ∈ U has value Yi for a certain char-
acteristic (e.g., income or years of secondary education). A study might be interested in
the population total T = ∑N

i=1 Yi or the population mean T/N . For a large population,
observing all Yi’s (a census) might be too time consuming or expensive. Moreover, it would
be unnecessary since accurate results can be obtained from a random sample based on a



10
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

A. S. HEDAYAT AND JOHN STUFKEN [Vol. 22, No. 3

sampling plan with relatively small sample size n. A design-based unbiased estimator of T
based on a sample sℓ is in that case given by the Horvitz-Thompson estimator

T̂ =
∑
i∈sℓ

Yi

πi

.

An unbiased estimator for the variance of T̂ exists if and only if πij > 0 for all units
i, j ∈ U, i ̸= j (cf. Hedayat and Sinha, 1991).

If the units can be thought of as naturally being placed on a straight line or circle
to depict their proximity (e.g., housing units on a street or street block), then it is conceiv-
able for some characteristics (e.g., household income) that neighboring units provide similar
information. One might get a better estimate for the population total by avoiding the se-
lection of contiguous units. This idea was explored in Hedayat, Rao and Stufken (1988a,
1988b). Considering the population units to be ordered on a circle, so that each unit has two
contiguous units, these authors define a fixed-size n sampling plan to be a balanced sam-
pling plan without contiguous units if all first-order inclusion probabilities are equal (this
common value must be n/N), the second-order inclusion probabilities for contiguous units
are 0, and all other second-order inclusion probabilities are equal (this common value must
be n(n − 1)/(N(N − 3)). They show that, in terms of the variance of the Horvitz-Thompson
estimator, balanced sampling plans without contiguous units are more efficient than SRS if
the first-order serial correlation of the Yi’s exceeds −1/(N − 1) (which it will if there is any
validity to the premise that contiguous units have similar Yi’s).

One may also wonder when such balanced sampling plans without contiguous units
exist. Hedayat, Rao and Stufken (1988a) show by construction that such plans exist for
every value of N ≥ 3n when n = 3 or 4.

In later years, there have been various extensions of these initial results. This includes,
for example, requiring second-order inclusion probabilities to be 0 not only for immediate
neighbors (cf. Stufken, 1993), considering population units to be ordered in a 2-dimensional
layout (cf. Wright, 2008), and additional existence results, including in the combinatorial
literature (cf. Guo, Wang, and Feng, 2022). Also, alternative methods have been developed
for spatial populations (cf. Deville and Tillé, 1998).

4. In conclusion

While C. R. Rao’s passing is an enormous loss for the scientific community, his
widespread influential contributions provide assurance that his work will be with us for
many years to come. In fact, we have no doubt that his contributions will remain an inspi-
ration for budding statistical researchers. In that way, CR Rao is truly a statistician for the
ages.
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Abstract
This article discusses many of the contributions of C. R. Rao to the education of

the statistics graduate student. We submit that Rao’s foundational results are not only
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1. Introduction

One might approach the task of honoring the memory of C. R. Rao by selecting one
of his myriad contributions to modern statistics and expanding upon why it is so important.
We imagine many contributors to this edition of Statistics and Applications might do just
that, demonstrating the breathtaking scope and diversity of Rao’s foundational results with
subtle and nuanced derivations that are sure to be appreciated by the seasoned professors
and other established scholars in this journal’s readership. However, we believe that one
does not need a doctorate and a strong publication history to appreciate what Rao did - and
continues to do - for statistics. Indeed, our focus in this article is the immense importance
of Rao to beginning graduate students, those just starting out on their journey toward a
master’s degree or doctorate.

2. In the classroom

STAT 401 is the introductory master’s-level probability course at the University of
Illinois Chicago, and is taken by most of the first-semester graduate students in the statis-
tics program. We would guess that it is more-or-less similar in content and approach to the
beginning master’s level probability course at universities across the globe. The course in-
cludes an introduction to five major theorems/concepts: the Kolmogorov probability axioms,
the Rao-Cramér lower bound, the Central Limit Theorem, Sufficiency and Completeness of
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sample statistics (including Basu’s Theorem), and the Rao-Blackwell Theorem. Of course
there are several other ideas introduced, such as various discrete and continuous probability
distributions, parameter estimation, confidence intervals, and hypothesis testing. But of the
five foundational concepts of the course, Rao developed two of them. That fact alone should
convince any skeptic how important Rao is to the budding statistician. A closer look at
these two concepts yields even more insight into why they are so foundational for beginning
graduate students.

Consider the Rao-Cramér lower bound. This elegant relation provides a lower bound
for the variance of any unbiased estimator θ̂ of a parameter of interest θ to the Fisher
information for that parameter I(θ). In the one-dimensional case, it may be expressed as

V ar(θ̂) ≥ I−1(θ). (1)

In the multidimensional case, where one considers a vector of parameters θ and a vector of
estimable functions of those parameters f(θ), where the covariance matrix of the estimator
f̂(θ) is denoted by Σ(f̂(θ)) and the Fisher information matrix is denoted by I(θ), it can
be shown via a first-order Taylor expansion that

Σ(f̂(θ)) ≥
(

∂f(θ)
∂θT

)
I−1(θ)

(
∂f(θ)
∂θT

)T

, (2)

which approaches equality asymptotically for any maximum likelihood estimator f̂(θ) under
certain regularity conditions. Thus one may loosely say that “maximizing” the information
matrix for θ is equivalent to “minimizing” the variance of f̂(θ). In other words, this lower
bound says that one’s ability to minimize the uncertainty of a parameter estimate is limited
in a simple and direct way by the information in the data available regarding that parameter.
And note, this lower bound does not come into consideration directly when one is learning
about confidence intervals, or hypothesis testing. Why, then, is it so critically important
to the beginning graduate student? The answer is that it teaches the beginning graduate
student a critical fact about both the theory and the practice of statistics, namely that we
are limited by our data in meaningful ways. But it also teaches the student that important
and often fruitful avenues of inquiry might be found through attempts to maximize how that
available information is utilized.

The Rao-Blackwell theorem provides an elegant application of that concept. The
theorem states that an unbiased parameter estimator conditioned on a sufficient statistic for
the parameter under consideration will have less uncertainty than an unconditional estimator.
And while sufficiency may not be an entirely glamorous concept in this age of computational
methods and big data, the lesson of seeking sound theoretical justification for a proposed
“better” estimator or classification method certainly endures. In this sense, Rao’s work
provides not just a technical foundation for how beginning graduate students engage in the
practice of statistics, but also a philosophical starting point for what can be achieved with
statistics.

Let us next touch upon the course on linear statistical inference that we assume every
graduate statistics program offers. At UIC, this course is listed as STAT 521 at the Ph.D.
level. Rao’s classic Linear Statistical Inference and its Applications (Rao, 1965), and in
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particular the 1973 edition, is considered by many to be the bible of linear regression. It is
the textbook that many programs use to teach the course, either as the primary text or as
an important reference text. In this book Rao builds a coherent foundation for how to think
about and approach statistical modeling. But what’s also important is that this course - and
by extension, Rao’s framework for statistical inference - is the anchor point for a whole field of
statistical modeling; for example, it is usually (although not always) the case that nonlinear
regression is introduced as an extension of linear regression concepts. And, nonparametric
models are often not introduced until linear statistical inference has been taught, again so
that nonparametric approaches may be explored in contrast to parametric linear methods.
In short, Rao’s presentation of linear statistical inference is often the foundation for how
statistics students think about and approach modeling; how they seek to describe, explain,
and anticipate the world around them in mathematical terms; and how they make sense of
complex dynamics.

3. Rao’s students and their descendants

There is another measure available that speaks to Rao’s influence on the emerging
statistics graduate student. The Mathematics Genealogy Project (“MGP”), established by
Harry Coonce and currently coordinated by the Department of Mathematics (1996), aspires
to inventory as many mathematics Ph.D. holders worldwide (or those with equivalent de-
grees), and as far back historically, as possible. As of May 15, 2024, the MGP held data on
308,994 mathematicians, with the subset identified as statisticians containing 16,596 degree
holders. The MGP lists Rao as having 52 direct Ph.D. students, with total descendants -
i.e., students of his direct students, and their students, etc.–of 822. That is, in a sense Rao
is the direct patriarch of almost 5% of all the Ph.D. statisticians listed in the Project. And
while the MGP is not comprehensive in its coverage, its coordinators are confident that it
represents a comfortable majority of Ph.D. holders worldwide, certainly for degrees granted
more than five years ago. The point is that Rao had a direct influence on the development
of many, many graduate students, and a one- or two-step removed influence on many more.

It is also worth pointing out that many of Rao’s students were themselves hugely
influential in the development of diverse fields of statistics, such as Debabrata Basu (author
of the famous Basu’s Theorem referenced above), T. E. S. Raghavan (game theory), S. R. S.
Varadhan (probability theory and large deviations), and others. Thus not only did Rao help
forge the statistical perspective of many students directly, in particular he did so for a set
of extraordinary students who in turn helped shape statistics – and how graduate students
learn and approach the field – in important ways.

4. A walk down memory lane

The Indian Statistical Institute (ISI) was established by P. C. Mahalanobis. C. R. Rao
joined the Institute, and in 1972 succeeded Mahalanobis as Director. Under Mahalanobis
and Rao’s leadership, ISI became one of the earliest, and most eminent, statistics institutes
in the world, achieving great advances in both theory and applications. The Institute created
an atmosphere of excellence in research, where the mind could roam and attain great heights.
There was no boundary – many areas of research, even those not really a part of statistics,
were encouraged to blossom. For example, as mentioned above T. E. S. Raghavan got his
Ph.D. under the supervision of C. R. Rao in game theory! Graduate students were inspired to
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learn and discover, but the unique atmosphere created by Rao put the onus on the student
to advance. There were faculty and postdocs who helped excite and advance minds, but
learning and problem solving was entirely the responsibility of the student. In the early
days, there were essentially no classes for Ph.D. students.

When Dibyen Majumdar (DM) joined ISI Kolkata as a Ph.D. student, he got an
opportunity to meet Sujit Kumar Mitra (SKM), a statistician of eminence and a strong
collaborator of C. R. Rao. DM wanted to work on linear models. He was told by SKM to
read several chapters of Rao (1965) Linear Statistical Inference and Its Applications, read
all chapters of Rao and Mitra (1971) Generalized Inverse of Matrices and its Applications,
solve all the exercise problems in those texts and related problems, and to move to ISI New
Delhi (Rao’s and SKM’s campus at the time) only if he succeeded in this learning project.
There were no classes for DM, but ISI Kolkata had a galaxy of star researchers who helped
DM enormously, even though they were not solving the problems themselves. One person
who helped DM was the postdoctoral fellow P. Bhimasankaram, a former student of SKM
who had great knowledge of g-inverses.

Here is one example of an exercise that DM had to solve at the start of his graduate
student life at ISI Kolkata, for which Bhimasankaram helped him derive the proof.

Exercise 1: Let A (n × p) and B (m × p) be two (real) matrices such that

M(A′) ∩ M(B′) = {0} . (3)

Then

A′A(A′A + B′B)−A′A = A′A (4)
B′B(A′A + B′B)−B′B = B′B (5)
A′A(A′A + B′B)−B′B = 0. (6)

Proof: Since
M(A′A) ⊂ M(A′A + B′B), (7)

A′A(A′A + B′B)−(A′A + B′B) = A′A,

i.e., A′A(A′A + B′B)−A′A − A′A = A′A(A′A + B′B)−B′B. (8)

It follows from (7) and M(B′B) ⊂ M(A′A + B′B) that we can assume with no loss of
generality that (A′A + B′B)− is symmetric. Taking transposes in (8) we get

A′A(A′A + B′B)−A′A − A′A = B′B(A′A + B′B)−A′A.

In this expression,

M(A′A(A′A + B′B)−A′A − A′A) ⊂ M(A′A) = M(A′),
M(B′B(A′A + B′B)−A′A) ⊂ M(B′B) = M(B′).

Hence condition (3) implies

A′A(A′A + B′B)−A′A − A′A = B′B(A′A + B′B)−A′A = 0.
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This establishes (4) and (6). Clearly, (5) will have a similar derivation.

These results have two lessons for a graduate student. The first, demonstrated by
equations (4) and (5), is the richness of the family of generalized inverses that was intro-
duced by Rao (1967), going far beyond the Moore-Penrose inverse. In other words, A′A
has a wide variety of generalized inverses with potentially desirable properties. The second,
demonstrated by equation (3), starts with the fact that M(A′) and M(B′) are disjoint but
not necessarily orthogonal under the inner product < x, y > = y′x. However, it is possi-
ble to find a positive definite matrix, say Q, that is a generalized inverse of (A′A + B′B);
Q = (A′A+B′B)−. Then M(A′) and M(B′) are orthogonal under the inner product < x, y >
= y′Qx, i.e., AQB′ = 0.

5. Conclusion

Many beginning statistics graduate students have trouble wrapping their arms around
Rao’s results the first time they are exposed to them (or even the second or third time!).
And, not every beginning graduate student has the wherewithal to understand the more
nuanced ramifications of Rao’s results, let alone the ability to prove those results. Deeper
insights and the ability to “connect the dots” of Rao’s results usually come with time and
experience. But what all aspiring graduate statisticians have, whether they realize it at the
time or not, is the influence of Rao’s work laying the foundation for how they perceive the
nature and function of statistics. It is in this regard that a hugely important contribution of
Rao endures, and will continue to do so as long as graduate students study classical statistics.
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This article is motivated by the author’s pleasant experience when late Professor Rao
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1. Introduction

The author of this article had the pleasure of having a short chat with Professor Rao
many years ago on the sidelines at few conferences in New Jersey and in Europe. At that
time I had no idea that this world class researcher would care about a favor requested by
a mediocre researcher like me. Now, to briefly describe the experience, first consider the
following problem in the context of Mixed Effects models in Growth Curves, which is a
particular problem involving repeated measures.

Consider the linear mixed effects growth curve model based on observations from n
subjects

yi = Xiβi + Zibi + ϵi for i = 1, . . . , n, (1)

where yi is the T × 1 vector of responses from ith subject, Xi and Zi are known design
matrices of dimension T × p and T × q, respectively, βi is a vector of fixed effects, and the
random effects, bi and the error vector ϵ, jointly and independently distributed as

bi ∼ Nq(0, Ψ) (2)

and
ϵi ∼ NT (0, Λi) ,

Corresponding Author: Samaradasa Weerahandi
Email: Weerahandi@aol.com

http://www.ssca.org.in/journal.html


20
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

SAMARADASA WEERAHANDI [Vol. 22, No. 3

where Λi is a within-subject covariance matrix of dimension T × T and Ψ is usually a
between-subject covariance matrix of dimension q × q. The model can also be rewritten in
the form of a structured covariance matrix as

yi = Xiβi + ei, (3)

where
ei ∼ NT (0, Λi + ZiΨZ′

i).

When the covariance matrix of a growth curves model has a special structure, classical
approaches do not provide exact solutions to inference problems even for a situation of a
single growth curve. In this article we concentrate on the case of one group of subjects when
the covariances follow compound symmetric structure, which is also known as the intraclass
correlation structure.

2. Case of intraclass correlation structure

Weerahandi and Berger (1999) considered the particular case of one group of subjects
when the covariance matrix is compound symmetric. In this section, we will concentrate
on the distributional results providing details of Professor Rao’s contribution. To do so,
consider the simple growth curve model

Yit = αi + X′
tβ + ϵit, (4)

where X′
t is the p×1 design vector, β is a p×1 vector of parameters common for all subjects,

αi is a random effect due to subjects, and ϵit is the error term. In particular, when one deals
with polynomial growth curves, the design matrix is of the form

X′
t =

(
1, t, , t2, . . . , tp−1

)
If random effects are all normally distributed, we get

αi ∼ N(0, σ2
α) (5)

and
ϵit ∼ N(0, σ2

e),
where σ2

α and σ2
e are variance components of the model. Moreover, αi and all ϵit terms are

assumed to be independently distributed. Collecting data from ith subject, the model for
the T × 1 vector of responses, Yi, can be written in vector form in terms of the T × p design
matrix X as

Yi = αi1T + Xβ + ϵi , (6)
where 1T is a T × 1 vector of 1s. It is easily seen from (5) that V ar(Yit) = σ2

α + σ2
e and that

Cov(Yit, Yit′) = σ2
α, and hence

Yi ∼ NT (Xβ, Σ) with the covariance matrix Σ = σ2
α1T 1′

T + σ2
eIT (7)



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

EMPLOYING C. R. RAO THEOREMS 21

This means that the covariance matrix of the observations vector has the intraclass structure.
The model (6) is a special case of model (1) with

ZiΨiZ′
i = σ2

α1T 1′

T and Λi = σ2
eIT

Being a matrix with intraclass structure, the inverse of Σ is also an intraclass matrix. More
specifically,

Σ−1 = σ−2
e

[
IT − σ2

α

σ2
e + Tσ2

α

1T 1′

T

]
. (8)

The problem is to make inferences about the unknown parameters β and the variance
components σ2

α and σ2
e . It follows from (7) that the maximum likelihood estimate (MLE) of

β is the weighted least-squares estimate (WLSE)

β̂ = (X′Σ−1X)−1X′Σ−1Y, (9)

which is also known as the generalized least squares estimate (GLSE) of β, where Y=∑Yi/N
is a T × 1 vector, where N is the number of subjects, who were observed over time.

Rao (1967) and Rao (1973) showed that, if the columns of ΣX is a subspace of
the vector space spanned by the columns of X, then the GLSE reduces to the ordinary
least-squares estimate (OLSE), regardless of what Σ is. When Σ is as in (7) and the first
column of X is a vector of 1’s (i.e., an intercept term is present in the growth curve model),
this condition is satisfied and consequently (9) reduces to the OLSE, A covariance matrix
satisfying this condition is referred to as Rao’s covariance structure; see also Ghosh and
Gokhale (1987). Then, the point estimator of β is given by

β̂ = (X′X)−1X′Y (10)

3. Controversy about GLSE reducing to OLSE

When the author of this article submitted the manuscript underlying Weerahandi
and Berger (1999) for publication in Biometrics, a referee disputed the validity of the distri-
butional results outlined in the above section. The referee thought that Rao (1967) results
do not imply that GLSE reduces to the OLSE under the compound symmetric covariances
structure. When I referred to McElroy (1967) the referee did not concede and recommended
rejection of manuscript. To overcome this dilemma, then I provided my own algebraic deriva-
tion, which is simpler to understand, but similar to McElroy (1967), even then the editor
did not reconsider the manuscript.

Then, in desperation, I wrote to Professor Rao seeking help. To my surprise, in
two weeks I received a letter in regular mail from Professor Rao stating something like
“Weerahandi, not only your assertion is correct, but also it is valid under milder conditions
and for greater class of covariance structures”. When I sent the letter to the editor, she
conceded and accepted the manuscript with some minor modifications. So, I am extremely
grateful to late professor Rao for his support getting the article published.
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4. Generalized inference

Before we review Weerahandi and Berger (1999) results of relevance, let us briefly
describe the generalized tests introduced by Weerahandi (1987) and Tsui and Weerahandi
(1989. In one-liner, generalized tests are based on random quantities known as General-
ized Test Variables (GTV) that are functions of (i) observable random quantities, (ii) their
observed values, and (iii) unknown parameters, defined in such a way that

(a). the distribution of GTV is free of unknown parameters, and

(b). at the observed sample points, the observed value of GTV will contain no
unknown parameters under the null hypothesis. If a GTV is also monotonic for deviations
from the null hypothesis, then it can be used to define extreme regions, on which generalized
p-values can be based.

Often GTVs can be derived based on what is known as Generalized Pivotal Quantities
(cf. Weerahandi (1993)), abbreviated as GPQs. To be specific, a GPQ of a parameter is also
a function of (i) observable random variables, (ii) their observed values, and (iii) unknown
parameters, defined in such a way that

(a). its distribution does not depend on nuisance parameters, and

(b). at the observed sample points, its observed value becomes equal to the parameter
of interest.

Now getting back to the current problem, although GLSE reduce to OLSE under
the compound symmetric covariance structures, even for models involving just one group
of subjects, classical approach to inference fails to provide classical confidence bounds or
tests of hypothesis concerning even a single parameter of the model. This is because the
distribution of OLSE involves nuisance parameters. To be specific, despite the fact that
GLSE is the same as the OLSE, the distribution β̂ given by

β̂ ∼ N(β, (X′Σ−1X)−1/N) (11)

involves the unknown variance components.

Nevertheless, Weerahandi and Berger (1999) demonstrated, how generalized tests can
be constructed for testing hypotheses concerning one or more component of β. To be specific.
they considered the hypotheses on individual components of the form

H0 : βj ≤ β0

and provided a generalized test based on the independent sufficient statistics

β̂j ∼ N(βj, X′Σ−1X)−1
jj /N) j = 1, · · · p

S2
e =

∑
i

∑
t

(Yit − X′
tβ̂−(Yi − Y ))2,

S2
w = T

∑
i

(Ȳi − Ȳ )2 (12)

due to Lehman (1986), where Ȳi is the sample mean for ith subject, Ȳ is the sample mean of
all the subjects,and (X′Σ−1X)−1

jj is the jjth element of the covariance matrix (X′Σ−1X)−1.
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Let

Sj(σ2
e , σ2

w) = 1√
N

(X′Σ−1X)1/2
jj and σ2

w = σ2
e + Tσ2

α. (13)

The sums of squares appearing in (11) are distributed as

W1 = S2
e

σ2
e

∼ χ2
ν1 , where ν1 = N(T − 1) − p + 1, and

W2 = S2
w

σ2
w

∼ χ2
ν2 , where ν2 = N − 1. (14)

Then by taking the generalized approach to inference, Weerahandi and Berger (1999) showed
that

p = Pr
 Z√

W/ν
≥

√
ν

(b0 − βj)
Sj( s2

e

B
, s2

w

1−B
)

 , (15)

is a generalized p-value appropriate for testing the above null hypothesis, where

B ∼ Beta(ν1/2, ν2/2) and W = W1 + W2 ∼ χ2
ν : ν = ν1 + ν2 = NT − p

Although, they did not address the problem of interval estimation, one can construct general-
ized confidence Intervals on any single component using the Generalized Confidence interval
approach suggested by Weerahandi (1993). Using the notion of Generalized Pivotal Quan-
tity, one can also construct generalized confidence ellipsoids for few components of interest,
as we demonstrate in the next section.

Taking that approach one can tackle problems involving more complicated compound
symmetric covariance structures and number of groups of subjects, in a one-way layout
setting as Chi and Weerahandi (1998) did. The Weerahandi and Berger (1999) results itself
can be extended to make inferences on a number of regression coefficients, as we further
discuss in the following sections.

5. Generalized inference on a vector of coefficients

Weerahandi and Berger (1999) results can be extended way beyond the problem they
considered. Confining to the distributional results concerning Rao’s covariance structure,
consider the problem of constructing confidence regions on a subset of β, say βj, a sub
vector of β, or β itself. The generalized inference on βj can be constructed based on the
foregoing distributional results along with the following:

β̂j ∼ N(βj, (X′Σ−1X)−1
jj /N), (16)

where (X′Σ−1X)jj is the jjth subset of (X′Σ−1X) corresponding to the β coefficients of
interest. Assuming positive definite covariance matrices, we can standardize (16) as

Z =
√

N(X′Σ−1X)1/2
jj )

(
β̂j − βj

)
∼ N(0, I), (17)
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Now it is evident that, if the covariance matrix Σ were known, testing of hypotheses
concerning βj or confidence ellipsoids can be constructed using the χ2 statistic,

H̃ = N
(
β̂j − βj

)′ (
X′Σ−1X)jj

) (
β̂j − βj

)
=

(
β̂j − βj

)′
(S2

j (σ2
e , σ2

w)jj)
(
β̂j − βj

)
∼ χ2

pj
(18)

where pj is the dimension of βj

5.1. Hypothesis testing

Typically the covariance matrix is unknown, and in that case, the generalized infer-
ences can be performed based on the generalized Hotelling T 2 statistic

H =
(
β̂j − βj

)′
(S2

j (s2
e/W1, s2

w/W2)jj)
(
β̂j − βj

)
, (19)

because

s2
e

W1
is a GPQ for σ2

e and s2
w

W2
is a GPQ for σ2

w. (20)

First, to perform hypotheses testing concerning sub-vectors of coefficients βj, consider null
hypotheses of the form

H0 : βj = β0,

where β0 is a certain hypothesized value. Under the null hypothesis, we get from (17)

Z
√

N(X′Σ−1X)1/2
jj )

(
β̂j − β0

)
= ZSj(σ2

e , σ2
w)jj, where Z ∼ N(0, I). (21)

By taking advantage of the two results (21) and (18), we can define a potential GTV,
a generalized Hotelling T 2 as

T 2 =
(
β̂j − β0

)′
Sj(σ2

e , σ2
w)jj

(
(S2

j ( s2
e

W1 ,
s2

w

W2)jj

)−1

Sj(σ2
e , σ2

w)jj

(
β̂j − β0

)

= Z′
(

S2
j ( s2

e

W1 ,
s2

w

W2)jj

)−1

Z. (22)

The above random quantity is indeed a GTV, because (i) it is distributed free of unknown
parameters, (ii) being a Hotelling T 2 type statistic, it tends to increase for deviations from the
null hypothesis, (iii) its observed value

(
β̂j − βj

)′ (
β̂j − β0

)
is free of nuisance parameters,

namely the unknown variances. Therefore, the random quantity defined by (22) is indeed a
valid GTV. Therefore, the hypothesis can be tested based on the generalized p-value

p = Pr(Z′(S2
j ( s2

e

W1
,

s2
w

W2
)−1

jj Z) >
(
β̂j − β0

)′ (
β̂j − β0

)
).

The p-value is easily computed by numerical integration or Monte Carlo integration, as we
further describe below.
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5.2. Confidence regions

Generalized confidence ellipsoids for βj are easily computed based on the GPQ cor-
responding to the above GTV. For example, the 100γ% generalized regions is constructed
as follows. First, find the cdf of T 2 as

FT (t) = Pr

((
β̂j − βj

)′
S2

j ((σ2
e , σ2

w)1/2
jj (S2

j ( s2
e

W1
,

s2
w

W2
)−1

jj )S2
j ((σ2

e , σ2
w)1/2

jj

(
β̂j − βj

)
≤ t

)

=
(

Z′(S2
j ( s2

e

W1 ,
s2

w

W2)−1
jj )Z ≤ t

)
. (23)

Then, find the quantile qγ such that FT (qγ) = γ.

The generalized confidence ellipsoid for βj implied by the above results is(
β̂j − βj

)′ (
β̂j − βj

)
≤ qγ,

because at the observed sample points, mid terms of (23) cancel out, The computation is
carried out as follows:

(a). Generate large number, say M , samples from Z ∼ N(0, I),

(b). Generate M random numbers from χ2
ν1 and χ2

ν2 ,

(c). Compute and sort the values of
(
Z′(S2

j ( s2
e

W 1 , s2
w

W 2)jj)Z
)
,

(d). Estimate the quantile qγ as the Mγth value of the sorted data.

(e). Construct the generalized ellipsoid using the above formula.

6. Discussion

Further research is necessary to extend forgoing results to more complicated mod-
els and hypotheses. Of particular interest is RANOVA (repeated measures ANOVA) and
RMANOVA (repeated measures MANOVA) type models involving a number of groups of
subjects. Growth curve models involving a number of groups of subjects is a particular case of
RMANOVA. Chi and Weerahandi (1998) provided some preliminary results on RMANOVA
and provided some guidance on how to handle such problems as multiple comparisons, but
did not directly address them. Moreover, there is a need to extend such results to Two-Way
RMANOVA, when there are two factors of interest, say treatments groups and groups of
subjects characterized by some subject attributes.

One may also consider other approaches to inference, such as the Parametric Boot-
strap (PB) approach and the Generalized Fiducial (GF) approach. However, it should be
noted, as argued by Ananda et al. (2022), that in most applications, these two methods tend
to be subsets of the generalized inference approach. In other words, the latter can reproduce
or beat PB based tests and GF based tests, as shown by Ananda et al. (2022).

Kurata (1998) provided a generalization of Rao’s Covariance Structure. The results
in that article provided distribution theory necessary to tackle greater class of applications
combined with generalized approach to inference to handle nuisance parameters.
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In a slightly different context, Ghosh and Sinha (1980) studied the criterion robustness
of the standard likelihood ratio test (LRT) under the multivariate normal regression model
and also the inference robustness of the same test under the univariate set up for certain
non-normal distributions of errors. Restricting attention to the normal distribution of errors
in the context of univariate regression models, they derived conditions on the design matrix
under which the usual LRT of a linear hypothesis (under homoscedasticity of errors) remains
valid if the errors have an intraclass covariance structure. The conditions hold in the case
of some standard designs. For further related results, the reader is referred to Rao (1967),
Zyskind (1967), and Mukhopadhyay and Sinha (1980).
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In 1988 when Professor CR Rao joined the statistics department at Penn State Uni-
versity, marked the beginning of a dramatic increase in the number of interactions with the
world’s greatest statisticians. As described in the article published in the Notices of the
American Mathematical Society (Vol. 69, No. 6, pp 678-692), CR was invited to join Penn
State after his collaborator at University of Pittsburgh passed.

Department Head Thomas P. Hettmansperger of Penn State invited him to accept the
inaugural Eberly Family Chair in Statistics, funded in 1986 by the Eberly Family Charitable
Trust. CR and his wife Bhargavi moved to State College, PA, purchased a town home a short
walk to a bus stop and a park and became active in the community for the next 21 years.
Although his initial appointment was for three years, as he approached his 70th birthday
the administration waived the mandatory retirement age, and Rao remained active another
10 years and retired in 2001 at age 80.

During his tenure at Penn State, he was regularly recognized for his groundbreaking
work in statistics and in addition to his earned Ph.D. and Sc.D. from Cambridge University,
UK, he received 27 honorary doctoral degrees from universities in 16 countries around the
world.

He was elected Fellow of the National Academy of Sciences, was awarded the Wilks
Medal from the American Statistical Association, the Guy Medal in Silver from the Royal
Statistical Society, the Megnadh Saha Medal of the Indian National Science Academy, and
J.C. Bose Gold Medal of Bose Institute, and the Mahalanobis Centenary Gold Medal of the
Indian Science Congress. He has been the president of the International Statistical Institute,
the International Biometric Society, and the Institute of Mathematical Statistics, USA.

The Government of India honored him with the second highest civilian award, Padma
Vibhushan for “outstanding contributions to Science and Engineering/Statistics” and insti-
tuted a cash award in honor of C. R. Rao, “to be given once two years to a young statistician
for work done during the preceding three years in any field of statistics.”

Shortly after his retirement, in 2002 he was awarded the National Medal of Science,
conferred by US President George W. Bush, on June 12, 2002, at the White House. His
citation read: “for his contributions to the foundations of statistical theory and multivari-
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ate statistical methodology and their applications, enriching the physical, biological, and
mathematical, economic, and engineering sciences.”

Along with these many achievements, as the Eberly chaired professor of statistics at
Penn State, he continued an active research program as Director of the Centre for Multivari-
ate Analysis at Penn State, and he continued to teach courses in multivariate analysis and
direct graduate students Ph.D. research.

Speaking as the department head during 15 years of his tenure at Penn State, CR
Rao was the catalyst for bringing many international visitors from among the world’s leading
statisticians to Penn State, which benefited our faculty and graduate students and increased
the stature of the department. He endowed several lectureships, the C. G. Khatri and P.
R. Krishnaiah Memorial Lectureships, and the CR and Bhargavi Rao Prize which brought
renowned speakers to Penn State.

Long after his retirement, CR continued to attend lectures and colloquia events at
Penn State and continue to engage in discussions with graduate students during their Ph.D.
defense presentations. His impact on the scientific vibrancy of the department was immense
and long lived.
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“One could say if Europe is the mother of differential calculus based on deterministic
analysis, India could be called the mother of statistics. When I think of modern statistics,
Dr. C.R. Rao features on the top of the list. He once said that “statistics is the technology
of finding the invisible and measuring the immeasurable.”

- Abdul Kalam, Bharat Ratna (past president of India)

We, the authors of this short note, met Prof. C. R. Rao when we were students at
the Indian Statistical Institute (ISI), Kolkata. Prof. Rao spent the morning of his visit at
the hostel dining room, having breakfast with us, and sharing anecdotes and stories. Fifteen
years have passed since that morning, and we have spent these years almost entirely in the
United States, pursuing higher education and academic careers. Undoubtedly, our education
and careers owe a great deal to the heritage of Statistics in India, and the growth of Statistics
over the better part of the last century, both of which were influenced greatly by Prof. C.
R. Rao. In what follows, we attempt to capture a few things we remember as lessons from
his life and anecdotes that continue to guide and shape us today.

Integration of research and teaching

When Prof. Rao joined Indian Statistical Institute around 1942, he was one of the 15
or so technical workers at the institute, led by P. C. Mahalanobis, known as the ‘Professor’ at
ISI, who did teaching and some research. There were not many textbooks on Statistics yet,
and the teachers labored tirelessly turning original research papers into teaching materials,
translating the state-of-the-art into classroom materials. During this time as a ‘technical
apprentice’, Rao discovered some of the foundational results in classical statistics, that are
still taught in any undergraduate statistics inference course anywhere in the world. One of
these was the famous Cramér-Rao inequality that provides a lower bound on the variance of
unbiased estimators, indicating the minimum possible variance that any unbiased estimator
of a parameter can achieve. As Rao recounts1, he was presenting a large sample result by
Fisher regarding the lower limit of the error of an estimate, and a student in his class2

1The authors of the present article were fortunate to hear this story from Prof. Rao when he visited the
Boys’ hostel at ISI Kolkata.

2DasGupta (2024) identifies this student as V. M. Dandekar.
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asked if a similar result would hold true for small sample size, which is often the case in
real application. Rao went home and worked out the solution the same night and answered
the student next morning (Champkin, 2011). Due to wartime restrictions, it took two years
for Rao’s paper to finally appear in the Bulletin of the Calcutta Mathematical Society (Rao,
1945). In Sweden, Harold Cramér had derived an analogous result, and Neyman linked the
two scientists’ name. The beauty of the result is that it holds true for any data distribution
under mild regularity conditions.

This story serves as a reminder of why cutting-edge research questions should be
blended with teaching statistics, and why one should always encourage students to critically
engage with the subject and ask good and possibly difficult questions.

Do not bury the lede

The 1945 paper Rao (1945) has another seminal result – Rao-Blackwellization – which
provides a simple way to improve an estimator by conditioning on a sufficient statistics. This,
too, was being discovered contemporaneously by David Blackwell in 1947, and the names
were combined by Joseph Berkson. Interestingly, as Champkin (2011) points out, Rao did
not mention this result in the Introduction, which probably contributed towards it being
discovered later. Jokingly, Rao said “It was my first paper, and I was not aware that the
introduction is generally written for the benefit of those who do not want to read the paper.”
This story has now become part of the folklore in our community, and it has a profound
implication. For us, it is a reminder of one of the basic rules of journalism: “do not bury
the lede”, i.e., writers should present the most important information at the beginning of
an article or news story. However, we should note here that missed attribution is not an
uncommon phenomenon in statistics or machine learning, and while Rao got his credit for the
seminal results, Stiegler’s law of eponymy (Stigler, 1980) is still commonplace (and perhaps
worsening?).

Geometric intuition

It is worth noting that the seminal 1945 paper was written when Rao was only 25
years old, and yet to obtain a PhD. The paper not only introduced Cramér-Rao lower bound
and Rao-Blackwellization, it ‘introduced differential geometry to statistical inference’ and
opened the field of information geometry. While presenting a geometric interpretation of the
parametric probability densities, Rao defined a ‘population space’ where Fisher information
is used as a distance between densities and the invariant measure turns out to be the square
root of the information matrix: an idea containing the essence of Jeffreys’ prior. As Efron
notes in ‘C. R. Rao’s Century’ (Efron et al., 2020), ‘A notable characterization of Rao’s
work, and Fisher’s too, is its reliance on geometric intuition, substituting what, for me, are
vivid pictures in place of rote algebra and analysis.’ Such ‘geometric intuition’ has probably
been a distinguished characteristic of both the authors’ education: the best parts of our
theoretical or methodological pursuits were influenced by the geometric intuition about the
low-dimensional structures in high-dimensional spaces.
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LSI and Impact on ISI education

A major legacy of Prof. C. R. Rao is his iconic Wiley textbook ‘Linear Statistical In-
ference and Its Applications’ (LSI) (Rao, 1965). Its encyclopedic breadth aside, what makes
this book special is that Rao managed to concisely present and contextualize all the abstract
mathematical machinery required, not just to learn, but to also develop, statistical methods.
If we view Statistics as a vehicle that researchers use to advance scientific knowledge, LSI can
play the role of not only a driver’s manual, but also a mechanic’s manual. The book starts
with vector spaces and covers linear algebra and probability before introducing statistical
theory. Over the last 50 years since its publication, LSI has been used and is still used by
statisticians worldwide. Don Rubin once said, “Bill suggested that I turn to Rao’s famous
textbook on linear models for its straightforward mathematical clarity, at least relative to
some other “math-stat” texts that were in use at the time. Being an official dinosaur, I still
use it as a “go to” resource” (Efron et al., 2020). To quote Efron: “When the fat second
edition of Rao’s magisterial book on linear statistical inference arrived on my desk, it was a
big event in the department, not just for me (The book is still in use, though it has gotten
a little beat up)” (Efron et al., 2020). One can get almost all the fundamental concepts
in probability, linear and abstract algebra, distribution theory, linear models, the theory of
least squares and analysis of variance, large sample techniques, and multivariate analysis
between the two covers of LSI. In fact, in the preface of LSI, Rao states, “the aim has been to
provide in a single volume a full discussion of the wide range of statistical methods useful for
consulting statisticians and, at same time, to present in a rigorous manner the mathematical
and logical tools employed in deriving statistical procedures, with which a research worker
should be familiar.”

Personally, this book has served the role of a statistical dictionary throughout our aca-
demic journey. This comprehensive treatment of statistical methods, along with all the ab-
stract tools needed to derive them, is also a signature style of our undergraduate and graduate
(B.Stat. and M.Stat.) education [https://www.isical.ac.in/∼deanweb/brochure bstat.pdf]
at ISI, a learning experience that shaped both authors’ scholarly outlooks. Indeed, the
B.Stat. and M.Stat. degrees came out of a number of courses in statistics that were devel-
oped by C. R. Rao as the head of the Research and Training School at ISI. The three-year
long B. Stat. and two-year long M. Stat. program prepared students in various aspects of
statistics over the course of ten semesters. Every semester had five courses, and many of
the earlier ones would give student rigorous exposure to skills that Rao thought Statisticians
should need in their arsenal. Joining the B. Stat. program straight out of high school, we
were introduced to three-semester long sequences of real analysis, probability, linear (includ-
ing one course on abstract) algebra, computer programming (in lower level languages such
as C or Fortran) data structures, two-semester long elective on a domain science of one’s
choice (economics, physics or biology), and only one sequence on Statistical Methods where
key ideas will be introduced in intuitive albeit somewhat informal manner. Only after these
introductory courses will come the more formal statistical topics in their full glory: linear
models, parametric and nonparametric inference, stochastic processes, sample survey and
design of experiments. By then, the students are well-trained to think through abstract con-
cepts and recognize them in action in commonly used statistical methods. This integration
of abstract and real enabled a generation of students to comfortably navigate between the
two worlds.

https://www.isical.ac.in/~deanweb/brochure/brochure_bstat.pdf
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Our professors, many of them leading researchers in their fields, would take advantage
of this unique curriculum to creatively teach important concepts in a classroom that left long-
lasting impressions on us. As a concrete example of this pedagogical style, we recall how
we learned about linear regression in our first year B. Stat. Statistical Methods courses.
We did not have any textbook. It was typical of our professor (Prof. Probal Chaudhuri) to
come to class, pose a statistical question in simple terms, and encourage us to solve them
using the tools we learned from our other courses such as analysis, algebra, and computer
programming.

In one class, he drew a bivariate scatter plot of X and Y on the blackboard, and
asked us to find the formulae for a “reasonable” straight line (i.e. two numbers, a slope β0
and an intercept β1) that passes through the plot. After a lively discussion in the classroom
on how to even define “reasonable”, the class settled on two loss functions: the squared error
loss ∑n

i=1(yi − β0 − β1xi)2 and least absolute deviation (LAD) ∑n
i=1 |yi − β0 − β1xi|, of two

variables β0 and β1. We chose to focus with the first because it is differentiable. Students
said they have only learned how to differentiate with respect to one variable in high school.
So the professor asked: what if I tell you the value of β0? Can you then find the best β1
by taking a derivative? Alternately, if I tell you the value of β1, can you find the best β0?
After some back-of-the-envelope calculations, the students came up with formulae that only
involved some weighted means. Then the professor asked: if you keep computing β0 and β1
alternately by plugging in the most recent value of the other, would you eventually find their
best values? The class was split: some of us thought it will surely work, while others were
more skeptical. At this point, the professor reminded us that we don’t need to wonder, we
already knew enough programming to implement this strategy and see for ourselves. That
programming exercise was our Statistics homework for the day. By the time we solved the
homework problem and tried it on multiple synthetic data sets that we created ourselves,
we had not only learned the concept of simple linear regression, but also a way to solve it
using knowledge from our programming class.

We came back to the same problem later in the course, after learning about partial
derivatives in other classes, and solved it analytically. This time we not only learned how the
closed form solutions of β0 and β1 in simple linear regression looked and why the formulae
made intuitive sense, we also recognized that even though this strategy is not applicable to the
LAD problem, the alternating minimization algorithm introduced earlier is still a potential
path to pursue. We revisited the linear regression problem a third time in our Statistics
Methods course after we learned enough about vectors and matrices in our linear algebra
class. This time, when solving the problem with our newly acquired skills, we recognized that
the complicated formulae we derived earlier using multivariable calculus was a special case of
a very simple-looking matrix-valued formulae: β̂ = (X⊤X)−1X⊤Y , which even generalized
to regression with more than two predictors. This experience helped us appreciate the power
of reformulating a complex statistical problem in the language of matrix and vectors.

This pedagogical theme resonated throughout our entire 3-year undergraduate (B.
Stat.) and 2 year Masters (M. Stat.) training in ISI. We received rigorous training in real
and complex analysis, probability and measure theory, differential equations, and were able
to see their application in designing statistical methods. The upshot of this learning style was
that Statistics was never about formulae or recipe, it was the experience of solving a realistic
problem by combining our intuition with some incredibly powerful yet seemingly disjoint
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abstract techniques. Later in our careers, we benefitted a lot from this outlook while doing
both methodological and interdisciplinary research. Whenever we tried to adopt this learning
style in our own undergraduate classes, we appreciated Rao’s vision of presenting rigorous
mathematical and logical tools in tandem with statistical methods. A solid foundation in
the abstract tools can help students feel the joy of discovery when learning about statistical
methods, and appreciate them through a developer’s lens.

Importance of domain knowledge

Fifteen years ago, at the breakfast table in ISI boys’ hostel, we asked Professor Rao
for his advice to junior statisticians like us. He offered many valuable insights, but one in
particular we remember clearly to this date. He advised us to study, along with statistics,
another domain science rigorously. He stressed that it does not matter what the subject is:
it could be physics, chemistry, biology or economics. But if we don’t acquire expertise in
another domain, he said, someone else will get the credit for our core innovation. Coming
from a legend of mathematical statistics, this seemed quite unusual at the moment. We both
took elective biology courses during our B. Stat. years, but never fully grasped their role in
an otherwise quantitative curriculum. Years later, while doing our postdocs, each of us would
spend a fair part of two years in molecular biology labs (SB in Brown/Celniker lab at LBNL,
JD in Dave lab at Duke), learning from the domain experts in an immersive environment.
Our postdoc advisors, Bin Yu and David Dunson, stressed the crucial importance of this
immersive experience for carrying out good scientific work. The experience fundamentally
changed the way we approach and conduct research, and also form new collaborations. In
our academic journey through this era of data science and its widespread impact across
disciplinary boundaries, Prof. Rao’s words remain all the more relevant.

Prof. C. R. Rao’s significant legacy can perhaps be best summarized by the popular
Sanskrit phrase: deepena prajjwalito deepah, meaning ‘from one lamp, another is lit.’ Prof.
Rao’s name will be remembered for a long time to come as one of the ‘developers of statistics
as an independent discipline,’ through his many path-breaking contributions, his role in
statistics education, and his influence on the numerous statisticians like us in the present
and future generations.
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Abstract
In this paper, we develop a methodology for testing the hypothesis that the true value

of a parameter lies in the union of multiple cones against the alternative that it does not.
We propose a test statistic for such problems and derive its novel asymptotic null distri-
bution. The least favourable asymptotic null value and the corresponding least favourable
asymptotic null distribution are obtained. The proposed test is uniformly more powerful
than conventional tests discussed in the literature. Some illustrative examples are provided
and a simulation study evaluating its performance is presented.
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1. Introduction

Testing problems are typically formulated as H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.
Usually, the null Θ0 as well as the alternative Θ1 are simple sets such as singletons or linear
spaces. There are however various applications in which the null and/or the alternative are
more complicated sets. In particular, we consider testing

H0 : θ ∈
K⋃

i=1
Ci versus H1 : θ ̸∈

K⋃
i=1

Ci, (1)

where C1, . . . , CK are arbitrary distinct convex cones in Rm defined by systems of linear
inequalities. In this paper we address the case where m = 2. Some comments on the
corresponding theory for general m are deferred to Section 7. It is further assumed that
there exists an unconstrained estimator Sn for θ ∈ R2 such that as n → ∞

√
n(Sn − θ) ⇒ N2(0, Σ) (2)
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where ⇒ denotes convergence in distribution and Σ is a positive definite matrix. As indicated
below, there are many problems of interest that can be formulated as in (1).

Robertson and Wegman (1978) were among the first to test hypotheses of the type (1)
but with K = 1. This setting is known in the literature as testing against an ordering and
classified by Silvapulle and Sen (2004) as a Type B problem. In general the union of convex
cones is neither convex nor a cone. Therefore Type B problems are a simple special case
of (1). Other special cases of (1) in R2 have also been addressed in the literature. Berger
and Sinclair (1984) examined the problem of testing a null hypothesis that the parameter of
interest belongs to a union of linear subspaces which they applied to the testing of symmetric
spacings among ordered normal means. Another paper involving linear spaces is by Berger
(1997) who tested H0 : min{|θ1|, |θ2|} = 0 against H1 : min{|θ1|, |θ2|} > 0. Thus under the
null the pair (θ1, θ2) lies on the axes whereas under the alternative it does not. If θi measures
the effect of treatment i then the null states that at least one treatment has no effect whereas
under the alternative both treatments have effects.

This paper is organized as follows. In Section 2, we discuss the preliminaries related
to testing (1). We introduce relevant notations and setup for the testing problem. Then we
define the proposed test statistic and show that it is identical to the likelihood ratio test
statistic and to the intersection union test statistic for (1) in some cases. In Section 3 we
consider the problem of testing (1) for two quadrants in R2. We obtain the least favourable
null values and the least favourable null distribution of the proposed test statistic for finite
samples. In Section 4, we consider the union of multiple distinct arbitrary convex cones in R2

and obtain the least favourable null values along with the least favourable null distribution
of the proposed test statistic for large samples. In Section 5, some examples and testing
problems in R2 are provided as illustration. A simulation study is performed to evaluate the
proposed test in Section 6. Finally, in Section 7 we provide a brief summary of our work and
some possible extensions.

2. Preliminaries

We begin with some notations. Let ΠΣ(S | C) denote the projection of S onto C with
respect to Σ and let ∥S∥2

Σ be the respective norm. Note that when Σ = I the latter reduces
to the usual projection and the standard euclidean distance. For the hypotheses in (1), we
propose the test statistic

Tn = min{n∥Sn − ΠΣ(Sn | C1)∥2
Σ, . . . , n∥Sn − ΠΣ(Sn | CK)∥2

Σ}, (3)

where Sn was described in (2). In general the variance matrix Σ is unknown in which
case Tn is computed with respect to a consistent estimator Σn thereof. It is clear that Tn

essentially minimizes the squared distance between Sn and θ over various values of θ in Θ0.
The following result shows the relationship between the proposed test, the likelihood ratio
test (LRT) and the intersection union test (IUT).

Theorem 1: If S follows a N2(θ, Σ) distribution with known Σ then the statistic (3) as
a function of S is the LRT statistic for the hypotheses in (1). Moreover, (3) is the IUT
statistic if and only if the cones C1, . . . , CK are all congruent.

Theorem 1 provides a meaningful motivation for using the statistic (3) when (2) holds
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as n → ∞ as well as in situations in which Σ is unknown but can be consistently estimated
from the data. Although under the stated conditions the LRT and the IUT statistics coincide,
their critical values are in general different. Further note that if we set Gn = Σ−1/2Sn then√

n(Gn − η) ⇒ N2(0, I) where η = Σ−1/2θ. In addition testing the hypotheses (1) using
Sn is equivalent to testing

H0 : η ∈
K⋃

i=1
C∗

i versus H1 : η ̸∈
K⋃

i=1
C∗

i

using Gn where C∗
i = Σ−1/2Ci = {Σ−1/2θ : θ ∈ Ci} are the transformed cones. Therefore

without any loss of generality we will henceforth primarily consider the case where Σ = I.

3. The case of two cones

We start by investigating the important special case of two quadrants. Let C1 = {θ ∈
R2 : θ1 ≥ 0, θ2 ≥ 0} denote the positive quadrant and let C2 = {θ ∈ R2 : θ1 ≤ 0, θ2 ≤ 0}
denote the negative quadrant. Consider testing the hypotheses

H0 : θ ∈ C1 ∪ C2 against H1 : θ ̸∈ C1 ∪ C2 (4)

using a single observation S = (S1, S2)T from N2(θ, I). Note that under the null θ1 and θ2
are either both non-negative or both non-positive. This problem is of independent interest.

Theorem 2: Suppose that S follows N2(θ, I). Then the LRT statistic for (4) is

T = min{S2
1 , S2

2}I(S /∈ C1 ∪ C2). (5)

Furthermore for all c ≥ 0 we have

sup
θ∈Θ0

Pθ(T ≥ c) = 1
2P(χ2

0 ≥ c) + 1
2P(χ2

1 ≥ c). (6)

Equation (6), where χ2
i is a chi–square RV with i degrees of freedom and χ2

0 ≡ 0,
provides us with a formula with which we can compute the p–values associated with the
test statistic (5). The value of θ ∈ Θ0 for which (6) holds is called the least favourable
configuration or null value. The distribution of the statistic T when θ is the least favourable
is called the least favourable null distribution. The proof of Theorem 2 shows that the least
favourable configurations are of the form (0, ±∞) and (±∞, 0), i.e., they lie on the axes at
an infinite distance from the origin while the least favourable null distribution of T is given
by (6). It follows that for any other value of θ ∈ Θ0 and any c

Pθ(T ≥ c) <
1
2P(χ2

0 ≥ c) + 1
2P(χ2

1 ≥ c).

Letting T (θ1, θ2) denote the LRT statistic at (θ1, θ2) we can restate the conclusion of The-
orem 2 in the language of stochastic order relations (Shaked and Shanthikumar (2007)) as
T (θ1, θ2) ⪯st T (0, ±∞) and T (θ1, θ2) ⪯st T (±∞, 0) where ⪯st denotes the usual stochastic
order. Both relations hold for all (θ1, θ2) ∈ Θ0. It can also be shown that T (0, 0) ⪯st T (0, θ2)
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and T (0, 0) ⪯st T (θ1, 0). In particular, T (0, 0) is distributed as (1/2)χ2
0 + (1/2) min{Q1, Q2}

where Q1 and Q2 are independent χ2
1 RVs.

In the proof of Theorem 2 a closed form expression for Pθ(T ≥ c) was found facilitating
the analysis and enabling one to find the least favourable configuration and null distribution.
In general though, Pθ(T ≥ c) is not amenable to a simple analysis nor is it given by a simple
formula. Consequently, an asymptotic analysis yielding workable formulas of the type (6) is
necessary.

4. The general case

In this section a general asymptotic theory for multiple cones is developed. First note
that any convex cone in R2 is of the form

C = conic(u, v) = {λ1u + λ1v : λ1 ≥ 0, λ2 ≥ 0},

where u and v are unit vectors lying on the extreme rays of C. Further note that the angle
between u and v, i.e., ∡(u, v) is smaller than π.

Let C1, . . . , CK be K distinct convex cones where Ci = conic(ui, vi) for i = 1, . . . , K.
For convenience it is further assumed that for e1 = (1, 0)T we have:

∡(e1, ui) < ∡(e1, vi)

for all i and
∡(e1, u1) < ∡(e1, u2) < · · · < ∡(e1, uK).

Thus the cone C1 is the cone whose rays make the smallest angle with the positive real axis
followed by the cone C2, and so forth. Similarly within each cone the ray associated with ui

has a smaller angle than the ray vi.

We say cones Ci and Cj are adjacent if the interior of the cone conic(vi, uj) is a subset
of Θ1. The angle between vi and uj may be smaller than π/2, between π/2 and π or larger
than π. If ∡(vi, uj) ≤ π/2, we set

Rij = conic(vi, uj). (7)

If π/2 < ∡(vi, uj) ≤ π, we further divide the cone conic(vi, uj) into three conic regions

Ri(vi) = conic(vi, uj∗), R′
ij = conic(uj∗, vi∗), Rj(uj) = conic(vi∗, uj) (8)

where uj∗, vi∗ ∈ conic(vi, uj), uj∗ is orthogonal to uj and vi∗ is orthogonal to vi. Finally if
∡(vi, uj) > π, then we divide the region bounded by ui and vj into three conic regions

Ri(ui) = conic(ui, ui∗), R′′
ij = conic(ui∗, vj∗), Rj(vj) = conic(vj∗, vj) (9)

where ui∗, vj∗ ∈ conic(ui, vj), ui∗ is orthogonal to ui and vj∗ is orthogonal to vj.

Remark 1: If K = 2 the cones C1 and C2 are doubly adjacent. Moreover, if ∡(v1, u2) ≤ π/2
and ∡(v2, u1) ≤ π/2 then we label the regions between the cones by R12 and R21. The
modification when the above mentioned angles are larger than π/2 is obvious.
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The following result provides the number of possible regions between the cones or
between their polar cones for various geometric arrangements of the cones.

Lemma 1: Let N , N ′ and N ′′ denote the number of regions of the type Rij, R′
ij and R′′

ij

respectively. Then N + N ′ + N ′′ = K where N ≤ K, N ′ ≤ 3 and N ′′ ≤ 1. In particular, if
N ′′ = 1, then N ≤ K − 1 and N ′ ≤ 1.

It is well known that ΠI(S | Ci) = 0 if and only if S ∈ C0
i where C0

i denotes the polar
cone of Ci. Thus, it follows that ΠI(S |

K⋃
i=1

Ci) = 0 if and only if S ∈
K⋂

i=1
C0

i . This event

has a positive probability if the set
K⋂

i=1
C0

i ⊃ {0} and zero probability if
K⋂

i=1
C0

i = {0}. In the

first case we denote the set
K⋂

i=1
C0

i by R′′
pq as defined above whereas in the latter case we set

R′′
pq = ∅. In other words:

N ′′ =


0 if

K⋂
i=1

C0
i = {0}

1 if
K⋂

i=1
C0

i ⊃ {0}
,

We now introduce some useful additional notations.

Definition 1: Let R = conic(u, v) and denote its interior angle by γ = ∡(u, v) where
0 < γ ≤ π/2. Let S be a N2(0, I) RV. Then conditional on S ∈ R we define

χ2
1,1(γ) = d2(S, bd(R)) = min{d2(S, ray(u)), d2(S, ray(v))} (10)

where d(·, ·) is the euclidean distance and bd(R) is the boundary of the cone R defined by
the rays ray(u) and ray(v).

For example when R is any quadrant then γ = π/2 and P(χ2
1,1(π/2) ≥ c) = [P(χ2

1 ≥
c)]2. When 0 < γ < π/2 we have the following, numerically simple to evaluate formula.

Lemma 2: For c ≥ 0 and R as in definition 1

P(χ2
1,1(γ) ≥ c, S ∈ R) = γ

2π
(P1 + P2 + P3 + P4) (11)

where P1 = P(D1 ≥
√

c, D2 ≥
√

c), P2 = P(D1 ≥
√

c, D2 ≤ −
√

c), P3 = P(D1 ≤ −
√

c, D2 ≥√
c), P4 = P(D1 ≤ −

√
c, D2 ≤ −

√
c) and (D1, D2)T has a bivariate normal distribution with

mean 0, unit variances and correlation − cos(γ).

Now let Ci and Cj be adjacent cones with an angle 0 < δ ≤ π between their boundaries.
By definition 1, if 0 < δ ≤ π/2 then R = Rij and γ = δ. However if π/2 < δ ≤ π then
R = R′

ij and γ = π − δ. Conditional on S ∈ R, in both cases we have

χ2
1,1(γ) = min{d2(S, ray(uj)), d2(S, ray(vi))} = min{(uT

j∗S)2, (vT
i∗S)2}.

Moreover in Lemma 2, D1 = uT
j∗S and D2 = vT

i∗S so the correlation coefficient between
them is − cos(γ) if 0 < δ ≤ π/2 and cos(γ) if π/2 < δ ≤ π.
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Next we consider angles associated with the cones in (1) and the regions in (7)-(9).
Let ρ1, . . . , ρK denote the interior angles of the cones C1, . . . , CK and set ρ = ∑K

i=1 ρi. By
assumption ρ > 0. The interior angles of the cones Rij, R′

ij and R′′
ij, as defined in (7),

(8) and (9) respectively, are all denoted by γij. Let P denote the set of indices (i, j) for
all pairs of adjacent cones Ci and Cj except (p, q). It is clear that for all (i, j) ∈ P we
have 0 < γij ≤ π/2. Furthermore, if R′′

pq ̸= ∅, then 0 < γpq < π denotes the interior
angle of R′′

pq, otherwise γpq = 0. Following (8) let τi(vi) and τj(uj) be the interior angles
of the cones Ri(vi) and Rj(uj) respectively. Similarly, if γpq > 0, i.e., when (9) holds
let τp(up) and τq(vq) be the interior angles of Rp(up) and Rq(vq) respectively. Finally set
τ = ∑

(i,j)∈P(τi(vi)+τj(uj))+τp(up)+τq(vq). Note that τi(vi), τj(uj) < π/2 for all (i, j) ∈ P .
Moreover τp(up) = τq(vq) = π/2. Also τ = 0 if and only only if γij ≤ π/2 for all (i, j) ∈ P
and γpq = 0. We have

ρ +
∑

(i,j)∈P
γij + τ + γpq = 2π. (12)

We are now ready to state the main results of this section.

Theorem 3: Consider Θ0 in (1) and the statistic Tn in (3). If n → ∞, then we have

Tn ⇒



χ2
0 if θ ∈ int(Θ0)

1
2χ2

0 + 1
2χ2

1 if θ ∈ ray(Θ0)
ρ

2π
χ2

0 +
∑

(i,j)∈P

γij

2π
χ2

1,1(γij) + τ

2π
χ2

1 + γpq

2π
χ2

2 if θ = 0
(13)

where ray(Θ0) is the collection of all rays generating the cones in Θ0.

Theorem 3 provides the limiting distribution of the LRT statistic for various values
of θ ∈ Θ0. Let TI , TR and TO denote the limits of the LRT statistic when θ is in the
interior of Θ0, on a ray of Θ0 and the origin, respectively. For the form of the corresponding
limits, see Equation (13) in the statement of Theorem 3. Clearly TI ≡ 0 so both TO and TR

are stochastically larger than TI . It follows that the least favourable configuration and the
limiting least favourable distribution are not associated with the interior points of Θ0.

Remark 2: Note that if Sn is normally distributed then the distribution of Tn at θ = 0,
which we denote by TO, is exact.

Suppose now that a size α test is desired. Let cα,R and cα,O denote the size α critical
values associated with TR and TO respectively. These values solve the equations

P(TR ≥ cα,R) = α, and P(TO ≥ cα,O) = α.

Incidentally, it is easy to see that cα,R is equal to (1 − 2α)-quantile of the χ2
1 distribution

whereas it may be necessary to compute cα,O numerically. Clearly the overall limiting critical
value of the test is

cα = min{cα,R, cα,O}.

In principle, finding the appropriate limiting critical value for any α is easy. It is worth
noting that there are many cases in which we have either cα,R > cα,O or cα,R < cα,O for all
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0 ≤ α ≤ 1. The first situation arises when TR ⪰st TO whereas the second situation arises
when TR ⪯st TO. If either order relation holds then finding the limiting critical value is
immediate. However, there are situations where an ordering does not exist, i.e., cα,R > cα,O

for some values of α and cα,R < cα,O for others. To summarize, for any c ≥ 0:

sup
θ∈Θ0

lim
n→∞

Pθ(Tn ≥ c) =


P(TR ≥ c) if TO ⪯st TR

P(TO ≥ c) if TR ⪯st TO

max{P(TR ≥ c),P(TO ≥ c)} otherwise
. (14)

Equation (14) helps us to compute the limiting p–values associated with the test statistic
(5). The value of θ ∈ Θ0 for which (14) holds is called the least favourable limiting null value
of Tn. The distribution of the statistic Tn when θ is the least favourable is called the least
favourable limiting null distribution. In the first case of (14), any point on a ray in ray(Θ0)
is the least favourable limiting null value of Tn and P(TR ≥ c) is the least favourable limiting
null distribution. In the second case, the origin is the least favourable limiting null value of
Tn and P(TO ≥ c) is the least favourable limiting null distribution. In the third case, their
union is the least favourable limiting null value of Tn and max{P(TR ≥ c),P(TO ≥ c)} is the
least favourable limiting null distribution. The next result shows that the least favourable
limiting null distribution of the LRT statistic Tn is determined by the geometry of the cones.

Theorem 4: The least favourable limiting null distribution of (3) for testing (1) is that of
TO if and only if τ ≥ π and that of TR if and only if ρ ≥ π.

Next we revisit the LRT and IUT for (1) in R2. By Theorem 1 the LRT and IUT
statistics coincide if and only if all cones are congruent. As discussed earlier, the LRT rejects
the null hypothesis if Tn > cα where cα = min{cα,R, cα,O}. The IUT rejects the null if and
only if for all i ∈ {1, . . . , K} we find that Λ(i) > c(i)

α where Λ(i) is the LRT and c(i)
α is the

critical value for testing H
(i)
0 : θ ∈ Ci against H

(i)
1 : θ ̸∈ Ci. Thus the IUT combines K Type

B problems in each of which the least favourable null value is the origin. Hence, we reject
H

(i)
0 if Λ(i) is larger than the 1 − α quantile of the RV

ρi

2π
χ2

0 + 1
2χ2

1 + π − ρi

2π
χ2

2.

For example, consider testing the hypotheses in (4). By Theorems 3 and 4, the null in (1)
is rejected if Tn is larger than the 1 − α quantile of the RV 1

2χ2
0 + 1

2χ2
1. Since the quadrants

are congruent it is easy to see that the IUT rejects the null only if Tn is larger than (1 − α)
quantile of the RV 1

4χ2
0 + 1

2χ2
1 + 1

4χ2
2, which is larger than the critical value of the LRT. The

following result compares the LRT and the IUT for cones in two dimensions.

Theorem 5: The LRT for (1) is asymptotically uniformly more powerful than the IUT for
cones in R2.

Numerical examples illustrating Theorem 5 are given in Section 6.

5. Some examples and testing problems in R2

We begin this section by providing some synthetic examples that exemplify our no-
tations and illustrate the applications of Theorems 3 and 4. The synthetic examples are
followed by examples of problems analyzed in the literature.
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5.1. Synthetic examples

In Figure 1 several examples, depicting various geometric settings, are displayed.

R1(v1)

C1

R1(u1)R′
21

R2(v2)

C2

R2(u2)
R′

12

u2∗

v2∗u1∗

v1∗

u2

v2 u1

v1

(a) Union of 2 Acute Cones

R1(v1)
C1

R1(u1)R′′
21

R2(v2)

C2

R2(u2) R′
12

u2∗

u1∗v2∗

v1∗

u2

v2 u1

v1

(b) Union of 2 Acute Cones

R12

C1

R1(u1)R′′
21

R2(v2)

C2

u2

u1∗v2∗

v2 u1

v1

(c) Union of Acute and Obtuse Cones

C1

C2

R2(v2)R2(u2)

R1(u1)R1(v1)

R′
12 R′

21

u1∗v1∗

u2∗ v2∗

u1v1

u2 v2

(d) Union of Acute and Obtuse Cones

Figure 1: Partition of R2 by cones C1 and C2

Example 1: (Union of Acute Cones I, Figure 1(A)): Here R′′
21 = ∅ so γ21 = 0. The

interior angles ρ1 and ρ2 are both smaller than π/2 so ρ < π. If τ ≥ π, then by Theorem 4
the least favourable limiting null value of Tn is the origin and the least favourable limiting
null distribution is that of TO. However if τ < π then we have an indeterminate case where
there is no stochastic ordering between TO and TR.

Example 2: (Union of Acute Cones II, Figure 1(B)): Here R′′
21 ̸= ∅ so γ21 > 0 and

again ρ < π. Moreover τ1(u1) = τ2(v2) = π/2 so it is clear that τ > π. Hence by Theorem
4, the least favourable limiting null value of Tn is the origin and the least favourable limiting
null distribution is that of TO.

Example 3: (Union of Acute and Obtuse Cones I, Figure 1(C)): Here R′′
21 ̸= ∅ so

γ21 > 0 and also ρ < π. Moreover τ1(u1) = τ2(v2) = π/2 so τ = π. Hence by Theorem 4,
the least favourable limiting null value of Tn is the origin and the least favourable limiting
null distribution is that of TO.
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Example 4: (Union of Acute and Obtuse Cones II, Figure 1(D)): Here R′′
21 = ∅

so γ21 = 0. Let π/2 < ρ1 < π and ρ2 < π/2 denote the interior angles. If ρ ≥ π, then
by Theorem 4, the least favourable limiting null value of Tn lies in ray(Θ0) and the least
favourable limiting null distribution is that of TR. However if ρ < π, then we have an
indeterminate case where there is no stochastic ordering between TO and TR.

Next consider the case where K ≥ 2. In particular, suppose each cone has interior
angle η. Suppose further that angles between all adjacent cones are also equal. It follows
that ρ = Kη and the angle between adjacent cones is (2π −Kη)/K. Of course, it is assumed
that 0 < ρ < 2π. Clearly the angle between the adjacent cones is always smaller than π and
therefore γpq = 0. Further note that τ is positive if and only if

η <
2π

K
− π

2 and K ∈ {2, 3}. (15)

Therefore if τ is positive, then τ = 2(π − 2η) when K = 2 and τ = π − 6η when K = 3. By
Theorem 3 the limiting null distribution of Tn at the origin, i.e., TO is

TO
d=



η

π
χ2

0 + η

π
χ2

1,1(η) + π − 2η

π
χ2

1 if K = 2 and η < π
2

3η

2π
χ2

0 + 3η + π

2π
χ2

1,1(η + π/3) + π − 6η

2π
χ2

1 if K = 3 and η < π
6

Kη

2π
χ2

0 + 2π − Kη

2π
χ2

1,1(2π/K − η) otherwise

. (16)

Now we investigate the relationship between TO given in (16) and TR as given in (13). If
π/K ≤ η < 2π/K then ρ ≥ π so by Theorem 4, the least favourable limiting null distribution
of Tn is that of TR. Further note that τ ≥ π if and only if η ≤ π/4 and K = 2 in which case
the least favourable limiting null distribution of Tn is that of TO. For any other values of
η and K, Theorem 4 can not be used to identify the least favourable null distribution and
the corresponding size α critical value so this determination must be made numerically as
illustrated in Figure 2.

Figure 2(A)-(F) present plots of the tail probabilities P(TO ≥ c) and P(TR ≥ c) for
various values of c > 0 and choices of K and η. In particular K and η were chosen so ρ < π.
In addition τ < π in Figures 2(A) and 2(B) whereas τ = 0 in Figures 2(C)-(F). It is clear that
for the above choices the tail probabilities cross and consequently the RVs TR and TO are not
stochastically ordered. In other words, the least favourable limiting null distribution of Tn is
not the same for all size α critical values. It is also clear that whenever the tail probabilities
of TR and TO cross then there exists a unique value c∗ satisfying P(TO ≥ c) ≥ P(TR ≥ c)
for all c ≤ c∗ whereas P(TR ≥ c) ≥ P(TO ≥ c) for all c ≥ c∗. Moreover for a fixed K, c∗ is
monotonically decreasing in η. Similarly if η is fixed, then c∗ is monotonically decreasing in
K. In the majority of cases plotted we find that cα = cα,R.

Remark 3: Note that when π/2 < η < π, the cones are obtuse and K ≤ 3. Thus the
intersection of their polar cones contains only the origin and hence γpq = 0. Since ρ > π,
by Theorem 4 the least favourable limiting null values of Tn lie in ray(Θ0) and the least
favourable limiting null distribution is that of TR which is the same as that for testing over
union of two quadrants. Note that the null distribution of Tn at the origin is a function of
dependent χ2

1 RVs in the first case but a function of independent χ2
1 RVs in the latter case.
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Figure 2: Stochastic ordering between TO and TR for various no. of cones (K)
and values of interior angles (η)

5.2. Examples from the literature

We conclude this section by providing some examples of relevant testing problems
in R2 which have appeared in the literature. These examples illustrate the application of
Theorems 3–5 and show the simplicity and superiority (in power) of our testing procedure
as compared to those in the literature.

Example 5: Consider first testing the hypotheses H0 : min{|θ1|, |θ2|} = 0 against H1 :
min{|θ1|, |θ2|} > 0. Variants of this problem have been studied by Cohen et al. (1983) and
Berger (1997) where the IUT had been advocated. Note that by setting C1 = {θ : θ1 ≥
0, θ2 = 0}, C2 = {θ : θ1 = 0, θ2 ≥ 0}, C3 = {θ : θ1 ≤ 0, θ2 = 0} and C4 = {θ : θ1 = 0, θ2 ≤ 0}
we can reformulate the problem as in (1). Next, it is clear that the statistic (3) reduces
to Tn = min{S2

n,1, S2
n,2}. The least favourable null value and distribution are θ = 0 and

χ2
1,1(π/2) respectively and the critical value is the

√
1 − α quantile of a χ2

1 RV. Since the
cones are congruent, Tn is the same as the IUT by Theorem 1 but more powerful than the
IUT by Theorem 5.

Example 6: Laska and Meisner (1989) tested (1) with Ci = {θ ∈ Rm : θi ≤ 0}. In their
formulation θi = µ0 − µi where µ0 is the mean response under treatment T0 and µi is the
mean response under treatment Ti. Thus under the null some treatments are superior to T0
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whereas under the alternative all treatments are inferior to T0. This problem is known in the
literature as the sign testing problem and has received considerable attention (e.g., Berger
(1982) and Cohen et al. (1983)). It is easy to verify that when m = 2 this testing problem
can be reformulated as H0 : θ ∈ Q2 ∪ Q3 ∪ Q4 and H1 : θ ∈ Q1 where Q1, . . . , Q4 denote
the quadrants of R2 in clockwise direction. Interestingly, this problem is the complement
of a Type B problem since Θ1 is a single convex cone. Berger (1982) proposed testing H0
against H1 using the IUT. The LRT for this problem is Tn = min{S2

n,1, S2
n,2}I(Sn ∈ Q1).

Since ρ = 3π/2, by Theorem 4 the least favourable limiting null values of Tn are in ray(Θ0),
i.e., the rays defining the first quadrant, and the least favourable limiting null distribution is
1
2χ2

0 + 1
2χ2

1. By Theorem 5, the proposed test is more powerful than the IUT although they
are identical by Theorem 1 due to congruence of the cones.

Example 7: Gail and Simon (1985) as well as Silvapulle (2001) tested (1) for K = 2 where
C1 = {θ ∈ Rm : θ ≥ 0} and C2 = {θ ∈ Rm : θ ≤ 0}. Here θi is the difference between
the mean responses to treatments T1 and T2, say, in the ith group where i = 1, . . . , m. If T1
is more beneficial than T2 (θi ≥ 0) in some groups but more harmful than T2 (θi ≤ 0) in
others, it is said that there is crossover interaction between treatments and groups. Thus
under the null there is no crossover interaction whereas under the alternative, there is such
interaction. The hypotheses of interest in R2 are H0 : θ ∈ C1 ∪ C2 and H1 : θ ̸∈ C1 ∪ C2
where C1 and C2 are the non-negative and the non-positive quadrants. By Theorem 2, the
test statistic is given by Tn = min{S2

n,1, S2
n,2}I(Sn ̸∈ C1 ∪ C2). Since ρ = π, by Theorem 4

the least favourable limiting null values of Tn lie in ray(Θ0) and the least favourable limiting
null distribution is 1

2χ2
0 + 1

2χ2
1. Gail and Simon (1985) and Silvapulle (2001) did not assume

that the variance is known but their statistic is of the same form as the LRT Tn.

Example 8: Berger (1989) and Liu and Berger (1995) tested (1) with Ci = {θ ∈ Rm : bT
i θ ≤

0} where θ is the mean vector of a multivariate normal distribution and bis are non-redundant
vectors. If θ denotes a vector of means then under the null some linear combinations, e.g.,
contrasts, are negative whereas under the alternative, all linear combinations are positive.
Consider the above problem in R2 where Ci = {θ ∈ R2 : bT

i θ ≤ 0} (a half-space), θ is
the mean vector of a bivariate normal distribution and bis are non-redundant vectors. Here
Θ0 is a union of multiple convex cones whereas Θ1 is a single convex cone, which is the
complement of a Type B problem. Berger (1989) and Liu and Berger (1995) applied the
IUT to this problem. The LRT statistic Tn is given by (3). Since ρ > π, by Theorem 4
the least favourable asymptotic null values of Tn lie in ray(Θ0) and the least favourable
asymptotic null distribution is 1

2χ2
0 + 1

2χ2
1. By Theorem 5, the proposed test based on Tn is

uniformly more powerful than the IUT.

6. Simulation study

We performed a small simulation study comparing the power of the LRT to that of
the IUT. We considered K = 2 cones and both congruent (C) as well as non-congruent (NC)
pairs of cones. See Table 1 for the settings of the study. We fixed n = 100 and α = 0.05.
The critical values were computed by simulation at the least favourable null values. For
computing power, the point in the alternative for union of quadrants is of the form (θ1, θ2)
where θ1 and θ2 have different signs; otherwise it is of the form (0, θ2) where θ2 > 0. These
points were chosen so that the LRT has a power of around 0.8. From Table 2 it is observed
that in each of the settings in Table 1 the LRT is more powerful than the IUT for congruent
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Table 1: Congruent and Non-congruent pairs of cones under various settings

Settings Geometry Type Cones
1 ρ = π Congruent {θ1 ≥ 0, θ2 ≥ 0},{θ1 ≤ 0, θ2 ≤ 0}
2 ρ = π Non-congruent {θ2 ≥ −

√
3θ1, θ2 ≤

√
3θ1},{

√
3θ2 ≥ θ1,

√
3θ2 ≤ −θ1}

3 ρ > π Congruent {θ2 ≥ −θ1, θ2 ≤ 2θ1},{θ2 ≥ θ1, θ2 ≤ −2θ1}
4 ρ > π Non-congruent {θ2 ≥ −θ1, θ2 ≤ 3θ1},{θ2 ≥ θ1, θ2 ≤ −2θ1}
5 τ = π Congruent {θ2 ≥ θ1, θ2 ≤ 2θ1},{θ2 ≥ −θ1, θ2 ≤ −2θ1}
6 τ = π Non-congruent {θ2 ≥ θ1, θ2 ≤ 2.1θ1}, {θ2 ≥ −θ1, θ2 ≤ −2θ1}
7 τ > π Congruent {4θ2 ≥ θ1, 3θ2 ≤ θ1},{4θ2 ≥ −θ1, 3θ2 ≤ −θ1}
8 τ > π Non-congruent {4θ2 ≥ θ1, 3θ2 ≤ θ1},{4θ2 ≥ −θ1, 2θ2 ≤ −θ1}

as well as non-congruent pairs of cones. Although not reported in Table 2, it is observed
that the powers of the LRT and the IUT decrease or increase as θ is closer to or further from
0. Moreover the ratio of the power of the LRT to that of the IUT increases or decreases as
θ is closer to or further from 0, and equals 1 for large θ.

Table 2: Powers of LRT (PLRT) and IUT (PIUT) under settings in Table 1 for
α = 0.05 and selected θ ∈ Θ1

Settings θ PLRT PIUT

1 (-0.29,0.29) 0.8009 0.6814
2 (0,0.5) 0.8014 0.6988
3 (0,0.66) 0.8084 0.6623
4 (0,0.82) 0.8069 0.6863
5 (0,0.75) 0.8042 0.7367
6 (0,0.76) 0.7989 0.7299
7 (0,0.32) 0.8080 0.7023
8 (0,0.33) 0.8021 0.6894

7. Discussion

As noted in the introduction, the existing literature has focused on testing (1) in
situations where the null parameter space is either a linear subspace or single convex cone.
In this paper, we develop a general framework to address multiple cone problems in two
dimensions. We consider situations where the null parameter space can be expressed as the
union of multiple closed convex cones in R2, which encompasses a large class of problems.
We propose a test statistic which is equivalent to the LRT under normality and coincides
with the the IUT in some special cases. Since the finite sampling distributions of these test
statistics usually do not have closed-form expressions, we derive their asymptotic null distri-
butions. We also obtain their least favourable asymptotic null values and the corresponding
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least favourable asymptotic null distributions based on the geometry of the cones. These
distributions are used to determine the size α critical values, which depend on the stochastic
ordering of the test statistics. Finally, we show that our tests are uniformly more powerful
than the conventional IUTs discussed in the literature. In future, we hope to address the
more challenging problem of testing (1) for arbitrary convex cones in any finite dimension.

In fact the scope of (1) is much broader than the references in Sections 1 and 3. Some
important classes of problems which can be formulated as (1) in higher dimensions include
problems of model selection arising in order restricted inference (Mack and Wolfe (1981),
Pan and Wolfe (1996), Pan (1997), Rueda et al. (2016), Wei et al. (2019), Panda (2019),
Larriba et al. (2016), Larriba et al. (2020), Peddada et al. (2003), Peddada et al. (2005));
problems in the theory of ranking and selection; and problems in mathematical psychology
which involve the verification of transitivity axioms underlying social choice theory (Oliveira
et al. (2018), Iverson and Falmagne (1985), Tversky (1969), Regenwetter et al. (2011), Davis-
Stober (2009), Myung et al. (2005), Heck and Davis-Stober (2019)). For example, in the
theory of ranking and selection, Nettleton (2009) considered the problem of testing for the
supremacy of a multinomial cell probability. The supremacy of the Kth cell probability
is established by rejecting the null hypothesis H0 : θK ≤ max{θ1, . . . , θK−1} where θ =
(θ1, . . . , θK)T denotes the vector of multinomial cell probabilities. Clearly the null can be
rewritten as H0 : θ ∈ ⋃K−1

j=1 Cj, where Cj = {θ ∈ P : θK ≤ θj} and P is the set of K-
dimensional probability vectors whose components sum to 1.
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APPENDIX

PROOFS

Proof of Theorem 1:

Proof: Since S ∼ N2(θ, Σ), the kernel of the log-likelihood is given by

l(θ) = −1
2(S − θ)T Σ−1(S − θ) = −1

2∥S − θ∥2
Σ. (17)

It follows that the global, unrestricted MLE of θ is θ̂ = S and

l(θ̂) = 0. (18)

The restricted MLE solves

θ̃ = arg max{l(θ) : θ ∈
K⋃

i=1
Ci} = arg min{∥S − θ∥2

Σ : θ ∈
K⋃

i=1
Ci}

= arg min{∥S − θ∥2
Σ : θ ∈ {θ̃1, . . . , θ̃K}}

where for i = 1, . . . , K we define θ̃i = arg min{∥S − θ∥2
Σ : θ ∈ Ci} which is nothing but the

projection of S on Ci with respect to Σ denoted by ΠΣ(Sn | Ci). In other words

θ̃ = arg min{∥S − ΠΣ(S | Ci)∥2
Σ : i ∈ {1, . . . , K}}, (19)

so
l(θ̃) = −1

2 min{∥S − ΠΣ(S | Ci)∥2
Σ : i ∈ {1, . . . , K}}. (20)

Now the LRT statistic is given by

Λ = 2{l(θ̂) − l(θ̃)}

which, using (18) and (20), reduces to

Λ = min{∥S − ΠΣ(S | Ci)∥2
Σ : i ∈ {1, . . . , K}} (21)

as claimed in (21) with Sn replaced by S.
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Now note that testing (1) is equivalent to testing
K⋃

i=1
H

(i)
0 versus

K⋂
i=1

H
(i)
1 where H

(i)
0 :

θ ∈ Ci and H
(i)
1 : θ ̸∈ Ci. It is clear that the LRT statistic for individual tests H

(i)
0 versus

H
(i)
1 , each of which is a Type B problem (Silvapulle and Sen (2004)), is Λ(i) = ∥S − θ̃i∥2 =

∥S −ΠΣ(S | Ci)∥2. Since the least favourable null value for any Type B problem is the origin
H

(i)
0 is rejected if Λ(i) is larger than c(i)

α , the 1 − α quantile of the RV
K∑

k=1
wk(Ci, Σ)χ2

k. (22)

The IUT rejects the null in (1) if and only if Λ(i) > c(i)
α for every i. Note that c(i)

α = c(j)
α if

and only if the weights in (22) satisfy wk(Ci, Σ) = wk(Cj, Σ) for all k = 1, . . . , K or in other
words that all cones are congruent. Since the critical values c(i)

α are equal for each of the K
tests, it follows that the IUT statistic is

min{Λ(1), . . . , Λ(K)},

which is the same as the LRT statistic in (21) as a function of S.

Proof of Theorem 2:

Proof: By Theorem 1 the LRT statistic for (4) is (3) which reduces to

T = min{∥S − Π(S | C1)∥2
2, ∥S − Π(S | C2)∥2

2}. (23)

Note that when S ∈ C1 then Π(S | C1) = S so ∥S − Π(S | C1)∥2
2 = 0 and similarly when

S ∈ C2. Thus if S ∈ C1 ∪ C2 then T = 0. Next, if S /∈ C2 ∪ C2 then for i ∈ {1, 2},
Π(S | Ci) = (S1, 0)T or (0, S2)T so ∥S − Π(S | Ci)∥2

2 = S2
1 or S2

2 . Consequently,

T = min{S2
1 , S2

2}I(S /∈ C1 ∪ C2)

as claimed. Let c > 0. Then for any θ ∈ R2 we have

Pθ(T ≥ c) = Pθ(min{S2
1 , S2

2} ≥ c, S /∈ C1 ∪ C2)
= Pθ(S2

1 ≥ c, S2
2 ≥ c, S1 ≥ 0, S2 ≤ 0) + Pθ(S2

1 ≥ c, S2
2 ≥ c, S1 ≤ 0, S2 ≥ 0)

= Pθ(S1 ≥
√

c)Pθ(S2 ≤ −
√

c) + Pθ(S1 ≤ −
√

c)Pθ(S2 ≥
√

c)
= [1 − Φ(

√
c − θ1)]Φ(−

√
c − θ2) + Φ(−

√
c − θ1)[1 − Φ(

√
c − θ2)]. (24)

Here, as usual, ϕ(·) and Φ(·) denote the density and distribution function of a standard
normal RV. Denote Pθ(T ≥ c) by H(θ) = H(θ1, θ2). Our goal is to maximize H(θ1, θ2) over
(θ1, θ2) ∈ Θ0. We will first show that if θ ∈ C1 and θ1 > θ2 > 0 then

H(θ1, θ2) < H(θ1, 0). (25)

Since θ1 > θ2 > 0, it follows that

H(θ1, 0) − H(θ1, θ2) = [1 − Φ(
√

c − θ1)][Φ(−
√

c) − Φ(−
√

c − θ2)]
− Φ(−

√
c − θ1)[Φ(

√
c) − Φ(

√
c − θ2)]

> [1 − Φ(
√

c − θ2)][Φ(−
√

c) − Φ(−
√

c − θ2)]
− Φ(−

√
c − θ2)[Φ(

√
c) − Φ(

√
c − θ2)]. (26)
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Let p = 1 − Φ(
√

c − θ2), q = Φ(−
√

c) − Φ(−
√

c − θ2), r = Φ(−
√

c − θ2) and s = Φ(
√

c) −
Φ(

√
c − θ2). Thus establishing (25) is equivalent to showing that pq > rs or p/s > r/q.

Observe that p, q, r and s are all strictly positive. Furthermore p > q, p > r, p > s,
s > q and p > q + r, from which we deduce that p/s > (q + r)/s. It follows that showing
(q + r)/s > r/q will complete the proof of (25). Suppose the latter does not hold, i.e.,
(q + r)/s ≤ r/q which in turn implies that q2 ≤ r(s − q) < 0. Since q > 0, we have a
contradiction. Thus (q + r)/s > r/q and consequently pq > rs so (25) holds. A similar
argument can be used to show that if θ ∈ C1 which satisfy θ2 > θ1 > 0 then

H(θ1, θ2) < H(0, θ2). (27)

Next we consider the case where θ1 = θ2 = θ > 0. Now,

H(θ, θ) = 2Φ(−
√

c − θ))Φ(−
√

c + θ) < 2[Φ(−
√

c)]2 = H(0, 0),

where the inequality above is a consequence of the log–concavity of Φ(·) (see Saumard and
Wellner (2014)). Thus,

H(θ, θ) < H(0, 0). (28)
It follows from (25), (27) and (28) that for any θ in the interior of C1 there exists a θ∗ on
the boundary of C1 for which

H(θ∗) > H(θ). (29)
Repeating the above arguments we can show that (29) holds also for θ ∈ C2. Thus
supθ∈Θ0 H(θ) is attained on the set {(0, x) ∪ (x, 0) : x ∈ R}, i.e., the boundary of Θ0.
Next consider the function H(θ1, 0) with θ1 ≥ 0. Clearly,

H(θ1, 0) = Φ(−
√

c)[1 − Φ(
√

c − θ1) + Φ(−
√

c − θ1)] (30)

and therefore
∂

∂θ1
H(θ1, 0) = Φ(−

√
c)[ϕ(

√
c − θ1) − ϕ(−

√
c − θ1)] ≥ 0

since ϕ(
√

c − θ1) ≥ ϕ(−
√

c − θ1) whenever θ1 ≥ 0. This implies that

sup
θ1≥0

H(θ1, 0) = lim
θ1→∞

H(θ1, 0) = Φ(−
√

c) = 1 − Φ(
√

c) = P(N (0, 1) ≥
√

c) = 1
2P(χ2

1 ≥ c).

Since the function H(θ1, θ2) is permutation invariant and odd we have

sup
θ1≥0

H(θ1, 0) = sup
θ1≤0

H(θ1, 0) = sup
θ2≥0

H(0, θ2) = sup
θ2≤0

H(0, θ2) = 1
2P(χ2

1 ≥ c). (31)

Furthermore it is easy to see that:
lim

θ1→∞
P(θ1,0)(T = 0) = lim

θ1→−∞
P(θ1,0)(T = 0) = lim

θ2→∞
P(0,θ2)(T = 0) = lim

θ2→−∞
P(0,θ2)(T = 0)

= 1
2χ2

0.

(32)
It now follows from (31) and (32) that for c ≥ 0

sup
θ∈Θ0

Pθ(T ≥ c) = 1
2P(χ2

0 ≥ c) + 1
2P(χ2

1 ≥ c). (33)

as claimed.
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Proof of Lemma 1:

Proof: Note that Rij, R′
ij and R′′

ij denote regions between the boundaries of adjacent cones
or their polar cones. Since there are K such regions, we have N + N ′ + N ′′ = K. The upper
bound for each summand is attained if all the regions between various pairs of adjacent cones
are of the same type. If the angle between every pair of adjacent cones is less than π/2, then
there are K regions of the type Rij, i.e., N ≤ K. If the angle between every pair of adjacent
cones is between π/2 and π, then we have K ≤ 3 and hence at most 3 regions of the type
R′

ij, i.e., N ′ ≤ 3. If the angle between some pair of adjacent cones is greater than π, then
the angles between all other pairs of such cones are each less than π. Hence there is at most
one region of the type R′′

ij, i.e., N ′′ ≤ 1. Suppose now that N ′′ = 1. If the angles between
all other pairs of adjacent cones are each less than π/2, then there are K − 1 regions of the
type Rij, i.e., N ≤ K − 1. Moreover there can be at most one other pair of adjacent cones
with an angle between π/2 and π between them, and hence at most one region of the type
R′

ij, i.e., N ′ ≤ 1.

Proof of Lemma 2:

Proof: First note that d2(S, ray(u)) = (uT
∗ S)2 and similarly d2(S, ray(v)) = (vT

∗ S)2. Since
S ∼ N2(0, I, both (uT

∗ S)2 and (vT
∗ S)2 are distributed as χ2

1 RVs. Moreover the correlation
coefficient between uT

∗ S and vT
∗ S is uT

∗ v∗. Since ∡(u∗, v∗) = π − ∡(u, v) = π − γ, we have
uT

∗ v∗ = cos(∡(u∗, v∗)) = cos(π−γ) = − cos(γ). Let D1 = uT
∗ S and D2 = vT

∗ S so Var(D1) =
Var(D2) = 1 and the correlation coefficient between D1 and D2 is uT

∗ v∗ = − cos(γ). Further
we have χ2

1,1(γ) = min{D2
1, D2

2} which is a function of the length of S. Since S ∼ N2(0, I),
the length and direction of S are independently distributed. Thus

P(χ2
1,1(γ) ≥ c, S ∈ R) = P(S ∈ R)P(χ2

1,1(γ) ≥ c)

= γ

2π
P(min{D2

1, D2
2} ≥ c)

= γ

2π
P(D2

1 ≥ c, D2
2 ≥ c)

= γ

2π
[1 − P(−

√
c ≤ D1 ≤

√
c) − P(D1 ≤ −

√
c, −

√
c ≤ D2 ≤

√
c)

− P(D1 ≥
√

c, −
√

c ≤ D2 ≤
√

c)]

= γ

2π
[P(D1 ≥

√
c, D2 ≥

√
c) + P(D1 ≥

√
c, D2 ≤ −

√
c)

+ P(D1 ≤ −
√

c, D2 ≥
√

c) + P(D1 ≤ −
√

c, D2 ≤ −
√

c)]

where (D1, D2)T has a bivariate normal distribution with mean 0, unit variances and corre-
lation − cos(γ).

Proof of Theorem 3:

Proof: Recall that the LRT statistic Tn for (1) is

Tn = min{n∥Sn − Π(Sn | C1)∥2, . . . , n∥Sn − Π(Sn | CK)∥2}, (34)
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which minimizes the squared distance between Sn and each of the K cones. If Sn ∈ Ci for
any i, then Π(Sn | Ci) = Sn, thus Tn = 0. If Sn lies in Ri(ui) for some i, then Π(Sn | Ci) =
(uT

i Sn)ui and ∥Sn − Π(Sn | Cr)∥2 > ∥Sn − Π(Sn | Ci)∥2 where r ̸= i, thus Tn = n(uT
i∗Sn)2.

Similarly Tn can be obtained for Sn lying in Ri(vi) or Rj(uj) or Rj(vj). If Sn lies in Rij

or R′
ij for some (i, j) ∈ P , then Π(Sn | Ci) = (vT

i Sn)vi and Π(Sn | Cj) = (uT
j Sn)uj. Also

∥Sn − Π(Sn | Cr)∥2 > max{∥Sn − Π(Sn | Ci)∥2, ∥Sn − Π(Sn | Cj)∥2} where r ̸∈ {i, j}, thus
Tn = min{n(uT

j∗Sn)2, n(vT
i∗Sn)2} Finally if Sn ∈ R′′

pq, then Sn ∈ C0
i and Π(Sn | Ci) = 0 for

every i, thus Tn = n∥Sn∥2. To summarize,

Tn =


0 if Sn ∈ Ci

min{n(uT
j∗Sn)2, n(vT

i∗Sn)2} if Sn ∈ Rij or R′
ij

n(uT
i∗Sn)2 or n(vT

i∗Sn)2 if Sn ∈ Ri(ui) or Ri(vi)
n∥Sn∥2 if Sn ∈ R′′

pq

(35)

for all (i, j) ∈ P . Next, we evaluate the limiting distribution of Tn for various values of
θ ∈ Θ0. Suppose first that θ ∈ int(Θ0), i.e., θ lies in the interior of Θ0. If so, the ball
B(θ, δ) is a subset of int(Θ0) for some δ > 0. Since Sn is consistent for θ it follows that
P(Sn ∈ B(θ, ϵ)) → 1 as n → ∞ for all ϵ < δ. Therefore Tn

p−→ 0 and consequently θ ∈ int(Θ0)
implies that

Tn ⇒ χ2
0, (36)

as n → ∞. Next, consider the situation when θ ∈ ray(Θ0). Without loss of generality let
θ = λu1 for some fixed λ > 0, i.e., θ lies on one of the rays generating the cone C1. The ray
through θ partitions B(θ, ϵ) into two half circles B1 ⊂ C1 and B2 ⊂ R1(u1). Observe that
B1 − θ = θ − B2 where B1 − θ = {S − θ | S ∈ B1} and θ − B2 = {θ − S | S ∈ B2}. The
distribution of Sn is spherically symmetric around θ so Sn − θ

d= θ − Sn. Consequently,

P(Sn ∈ B1) = P(Sn − θ ∈ B1 − θ) = P(Sn − θ ∈ θ − B2)
= P(θ − Sn ∈ θ − B2) = P(Sn − θ ∈ B2 − θ) = P(Sn ∈ B2).

Moreover, since Sn is consistent for θ we have P(Sn ∈ B(θ, ϵ)) → 1 so P(Sn ∈ B1) = P(Sn ∈
B2) → 1/2 as n → ∞. Thus, P(Sn ∈ C1) = P(Sn ∈ R1(u1)) = 1/2 + oP (1) and the LRT
statistic equals

Tn = 0 × I(Sn ∈ C1) + n(uT
1∗Sn)2 × I(Sn ∈ R1(u1)) + oP (1).

Observe that Sn = θ + Z̄n where Z̄n is the average of n IID N2(0, I) RVs as n → ∞. It
follows that

n(uT/
1∗ Sn)2 = n(uT

1∗(θ + Z̄n))2 = n(uT
1∗(λu + Z̄n))2 = (uT

1∗(
√

nZ̄n))2 ⇒ χ2
1

and therefore, if θ = λu1

Tn ⇒ 1
2χ2

0 + 1
2χ2

1. (37)
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Obviously (37) remains unchanged if θ lies on any other ray of Θ0 \ {0}. Finally, suppose
θ = 0. Here

√
nSn ∼ N2(0, I) as n → ∞ which is spherically symmetric so the direction

and length of Sn are statistically independent. We have already seen that n(uT
j∗Sn)2 and

n(vT
i∗Sn)2 are each distributed as a χ2

1 RV whereas n∥Sn∥2 is distributed as a χ2
2 RV as

n → ∞. It follows from (35) that: (i) if

Sn ∈
K⋃

i=1
Ci,

an event that has probability ρ/2π, then Tn ⇒ χ2
0; (ii) if (i, j) ∈ P and Sn ∈ Rij or R′

ij, an
event that has probability γij/2π, then Tn ⇒ χ2

1,1(γij); (iii) if (i, j) ∈ P and

Sn ∈
⋃

(i,j)∈P
(Ri(ui) ∪ Ri(vi) ∪ Rj(uj) ∪ Rj(vj)),

an event that has probability τ/2π, then Tn ⇒ χ2
1; and (iv) if Sn ∈ R′′

pq, an event that has
probability γpq/2π, then Tn ⇒ χ2

2. Putting it all together we find that when θ = 0, we have

Tn ⇒ ρ

2π
χ2

0 +
∑

(i,j)∈P

γij

2π
χ2

1,1(γij) + τ

2π
χ2

1 + γpq

2π
χ2

2. (38)

Equations (36), (37) and (38) establish the result.

Proof of Theorem 4:

Proof: First we prove that the given conditions are sufficient. Recall that for any c ≥ 0

P(TR ≥ c) = 1
2P(χ2

0 ≥ c) + 1
2P(χ2

1 ≥ c) (39)

and

P(TO ≥ c) = ρ

2π
P(χ2

0 ≥ c) +
∑

(i,j)∈P

γij

2π
P(χ2

1,1(γij) ≥ c) + τ

2π
P(χ2

1 ≥ c) + γpq

2π
P(χ2

2 ≥ c), (40)

where τ or γpq may be equal to 0. If τ ≥ π then both

(AO) τ

2π
≥ 1

2 and (BO) ρ

2π
<

1
2

hold. By (BO) the first two terms on the right hand side of (40) are larger than the first
term on the right hand side of (39). By (AO) the same is true when comparing the last two
terms in (40) to the second term of (39). Therefore P(TO ≥ c) > P(TR ≥ c) so

TO ⪰st TR.

Hence, we conclude that the least favourable limiting null distribution for Tn is that of TO

when τ ≥ π.
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Now suppose that ρ ≥ π then γpq = 0. This is because if γpq > 0, then τ ≥ π so
ρ < π. We have

(AR) ρ

2π
≥ 1

2 and (BR)
∑

(i,j)∈P
γij + τ ≤ π.

Hence,

P(TO ≥ c) = ρ

2π
P(χ2

0 ≥ c) +
∑

(i,j)∈P

γij

2π
P(χ2

1,1(γij) ≥ c) + τ

2π
P(χ2

1 ≥ c)

<
1
2P(χ2

0 ≥ c) +
∑

(i,j)∈P γij + τ

2π
P(χ2

1 ≥ c)

≤ 1
2P(χ2

0 ≥ c) + 1
2P(χ2

1 ≥ c) = P(TR ≥ c)

where the first inequality is a consequence of (AR) and the second of (BR). Thus

TR ⪰st TO,

i.e., the least favourable limiting null distribution for Tn is that of TR when ρ ≥ π.

Next we prove that the above conditions are necessary. Suppose first that τ < π.
Then γpq = 0 since γpq > 0 implies τ ≥ π. For c > 0, we have

P(TO ≥ c) − P(TR ≥ c) =
∑

(i,j)∈P

γij

2π
P(χ2

1,1(γij ≥ c) + ( τ

2π
− 1

2)P(χ2
1 ≥ c)

< (
∑

(i,j)∈P

γij

2π
+ τ

2π
− 1

2)P(χ2
1 ≥ c)

=
∑

(i,j)∈P γij + τ − π

2π
P(χ2

1 ≥ c)

= π − ρ

2π
P(χ2

1 ≥ c). (41)

If ρ ≥ π then the RHS of (41) is negative so P(TO ≥ c) < P(TR ≥ c) for all c > 0.
However, if ρ < π then the RHS of (41) is positive. So there is at least one c > 0 satisfying
P(TO ≥ c) < P(TR ≥ c). Thus the condition τ ≥ π is necessary for the limiting null
distribution of Tn to be that of TO.

Finally suppose that ρ < π. If γpq > 0, then τ ≥ π so P(TR ≥ c) < P(TO ≥ c) for all
c > 0 as shown earlier. If γpq = 0 then using (41), we have for c > 0

P(TO ≥ c) − P(TR ≥ c) =
∑

(i,j)∈P

γij

2π
P(χ2

1,1(γij ≥ c) + ( τ

2π
− 1

2)P(χ2
1 ≥ c)

> ( τ

2π
− 1

2)P(χ2
1 ≥ c). (42)

If τ ≥ π then the RHS of (42) is positive so P(TR ≥ c) < P(TO ≥ c) for all c > 0.
However if τ < π then the RHS of (42) is negative. So there is at least one c > 0 satisfying
P(TR ≥ c) < P(TO ≥ c). Thus the condition ρ ≥ π is necessary for the limiting null
distribution of Tn to be that of TR.
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Proof of Theorem 5:

Proof: Let Λ(i) denote the LRT statistic for testing H
(i)
0 : θ ∈ Ci against H

(i)
1 : θ ̸∈ Ci and

let c(i)
α denote its critical value. Clearly, (cf. Silvapulle and Sen (2004)) c(i)

α is the 1 − α
quantile of the RV

ρi

2π
χ2

0 + 1
2χ2

1 + π − ρi

2π
χ2

2. (43)

The size α IUT rejects the null
K⋃

i=1
H

(i)
0 if and only if Λ(i) > c(i)

α for every i. Recall that the
size α LRT for (1) rejects the null if Tn > cα where cα is its critical value as discussed in
Section 3. The cones C1, . . . , CK satisfy one of three possibilities: (I) ρ ≥ π; (II) τ ≥ π; or
(III) ρ < π, τ < π. If (I) holds then by Theorems 3 and 4 the asymptotic critical value for
Tn is the 1 − α quantile of the RV

1
2χ2

0 + 1
2χ2

1. (44)

It follows that cα < min{c(1)
α , . . . , c(K)

α } so the LRT has higher power than the IUT. If (II)
holds then the asymptotic critical value for Tn is the 1 − α quantile of the RV

ρ

2π
χ2

0 +
∑

(i,j)∈P

γij

2π
χ2

1,1(γij) + τ

2π
χ2

1 + γpq

2π
χ2

2. (45)

Observe that
∑

(i,j)∈P

γij

2π
χ2

1,1(γij) + τ

2π
χ2

1 + γpq

2π
χ2

2 ⪯st

∑
(i,j)∈P γij + τ

2π
χ2

1 + γpq

2π
χ2

2 (46)

and since (II) holds we have∑
(i,j)∈P γij + τ

2π
χ2

1 + γpq

2π
χ2

2 ⪯st
1
2χ2

1 + π − ρ

2π
χ2

2 (47)

where the upper bound on the left hand side of (47) is attained when τ along with all γij ∈ P
are minimized and γpq is maximized. Combining (46) and (47), we conclude that the RV in
(45) is stochastically smaller than the RV

ρ

2π
χ2

0 + 1
2χ2

1 + π − ρ

2π
χ2

2 (48)

which is itself stochastically smaller than the RV in (43). Thus cα < min{c(1)
α , . . . , c(K)

α } so
the LRT is more powerful than the IUT. Finally if (III) holds then cα is the 1 − α quantile
of the RV in (44) for some values of α and of the RV in (45) for others so the LRT is more
powerful. Note that in each of the three cases the rejection probability of the null for the
LRT is greater than that for the IUT for all values of θ ∈ Θ1 so the LRT is asymptotically
uniformly more powerful than the IUT for (1).
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1. Introduction

The present short article is a humble tribute to the late Professor C. R. Rao, one of the
legendary heroes in the world of statistics. In his professional life, which spanned for nearly
eight decades, Professor Rao made a number of pioneering contributions virtually in every
single area of statistics, impacting the academic life of several generations of statisticians. It
is needless to say that the legacy left behind by Professor Rao will continue its impact on
future generations of statisticians as well.

Two major contributions of Professor Rao for which he is most well known in the
general scientific community, crossing the boundaries of statisics, are the Cramer-Rao in-
equality and the Rao-Blackwell Theorem. What is indeed more remarkable is that these
results constituted part of the Masters Thesis of Professor Rao. These two fundamental
results, accessible even to beginning undrgraduate students in statistics, have far reaching
implications, well beyond what possibly was envisaged by their authors. For example, the
Rao-Blackwell Theorem, discovered independently by Rao and Blackwell, involves an im-
plicit idea of projection from a certain space of random variables to a second space, spanned
by sufficient statistics, resulting thereby in loss reduction under convexity.

The other work, namely the Cramer-Rao inequality, discovered independently by
Cramer and Rao, is being used repeatedly by scientists even outside statistics, notably by
those working in Quantum Physics, Electrical Engineering and Computer Science.

Early extensions of the Cramer-Rao inequality appear in the articles of Bhattacharyya
(1946), Hammersley (1950) and Chapman and Robbins (1951). More recently, there has
been a surge of extensions of this inequality, primarily for solving problems in science and
engineering, as mentioned in the preceding paragraph.
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One very useful extension of the Cramer-Rao inequality appears in the book of
Van Trees (2004) who provided a lower bound for the Bayes risk of estimators of one di-
mensional parameters of interest. This was followed later in a series of articles of Bobrovsky
et al. (1987), Borovkov and Sakhanenko (1980), Brown and Gajek (1990) and many others.
Very important consequences of these results leading to local asymptotic minimaxity in the
spirit of Hajek and LeCam are proved in Gill and Levit (1995) and Gassiat et al. (2013).

In contrast to the above, Ghosh (1993), obtained Cramer-Rao type bounds for poste-
rior variances. Whereas the original Cramer-Rao inequality is based on the Fisher Informa-
tion number based on the likelihood and the Bayes risk results involve Fisher information
number of both the likelihood and the prior, the lower bound obtained by Ghosh involves
the posterior analog of the classical Fisher information number.

The present work extends the work of Ghosh (1993) to the multiparameter case, quite
in the spirit of Van Trees (2004) as well as Gill and Levit (1995). In particular, for a vector
valued parameter, a lower bound is provided for posterior expected weighted squared norms
of the difference of parameter vectors and their posterior means. The technical details are
given in the following section.

2. The main results

We begin with the posterior lower bound for the variance-covariance matrix of a
vector-valued parameter. Indeed, the same lower bound can be provided for the posterior
mean squared error matrix for an arbitrary estimator of a parameter of interest. But the
sharpest bound is one for the posterior variance-covariance matrix, since for an arbitrary
estimator e(X) of a parameter vector ψ(θ),

E[(ψ(θ) − e(X))(ψ(θ) − e(X))T |X]
= V [ψ(θ)|X] + [E(ψ(θ)|X) − e(X))(E(ψ(θ)|X) − e(X))T ]
≥ V [ψ(θ)|X].

Throughout this section, we will consider the following set up. Let X be a real or vector-
valued random variable with pdf f(x|θ), where θ = (θ1, . . . , θp)T . We denote by r1 and
r2 the lower and upper end points of θ. Consider an arbitrary prior π(θ) of θ. We will
denote the posterior of θ given X by π(θ|x). Consider an s(≤ p)-dimensional function
ψ(θ) = (ψ1(θ), . . . , ψs(θ))T of θ. We begin with the following lemma.

Lemma 1: Let (i) π(θ|x) → 0 as θ → r1 or r2 and (ii) ψi(θ)π(θ|x) → 0 as θ → r1 or r2
for all i = 1, . . . , s. Then

E[ψ(θ){∇ log π(θ|x)}T |x] = −E(∂ψ
∂θ

|x),

where ∇ denotes the gradient operator.

Proof: In view of assumptions (i) and (ii), for all 1 ≤ i ≤ s and 1 ≤ j ≤ p, integration by
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parts yields

E[ψi(θ) ∂

∂θj

∇ log π(θ|x)|x] =
� r2

r1

ψi(θ)[( ∂

∂θj

π(θ|x))/π(θ|x)]π(θ|x)dθ

= −
� r2

r1

∂ψi(θ)
∂θj

π(θ|x)dθ = −E[∂ψi(θ)
∂θj

|x].

This proves the result.

We now prove the first main result of this section. The result provides a multiparam-
eter posterior Cramer-Rao type lower bound for a vector-valued function of parameters.

Theorem 1: Assume the conditions of Lemma 1, and assume in addition that V [∇ log π(θ|x)]
is positive definite. Then

V [ψ(θ)|x] ≥ E(∂ψ
∂θ

|x)[V (∇ log π(θ|x))]−1E[(∂ψ
∂θ

)T |x].

Proof: Let u = ψ(θ) − E(ψ(θ)|x) and v = ∇ log π(θ|x). Consider the matrix

E[( u
v

)(uTvT )|x] = E

[(
uuTuvT

vuTvvT

)
|x
]
,

which by construction is non negative definite. This immediately leads to

E(uuT |x) ≥ [E(uvT |x)][E(vvT |x)]−1[E(vuT |x)].

In view of Assumption (i), E(vT |x) = 0. Also, E(vvT |x) = V [∇ log π(θ|x))|x]. The conclu-
sion follows now by applying Lemma 1.

Remark 1: In the particular case when ψ(θ) = θ so that ∂ψ
∂θ = Ip, one gets the in-

equality V (θ|x) ≥ [V (∇ log π(θ|x))|x]−1. The classical Cramer-Rao inequality says that
for unbiased estimators T (X) of a parameter vector θ, V [T (X)|θ] ≥ I−1(θ), where I(θ)
denotes the Fisher Information matrix. V (∇ log π(θ|x)) is the posterior analog of the clas-
sical Fisher Information matrix. It may be noted that while I(θ) = V [(∂ log f(X|θ)

∂θ )|θ],
V [∇ log π(θ|x)|x] = V [(∂ log π(θ|x

∂θ )|x].

Remark 2: Equality holds in Theorem 1 when ψ(θ) − E[ψ(θ)|x] and ∇ log π(θ|x) are
linearly related. As a simple example, consider X1, . . . ,Xn|θ are iid N(θ,Σ) with Σ known,
and the prior π(θ) is N(µ,Λ). Then the posterior π(θ|x) is N((I−B)x+Bµ, (I−B)Σ/n),
where B = n−1Σ(n−1Σ + Λ)−1. Then

∇ log π(θ|x) = [(I −B)Σ/n)−1(θ − ((I −B)x+Bµ)).

Then ∇ log π(θ|x) is linearly related to θ and accordingly V (θ|x) = [V (∇ log π(θ|x))|x]−1.

Remark 3: It is important to point out that while the classical Cramer-Rao inequality is
based on ∇ log f(x|θ), the van Tress inequality is based on ∇ log(f(x|θ)π(θ)). Ours is based
on ∇ log π(θ|x) instead.
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Our next result provides a lower bound for E[||ψ(θ) −E(ψ(θ)|x)||2|x] = E[tr(V (ψ(θ)|x))].

Theorem 2: E[tr(V (ψ(θ)|x)] ≥ E[{tr(∂ψ(θ)
∂θ )}2|x]/E[||∇ log π(θ)|x||2|x].

Proof: In view of Lemma 1, it follows that

trE[{ψ(θ) − E(ψ(θ)|x)}{∇ log π(θ|x)}T |x] = −trE[(∂ψ(θ)
∂θ

)|x] = −E[tr(∂ψ(θ)
∂θ

)|x].

The above is equivalent to

−E[tr(∂ψ(θ)
∂θ

)|x] = E[{(∇ log π(θ|x)T (ψ(θ) − E(ψ(θ)|x))}|x].

Now an application of the Cauchy-Schwarz inequality yields

[Etr(∂ψ(θ)
∂θ

)|x]2 ≤ E[||∇ log π(θ|x)||2|x]E{(||ψ(θ) − E(ψ(θ)|x)||2)|x}.

This yields the result. Remark 4. The above result can be generalized easily. Note that for
an arbitrary positive definite matrix B, and two random vectors Z1 and Z2,

E(ZT
1Z2) = E(ZT

1B
−1/2B1/2Z2) ≤ E(ZT

1B
−1Z1)E(ZT

2BZ2).
Writing Z1 = ψ(θ)−E(ψ(θ)|x) and Z2 = ∇ log π(θ|x), one gets the weighted squared error
posterior risk
E[(ψ(θ) − E(ψ(θ)|x))TB−1(ψ(θ)−E(ψ(θ)|xa))]

≥ [Etr(∂ψ(θ)
∂θ

)|x]2/E[(∇ log π(θ|x))TB∇ log π(θ|x)|x].
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Abstract
Many population-based surveys have polychotomous responses from a number of

individuals in each household within small areas. An example is the second Nepal Living
Standards Survey (NLSS II), in which health categorical data for each individual from the
sampled households (sub-areas) are available in sampled wards (small areas). When the
survey responses are ordinal, the sub-area hierarchical Bayesian probit models are considered
to make inference about finite population proportions of individuals with different health
statuses within the small areas. A standard assumption is that the ordered categorical
responses are determined by an unobservable continuous variable. We discuss how to fit the
model to avoid poor mixing problems in Markov chain Monte Carlo methods when simulating
samples from the joint posterior distribution. The application is on health status data in
the NLSS II, and the sub-area and the small area models are compared. The results show
that the sub-area models are preferred over the small area models that ignore households
(sub-areas) within the wards (areas). Our theoretical and methodological work can help
provide small area official statistics for numerous surveys worldwide.

Key words: Bayesian Inference; Hierarchical Bayesian model; Metropolis-Hastings algorithm;
Ordinal Variables; Small Area Estimation

1. Introduction

Most sample surveys are designed to provide reliable estimates of totals, means and
other parameters of interest for large areas or domains (e.g., state level, national level). Such
estimates are usually called “direct” estimates if they are only based on the domain-specific
sample data. However, direct estimates are not reliable for the areas or domains for which
only small samples or no samples are available. In recent years, more and more policymakers
demand small area estimates. In fact, many new programs, such as fund allocation for needed
areas, new educational or health programs, rely heavily on these estimates. Taking the cost
and operation issues into consideration, it is not practical to conduct surveys with large
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enough sample sizes within the areas. In particular, small area estimation (SAE) deals with
the problem of how to produce reliable “indirect” estimates of characteristics of interest for
the small areas or domains.

Small area models are generally classified into two broad types. The basic area level
model was introduced originally for SAE by Fay and Herriot (1979). The area level model
is applied when individual auxiliary information is not available. Unit level model was
first proposed for SAE by Battese, Harter and Fuller (1988). The generalized linear mixed
model (GLMM) is one extension of the basic unit-level models. It was considered for SAE
by MacGibbon and Tomberlin (1989). GLMM is useful in the case that the small area
quantities of interest are finite population proportions.

In this paper, we are particularly interested in the small area models that can capture
hierarchical structures, such as the Nepal Living Standard Survey II (NLSS II) data. The
sampling scheme of NLSS II is a two-stage stratified sampling design. Nepal is stratified
into primary sample units (wards) and within each ward, twelve households (sub-area) are
systematically selected and all individuals from the selected households are interviewed.
Although the above basic models are very popular and in common use in producing reliable
estimates, the hierarchical structure of the data and the consistency between the estimates
for different levels may not hold. Therefore, we focus on two-fold models, an important
extension of basic small area models.

Hierarchical Bayesian methods are very popular in the two-fold models. Yan and
Sedransk (2007) studied the case that the data follow a normal model with a two-stage (three-
stage) hierarchical structure while the fitted model has a one-stage (two-stage) hierarchical
structure by using posterior predictive p-values. Yan and Sedransk (2010) discussed the
ability to detect a three-stage model when a two-stage model is actually fitted. Nandram
(2016) and Chen and Nandram (2022) showed that it is important to consider the sample
design within each area and proposed a two-fold small-area Beta-Binomial model. Lee et
al. (2017) use a Bayesian method to infer about a finite population proportion when binary
data are collected using a two-fold sample design from small areas. Erciulescu et al. (2018),
Chen et al. (2022), and Nandram et al. (2023) illustrated hierarchical Bayesian approaches to
provide estimates for the sub-area models with and without constraints. Chen and Nandram
(2023) proposed a hierarchical Bayesian logistic regression model for binary data in small
area estimation. This model is a unit level model with the sub-area effect. The results show
that two-fold models can capture the heterogeneity between samples within not only small
areas but also sub-areas.

Many population-based surveys have polychotomous responses from a number of
individuals in each household within small areas, and many responses are ordered. For
example, in the NLSS II, the answers to the question on health status range from 1 to
4, four options (excellent, good, fair, poor). There are few studies for ordinal response
variables in SAE. Early papers on regression models for ordinal data include McKelvey
and Zavoina (1975), McCullagh (1980), and Winship and Mare (1984). Nandram (1989)
discussed the discrimination between the log-log link and logit link models for ordinal data.
The textbook of Agresti (2010) gives a thorough treatment of ordinal data, while O’Connel
(2006) provides applied researchers in the social sciences with accessible and comprehensive
coverage of analysis for ordinal outcomes.
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Albert and Chib (1993) discussed the algorithm to fit the Bayesian ordinal regression
model with probit link. They introduced an underlying continuous variable, Z with a stan-
dard normal cumulative distribution function Φ. The ordinal response variable, Yi is then
observed in category t if Zi comes from Normal(

˜
xT

i ˜
β,1) between the cutpoints θt−1 < Zi ≤ θt

and
˜
x are the covariates. To capture the ordinal nature of the observed data, the cut-points

are constrained to be monotonically increasing, −∞ = θ0 < θ1 < .. . < θT −1 < θT = +∞.
In addition, they assume that Zi follows scale mixture of normal distributions, that is,
Normal(

˜
xT

i ˜
β,λ−1

i ). They assume that the underlying continuous variables follow the normal
distribution without subgroup random effects. In this paper, we focus on the heterogeneous
variances among the small areas and the subareas and conduct the subgroup analysis. We
start with their models and build additional models with the small area and sub-area random
effects.

For the probit analysis, Holmes and Held (2006) discussed Albert and Chib (1993)
algorithm and showed that it gives a poorly mixing Gibbs sampler. They showed how to
solve this mixing problem by adding latent variables and using the block Gibbs sampler
(i.e., some variables are drawn simultaneously). In this paper, we discuss how to fit the
heterogeneous model to avoid poor mixing problems in Markov chain Monte Carlo methods
when simulating samples from the joint posterior distribution.

In Section 2, a full description of the area and sub-area hierarchical Bayesian ordered
probit models is given. In Section 3, we apply the models to the NLSS II data to predict
the four health conditions of the household proportions of members for both sampled and
nonsampled households. The comparisons between the small area models and the subarea
models are presented. Finally, in Section 4, we make concluding remarks and discuss the
future work. Technical details are given in the appendices.

2. Bayesian ordered probit models with covariates

In this section, we discuss two hierarchical Bayesian ordered probit models with co-
variates: the heterogeneous small area model and the heterogeneous sub-area model. We
explain in detail about how to draw samples from the joint posterior distributions of hetero-
geneous models to avoid poor mixing problems in MCMC algorithm.

Suppose that the Yi are categorical responses, falling in t = 1, . . . ,T , categories. Then
Yi follows a multinomial distribution with parameter

˜
p where pit denotes the probability that

the ith observation falls in the response category t. The cumulative probabilities are

γit = P (Yi ≤ t) = pi1 + · · ·+pit.

Let g(·) denote a link function mapping probabilities to the real line, g(γit) = θt +
˜
xT

i ˜
β,

where
˜
xT

i is a vector of explanatory variables for the ith observation and
˜
β is the corresponding

set of regression parameters. The θt parameters are constant representing the baseline value
for category t. Notice that the predictors do not include a column of ones for the intercept
term since the constants are written explicitly. In this paper, we primary discuss the model
with probit link function within the Bayesian paradigm, that is, g(·) = Φ−1(·).
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2.1. Heterogeneous small area model

In this section, we focus on the model with heterogeneous variances among small
areas. In the small area models, we ignore the differences among households. Assume
that there are ℓ areas, within the ith area there are Mi individuals. For sampling, mi

individuals are selected from the Mi units available. Suppose that the independent response
yij , i = 1, . . . , ℓ, j = 1, . . . ,mi are observed and yij takes one of T ordered categories, i.e.,
yij ∈ {1,2, ...,T}.

The interest is to provide indirect estimates of the finite population proportions of
the small areas in each category which are

P̄ a
it = 1

Mi

Mi∑
j=1

I(yij = t) = fa
i Īa

sti +(1−fa
i )Īa

nsti , i = 1, . . . , ℓ, t = 1, . . . ,T,

where a denotes the small area estimates, and Īa
sti = ∑mi

j=1 I(yij = t)/mi, Īa
nsti = ∑Mi

j=mi+1 I(yij =
t)/(Mi −mi), and fa

i = mi/Mi are sampled proportions, non-sampled proportions and sam-
ple fraction respectively in the small area model. Bayesian predictive inference is required
for non-sample proportions.

Define the underlying continuous variable zij , where the zij follows Normal(
˜
xT

ij˜
β +

νi,λ
−1
i ) with small area random effect νi. If θt−1 < zij ≤ θt , then yij = t. Define θ0 = −∞ and

θT = ∞. θt is a constant representing the baseline value for category t. Since the variances of
latent variable zij vary within areas, we called this ordered probit model heterogeneous small
area model. Therefore, the small area Bayesian ordinal probit model with heterogeneous
variances is

zij |˜
ν,

˜
β,λi,˜

x,
˜
y

ind∼ Normal(
˜
xT

ij˜
β +νi,λ

−1
i ), (1)

where θt−1 < zij ≤ θt if yij = t and the priors are

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , ℓ,

˜
β ∼ MN

(
˜
β0,1000Σ0

)
,

λi|a
iid∼ Gamma(a,a), i = 1, . . . , ℓ,

π(a,δ2) = 1
(1+a)2

1
(1+ δ2)2 ,

π(θt) = (n−1)!I(θ1 < .. . < θT −1), t = 1, . . . ,T −1.

A diffuse prior is placed on the coefficient
˜
β. The prior of λi is gamma distribution,

which makes the latent variable zij follows a student’s t distribution. We placed the shrinkage
priors on both a and δ2 so that they are proper but with heavy tail. The detail of how to
obtain a sample from joint posterior density is shown in Appendix A.

If the variances among the small areas are the same, no λi but 1, we call that model
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a homogeneous small area model. That is,

zij |˜
ν,

˜
β,

˜
x,

˜
y

ind∼ Normal(
˜
xT

ij˜
β +νi,1), (2)

where θt−1 < zij ≤ θt if yij = t and the priors are

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , ℓ,

˜
β ∼ MN

(
˜
β0,1000Σ0

)
,

π(a,δ2) = 1
(1+a)2

1
(1+ δ2)2 ,

π(θt) = (n−1)!I(θ1 < .. . < θT −1), t = 1, . . . ,T −1.

Since the heterogeneous model is more general than the homogeneous model, the
methods can be easily applied to the homogeneous model and the computations are simpler.

2.2. Heterogeneous sub-area model

We focus on the model with heterogeneous variances among sub-areas and discuss how
to fit it. In sub-area models, we assume that there are ℓ areas, within the ith area there are Ni

sub-areas (households) and within the jth sub-areas, there are Mij individuals. For sampling,
ni sub-areas are sampled from the Ni sub-areas and all individuals are selected in sampled
sub-areas, that is, mij = Mij . Let yijk, k = 1, . . . ,mij , j = 1, . . . ,ni, i = 1, .. . . . , ℓ, denote the
categorical response and yijk takes one of T ordered categories, i.e., yijk ∈ {1,2, ...,T}.

The interest is also to provide estimates of the finite population proportions of small
areas in each category which are

P̄ s
it = 1

Ni∑
j=1

Mij

Ni∑
j=1

Mij∑
k=1

I(yijk = t) = fs
i Īs

sti +(1−fs
i )Īs

nsti , i = 1, . . . , ℓ, t = 1, . . . ,T,

where s denotes the estimates considering sub areas, and Īs
sti = ∑ni

j=1
∑mij

k=1 I(yijk = t)/∑ni
j=1 mij ,

Īs
nsti = ∑Ni

j=ni+1
∑Mij

k=1 I(yijk = t)/∑Ni
j=ni+1 Mij , and fs

i = ∑ni
j=1 Mij/

∑Ni
j=1 Mij are sampled

proportions, non-sampled proportions and sample fraction in sub-area models respectively.
Bayesian predictive inference is required for non-sample proportions.

Let the zijk follow Normal(
˜
xT

ijk˜
β +νi +µij ,λ

−1
i ) distribution with the small area ran-

dom effects νi and sub-area random effects µij . If θt−1 < zijk ≤ θt , then yijk = t. Since the
variance of latent variable zijk are different among small areas, we call this ordered probit
model a heterogeneous sub-area model.

Our sub-area Bayesian ordered probit model as

zijk|
˜
ν,

˜
β,λi,˜

x,
˜
y

ind∼ Normal(
˜
xT

ijk˜
β +νi +µij ,λ

−1
i ), (3)
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where θt−1 < zijk ≤ θt if yijk = t and the priors are

µij |σ2 iid∼ Normal(0,σ2), j = 1, . . . ,ni,

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , ℓ,

˜
β ∼ MN

(
˜
β0,1000Σ0

)
,

λi|a
iid∼ Gamma(a,a), i = 1, . . . , ℓ,

π(a,σ2, δ2) = 1
(1+a)2

1
(1+ δ2)2

1
(1+σ2)2 ,

π(θt) = (T −1)!I(θ1 < .. . < θT −1), t = 1, . . . ,T −1.

Similarly, the detail of how to obtain a sample from this joint posterior density is
shown in Appendix B.

If the variances among areas are the same, no λi but 1, we call that model as homo-
geneous sub-area model, that is

zijk|
˜
ν,

˜
β,

˜
x,

˜
y

ind∼ Normal(
˜
xT

ijk˜
β +νi +µij ,1), (4)

where θt−1 < zijk ≤ θt if yijk = t and the priors are

µij |σ2 iid∼ Normal(0,σ2), j = 1, . . . ,ni,

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , ℓ,

˜
β ∼ MN

(
˜
β0,1000Σ0

)
,

π(a,σ2, δ2) = 1
(1+a)2

1
(1+ δ2)2

1
(1+σ2)2 ,

π(θt) = (T −1)!I(θ1 < .. . < θT −1), t = 1, . . . ,T −1.

Since the heterogeneous model is more general than the homogeneous model, the
methods can be easily applied to the homogeneous model and the computations are simpler.

2.3. Prediction

In this paper, our interest is to predict the finite population proportions of the 102
sampled wards in both sampled and non-sampled households. The covariates of individuals
in non-sampled households and the size of non-sampled households are unknown. Bayesian
bootstrap (Rubin 1981) is used to draw them. The bootstrapping is done within sampled
wards. The detail of the Bayesian bootstrap procedure is shown in Appendix C. Bayesian
predictive inference for the individuals in the non-sampled sub-areas within the sampled small
areas can be made once the set of samples are obtained from the posterior distribution.

For the small area models, we can draw samples of the non-sampled underlying vari-
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able, z
(h)
ij , h = 1, . . . ,M, j = mi +1, . . . ,Mi, i = 1, . . . , ℓ, based on the likelihood functions in

the models, where h denote the hth samples drawn from the predictive distribution and we
draw M samples in total. Then given the set of samples of

˜
θ, the non-sampled responses,

yij , can be predicted based on the criteria:

θ
(h)
t−1 < zij ≤ θ

(h)
t , then yij = t, t = 1, . . . ,T.

For the sub-area models, we can draw samples of the non-sampled underlying variable,
z

(h)
ijk , h = 1, . . . ,M, k = 1, . . . ,Mij , j = ni + 1, . . . ,Ni, i = 1, . . . , ℓ, based on the likelihood

functions in the models. Then given the set of samples of
˜
θ, the non-sampled responses, yijk,

can be predicted based on the criteria:

θ
(h)
t−1 < zijk ≤ θ

(h)
t , then yijk = t, t = 1, . . . ,T.

3. Application

3.1. Nepal living standards survey II

In this section, we describe the second Nepal Living Standards Survey (NLSS II)
and the responses and the covariates. The performance of our method is studied using
NLSS II, conducted in the years 2003-2004. NLSS is a national household survey in Nepal,
actually population based (i.e., interviews are done for all individual household members).
Sometimes the head of the household answers the questions. NLSS follows the World Bank
Living Standards Measurement Survey methodology with a two-stage stratified sampling
scheme. It is an integrated survey which covers samples from the whole country. The main
objective of the NLSS is to collect data from Nepalese households and provide information to
monitor progress in national living standards. We study the polychotomous variable, health
status, from the health section of the questionnaire.

The sampling design of NLSS II is two-stage stratified sampling. One selects the
primary units (small areas) in the first stage and then some of the units (sub-areas) are
selected from the secondary stage. Figure 1 shows that the area level of NLSS II is wards
(circle) and the sub-area level is all selected households (house shape). That is, Nepal is
stratified into primary sample units (wards) and within each ward, twelve households (sub-
areas) are systematically selected. All household members in the sample were interviewed.
Note that any analysis is done for each stratum.

According to the 2001 census data, only about 0.091% of households and only 0.904%
of wards were sampled. NLSS II was designed to provide reliable estimates only at stratum
level or even larger areas than stratum. It cannot give reliable estimates in small areas (ward
or household level) since the sample sizes are too small. Therefore, we need to use statistical
models to fit the available data and find reliable estimates in small areas.

3.2. Response variables and covariates

NLSS II has sparse counts of household members within the wards for four health
status groups: excellent, good, fair and poor, denoted by 1 to 4. The distribution of all
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Figure 1: Illastration of NLSS II two-stage sampling design

responses of the health conditions in each stratum is shown in Table 1. Notice that the
counts in the fair and poor cells are very sparse. There are six strata in the NLSS II. In
this paper, we study the Rural Terai, the largest stratum in Nepal. It has 102 wards with
7,034 individuals in the sample of 12,239 wards in the population with 9,744,810 people.
The number of people in the sample is 7,034 with 3,950 in the “excellent” cell, 2,926 in the
“good” cell, 153 in the “fair” cell and 5 in the “poor” cell with percentages 56.1%, 41.6%,
2.1% and 0.02%. Notice that the counts in the last cell are mostly zeros.

Table 1: Distributions of wards and households in the sample and the distribu-
tions of the responses in each health cell

Stratum Ward Household Individual Excellent Good Fair Poor
Mountains 32 384 1,949 1,262 658 24 4

Kathemandu 34 408 1,954 1,494 459 1 0
Urban Hills 28 336 1,467 820 626 20 1
Rural Hills 96 1,152 5,755 3,028 2,613 110 4

Urban Terai 34 408 2,104 1,239 811 52 2
Rural Terai 102 1,224 7,034 3,950 2,926 153 5

We choose four relevant covariates which can influence health status from the NLSS
II survey for our sub-area logistic model and ordered probit models. They are age, nativity,
sex and religion. We created binary variables: nativity (Indigenous = 1, Non-indigenous =
0), religion ((Hindu = 1, Non-Hindu = 0), and sex (Male = 1, Female = 0).

Table 2 shows some details of these 4 covariates. In the model fitting, we standardize
age covariate. Elder age and children’s age are more vulnerable than younger age. Indigenous
people can have different health status from migrated people.
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In NLSS II, the ordinal response variable of health status has 4 categories, from 1 to
4, where 1 means excellent health condition and 4 means poor health condition, respectively.
When respondents answer this question, there is an underlying order among 1 to 4. Then the
baseline values are −∞ = θ∗

0 < θ∗
1 < θ∗

2 < θ∗
3 < θ∗

4 = +∞. In order to make the computation
simpler, we subtract θ∗

2 in each side and then −∞ < θ1 < 0 < θ2 < +∞, where θ1 = θ∗
1 − θ∗

2
and θ2 = θ∗

3 − θ∗
2.

Table 2: Summaries of the four covariates: age, gender, nativity, and religion

Covariates Frequency Percentage
Age 0-14 7,765 38.32

15-59 10,951 54.04
60+ 1,547 7.64

Gender Male 9,763 48.18
Female 10,500 51.82

Nativity Indigenous 11,903 41.25
Non-Indigenous 8,360 58.75

Religion Hindu 16,378 80.83
Non-Hindu 3,385 19.17

3.3. Numerical results

In this section, we show the numerical results and comparisons among the four mod-
els: homogeneous and heterogeneous wards models (small area models); homogeneous and
heterogeneous household models (sub-area models).

3.3.1. MCMC diagnostics

For each of four models, we run 12,000 MCMC iterations, burn in 2,000 and thin every
10th to obtain 1,000 converged posterior samples. Table 3 and Table 5 give the p-values of
the Geweke test and the effective sample sizes for the parameters

˜
β, θ1, θ2 and δ2 of the

homogeneous models. Table 4 gives the p-values of the Geweke test and the effective sample
sizes for the parameters

˜
β, θ1, θ2, a and δ2 of the heterogeneous area model. Table 6 gives the

p-values of the Geweke test and the effective sample sizes for the parameters
˜
β, θ1, θ2, a, δ2

and σ2 for the heterogeneous household model. The p-values are all large, so we do not reject
the null hypothesis test which is that the Markov chain is in the stationary distribution. The
effective sample sizes are not too far away from 1,000. These model diagnostic summaries
indicate that the MCMC chains converge and strongly mixing.

3.3.2. Model comparisons

For evaluating and comparing these models, the Bayesian posterior predictive p-value
(Meng,1994), the deviance information criterion (DIC) and the logarithm of the pseudo
marginal likelihood (LPML) are computed.

In the ordered probit models, denote Ω = (
˜
ν,

˜
µ,

˜
θ,

˜
β,

˜
λ). Since the responses yijk follow
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Table 3: Summary of MCMC diagnostics: posterior mean, posterior standard
deviation, the p-values of the Geweke test and the effective sample sizes for the
homogeneous wards model

Model Homogeneous Wards Model
Mean SD Geweke pval Effective Size

β1 0.08817 0.02238 0.34 1000
β2 0.00038 0.02818 0.65 900
β3 -0.02079 0.02555 0.57 1000
β4 -0.37098 0.02379 0.71 1123
θ1 -0.50001 0.00021 0.11 1000
θ2 0.59635 0.60952 0.54 1000
δ2 0.59320 0.11752 0.35 1092

Table 4: Summary of MCMC diagnostics: posterior mean, posterior standard
deviation, the p-values of the Geweke test and the effective sample sizes for the
heterogeneous wards model

Model Heterogeneous Wards Model
Mean SD Geweke pval Effective Size

β1 0.1711 0.0148 0.78 1000
β2 -0.0404 0.0164 0.48 910
β3 -0.0074 0.0140 0.46 1000
β4 -0.3467 0.0103 0.17 1000
θ1 -0.5028 0.0044 0.28 908
θ2 0.5963 0.6706 0.69 1000
a 0.8645 0.9327 0.51 1000
δ2 1.4927 0.0396 0.12 875

Table 5: Summary of MCMC diagnostics: posterior mean, posterior standard
deviation, the p-values of the Geweke test and the effective sample sizes for the
homogeneous household model

Model Homogeneous Household Model
Mean SD Geweke pval Effective Size

β1 0.10234 0.02344 0.88 1000
β2 -0.00755 0.02477 0.71 1006
β3 -0.02113 0.02562 0.93 888
β4 -0.05413 0.02141 0.93 598
θ1 -0.50000 0.00020 0.67 1000
θ2 0.58684 0.10882 0.66 1000
δ2 0.55568 0.13674 0.78 901
σ2 0.03291 0.01905 0.30 855
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Table 6: Summary of MCMC diagnostics: posterior mean, posterior standard
deviation, the p-values of the Geweke test and the effective sample sizes for the
heterogeneous household model

Model Heterogeneous Household Model
Mean SD Geweke pval Effective Size

β1 0.1752 0.0149 0.78 1000
β2 -0.0132 0.0177 0.39 1000
β3 -0.0403 0.0159 0.69 1000
β4 0.0089 0.0192 0.24 1000
θ1 -0.4843 0.0044 0.51 888
θ2 0.5584 0.0622 0.65 1000
a 0.8498 0.0997 0.52 1000
δ2 1.6472 0.9333 0.16 1000
σ2 0.3367 0.1957 0.68 1000

multinomial distributions, we consider a measure of form

T (
˜
y,Ω) =

T∑
t=1

ℓ∑
i=1

ni∑
j=1

mij∑
k=1

(I(yijk = t)−pijkt)2

ntpijkt(1−pijkt)
,

where nt = ∑ℓ
i=1

∑ni
j=1

∑mij

k=1 I(yijk = t) is the total number of yijk in t category and pijkt =
Φ(θt −

˜
xT

ijk˜
β − νi − µij). We calculate T (

˜
yrep,Ω) for each of 1,000 samples, and then seeing

what percent are above single calculated T (
˜
yobs,Ω). The Bayesian posterior predictive p-

value (BPP) is used in order to check the discrepancy between data and the posited model.
The BPPs of all models shown in Table 7 are not in the extreme range (close to 0 or 1).
Therefore, they are appropriate and adequate to make inference for the finite population
proportions of interest. Note that the BPP cannot be used for ranking the models, but for
checking if the model is good or not.

In addition, we calculated their DICs and LPMLs. The deviance information criterion
(DIC) (Spiegelhalter et al. 2002) is a Bayesian measure of goodness-of-fit,

DIC = 2

 1
M

M∑
h=1

D(
˜
y,Ω(h))

 −D(
˜
y, Ω̂),

where Ω̂ is a point estimate for Ω such as the mean of the posterior simulations, Ω(h) are
posterior simulations and D(

˜
y, Ω̂) = − logf(y|Ω). DIC has been suggested as a criterion of

model fit when the goal is to pick a model with best out-of-sample predictive power. A
smaller value of DIC indicates a better fit and it provides reasonable assessments of model
fit while considering the model complexity.

Similar to the DIC, LPML is also based on the same cross-validation (leave-one-
out) procedure. A summary statistic of the conditional predictive ordinate (CPO) values is
LPML. CPO is defined as the predictive density of observation i given all the other observa-
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tions, that is, CPOi = p(yi|y(i)) =
�

p(yi|Ω)p(Ω|
˜
y(i))dΩ, where

˜
y(i) is the data

˜
y without ith

observation. If observations are conditionally independent, a harmonic mean approximation
of CPO is ĈPOi =

{
1

M

∑M
h=1

1
p(yi|Ω(h))

}−1
, where Ω(h),h = 1, . . . ,M are samples from the

posterior distribution. Then,
LPML =

∑
i

log(ĈPOi).

Larger values of LPML indicate better fitting models (Geisser and Eddy 1979).

The DICs of the heterogeneous and homogeneous wards models are 1,852.58 and
4,039.93 respectively. The LPML of heterogeneous and homogeneous wards models are
-1,096.38 and -1,838.45 respectively. So the heterogeneous ward model is better than the ho-
mogeneous one. The DICs of heterogeneous and homogeneous household model are 1,329.35
and 1,927.68 respectively. The LPML of the heterogeneous and homogeneous area models
are -1,056.01 and -1,272.85 respectively. So the heterogeneous household model is better than
the homogeneous one. Overall, based on the DIC and LPML, the heterogeneous household
model has the smallest DIC and the largest LPML. The household models have relatively
small DIC and large LPML. The household models are better when fitting the NLSS II
health data.

Table 7: Comparison of BPP and DIC among four models: heterogeneous house-
hold model (HES), heterogeneous wards model (HEA), homogeneous household
model (HOS), homogeneous wards model (HOA) for NLSS II data

Model BPP DIC LPML
HEA 0.415 1852.58 -1096.38
HES 0.475 1329.35 -1056.01
HOA 0.155 4039.93 -1838.45
HOS 0.280 1927.68 -1272.85

We are interested in the finite population proportions of four health conditions in the
small areas. We use all four ordered probit models to predict the nonsampled households
in the 102 sampled wards. Bayesian bootstraps are used to generate unknown household
sizes and nonsampled covariates within sampled wards and the bootstrapping is done within
wards. The 2001 Census could potentially provide these two pieces of information, but there
is a mismatch between the households in the census and the NLSS II (a record linkage can
be performed). We note, however, that there is linkage between the wards, but this infor-
mation is not useful to household estimates. In this application, we know the total number
of households and individuals in each sampled wards, and we have sampled household infor-
mation. Therefore, we decide to use these information in the Bayesian bootstrap approach
to generate nonsampled household sizes and corresponding nonsampled covariates within
sampled wards.

Based on 1,000 samples of parameters from the joint posterior distribution, we get
1,000 values of P̄it; order these values and pick the 95% prediction interval to be (P̄ (25)

it , P̄
(975)
it ),

t = 1,2,3,4, where the values are arranged in increasing order.
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The health status proportions of the 102 sampled wards based on both sampled and
non-sampled households (P̄t, t = 1,2,3,4) under all four models are shown in Figure 2. The
proportions in excellent health condition are similar among all four models. The estimates
from the heterogeneous household model are slightly less than those from the other models.
The proportions in good health condition from both household models are more than those
from the small area models. The proportions of fair condition and poor condition from the
area models are relatively similar. The proportions of fair condition from the household
models are larger than the proportions of poor conditions, which is consistent with the
observed data. The error bars are the 95% credible intervals of P̄t. We can notice that the
95% credible intervals of the estimates in the homogeneous wards model are widest among
all four models. The 95% credible intervals in the heterogeneous model have relatively the
narrowest among all four models.

We examine plots to further compare the predictive inference of the finite population
proportions of the four health conditions between the heterogeneous ward model and the
heterogeneous household model. Figure 3 shows the comparison of the finite population
proportions of four health conditions in each household within the sampled wards respectively
between two models. One of our interest is to provide estimates for sampled wards. We can
get the finite population proportions of health status in each sampled wards by taking the
average on those estimates for households in each ward. Figure 4 shows the comparison of
the finite population proportions of the four health conditions in sampled wards respectively
between the two models. We can see that the points do not fall reasonably well on the 45o

line, which indicates that everything being equal, the model with sub-area random effects
can capture more information, the heterogeneity of different households (sub-areas).

4. Concluding remarks and future works

In this paper, we study several hierarchical Bayesian ordered probit models for poly-
chotomous responses. The sub-area models can capture the heterogeneity among the sub-
areas (households) within the small areas (wards) and borrow strength from the sub-areas
to obtain more efficient estimators. A full Bayesian analysis is provided for each model and
predictive inference of the finite population proportions of the small areas is conducted. We
have demonstrated our application to health status data from NLSS II.

We discussed one posterior computation algorithm to avoid poor mixing problems
that the Gibbs sampler may cause. NLSS II health data were used in order to examine the
performance of two models. We have performed a Bayesian predictive inference for the finite
population proportion of each health status in the sampled wards based on the sampled and
non-sampled households. BPP and DIC are used to assess and compare our ordinal probit
models. The sub-area models perform better than the small area models.

In the paper, we assume the samples are self-weighted. However, if the sample unit
cannot represent the target population, survey weights should be used to adjust selection
bias. In the future, incorporating survey weights into the models can be explored. The
observed biased samples actually followed a weighted distribution instead of the original
distribution that the random samples follow. In order to predict and make inference about
the finite population, the surrogate sampling approach by Nandram (2007) can be used to
predict the finite population proportions.
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We focus on parametric statistical models in this paper. Nonparametric Bayesian
models using the stick-breaking priors can be considered to robustify the inference by em-
bedding parametric models in nonparametric models. Ishwaran and James (2001) discussed
the Gibbs samplers that can be used to fit posteriors of Bayesian hierarchical models based
on stick-breaking priors. They are more flexible and better than the stick breaking prior of
the Dirichlet process.

Figure 2: Comparison of finite population proportions of each health condition
cell among four models
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Figure 3: Comparison of the wards model and household models for prediction
of the finite population proportions of 4 different health conditions of household
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Figure 4: Comparison of the wards model and household models for prediction
of the finite population proportions of 4 different health conditions of wards
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APPENDIX

A. Computation method for the heterogeneous small area model

Using Bayes’ theorem, the joint posterior distribution of the heterogeneous small area
model in Section 2.1 is

π(
˜
z,ν,

˜
β,

˜
λ,

˜
θ,a,δ2|

˜
y) ∝

ℓ∏
i=1

mi∏
j=1


√

λie
− λi

2 (zij−
˜
xT

ij
˜
β−νi)2 T∑

t=1
[I(yij = t,θt−1 < zij ≤ θt)]


×

( 1
δ2

) ℓ
2 ℓ∏

i=1

{
e

− 1
2δ2 ν2

i

}
× exp

{
−(

˜
β −β0)T (1000Σ0)−1(

˜
β −β0)

}

×


ℓ∏

i=1

aaλa−1
i e−aλi

Γ(a)

 1
(1+a)2

1
(1+ δ2)2 .

In order to jointly draw samples of
˜
z and

˜
λ, we integrate out

˜
z from the joint posterior

distribution π(
˜
z,

˜
λ|

˜
ν,

˜
x,

˜
β,

˜
θ,a,

˜
y). That is,

π(λi|˜
ν,

˜
x,

˜
β,

˜
θ,a,

˜
y) =

�
π(

˜
z,λi|˜

ν,
˜
x,

˜
β,

˜
θ,a,

˜
y)d

˜
z

∝
mi∏
j=1


� √

λie
− λi

2 (zij−
˜
xT

ij
˜
β−νi)2 T∑

t=1
[I(yij = t,θt−1 < zij ≤ θt)]d˜

z

 aaλa−1
i e−aλi

Γ(a)

=
mi∏
j=1


T∑

t=1

� θt

θt−1

[√
λie

− λi
2 (zij−

˜
xT

ij
˜
β−νi)2

]
I(yij = t)dzij

 aaλa−1
i e−aλi

Γ(a)

=
mi∏
j=1


T∑

t=1

[
Φ

(√
λi(θt −

˜
xT

ij˜
β −νi)

)
−Φ

(√
λi(θt−1 −

˜
xT

ij˜
β −νi)

)]
I(yij = t)


× aaλa−1

i e−aλi

Γ(a) .

Then Metropolis-Hastings algorithm is used to draw samples of λi from the marginal condi-
tional distribution. Given λi and samples of

˜
β,νi and

˜
θ, we draw zij from truncated normal

N(
˜
xT

ij˜
β +νi,λ

−1
i ), where yij = t if θt−1 < zij ≤ θt.

To implement the Gibbs sampler once we get a sample of
˜
λ and

˜
z, we need to draw

samples from the full conditional posterior distributions of
˜
ν,

˜
β, a, δ2 and

˜
θ.

First, the conditional distribution of
˜
ν is

νi|λi,˜
z,

˜
β,δ2,

˜
y

ind∼ Normal
λi

∑ni
j=1(zij −

˜
xT

ij˜
β)

1
δ2 +niλi

,( 1
δ2 +niλi)−1

 .
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Second, the conditional distribution of
˜
β is

˜
β|

˜
ν,

˜
λ,

˜
z,

˜
x,

˜
y ∼ MN

(
ˆ
˜
β,Σˆ

˜
β

)
, where

ˆ
˜
β = Σˆ

˜
β

 ℓ∑
i=1

mj∑
j=1

λi(zij −νi)˜
xij +(1000Σ0)−1

˜
β0

 ,

Σˆ
˜
β =

 ℓ∑
i=1

ni∑
j=1

λizij˜
xij˜

xT
ij +(1000Σ0)−1

−1

.

Third, the fully conditional distribution of θt, given
˜
z,

˜
θ(t) = {θs, s ̸= t} and data, is

given by

π(θt|˜
z,

˜
θ(t),

˜
y) ∝

ℓ∏
i=1

mi∏
j=1

[I(yij = t,θt−1 < zij ≤ θt)+ I(yij = t+1, θt < zij ≤ θt+1)] .

Notice that this conditional density is uniform density on the interval. That is

θt|˜
z,

˜
θ(t),

˜
y ∼ Uniform

(
max{max{zij ,yij = t}, θt−1},min{min{zij ,yij = t+1}, θt+1}

)
.

Fourth, given the sample of
˜
λ, we can use grid method to draw a. Transform a to

ϕ1 = a
1+a , which is in (0,1). The conditional posterior distribution of ϕ1 is

π(ϕ1|
˜
λ) ∝

 ℓ∏
i=1

aaλa−1
i e−aλi

Γ(a)


ϕ1= a

1+a

.

Fifth, to draw δ2 we also use the grid method. Transform δ2 to ϕ2 = δ2

1+δ2 , which is in (0,1).
The conditional posterior distribution of ϕ2 is

π(ϕ2|
˜
ν) ∝


( 1

δ2

) ℓ
2

exp
− 1

2δ2

ℓ∑
i=1

ν2
i

 |
ϕ2= δ2

1+δ2
.

To implement the algorithm, we chose starting points
˜
β(0),

˜
θ(0) equal to the maximum likeli-

hood estimators (MLE) based on the previous paper by Chen and Nandram (2023), λ
(0)
i = 1

and ν
(0)
i = 1. We first draw a and δ2 using grid method, and then jointly draw a sample of

˜
λ and

˜
z, and simulate from the conditional distribution of νi,

˜
β and θt.

B. Computation method for the heterogeneous sub-area model

Using Bayes’ theorem, the joint posterior distribution of the Heterogeneous Sub-Area
Model in Section 2.2 is
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π(
˜
z,

˜
ν,

˜
µ,

˜
β,

˜
λ,a,σ2, δ2|

˜
y)

∝
ℓ∏

i=1

ni∏
j=1

mij∏
k=1


√

λie
− λi

2 (zijk−
˜
xT

ijk˜
β−νi−µij)2 T∑

t=1

[
I(yijk = t,θt−1 < zijk ≤ θt)

]
×

( 1
σ2

) ℓ
2 ℓ∏

i=1

ni∏
j=1

{
e

− 1
2σ2 µ2

ij

}( 1
δ2

) ℓ
2 ℓ∏

i=1

{
e

− 1
2δ2 ν2

i

}

× exp
{
−(

˜
β −β0)T (1000Σ0)−1(

˜
β −β0)

}
ℓ∏

i=1

aaλa−1
i e−aλi

Γ(a)


× 1

(1+a)2
1

(1+ δ2)2
1

(1+σ2)2 .

The method to fit the sub-area probit model is discussed in the following steps.
In order to jointly draw samples of

˜
z and

˜
λ, we integrate out

˜
z from the joint posterior

distribution π(
˜
z,

˜
λ|

˜
µ,

˜
ν,

˜
x.

˜
β,a,

˜
y). That is,

π(λi|˜
ν,

˜
x.

˜
β,a,

˜
y) =

�
π(λi|

˜
µ,

˜
ν,

˜
x,

˜
β,a,

˜
y)d

˜
z

∝
ni∏

j=1

mij∏
k=1

{� √
λie

− λi
2 (zijk−

˜
xT

ijk˜
β−νi−µij)2

T∑
t=1

[I(yijk = t,θt−1 < zijk ≤ θt)]d˜
z

}
aaλa−1

i e−aλi

Γ(a)

=
ni∏

j=1

mij∏
k=1

{
T∑

t=1

� θt

θt−1

[√
λie

− λi
2 (zijk−

˜
xT

ijk˜
β−νi−µij)2

]
I(yijk = t)dzijk

}
aaλa−1

i e−aλi

Γ(a)

=
ni∏

j=1

mij∏
k=1

{
T∑

t=1

[
Φ

(√
λi(θt −

˜
xT

ijk˜
β −νi −µij)

)
−Φ

(√
λi(θt−1 −

˜
xT

ijk˜
β −νi −µij)

)]
I(yijk = t)

}

× aaλa−1
i e−aλi

Γ(a) .

Then we can use accept-reject algorithm to draw samples of λi, i = 1, . . . , ℓ. Once we get the
sample, we can draw zijk. Similarly, we first draw a sample

˜
β∗ from prior MN

(
˜
β0,1000Σ0

)
,

draw a sample ν∗
i from prior Normal(0, δ2) and draw a sample µ∗

ij from prior Normal(0,σ2)
and given

˜
β∗,

˜
µ∗,

˜
ν∗,

˜
λ and data, we can draw sample zijk from truncated Normal(

˜
xT

ijk˜
β∗ +

ν∗
i + µ∗

ij ,λ
−1
i ) , where θt−1 < zijk ≤ θt if yijk = t, t = 1, . . . ,T, i = 1, . . . , ℓ, j = 1, . . . ,ni, k =

1, . . . ,mij .

To implement the Gibbs sampler once we get a sample of
˜
λ and

˜
z, we need to draw

samples from the full conditional posterior distributions of
˜
µ,

˜
ν,

˜
β, a, σ2, δ2 and

˜
θ.

First, the conditional distribution of
˜
ν is

µij |νi,λi,˜
z,

˜
β,σ2,

˜
y

ind∼ Normal
λi

∑mij

k=1(zijk −
˜
xT

ijk˜
β −νi)

1
σ2 +mijλi

,( 1
σ2 +mijλi)−1

 .
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Second, the conditional distribution of
˜
ν is

νi|
˜
µ,λi,˜

z,
˜
β,δ2,

˜
y

ind∼ Normal
λi

∑ni
j=1

∑mij

k=1(zijk −
˜
xT

ijk˜
β −µij)

1
δ2 + ∑ni

j=1 mijλi
,( 1

δ2 +
ni∑

j=1
mijλi)−1

 .

Third, the conditional distribution of
˜
β is

˜
β|

˜
µ,

˜
ν,

˜
λ,

˜
z,

˜
x,

˜
y ∼ MN

(
ˆ
˜
β,Σˆ

˜
β

)
, where

ˆ
˜
β = Σˆ

˜
β

 ℓ∑
i=1

ni∑
j=1

mij∑
k=1

λi(zijk −νi −µij)˜
xijk +(1000Σ0)−1

˜
β0

 ,

Σˆ
˜
β =

 ℓ∑
i=1

ni∑
j=1

mij∑
k=1

λi˜
xijk˜

xT
ijk +(1000Σ0)−1

−1

.

Fourth, the fully conditional distribution of θt given
˜
z,

˜
θ(t) = {θs, s ̸= t} and data is given by

π(θt|˜
z,

˜
θ(t),

˜
y) ∝

ℓ∏
i=1

mi∏
j=1

[I(yij = t,θt−1 < zij ≤ θt)+ I(yij = t+1, θt < zij ≤ θt+1)] .

Notice that this conditional density is uniform density on the interval. That is

θt|˜
z,

˜
θ(t),

˜
y ∼ Uniform[max{max{zij ,yij = t}, θt−1},min{min{zij ,yij = t+1}, θt+1}] .

Fifth, given the sample of
˜
λ, we can use grid method to draw a. Transform a to ϕ1 = a

1+a ,
which is in (0,1). The conditional posterior distribution of ϕ1 is

π(ϕ1|
˜
λ) ∝

 ℓ∏
i=1

aaλa−1
i e−aλi

Γ(a)


ϕ1= a

1+a

.

Sixth, to draw δ2 we also use grid method. Transform δ2 to ϕ2 = δ2

1+δ2 , which is in (0,1).
The conditional posterior distribution of ϕ2 is

π(ϕ2|
˜
ν) ∝


( 1

δ2

) ℓ
2

exp
− 1

2δ2

ℓ∑
i=1

ν2
i


ϕ2= δ2

1+δ2

.

Seventh, to draw σ2 we also use grid method. Transform σ2 to ϕ3 = σ2

1+σ2 , which is in (0,1).
The conditional posterior distribution of ϕ2 is

π(ϕ2|
˜
µ) ∝


( 1

σ2

)∑ℓ
i=1 ni

2
exp

− 1
2σ2

ℓ∑
i=1

ni∑
j=1

µ2
ij




ϕ3= σ2
1+σ2

.

To implement the algorithm, we chose start points
˜
β(0),

˜
θ(0) equal to the MLE based on the
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previous paper by Chen and Nandram (2023), λ
(0)
i = 1, µ0(0)ij = 1, ν0(0)i = 1. We first

draw a, δ2, and σ2 using the grid method, and then jointly draw a sample of
˜
λ and

˜
z, and

simulate from the conditional distribution of µij , νi ,
˜
β and θt.

C. Bayesian bootstrap

Our interest is to predict the finite population proportions of 102 sampled wards for
all households. The covariates of individuals in non-sampled households and the size of non-
sampled households are unknown. We know the total number of households and individuals
in each sampled ward and we have all information about the sampled households. Therefore,
we decide to use these information in the Bayesian bootstrap approach to generate the non-
sampled household sizes and corresponding non-sampled covariates within sampled wards.
The Bayesian bootstrap (Rubin 1981) method is used sample the sampled households to
impute the non-sampled households. There are n = 12 sampled households in the sampled
wards and everyone is sampled from the sampled households. We know the sizes and co-
variates of all sampled households, and we simple need to have the sample sizes and the
covariates for all the non-sampled households in any sampled ward to do Bayesian predictive
inference in each sampled ward; the procedure is done independently for each sampled ward.

Let N denote the number of households in one of the sampled wards. We simply
need to fill in the sizes of the households and their covariates. This procedure is equivalent
to simply sampling the households. Denote the labels of the sampled households by 1, . . . ,n
to provide the information (sizes and covariates) of the non-sampled households with labels,
n + 1, . . . ,N . Denote the sampled indicators of each household by Ii, i = 1, . . . ,n. After the
bootstrap is executed, because it is based on sampling with replacement, there will be N∗

i

non-sampled households corresponding to the ith sampled household, and ∑n
i=1 N∗

i = N −n.

The Bayesian bootstrap assumes that

˜
I |

˜
p ∼ Multinomial(n,

˜
p),

where we actually observed Ii = 1, i = 1, . . . ,n,

˜
p ∼ Dirichlet(

˜
O),

Haldane’s improper prior, where
˜
O is a vector of zeros. Then, a posterior

˜
p |

˜
I ∼ Dirichlet(

˜
j), (5)

where
˜
j is a vector of ones. Therefore,

˜
N∗ |

˜
p,

˜
I ∼ Multinomial(N∗,

˜
p). (6)

To execute the bootstrap, simply draw
˜
p from (5) and

˜
N∗ from (6).
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Abstract
In the world of linear statistical models there is a particular matrix equation, G(X :

VX⊥) = (X : 0), which is sufficiently important that it is sometimes called the fundamental
BLUE equation. In this equation, X is a model matrix, V is the covariance matrix of y in the
linear model y = Xβ + ε, and we are interested in finding the best linear estimator, BLUE,
of Xβ. Any solution G for this equation has the property that Gy provides a representation
for the BLUE of Xβ: this is the message of the the fundamental BLUE equation, whose
main developer was the late Professor C. R. Rao in early 1970s. In this article we revisit
some interesting features and consequences of this equation. We do not provide essentially
new results – the aim is to offer a compact easy-to-follow review including also some recent
related results by the authors.
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1. Introduction

Our main focus in this paper is the linear model y = Xβ + ε, denoted as triplet
M = {y, Xβ, V}.

Here y is an n-dimensional observable random vector, and ε is an unobservable random
error vector with a known (possibly singular) covariance matrix cov(ε) = V = cov(y) and
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expectation E(ε) = 0. The matrix X is a known n × p matrix, i.e., X ∈ Rn×p. Vector β is a
vector of fixed (but unknown) parameters; here symbol ′ stands for the transpose. We will
also denote µ = Xβ. If we want to emphasize what is the covariance matrix, we may use
notation M (V).

As for notations, the symbols r(A), A−, A+, C (A), and C (A)⊥, denote, respec-
tively, the rank, a generalized inverse, the Moore–Penrose inverse, the column space, and
the orthogonal complement of the column space of the matrix A. By (A : B) we denote the
columnwise partitioned matrix with Aa×b and Ba×c as submatrices. By A⊥ we denote any
matrix satisfying C (A⊥) = C (A)⊥. We will write PA = AA+ = A(A′A)−A′ to denote the
orthogonal projector onto C (A) and QA = Ia −PA , where Ia is the identity matrix of order
a with a being the number of rows in A. In particular, we denote

H = PX , M = In − PX , Mi = In − PXi
, i = 1, 2 .

The following special cases or extensions of M will be considered in this paper:

(a) The partitioned linear model is denoted as

M12 = {y, Xβ, V} = {y, X1β1 + X2β2, V} = {y, µ1 + µ2, V} .

(b) In addition to the full model M12, we will consider the small models Mi = {y, Xiβi, V},
i = 1, 2, and the reduced model

M12·2 = {M2y, M2X1β1, M2VM2},

which is obtained by premultiplying the model M12 by M2 = In − PX2 .

(c) Let y∗ denote a q × 1 unobservable random vector containing new observations. The
new observations are assumed to be generated from

y∗ = X∗β + ε∗ ,

where X∗ is a known q×p matrix, β is the same vector of fixed but unknown parameters
as in M , and ε∗ is a q-dimensional random error vector. We further assume that

E
(

y
y∗

)
=
(

Xβ
X∗β

)
=
(

X
X∗

)
β , cov

(
y
y∗

)
=
(

V V12
V21 V22

)
= Ψ,

where Ψ is known. We denote this setup shortly as

M∗ =
{(

y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
. (1)

We call M∗ “the linear model with new observations”. Our main interest in M∗ lies in
predicting y∗ on the basis of observable y. Notice the crucial role of the cross-covariance
matrix cov(y, y∗) = V12 ∈ Rn×q. The mixed linear model can be interpreted as a
special case of M∗; see Sec. 4.
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Under the model M = {y, Xβ, V}, the statistic Gy, where G is an n × n matrix,
is the best linear unbiased estimator, BLUE, of µ = Xβ if Gy is unbiased, i.e., GX = X,
and it has the smallest covariance matrix in the Löwner sense among all unbiased linear
estimators of Xβ; shortly denoted

cov(Gy) ≤L cov(Cy) for all C ∈ Rn×n: CX = X .

The BLUE of an estimable parametric function µ∗ = X∗β, where X∗ ∈ Rq×p, is defined in
the corresponding way. Estimability of X∗β means that it has a linear unbiased estimator
which happens if and only if C (X′

∗) ⊆ C (X′). In particular, µ1 = X1β1 is estimable in the
partitioned model if and only if

C (X1) ∩ C (X2) = {0} .

The random vector Ay is a linear unbiased predictor (LUP) of y∗ if E(y∗ − Ay) = 0 for all
β ∈ Rp. Such a matrix A ∈ Rq×n exists if and only if C (X′

∗) ⊆ C (X′), i.e., X∗β is estimable
under M and then we say that y∗ is predictable under M∗. Now a LUP Ay is the best linear
unbiased predictor, BLUP, for y∗, if the covariance matrix of the prediction error, subject
to the unbiasedness of the prediction, is minimized:

cov(y∗ − Ay) ≤L cov(y∗ − A#y) for all A# : A#X = X∗ .

Our matrix expressions will use generalized inverses heavily and in this context it is
essential to know whether the expressions are independent of the choice of the generalized
inverses involved. Lemma 2.2.4 of Rao and Mitra (1971) gives the condition under which
the matrix product AB−C is invariant with respect to the choice of B−.

Proposition 1: For nonnull matrices A and C the following holds:

(a) AB−C = AB+C for all B− ⇐⇒ C (C) ⊆ C (B) & C (A′) ⊆ C (B′).

(b) AA−C = C for some (and hence for all) A− ⇐⇒ C (C) ⊆ C (A).

(c) C′A−A = C′ for some (and hence for all) A− ⇐⇒ C (C) ⊆ C (A′).

Suppose that the matrix equation

YB = A (2)

is solvable for Y, i.e., C (A′) ⊆ C (B′). Then it is well known, see, e.g., Rao and Mitra (1971,
p. 24), that the general solution Y0 to (2) can be written, for example, as

Y0 = AB+ + E(I − PB) = AB+ + EQB , where E is free to vary, (3a)
Y0 = {one solution to YB = A} + {general solution to YB = 0}. (3b)

For later considerations, we collect some useful results into the following proposition.

Proposition 2: Consider the partitioned model M12(V), and let “⊕” refer to the direct
sum and “⊞” to the direct sum of orthogonal subspaces. Then
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(a) C (X1 : X2) = C (X1 : M1X2) , i.e., C (X) = C (X1) ⊞ C (M1X2) .

(b) C (X : V) = C (X : VM) = C (X) ⊕ C (VM) = C (X) ⊞ C (MV) .

(c) M = In − PX = In − (PX1 + PM1X2) = M1QM1X2 = M1M .

(d) Q(X:V) = In − (PX + PMV) = M − PMV = MQMV = MQ(X:V) .

(e) r(AB) = r(A) − dim C (A′) ∩ C (B⊥) for conformable A and B.

We assume the model M (V) to be consistent in the sense that y lies in C (X : V)
with probability 1, i.e., the observed numerical value of y satisfies

y ∈ C (X : V) = C (X) ⊕ C (VM) = C (X) ⊞ C (MV) ,

so that
y = Xa + VMb for some vectors a ∈ Rp and b ∈ Rn. (4)

There is one special class of matrices worth particular attention and that is the set
W≥ of nonnegative definite matrices defined as

W≥ =
{
W ∈ Rn×n : W = V + XUU′X′, C (W) = C (X : V)

}
. (5)

In (5) U can be any matrix comprising p rows as long as C (W) = C (X : V) is satisfied.
One obvious choice is U = Ip. In particular, if C (X) ⊆ C (V), we can choose U = 0. The
extended version of W≥ is

W =
{
W ∈ Rn×n : W = V + XTX′, C (W) = C (X : V)

}
. (6)

Above T ∈ Rp×p is free to vary subject to condition C (W) = C (X : V). Notice that W
belonging to W is not necessarily nonnegative definite and it can be nonsymmetric. We may
use the notations W (A ) or W (V) to indicate that the model A or the covariance matrix
V is under consideration. Proposition 3 collects together some properties of the class W .

Proposition 3: Let V ∈ Rn×n be nonnegative definite and let X ∈ Rn×p and define W as
W = V + XTX′, where T ∈ Rp×p. Then the following statements are equivalent:

(a) C (X : V) = C (W) ,

(b) C (X) ⊆ C (W) ,

(c) X′W−X is invariant for any choice of W−,

(d) C (X′W−X) = C (X′) for any choice of W−,

(e) X(X′W−X)−X′W−X = X for any choices of W− and (X′W−X)−.
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Observe that obviously C (W) = C (W′) since

C (W′) = C (V + XT′X′) ⊆ C (W) , r(W′) = r(W) ,

and hence in statements (a)–(e) W can be replaced with with W′. For further properties of
W , see, e.g., Baksalary and Mathew (1990, Th. 2), and Puntanen et al. (2011, Sec. 12.3).
Haslett et al. (2022a) provide an extensive review of the class W .

Let us cite Puntanen et al. (2011, Sec. 5.13):

Proposition 4: Consider the model M = {y, Xβ, V} and let W ∈ W (M ). Then

(a) C (VM)⊥ = C (W+X : QW) = C [(W+)′X : QW] ,

(b) C (W+X)⊥ = C (WM : QW) = C (VM : QW) .

It appears to be useful to denote

Ṁ = M(MVM)−M .

The matrix Ṁ is unique with respect to the choice of the generalized inverse (MVM)− if and
only if Rn = C (X : V). However, for example, VṀPW is always unique. It is noteworthy
that using the Moore–Penrose inverse the following holds:

M(MVM)+M = (MVM)+M = M(MVM)+ = (MVM)+. (7)

In particular, for a positive definite V we have, for any (MVM)−,

M(MVM)−M = V−1/2PV1/2MV−1/2 = V−1/2(In − P(V1/2M)⊥)V−1/2

= V−1 − V−1X(X′V−1X)−X′V−1 =: V−1(In − PX;V−1),

where we have used the obvious fact C (V1/2M)⊥ = C (V−1/2X).

We will use the following notation:

PX;W+ = X(X′W−X)−X′W+, PX∗;W+ = X∗(X′W−X)−X′W+.

Notice that PX;W+ and PX∗;W+ are invariant for any choice of the generalized inverses W−

and (X′W−X)− but this invariance does not concern the matrix

PX;W− = X(X′W−X)−X′W−.

Proposition 5: Consider the linear model M = {y, Xβ, V}. Let T be any p × p matrix
such that the matrix W = V + XTX′ satisfies the condition C (W) = C (X : V), i.e.,
W ∈ W (M ), and denote Ṁ = M(MVM)−M . Then

(a) PWM(MVM)−MPW = W+ − W+X(X′W−X)−X′W+.



100
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

S. J. HASLETT, J. ISOTALO, A. MARKIEWICZ AND S. PUNTANEN [Vol. 22, No. 3

(b) PWM(MVM)−MPW = (MVM)+ = PWṀPW .

(c) PX;W+ = X(X′W−X)−X′W+ = PW − VM(MVM)−MPW .

(d) PX;W+ = H − HVM(MVM)−MPW = H − HVM(MVM)+M , where H = PX.

The result (a) is the the most crucial one in Proposition 5. For the proof of (a), see
Puntanen et al. (2011, Prop. 15.2) and Isotalo et al. (2008, Cor. 2.2). Notice that in light of
Proposition 2, we have

PW = PX + PMV = H + PMVM , MPW = MPMV = PMV = PMVM ,

which implies (b) of Proposition 5. Premultiplying (a) by W and using C (X) ⊆ C (W) gives
(c), i.e.,

X(X′W−X)−X′W+ = PW − VM(MVM)−MPW = PW − VM(MVM)+MPW

= PW − V(MVM)+PW = PW − V(MVM)+

= PW − VM(MVM)+M , (8)

where we have used (7) and the fact that C [(MVM)+] = C (MVM) ⊆ C (W). From (8)
we immediately confirm that X(X′W−X)−X′W+ is invariant with respect to the choice of
W ∈ W supposing that C (X : V) = C (W) is holding. Premultiplying (8) by H = PX gives

X(X′W−X)−X′W+ = H − HVM(MVM)−MPW = H − HVM(MVM)+MPW

= H − HV(MVM)+PW = H − HV(MVM)+

= H − HVM(MVM)+M . (9)

Remark 1: The equality (9) follows from (a) of Proposition 5. However, it is interesting to
prove (9) directly. This is done by first observing that

X(X′W−X)−X′W+(X : VM) = [H − HVM(MVM)+MPW](X : VM) , (10)

and then confirming that

X(X′W−X)−X′W+QW = [H − HVM(MVM)+MPW]QW . (11)

Now (10) and (11) together imply (9).

2. The fundamental BLUE equation

Theorem 1 below provides so-called fundamental BLUE equations.

Theorem 1: [BLUE] Consider the linear model M = {y, Xβ, V}.

(a) Then the linear estimator Gy is the BLUE for µ = Xβ if and only if G ∈ Rn×n

satisfies the equation
G(X : VX⊥) = (X : 0) . (12)
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(b) Let µ∗ = X∗β, where X∗ ∈ Rq×p, be estimable so that C (X′
∗) ⊆ C (X′). Then By is

the BLUE of µ∗ if and only if B ∈ Rq×n satisfies the equation

B(X : VX⊥) = (X∗ : 0) . (13)

(c) Let µ1 = X1β1 be estimable in the partitioned model M12. Then Cy is the BLUE of
µ1 if and only if

C(X1 : X2 : VX⊥) = (X1 : 0 : 0) . (14)

For the proofs, see, e.g., Rao (1973, p. 282) and for coordinate-free approach Drygas
(1970, p. 55) and Zmyślony (1980). For further proofs see, for example, Groß (2004), Kala
(1981, Th. 3.1), Puntanen et al. (2000), Puntanen et al. (2011, Th. 10), and Baksalary
(2004).

For Theorem 2, characterizing the BLUP, see, e.g., Christensen (2020, Th. 6.6.3),
and Isotalo and Puntanen (2006, p. 1015).

Theorem 2: [BLUP] Consider the linear model with new observations defined as M∗ in
(1), where C (X′

∗) ⊆ C (X′), i.e., y∗ is predictable. Then:

(a) Ay is the BLUP for y∗ if and only if A(X : VX⊥) = (X∗ : V21X⊥) .

(b) By is the BLUE of µ∗ = X∗β if and only if B(X : VX⊥) = (X∗ : 0) .

(c) Dy is the BLUP for ε∗ if and only if D(X : VX⊥) = (0 : V21X⊥) .

Theorems 1 and 2 offer extremely handy tools to check whether a given estima-
tor/predictor is a BLUE/BLUP. Moreover, they provide convenient ways to introduce var-
ious representations for the BLUE/BLUP. The solutions are unique if and only if C (X :
VX⊥) = Rn. Trivially, one choice for X⊥ is M = In − PX. In view of (3b), the general
solution for G in (12) can be expressed as

{one solution to G(X : VM) = (X : 0)} + {general sol. to G(X : VM) = (0 : 0)}. (15)

Suppose that W ∈ W (M ) where M = {y, Xβ, V}. We observe immediately that

X(X′W−X)−X′W+(X : VM) = X(X′W−X)−X′W+(X : WM) = (X : 0) ,

and so

PX;W+y = X(X′W−X)−X′W+y
= X(X′W−X)−X′W−y = PX∗;W−y = BLUE(Xβ) = µ̃ ,

where we have used the consistency condition (4) to replace W+ with W−. Correspondingly,
for an estimable µ∗ = X∗β we have

PX∗;W+y = X∗(X′W−X)−X′W+y = BLUE(X∗β) = µ̃∗ . (16)
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Moreover, in view of (8) and (9) and the consistency of the model M , we have

µ̃ = PWy − VM(MVM)−MPWy = y − VM(MVM)−My, (17a)

µ̃ = HPWy − HVM(MVM)−MPWy = Hy − HVM(MVM)−My
= OLSE(µ) − HVM(MVM)−My, (17b)

which hold for all y ∈ C (X : V) and OLSE(µ) refers to the ordinary least squares estimator
of µ. One of the first references to (17b) is Albert (1973). Notice that in light of (17a) the
BLUE’s residual can be expressed as

ε̃ := y − µ̃ = VM(MVM)−My .

If C (X) ⊆ C (V), then M is said to be a weakly singular linear model. In this
situation we can choose T = 0 in (6) and thereby replace W with V so that

BLUE(Xβ) = X(X′V−X)−X′V−y . (18)

3. How to solve the fundamental BLUE equation?

In the previous section we have shown that certain expressions satisfy the fundamental
BLUE equation. It is another question how to end up into these solutions, i.e., how to
introduce these solutions. And this is just what we aim to do in this section. We believe
that our approaches – some not much used in literature as straightforward as they are – may
increase the insight of the meaning of the fundamental BLUE equations.

To begin, notice that part (b) of Theorem 1 can be expressed so that By = BLUE(µ∗)
if and only if the following two conditions are satisfied:

(i) By is unbiased for µ∗ , (ii) By is uncorrelated with My. (19)

How to solve (19)? As said, by simple substitution we can check that PX∗;W+y is indeed the
BLUE for µ∗ = X∗β under M . We may now raise the question how to introduce a solution
B for fundamental BLUE equation

B(X : VM) = (X∗ : 0) , (20)

where X∗ = LX for some L so that µ∗ = X∗β is estimable. Notice that then

X∗X+ = LXX+ = LPX = LH .

■ Solution 1: The general solution to the unbiasedness condition (i) in (19), i.e., to
BX = X∗ , can be expressed, e.g., as

B0 = X∗X+ + E(In − PX) = LH + EM , where E is free to vary.

Hence the requirement (ii) in (19), i.e., B0VM = 0, is satisfied if and only if

LHVM + EMVM = 0 , i.e., EMVM = −LHVM ,
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from which we get the general expression for E:

E0 = −LHVM(MVM)+ + E1QMV , where E1 is free to vary. (21)

In view of the decomposition

Q(X:V) = In − (PX + PMV) = −H + QMV ,

we have QMV = H + Q(X:V) , and thereby by (21) we have

E0 = −LHVM(MVM)+ + E1(H + Q(X:V)) ,

and hence the expression for the general solution to B in (20) can be written as

B0 = LH + E0M = LH − LHVM(MVM)+M + E1Q(X:V)M
= L[H − HVM(MVM)+M] + E1Q(X:V)

= LX(X′W−X)−X′W+ + E1Q(X:V)

= X∗(X′W−X)−X′W+ + E1Q(X:V) , (22)

where E1 is free to vary. In (22) we have used (9).

■ Solution 2: An alternative way to introduce a representation for B is to start from
BVM = 0 , which by Proposition 4 is equivalent to

C (B′) ⊆ C (VM)⊥ = C
[
(W+)′X : QW

]
,

where W ∈ W (M ), so that

B′ = (W+)′XR + QWS , for some S and R.

Now the unbiasedness condition X′B′ = X′
∗ holds if and only if

X′W+XR + X′QWS = X′W+XR = X′
∗ ,

from which it follows that the general expression for R can be expressed as

R = (X′W+X)−X′
∗ + QX′W+E3 = (X′W+X)−X′

∗ + QX′E3 ,

where E3 is free to vary. Hence the general expression for B′ satisfying B(X : VM) = (X∗ :
0) can be written as as

B′
0 = (W+)′X(X′W+X)−X′

∗ + (W+)′XQX′E3 + QWS
= (W+)′X(X′W+X)−X′

∗ + QWS ,

so that
B0 = X∗(X′W+X)−X′W+ + S′QW = PX∗;W+ + S′QW ,

where S is free to vary. Thus we have obtained the same presentation as in (22).
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■ Solution 3: It is clear that there exists a matrix X∼ such that XX∼y is the BLUE for
Xβ, i.e.,

XX∼(X : VM) = (X : 0) , (23)
so that X∼ ∈ {X−}. According to Rao and Mitra (1971, Th. 2.4.1), the general expression
for a generalized inverse X∼ ∈ {X−} can be written as

X∼ = X+ + E3(In − PX) + (Ip − PX′)E4 ,

where E3 and E4 are free to vary. Now

XX∼ = H + XE3M , (24)

and hence (23) holds if and only if

XX∼VM = HVM + XE3MVM = 0 ,

i.e.,
XE3MVM = −HVM . (25)

One solution for XE3 in (25) is XE3 = −HVM(MVM)+, and thus XX∼ in (24) can be
written as

XX∼ = H − HVM(MVM)+M . (26)
Notice that X∼ satisfying (23) can be written as

X= = X+ − X+VM(MVM)+M .

Another choice for X∼ satisfying (23) is obviously

X# = (X′W+X)+X′W+.

It is easy to confirm that actually X= = X#.

■ Solution 4: A very straightforward way to find a general solution to B(X : VM) = (X∗ :
0) is to write

B0 = (X∗ : 0)(X : VM)+ + EQ(X:V) =: B1 + EQ(X:V) ,

where the matrix E is free to vary. It is easy to confirm that (X : VM)+ can be written as

(X : VM)+ =
(

X+[In − V(MVM)+]
(MVM)+

)
. (27)

Therefore, when X∗ = LX for some L ∈ Rq×n so that X∗X+ = LH,

B1 = (X∗ : 0)(X : VM)+ = X∗X+[In − V(MVM)+]
= L[H − HV(MVM)+] = LX(X′W+X)+X′W+. (28)

■ Solution 5: In the partitioned model M12 = {y, (X1 : X2)β, V}, one expression for the
BLUE of µ1 can be obtained from (16) yielding

BLUE(µ1 | M12) = µ̃1(M12) = (X1 : 0)(X′W−X)−X′W+y =: P#1y .
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Premultiplying the model M12 by M2 yields the reduced model

M12·2 = {M2y, M2X1β1, M2VM2} .

The fundamental BLUE equation for estimating θ1 := M2X1β1 under M12·2 is now

L(M2X1 : M2VM2 · QM2X1) = (M2X1 : 0) . (29)

To find a solution for L in (29), we observe that choosing W = V + XX′ ∈ W (M12) we
have M2WM2 ∈ W (M12·2) . Hence one solution for L in (29) is

L = M2X1(X′
1Ṁ2X1)−X′

1Ṁ2y =: M2 · PX1;Ṁ2
,

where
Ṁ2 = M2(M2WM2)+M2 ,

and so Ly = BLUE(θ1 | M12·2) and PX1;Ṁ2
y = BLUE(µ1 | M12·2), i.e.,

X1(X′
1Ṁ2X1)−X′

1Ṁ2y = PX1;Ṁ2
y = µ̃1(M12·2) .

It is easy to confirm that

PX1;Ṁ2
(X1 : X2 : VM) = (X1 : 0 : 0) ,

so that the BLUEs of µ1 under M12 and M12·2 coincide, which is the message of the Frisch–
Waugh–Lovell theorem, see, e.g., Groß and Puntanen (2000, Sec. 6).

Actually the following holds, see Haslett et al. (2023, Prop. 3.1),

P1# = (X1 : 0)(X′W−X)−X′W+ = X1(X′
1Ṁ2X1)−X′

1Ṁ2 = PX1;Ṁ2
,

and hence

P1# = (X1 : 0)X∼, where X∼ = (X′W−X)−X′W+ ∈ {X−} ,

PX1;Ṁ2
= X1 X∼

1 , where X∼
1 = (X′

1Ṁ2X1)−X′
1Ṁ2 ∈ {X−

1 } .

■ Solution 6: Let W ∈ W≥(M ). Then it is clear that

G(X : VM) = (X : 0) ⇐⇒ G(X : WM) = (X : 0) .

Observing that MW = {y, Xβ, W} is a weakly singular linear model we can conclude,
parallel to (18), that

X(X′W−X)−X′W−y = BLUE(Xβ | MW) = BLUE(Xβ | M ) . (30)

For (30) see also Christensen (2020, Th. 10.1.3).

■ Solution 7: (Pandora’s Box.) Rao (1971, Th. 3.1) proved that the matrix G is a solution
to the fundamental equation G(X : VM) = (X : 0) if and only if there exists a matrix L
such that G is a solution to (

V X
X′ 0

)(
G′

L

)
=
(

0
X′

)
.



106
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

S. J. HASLETT, J. ISOTALO, A. MARKIEWICZ AND S. PUNTANEN [Vol. 22, No. 3

Let us denote

Γ =
(

V X
X′ 0

)
, C =

(
C11 C12
C21 −C22

)
=
(

V X
X′ 0

)−

∈ {Γ−} ,

so that C is a generalized inverse of Γ. Rao (1971) showed that the matrix C is like
a Pandora’s Box, providing surprisingly many useful results concerning the model M =
{y, Xβ, V}. For example, denoting µ̃ = BLUE(Xβ | M ), the following holds:

µ̃ = XC′
12y, cov(µ̃) = XC22X′, ε̃ = y − µ̃ = VC11y.

4. Solutions for BLUPs

Let us define the sets {Py∗|M∗
}, {PX∗|M∗

}, and {Pε∗|M∗
} as follows:

A ∈ {Py∗|M∗
} ⇐⇒ A(X : VM) = (X∗ : V21M) , (31a)

B ∈ {PX∗|M∗
} ⇐⇒ B(X : VM) = (X∗ : 0) , (31b)

D ∈ {Pε∗|M∗
} ⇐⇒ D(X : VM) = (0 : V21M) . (31c)

Using (27), one solution to A(X : VM) = (X∗ : V21M) can be written as

A1 = (X∗ : V21M)(X : VM)+ = B1 + V21(MVM)+,

where by (28), B1 = X∗(X′W+X)+X′W+. Putting (31b) and (31c) together yields(
B
D

)
(X : VM) =

(
X∗ 0
0 V21M

)
,

which implies that
(B + D)(X : VM) = (X∗ : V21M) ,

and thereby (B + D)y is a BLUP for y∗ and we have the following result:

BLUP(y∗) = BLUE(X∗β) + BLUP(ε∗) .

From part (c) of Theorem 2 we observe that Dy is the BLUP for ε∗ if D = KM
for some matrix K ∈ Rq×n such that KMVM = V21M , from which one solution to K is
K = V21M(MVM)− yielding the following expression:

BLUP(ε∗) = Dy = V21M(MVM)−My = V21Ṁy.

Further representations, see Haslett et al. (2014, Th. 2), are

BLUP(ε∗) = V21M(MVM)−My = V21V−VM(MVM)−My
= V21W−WM(MVM)−My = V21V−(y − µ̃)
= V21V−(In − G)y = V21W−(In − G)y,
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where G = X(X′W−X)−X′W−. If V is positive definite and r(X) = p, we obtain

BLUP(y∗) = BLUE(X∗β) + BLUP(ε∗) = X∗β̃ + V21V−1(y − Xβ̃) ,

where β̃ = (X′V−1X)−1X′V−1y.

One application of the model M∗ is the linear mixed model

y = Xβ + Zu + e, or shortly, L = {y, Xβ + Zu, D, R} ,

where Xn×p and Zn×q are known matrices, β ∈ Rp is a vector of unknown fixed effects,
u is an unobservable vector (q elements) of random effects with E(u) = 0, cov(u) = D ,
cov(e, u) = 0 , and E(e) = 0, cov(e) = R. In this situation we have

cov
(

e
u

)
=
(

R 0
0 D

)
=: Λ , cov

(
y
u

)
=
(

Σ ZD
(ZD)′ D

)
=: Ω .

The mixed model can be expressed as a version of the model with “new future observations”,
the new (unobservable) observations being, for example, in u = 0β + ε∗:

L∗ :=
{(

y
u

)
,

(
X
0

)
β,

(
Σ ZD

(ZD)′ D

)}
. (32)

Corresponding to (1) we have

y = Xβ + ε , ε = Zu + e , cov(ε) = cov(y) = ZDZ′ + R =: Σ ,

y∗ = u , X∗ = 0 ,

ε∗ = u , cov(ε∗) = D, cov(ε, ε∗) = ZD.

Now under the mixed model L , B1y is the BLUE for µ = Xβ and B2y is the BLUP
for u if and only if (

B1
B2

)
(X : ΣM) =

(
X 0
0 (ZD)′M

)
. (34)

Thus the BLUP(u) can be written as

BLUP(u) = DZ′W−(y − µ̃) = DZ′M(MΣM)−My,

where W = Σ + XX′. For example, in the simple situation when X has full column rank
and Σ = ZDZ′ + R is positive definite, we have

BLUP(u) = DZ′Σ−1(In − Xβ̃) , β̃ = (X′Σ−1X)−1X′Σ−1y.

Remark 2: We can write up the mixed model (32) as(
y
u

)
=
(

X
0

)
β +

(
ε
ε∗

)
, where cov

(
ε
ε∗

)
= Ω . (35)

It noteworthy that even as (35) looks like a standard linear model it is not quite correct:
the random vector u is unobservable. On the other hand, keeping u fixed (but unknown)
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and denoting y0 = u + ε∗ we get a fixed partitioned model with supplemented stochastic
restrictions on u:

F :=
{(

y
y0

)
,

(
X Z
0 Iq

)(
β
u

)
,

(
R 0
0 D

)}
.

We get an interesting version of F by putting y0 = 0:

F# :=
{(

y
0

)
,

(
X Z
0 Iq

)(
β
u

)
,

(
R 0
0 D

)}
=
{
y#, X#π, Λ

}
.

Of course F# is not a proper model since y0 = 0. In the full rank case fitting the model F#
yields to so-called Henderson equations and the BLUE of Xβ and BLUP of u are obtained
by minimizing the following quadratic form f(β, u) (keeping u as a non-random vector):

f(β, u) = (y# − X#π)′Λ−1(y# − X#π) .

For further references, see, e.g., Henderson (1950, 1963) and Haslett et al. (2015).

5. Two models with different covariance matrices

Suppose that we have two models M (V0) = {y, Xβ, V0} and M (V) = {y, Xβ, V},
which have different covariance matrices. Then we can ask, for example, what is needed
that every representation of the BLUE of µ = Xβ under M (V0) remains BLUE under
M (V). Mitra and Moore (1973, p. 139) give a very clear description of the different problems
occurring:

(a) Problem MM-1: When is specific linear representation of the BLUE of Xβ under
M (V0) also BLUE under M (V)?

(b) Problem MM-2: When does Xβ have a common representation for the BLUE under
M (V0) and M (V)?

(c) Problem MM-3: When does every linear representation of the BLUE of Xβ under
M (V0) remain BLUE also under M (V)?

As for MM-1, we may mention that Hauke et al. (2013) consider conditions under
which

PX;W+
0
y = X(X′W−

0 X)−X′W+
0 y = BLUE(Xβ | M (V)). (36)

This happens if and only if PX;W+
0
VM = 0, which further is equivalent to

X′W+
0 VM = 0 , i.e., C (VM) ⊆ C (W+

0 X)⊥ = C (V0M : QW0) ,

where we have used Proposition 4. Denoting Z = (V0M : QW0), Hauke et al. (2013) showed
that (36) holds if and only if V belongs to the class Vmm1, say, defined as

V ∈ Vmm1 ⇐⇒ V = XAA′X′ + ZBB′Z′ for some matrices A and B. (37)
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Let us take a closer look at MMM-3 in the spirit of Puntanen et al. (2011, Sec. 11.1).
First, let us denote

G ∈ {Pµ | V0} ⇐⇒ G(X : V0M) = (X : 0) .

Let G be such a matrix that Gy is the BLUE for Xβ under M (V0), Then we say that Gy
remains BLUE under M (V) if the following implication holds:

G(X : V0M) = (X : 0) =⇒ G(X : VM) = (X : 0) .

Moreover, let the set of all representations of BLUE of µ under M (V0) be denoted as

B(µ | V0) = {BLUE(µ | V0)} = {Gy : G(X : V0M) = (X : 0)}
= {Gy : G ∈ {Pµ | V0}} . (38)

It is important to understand that the notation of the above type (38) is merely symbolic.
Our main interest lies in the multipliers, like the members of {Pµ | V0}, of the response vector
y which have specific properties. For the property that every representation of the BLUE
of µ under M (V0) remains BLUE of µ under M (V) we will use the notation

B(µ | V0) ⊆ B(µ | V) , i.e., {Pµ | V0} ⊆ {Pµ | V} . (39)

We may consider M (V0) as the original model and M (V) as the misspecified model; mis-
specification concerning only the covariance matrix.

Let us next show that (39) is equivalent to

C (VM) ⊆ C (V0M) , (40)

which is essentially Rao’s result in Theorem 5.3 of his paper in 1971. This is a well-known old
but yet a fundamental result whose proof is worth going through. Proceeding as Puntanen
et al. (2011, p. 270), we observe that a general representation of a member in {Pµ | V0} can
be expressed as

G0 = PX;W+
0

+ EQW0 = X(X′W−
0 X)−X′W+

0 + E(In − PW0) ,

where E is free to vary and W0 ∈ W (V0). Now (39) holds if and only if

G0(X : VM) = (PX;W+
0

+ EQW0)(X : VM) = (X : 0) ,

i.e.,
PX;W+

0
VM + EQW0VM = 0 for all E, (41)

which implies that QW0VM = 0, i.e., C (VM) ⊆ C (W0) = C (X : V0M) , which further
means that

VM = XR + V0MS for some R and S. (42)
Substituting (42) into (41) shows that XR = 0 and thereby (39) implies (40). The reverse
relation is easy to check. It is worth noting that

C (VM) ⊆ C (V0M) =⇒ C (X : VM) ⊆ C (X : V0M)

but the reverse implication does not hold.
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Remark 3: Let us consider conditions under which

PX;W−
0

y = X(X′W−
0 X)−X′W−

0 y = BLUE(Xβ | M (V)) for all W−
0 , (43)

i.e.,
X′W−

0 VM = 0 for all W−
0 . (44)

Now in view of Proposition 1, (44) holds if and only if

X′W+
0 VM = 0 and C (VM) ⊆ C (W0) , (45)

i.e.,
C (VM) ⊆ C (W+

0 X)⊥ = C (V0M : QW0) and C (VM) ⊆ C (W0) , (46)
which together imply (40).

It is clear that µ = Xβ has a common representation for the BLUE under M (V0)
and M (V), i.e., {Pµ | V0} ∩ {Pµ | V} ≠ {∅}, if and only if the equation

G(X : V0M : VM) = (X : 0 : 0)

has a solution for G, i.e.,

C [(X : 0 : 0)′] ⊆ C [(X : V0M : VM)′] , (47)

for which, according to Mitra and Moore (1973, Sec. 3), it is necessary and sufficient that

C (V0M : VM) ∩ C (X) = {0} .

Suppose that (47) holds. Given V0, how can we then characterize the class Vmm2, say, of
matrices V such that {Pµ | V0} and {Pµ | V} are not disjoint? Mitra and Moore (1973, Sec. 3)
showed that Vmm2 = Vmm1 so that

V ∈ Vmm2 ⇐⇒ V = XAA′X′ + (V0M : QW0)
(

B1
B2

)
(B′

1 : B′
2)
(

MV0
QW0

)
, (48)

for some matrices A, B1 and B2.

Let us next consider the following task: Given a covariance matrix V0, characterize
the set V of covariance matrices such that every representation of the BLUE of Xβ under
M (V0) remains BLUE under M (V), i.e.,

V ∈ V ⇐⇒ B(µ | V0) ⊆ B(µ | V) .

We will next show that a necessary condition for V ∈ V is the following:

V = XAA′X′ + V0MBB′MV0 for some matrices A and B. (49)

This is also given by Rao (1971, Th. 5.3) but we will give a slightly different proof. Notice
that class Vmm2 in (48) is wider than class V defined in (49).
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Since C (X : V0M : QW0) = Rn, where W0 ∈ W (V0), an arbitrary nonnegative
definite matrix V can be expressed as V = UU′ where

U = XL1 + V0ML2 + QW0L3 ,

for some matrices L1, L2, L3, so that

V = XL11X′ + V0ML22MV0 + QW0L33QW0 + N + N′, (50)

where Lij = LiL′
j, j = 1, 2, 3, and

N = XL12MV0 + XL13QW0 + V0ML23QW0 .

Now
U′M = L′

2MV0M + L′
3QW0M = L′

2MV0M + L′
3QW0 =: S ,

where QW0M = QW0 follows from part (d) of Proposition 2. Moreover,

C (UU′M) = C (XL1S + V0ML2S + QW0L3S) ⊆ C (V0M)

holds if and only if
C (XL1S + QW0L3S) ⊆ C (V0M) . (51)

Premultiplying (51) by QW0 shows that QW0L3S = 0, i.e.,

QW0L32MV0M + QW0L33QW0 = 0 . (52)

Postmultiplying (52) by QW0 implies that QW0L33QW0 = 0, i.e.,

L3QW0 = 0 . (53)

Substituting (53) into (51) yields

C (XL1S) ⊆ C (V0M) . (54)

The disjointness of C (X) and C (V0M) implies that (54) holds if and only if

XL1S = XL1(L′
2MV0M + L′

3QW0) = 0 ,

which further is equivalent to
XL12MV0 = 0 . (55)

Substituting (53) and (55) into (50) proves that (49) is a necessary condition for V ∈ V . Its
sufficiency is obvious.

Some equivalent statements to (39) are given as follows.

Proposition 6: Consider the linear models M (V0) = {y, Xβ, V0} and M (V) = {y, Xβ, V}.
Then the following statements are equivalent:

(a) B(µ | V0) ⊆ B(µ | V), i.e., V ∈ V .

(b) C (VM) ⊆ C (V0M).
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(c) V = XAA′X′ + V0MBB′MV0 , for some matrices A and B.

(d) V = V0 + XCC′X′ + V0MDD′MV0 , for some matrices C and D.

For the proof of Proposition 6 and related discussion, see, e.g., Mitra and Moore
(1973, Th. 4.1–4.2), Rao (1968, Lemma 5), Rao (1971, Th. 5.2, Th. 5.5), Rao (1973, p. 289),
and Baksalary and Mathew (1986, Th. 3).

Consider then the special case when we have models M (I) = {y, Xβ, I} and M (V) =
{y, Xβ, V}. Then the BLUE of Xβ under M (I) is PXy = Hy since the unique solution
for G in G(X : M) = (X : 0) is H. When is Hy, i.e., the ordinary least squares estimator
(OLSE) BLUE for Xβ under M (V)? The answer is by part (b) of Proposition (6) the
inclusion C (VM) ⊆ C (M), which can be equivalently expressed as any of the following
conditions:

C (VH) ⊆ C (H), HV = VH, HVM = 0 .

For further references regarding the equality of OLSE and BLUE, see, e.g., Rao (1967),
Zyskind (1967), and Markiewicz et al. (2010, 2021).

Let V1/12 denote the set of nonnegative definite matrices V such that every represen-
tation of the BLUE of µ1 under M (V0) remains BLUE under M (V), i.e.,

V ∈ V1/12 ⇐⇒ B(µ1 | V0) ⊆ B(µ1 | V) .

In view of Haslett and Puntanen (2010a, Th. 2.1, 2023b, Th. 11.4), see also Mathew and
Bhimasankaram (1983, Th. 2.1, Th. 2.4), the following holds:

Proposition 7: Consider the partitioned linear models M (V0) and M (V), where µ1 =
X1β1 is estimable. Then the following statements are equivalent:

(a) B(µ1 | V0) ⊆ B(µ1 | V), i.e., V ∈ V1/12 .

(b) C (M2VM) ⊆ C (M2V0M).

(c) C (VM) ⊆ C (X2 : V0M) .

(d) The matrix V can be expressed, for some Li, Lij = LiL′
j, as

V = X1L11X′
1 + X2L22X′

2 + V0ML33MV0 + Z + Z′,

where Z = X1L12X′
2 + X2L23MV0 .

So far in this section we have been dealing with linear models M (V0) = {y, Xβ, V0}
and M (V) = {y, Xβ, V}. The corresponding considerations can be done for the two models
with new future observations. For this purpose, denote

A1 =
{(

y
y∗

)
,

(
X
X∗

)
β,

(
V11 V12
V21 V22

)}
,
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where C (X′
∗) ⊆ C (X′). Consider now another model A2, which may differ from A1 through

its covariance matrix, i.e.,

A2 =
{(

y
y∗

)
,

(
X
X∗

)
β,

(
¯
V11 ¯

V12

¯
V21 ¯

V22

)}
.

For the proof of the following result see Haslett and Puntanen (2010b).

Proposition 8: Consider the models A1 and A2 (with new unobserved future observations),
where C (X′

∗) ⊆ C (X′). Then every representation of the BLUP for y∗ under the model A1
is also a BLUP for y∗ under the model A2 if and only if

C

(
¯
V11M

¯
V21M

)
⊆ C

(
X V11M
X∗ V21M

)
.

Consider then two mixed models:

B1 = {y, Xβ + Zu, D1 , R1} , B2 = {y, Xβ + Zu, D2, R2} .

The only difference above concerns the covariance matrices. We may denote Σi = ZDiZ′ +
Ri , i = 1, 2 . For the next proposition, see Haslett and Puntanen (2011).

Proposition 9: Consider the mixed models B1 and B2. Then every representation of the
BLUP for u under the model B1 is also the BLUP for u under the model B2 if and only if

C

(
Σ2M

D2Z′M

)
⊆ C

(
X Σ1M
0 D1Z′M

)
.

In particular, both the BLUE(Xβ) under B1 continues to be BLUE(Xβ) under B2 and
BLUP(u) under B1 continues to be BLUP(u) under B2 if and only if

C

(
Σ2M

D2Z′M

)
⊆ C

(
Σ1M

D1Z′M

)
.

6. Further remarks

In this section we very briefly review some recent articles by the authors. Fundamental
BLUE/BLUP equations have instrumental role in these papers.

[A] Haslett et al. (2023), [B] Haslett et al. (2020).

In these articles we consider the partitioned linear model M12 , and the corresponding
small model M1. We focus on comparing the BLUEs of µ1 under M12 and M1. Particular
attention is paid on the consistency of the model, i.e., whether the realized value of the
response vector y belongs to the column space of (X1 : V) or (X1 : X2 : V). In [A]
these models are supplemented with the new unobservable random vector y∗, coming from
y∗ = X∗β1 + ε∗. We will concentrate on comparing the BLUEs of µ1 and µ, and BLUPs of
y∗ and ε∗ under M12 and M1.
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Let us shortly consider paper [A] to get an idea what kinds of problems we are dealing
with here. Denote

G1 = X1(X′
1W+

1 X1)−X′
1W+

1 , PX1;Ṁ2
= X1(X′

1Ṁ2X1)−X′
1Ṁ2 ,

where W1 = V + X1X′
1 so that G1y = µ̃1(M1) and PX1;Ṁ2

y = µ̃1(M12). We might now be
tempted to express the equality G1y = PX1;Ṁ2

y as

µ̃1(M1) = µ̃1(M12) , i.e., BLUE(µ1 | M1) = BLUE(µ1 | M12) . (56)

However, the notation used in (56) can be problematic when the possible values of the
response vector y are taken into account. Doing that, we can consider for example statements
like

G1y = PX1;Ṁ2
y for all y ∈ C (X1 : V) , (57a)

G1y = PX1;Ṁ2
y for all y ∈ C (X1 : X2 : V) . (57b)

The claim (57a) appears to be equivalent to {Pµ1 | M12} ⊆ {Pµ1 | M1}.

[C] Haslett et al. (2021), [D] Haslett et al. (2023a).

In these articles we consider the partitioned fixed linear model F : y = X1β1+X2β2+
ε and the corresponding mixed model M : y = X1β1 + X2u + ε, where ε is random error
vector and u is a random effect vector. Isotalo et al. (2006) found conditions under which
an arbitrary representation of the BLUE of an estimable parametric function of β1 in the
fixed model F remains BLUE in the mixed model M . In paper [C] we extend the results
concerning further equalities arising from models F and M . In paper [D] we establish
upper bounds for the Euclidean norm of the difference between the BLUEs of an estimable
parametric function of β1 under models F and M .

[E] Haslett et al. (2023c), [F] Haslett et al. (2023b), [G] Haslett and Puntanen (2023).

We consider the partitioned linear model M12(V0) and the corresponding small model
M1(V0). We define the set V1/12 of nonnegative definite matrices V such that every represen-
tation of the BLUE of µ1 under M12(V0) remains BLUE under M12(V). Correspondingly,
we can characterize the set V1 of matrices V such that every BLUE of µ1 under M1(V0)
remains BLUE under M1(V). In paper E we focus on the mutual relations between the sets
V1 and V1/12.

In article [F] we focus on the mutual relations between the sets V1 and V12, where
V1 is defined as in [E] and V12 is the set of nonnegative definite matrices V such that every
representation of the BLUE of µ = Xβ under M12(V0) remains BLUE under M12(V).

Structural insight into Rao’s condition of 1971 can be gained by writing the quadratic
form that is permitted to be added to the original covariance in block diagonal form. When
the original full linear model is made smaller by reducing the number of regressors, block
diagonal or diagonal matrices also provide insight into conditions for the entire set of full,
small, and intermediate models each to retain their own BLUEs. The paper [G] outlines the
role that such changes in error covariance structure can play in data confidentiality and data
encryption, especially when the covariance of the BLUEs is also retained.
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[H] Haslett et al. (2021)

A linear statistic Fy is called linearly sufficient for X∗β under M (V) if there exists
a matrix A such that AFy is the BLUE for X∗β, i.e., there exists a matrix A such that

AF(X : VM) = (X∗ : 0) .

Thus we can immediately recognize the crucial role of the fundamental BLUE equation
in definition of the linear sufficiency. Originally the concept of linear sufficiency as done
by Baksalary and Kala (1981, 1986). The article [H] provides an extensive review of this
concept.
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Abstract
In this paper we address the problem of constructing a confidence ellipsoid of a mul-

tivariate normal mean vector based on a random sample from it. The central issue at hand
is the sensitivity of the original data and hence the data cannot be directly used/analyzed.
We consider a few perturbations of the original data, namely, noise addition and creation
of synthetic data based on the plug-in sampling (PIS) method and the posterior predictive
sampling (PPS) method. We review some theoretical results under PIS and PPS which are
already available based on both frequentist and Bayesian analysis (Klein and Sinha, 2015,
2016; Guin et al., 2023) and derive the necessary results under noise addition. A theoretical
comparison of all the methods based on expected volumes of the confidence ellipsoids is
provided. A measure of privacy protection (PP) is discussed and its formulas under PIS,
PPS and noise addition are derived and the different methods are compared based on PP.
Applications include analysis of two multivariate datasets. The first dataset, with p = 2,
is obtained from the latest Annual Social and Economic Supplement (ASEC) conducted by
the US Census Bureau in 2023. The second dataset, with p = 3, pertains to renal variables
obtained from the book by Harris and Boyd (1995). Using a synthetic version of the original
data generated through PIS and PPS methods and also the noise added data, we produce
and display the confidence ellipsoids for the unknown mean vector under various scenar-
ios. Finally, the privacy protection measure is evaluated for various methods and different
features.
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1. Introduction

Statistical data analysis under privacy protection has been the focus of statistical re-
search at many government agencies where the charge is to collect public data or information
on many aspects of their lives and then analyze and disseminate the information for public
use, policy decisions, and further research by other interested parties. Often the information
provided by the public as in the decennial census in the USA contain some sensitive features
and it is the responsibility of the data collecting agency to ensure that information related to
these features are not compromised, properly hidden, and hard to retrieve from subsequent
data analysis and released tables. Statistical research dealing with this task falls into the
category of Statistical Disclosure Control (SDC) Methods. Fortunately, many novel methods
of SDC have been developed and used over the years, notably noise addition/multiplication,
swapping, and synthetic data creation (Drechsler and Reiter (2010); Drechsler (2011); Kin-
ney et al. (2014); Kinney et al. (2011); Kinney et al. (2014); Lin and Wise (2012); Little
et al. (1993); Meng (1994); Klein et al. (2014); Klein and Sinha (2013a); Klein and Sinha
(2015); Klein and Sinha (2016); Raghunathan et al. (2003); Reiter (2003); Reiter (2004);
Reiter (2005a); Reiter (2005b); Reiter (2005c); Reiter and Kinney (2012); Reiter and Mitra
(2009); Reiter and Raghunathan (2007); Rubin (1987); Rubin (1993); Rubin (1996); Nayak
et al. (2011); Sinha et al. (2011);Klein and Sinha (2013b)). There are three distinct parts
in this process: how to perturb or distort the sensitive parts of the information collected,
how to carry out proper statistical analysis based on the perturbed data so as to draw valid
inference about some population features (like proportions, means, variances, correlation)
and a study of the extent to which privacy has been preserved!

The focus of this paper is on multivariate data analysis in the context of sensitive
data collected on p continuous features from a random sample of n units of a population.
We assume that data follows a multivariate normal (MVN) model with the mean vector µ
and dispersion matrix Σ, both unknown, and primarily address the problem of constructing
confidence sets (CS) for µ based on suitable perturbations of the original data. Three
methods of SDC are considered: noise addition, synthetic data analysis based on Plug-in
Sampling (PIS) scheme and synthetic data analysis based on Posterior Predictive Sampling
(PPS) scheme. In each case we clearly spell out 1) how to create artificial data, 2) how to
analyze it so as to produce a valid CS for µ, and 3) to what extent privacy is protected based
on a suitable privacy protection (PP) measure. We should point out that the above methods
are widely used in the literature and we have freely used some results which are already
available and derived necessary additional results for a complete analysis of the MVN data.

The organization of the paper is as follows. In Section 2 we discuss valid inference
based on noise added data, including proper analysis leading to a CS for µ. Section 3
is devoted to valid analysis of synthetic data under PIS and Section 4 to valid analysis
under PPS. Both Sections 3 and 4 reside in the frequentist paradigm. We consider Bayesian
analysis of PIS and PPS data in Section 5. A comparison of the suggested methods based
on the expected volumes is done in Section 6. In Section 7 a measure of privacy protection
(PP) suitable for multivariate data is given and explicit expressions of this measure for all
the methods are derived. A comparison of the suggested artificial data generation methods
based on PP is also given. It should be noted that evaluation of PP depends only on the
way the original data are perturbed and not on subsequent data analysis methods. Finally,
in Section 8, we apply all the proposed methods in the analysis of two multivariate datasets:
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the first, with p = 2, is obtained from the US Census Bureau, and the second dataset,
encompassing renal variables with p = 3, is obtained from the book by Harris and Boyd
(1995), providing a comprehensive analysis of both datasets.

Throughout this paper we assume the original data X = (x1, x2, . . . , xn) are iid as
Np(µ, Σ), where n > p and Σ is a positive definite matrix. Define µ̂ = x̄ = 1

n

∑n
i=1 xi (sample

mean), Wx = ∑n
i=1(xi − x̄)(xi − x̄)′ (sample Wishart matrix) and Σ̂ = Wx

n−1 . Based on the
original data, (µ̂, Σ̂) are jointly sufficient for (µ, Σ). Define T 2

x = n(x̄ − µ)′W −1
x (x̄ − µ),

then
(

n−p
p

)
T 2

x ∼ Fp,n−p. A (1−γ) level confidence ellipsoid (CE) for µ based on the original
data X will be

∆(µ) =
{

µ : T 2
x ≤

(
p

n − p

)
Fp,n−p;γ

}
, (1)

where Fp,n−p;γ is the 100(1 − γ)th percentile of an F -distribution with (p, n − p) degrees of
freedoms. The observed volume and the expected volume of the above CE will be

Vµ(X) = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

|Wx|
1
2 (2)

E [Vµ(X)] = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

Cn,p|Σ|
1
2 , (3)

where E[|Wx| 1
2 ] = Cn,p|Σ| 1

2 and Cn,p = ∏p
i=1

[
2 1

2
Γ(n−i+1

2 )
Γ(n−i

2 )

]
.

2. Inference based on noise added data

In this section our objective is to propose an inferential method of finding a suitable
confidence set for the unknown µ based on the noise added data. The original data X =
(x1, x2, . . . , xn) are assumed to be independent and identically distributed (iid) as Np(µ, Σ),
where n > p. Based on these data, one can define the summary statistics x̄ = 1

n

∑n
i=1 xi

(sample mean) and Wx = ∑n
i=1(xi − x̄)(xi − x̄)′ (sample Wishart matrix). Sometimes the

unit level/micro data are available and sometimes they are not. We have encountered these
two cases in the following subsections.

2.1. Case 1: Unit level data available

When unit level data are available, they can be perturbed by adding some random
noise ei ∼ Np(0, R), iid for i = 1, · · · , n, to the ith level - resulting in ui = xi + ei ∼
Np(µ, Σ + R), i = 1, 2, . . . , n, where R is a known positive definite noise dispersion matrix.
Our objective is to propose an inferential method of finding a suitable confidence set for the
unknown µ based on the noise added data U = (u1, u2, . . . , un). Define ū = 1

n

∑n
i=1 ui and

W u = ∑n
i=1(ui − ū)(ui − ū)′. It is very easy to verify that, based on the noise added data

U , (ū, W u) are jointly sufficient for (µ, Σ). Clearly ū ∼ Np

(
µ, Σ+R

n

)
, independently of

W u ∼ Wishartp(Σ + R, n − 1). We define T 2
u = n(ū − µ)′W−1

u (ū − µ) which follows p
n−p

times an F-distribution with degrees of freedoms (p, n − p). Clearly, T 2
u can be looked upon
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as a pivot and can be used to find a (1 − γ) ellipsoid for µ as given by

∆1
NA(µ) =

{
µ : n(µ − ū)′W−1

u (µ − ū) ≤ p

n − p
Fp,n−p;γ

}
, (4)

where Fp,n−p;γ is the 100(1 − γ)th percentile of an Fp,n−p distribution. The volume of the
confidence ellipsoid ∆1

NA(µ) based on the noise added data U is given by

Vµ(U ) = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

|Wu|
1
2 . (5)

Note that E(|Wu| 1
2 ) = Cn,p|Σ + R|1/2 with Cn,p = ∏p

i=1

[
2 1

2
Γ(n−i+1

2 )
Γ(n−i

2 )

]
, the expected volume is

obtained as

E[Vµ(U )] = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

Cn,p|Σ + R|
1
2 . (6)

2.2. Case 2: Unit level data not available

If unit level/micro data is not available on X, but only summary statistics x̄ and
Wx are available, we define ū = x̄ + ē, where ē ∼ Np(0, R

n
), independent of x̄, and Wu =

Wx + Wr, where Wr ∼ Wishartp(r, R) with r ≥ p, independent of W . Consequently we
have ū ∼ Np(µ, Σ+R

n
) and Wu follows a distribution which is the sum of two independent

Wishart distributions: Wishartp(n − 1, Σ) and Wishartp(r, R). For the sake of simplicity,
we write it as Wu ∼ Wp(n − 1, Σ) + Wp(r, R). Define Fu = n(ū − µ)′W −1

u (ū − µ). Here,
it should be noted that the distribution of Fu is not independent of the parameter Σ and
hence can not be used as a pivot. Our goal is to find F ∗ which is stochastically larger than
Fu and which has a distribution free from the parameter.

Consider v =
√

n(Σ+R)− 1
2 (ū−µ) ∼ Np(0, Ip), that is

√
n(ū−µ) = (Σ+R) 1

2 v, and
W ∗

u = (Σ+R)− 1
2 Wu(Σ+R)− 1

2 , we can rewrite Fu = v′(W ∗
u)−1v. Note that, W ∗

u ∼ Wp(n−
1, A1)+Wp(r, A2), where A1 = (Σ+R)− 1

2 Σ(Σ+R)− 1
2 and A2 = (Σ+R)− 1

2 R(Σ+R)− 1
2

with A1 + A2 = Ip.

Theorem 1: If w1 ∼ Wishartp(n − 1, Ip), independently of w2 ∼ Wishartp(r, Ip), the
distribution of F ∗ = Max

{
v′w−1

1 v, v′w−1
2 v

}
is stochastically larger than Fu and also free

from the parameter.

Proof: Suppose S1 = (Σ + R)− 1
2 W (Σ + R)− 1

2 ∼ Wishartp(n − 1, A1), independently of
S2 = (Σ+R)− 1

2 Wr(Σ+R)− 1
2 ∼ Wishartp(r, A2), and S = S1 +S2, then Fu can be written

as Fu = v′S−1v. We first note that,

Fu = v′S−1v = Max
l :l′l=1

{
(l′v)2

l′Sl

}
. (*)
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Let w1 ∼ Wishartp(n − 1, Ip), independently of w2 ∼ Wishartp(r, Ip). For any l such that
l′l = 1, l′w1l ∼ χ2

n−1, and l′w2l ∼ χ2
r. Again l′S1l

l′A1l ∼ χ2
n−1 and l′S1l

l′A2l ∼ χ2
r, which implies

l′S1l
d= (l′A1l)(l′w1l),

and l′S2l
d= (l′A2l)(l′w2l).

Hence

l′Sl = l′(S1 + S2)l d= (l′A1l)(l′w1l) + (l′A2l)(l′w2l)
≥
st

(l′A1l + l′A2l)Min
{
l′w1l, l′w2l

}
= (l′l)Min

{
l′w1l, l′w2l

}
, [Since, A1 + A2 = Ip]

= Min
{
l′w1l, l′w2l

}
, [Since, l′l = 1]

Thus we have
(l′v)2

l′Sl
≤
st

(l′v)2

Min
{
l′w1l, l′w2l

}
d= Max

{
(l′v)2

l′w1l
,
(l′v)2

l′w2l

}
.

From (*),

Fu = Max
l :l′l=1

{
(l′v)2

l′Sl

}

≤
st

Max
l :l′l=1

{
Max

{
(l′v)2

l′w1l
,
(l′v)2

l′w2l

}}
d= Max

{
v′w−1

1 v, v′w−1
2 v

}
= F ∗

Clearly the distribution of F ∗ is free from Σ, as all of v, w1 and w2 are having distributions
free from Σ.
[Note: Here we have used the symbols d=, ≤

st
and ≥

st
, which stands for identically distributed,

stochastically smaller and stochastically larger respectively].

We determine F ∗
n,p,r,γ such that P [F ∗ ≤ F ∗

n,p,r,γ] = 1 − γ, which implies P [Fu ≤ F ∗
n,p,r,γ] ≥

P [F ∗ ≤ F ∗
n,p,r,γ] = 1 − γ. Therefore a confidence ellipsoid for µ with confidence level at least

(1 − γ) is given by

∆2
NA(µ) =

{
µ : n(µ − ū)′W−1

u (µ − ū) ≤ F ∗
n,p,r,γ

}
. (7)

The volume of the confidence ellipsoid ∆2
NA(µ) is given by

V ∗
µ = πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
|Wu|

1
2 . (8)



124
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

BISWAJIT BASAK, YEHENEW KIFLE AND BIMAL SINHA [Vol. 22, No. 3]

The expected volume can be computed by evaluating E
[
|Wu| 1

2
]
. Recall Wu = Wx + Wr,

we can use the result, |Wx + Wr|
1
2 > Max

{
|Wx| 1

2 , |Wr|
1
2
}

with probability 1, resulting in
E
[
|Wx + Wr|

1
2
]

> E
[
Max

{
|Wx| 1

2 , |Wr|
1
2
}]

≥ Max
{
E
[
|Wx| 1

2
]

, E
[
|Wr|

1
2
]}

. Therefore a
lower bound to the expected volume will be

E[V ∗
µ ] ≥ πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
Max

{
Cn,p|Σ|

1
2 , Cr+1,p|R|

1
2
}

≈ πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
Cn,p|Σ|

1
2 . (9)

[Assuming |R| to be significantly small.]

Remark 1: We can do a direct comparison of the expected volume in (6) when unit level
data are available and the lower bound of the expected volume in (9) when unit level data
are not available in situations when R is small. This essentially boils down to a comparison
of [p/(n − p)]Fp,n−p;γ and F ∗

n,p,r,γ. However, from the definition of F ∗ it follows that any
percentile of F ∗ is larger than the corresponding percentile of v′w−1

1 v. Since the latter per-
centile is [p/(n − p)]Fp,n−p;γ, it readily follows that F ∗

n,p,r,γ is larger than [p/(n − p)]Fp,n−p;γ,
regardless of r. In other words, even the lower bound for the expected volume given in (9) is
larger than the exact expected volume in (6), whatever be the df r. Table 1 shows a direct
comparison of these two cut-off points.

Table 1: The first table presents F ∗
n,p,r,γ cut-off points for various combinations

of n, p and r, while the second table displays the [p/(n − p)]Fp,n−p;γ cut-off points
across different values of n and p, with γ = 0.05. significance level.

n r=10 r=15 r=20 r=100
p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4

25 0.921 1.504 2.379 0.534 0.797 1.070 0.394 0.568 0.739 0.307 0.419 0.539
50 0.969 1.518 2.402 0.532 0.795 1.092 0.382 0.523 0.693 0.134 0.179 0.219

100 0.976 1.531 2.437 0.544 0.820 1.097 0.363 0.522 0.679 0.069 0.090 0.109

[p/(n − p)]Fp,n−p;γ cut-off points
n p=2 p=3 p=4

25 0.298 0.416 0.541
50 0.133 0.179 0.224

100 0.063 0.083 0.103

3. Analysis of synthetic data under plug-in sampling

In this section we briefly review the method of analysing synthetic data obtained
under plug-in sampling method, which are derived by (Klein and Sinha, 2016). The main
objective here is to obtain a confidence ellipsoid for µ, based on the synthetic data, for a
given confidence level.

Under plug-in sampling method, singly imputed synthetic data, denoted by Y =
(y1, y2, . . . , yn), are obtained by drawing iid observations from Np(µ̂, Σ̂). Based on these
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synthetic data, ȳ = 1
n

∑n
i=1 yi and Wy = ∑n

i=1(yi − ȳ)(yi − ȳ)′ are jointly sufficient for
(µ, Σ) (See (Klein and Sinha, 2016)). Clearly, given the original data X , ȳ ∼ Np(x̄, n−1Σ̂)
independently of Wy ∼ Wishartp(Σ̂, n − 1). The joint pdf (unconditional) of (ȳ, Wy) is
given by

fµ,Σ (ȳ, W y) ∝
�

Σ̂∈S++
n

|W y|
n−p−2

2 |Σ + Σ̂|−
1
2

|Σ|
n−1

2 |Σ̂|
p+1

2

e
− 1

2

[
n(ȳ−µ)′(Σ+Σ̂)−1

(ȳ−µ)+T r(W yΣ̂−1)+(n−1)T r(Σ̂Σ−1)
]
dΣ̂,

where S++
n stands for the set of p × p positive definite matrices. For the derivation of the

above expression we refer to (Klein and Sinha, 2016).

Based on the synthetic data Y , consider T 2
y = n(ȳ − µ)′W−1

y (ȳ − µ), which has a
mixture-type distribution mentioned in the following theorem which is derived by (Klein and
Sinha, 2016). The theorem also shows that T 2

y is a pivotal quantity and can be used to find
a confidence ellipsoid for µ.

Theorem 2: The distribution of T 2
y = n(ȳ − µ)′W−1

y (ȳ − µ) has the representation: T 2
y =

Ty1 × Ty2 where Ty1 ∼ 1
χ2

n−p
, independent of Ty2, and the conditional distribution of Ty2,

given a Wishart matrix W ∗, is ∑p
i=1 λiχ

2
1i where χ2

1i are independent χ2 variables each with
1 degree of freedom and λ1, . . . , λp are the roots of |(n − 1)I p + (1 − λ)W ∗| = 0 where
W ∗ ∼ Wishartp(I p, n − 1).

Theorem 2 shows that T 2
y can be used as a pivotal quantity, and hence we can con-

struct a (1 − γ) ellipsoid for µ based on T 2
y as given by

∆1(µ) = {µ : n(µ − ȳ)′W−1
y (µ − ȳ) ≤ an,p,γ} (10)

where an,p,γ is the (1 − γ) percentile from the distribution of T 2
y . The cut-off point an,p,γ can

be obtained by simulating from the distribution of T 2
y as given below:

1. Generate λ1, λ2, . . . , λp, the roots of |(n − 1)I p + (1 − λ)W ∗| = 0 where W ∗ ∼
Wishartp(I p, n − 1).

2. Generate Ty2 = ∑p
i=1 λiχ

2
1i where χ2

1i are independent χ2 variables each with 1 degree
of freedom.

3. Generate Ty1 ∼ 1
χ2

n−p
, independent of Ty2.

4. Finally compute T 2
y = Ty1 × Ty2.

The volume of the confidence ellipsoid ∆1(µ) based on the synthetic data Y is given by

Vµ(Y ) = πp/2

np/2Γ
(

p
2 + 1

)(an,p,γ)p/2|Wy|
1
2 . (11)
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Since E
(
|Wy| 1

2
)

= C 2
n,p

(n−1)p/2 |Σ| 1
2 with Cn,p = ∏p

i=1

[
2 1

2
Γ(n−i+1

2 )
Γ(n−i

2 )

]
, the expected volume is ob-

tained as
E[Vµ(Y )] = πp/2

np/2Γ
(

p
2 + 1

)(an,p,γ)p/2 C 2
n,p

(n − 1)p/2 |Σ|
1
2 . (12)

4. Analysis of synthetic data under posterior predictive sampling

Likewise in the previous section, the original data X = (x1, x2, . . . , xn) is assumed
to be iid as Np(µ, Σ), where n > p. In this section we briefly discuss a method, illustrated
in ((Klein and Sinha, 2015)), to obtain confidence ellipsoid for µ based on a synthetically
generated data under posterior predictive sampling. Consider x̄ and Wx, as mentioned in the
section (1), which are jointly sufficient for (µ, Σ). Under the posterior predictive sampling
method, a vague prior for (µ, Σ) is set as π(µ, Σ) ∝ |Σ|− α

2 , where n + α > 2p + 3. The joint
posterior distribution of (µ, Σ) given X , can be represented as

Σ−1|X ∼ Wishartp(W −1
x , n + α − p − 2)

µ|(Σ, X) ∼ Np

(
x̄,

Σ
n

)
. (13)

We draw (µ∗, Σ∗) from the above posterior and finally a random sample Z = (z1, z2, . . . , zn)
is drawn from Np(µ∗, Σ∗), which constitutes the synthetic data. Based on these synthetic
data Z , one can easily verify that z̄ = 1

n

∑n
i=1 zi and Wz = ∑n

i=1(zi − z̄)(zi − z̄)′ are jointly
sufficient for (µ, Σ).

The joint pdf of z̄ and W z is obtained by integrating out Σ∗ from the joint pdf of
(z̄, W z, Σ∗) given by

f(z̄, W z, Σ∗) ∝ e− 1
2 [n(z̄−µ)′(Σ+2Σ∗)−1(z̄−µ)+T r(W zΣ∗−1)] |Σ + 2Σ∗|−

1
2 |Σ|

n−p+α−2
2

|Σ + Σ∗|−
2n−p+α−3

2 |Σ∗|−( p+1
2 +α)|W z|

n−p−2
2 .

Define T 2
z = n(z̄ − µ)′W−1

z (z̄ − µ), then the distribution of T 2
z , as mentioned in (Klein and

Sinha, 2015), given in Theorem (3) below.

Theorem 3: T 2
z has the representation: T 2

z = Tz1 × Tz2 with Tz1 ∼ 1
χ2

n−p
, independent

of Tz2 = ∑n
i=1 λiχ

2
1i where χ2

1i are independent χ2 random variables each with 1 degree of
freedom and λ1, λ2, . . . , λp are the roots of |I p + (2 − λ)Σ̃| = 0, and the distribution of Σ̃ is
given by

f(Σ̃) ∝ |Σ̃|
n−p−2

2 × |I + Σ̃|−
2n+α−p−3

2 .

From the above theorem it is clear that T 2
z can be used as a pivot and hence a (1−γ)

level confidence ellipsoid for µ based on T 2
z is given by

∆2(µ) = {µ : n(µ − z̄)′W−1
z (µ − z̄) ≤ bn,p,α,γ}, (14)

where bn,p,α,γ is the (1 − γ) level cut-off point from the distribution of T 2
z and it can be

obtained by simulating from the distribution of T 2
z as discussed below.
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1. To generate Σ̃ having the density f(Σ̃) as defined in Theorem (3), one can generate
A1 ∼ Wishartp(I p, n − 1) independent of A2 ∼ Wishartp(I p, n + α − p − 2), and set
Σ̃ = A

1
2
1 A−1

2 A
1
2
1 . The proof of this representation of Σ̃ appears in the proof of Theorem

8.2.8 of (Muirhead, 1982).

2. Obtain the eigenvalues of Σ̃ as δ1, δ2, . . . , δp and take λi = 2 + 1
δi

, i = 1, . . . , p.

3. Generate Tz2 = ∑p
i=1 λiχ

2
1i where χ2

1i are independent χ2 variables each with 1 degree
of freedom.

4. Generate Tz1 ∼ 1
χ2

n−p
, independent of Tz2.

5. Finally compute T 2
z = Tz1 × Tz2.

The volume of the confidence ellipsoid ∆2(µ) based on the synthetic data Z is given by

Vµ(Z) = πp/2

np/2Γ
(

p
2 + 1

)(bn,p,α,γ)p/2|Wz|
1
2 , (15)

therefore the expected volume is

E[Vµ(Z)] = πp/2

np/2Γ
(

p
2 + 1

)(bn,p,α,γ)p/2D2
n,pEn,p,α|Σ|

1
2 , (16)

where Dn,p = ∏p
i=1

[√
2Γ( n−i+1

2 )
Γ( n−i

2 )

]
and En,p,α = ∏p

i=1

[
Γ( n+α−p−i−2

2 )√
2Γ( n+α−p−i−1

2 )

]
.

5. Bayesian analysis of PIS and PPS data

In this section, which is essentially based on Guin et al. (2023), we discuss the
Bayesian credible confidence ellipsoids (BCCE) for the mean vector µ and their (frequentist)
expected volumes under PIS and PPS.

5.1. BCCE under PIS

Referring to the likelihood function of the released data y1, · · · , yn under PIS men-
tioned in Section 3, we now apply a diffuse prior π(µ, Σ) ∝ |Σ|−

δ
2 . This results in the

posterior joint distribution of µ and Σ, which can be represented in the following manner:
Σ̂|W y, ȳ ∼ Wishart−1

p (W y, n − p + δ − 2)
Σ|Σ̂, ȳ, W y ∼ Wishart−1

p

(
(n − 1)Σ̂, n − p + δ − 2

)
µ|Σ, Σ̂, ȳ, W y ∼ Np

(
ȳ,

1
n

(
Σ + Σ̂

))
(17)

The above can be further reformulated as:
W y

−1/2Σ̂W y
−1/2 ∼ Wishart−1

p (Ip, n − p + δ − 2)
Σ̂−1/2ΣΣ̂−1/2 ∼ Wishart−1

p ((n − 1)Ip, n − p + δ − 2)

µ | Σ, Σ̂, ȳ ∼ Np

(
ȳ,

1
n

(
Σ + Σ̂

))
(18)
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which has the benefit that W y
−1/2Σ̂W y

−1/2 is independent of Σ̂−1/2ΣΣ̂−1/2 and their pos-
terior distributions are unconditional. The posterior distributions are proper as long as
n > max{p, 2p − δ + 1}. A (1 − γ) BCCE for µ can be taken as [(Guin et al., 2023)]

∆3(µ) =
{
µ : T 2

y ≤ cn,p,δ;γ
}

, (19)

where T 2
y = n(ȳ − µ)′W−1

y (ȳ − µ) and the cut-off point cn,p,δ;γ is obtained by simulation
through the following steps:

1. Generate B ∼ Wishart−1
p (Ip, n − p + δ − 2).

2. Generate A | B ∼ Wishart−1
p ((n − 1)B, n − p + δ − 2) + B.

3. Generate λ1, . . . , λp, the roots of |A − λIp| = 0.

4. Generate T 2
y=∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.

The observed and expected volumes of the above BCCE under PIS are readily obtained as

V B
µ (Y ) = πp/2

Γ
(

p
2 + 1

) (cn,p,δ;γ/n)p/2 |W y|1/2 (20)

E[V B
µ (Y )] = πp/2

np/2Γ
(

p
2 + 1

) (cn,p,δ;γ)p/2 C 2
n,p

(n − 1)p/2 |Σ|1/2 , (21)

where Cn,p = ∏p
i=1

[
21/2Γ(n−i+1

2 )/Γ(n−i
2 )
]
.

5.2. BCCE under PPS

Referring to the likelihood function of the released data z1, z2, . . . , zn under PPS
mentioned in Section 4, we now apply a diffuse prior π(µ, Σ) ∝ |Σ|−

δ
2 . This results in the

posterior joint distribution of µ and Σ which can be represented in the following form:

Σ∗ | Wz ∼ Wishart−1
p (Wz, n − 2p + δ − 1 + 2α)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n + α − δ − 1

2 ,
n − p + δ − 2

2

)

µ | Σ, Σ∗, z̄ ∼ Np

(
z̄,

1
n

(Σ + 2Σ∗)
)

(22)

where BII
p (a, b) denotes the matrix variate beta type II distribution as described in (Muirhead,

1982). We can reformulate the above posterior distributions as:

W −1/2
z Σ∗W −1/2

z ∼ Wishart−1
p (Ip, n − 2p + δ − 1 + 2α)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n + α − δ − 1

2 ,
n − p + δ − 2

2

)

µ | Σ, Σ∗, z̄ ∼ Np

(
z̄,

1
n

(Σ + 2Σ∗)
)

(23)
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which has the benefit that W −1/2
z Σ∗W −1/2

z is independent of Σ∗−1/2ΣΣ∗−1/2 and its pos-
terior distribution is unconditional. The posterior distributions are proper as long as n >
max{p, 2p − α + 1, 3p − δ, p − α + δ, 2p − δ + 1 − 2α}.

A BCCE for µ can be taken as [(Guin et al., 2023)]

∆4(µ) = {µ : T 2
z ≤ dn,p,α,δ,γ}, (24)

where T 2
z = n(µ − z̄)′W−1

z (µ − z̄) and the cut-off point dn,p,α,δ,γ is obtained by simulation
through the following steps:

1. Generate B ∼ Wishart−1
p (Ip, n − 2p + δ + 2α − 1) and decompose as B = DD′.

2. Generate V0 ∼ Wishartp(Ip, n − p + δ − 2), V1 ∼ Wishartp(Ip, n + α − δ − 1),
C = V −1

0 V1V
−1

0 and A = DCD′ + 2B (Gupta and Nagar, 1999).

3. Generate λ1, . . . , λp, the roots of |A − λIp| = 0.

4. Generate T 2
z =∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.

The observed and expected volumes of the above BCCE under PPS are readily ob-
tained as

V B
µ (Z) = πp/2

np/2Γ
(

p
2 + 1

) (dn,p,α,δ;γ)p/2 |Wz|1/2 , (25)

E[V B
µ (Z)] = πp/2

np/2Γ
(

p
2 + 1

) (dn,p,α,δ,γ)p/2 D2
n,pEn,p,α × |Σ|1/2 , (26)

where Dn,p = ∏p
i=1

[√
2Γ( n−i+1

2 )
Γ( n−i

2 )

]
and En,p,α = ∏p

i=1

[
Γ( n+α−p−i−2

2 )√
2Γ( n+α−p−i−1

2 )

]
.

6. Comparison of the suggested methods based on the expected volumes

6.1. Expressions of observed and expected volumes

In this subsection, we provide a brief overview of various expressions for observed and
expected volumes for µ within the noise-added data context and also both frequentist and
Bayesian frameworks under PIS and PPS methods.

The observed and expected volumes of the confidence ellipsoid for µ (see 4), derived
from noise added data U , when unit level data are available, are given below.

Vµ(U ) = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

|Wu|
1
2 ,

E[Vµ(U )] = πp/2

np/2Γ
(

p
2 + 1

) ( p

n − p
Fp,n−p;γ

)p/2

Cn,p|Σ + R|
1
2 . (27)
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where Cn,p = ∏p
i=1

[
2 1

2
Γ(n−i+1

2 )
Γ(n−i

2 )

]
.

If unit level data are not available, the observed volume and a lower bound to the
expected volume of the confidence ellipsoid for µ (see 7) are given by,

V ∗
µ = πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
|Wu|

1
2 ,

E[V ∗
µ ] ≥ πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
Max

{
Cn,p|Σ|

1
2 , Cr+1,p|R|

1
2
}

≥ πp/2

np/2Γ
(

p
2 + 1

) (F ∗
n,p,r,γ

)p/2
Cn,p|Σ|

1
2 . (28)

[Assuming |R| to be significantly small]

Below are the observed and expected volumes of the confidence ellipsoid for µ (see 10),
derived from synthetic data Y using the PIS method.

Vµ(Y )P IS = πp/2

np/2Γ
(

p
2 + 1

)(an,p,γ)p/2|Wy|
1
2 ,

E[Vµ(Y )]P IS = πp/2

np/2Γ
(

p
2 + 1

)(an,p,γ)p/2 C 2
n,p

(n − 1)p/2 |Σ|
1
2 . (29)

Likewise, the observed and expected volumes of the confidence ellipsoid for µ (see
14), utilizing synthetic data Z under the PPS method, are presented below.

Vµ(Z)P P S = πp/2

np/2Γ
(

p
2 + 1

)(bn,p,α,γ)p/2|Wz|
1
2 ,

E[Vµ(Z)]P P S = πp/2

np/2Γ
(

p
2 + 1

)(bn,p,α,γ)p/2D2
n,pEn,p,α|Σ|

1
2 , (30)

where Dn,p = ∏p
i=1

[√
2Γ( n−i+1

2 )
Γ( n−i

2 )

]
and En,p,α = ∏p

i=1

[
Γ( n+α−p−i−2

2 )√
2Γ( n+α−p−i−1

2 )

]
.

In the Bayesian framework, we provide below the observed and expected volumes of
credible confidence ellipsoids for µ within the context of synthetic data generated using the
PIS method (see 19),

V B
µ (Y )P IS = πp/2

np/2Γ
(

p
2 + 1

) (cn,p,δ;γ)p/2 |Wy|1/2 ,

E[V B
µ (Y )]P IS = πp/2

np/2Γ
(

p
2 + 1

) (cn,p,δ;γ)p/2 C 2
n,p

(n − 1)p/2 |Σ|1/2 , (31)
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Table 2: Coefficients of |Σ| 1
2 in the expected volume expression under various

perturbation schemes (γ = 0.05).

DIFFERENT SCHEMES n
p

2 3 4

NA DATA (r = 100)
25 0.8619 0.9690 1.1219
50 0.4061 0.2999 0.2231
100 0.2390 0.1279 0.0683

PIS
25 1.7928 2.8911 5.0991
50 0.8181 0.8554 0.9147
100 0.3949 0.2770 0.2017

PPS (α = 4)
25 2.2241 5.9769 14.3850
50 1.2394 1.6682 2.3476
100 0.5877 0.5294 0.4796

PIS BAYES (δ = 10)
25 1.1445 1.6016 2.3651
50 0.6672 0.6517 0.6477
100 0.3572 0.2468 0.1717

PPS BAYES (α = 1, δ = 10)
25 1.457 2.4228 5.1696
50 0.7489 0.7758 0.9171
100 0.3773 0.2768 0.2032

and under PPS method (see 24),

V B
µ (Z) = πp/2

np/2Γ
(

p
2 + 1

) (dn,p,α,δ;γ)p/2 |Wz|1/2 ,

E[V B
µ (Z)] = πp/2

np/2Γ
(

p
2 + 1

) (dn,p,α,δ,γ)p/2 D2
n,pEn,p,α × |Σ|1/2 . (32)

6.2. Comparison of expected volumes - all are proportional to |Σ|1
2

Note that the expected volume expressions presented in equations 29, 30, 31 and 32
for various methods are directly proportional to |Σ| 1

2 . The coefficient of |Σ + R| 1
2 in the

equation 27 is the same as that of the expected volume under the original data, hence it is
immaterial to consider it for the comparison. Rather we compare the expected volume under
noise added data when unit level data are not available. We assume |R| to be small enough
and calculate the coefficient of |Σ| 1

2 in (28). Consequently, a straightforward comparison of
these methods can be made by examining the coefficients of the expected volume expressions,
without considering the population parameter |Σ| 1

2 . In Table (2), we present the coefficients
obtained from various perturbation schemes in different combinations of n and p values.
Specifically, we used n values of 25, 50, and 100, and p values of 2, 3, and 4. The parameters
α = 4 and δ = 10 remain fixed in the frequentist approach, while in the Bayesian framework
we used α = 1 and δ = 10. Additionally, for data with added noise, we set r = 100.
Throughout the analysis, we maintain a consistent value of γ = 0.05.

From Table (2), it is clear that the expected volume decreases as the sample size (n) increases
under any schemes, which is quite natural. Also, in all the choices of the pair (n, p), we can
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see that the expected volumes under the noise added data (taking r = 100) are quite smaller
than the other schemes. As anticipated, in both the frequentist and Bayesian frameworks,
the expected volumes under PPS exceed those under PIS.

Remark 2: Referring to Remark 1, it is obvious that in case unit level data are available,
the expected volume then will be the least among all reported above. Therefore, if one were
to make practical recommendations based on the expected volumes only, gathering unit level
data and subsequent noise addition will certainly pay off, followed by the same noise addition
mechanism based on summary data.

7. Measure of privacy protection

Disclosure risk evaluation

When the original (unit level) microdata is considered to be sensitive and thus hidden
through the use of a masked version, it is natural to examine the extent to which sensitivity
of a data point has been protected. A slight variation of a popular privacy measure to study
the disclosure risk of a single scalar value xi, given in Klein and Sinha (2016), can be taken
as

P [|x̂i − xi| < ϵ|X] = θi (33)
where X is the entire original data, and x̂i is an intruder’s prediction of xi based upon seeing
the released (artificial/synthetic) data, ϵ be any small positive quantity. Naturally, a high
value of the above probability indicates a low level of protection and vice versa. This privacy
measure (PM) is computed based on the random mechanism producing the masked data,
given the original data X.

In the multivariate case, a generalization of (33) can be taken as

θi = P [(x̂i − xi)tA(x̂i − xi) ≤ ϵ|X] (34)

where A is a positive definite symmetric matrix.

Returning to our specific problem, based on the synthetic multivariate data released
by the data producer, a naive intruder’s best guess about xi, the original value for the ith
unit, can be discussed under two circumstances: (a) the identities of the perturbed data
are released by the data producer and ui, yi or zi, the perturbed value of xi based on
NA/PIS/PPS, corresponding to the identifiable ith unit, is taken as intruder’s choice, and
(b) the identities of the perturbed data are lost/retained by the data producer in which case
ū = [∑n

i=1 ui]/n, ȳ = [∑n
i=1 yi]/n or z̄ = [∑n

i=1 zi]/n is taken as intruder’s choice.

There is also a 3rd case in the multivariate data context in which an intruder may be
interested in a particular component, say component 1, of the p vector multivariate data. If
original data x1, · · · , xn are available, intruder’s obvious choice is x̄1 = (x11 + ... + xn1)/n
where we write xi = (xi1, xi2, · · · , xip), i = 1, · · · , n. In the absence of the original data, we
can take ū1, ȳ1 and z̄1 as intruder’s choice under NA/PIS/PPS, respectively.

In subsection 7.1 we discuss PP under noise added data, in subsection 7.2 we discuss
PP under PIS and PPS is taken up in subsection 7.3.

All the above methods discussed in Sections (7.1), (7.2) and (7.3), are from a naive intruder’s
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perspective. However, a smart intruder with an excellent training in statistics can think in
a different way. We have added a remark to this effect at the end of this section.

7.1. Three cases under noise added (NA) data

7.1.1. Case (a)

Here we assume that the identities of the released perturbed data are known and hence
the intruder’s best choice of xi will be ui. Recall that ui = xi + ei where ei ∼ Np(0, R)
is independent of the original data X. Note that e∗

i = R− 1
2 ei ∼ Np(0, Ip). Define B =

R
1
2 AR

1
2 , which is a symmetric positive definite matrix, there exists an orthogonal matrix

Γ such that B = Γ′ΛΓ, where Λ = Diag(λ1, · · · , λp) be a diagonal matrix with diagonal
elements λi’s (i = 1, · · · , p), which are the solutions to the equation |B − λIp|. Considering
mi = Γe∗

i ∼ Np(0, Ip) we can deduce the privacy measure (θi) corresponding to the ith unit
as given by

θi = P [(ui − xi)′A(ui − xi) ≤ ϵ|X]
= P [e′

iAei ≤ ϵ]
= P

[
(e∗

i )′R
1
2 AR

1
2 (e∗

i ) ≤ ϵ
]

= P [(e∗
i )′B(e∗

i ) ≤ ϵ]
= P [(e∗

i )′Γ′ΛΓ(e∗
i ) ≤ ϵ]

= P [m′
iΛmi ≤ ϵ]

= P

 p∑
j=1

λjχ
2
1j ≤ ϵ

 (35)

In the above expression χ2
1j, j = 1, · · · , p are independent central chi square variables each

with 1 d.f. Note that the quantity θi = P
[∑p

j=1 λjχ
2
1j ≤ ϵ

]
= θ∗ is independent of any

specific unit i and hence it can be taken as a measure of overall privacy protection. The
following are two special cases based on the choice of matrix A.

Case 1: A = Ip ⇒ λ1, · · · , λp are the solutions of |R − λIp| = 0.

Case 2: A = Diag(a11, · · · , app) ⇒ λ1, · · · , λp are the solutions of |R−λDiag( 1
a11

, · · · , 1
app

)| =
0.

7.1.2. Case (b)

When the identities of the released perturbed data are not known, the intruder’s
best choice of xi (i = 1, · · · , n) will be ū. Note that ū − xi = ē − (xi − x̄), and for
conditionally given X, it follows Np

(
xi − x̄, R

n

)
. Define e∗

i =
√

nR− 1
2 (ū−xi), which implies

e∗
i |X ∼ Np(δi, Ip), where δi =

√
nR− 1

2 (xi − x̄). Here we take B = R
1
2 AR

1
2

n
, which is

a symmetric and positive definite matrix, there exists an orthogonal matrix Γ such that
B = Γ′ΛΓ, where Λ = Diag(λ1, · · · , λp) be a diagonal matrix with diagonal elements λj’s
(j = 1, · · · , p), which are the solutions to the equation |B − λIp|. Likewise Case (a), we
define mi = Γe∗

i , which conditionally for given X, follows Np(ηi, Ip), where ηi = Γδi. We
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proceed in a similar fashion as mentioned in Case (a) and deduce the privacy measure (θi)
corresponding to the ith unit as

θi = P [(ū − xi)′A(ū − xi) ≤ ϵ|X]

= P

(e∗
i )′ R

1
2 AR

1
2

n
(e∗

i ) ≤ ϵ|X


= P [(e∗

i )′B(e∗
i ) ≤ ϵ|X]

= P [(e∗
i )′Γ′ΛΓ(e∗

i ) ≤ ϵ|X]
= P [m′

iΛmi ≤ ϵ|X]

= P

 p∑
j=1

λjχ
2
1j(η2

ij) ≤ ϵ

 , (36)

where χ2
1j(η2

ij), j = 1, · · · , p are independent noncentral chi-squared variables each with 1
d.f. and noncentrality parameters η2

ij, which is the squared jth component (j = 1, · · · , p) of
ηi.

Unlike Case (a), here θi depends on the specific unit i through the noncentrality
parameters ηij’s. We can write,

θi ≤ P [
p∑

j=1
λjχ

2
1j ≤ ϵ] = θ∗ (say).

The quantity θ∗ is independent of i and can be taken as a measure of overall privacy measure.
Two special choices of A as similar to Case (a) are given below.

Case 1: A = Ip ⇒ λ1, · · · , λp are the solutions of |R
n

− λIp| = 0.

Case 2: A = Diag(a11, · · · , app) ⇒ λ1, · · · , λp are the solutions of |R
n

−λDiag( 1
a11

, · · · , 1
app

)| =
0.

7.1.3. Case (c)

When an intruder is interested in a particular component, say component 1, of the p-
component vector multivariate data, based on the original data x1, · · · , xn, intruder’s obvious
choice is x̄1 = (x11 + ... + xn1)/n where we write xi = (xi1, xi2, · · · , xip), i = 1, · · · , n. In the
absence of the original data, the best choice would be ū1 = 1

n

∑n
i=1 ui1. Clearly, ū1 − x̄1 = ē1,

independently of the original data X, follows N(0, r11
n

), where r11 be the (1, 1)th element of
R. Therefore the privacy measure (θ) is given by

θ = P
[
(ū1 − x̄1)2 ≤ ϵ|X

]
= P

[
ē2

1 ≤ ϵ
]

= P
[
χ2

1 ≤ nϵ

r11

]
(37)

From the above, it readily follows that, more the variability in a particular noise component,
more the privacy protection for the same component.
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7.2. Three cases under PIS

7.2.1. Case (a)

Since the identities of the released masked data are known, the intruder’s choice of xi

can be taken as yi, which conditionally given X, is Np

(
x̄, Wx

n−1

)
according to the PIS scheme.

It is interesting to observe that yi has no bearing with the index i as far as the PIS scheme
is concerned.

Before we compute the PM θ in Case (a), let us look at Case (b).

7.2.2. Case (b)

Since in the absence of the identity of the ith unit ȳ seems to be the intruder’s obvious
choice of xi, to compute the PM θ, we proceed as follows. Recall that

θ = P
[
(ȳ − x̄i)tA(ȳ − x̄i) ≤ ϵ|X

]
. (38)

Note that under PIS, ȳ1, · · · , ȳn are iid following Np

(
x̄, Wx

n−1

)
, implying ȳ|X ∼ Np

(
x̄, Wx

n(n−1)

)
.

Define D = Wx
n(n−1) , we have (ȳ−x̄i)|X ∼ Np ((x̄ − x̄i), D), which implies D−1/2(ȳ−x̄i)|X ∼

Np

(
D−1/2(x̄ − xi), Ip

)
. Write Z = D−1/2(ȳ − x̄i), then θi = P [ZtD1/2AD1/2Z ≤ ϵ|X] =

P [ZtBZ ≤ ϵ|X], where D1/2AD1/2 = B: p × p symmetric pd and Z|X ∼ Np (δi, Ip) with
δi = D−1/2(x̄ − xi).

Since B is symmetric pd, there exists an orthogonal matrix Γ such that ΓtΛΓ = B,
where Λ is a diagonal matrix with elements λ1, · · · , λp as the characteristic roots of B. Let
U = ΓZ ∼ Np[ηi, Ip], where ηi = Γδi. Then

θi = P [ZtΓtΛZΓ ≤ ϵ]
= P [U tΛU ≤ ϵ]

= P [
p∑

j=1
λjχ

2
1j(η2

ij) ≤ ϵ]. (39)

Note that the roots of B are the solutions of |B − λIp| = 0 ⇐⇒ |D1/2AD1/2 − λIp| = 0
⇐⇒ |A − λD−1Ip| = 0 ⇐⇒ |A − λn(n − 1)S−1

x | = 0. Moreover, χ2
1j(η2

ij), j = 1, · · · , p are
independent noncentral chisquare variables each with 1 d.f. and noncentrality parameters as
appear above.

For any specific unit i, θi above can be taken as a privacy measure. Obviously, for
any i

θi ≤ P [
p∑

j=1
λjχ

2
1j ≤ ϵ] = θ∗ (say). (40)

We can take the absolute quantity θ∗, which is independent of any specific unit i, as a
measure of overall privacy protection. In the above, χ2

11, · · · , χ2
1p are iid central chi-square

each with 1 d.f. Here are two special cases:

Case 1: A = Ip ⇒ λ1, · · · , λp are the solutions of | Wx
n(n−1) − λIp| = 0.
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Case 2: A = Diag(a11, · · · , app) ⇒ λ1, · · · , λp are the solutions of | Wx
n(n−1)−λDiag( 1

a11
, · · · , 1

app
)| =

0. Note that a11, · · · , app can be interpreted as quantities representing relative importance
of the p components of the vector x.

Returning now to Case (a), we proceed as in Case (b) and it is easy to check that the
PM θi simplifies to

θi = P [
p∑

j=1
λjχ

2
1j(η2

ij) ≤ ϵ]. (41)

≤ P [
p∑

j=1
λjχ

2
1j ≤ ϵ]. (42)

where λ1, · · · , λp are now the roots of the equation |A − λ(n − 1)W −1
x | = 0 and χ2

11, · · · , χ2
1p

are independent central chi-square variables each with 1 d.f. The two special cases of choice
of A can be similarly dealt here.

7.2.3. Case (c)

From the conditional multivariate normal distribution of ȳ|X ∼ Np

(
x̄, Wx

n(n−1)

)
, it

readily follows that the conditional univariate distribution of ȳ1, given X, is normal with
mean x̄1 and variance Wx11

n(n−1) = d (say). Therefore the privacy measure (PM) θ, which is
P [(ȳ1 − x̄1)2 ≤ ϵ|X], can be simplified as

θ = P
[
(ȳ1 − x̄1)2 ≤ ϵ|X

]
= P

[
χ2

1 ≤ ϵ

d

]
. (43)

The implication of the PM in this case is obvious - the component having the maximum
sampling variation will offer maximum privacy protection.

7.3. Three cases under PPS

7.3.1. Case (a)

Since the identities of the released masked data are known in this case, the intruder’s
obvious choice of xi is zi, which (under the PPS scheme) conditionally given X and Σ∗, is
Np

(
x̄, (1 + 1

n
)Σ∗

)
with Σ∗ having an Inverted Wishart distribution (see (44) below). Again,

as under PIS, here also the unit i has no direct relevance.

Before we compute the PM θ in Case (a), let us look at Case (b).

7.3.2. Case (b)

Recall that z̄ is the intruder’s choice of xi in this case. To compute the PM θi, we
proceed as follows.

Recall that under PPS:

z̄ − xi|Σ∗, X ∼ Np

(
x̄ − xi,

2
n

Σ∗
)

and Σ∗|X ∼ Wishart−1
p

(
W −1

x , n + α − p − 2
)

(44)
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with (Anderson (2003))

h(Σ∗) ∼ e− 1
2 trΣ∗−1Sx|Σ∗|−( n+α−1

2 )|Wx|(
n+α−p−2

2 ) (45)

Combining (44) and (45), the marginal density of z̄, given X, is readily obtained as:

f(z̄|X) ∼
�

Σ∗

e− n
4 (z̄−x̄)tΣ∗−1(z̄−x̄)

|Σ∗|p/2 e− 1
2 trΣ∗−1Wx |Σ∗|−( n+α−1

2 )|Wx|(
n+α−p−2

2 )dΣ∗

∼
�

Σ∗
e− 1

2 trΣ∗−1[Wx+ n
2 (z̄−x̄)(z̄−x̄)t]|Σ∗|−( n+α−1+p

2 )|Wx|(
n+α−p−2

2 )dΣ∗

∼ |Wx|n+α−p−2
2

|Wx + n
2 (z̄ − x̄)t(z̄ − x̄)|n+α−2

2

∼ |Wx|− p
2

|1 + n
2 (z̄ − x̄)tW −1

x (z̄ − x̄)|n+α−2
2

(46)

which is a multivariate t-distribution. The privacy measure (PM) θi can then be written as

θi = P
[
(z̄ − xi)tA(z̄ − xi) ≤ ϵ|X

]
= P

[{
(z̄ − x̄) + (xi − x̄)

}t
A
{
(z̄ − x̄) + (xi − x̄)

}
≤ ϵ|X

]
= P

[
(y − ζi)tA(y − ζi) ≤ ϵ|X

]
(47)

where y = z̄ − x̄ and ζi = xi − x̄. Note from (46) that the pdf of y can be written as

h(y) ∼ |B|p/2[1 + ytBy]−
n+α−2

2 (48)

where B = n
2 W −1

x . It is well known that a multivariate t-distribution is a scale-mixture of
normal and gamma. This follows because (48) can be written as

∼
� ∞

0

[
e− ytBy

2 u|B|p/2up/2
][

e− u
2 u

ν−p
2
]
du (49)

∼ |B|p/2(1 + ytBy)−( ν
2 +1) where ν = n + α − 4 (50)

y|u ∼ Np

(
0,

B−1

u

)
, u ∼ e− u

2 u
ν−p

2 , 0 < u < ∞. (51)

Let Γ : p × p be a nonsingular matrix such that ΓB−1Γt = Ip ⇔ B−1 = Γ−1(Γt)−1 =
(ΓtΓ)−1. Then Vi

def= Γ(y − ζ)i|u ∼ Np

(
−Γζi = δi,

Ip

u

)
.

The privacy measure θi from 47) can be expressed as

θi = P
[
(y − ζi)tA(y − ζi) ≤ ϵ|X

]
= P

[
Vt

i

(
(Γ−1)tAΓ−1

)
Vi ≤ ϵ|X

]
.
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Finally, let us write C = (Γ−1)tAΓ−1 and choose an orthogonal matrix Λ satisfying
C = ΛtD(λ)Λ, where D(λ) is a diagonal matrix with the diagonal elements as the roots of
C. Then

θi = P
[
Vt

iΛtD(λ)ΛVi ≤ ϵ|X
]

= P
[
V∗

i
tD(λ)V∗

i ≤ ϵ|X
]
, V∗

i = ΛVi ∼ Np

(
ηi,

1
u

Ip

)
, where ηi = −ΛΓζi

= Eu

P

 p∑
j=1

λjχ
2
1j(uη2

ij) ≤ uϵ|u

 , where ηij be the jth component of ηi. (52)

≤ P
[ p∑

j=1
λjχ

2
1j(central) ≤ ϵχ2

ν−p+2

]
. (53)

Recall that λ1, · · · , λp are the roots of C, which are the same as the roots of A(ΓtΓ)−1 =
AB−1 = 2

n
(AWx), and χ2

11, · · · , χ2
1p are independent central χ2 with 1 degree of freedom.

The universal upper bound in (53) can be used as a privacy measure for any unit.

Three special cases follow.

Case 1: A = Ip =⇒ θ ≤ P
[∑p

i=1 λiχ
2
1i(central) ≤ ϵχ2

ν−p+2

]
, where λ1, · · · , λp are the roots

of 2
n
Wx.

Case 2: A = W −1
x =⇒ λ1 = · · · = λp = 2

n
, which implies θ ≤ P

[
χ2

p ≤ n
2 ϵχ2

ν−p+2

]
.

Case 3: A = Diag(a1, · · · , ap) =⇒ λ1, · · · , λp are the roots of 2
n


a1 0 . . . 0
0 a2 . . . 0
... ... . . . ...
0 0 . . . ap

Wx.

Returning now to Case (a), it is easy to verify from the distributional property of zi
and the derivation under Case (b) that here

θ ≤ P
[ p∑

j=1
λjχ

2
1j(central) ≤ ϵχ2

ν−p+2

]
(54)

where λ1, · · · , λp are now the roots of (1 + 1
n
)AWx. Three special cases as in Case b can be

easily dealt here.

7.3.3. Case (c)

From the derivation under case (a), referring to equation (51) which displays the
conditional multivariate normal distribution of z̄, given X and u, it readily follows that
the conditional univariate distribution of z̄1, given X and u, is N

(
x̄1, ( 2

n
)Wx11

)
with the

marginal pdf of u as ∼ e−u/2u
ν−p

2 , 0 < u < ∞. Hence the privacy measure (PM) P [(z̄1 −
x̄1)2 ≤ ϵ] can be computed as

P [(z̄1 − x̄1)2 ≤ ϵ] = P
[
χ2

1 ≤ nϵ

2Wx11
χ2

ν−p+2

]
= P

[
F1,n+α−p−2 ≤ nϵ(n + α − p − 2)

2Wx11

]
(55)
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since ν = n + α − 4.

Remark 3: Smart intruder’s case

A smart intruder with sufficient training in statistics is likely to think in a completely
different manner than a naive intruder. A general result to predict unobserved X from an
observed Y is to use the conditional mean formula: E(X|Y). In our case upon observing
the released data (u, y, z) under the three data generation or perturbation schemes, it is
possible to compute the conditional means E(X|u or y or z] although the expressions will
be quite complicated in some cases. We do not pursue this aspect here.

8. Applications

In this section, we consider one publicly accessible multivariate dataset obtained from
the US Census Bureau website and another multivariate dataset on renal variables from
the book by Harris and Boyd (1995). Subsequently, we employ the various data masking
procedures described in the prevision sections. The goal is to construct a credible ellipsoid
for the unknown mean vector based on the original data and its perturbed versions, and
display and compare them. We also study which component of the multivariate data vector
is expected to provide least to most privacy protection based on the criterion used in Section
7.

Subsection 8.1 provides a description and summary of the Census Bureau data for
p = 2, while subsection 8.2 focuses on the renal dataset for p = 3, presenting its description
and analysis. Privacy protection measures for both datasets are presented in subsection 8.3.

8.1. Description and summary of census bureau data

This subsection provides an overview of the 2023 Current Population Survey (CPS)
Annual Social and Economic Supplement (ASEC) data, conducted by the Bureau of the
Census for the Bureau of Labor Statistics. The ASEC Supplement includes crucial monthly
demographic and labor force data, supplemented by additional details on work experience, in-
come, noncash benefits, health insurance coverage, and migration. Our data analysis focused
on the District of Columbia (D.C.) for p = 2, we have examined two variables, Total House-
hold Earnings (THHE), which includes Wages and Salary income, and Other Household
Earnings (OHHE), encompassing retirement, interest, dividend, and social security income,
chosen from a diverse range of available data. The ”2023 Annual Social and Economic Sup-
plements” can be accessed at https://www.census.gov/data/datasets/2023/demo/cps/cps-
asec-2023.html.

In our analysis for the District of Columbia data from the Census Bureau, utilizing
two variables (p = 2: THHE and OHHE), we have examined a sample of 171 households with
Total Household Earnings (THHE) more than 200,000 USD. The resulting mean vector and

dispersion matrix (in thousands) are: X̄ =
[

THHE OHHE
347.51113 26.44435

]
, and S = W /(n − 1) =[

19649.7273 548.1169
548.1169 1241.4463

]
. Based on the original data, the observed volume (2) of the (1−γ)
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level confidence ellipsoid (1) is 553.25 and the coefficient of |Σ| 1
2 in the expected volume

expression of Equation (3) is 0.11205.

8.1.1. CE Under NA Data: Census bureau data

Case 1: Unit level data available

We have taken the noise dispersion matrix as R =
[
1000 10
10 100

]
and r = 100. If unit

level data are available, then for p = 2, n = 171, a significance level of γ = 5% for type-I
error the observed volume (5) under NA data is 577.6583. The coefficient of |Σ + R| 1

2 in
the expected volume expression of Equation 6 is the same as for the original data, that is
0.11205. Figure 2 displays the confidence ellipsoid for the unknown mean vector µ derived
from noise added data when unit level data are available.

Case 2: Unit level data not available

Likewise the previous case, here we also have taken the noise dispersion matrix as

R =
[
1000 10
10 100

]
and r = 100. If unit level data are not available, then for p = 2, n = 171,

a significance level of γ = 5% for type-I error the observed volume (8) under NA data
is 1026.853. The coefficient of |Σ| 1

2 in the expected volume expression of Equation 9 is
0.2012185. Figure 3 displays the confidence ellipsoid for the unknown mean vector µ derived
from noise added data when unit level data are available.

8.1.2. CE Under PIS: Census bureau data

For p = 2, n = 171, a significance level of γ = 5% for type-I error, the observed volume
(11) under PIS is 1140.265. The coefficient of |Σ| 1

2 in the expected volume expression of
Equation 12 is 0.2258409. Figure 6 displays the confidence ellipsoid for the unknown mean
vector µ derived from synthetic data using PIS.

8.1.3. CE Under PPS: Census bureau sata

For p = 2, n = 171, a significance level of γ = 5% for type-I error, α = 4, the
observed volume (15) under PPS is 1639.902. The coefficient of |Σ| 1

2 in the expected volume
expression of Equation 16 is 0.3382968. Figure 7 displays the confidence ellipsoid for the
unknown mean vector µ derived from synthetic data using PPS.

8.1.4. BCCE Under PIS: Census bureau data

For p = 2, n = 171, a significance level of γ = 5% for type-I error, and a hyperpa-
rameter δ = 10 in the prior distribution, the observed volume (20) under PIS is 1062.07.
The coefficient of |Σ| 1

2 in the expected volume expression of Equation 21 is 0.2104. Figure
9 displays the credible ellipsoid for the unknown mean vector µ derived from synthetic data
using PIS.
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8.1.5. BCCE Under PPS: Census bureau data

For p = 2, n = 171, a significance level of γ = 5% for type-I error, α = 1, and
a hyperparameter δ = 10 in the prior distribution, the observed volume (25) under PPS
is 1019.4310. The coefficient of |Σ| 1

2 in the expected volume expression of Equation 26 is
0.22239. Figure 10 displays the credible ellipsoid for the unknown mean vector µ derived
from synthetic data using PPS.

8.2. Description and summary of renal data

In this section, we used a renal data set from the book by Harris and Boyd (1995),
Appendix 4.2 on page 137. Serum creatinine (SCR), urea nitrogen (BUN), and uric acid
(UA) levels were assessed from a single blood specimen collected from a group of male
medical students at the University of Virginia between 1987 and 1991 (Harris and Boyd,
1995). To demonstrate the methodologies introduced in this paper, we applied them to
a subset of renal data with p = 3 (SCR, BUN, and UA) and a sample size of n = 150.

The resulting mean vector and dispersion matrix are: X̄ =
[

BUN SCR UA
15.3600 1.0967 6.4680

]
, and

S = W /(n − 1) =

12.9970 0.0495 0.3478
0.0495 0.0183 0.0574
0.3478 0.0574 1.5086

. Based on the original data, the observed

volume (2) of the (1 − γ) level confidence ellipsoid (1) is 0.0294 and the coefficient of |Σ| 1
2

in the expected volume expression of Equation (3) is 0.0518.

8.2.1. CE Under NA Data: Renal data

Case 1: Unit level data available

We have taken the noise dispersion matrix as R =

 0.7 −0.3 −0.3
−0.3 0.7 −0.3
−0.3 −0.3 0.7

 and r = 100.

If unit level data are available, then for p = 3, n = 150, a significance level of γ = 5% for
type-I error the observed volume (5) under NA data is 0.24303. The coefficient of |Σ + R| 1

2

in the expected volume expression of Equation 6 is the same as for the original data, that is
0.0518.

Case 2: Unit level data not available

Likewise the previous case, here we also have taken the noise dispersion matrix as

R =

 0.7 −0.3 −0.3
−0.3 0.7 −0.3
−0.3 −0.3 0.7

 and r = 100. If unit level data are not available, then for p = 3,

n = 150, a significance level of γ = 5% for type-I error the observed volume (8) under NA
data is 0.35897. The coefficient of |Σ| 1

2 in the expected volume expression of Equation 9 is
0.10454.
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8.2.2. CE Under PIS: Renal data

For p = 3, n = 150, a significance level of γ = 5% for type-I error, the observed
volume (11) under PIS is 0.09941. The coefficient of |Σ| 1

2 in the expected volume expression
of Equation 12 is 0.14711.

8.2.3. CE Under PPS: Renal data

For p = 3, n = 150, a significance level of γ = 5% for type-I error, α = 4, the observed
volume (15) under PPS is 0.15295. The coefficient of |Σ| 1

2 in the expected volume expression
of Equation 16 is 0.27928.

8.2.4. BCCE Under PIS: Renal data

For p = 3, n = 150, a significance level of γ = 5% for type-I error, and a hyperpa-
rameter δ = 10 in the prior distribution, the observed volume (20) under PIS is 0.0904. The
coefficient of |Σ| 1

2 in the expected volume expression of Equation 21 is 0.1338.

8.2.5. BCCE Under PPS: Renal data

For p = 3, n = 150, a significance level of γ = 5% for type-I error, α = 1, and a
hyperparameter δ = 10 in the prior distribution, the observed volume (25) under PPS is
0.0605. The coefficient of |Σ| 1

2 in the expected volume expression of Equation 26 is 0.1482.

The outcomes of observed and expected volumes for both datasets under various
perturbation schemes have been summarized into a single, as shown in Table (3).

Table 3: Observed volumes and the coefficients of |Σ| 1
2 in the expected volume

expression (denoted as Expected∗) for various perturbation schemes and two data
sets (γ = 0.05).

DIFFERENT SCHEMES Volumes CB Data Set Renal Data Set
(n = 171, p = 2) (n = 150, p = 3)

NA DATA Observed 577.6583 0.24303
(Microdata Available) Expected 0.11205 0.05180

NA DATA Observed 1026.853 0.35897
(Microdata NOT Available) Expected 0.20122 0.10454

PIS Observed 1140.265 0.09941
Expected 0.22584 0.14711

PPS Observed 1639.902 0.15295
(α = 4) Expected 0.33830 0.27928

PIS BAYES Observed 1062.070 0.09040
(δ = 10) Expected 0.21040 0.13380

PPS BAYES Observed 1019.4310 0.0605
(α = 1, δ = 10) Expected 0.2239 0.1482



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

NOISE PERTURBED AND SYNTHETIC DATA ANALYSIS 143

8.3. Privacy protection measures

Here we have obtained privacy protection measures for selective units from both
Census Bureau data set (p = 2) and Renal data set (p = 3). Under noise added data, as
it is immaterial to consider the second scenario, that is when the original microdata are
not available, we have only considered the scenario when all the units of the original data
are available. However we have considered the situation when only the summary statistics
corresponding to the perturbed data are available. We have used privacy measures as given
in the equations (36), (39) and (52) under NA data, PIS and PPS respectively. Privacy
measures for two different data sets have been obtained in the following subsections.

8.3.1. Census bureau dataset

For CB data set, as mentioned in section (8.1), with two variables (p = 2: THHE
and OHHE), we have examined a sample of 171 households with Total Household Earnings
(THHE) more than 200,000 USD. We choose three responses with the values (in thousands)
in the two categories as (214.735, 113.943), (305, 134.217) and (500, 155). Under any pertur-
bation scheme, privacy measures for each unit are obtained taking ϵ = 0.6(0.05)1 and for the

ith selected unit xi = (xi1, xi2), the matrix A is chosen as A =
 1

x2
i1

0
0 1

x2
i2

. For noise added

data, the noise dispersion matrix is taken as R =
[
10000 100
100 1000

]
and α = 4 under PPS.

Table 4: Privacy Measures under different schemes of perturbation and for three
different units from CB data set.

Units Schemes ϵ
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Unit 1
NA Data 0 0 0 0 0.0004 0.0085 0.0828 0.3353 0.6920

PIS 0 0 0 0.0001 0.0030 0.0274 0.1342 0.3662 0.6521
PPS 0 0.0001 0.0006 0.0051 0.0252 0.0858 0.2117 0.3988 0.6045

Unit 2
NA Data 0.0122 0.3084 0.8799 0.9971 1 1 1 1 1

PIS 0.0206 0.3183 0.8516 0.9939 1 1 1 1 1
PPS 0.0691 0.3584 0.7628 0.9597 0.9968 0.9999 1 1 1

Unit 3
NA Data 0 0 0.0012 0.1300 0.7500 0.9919 1 1 1

PIS 0 0 0.0058 0.1680 0.7126 0.9793 1 1 1
PPS 0 0.0016 0.0356 0.2449 0.6527 0.9245 0.9926 0.9996 1

8.3.2. Renal dataset

For Renal data set, as mentioned in section (8.2), with three variables (p = 3: SCR,
BUN and UA), we have examined a sample of 150 male medical students at the University
of Virginia between 1987 and 1991 (Harris and Boyd, 1995). We choose three responses
with the values in the three categories as (12, 0.9, 6.1), (15, 1.1, 6.9) and (25, 1.1, 6.6). Un-
der any perturbation scheme, privacy measures for each unit are obtained for the choices
of ϵ ∈ {0.005, 0.01, 0.05, 0.1, 0.12, 0.14, 0.145, 0.15, 0.16} and for the ith selected unit xi =
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(xi1, xi2, xi3), the matrix A is chosen as A =


1

x2
i1

0 0
0 1

x2
i2

0
0 0 1

x2
i3

. For noise added data, the noise

dispersion matrix is taken as R =

 0.7 −0.3 −0.3
−0.3 0.7 −0.3
−0.3 −0.3 0.7

 and α = 4 under PPS.

Table 5: Privacy Measures under different schemes of perturbation and for three
different units from Renal data set

Units Schemes ϵ
0.005 0.01 0.05 0.1 0.12 0.14 0.145 0.15 0.16

Unit 1
NA Data 0 0 0 0.1079 0.3657 0.6169 0.6697 0.7165 0.7961

PIS 0 0 0 0.0195 0.2549 0.7275 0.8177 0.8850 0.9607
PPS 0 0 0 0.0684 0.3109 0.6588 0.7331 0.7971 0.8916

Unit 2
NA Data 0.2478 0.7521 0.9995 1 1 1 1 1 1

PIS 0.5071 0.9755 1 1 1 1 1 1 1
PPS 0.4415 0.8959 1 1 1 1 1 1 1

Unit 3
NA Data 0 0 0 0 0 0 0.0009 0.3152 0.8991

PIS 0 0 0 0 0.0003 0.1461 0.3094 0.5236 0.8710
PPS 0 0 0 0 0.0080 0.2221 0.3560 0.5078 0.7815

9. Conclusion

Referring to Table 2 in Section 6.2, it is evident that the expected volume decreases
with increasing sample size (n). Conversely, regardless of the scheme used, the expected
volume increases with an increase in the number of components (p). In particular, among
all perturbation schemes, the smallest expected volumes are consistently observed with the
noise-added data. Moreover, in both frequentist and Bayesian frameworks, PIS resulted in
a smaller expected volumes compared to PPS.

We have performed some data analyses in section (8) for Census Bureau data set
(p = 2) and for the Renal data set (p = 3). The observed and expected volumes for both data
sets under any scheme are summarized in Table (3). The volumes under noise added data are
the smallest among all the schemes and for both the data sets, whereas under two schemes
of noise added data (units available and units not available), we can see smaller volumes
when units are available. For both data sets, under frequentist setup, PPS is showing larger
volumes than PIS. On the other hand, under the Bayes framework, the observed volumes
under PPS scheme are marginally smaller than those under the PIS scheme. The diagrams
(2, 3, 6, 7, 9, 10) of the ellipsoids obtained for the CB data set under different schemes are
given in the appendix. Also some diagrams are obtained overlapping the ellipsoids obtained
under two different schemes as, 1. NA 1 and NA 2 (fig : 4), 2. PIS and PPS under the
frequentist framework (fig : 8) and 3. PIS and PPS under Bayesian framework (fig : 11).
From the diagrams it is clear that one should expect a smaller volume under NA 1 scheme
than that under NA 2 scheme as the ellipsoid under NA 2 scheme is containing the ellipsoid
under NA 2 scheme. Under frequentist setup, ellipsoid obtained under PPS contains the
ellipsoid obtained under PIS. However, in the Bayesian framework, the scenario is not the
same, where none of the ellipsoids, under PIS or PPS, contain another.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

NOISE PERTURBED AND SYNTHETIC DATA ANALYSIS 145

For privacy protection analysis, as carried out in section (8.3), we have selected three
units from both the data sets. Units are so chosen that, one is very close to the sample mean
which is happen to be the second unit in both the cases, the third units are a bit distant
from the mean and the first units are taken to be extreme. Privacy measures for CB data
set are shown in Table (4) and those for Renal data set are shown in Table (5). As expected,
the privacy measures for the second units for each data set and under any scheme are very
high, which means lower privacy protection. For both data sets, we can see a higher privacy
protection for Unit 3 compared to Unit 1. Comparing the perturbation schemes in terms of
the privacy measure, we can say that, no scheme can be chosen over others through out for
any choices of ϵ. It depends on the choice of specific units and also upon the choices of ϵ.
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ANNEXURE

Figure 1: Confidence Ellipsoid for the unknown mean vector using original Data.

Figure 2: Confidence Ellipsoid for the unknown mean vector using Noise Added
Data (Microdata Available).
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Figure 3: Confidence Ellipsoid for the unknown mean vector using Noise Added
Data (Microdata Not Available).

Figure 4: Confidence ellipsoids for the unknown mean vector under NA 1 (Mi-
crodata Available) and NA 2 (Microdata Not Available).
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Figure 5: Confidence ellipsoids for the unknown mean vector under Original,
NA 1 (Microdata Available) and NA 2 (Microdata Not Available).

Figure 6: Confidence Ellipsoid for the unknown mean vector using synthetic
data under PIS.



150
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

BISWAJIT BASAK, YEHENEW KIFLE AND BIMAL SINHA [Vol. 22, No. 3]

Figure 7: Confidence Ellipsoid for the unknown mean vector using synthetic
data under PPS.

Figure 8: Confidence ellipsoids for the unknown mean vector using synthetic
data under PIS and PPS.
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Figure 9: Credible ellipsoid for the unknown mean vector using synthetic data
under PIS.

Figure 10: Credible ellipsoid for the unknown mean vector using synthetic data
under PPS.
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Figure 11: Credible ellipsoids for the unknown mean vector using synthetic data
under PIS and PPS.
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Abstract
This comprehensive review article on orthogonal arrays (OAs), balanced arrays (BAs)

and their practical applications serves as a tribute to the life and ground breaking contribu-
tions of the legendary statistician, C.R. Rao (1920-2023). It highlights his profound influence
on the field of statistical sciences and explores the significant contributions he made to the
realms of OAs and BAs. His work in these areas has left an indelible impact on the domains
of experimental design, combinatorial mathematics, and statistical analysis. In this article,
we delve into some noteworthy applications of OAs and BAs.

Key words: Orthogonal array; Balanced array; Mixed orthogonal array; Balanced incomplete
block design; Partially balanced incomplete block design; Association scheme.
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1. Introduction

The foundation for the concepts of Latin squares and mutually orthogonal Latin
squares was laid in the early 20th century. Later, these foundational ideas were expanded
and generalized to include Latin cubes and hypercubes, as well as orthogonal Latin cubes
and hypercubes (cf. Kishen (1942, 1949)). These developments marked significant progress
in the field of experimental design, as they allowed for the exploration of more complex
experimental scenarios with multiple factors and levels.

Rao (1946) further extended these concepts by introducing the notion of arrays with a
specific strength. These arrays became a versatile tool for designing experiments with various
factors, enabling researchers to investigate complex relationships and interactions efficiently.
The pivotal moment in the evolution of these ideas came when Rao (1947) introduced the
concept of OAs as a unifying framework that generalized and brought together the previously
mentioned structures. This marked a significant leap in the field of experimental design and
made it more accessible to practitioners in diverse fields.

Furthermore, Rao (1973) continued to expand his contributions by generalizing OAs
to mixed orthogonal arrays (MOAs) of strength d. This development allowed researchers
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to work with experiments that involved factors at different levels, thus accommodating a
broader range of real world scenarios.

The evolution of experimental design, from the early concepts of Latin squares to the
sophisticated OAs, represents a remarkable journey of continuous innovation and generaliza-
tion. C. R. Rao’s pioneering work (1946, 1947, 1949, 1961, 1973) has been instrumental in
this evolution, establishing these arrays as fundamental tools in experimental design. Rao’s
contributions have proven invaluable in both industrial and scientific research by enabling
highly efficient experiments that require fewer runs. His brilliance is further exemplified by
expanding OAs into higher dimensions, thus broadening their applicability across diverse
experimental settings. This expansion has notably enhanced the efficiency of experimen-
tation and optimization in various industries, including manufacturing and quality control.
Taguchi’s work in the 1980s popularized the use of OAs in industry, known as Taguchi meth-
ods, which determine optimum combinations of factors to achieve high output and robustness
to environmental changes. An article in Forbes Magazine (March 11, 1996, pp. 114-118)
highlighted the significance of OAs, dubbing them a “New Mantra” in various U.S. indus-
trial establishments. This recognition underscores the practical utility of OAs in enhancing
efficiency and reducing the number of experimental runs required in industrial research. Be-
yond industry, OAs have also made profound impacts in agricultural and medical sciences,
as discussed by Parsad, Gupta, and Gopinath (2020). Additionally, OAs find applications in
coding theory, cryptography, and computer experiments. Comprehensive textbooks on this
subject, authored by Dey and Mukerjee (1999), Hedayat, Sloane, and Stufken (1999), and
Rosa (2017), provide an extensive exploration of these powerful tools, cementing their place
as indispensable resources in the realm of experimental design.

BAs, stemming from the foundational work on partially balanced arrays by Chakravarti
(1956, 1961) and further advanced by Srivastava and Chopra (1973), epitomize a sophisti-
cated concept within experimental design. Initially termed as partially balanced arrays, the
pioneering research by Chakravarti (1956) laid the groundwork for their exploration. Build-
ing upon this foundation, Srivastava and Chopra (1973) made significant strides, advocating
for the simplification of the term to “balanced arrays”, a change we have embraced. This
evolution represents a pivotal moment in the realm of experimental design and statistical
methodologies. BAs provide a structured and efficient means to investigate the intricate
relationships among multiple factors and their respective levels. By systematically vary-
ing factors while minimizing confounding effects, these arrays offer a robust framework for
achieving statistical efficiency. In essence, they stand as a testament to the ongoing advance-
ment of experimental design, empowering researchers to uncover insights with clarity and
precision.

Within the broader framework of OAs, BAs emerge as a noteworthy and important
subset. OAs are a specialized type of BAs. They hold a unique and powerful position in the
field of experimental design, as they are specifically designed to ensure that the effects of
different factors do not interfere with each other. In other words, OAs allow researchers to
explore and quantify the impact of various factors on the outcome of interest without undue
influence from unrelated factors. In essence, OAs and BAs are intertwined components of
experimental design, with BAs serving as a foundational concept and OAs as a refined and
focused tool within this framework. Together, they provide researchers with a comprehensive
toolkit to design and execute experiments effectively, ensuring that the results obtained are
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both reliable and interpretable.

In this review article, we provide definitions of OAs, MOAs, and BAs in Section 2.
We focus on the construction of incomplete block designs from BAs and OAs in Section
3. Section 4 discusses the construction of optimum chemical balance weighing designs from
BAs. Section 5 covers the construction of second order rotatable designs (SORDs) using
BAs. In Section 6, we discuss some methods for constructing BAs. Section 7 considers the
construction of orthogonal resolution plans and fractional factorial plans using OAs. Section
8 addresses the application of OAs in Taguchi methods. Section 9 explores other diverse
applications of OAs and MOAs in modern research and experimentation. Finally, Section
10 presents the conclusion.

2. Overview of OAs and BAs

In this section, we provide a comprehensive overview of OAs and BAs. While these
concepts might be familiar to the audience of this special issue, we briefly revisit them for
the sake of completeness and to ensure smooth reading.

2.1. OA

OAs are mathematical structures extensively used in experimental design, coding the-
ory, and quality engineering. They facilitate the systematic testing of different combinations
of variables while minimizing the number of experimental runs required.

Definition 1: Consider an array A of size k × N , where its elements are drawn from a set
S comprising s symbols or levels, denoted by 0, 1, . . . , s − 1. This array A is termed an OA
possessing s levels, with a strength of t, and an index denoted by λ, under the condition
that each t × N subarray within A contains every t-tuple derived from S precisely λ times
as a column.

We denote such an array by OA(N, sk, t). Clearly, N = λst.

Definition 2: A MOA OA(N, sk1
1 sk2

2 . . . skv
v , t) is an array of size k × N , where k = k1 +

k2 + ... + kv is the total number of factors, in which the first k1 rows have symbols from
{0, 1, . . . , s1 − 1}, the next k2 rows have symbols from {0, 1, . . . , s2 − 1}, and so on. The
array has the property that in any t × N subarray, every possible t-tuple occurs an equal
number of times as a column. Of course, if all si’s are equal, we get the usual OA(N, sk, t)
as of Definition 1.

For further understanding, readers may refer to authoritative textbooks by Raghavarao
(1971), Dey and Mukerjee (1999), Hedayat et al. (1999) and Rosa (2017). Additionally,
valuable insights can be gained from online resources such as TS-DOC: TS-723 - OAs by WF
Kuhfeld, OA testing on Wikipedia, and the design resources server of the Indian Agricultural
Statistics Research Institute (IASRI). N. J. A. Sloane’s “A Library of OAs” also provides
comprehensive information. Furthermore, important references, including works by Bose
(1950), Bose and Bush (1952), Bush (1952), Cheng (1980), and Mukhopadhyay (1981), offer
deeper insights into the topic.
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2.2. BA

BAs are similar to OAs but are specifically designed for applications that require
balanced representation across various combinations. This characteristic makes them par-
ticularly valuable in the field of combinatorial design.

Definition 3: Let A be an k×N array with elements 0,1,2,. . . , s−1. Consider the st possible
vectors X′ = (x1, x2, . . . , xt) , where each xi can take any value from {0, 1, . . . , s − 1} for
i = 1, 2, . . . , t. Associate with each t × 1 vector X a positive integer λ(x1, x2, . . . , xt), which
remains unchanged under permutations of (x1, x2, . . . , xt). If for every t rowed subarray of
A, the st distinct t × 1 vectors X appear as columns exactly λ(x1, x2, . . . , xt) times, then the
array A is called a BA of strength t in N assemblies, with m constraints, s symbols, and the
specified λ(x1, x2, . . . , xt) parameters.

It is to be noted that if λ(x1, x2, . . . , xt) = λ for all (x1, x2, . . . , xt), then A is called an OA
of index λ.

The literature on this topic is extensive, making it challenging to cite every relevant work.
Therefore, we reference a selection of seminal articles from the early stages, including those
by Chakravarti (1956, 1961), Srivastava and Chopra (1973), Rafter and Seiden (1974), and
Saha (1981).

3. Constructing incomplete block designs with BAs and OAs

A methodology emerges for constructing BAs, employing the Kronecker product ap-
plied to two BAs. This approach leads to the derivation of six distinct balanced incomplete
block designs (BIBDs) from a given symmetric balanced incomplete block design (SBIBD).
Notably, the method involves operations such as unions, intersections, and difference sets on
pairs of blocks of an SBIBD and their complementary designs. Significantly, certain newly
generated BIBDs fulfill the minimum replication requirements for specified parameters like
v (number of varieties or treatments) and k (block size), showcasing the method’s efficiency
and efficacy. Expanding beyond its original scope, the study suggests broader applications
for this method. It proposes leveraging the new series of SBIBDs to derive additional series
of BIBDs, hinting at the potential for an iterative process where new designs build upon
established ones, thus enriching the repertoire of available BIBDs. Independent confirma-
tions by Vanstone (1975) and Majindar (1978) regarding the existence of the six BIBDs
corresponding to an SBIBD reinforce the method’s validity and reliability.

In Saha (1975), the tactical configurations (or t designs) are generalized to G systems
of order β, and their equivalence to 2 symbol BAs of strength β is established. This extension
confirms their equivalence to 2 symbol BAs of strength β. These findings are then applied
to demonstrate that when β is even, A∪Ac yields another 2 symbol BA of strength β + 1,
where A is a 2 symbol BA of strength β, and Ac is the complementary array (obtained from
A by interchanging 0s and 1s). This holds true for 2 symbol OAs of strength β when β
is even as well. Furthermore, the research identified specific series of 2 symbol OAs with a
strength of three, which were obtained from carefully selected 2 symbol BAs with a strength
of two. Saha (1975) demonstrated how tactical configurations (t designs) generalize to G
systems of order β and established their equivalence to 2 symbol BAs of strength β. It also
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sheds light on the behavior of combining such arrays and provides insights into obtaining
series of 2 symbol OAs with a higher strength from BAs.

Building upon these foundational works, Saha et al. (1985) extend the method to
generate s symbol BAs with a strength of t. This advancement is then applied to derive
diverse partially balanced incomplete block designs (PBIBDs) characterized by m associate
classes. Additionally, their research reveals the coexistence of six distinct series of PBIBDs
alongside a linked block PBIBD, showcasing the versatility of the method in addressing
various experimental design needs and its significant contributions to advancing the field.

For detailed definitions and further reading on BIBD, SBIBD, PBIBD, and association
schemes, several excellent textbooks are available, with Raghavarao (1971) being particularly
recommended.

4. Optimal chemical balance weighing designs from BAs and BIBDs

Optimal chemical balance weighing designs are experimental frameworks used in
chemical experiments to measure the weights of multiple substances simultaneously with
high accuracy. These designs aim to minimize the variance of the estimated weights, ensur-
ing precise and unbiased measurements. The key characteristics of optimal chemical balance
weighing designs include efficiency, as they maximize the information obtained from a lim-
ited number of weighings; balance, by distributing errors evenly across all measurements to
reduce systematic biases; and replication, through repeated measurements to enhance relia-
bility. Additionally, these designs often employ combinatorial structures like BAs and BIBDs
to systematically arrange substances on the balance, optimizing the weighing process. In
essence, these designs provide a structured approach to achieving high precision and minimal
error in the measurement of multiple substances. For further reading, refer to Raghavarao
(1971), Silvey (1980), Shah and Sinha (1989) and Pukelsheim (1993).

Dey (1971), Saha (1975), Kageyama and Saha (1983), along with other researchers,
initially showcased the derivation of optimal chemical balance weighing designs from the
incidence matrices of BIBDs.

Dey (1971) utilized the incidence matrices of BIBDs and balanced ternary designs for
constructing optimal chemical balance weighing designs.

Regarding the relationship between BIBDs and optimum chemical balance weighing
designs, Saha (1975) proved two significant theorems:

Theorem 1: The existence of a BIBD with parameters v, b, r, k, λ satisfying b ≤ 4(r − λ)
implies the existence of an optimum chemical balance weighing design for v objects in 4(r−λ)
weighings.

Theorem 2: The existence of an affine resolvable BIBD with parameters v, b = 2r, r, k, λ
implies the existence of an optimum chemical balance weighing design for r objects in v
weighings.

Kageyama and Saha (1983) investigated a BIBD with parameters v, b, r, k, λ satisfying
b ≤ 4(r −λ) and tabulated the parameters (in the practical range) of BIBDs which validated
the above theorems of Saha (1983).
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Expanding upon this foundation, Saha and Kageyama (1984) further developed the
methodology by illustrating that optimum weighing designs could also be derived from care-
fully selected two symbol BAs of strength two. Importantly, these arrays were not limited
to being incidence matrices of BIBDs, thus widening the potential design scope. To im-
plement this approach, the first step involves identifying two symbol BAs of strength two
with desired properties for optimum chemical balance weighing design construction. These
arrays must meet specific criteria to ensure suitability. By leveraging the identified arrays,
the optimum chemical balance weighing designs can be generated, utilizing the array’s struc-
ture and properties. This process involves transforming the array into a design that meets
the requirements for the optimum chemical balance weighing. Thus, the findings lead us to
construct new optimum chemical balance weighing designs other than the above mentioned
methods. This research has far reaching implications for the optimum design of chemical
balance experiments and provides a more flexible and versatile framework for developing
such designs beyond the limitations of traditional BIBDs.

5. Constructing SORDs using BAs for response surface studies

SORDs are a type of experimental design used primarily in response surface method-
ology (RSM) to model and optimize processes. These designs are particularly effective when
the relationship between the factors and the response variable is quadratic. They accom-
modate a second order (quadratic) polynomial model, encompassing linear, interaction, and
squared terms of the input variables. A design is considered rotatable if the variance of
the predicted response at any point depends solely on the distance from the design center,
rather than the direction, thereby ensuring uniform precision of prediction at all equidistant
points from the center. The most common type of SORD is the central composite design
(CCD), which combines a factorial or fractional factorial design with center points and axial
(or star) points to estimate curvature. These designs efficiently estimate the coefficients of
a second order polynomial, enabling the detection of curvature in the response surface and
the identification of optimal conditions. Their flexibility and efficiency in handling multi-
ple factors make SORDs indispensable tools in industrial and scientific research for process
optimization. For further details, we refer to Khuri and Cornell (1996).

The integration of BAs has significantly expanded the toolkit available to researchers
involved in designing SORD for analyzing response surfaces. A pivotal contribution to this
field was made by Das and Saha (1973), who demonstrated the successful construction of
SORDs under specific conditions. They outlined requirements for 2 symbol BAs of strength
two, which enabled the creation of 4 level SORDs. Leveraging these principles, they intro-
duced several novel series of 4 level SORDs. Notably, they uncovered an intriguing finding:
a 4 level SORD can be derived for (i) v − x factors from b magnitude sets, and (ii) v fac-
tors from b + c magnitude sets, from a BIBD meeting certain criteria, such as r > 3λ, or
5r − 2b − 3λ > 0 (x > 0, c > 0). Furthermore, these designs can be augmented by select-
ing appropriate magnitude sets in addition to those derived from the incidence matrices of
BIBDs.

Such designs present researchers with a flexible and adaptable framework, facilitating
the conduct of response surface experiments and providing a nuanced exploration into the
behavior of intricate systems.
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6. Construction of BAs

Association schemes with a large number of associate classes have historically been
investigated primarily for their combinatorial significance, without a focus on their applica-
tion in the development of practical experimental designs. However, Saha (1981) introduced
a novel approach by utilizing a new class of cyclic association scheme with m associate
classes, referred to as NCm association scheme. This approach was employed to construct
(m+1) symbol BAs of strength two. The resulting BIBDs derived from these arrays were
also explored in the same paper.

In a more recent study by Yonglin (2004), association schemes have been employed
to investigate their relationship with OAs and frequency squares, which represent a general-
ization of Latin squares. This research demonstrates the evolving and diverse applications
of association schemes in combinatorial design theory, shedding light on their connection to
other fundamental structures and concepts.

Researchers made notable contributions for constructing BAs with a strength of two
from block designs. For instance, Sinha et al. (2002) achieved this by using various types
of block designs, including (i) rectangular designs; (ii) group divisible designs; (iii) nested
balanced incomplete block designs. These constructions result in BAs, which are useful in
experimental design and combinatorial applications.

Balanced nested designs share intricate connections with other combinatorial struc-
tures like BAs and balanced n-ary designs. Specifically, the presence of symmetric bal-
anced nested designs mirrors the existence of certain BAs. Delving into this relationship,
Fuji-Hara et al. (2002) conducted a comprehensive exploration of balanced nested designs.
They focused on elucidating the interplay between balanced nested designs and BAs with
a strength of two, offering diverse constructions for symmetric balanced nested designs.
These constructions proved instrumental in delineating the spectrum of symmetric balanced
nested incomplete block designs with block sizes of 3 and 4. Notably, their research un-
veiled the equivalence between symmetric balanced nested designs and specific categories of
BAs. Beyond enriching our understanding of BAs, their work provided invaluable insights
into constructing symmetric balanced nested designs, thereby advancing the broader field of
combinatorial design theory.

7. Orthogonal resolution and fractional factorial plans with OAs

Orthogonal resolution plans and fractional factorial plans are two types of experimen-
tal designs commonly employed in industrial and scientific research to efficiently explore the
effects of multiple factors on a response variable while minimizing the number of experimen-
tal runs needed. Orthogonal resolution plans are characterized by their ability to provide
unbiased estimates of main effects and interactions between factors, even in the presence
of confounding. These plans achieve orthogonality by ensuring that each factor is varied
independently of the others at different levels, thereby allowing for the unambiguous iden-
tification of the effects of individual factors. Additionally, orthogonal resolution plans are
designed to have certain desirable properties such as clear aliasing patterns, which aid in the
interpretation of results. On the other hand, fractional factorial plans are a subset of orthog-
onal resolution plans that further reduce the number of experimental runs by systematically
selecting a fraction of the total number of possible treatment combinations. Despite this
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reduction in the number of experimental runs, fractional factorial plans retain the ability
to estimate main effects and selected interactions with minimal loss of information. These
plans are particularly useful when the number of factors under investigation is large and con-
ducting a full factorial experiment would be impractical or prohibitively expensive. Overall,
orthogonal resolution plans and fractional factorial plans are valuable tools in experimen-
tal design, offering efficient and cost effective approaches to exploring complex systems and
optimizing processes in various fields.

OAs play a crucial role in the construction of orthogonal resolution plans and sub-
classes of fractional factorial plans, which are essential for optimizing experimental efficiency
and reliability. In orthogonal resolution plans, OAs help organize experiments to ensure
clarity and precision in identifying the effects of different factors by minimizing confounding
and enhancing the interpretability of results. These plans are categorized by their resolution,
with higher resolutions indicating clearer distinctions between main effects and interactions.
OAs also aid in constructing fractional factorial plans, which allow researchers to study the
most significant factors and interactions using a fraction of the total runs required in a full
factorial design. This systematic approach significantly reduces the number of experimental
runs needed, saving time and resources while maintaining experimental integrity. By en-
suring balanced representation and systematic variation of factor levels, OAs enhance the
efficiency and robustness of experimental designs, making them indispensable tools across
various scientific and industrial fields. An excellent textbook in this area is authored by Dey
and Mukerjee (1999), offering comprehensive insights into the construction and application
of OAs and fractional factorial designs in experimental design.

8. Application of OAs in Taguchi methods

Taguchi methods, pioneered by Japanese engineer and statistician Genichi Taguchi,
have profoundly influenced quality engineering and process optimization. These methods
prioritize robust design, focusing on making products and processes resistant to variations,
thus enhancing quality and performance without significant cost increases. Taguchi methods
are extensively applied to improve the quality of manufactured goods and refine product and
process design. Central to this approach is the optimization of designs to make them robust
against various sources of variation, such as manufacturing inconsistencies or environmental
changes. This robustness ensures that products and processes perform consistently under
diverse conditions. Robust design in Taguchi methods emphasizes reducing the sensitivity
of products to variations by identifying and optimizing controllable factors, thus minimizing
the impact of uncontrollable noise factors.

A fundamental aspect of Taguchi methods is the design of experiments, which utilizes
OAs, a type of fractional factorial design. These arrays enable the efficient study of multiple
factors simultaneously, allowing for the identification of main effects and interactions with
a minimal number of experimental runs. This efficiency makes Taguchi methods particu-
larly valuable in industries where improving quality and reducing costs are critical, such
as automotive, electronics, telecommunications, and manufacturing. Applications of these
methods range from enhancing product design robustness to optimizing process parameters
for high quality outputs with minimal variability. In quality improvement, Taguchi meth-
ods systematically identify and address sources of defects and inconsistencies in production
processes.
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Balanced repeated replications (BRRs) are crucial for obtaining reliable and general-
izable results in experimental design. Taguchi methods inherently support this through the
use of OAs, ensuring balanced and systematic experimentation. These arrays are designed
to test each factor level an equal number of times across the experiment, thus preventing
data skew from imbalance. Incorporating replication and randomization into the experimen-
tal design controls for random variations and ensures that observed effects are due to the
studied factors rather than external influences. Analysis of variance is often employed to an-
alyze experimental results, identifying significant factors and interactions, thereby ensuring
conclusions are based on balanced and reliable data.

In conclusion, Taguchi methods offer a powerful approach to quality engineering and
process optimization by emphasizing robust design and systematic experimental designs.
The application of BRRs within these methods ensures that experimental results are reliable
and generalizable, making them highly valuable across various industries. The use of OAs
allows for the efficient examination of multiple parameters in a condensed set of experiments.
Determining optimal parameter levels requires an in depth understanding of the process and
the consideration of the cost of conducting experiments. By selecting the appropriate OA,
based on the number of parameters and levels, researchers can ensure that each variable and
setting is tested equally, thereby achieving reliable and comprehensive experimental results.
Key references in this field include works by Gupta et al. (1982), Taguchi (1987), Taguchi
and Konishi (1987), Kacker et al. (1991), Sitter (1993) and Rosa (2017).

9. Other diverse applications of OAs and MOAs in modern research

Venturing beyond the discussed domains, let us delve into the diverse realms where
OAs and MOAs leave their lasting impression. From coding theory and cryptography to
computer experiments and beyond, OAs and MOAs emerge as indispensable tools, enriching
modern research and experimentation with precision and efficiency. Join us in this section as
we unravel the intricate tapestry of applications where these mathematical constructs play
pivotal roles, shaping the landscape of information science, technology, and the design of
experiments.

9.1. Coding theory, cryptography and computer experiments

Coding theory, cryptography and computer experiments are three distinct yet inter-
connected domains at the intersection of mathematics, computer science, and engineering.
Coding theory, a fundamental component of information theory, focuses on the design and
analysis of error detecting and error correcting codes essential for reliable data transmis-
sion and storage in the presence of noise or errors. By systematically encoding data into
a form that can withstand errors, coding theory enhances the robustness and integrity of
digital communication systems like telecommunications networks and data storage devices.
Cryptography, on the other hand, stands as the guardian of communication and information
security, employing sophisticated mathematical techniques and algorithms to develop cryp-
tographic protocols and algorithms, orchestrating secure communication and data storage
by encoding sensitive information. Cryptography’s paramount mission lies in upholding the
pillars of confidentiality, integrity, and authenticity within digital communications, serving
as a formidable barrier against unauthorized access and malicious intrusions. For deeper in-
sights, readers can explore the works of Kahn (1996) and Stinson and Paterson (2018), along
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with the references cited herein. Computer experiments represent a complementary domain
leveraging computational methods, simulations, and modeling techniques to study complex
systems and phenomena. By designing and conducting simulations or computational mod-
els, researchers can explore the behavior, performance, and characteristics of systems under
various conditions, providing a cost effective and efficient means of investigating complex
systems, enabling validation of theoretical models, optimization of system designs, and ex-
ploration of theoretical concepts across diverse fields from engineering and physics to biology
and economics. In summary, coding theory, cryptography, and computer experiments each
contribute unique insights and methodologies to the broader landscape of information science
and technology, forming essential pillars supporting the development of robust and secure
communication systems and the exploration and optimization of complex systems across
various domains.

OAs serve as invaluable assets in diverse domains, including coding theory, cryptogra-
phy, and computer experiments. In coding theory, OAs play a pivotal role in the design and
analysis of error correcting codes, crucial for reliable data transmission in communication
systems. By systematically varying parameters and configurations, OAs aid in constructing
codes that can detect and correct errors efficiently, enhancing the robustness and reliabil-
ity of communication channels. In cryptography, OAs contribute to the development of
secure encryption methods by ensuring the resilience of cryptographic algorithms against
various attack vectors. Their systematic approach facilitates the design and testing of cryp-
tographic protocols, strengthening the confidentiality and integrity of sensitive information
in digital communications. Furthermore, in computer experiments, OAs provide a structured
framework for algorithm testing and simulation studies. By enabling systematic exploration
of different algorithmic configurations and scenarios, OAs facilitate comprehensive evalua-
tion and optimization of algorithm performance across diverse computational environments.
Through their versatility and systematic variation of factors, OAs play a pivotal role in ad-
vancing coding theory, cryptography, and computational research, ensuring the development
of robust and efficient solutions in today’s digital landscape. For further exploration of these
topics, notable references include works by Bose and Shrikhande (1959), Niederreiter (1992),
Kahn (1996), Hedayat et al. (1999), Massey (2002), Adhikari and Bose (2004), Adhikari
et al. (2007), Bose and Mukerjee (2006, 2010, 2013), Bose et al. (2013) and Stinson and
Paterson (2018).

9.2. OA based Latin hypercube designs (OALHDs)

OA based Latin hypercube designs (OALHDs) are advanced statistical tools used in
computer experiments to ensure space filling properties, which are crucial for comprehensive
exploration of the experimental space. OALHDs combine the strengths of OAs and Latin hy-
percube sampling, facilitating the creation of experimental designs that uniformly cover the
entire parameter space. This uniformity ensures that the design points are spread out evenly,
preventing clustering and enhancing the reliability of simulation outcomes. The space filling
properties of OALHDs are particularly valuable in computer experiments, where they allow
researchers to efficiently sample a wide range of input configurations and explore the perfor-
mance of complex systems under various conditions. By ensuring a thorough and balanced
exploration of the input space, OALHDs help in constructing accurate surrogate models,
optimizing system performance, and validating theoretical models. Their application spans
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numerous fields, including engineering, physics, and environmental science, where robust and
efficient design of experiments is critical for gaining insights into complex phenomena and
making informed decisions. For detail, readers may consider Sacks et al. (1989), Koehler
and Owen (1996) and Lin and Tang (2022).

9.3. OAs as BRR structures for variance estimation

A BRR structure is a sampling design commonly used in survey sampling for variance
estimation. In BRR, the sample is divided into several balanced replicates, ensuring that
each replicate represents the population equally well. Within each replicate, the same survey
weights and adjustments are applied as in the original sample. Variance estimation is then
performed by computing the variance across these replicates, taking into account both within
replicate and between replicate variations. BRR helps to improve the efficiency and accuracy
of variance estimation, especially in complex survey designs where traditional methods may
be inadequate.

OAs serve as invaluable tools for variance estimation, particularly in the context
of large scale complex survey designs where non linear statistics are involved. Acting as
BRR structures, OAs provide a systematic and efficient approach to estimating the variance
of non linear statistics derived from survey data. By systematically varying factors and
configurations within the survey design, OAs ensure balanced representation and systematic
variation, thereby capturing the complexities inherent in the survey data. This balanced
approach is crucial for accurately estimating the variance of non linear statistics, which may
exhibit complex relationships and interactions among survey variables. Additionally, OAs
offer the advantage of reducing the computational burden associated with variance estimation
in large scale surveys, allowing for efficient and reliable estimation of variance even in complex
survey designs. Overall, the utilization of OAs as BRR structures enhances the precision
and robustness of variance estimation methods, thereby improving the reliability of survey
data analysis in diverse fields. Notable references in this area include works by Gupta et al.
(1982), Gupta and Nigam (1987), Wu (1991), Sitter (1993), and Parsad and Gupta (2007).

9.4. Optimum covariate designs

In recent years, the quest for experimental units with precisely defined covariate values
to achieve optimal precision in regression parameter estimation has garnered significant
interest among researchers. The pioneering work by Troya (1982a, 1982b) introduced the
concept of optimal covariates designs (OCDs), laying the groundwork for exploring optimal
designs to estimate regression parameters associated with controllable covariates. OCDs,
renowned for their capacity to offer the most efficient estimation of covariate effects within a
presumed linear model, have emerged as indispensable tools in experimental design. Building
upon Troya’s ground breaking contributions, Das et al. (2003) delved into combinatorial
solutions, particularly focusing on the estimability of regression coefficients in randomized
block designs and certain series of BIBDs.

Rao et al. (2003) further elucidated the construction of OCDs derived from MOAs,
unraveling the intrinsic relationship between OCDs and experimental designs like completely
randomized designs and randomized block designs, both grounded in MOAs. This revelation
not only underscores the versatility of MOAs but also expands their application horizons into
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experimental design realms. For an in depth exploration of this captivating subject, Das,
Dutta, Mandal, and Sinha (2015) offer a comprehensive textbook, serving as an invaluable
reference for enthusiasts and practitioners alike in the domain of experimental design.

9.5. Optimizing super absorbent composites: leveraging OAs

At the Indian Agricultural Research Institute (IARI) in New Delhi, a ground break-
ing experiment was devised to engineer super absorbent composites with optimized water
absorption characteristics and improved stability in plant growth media. The objective is to
maximize absorbency while minimizing the concentrations of monomer, cross linker, and al-
kali. This intricate experiment encompassed a multitude of factors, including the nature and
concentration of alkali, duration and temperature of exposure, backbone clay ratio, monomer
concentration, cross linker concentration, initiator concentration, volume of water, and more.
With 3 factors at 3 levels and 6 factors at 5 levels, the experiment constituted a daunting
33 × 56 factorial design, necessitating a staggering 421,875 runs for a single replication − an
impractical endeavor given limited resources.

In light of the experimenter’s interest in orthogonal estimation of main effects and
constrained resources, a MOA of strength two emerged as a pragmatic solution, slashing the
number of runs to a manageable 225. Although sacrificing intra effect orthogonality, the
MOA ensured sufficient resolution and interaction detection. Furthermore, modifications to
the experimental objectives led to the creation of a 35 × 68 factorial design, accommodating
additional factors and selected interactions, all within the confines of 72 runs. The strategic
utilization of MOAs empowered the experimenter to efficiently explore a diverse array of
factors and interactions while upholding the integrity of the experiment.

Additionally, IASRI has harnessed OAs for orthogonal main effect plans in asym-
metrical factorials and for variance estimations in large scale complex survey data. These
endeavors underscore the versatility and utility of OAs across diverse experimental settings.
For further insights, we encourage readers to explore the institute’s websites.

10. Conclusion

This review article pays homage to the enduring legacy and profound contributions of
the legendary statistician, C. R. Rao (1920-2023), across the realms of experimental design,
information science, technology, and industry. Delving into the intricate interplay of OAs and
BAs, this article offers readers profound insights into the transformative influence of these
arrays, as conceptualized by Professor Rao. Referencing seminal works by Parsad, Gupta,
Gopinath (2020), Rao (2020), Kannan and Kundu (2021), and Peddada and Khattree (2023),
it invites deeper exploration into Prof. Rao’s extraordinary contributions and his profound
impact on statistical sciences.

Professor Rao’s visionary insights have indelibly shaped experimental design, com-
binatorial mathematics, and statistical analysis, profoundly influencing these disciplines.
This article meticulously navigates through the multifaceted applications of OAs and BAs,
eloquently showcasing their versatility and paramount importance across various domains.
From the intricate construction of BIBDs to the precision of optimum chemical balance
weighing designs, and from SORDs to Taguchi methods, orthogonal resolution plans, frac-
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tional factorial plans, coding theory, cryptography, computer experiments, OALHDs, and
OCDs, this article unveils the methodological advancements fostered by BAs, OAs, and
MOAs.

Through meticulous examination, it elucidates the nuanced relationships between
association schemes, OAs, and BAs, revealing their immense potential in both experimental
design and combinatorial theory. While acknowledging the remarkable strides made thus far,
the article passionately underscores the imperative for ongoing research endeavors to fully
unlock the latent capabilities of these abstract mathematical structures and their practical
applications in experimental design. Indeed, further exploration and analysis in this domain
hold the promise of ushering in more advanced and potent experimental design techniques
and strategies, thereby enriching the fabric of scientific inquiry and discovery.

In this article, we choose not to delve into mathematical intricacies, recognizing the
extensive literature available on the subject. Condensing such a vast topic into a few pages
presents a daunting task, and we are mindful of the challenges it entails. Nevertheless,
our objective remains clear to offer a lucid exposition that captivates readers beyond this
specialized field, sparking their curiosity and nurturing a deeper interest in the subject
matter.
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Abstract
Preprocessing of data at the initial stages before assuming any model for the data is a

necessary requirement for observational data. With preliminary data cleaning of raw data in
mind, we introduce a model-free approach based on the eigen-structure of the data matrix to
assess if a particular observation induces multicollinearity or is excessively outlying within the
data. Specifically we look at the eigenvalues and antieigenvalues obtained from the singular
value decomposition of the data matrix or a function thereof. We also study detection of the
outlier induced multicollinearity or outlier induced masking of multicollinearity present in
the data. Usefulness of our approach is illustrated via several examples describing a variety of
situations and for several classical data sets. Emphasis is on data matrix of variables rather
than model matrix, although these approaches can be later used in model based contexts as
well.

Key words: Antieigenvalue; Condition indexes; Eccentricity; Emphasis measure; Multi-
collinearity; Outlying observations.
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1. Introduction

Prof. C. R. Rao was my PhD adviser at the University of Pittsburgh. His teaching
and research both have continued to have a lasting impact on my own academic career.
Throughout his classes, there was always an implicit but very definite message that any
research in statistics should have a definite purpose of understanding and solving some
meaningful and practical problem. Reflecting on this philosophy of Prof. Rao, this article
on a very fundamental first step of data processing is written as a personal tribute to Prof.
Rao and with a purpose of honoring his legacy and place in the world of statistics and science.

Preprocessing of data and data cleaning are essential steps in observational studies
and may involve the steps of detecting freak values, identification of outlying observations,
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choosing the meaningful variables and understanding the underlying dependence among var-
ious variables. Inference can be greatly distorted due to some or all of the above issues and a
substantial body of work has been done in the past to remedy such problems. See for exam-
ple, Belsley, Kuh and Welsch (1980), Cook and Weisberg (1982), Belsley (1991), Khattree
and Naik (1999), Seber and Lee (2003) and Khattree (2019). All of the above referenced
work, except that by Khattree (2019), deal with various model based approaches. While
these are perfectly valid approaches for diagnostics, all being model based, they however,
tend to not look into the very basic structure of the raw data. We think that in order to
gain full understanding of and more insight into data, we must also look at the anomalies
in the data at the very fundamental level, the fundamental level being the patterns and
differences at the level of X’X matrix, where X is our data matrix of all variables under
consideration. This is a fundamental issue in data science, taking a precedence over any
subsequent statistical modeling. This article is a step towards addressing this problem by
looking at the eigen-structure of the data itself.

In principle and in general, X may be either a data matrix or a model matrix (in
which case, we will use the notation X∗ to distinguish it from the raw data matrix). We
here assume all variables to be quantitative. Since the data cleaning at the preprocessing
stages must assume no specific model and no specific prespecified choice of a few selected
variables, data matrix is a more appropriate context for our work. Therefore it is meaningful
that we rely more on the mathematical structure of the data matrix X than on statistical
evaluation of the model to be fitted. This is especially relevant because for large data sets
at preprocessing stages, data cleaning is equally important for the explanatory variables as
well as response variables and our data matrix may contain both types of variables. This is
the approach adopted by Wang and Nyquist (1991) and Khattree (2019). Other approaches
not exclusively based on matrix structure or model but based on various other tentative
techniques such as aggregate queries are given by Chu et. al (2016), Chu and Ilyas (2016)
and Ilyas and Chu (2019).

As indicated, our approach here will rely on an evaluation of the eigen-structures
of the matrices which are closely related to the singular value decomposition of the whole
or parts of the data matrix. We will focus on the evaluation of multicollinearity and the
detection of outlying observations by evaluating the changes or deviations in these eigen-
structures by the use of eigenvalues and antieigenvalues. While theory of eigenvalues is well
established, recent discussions of antieigenvalues along with various applications thereof are
available in Khattree (2001, 2002, 2003, 2006, 2010, 2014, 2019) and in Tran and Khattree
(2024). Applications have also been presented in Khattree and Bahuguna (2019), Cuntoor
and Chellappa (2006) and Guo et al. (2018).

We must emphasize that data matrix consists of raw data on variables and not on
the mathematical functions thereof. To press that point, although we will not rely on it,
suppose the framework was the standard linear model, namely,

yn×1 = X∗
n×p∗β∗

p∗×1 + ϵn×1 = Xn×pβp×1 + Zn×qγq×1 + ϵn×1,

and suppose the data cleaning was confined to only data on the explanatory variables. The
matrix X may then represent the raw data matrix and Z contains columns corresponding to
other q(= p∗ − p) terms in the model such as intercept, and specific mathematical transfor-
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mations of columns of X e.g. polynomial or cross products terms. When the type of true
model (in terms of which variables, which degree of polynomial or which cross product terms)
and/or its dimension are unknown, our interest should be exclusively in the response variable
and in the matrix of raw data on explanatory variables namely, X and what specific model
will subsequently be used will be a secondary consideration for a later time. In that sense, we
are interested in measuring the multicollinearity and outlying nature of observations within
the raw data and we do not concern ourselves as to what specific model is being assumed.
The problem of model induced outlyingness due to outliers will involve the model matrix X∗

= [X : Z] and the corresponding response variable. A version of this latter problem, albeit
with a very different approach has been discussed in Mason and Gunst (1985).

Clearly, at initial stages, from data cleaning point of view only the former context is
relevant and should always take precedence over modeling and model selection. Further, in
big data context, one encounters a very large number of observations and a large number of
variables, both of which are, presumably, to be used in several different modeling problems
in the future. It is thus imperative to have a clean data where “cleanliness” of the data may
refer to general robustness of the data, with respect to specific observations and/or specific
variables. This is the situation, where we believe our approach has the most currency.

In Section 2, we motivate antieigenvalues of a positive definite matrix as a way to
look into the eigen-structure and as the measures of eccentricities of an ellipsoid for various
cross-sections which in turn provide us a way to measure the interdependences between a
set of variables or multicollinearity.

Section 3 is about identification of outlying observations via antieigenvalues. Towards
the end of this section, we also discuss the issues pertaining to collinearity − outlyingness
where one of these two may cause the other. We provide illustrations of our approaches using
several data sets. Admittedly, to make the understanding of the approach more accessible,
we must use data sets which are not excessively large and are readily available. However,
that does not disqualify our approach for bigger data sets. In fact, those are the situations
where once computationally implemented, these methods will have most utility. Thus in
Section 4, we also consider a relatively larger data set consisting of 1599 observations on the
quality of red wine. We apply our procedure on this data to make a point that procedure is
effective even when we have large data sets and that our approach is able to successfully pick
out the observations which are not easy to identify otherwise but whose presence excessively
corrupts the data and subsequently also affects the modeling steps. Section 5 provides some
concluding remarks.

2. Eccentricities and measurement of multicollinearity

Let, as earlier, Xn×p be a data matrix. Assume rank(Xn×p) = p and let A = X’X.
Consider the quadratic surface, u’A−1u = c where c is a known constant in a p− dimensional
space. Since A is positive definite, this represents an ellipsoid and with an appropriate
orthogonal rotation v = P’u where A = PΛP’ is the spectral decomposition of A, the
surface can be represented as,

v’Λ−1v = c with Λ = diagonal(λ1, λ2, ..., λp)
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or
v2

1
λ1

+ v2
2
λ2

+ ...+
v2

p

λp

= c where λ1 ≥ λ2 ≥ ... ≥ λp > 0.

The eccentricities of certain two dimensional elliptical cross-sections of this ellipsoid
can be quantified in decreasing order as

√
λ1
λp

≥
√

λ2
λp−1

≥
√

λ3
λp−2

≥ · · · . The quantity
e1 =

√
λ1
λp

is the eccentricity measured respectively via the two most elongated and most
compressed directions and hence measures the extreme eccentricity. The next quantity e2 =√

λ2
λp−1

represents the comparison of the next two most elongated and most compressed
directions and similar comparisons continue for r = [p/2] pairs where [p/2] is the integer
part of p/2. Clearly, with λi considerably larger than λp−i+1, i = 1, 2, · · · , r, ei will also be
large, indicating a particular cross section of the ellipsoid highly elongated thereby indicating
the high multicollinearity. A one-to-one monotonically decreasing function of ei =

√
λi

λp−i+1

is the ith antieigenvalue of the matrix X’X namely,

ηi =
2

√
λiλp−i+1

λi + λp−i+1
= 2
ei + e−1

i

, i = 1, 2, ..., r = [p/2]. (1)

It can be shown that 0 < η1 ≤ η2 ≤ ... ≤ 1 are ordered by their magnitudes. Being
a monotonic function of ei, i = 1, 2, · · · , r, these also measure the eccentricities and hence
the multicollinearity in the data. To connect this unfamiliar quantity to a familiar context,
values close to zero for at least one of the antieigenvalues indicate high multicollinearity while
higher values (close to 1) of all ηi, i = 1, 2, · · · , r indicate a lack of multicollinearity. Also,
the most ideal situation namely, η1 = 1, implies that the matrix A = X’X is orthogonal and
then there is absolutely no multicollinearity among the columns of X. Further, greater the
number of ηi that are close to zero, higher is the number of linear near-dependencies that
may exist.

Note that X’X and (X’X)−1 share the same set of antieigenvalues and hence these r
measures of multicollinearity for the two matrices are equal. It is, in some way, a reasonable
and desirable property in that, multicollinearity, being synonymous to ill-conditioning of a
given matrix, indicates a computational difficulty in obtaining an accurate inverse matrix.
Intuitively, this computational difficulty should be same for the matrix A as well as for its
true inverse A−1 because their eigen-structures are directly related (ith ordered eigenvalue
of inverse of a matrix is the reciprocal of the (p− i+ 1)th ordered eigenvalue of the original
matrix).

A single index of multicollinearity combining all antieigenvalues defined in Equation
(1) can be defined as the generalized antieigenvalue (See (Khattree, 2002, 2003)),

∆ =
r∏

i=1

2
√
λiλp−i+1

λi + λp−i+1
=

r∏
i=1

ηi,where r = [p/2], (2)

which is a function of all antieigenvalues and can be interpreted as an overall measure of
eccentricity. Clearly ∆ is also same for X’X and (X’X)−1. One may alternatively use the
rth root of ∆ which would then be the geometric mean of all antieigenvalues.
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Belsley, Kuh and Welsch (1980) and Belsley (1991) suggest to look at the condition
number ψ =

√
λ1
λp
. They also look at the condition indexes ψ2, ψ3, · · · , ψp, where ψi =√

λ1
λi
, i = 2, 3, · · · , p. Larger values are indicative of possible multicollinearity. Note that

ψ2, ψ3, .., ψp(= ψ, the condition number) are all greater than or equal to 1 with no upper
bound specified. There is apparently no way to decide what constitutes a large condition
index/number. That aside, unlike the sets of antieigenvalues, the two sets of condition
indexes, – for X’X and for (X’X)−1, – are different from each others. Specifically these
are {

√
λ1/λ2] ≤

√
λ1/λ3 ≤ ... ≤

√
λ1/λp} and {

√
λp−1/λp] ≤

√
λp−2/λp ≤ ... ≤

√
λ1/λp}

respectively.

How useful and practical are the indexes defined in Equations (1) and (2)? This
can be best explained and demonstrated by applying them on real data sets. We will thus
illustrate the utility of these indexes by first applying them to four data sets of varying sizes,
with different number of variables and of varying features. Specifically, we consider,

(i) A data set on properties of soil given by Kendall (1975) with p = 4, n = 20. The data
collected here is a set of 20 samples of soil for each of which salt content (x1) clay
content (x2), organic matter (x3) and acidity on pH scale (x4) are measured.

(ii) A data set by Daniel and Wood (1980) on clinkers with p = 5, n = 14. This data set on
clinker compounds was collected with a purpose to study their effects on amount and
rate at which heat evolves during cement hardening. The independent variables are
weight percent of SiO2(x1), Al2O3 (x2), Fe2O3 (x3), CaO (x4) and MgO(x5). The data
are compositional in that ideally their sum should add to hundred percent. However
possibly due to impurities and also due to round off errors, these variables do not
add to hundred percent (in many cases, in fact, they add to much more than hundred
percent and thus cannot be fully explained by round off errors). This data set has been
extensively analyzed by Chatterjee and Hadi (1988).

(iii) A data set due to Chatterjee, Hadi and Price (2006) with p = 6, n = 40. This data set
with six predictors (x1 through x6) is given in Chatterjee, Hadi and Price (2006) as Ta-
ble 4.8 (p. 128) and as part of Exercises 4.12-4.14. No detailed description is available.
However, data set was used to illustrate the strong presence of multicollinearity.

(iv) A data set due to Rao (1948) on cork deposits with p = 4, n = 28. This classic data,
more easily available in Khattree and Naik (1999), pertains to the cork deposits in four
directions (North, East, South and West), denoted respectively by x1 through x4 on
twenty eight trees in the Himalayan range. These latter authors have extensively stud-
ied this data set in various contexts including the detection of outlying observations.

Later in Section 4, we consider a very large dataset as well. The above four data sets,
being of manageable size to include here, are given in the appropriate columns of Tables
1-4. In each case, the question is, how well behaved, with respect to multicollinearity,
the particular data set is. Thus, we calculate the antieigenvalues ηi as well as generalized
antieigenvalue ∆ in each case. We will work with rth root of the generalized antieigenvalue
as it is essential to bring this measure on equal footing when comparing multicollinearities of
various data sets with different number of variables and this measure, as the geometric mean
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of all antieigenvalues, does so. To make results more readable, all values of antieigenvalues
and generalized antieigenvalue in various tables are multiplied by 100. Smaller values indicate
more severe presence of multicollinearity.

Table 1: Detecting multicollinearity, raw data and antieigenvalues ηi values,
generalized antieigenvalue ∆ and ∆1/r of X(−j)’X(−j) [Kendall’s data, r = 2.]

Deleted x1 x2 x3 x4 η1 η2 ∆ ∆1/r

Obs. (j)
none . . . . 4.58 93.42 4.28 20.70
1 13.0 9.7 1.5 6.4 4.56 95.16 4.34 20.82
2 10.0 7.5 1.5 6.5 4.47 94.49 4.22 20.55
3 20.6 12.5 2.3 7.0 4.68 94.39 4.42 21.02
4 33.8 19.0 2.8 5.8 4.15 87.77 3.64 19.07
5 20.5 14.2 1.9 6.9 4.69 94.68 4.44 21.06
6 10.0 6.7 2.2 7.0 4.58 93.18 4.26 20.65
7 12.7 5.7 2.9 6.7 4.61 91.43 4.22 20.53
8 36.5 15.7 2.3 7.2 4.78 92.81 4.44 21.07
9 37.1 14.3 2.1 7.2 4.58 93.91 4.30 20.74
10 25.5 12.9 1.9 7.3 4.58 93.54 4.29 20.70
11 26.5 14.9 2.4 6.7 4.72 93.07 4.39 20.95
12 22.3 8.4 4.0 7.0 4.39 92.18 4.05 20.12
13 30.8 7.4 2.7 6.4 4.59 95.04 4.36 20.88
14 25.3 7.0 4.8 7.3 4.11 90.56 3.72 19.28
15 31.2 11.6 2.4 6.5 4.72 94.03 4.44 21.08
16 22.7 10.1 3.3 6.2 4.48 93.34 4.19 20.46
17 31.2 9.6 2.4 6.0 4.69 95.13 4.46 21.11
18 13.2 6.6 2.0 5.8 4.61 93.12 4.29 20.72
19 11.1 6.7 2.2 7.2 4.54 92.75 4.22 20.53
20 20.7 9.6 3.1 5.9 4.48 93.38 4.19 20.46

Remark: Most-outlying observations are highlighted in bold. Top row corresponds to entire
data with no deletion. All originally calculated statistics are multiplied by 100.

Table 5 presents the values of all antieigenvalues along with rth root of general-
ized antieigenvalue. Based on first antieigenvalue as well as on the rth root of generalized
antieigenvalue, the Rao’s data largely seems to be relatively well behaved. The Chatterjee,
Hadi and Price’ data set appears to be suffering from very severe multicollinearity issues.
Other two data sets fall in between. The data set by Daniel and Wood does exhibit a certain
degree of multicollinearity and reasons for its presence are extensively discussed in Chatterjee
and Hadi (1988).

What if the data sets were standardized prior to fitting the model? Needless to say
that eigenvalues and hence the antieigenvalues will change. Does that in any way distort the
picture in terms of multicollinearity? There is no reason to expect an answer one way or the
other since standardization eliminates the differences among variables in terms of degree of
variability in relative terms. See Naik and Khattree (1996), Timm (2002) and Johnson and
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Wichern (2014) for extensive discussions on this aspect of the data. The standardization
would certainly affect the eccentricities of the ellipsoid. Thus, we suggest that one should also
analyze the standardized version of X’X matrix. Table 6 presents the antieigenvalues for the
four data sets in this case. While the conclusions are more or less same as those for original
unstandardized data, we do notice that in each case corresponding antieigenvalues are larger
except in case of cork data and for η2. Understandably, scaling makes the X’X matrix more
“spherical” compared to what it was for the unscaled data. Thus, standardization seems to
help in the sense that standardized data seem to exhibit less multicollinearity.

Note that in this case the most “well behaved” data set among the four is that by
Kendall. First and second antieigenvalues as well as the generalized antieigenvalue are all
highest for this data set. Rao’s cork data has next highest first antieigenvalue as well as the
generalized antieigenvalue. As earlier, the data set by Chatterjee, Hadi and Price exhibits a
very severe case of multicollinearity as seen by small values.

Table 2: Detecting multicollinearity, raw data and antieigenvalues ηi values,
generalized antieigenvalue ∆ and ∆1/r of X(−j)’X(−j) [Daniel and Wood’s data,
r = 2.]

Deleted x1 x2 x3 x4 x5 η1 η2 ∆ ∆1/r

Obs. (j)
none . . . . . 1.95 60.77 1.18 10.88
1 27.68 3.76 1.98 64.97 2.48 2.02 61.66 1.25 11.17
2 25.96 3.48 5.06 63.15 2.32 2.02 64.30 1.30 11.40
3 21.86 5.75 2.77 65.02 5.04 0.25 61.92 0.16 3.96
4 24.60 5.85 2.80 64.18 2.40 2.02 58.48 1.18 10.86
5 25.04 3.86 2.11 66.57 2.36 1.98 55.75 1.10 10.51
6 22.32 6.17 2.85 66.47 2.43 2.01 62.00 1.24 11.16
7 20.93 4.64 5.74 66.26 2.08 1.95 56.69 1.10 10.51
8 23.54 4.83 7.21 62.03 2.24 2.01 60.36 1.22 11.03
9 21.96 4.65 6.06 64.07 2.32 2.02 60.32 1.22 11.04
10 21.44 8.81 1.19 66.64 2.48 1.64 56.22 0.92 9.60
11 22.48 5.00 7.46 62.72 2.24 2.02 60.39 1.22 11.04
12 21.34 6.07 2.93 67.03 2.56 2.01 62.79 1.26 11.25
13 21.94 5.57 2.68 67.71 2.44 1.99 60.79 1.21 11.01
14 25.72 4.12 6.06 61.05 2.08 2.02 63.92 1.29 11.35

Remark: Most-outlying observations are highlighted in bold. Top row corresponds to entire
data with no deletion. All originally calculated statistics are multiplied by 100.

3. Detection of outlying observations

One of the major investigations during the preprocessing and data cleaning is to
identify outlying observations. In a model based approach, this problem is usually dealt
by calculating the leverage values (= xi’(X’X)−1xi where xi’ is the ith observation, i =
1, 2, · · · , n) of each of the n observations. Investigations in Wang and Nyquist (1991) and
Khattree (2019) look at the problem in terms of effect of outlyingness of the observation on
the eigen-structure of the data matrix in the sense how it affects the eigen-structure of the
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Table 3: Detecting multicollinearity, raw data and antieigenvalues ηi values,
generalized antieigenvalue ∆ and ∆1/r of X(−j)’X(−j) [Chatterjee, Hadi and
Price’s data, r = 3.]

Deleted x1 x2 x3 x4 x5 x6 η1 η2 η3 ∆ ∆1/r

Obs. (j)

none . . . . . . 0.36 42.61 56.48 0.09 9.56
1 49 79 76 8 15 205 0.37 41.81 57.24 0.09 9.57
2 27 70 31 6 6 129 0.36 43.67 56.82 0.09 9.66
3 115 92 130 0 9 339 0.37 40.03 53.74 0.08 9.25
4 92 62 92 5 8 247 0.37 42.65 56.19 0.09 9.60
5 67 42 94 16 3 202 0.34 42.34 56.62 0.08 9.38
6 31 54 34 14 11 119 0.36 42.86 54.86 0.08 9.47
7 105 60 47 5 10 212 0.36 42.02 59.85 0.09 9.67
8 114 85 84 17 20 285 0.37 42.14 55.16 0.09 9.50
9 98 72 71 12 -1 242 0.37 41.34 56.88 0.09 9.53
10 15 59 99 15 11 174 0.36 42.65 62.72 0.10 9.92
11 62 62 81 9 1 207 0.36 42.31 55.97 0.08 9.46
12 25 11 7 9 9 45 0.35 42.61 54.53 0.08 9.32
13 45 65 84 19 13 195 0.37 42.37 56.33 0.09 9.56
14 92 75 63 9 20 232 0.36 40.48 56.10 0.08 9.38
15 27 26 82 4 17 134 0.35 40.93 58.02 0.08 9.37
16 111 52 93 11 13 256 0.36 43.29 57.51 0.09 9.64
17 78 102 84 5 7 266 0.36 42.65 55.44 0.09 9.50
18 106 87 82 18 7 276 0.37 41.85 56.95 0.09 9.59
19 97 98 71 12 8 266 0.36 43.00 56.86 0.09 9.59
20 67 65 62 13 12 196 0.36 42.62 55.82 0.09 9.50
21 38 26 44 10 8 110 0.35 42.72 55.83 0.08 9.44
22 56 32 99 16 8 188 0.37 43.83 56.94 0.09 9.70
23 54 100 50 11 15 205 0.37 43.93 56.16 0.09 9.67
24 53 55 60 8 0 170 0.35 42.20 56.09 0.08 9.43
25 61 53 79 6 5 193 0.36 42.80 56.23 0.09 9.56
26 60 108 104 17 8 273 0.37 42.33 58.79 0.09 9.73
27 83 78 71 11 8 233 0.37 42.65 56.59 0.09 9.61
28 74 125 66 16 4 265 0.36 44.08 56.54 0.09 9.64
29 89 121 71 8 8 283 0.37 44.22 55.92 0.09 9.67
30 64 30 81 10 10 176 0.37 43.82 56.24 0.09 9.66
31 34 44 65 7 9 143 0.36 42.56 57.09 0.09 9.59
32 71 34 56 8 9 162 0.36 42.83 56.76 0.09 9.61
33 88 30 87 13 0 207 0.36 42.86 57.01 0.09 9.56
34 112 105 123 5 12 340 0.36 41.17 55.36 0.08 9.39
35 57 69 72 5 4 200 0.36 42.60 55.92 0.08 9.47
36 61 35 55 13 0 152 0.36 41.40 56.64 0.09 9.49
37 29 45 47 13 13 123 0.35 42.61 55.07 0.08 9.40
38 82 105 81 20 9 268 0.36 42.32 56.29 0.09 9.49
39 80 55 61 11 1 197 0.37 41.95 56.90 0.09 9.56
40 82 88 54 14 7 225 0.37 42.96 56.76 0.09 9.64

Remark: Most-outlying (none for this data) observations are highlighted in bold. Top row
corresponds to entire data with no deletion. All originally calculated statistics are
multiplied by 100.
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Table 4: Detecting multicollinearity, raw data and antieigenvalues ηi values,
generalized antieigenvalue ∆ and ∆1/r of X(−j)’X(−j) [C. R. Rao’s Cork data]

Deleted x1 x2 x3 x4 η1 η2 ∆ ∆1/r

Obs. (j)
none . . . . 8.83 90.24 7.97 28.23
1 72 66 76 77 8.69 90.68 7.88 28.08
2 60 53 66 63 8.94 91.05 8.14 28.53
3 56 57 64 58 8.76 90.05 7.89 28.09
4 41 29 36 38 8.89 89.38 7.94 28.18
5 32 32 35 36 8.70 90.30 7.86 28.03
6 30 35 34 26 8.85 89.65 7.94 28.17
7 39 39 31 27 8.89 91.35 8.12 28.49
8 42 43 31 25 8.82 92.63 8.17 28.58
9 37 40 31 25 8.89 91.62 8.15 28.54
10 33 29 27 36 8.60 88.95 7.65 27.66
11 32 30 34 28 8.89 90.11 8.01 28.30
12 63 45 74 63 8.95 93.76 8.39 28.96
13 54 46 60 52 9.01 90.69 8.17 28.58
14 47 51 52 43 8.88 89.60 7.96 28.21
15 91 79 100 75 8.53 88.95 7.59 27.55
16 56 68 47 50 8.09 93.28 7.54 27.47
17 79 65 70 61 8.76 90.17 7.90 28.10
18 81 80 68 58 9.06 93.89 8.51 29.17
19 78 55 67 60 8.05 89.64 7.21 26.86
20 46 38 37 38 8.91 89.41 7.96 28.22
21 39 35 34 37 8.87 89.67 7.95 28.20
22 32 30 30 32 8.82 90.04 7.94 28.18
23 60 50 67 54 8.96 90.37 8.09 28.45
24 35 37 48 39 8.73 89.43 7.81 27.94
25 39 36 39 31 8.88 90.15 8.01 28.30
26 50 34 37 40 8.55 88.24 7.54 27.46
27 43 37 39 50 8.26 89.09 7.36 27.14
28 48 54 57 43 8.85 88.07 7.79 27.92

Remark: Most-outlying observations are highlighted in bold. Top row corresponds to entire
data with no deletion. All originally calculated statistics are multiplied by 100.
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Table 5: Antieigenvalues ηi values, generalized antieigenvalue ∆ and ∆1/r :
Unstandardized (complete) data. All originally calculated statistics are
multiplied by 100.

Data Set η1 η2 η3 ∆ ∆1/r

Kendall 4.58 93.42 . 4.28 20.70
Daniel and Wood 1.95 60.77 . 1.18 10.88
Chatterjee, Hadi, Price 0.36 42.61 56.48 0.09 9.56
Rao 8.83 90.24 . 7.97 28.23

Table 6: Antieigenvalues ηi values, generalized antieigenvalue ∆ and ∆1/r :
Standardized (complete) data. All originally calculated statistics are multiplied
by 100.

Data Set η1 η2 η3 ∆ ∆1/r

Kendall 63.84 99.61 . 63.59 79.74
Daniel and Wood 11.27 90.58 . 10.21 31.96
Chatterjee, Hadi, Price 0.00 59.36 93.36 0.00 0.13
Rao 27.25 85.42 . 23.28 48.25

data matrix. We here consider the problem in terms of the sensitivities of the antieigenvalues
of X’X matrix to a particular observation. The premise is that when an observation is
outlying, it may be due to considerable changes in the values of one or more variables (or
combinations thereof) that will affect the usual pattern among the variables. This will in
turn show up in the diagonal and non-diagonal elements of the X’X matrix. Such changes
will then have an effect on the eccentricities of the corresponding ellipsoid. Accordingly,
by reverse logic, if the ith observation is not outlying then if X(−i) is the corresponding
(n − 1) × p data matrix obtained by discarding the ith observation from X matrix, the
p × p matrices X’X and X(−i)’X(−i) must not be too different from each other in terms
of their eccentricities. Therefore we compare the antieigenvalues of these two matrices for
every i and identify the observations to which these eccentricities are very sensitive. It must
be emphasized that depending on the situation, the effect of an outlying observation may
manifest on different antieigenvalues and hence one must ideally consider all antieigenvalues
as well as the generalized antieigenvalue.

To illustrate the procedure, we return to our four data sets discussed earlier. Raw
unscaled data are used in each case. For the sake of easy comparison, Tables 1-4 each
present the original data along with the antieigenvalues when the particular observation has
been deleted. As earlier, all antieigenvalues and the appropriate root of the generalized
antieigenvalue have been multiplied by 100.

For the Kendall’s data (Table 1), we observe that deleting the observation number
4 results in both antieigenvalues becoming unusually small. A closer look at the particular
observation shows that corresponding (x1, x2) values are both unusually large for this data
point. Another observation which stands out is the observation number 14 for which the
first antieigenvalue is the smallest and the second antieigenvalue is second smallest. For this
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data point x3 is unusually large while x4 is among the several larger values. Clearly, both
of these observations have substantial effects on the eigen-structure and eccentricities of the
corresponding X’X matrix.

Daniel and Wood’s data set is relatively smaller in size. Yet, it still has two obser-
vations which are deemed outlying. These are observations 3 and 10 respectively and they
stand out essentially due to relatively large x5 value (for 3rd observation) and very large x2
value (for 10th observation) respectively. See Table 2.

In case of Rao’s cork data, the first antieigenvalues are somewhat different when the
19th or 16th observations are discarded. When the 18th or 16th observations are removed, the
second antieigenvalue shows a considerable change. See Table 4. These observations were
identified by Khattree and Naik (1999) as outlying using other techniques. The reasons for
them being outlying are also explained there. However the effect is rather mild.

The data set of Chatterjee, Hadi and Price does not seem to contain any outlying
observation because for all the antieigenvalues in Table 3, corresponding values are not very
different when an observation has been deleted.

To explore further and perhaps in a more definite way than the previous approach
where the relative closeness of antieigenvalues was visually assessed in a table, we may yet
adopt another criterion (Also, see Khattree, 2019) and directly look at the eigen or antieigen-
structures of the matrix

Gi = Ui(X’X)−1Ui’

where Ui is the upper triangular square root matrix of X(−i)’X(−i), defined by X(−i)’X(−i) =
Ui’Ui.

Ideally, if an observation was not outlying then we must expect X’X and X(−i)’X(−i),
to be nearly the same. Thus, Gi in above equation must be “close” to an identity matrix,
for which all eigenvalues and hence all antieigenvalues are 1. Therefore, we may argue that
an observation is outlying if there is considerable departure of these quantities from unity. It
turns out (See Theorem 1 in Appendix) that except possibly for the smallest eigenvalue, all
other eigenvalues of Gi must always be equal to 1. Thus it suffices to look at the departure of
the smallest eigenvalue δi,p or equivalently the smallest antieigenvalue ηi,1 of Gi from unity.

All four data sets are subjected to this criterion as well. This criterion results in
the identification of all outlying observations found previously by our earlier method. As
it turns out, this is a more sensitive criterion in the sense it may also identify many more
mildly outlying observations whose presence was perhaps obscured in our earlier approach
when two antieigenvalues were compared for similar magnitudes. The results are given in
Tables 7-10. Observations have been rearranged by the decreasing magnitudes of the ηi,1
values.

To be specific, Kendall’s data shows observations 4 and 14 with significantly smaller
values of δi,p and ηi,1 compared to other values. This is consistent with our previous evalua-
tion. For Daniel-Wood data, observation numbers 3, 10 and 1 are found to be outlying (due
to relatively larger x5, x2 and x1 values). In case of Cork data of Rao, although none of the
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observations was determined to be severely outlying in our earlier analysis, a few more mildly
outlying observations are now found by this approach (Observation numbers 12, 15, 16, 18,
19). This identification is consistent with what was observed by Khattree and Naik (1999)
using various graphical methods such as biplots. Also, in case of Chatterjee, Hadi and Price’s
data, the observation number 3 (due to x3 being relatively larger) and observation number
15 (due to x1 and x2 being relatively smaller) are also identified although their departures
still appear to be subdued. These facts are graphically and more effectively illustrated using
the scree plots given in Figure 1, where a sudden vertical drop, or lack of it, indicates the
presence or absence of outlyingness.

One can also arrive at δi,p or ηi,1 as the yardsticks for outlyingness through certain
other criteria. Specifically, to measure the distance between X’X and X(−i)’X(−i), one may
consider as measures, the eigen or antieigenvalues of X(−i)’X(−i), with respect to X’X (see
Rao, 2005) or alternatively, use the determinant of matrix X(−i)’X(−i)(X’X)−1. In either
case, in view of Theorem 1, the final criterion rests on δi,p and ηi,1.

Computationally, evaluation of eigenvalues δi,p and hence of antieigenvalues ηi,1 is
rather straight forward and in fact, does not even require the explicit evaluation of eigenvalues
or of the square root matrices – issues which can be a severe computational burden if the
data set was large. To be specific, in view of Theorem 1, at most one of the eigenvalues of
Gi(= Ui(X’X)−1Ui’, where Ui is an upper triangular matrix so that X(−i)’X(−i) = Ui’Ui)
is not equal to 1 (in fact, less than 1). In view of Theorem 2, δi,p = tr(Gi) − p + 1 =
1 − xi’(X’X)−1xi. which is simply a quadratic form in the ith data-row.

When using the X matrix, unlike the leverage value calculations, our approach to
outlying observation detection as outlined here is not model based. Polynomial or cross-
product terms which may be important in the model have not been considered and columns
corresponding to these in the X∗ matrix do play an important role in the computation of
leverage values. Thus, δi,p = 1 − xi’(X’X)−1xi is in general not the model based leverage
corresponding to the ith observation (and this may be true in addition to the fact that in
any model based approach, the X matrix contains a constant column corresponding to the
intercept of the model). In view of this subtle difference, Khattree (2019) chooses to call
xi’(X’X)−1xi as Emphasis of the observation xi rather than leverage. It will be same as
leverage only if the assumed model had no intercept and no polynomial or cross product
terms. In fact, that is exactly the point being made here. There may be observations which
are simply different from the rest of the data without any consideration of assumed model
whatsoever and they should be detected and examined at the very early stages of data
cleaning prior to defining any specific model. The clean data may then be intended to be
used as a reference dataset for a number of future studies. Consideration of antieigenvalues
and emphasis measures help us do just that.

Multicollinearity and outlyingness can occasionally go hand in hand. Outlying obser-
vations can sometimes introduce or mask the multicollinearity. Fortunately, antieigenvalues
can be utilized to assess both and hence provide a useful approach to identify “collinearity
- outlying” points. We may measure the collinearity - outlyingness as the relative change in
the antieigenvalues of X(−i)’X(−i) compared to those of X’X. For j = 1, 2, · · · , r,

γi,j = ηi,j − ηj

ηj

(3)
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measures this change for i = 1, 2, · · · , n. A similar measure can be defined in terms of the
generalized antieigenvalue,

Γi = ∆i − ∆
∆ . (4)

The measures in Equations (3) and (4) are computed for all four data sets. Instead
of giving their values in several tables, it may be easier to plot and interpret γi,j and Γi

graphically. Specifically, we graphically identify the collinearity - outlyingness of individual
data points by plotting γi,j (or Γi) against theoretical (normal) quantiles in what is equivalent
to a Q-Q plot. It is so, since the values of the nonoutlying points are likely to be more or
less random (possibly approximately normally distributed). One set of such plots are given
in Figure 2 for the four data sets. The statistics used is ∆1/r.

Table 7: Detecting outlyingness, raw data and smallest eigenvalue δp values,
smallest antieigenvalue ηj,1(×100) for Gj Matrix [Kendall’s Data]

Serial No. Deleted x1 x2 x3 x4 δj,p ηj,1
No. Obs. (j)
1 18 13.2 6.6 2.0 5.8 0.93 99.93
2 3 20.6 12.5 2.3 7.0 0.90 99.85
3 20 20.7 9.6 3.1 5.9 0.88 99.80
4 10 25.5 12.9 1.9 7.3 0.87 99.77
5 15 31.2 11.6 2.4 6.5 0.87 99.76
6 16 22.7 10.1 3.3 6.2 0.87 99.76
7 11 26.5 14.9 2.4 6.7 0.86 99.72
8 1 13.0 9.7 1.5 6.4 0.85 99.67
9 7 12.7 5.7 2.9 6.7 0.85 99.66
10 5 20.5 14.2 1.9 6.9 0.82 99.49
11 6 10.0 6.7 2.2 7.0 0.82 99.49
12 2 10.0 7.5 1.5 6.5 0.81 99.47
13 8 36.5 15.7 2.3 7.2 0.81 99.44
14 19 11.1 6.7 2.2 7.2 0.81 99.44
15 17 31.2 9.6 2.4 6.0 0.80 99.39
16 12 22.3 8.4 4.0 7.0 0.78 99.26
17 9 37.1 14.3 2.1 7.2 0.74 98.83
18 13 30.8 7.4 2.7 6.4 0.67 98.10
19 14 25.3 7.0 4.8 7.3 0.58 96.34
20 4 33.8 19.0 2.8 5.8 0.48 93.68

Remark: Most-outlying observations are highlighted in bold.

It is important to interpret these graphs in Figure 2 carefully. Larger positive values
not falling on the straight line pattern indicate an improvement in terms of multicollinearity
when the particular observation is deleted. In other words, these observations when present,
tend to introduce multicollinearity. Similarly, observations with values which are more neg-
ative and away from the overall straight line pattern will tend to mask the multicollinearity.
Thus from the graphs in Figures 2, it is easy to conclude that for Kendall’s data, inclusion
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of observations numbered 4 and 14 tend to mask the problem, if any, of multicollinearity in
the data. A more drastic instance of masking of multicollinearity is vividly seen in Daniel-
Wood data. Observation number 3 clearly stands out at the lower left end of that figure.
The 10th observation also does so and masks some multicollinearity although it is not as
excessive. For Hadi, Chatterjee and Price data, the inclusion of 10th observation somewhat
but not excessively increases the multicollinearity. As observed previously, this data set was
already found to be highly ill-conditioned. Lastly, in case of Cork data, 18th and 12th obser-
vations are towards the higher end. Their inclusion possibly increases the multicollinearity
slightly. However, as we have noted earlier, this data set is relatively well behaved in terms
of multicollinearity.

It must be emphasized that this analysis of multicollinearity-outlyingness is irrele-
vant when with or without the particular observation, various measures of multicollinearity
indicate a lack of it and is of interest only when the data exhibit a situation when the in-
clusion/exclusion of an observation drastically alters that situation and makes the data look
much better or much worse than otherwise. This scenario is well illustrated by observation
number 3 in case of Daniel-Wood data.

4. An evaluation of a large data set: red wine data

So far, we have purposely chosen data sets which could be presented in their entirety
and allowed us to see the differences made by certain observations in the eigen-structure
of the data. Would the large size of data obscure these changes since a single obser-
vation in a large dataset will supposedly have very small fraction of contribution to the
overall structure? While this query is difficult to answer theoretically, we apply our ap-
proach on a relatively large data set available from the UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/) con-
sisting of 1599 observations on the quality of red wine. The four variables considered here
are measurements on, x1 = fixed acidity, x2 = chlorides, x3 = free sulfur dioxide and x4 =
pH for various wine samples.

As a process of data cleaning for such a large data, we will attempt to identify
the observations which cause drastic changes in the eigen-structure using the techniques
described earlier. We also evaluate the multicollinearity-outlyingness. As a representative
subsample, the first ten, middle ten and last ten observations of the dataset are given in Table
11, along with a few cases that we have identified as outlying. Various statistics considered
here have been calculated. Specifically, upon deleting one observation at a time for all
1599 observations, we compute the first and second antieigenvalues, and the generalized
antieigenvalue. As a reference set to compare, we also compute these values for the entire
data without deleting any observation. In view of small magnitudes of certain quantities,
whenever needed, we have reported these quantities upto five decimal places.

Analysis results in four observations which stand out. For the observations numbered
82, 107, 152 and 259, the changes in the first antieigenvalue and the generalized antieigenvalue
are substantial relative to entire data and compared to other cases of deletion. As can be
seen in Table 11 (Columns 6 and 7) for the subsample listed above, compared to entire
data, these quantities hardly change in the cases of one at a time deletions of the other 1595
observations.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO
MODEL-FREE DATA CLEANING FOR RAW DATA 185

Columns 8, 9 and 10 of the same table also present the values of γi,1, γi,2 and Γi

which measure the collinearity- outlyingness. Clearly for the observations 82, 107, 152
and 259 these values by far stand out. The corresponding negative values indicate that
these observations tend to mask the multicollinearity present in the data. For all other
observations, the corresponding values are minuscule and practically insignificant.

Why do observations 152 and 259 stand out? It is clear that the value of x2 is sub-
stantially larger while the value x4 is substantially smaller compared to other observations.
For observations 82 and 107, it is their large (but not as large as that for observations 152
and 259) x2 values which make them outlying.

One may ask, “Why not just use the leverage function as specified in standard text-
books instead of the approach that we suggest?” If the usual leverage measure is used to
identify outlying observations and if we use the recommended rule to identify outlying ob-
servations as those which have their leverage values higher than twice the mean leverage
(= 2p

n
= 2×4

1599 = 0.005), then that procedure ends up identifying a total of 189 observa-
tions as outlying! As an alternative recommendation, if we just choose those observations
whose leverage values clearly stand out (with an existence of gap between them and rest of
the leverage values) then it will identify observations 152 and 259 (leverages = 0.0806 and
0.0801 respectively) but not the observations 82 and 107 whose leverage values ( = 0.0420
and 0.0416 respectively) are not as prominent compared to others. To keep these tables
manageable, we have not printed all leverage values in Tables 11 and 12. Our approach, al-
though more computer intensive, appears to be much more effective. Automating the above
calculations can make such identifications quick and efficient, especially when the data may
also contain other nonrandom noises such as freak values due to transcription errors.

Table 12 presents the analysis of the same data minus the observations numbered
82, 107 152 and 259. A comparison of corresponding entries in row 0 (i.e., when “Deleted
Obs.=none”) in Tables 11 and 12 shows that the removal of above four observations changes
the statistics in Columns 6 and 7 of Table 11 substantially. Substantially smaller values
in Table 12 suggest that this data set has much more multicolinearity than it originally
showed, which was earlier masked by these four observations. Further, deletion of any of
the remaining 1595 observations causes little change in the values of ηi,1,∆i, γi,1, γi,2 and
Γi, leading to the conclusion that there are no more outlying observations in the data set
(However, an approach based on leverage values still declares 189 outlying observations!).
Also the data set now has no outlying observation induced multicollinearity.

5. Concluding remarks

The work presented here introduces the use of eigen-structure and antieigenvalues for
data cleaning early on after data collection but prior to modeling. This helps us identify and
evaluate the quality of data and identify the possible anomalies within the data. Our work
also supplements existing useful diagnostics techniques and are beneficial in providing the
valuable insights into the data. One possibility to calibrate our proposed metrics may be
via the probability distribution of the antieigenvalues. Some related work by Martin Singull
can be found at https://users.mai.liu.se/maroh70/pres/iclaa2017.pdf .

One important recurring question is whether or not to center and/or standardize the
data before subjecting them to these tools of analysis of antieigen-structure. It is obvious that
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Table 8: Detecting outlyingness, raw data and smallest eigenvalue δp values,
smallest antieigenvalue ηj,1(×100) for Gj Matrix [Daniel and Wood’s Data]

Serial Deleted x1 x2 x3 x4 x5 δj,p ηj,1
No. Obs. (j)
1 6 22.32 6.17 2.85 66.47 2.43 0.86 99.72
2 9 21.96 4.65 6.06 64.07 2.32 0.81 99.47
3 12 21.34 6.07 2.93 67.03 2.56 0.81 99.45
4 4 24.60 5.85 2.80 64.18 2.40 0.79 99.30
5 2 25.96 3.48 5.06 63.15 2.32 0.78 99.23
6 13 21.94 5.57 2.68 67.71 2.44 0.77 99.12
7 8 23.54 4.83 7.21 62.03 2.24 0.71 98.50
8 11 22.48 5.00 7.46 62.72 2.24 0.70 98.40
9 14 25.72 4.12 6.06 61.05 2.08 0.68 98.23
10 5 25.04 3.86 2.11 66.57 2.36 0.64 97.55
11 7 20.93 4.64 5.74 66.26 2.08 0.60 96.80
12 1 27.68 3.76 1.98 64.97 2.48 0.54 95.55
13 10 21.44 8.81 1.19 66.64 2.48 0.30 83.89
14 3 21.86 5.75 2.77 65.02 5.04 0.01 23.22

Remark: Most-outlying observations are highlighted in bold.

Figure 1: Scree plots for smallest antieigenvalues of Gi upon deleting an
observation
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Table 9: Detecting outlyingness, raw data and smallest eigenvalue δp values,
smallest antieigenvalue ηj,1(×100) for Gj Matrix [Chatterjee, Hadi and Price’s
data]

Serial Deleted x1 x2 x3 x4 x5 x6 δj,p ηj,1
No. Obs. (j)
1 27 83 78 71 11 8 233 0.96 99.98
2 31 34 44 65 7 9 143 0.94 99.95
3 25 61 53 79 6 5 193 0.94 99.95
4 32 71 34 56 8 9 162 0.93 99.94
5 39 80 55 61 11 1 197 0.92 99.91
6 20 67 65 62 13 12 196 0.92 99.91
7 2 27 70 31 6 6 129 0.92 99.91
8 40 82 88 54 14 7 225 0.91 99.89
9 30 64 30 81 10 10 176 0.91 99.89
10 4 92 62 92 5 8 247 0.91 99.89
11 21 38 26 44 10 8 110 0.90 99.86
12 36 61 35 55 13 0 152 0.90 99.85
13 18 106 87 82 18 7 276 0.89 99.84
14 1 49 79 76 8 15 205 0.89 99.84
15 24 53 55 60 8 0 170 0.89 99.83
16 35 57 69 72 5 4 200 0.89 99.83
17 6 31 54 34 14 11 119 0.88 99.80
18 19 97 98 71 12 8 266 0.88 99.80
19 11 62 62 81 9 1 207 0.87 99.78
20 13 45 65 84 19 13 195 0.86 99.73
21 9 98 72 71 12 -1 242 0.86 99.71
22 37 29 45 47 13 13 123 0.86 99.70
23 17 78 102 84 5 7 266 0.85 99.66
24 23 54 100 50 11 15 205 0.84 99.64
25 26 60 108 104 17 8 273 0.84 99.61
26 38 82 105 81 20 9 268 0.84 99.60
27 22 56 32 99 16 8 188 0.83 99.59
28 29 89 121 71 8 8 283 0.83 99.56
29 12 25 11 7 9 9 45 0.83 99.55
30 16 111 52 93 11 13 256 0.81 99.44
31 8 114 85 84 17 20 285 0.81 99.43
32 7 105 60 47 5 10 212 0.78 99.27
33 14 92 75 63 9 20 232 0.78 99.26
34 34 112 105 123 5 12 340 0.78 99.19
35 33 88 30 87 13 0 207 0.77 99.11
36 5 67 42 94 16 3 202 0.75 98.98
37 28 74 125 66 16 4 265 0.75 98.95
38 10 15 59 99 15 11 174 0.73 98.79
39 15 27 26 82 4 17 134 0.68 98.20
40 3 115 92 130 0 9 339 0.67 97.96

Remark: Most-outlying observations are highlighted in bold.
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Table 10: Detecting outlyingness, raw data and smallest eigenvalue δp values,
smallest antieigenvalue ηj,1(×100) for Gj Matrix [C. R. Rao’s Cork data]

Serial Deleted x1 x2 x3 x4 δj,p ηj,1
No. Obs. (j)
1 11 32 30 34 28 0.98 99.99
2 25 39 36 39 31 0.97 99.98
3 22 32 30 30 32 0.96 99.98
4 21 39 35 34 37 0.94 99.96
5 5 32 32 35 36 0.94 99.94
6 6 30 35 34 26 0.93 99.93
7 13 54 46 60 52 0.93 99.93
8 20 46 38 37 38 0.93 99.93
9 7 39 39 31 27 0.92 99.92
10 4 41 29 36 38 0.91 99.90
11 9 37 40 31 25 0.91 99.88
12 14 47 51 52 43 0.90 99.87
13 23 60 50 67 54 0.89 99.83
14 2 60 53 66 63 0.88 99.81
15 3 56 57 64 58 0.87 99.77
16 10 33 29 27 36 0.86 99.74
17 24 35 37 48 39 0.86 99.74
18 8 42 43 31 25 0.85 99.65
19 17 79 65 70 61 0.84 99.63
20 28 48 54 57 43 0.83 99.55
21 26 50 34 37 40 0.81 99.45
22 1 72 66 76 77 0.80 99.35
23 27 43 37 39 50 0.76 99.10
24 12 63 45 74 63 0.75 98.96
25 18 81 80 68 58 0.74 98.86
26 19 78 55 67 60 0.71 98.51
27 15 91 79 100 75 0.69 98.26
28 16 56 68 47 50 0.65 97.65

Remark: Most-outlying observations are highlighted in bold.
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Table 11: Analysis of red wine data: complete data (n = 1599)

Deleted x1 x2 x3 x4 ηj,1 ∆j γj,1 γj,2 Γj

Obs. (j) (×100) (×100)
none . . . . 0.462 0.124 0 0 0

1 7.4 0.076 11 3.51 0.462 0.124 0.01259 -0.00722 -0.00360
2 7.8 0.098 25 3.20 0.463 0.124 0.04972 0.05319 0.02659
3 7.8 0.092 15 3.26 0.462 0.124 0.02127 0.02221 0.01111
4 11.2 0.075 17 3.16 0.462 0.124 0.02282 -0.01682 -0.00841
5 7.4 0.076 11 3.51 0.462 0.124 0.01259 -0.00722 -0.00360
6 7.4 0.075 13 3.51 0.462 0.124 0.01615 -0.00458 -0.00229
7 7.9 0.069 15 3.30 0.462 0.124 0.01886 0.02010 0.01005
8 7.3 0.065 15 3.39 0.462 0.124 0.01720 0.00219 0.00110
9 7.8 0.073 9 3.36 0.462 0.124 0.00872 0.01594 0.00797
10 7.5 0.071 17 3.35 0.462 0.124 0.02458 0.01650 0.00825
82 7.8 0.464 22 3.13 0.453 0.122 -2.00423 -2.00403 -1.00708

107 7.8 0.467 18 3.08 0.453 0.122 -2.06405 -2.06336 -1.03705
152 9.2 0.610 32 2.74 0.445 0.119 -3.83596 -3.89969 -1.96923
259 7.7 0.611 8 3.06 0.444 0.119 -4.02277 -4.00309 -2.02198
797 8.7 0.126 24 3.10 0.462 0.124 0.02903 0.01822 0.00911
798 9.3 0.038 21 3.24 0.462 0.124 0.00023 -0.00877 -0.00438
799 9.4 0.082 5 3.29 0.462 0.124 0.00489 0.06907 0.03453
800 9.4 0.082 5 3.29 0.462 0.124 0.00489 0.06907 0.03453
801 7.2 0.082 26 3.25 0.463 0.124 0.05499 0.06207 0.03103
802 8.6 0.068 8 3.23 0.462 0.124 0.00490 0.03901 0.01951
803 5.1 0.044 14 3.56 0.462 0.124 0.00432 -0.12472 -0.06238
804 7.7 0.114 14 3.24 0.462 0.124 0.00626 0.00741 0.00371
805 8.4 0.084 4 3.26 0.462 0.124 0.00423 0.05255 0.02628
806 8.2 0.052 4 3.33 0.462 0.124 -0.01058 0.02851 0.01426
1590 6.6 0.073 29 3.29 0.463 0.124 0.06490 0.08170 0.04084
1591 6.3 0.077 26 3.32 0.463 0.124 0.05366 0.05161 0.02581
1592 5.4 0.089 16 3.67 0.462 0.124 0.02095 -0.10075 -0.05038
1593 6.3 0.076 29 3.42 0.463 0.124 0.06502 0.07259 0.03630
1594 6.8 0.068 28 3.42 0.463 0.124 0.05875 0.06587 0.03293
1595 6.2 0.090 32 3.45 0.463 0.124 0.07723 0.10128 0.05063
1596 5.9 0.062 39 3.52 0.463 0.124 0.10568 0.18234 0.09113
1597 6.3 0.076 29 3.42 0.463 0.124 0.06502 0.07259 0.03630
1598 5.9 0.075 32 3.57 0.463 0.124 0.07692 0.08773 0.04386
1599 6.0 0.067 18 3.39 0.462 0.124 0.02646 -0.02163 -0.01081

Remark: Most-outlying observations are highlighted in bold. Top row corresponds to entire
data with no deletion.
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Table 12: Analysis of red wine data: after deleting obs. No. 82, 107, 152 and
259 (n = 1595)

Deleted x1 x2 x3 x4 ηj,1 ∆j γj,1 γj,2 Γj

Obs. (j) (×100) (×100)
none . . . . 0.132 0.0793 0 0 0

1 7.4 0.076 11 3.51 0.132 0.0792 -0.10861 -0.12180 -0.060853
2 7.8 0.098 25 3.20 0.132 0.0793 -0.02016 0.07747 0.038792
3 7.8 0.092 15 3.26 0.132 0.0792 -0.04344 -0.03128 -0.015577
4 11.2 0.075 17 3.16 0.132 0.0792 -0.01573 -0.03490 -0.017385
5 7.4 0.076 11 3.51 0.132 0.0792 -0.10814 -0.12132 -0.060614
6 7.4 0.075 13 3.51 0.132 0.0792 -0.10118 -0.10024 -0.050070
7 7.9 0.069 15 3.30 0.132 0.0792 -0.04437 -0.03356 -0.016718
8 7.3 0.065 15 3.39 0.132 0.0792 -0.07958 -0.06261 -0.031244
9 7.8 0.073 9 3.36 0.132 0.0792 -0.07065 -0.10248 -0.051188
10 7.5 0.071 17 3.35 0.132 0.0792 -0.05981 -0.02949 -0.014680
797 8.7 0.126 24 3.10 0.132 0.0793 0.00877 0.03356 0.016842
798 9.3 0.038 21 3.24 0.132 0.0793 0.01014 0.02349 0.011809
799 9.4 0.082 5 3.29 0.132 0.0793 0.02025 -0.00452 -0.002193
800 9.4 0.082 5 3.29 0.132 0.0793 0.02030 -0.00437 -0.002119
801 7.2 0.082 26 3.25 0.132 0.0793 0.01850 0.04528 0.022701
802 8.6 0.068 8 3.23 0.132 0.0793 0.02001 0.00788 0.004003
803 5.1 0.044 14 3.56 0.132 0.0792 -0.11208 -0.11019 -0.055043
804 7.7 0.114 14 3.24 0.132 0.0793 0.01638 0.01733 0.008728
805 8.4 0.084 4 3.26 0.132 0.0793 0.01609 0.00342 0.001776
806 8.2 0.052 4 3.33 0.132 0.0793 0.01011 -0.00048 -0.000178
1590 6.6 0.073 29 3.29 0.132 0.0793 0.08935 0.04278 0.021454
1591 6.3 0.077 26 3.32 0.132 0.0793 0.09028 0.02157 0.010850
1592 5.4 0.089 16 3.67 0.132 0.0793 0.04197 0.02997 0.015049
1593 6.3 0.076 29 3.42 0.132 0.0793 0.09004 0.03221 0.016167
1594 6.8 0.068 28 3.42 0.132 0.0793 0.08935 0.04278 0.021454
1595 6.2 0.090 32 3.45 0.132 0.0793 0.09028 0.02157 0.010850
1596 5.9 0.062 39 3.52 0.132 0.0793 0.09030 -0.00125 -0.000560
1597 6.3 0.076 29 3.42 0.132 0.0793 0.09051 0.03229 0.016210
1598 5.9 0.075 32 3.57 0.132 0.0793 0.08664 0.01229 0.006207
1599 6.0 0.067 18 3.39 0.132 0.0793 0.08434 0.06733 0.033726

Remark: Upon deletion of observation numbers 82, 107, 152 and 259, there are no more
outlying observations. Top row corresponds to entire data (1599 - 4 = 1595 obs.) with no
further deletions.
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Figure 2: Scree plots for smallest antieigenvalues of Gi upon deleting an
observation

the two sets of antieigenvalues will differ for standardized and unstandardized data. Shifting
and scaling have substantial effects on eccentricities of the corresponding p− dimensional
ellipsoids. This is especially so since both the means as well as standard deviations can
be very sensitive to outliers. Naik and Khattree (1996) provide a detailed discussion of
pitfalls of blindly standardizing the data. Our (obvious) suggestion, thus, is to look into
both possibilities since the use of unstandardized and standardized data for the subsequent
modeling purposes are both acceptable practices.

Another natural question one may pose is, how about identification of a subset of s
most outlying observations? How can we assess whether or not a particular subset of obser-
vations as a whole, is outlying? Khattree (2019) has extensively dealt with this issue with
Emphasis as a measure. As it turns out, under that criterion, this problem is equivalent to
sequential identification and deletion of observations, one by one, based on the maximum
outlyingness using the matrices Gi and the method described in the present work. Thus, our
approach here, at least partially eliminates the problem of first determining an appropriate
choice of s and then looking at the computationally intensive task of evaluating the outly-
ingness of all possible nCs subsets of s observations. When antieigenvalues are used as the
criteria, whether or not such a sequential deletion is possible, is an issue that is still needed
to be explored.

The numbers of observations as well as number of variables play important roles and
an observation may have substantially less outlying effect on eigen-structure if it was only
one of the several thousand observations. We see this in case of red wine data when out of a
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total of 1599 observations only four stand out. Thus it is difficult to give a firm and universal
threshold value for the determination of an observation’s outlyingness. For large data sets,
graphical methods and plots such as those given in this work provide a useful approach to
identify such patterns.

The approach is admittedly computer intensive and thus there is a genuine need
for developing an efficient and effective algorithm based on the methodology presented here.
This is an important direction for future work as contemporary data sets are often very large
in terms of number of variables as well as number of data points. We have not addressed
these algorithmic-efficiency issues in this paper. Further research is needed in this direction.

We must also realize that the context here is that of data cleaning for a large dataset
without any assumed model. Such data will often have missing values. With a model-free
approach, it will be difficult to incorporate various types of missingness in our approach.
However, assuming that the missingness is completely at random, our suggestion is to first
impute the missing values appropriately and then perform the data cleaning. Since we intend
to not assume any model on data, an approach to imputation based on empirical copula has
been suggested by Lun and Khattree (2019, 2020, 2024). To what extent the performance
may be affected by imputation is yet another aspect which can be explored via simulation
studies.

What happens if the number of variables is greater than the number of observations?
The genomics data, which very often are inevitably quite noisy, typically have this situation.
How to clean data in such a case is admittedly a difficult problem. However, this situation
allows us to address a very different problem still relevant in the context. Since our approach
is based entirely on eigen-structure and since the nonzero eigenvalues of X’X and XX’ are
same, for “p > n” situation, our approach can perhaps be adopted to evaluate the quality
of variables. Since the interpretations entirely change, this problem needs a further careful
consideration.
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APPENDIX

Appendix 1

Two theorems referred in main text are stated here. These are the special cases of
results given in Khattree (2019) Proofs have been omitted.

Theorem 1. Let X be an n × p matrix with n > p and rank p. Define A =
X’X and Bi = X(−i)’X(−i) and suppose Bi = Ui’Ui where Ui is upper triangular. Then, for
the ordered eigenvalues δ1 ≥ δ2 ≥ ... ≥ δp of Gi = UiA−1Ui’, δj = 1 for j = 1, 2, ..., (p− 1).

Theorem 2. The smallest eigenvalue of Gi = Ui(X’X)−1Ui’ where Ui is the upper
triangular square root matrix of X(−i)’X(−i), defined by X(−i)’X(−i) = Ui’Ui is δi,p = 1 −
xi’(X’X)−1xi.

Appendix 2

SAS code which generated Table 11

/*
data on red wine from :
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

Attribute information:

For more information, read [Cortez et al., 2009].

Input variables (based on physicochemical tests):
1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol
Output variable (based on sensory data):
12 - quality (score between 0 and 10)

*/

data wine; *Red wine data;
infile "C:\Users\Desktop\winequality.txt" ;
input y1-y12;
run;
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data wine; set wine;
x1 = y1; *x1 = fixed acidity;
x2 = y5; *x2 = chlorides;
x3 = y6; *x3 = free sulfur dioxide;
x4 = y9; *x4 = pH;
keep x1-x4;
run;
proc standard data=wine mean=0 std=1

out=stndtest;
var x1-x4;

run;
%let mydataset = wine; ***use this to analyze original raw data;
*%let mydataset = stndtest; ***use this to analyze standardized data;

*options nolog; ***suppresses log file**;

%macro multicol(count = );

%do del_row = 0 %to &count;
data uci; set &mydataset;run;
proc iml; use uci; read all into x;
xpx = x‘*x;
if &del_row = 0 then do; smallxpx = xpx; end;
if &del_row > 0 then do;
t&del_row =x[ {&del_row}, ];

smallxpx = xpx - t&del_row‘*t&del_row;end;
call eigen(lambda, p, smallxpx);
create evalues from lambda;
append from lambda;close evalues;
quit;
proc transpose data = evalues out = evaluesvar; run;
data evaluesvar&del_row; set evaluesvar;
anti1 =100*2*sqrt(col1*col4)/(col1+col4);
anti2 = 100*2*sqrt(col2*col3)/(col2+col3);
gen_anti = anti1*anti2/100;
rt_gen_anti = (anti1*anti2)**(1/2) ;
obser = &del_row;
run;
proc datasets library=work nolist;

append base=work.antieig data=work.evaluesvar&del_row force;
run;
proc delete library = work data = evaluesvar&del_row;run;
%end;
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%mend multicol ;
%multicol(count = 1599); ***no. of complete obs = count = 1599;
title;
footnote "Actual values are multiplied by 100";
data wine; set wine; obser = _n_;run;
proc sort data = wine; by obser;run;
proc sort data = antieig; by obser;run;
data combine; merge wine antieig; by obser;run;
******************Calculation of gamma values of Section 3*********;
data gamma; set antieig;

***The numbers below are obtained from the output
when no observations were deleted.;

anti1all = .46228;;
gamma1 = 100*(anti1-anti1all)/anti1all;
gen_antiall = .12419;
gamma2 = 100*(gen_anti -gen_antiall)/gen_antiall;
rt_gen_antiall = 3.52406;
gamma3 = 100*(rt_gen_anti -rt_gen_antiall)/rt_gen_antiall;
run;
proc sort data = wine; by obser;run;
proc sort data = gamma; by obser;run;
data combine2; merge wine gamma;
by obser;run;
data antieigsmall2; set combine2;
if (obser in (0 82 107 152 259) or obser < 11 or obser gt 1589
or (obser > 796 and obser < 807));
run;
data Table11; set antieigsmall2;
keep obser x1 x2 x3 x4 anti1 gen_anti gamma1 gamma2 gamma3 ;
run;
proc export data = table11
outfile =
’C:\Users\khattree\Desktop\DataCleaningTable11OfPaper.txt’
replace; ***Output is stored in the .txt file;
run;
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Abstract
It is well known that squared error loss is not robust to outliers. As an alternative,

Huber loss may be used for robust regression; however, Huber loss is not readily amenable
to Bayesian computation. It has been shown that hyperbolic loss can be regarded as an
approximation to Huber loss, and the hyperbolic distribution can be expressed as a scale
mixture of normal distributions, which makes it appealing for Bayesian computation. The
idea of Bayesian Huberized lasso was first proposed by Park and Casella (2008), and was for-
mally developed and implemented by Kawakami and Hashimoto (2023). Since the Bayesian
Huberized lasso cannot shrink regression coefficients to exactly zero, and has lighter tailed
errors than a Cauchy distribution, De and Ghosh (2024) proposed a model that encompasses
both hyperbolic and t-errors, with a mixture prior on regression coefficients consisting of two
parts, a point mass at zero and a continuous distribution, that can shrink coefficients to ex-
actly zero. The approach of De and Ghosh (2024) could be considered as a gold standard for
Bayesian model averaging, but posterior computation with such a point mass mixture prior,
popularly known as the spike and slab prior, can be challenging with many covariates. The
horseshoe prior is known to mimic some of the desirable properties of spike and slab priors,
while being computationally less intensive. Motivated by this attractive property of the
horseshoe prior, in this article we develop an algorithm for Bayesian linear regression with
hyperbolic errors, and horseshoe priors on the regression coefficients. We illustrate using
simulation studies and an analysis of the famous Boston housing dataset, that posterior dis-
tributions under horseshoe priors can capture sparsity better than Bayesian lasso priors. For
moderate dimensional regression problems, the spike and slab prior performs better than the
horseshoe in capturing the sparsity of regression coefficients. However, we find that Markov
chain Monte Carlo (MCMC) algorithms with horseshoe priors have improved mixing, which
suggests that Bayesian shrinkage with the horseshoe prior and its generalizations, such as the
regularized horseshoe prior, could be a promising direction to explore for high dimensional
robust regression.

Key words: Bayesian lasso; Markov chain Monte Carlo; Model averaging; Robust regression;
Spike and slab prior; Variable selection.
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1. Introduction

The majority of Bayesian variable selection methods for linear regression have fo-
cused on normal errors, which is a challenging problem in its own right, especially for high
dimensional problems. Since estimates derived under the normality assumption for errors
can be sensitive to outliers, our goal is to robustify the error distribution. The Bayesian
variable selection method for linear regression with normal errors can adapt to an unknown
degree of sparsity by placing a prior on the unknown inclusion probability of variables. De
and Ghosh (2024) developed a model with additional flexibility by allowing the likelihood to
simultaneously adapt to an unknown degree of tail heaviness. They focused on the class of
scale mixtures of normal densities for robust error distributions. The availability of the scale
mixture of normal representation of the heavy tailed error models makes it convenient to
implement MCMC sampling algorithms. Let the error distribution have the following form:

p(ϵ) =
� ∞

0

1√
2πσ2

e− ϵ2
2σ2 dF (σ2), (1)

such that F (.) is a cumulative distribution function (CDF). Then the random error ϵ is said
to follow a scale (or variance) mixture of normals, and F (.) is called a mixing distribution.
Some popular distributions that can be represented by the scale mixtures of normal rep-
resentation are the hyperbolic, Student-t, Laplace (double exponential), exponential power
etc. (Andrews and Mallows (1974); West (1987); Gneiting (1997)).

In particular, the hyperbolic distribution forms a vital point of attention in this article.
The said distribution has the following probability density function:

ph(ϵ; η, ρ2) = 1
2
√

ηρ2K1(η)
e

−
(

η

(
η+ ϵ2

ρ2

))1/2

, −∞ < ϵ < ∞, (2)

where K1(.) is a modified Bessel function, η > 0 is the shape parameter regulating the
tail heaviness and ρ2 > 0 is the scale parameter. Gneiting (1997) showed that the above
distribution can be represented as a generalized inverse Gaussian (GIG) scale mixture of
normally distributed random variables, and thus the hyperbolic distribution belongs to the
family of scale mixture of normal distributions, defined in (1). We provide more detail
in Section 2 about this representation. In a regression problem, using a hyperbolic error
model is equivalent to using a hyperbolic loss function. Additionally, the hyperbolic loss has
similarities with the Huber loss (Park and Casella (2008)). The Huber loss is popular for
robust regression in the frequentist literature but it is computationally difficult to handle in
a Bayesian set up. Accordingly, in a Bayesian setting, we focus on the hyperbolic loss as
an alternative to the Huber loss, like previous authors (Park and Casella (2008); Kawakami
and Hashimoto (2023); De and Ghosh (2024)).

Bayesian variable selection with two component mixture priors used by De and Ghosh
(2024) leads to a vast model space, when the number of covariates is large. An alternative
strategy that has been shown to perform favorably is using a continuous shrinkage prior to
replace the mixture priors. For example, the Bayesian lasso (Park and Casella (2008)) is
a continuous shrinkage prior, which has been implemented by Kawakami and Hashimoto
(2023), for regression models with hyperbolic errors. Another well known technique is to use
the Bayesian horseshoe prior (Carvalho et al. (2010), Makalic and Schmidt (2015), Bhadra
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et al. (2017)), which also belongs to the family of continuous shrinkage priors and has
been demonstrated to perform very well for shrinking noise variables to practically zero,
while keeping signals almost intact for the normal means problem. For a p × 1 vector β of
regression coefficients, the horseshoe prior is defined as

(βj | λj, τ 2, ρ2) ind∼ N(0, λ2
jτ

2ρ2), λj
ind∼ C+(0, 1), τ ∼ C+(0, 1), (3)

for j = 1, 2, . . . , p, where ρ2 is the scale of the error distribution, and C+(0, 1) represents the
standard half-Cauchy distribution with the density function

p(x) = 2
π(1 + x2) , x > 0.

In the context of regression models with heavy tailed errors, the horseshoe prior has been
utilized by Hamura et al. (2022). However, the focus of their paper is on super-heavy tailed
error distributions, in comparison to which even the Student-t distribution is regarded as
a thin tailed distribution. Hamura et al. (2022) considered the horseshoe prior for illustra-
tion for some applications, but most of the paper focuses on multivariate normal priors for
regression coefficients. In contrast, this article focuses on hyperbolic errors as a proxy to
the Huberized loss function. The main question of interest that we try to investigate is how
methods based on horseshoe priors compare with those based on lasso, and spike and slab
priors, under varying levels of sparsity.

The article is organized as follows. In Section 2, we introduce the hyperbolic distri-
bution and horseshoe priors, and develop an algorithm for posterior computation. In Section
3 we conduct simulation studies with the true model having hyperbolic errors, and compare
the results of the posterior estimates from the horseshoe prior versus the spike and slab prior
(De and Ghosh (2024)) and the Bayesian lasso prior (Kawakami and Hashimoto (2023)).
In Section 4, we analyze the famous Boston housing data with the three aforementioned
priors, after adding noise variables to the original dataset. Finally, in Section 5, we provide
a summary of the results, and discuss some future directions.

2. Hyperbolic error model with horseshoe prior

Let Y, X and β denote the n×1 vector of response variables, the n×p design matrix,
and the p × 1 vector of regression coefficients, respectively. We consider a regression model

Y = Xβ + ϵ, (4)

where ϵ = (ϵ1, . . . , ϵn)T is the n×1 vector of errors, such that ϵi
iid∼ ph(ϵi; η, ρ2), i = 1, 2, . . . , n,

where ph(.; η, ρ2) is the hyperbolic density with parameters η and ρ2 defined in (2). Park
and Casella (2008) showed that the normal scale-mixture representation by Gneiting (1997)
leads to the representation of (4) in a computationally convenient form as

Y | β, σ2
1, σ2

2, . . . , σ2
n ∼ N(Xβ, D), (5)

p(σ2
1, . . . , σ2

n|η, ρ2) =
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1
2K1(η)ρ2 e

− η
2

(
σ2

i
ρ2 + ρ2

σ2
i

)
, (6)
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where D = diag(σ2
1, σ2

2, . . . , σ2
n), and N(Xβ, D) denotes the multivariate normal distribu-

tion with mean and variance covariance matrix as Xβ and D, respectively. The diagonal
elements of D have independent GIG distributions. Marginalizing out these scale param-
eters will yield a likelihood with independent hyperbolic errors with the form given in (2).
The aforementioned normal scale-mixture representation of the hyperbolic error model is
an important computational trick for developing a Gibbs sampling algorithm for posterior
computation in our subsequent Bayesian analysis.

A Bayesian approach requires putting suitable priors on all unknown parameters. For
the above model, this requires putting priors on the vector of regression coefficients, β, as
well as on the two other model parameters, namely, η and ρ2, which correspond to the error
distribution. In this article, our goal is to use the horseshoe prior on regression coefficients
in conjunction with an hyperbolic error model. To that end, we use the following hierarchi-
cal representation of the horseshoe prior in (3), proposed by Makalic and Schmidt (2015),
which facilitates posterior computation via Gibbs sampling. In particular, this hierarchical
representation leads to closed form full conditional distributions for all unknown parameters,
which is a crucial step for the subsequent Bayesian analysis.

p(β|λ2
1, λ2

2, . . . , λ2
p, τ 2, ρ2) =
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2πρ2τ 2λ2

j

e
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2
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j

ρ2τ2λ2
j

)
,

p(λ2
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) 1
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,
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( 1
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) 1
2 +1

,

p(ξ) = 1
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ξ

(
1
ξ

) 1
2 +1

. (7)

The hierarchical prior structure in (7) is equivalent to the horseshoe prior in (3) on the
regression coefficients, upon marginalization over νj’s (j = 1, 2, . . . , p) and ξ. As far as the
scale parameter ρ2 and the shape parameter η of the error density are concerned, we put the
following priors:

p(ρ2) = ba

Γ(a)(ρ2)−(a+1)
e−b/ρ2

,

p(η) = 1
K

, for η ∈ {η1, . . . , ηK}. (8)

To reduce ambiguity about different forms of parametrizations, we have directly specified
the probability density function (pdf) or probability mass function (pmf) in the above prior
specification. In particular, we have specified a conditional normal prior on the regression
coefficients, inverse gamma priors on the scale parameters, and a discrete uniform prior on
the tail heaviness parameter η. The full conditional distributions corresponding to the above
priors lead to standard distributions from which sampling is straightforward. We use Gibbs
sampling to approximately sample from the joint posterior distribution.
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3. Simulation study

In this section, we generate data from models with hyperbolic errors, and compare
the performances of posterior distributions under the horseshoe, lasso, and spike and slab
priors. We consider two cases as follows.

3.1. Sparse true model

We first consider an example with n = 100 observations and p = 15 (excluding the
intercept). We generate the errors from a hyperbolic distribution with η = 0.5 and ρ2 = 2.
We set the intercept equal to 2 and specify a relatively sparse model with 5 nonzero regres-
sion coefficients, all equal to 3. We generate 100 datasets from this model. We set the priors
and hyperparameters for lasso and spike and slab priors following De and Ghosh (2024),
denoted by them as HBL (Bayesian Huberized lasso) and HEM (hyperbolic error model),
respectively. For the priors proposed by us in this article, given in (7) and (8), we use the
same hyperparameters for the tail heaviness and scale parameters, η and ρ2, respectively, as
the other two priors. In particular, we standardize the response variables and each column
of the design matrix, to have mean and standard deviation equal to 0 and 1, respectively.
We set a = 2.1 and b = 0.1 for the hyperparameters of the inverse gamma prior on ρ2,
to have most of the prior mass between 0 and 1. This choice is not unreasonable as the
response variables have been standardized to have variance equal to 1. For the tail heaviness
parameter η, we specify the support points as {0.05, 0.1, 0.2, 0.3, . . . , 1, 2, 5, 10, 20, 50}, fol-
lowing De and Ghosh (2024), to have a wide range of tail heaviness parameters. We run the
MCMC algorithms for 100,000 iterations, after a burnin of 10,000 iterations. We estimate
the regression coefficients using posterior medians of the MCMC samples.

The results are summarized in Figures 1 and 2. The top left panel in Figure 1 shows
the root mean squared error (RMSE) for signals (nonzero regression coefficients, excluding
the intercept term), that is √√√√√√

p∑
j=1

βj ̸=0

(
βj − β̂j

)2
/5,

where β̂j is the estimate of βj, j = 1, . . . p, and there are 5 nonzero regression coefficients.
This RMSE is similar for the horseshoe and lasso, and somewhat better for the spike and
slab prior. The top right panel shows the RMSE for 10 noise variables (zero regression
coefficients), that is √√√√√√

p∑
j=1

βj=0

(
βj − β̂j

)2
/10.

This is where the spike and slab prior shines, and the horseshoe is significantly better than
the lasso, though not as good as the spike and slab prior. The bottom left panel shows the
overall RMSE in estimating all regression coefficients (including the intercept β0), given by

√√√√ p∑
j=0

(
βj − β̂j

)2
/(p + 1).
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The bottom right panel shows the overall RMSE for each method, relative to the RMSE of
the method that has the smallest RMSE for that dataset. The relative RMSE for the spike
and slab prior is concentrated around 1, which shows it is the best method overall, followed
by the horseshoe, which also seems significantly better than the lasso prior.

Figure 2 shows the effective sample size (ESS), for the MCMC samples of the regres-
sion coefficients. ESS can be used to quantify the mixing in the Markov chain, and larger
values are preferable. For example, for independent Monte Carlo sampling, the values of ESS
would be equal to 100,000, the actual Monte Carlo sample size. For both signals and noise
variables, the lasso has the largest ESS, followed by the horseshoe, and the spike and slab
priors. Spike and slab priors are known to have slow mixing, so the results are in agreement
with this well known fact.

3.2. Non-sparse true model

We next turn to a non-sparse data generating model, with many nonzero regression
coefficients. The spike and slab and horseshoe priors are not expected to have as much
of an advantage over lasso, in this set up, as they had enjoyed in the previous sparse set
up. Here we set n = 200 observations and p = 30. We set the intercept equal to 2 as
earlier, and specify a non-sparse model with 20 nonzero regression coefficients, all equal to
0.8. Everything else is specified as in the earlier simulation study.

The results are presented in Figures 3 and 4. The advantage of the horseshoe prior
over the lasso prior disappears in this example, and while the spike and slab prior seems to
be the best overall from the bottom right panel in Figure 3, its gains over the other methods
is much reduced in this example. This is expected, due to the relatively non-sparse nature
of this example. Figure 4 shows that lasso still has the largest values of ESS for both signals
and noise variables. Thus this example illustrates scenarios where the lasso prior could be
preferable, compared to spike and slab and horseshoe priors.

4. Application to boston housing dataset

We use the Boston housing dataset, available from the MASS package in R. This dataset
is known to be heavy tailed compared to a normal distribution, and has been extensively
used as a benchmark dataset in the literature, to illustrate the performance of methods
in robust regression. The dataset has n = 506 observations and p = 13 covariates. The
response variable is the median value of occupied homes in Boston, and the covariates are
crime rate, property tax, distance to Boston employment centers, access to highways etc.
We use a log transformation on the response variable, so that the distribution of residuals is
roughly symmetric.

A preliminary frequentist linear regression analysis with the usual assumption of
normal errors shows that most of the variables have significant p-values; or in other words,
the vector of regression coefficients is not sparse. We have illustrated in the second example
of the simulation study, that spike and slab and horseshoe priors are are not expected to
have much of an advantage in such non-sparse scenarios. To make the application more
interesting, we add 30 noise variables, generated from a normal distribution with mean 0
and standard deviation 1, to the original dataset, to have a total of p = 43 covariates.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

HORSESHOE PRIOR FOR BAYESIAN REGRESSION WITH HYPERBOLIC ERRORS 205

SS H L

0.
10

0.
20

0.
30

0.
40

R
M

SE
 fo

r s
ig

na
ls

SS H L

0.
0

0.
1

0.
2

0.
3

R
M

SE
 fo

r n
oi

se
 v

ar
ia

bl
es

SS H L

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

R
M

SE
 fo

r b
et

a

SS H L

1.
0

1.
5

2.
0

2.
5

R
el

at
ive

 R
M

SE
 fo

r b
et

a

Figure 1: Results for simulation study under sparse true model with p = 15 and
n = 100. Box plots in the top panel show the root mean squared error (RMSE)
corresponding to spike and slab (SS), horseshoe (H), and lasso (L) priors for 100
datasets, for signals and noise variables respectively. Box plots in the bottom
left panel show the overall RMSE in estimating all the regression coefficients,
including the intercept. Box plots in the bottom right panel show the overall
RMSE relative to the RMSE of the best method; values of relative RMSE close
to 1 indicate that the method is frequently the best.
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Figure 2: Results for simulation study under sparse true model with p = 15 and
n = 100. Box plots show the effective sample size (ESS) of the MCMC samples for
the regression coefficients, corresponding to spike and slab (SS), horseshoe (H),
and lasso (L) priors for 100 datasets, for signals and noise variables respectively.

We randomly choose 50% of the observations to include in a training dataset, and use the
remaining 50% as a test dataset, to evaluate out of sample predictive performance of the
methods with different priors. To reduce sensitivity of the results to a specific choice of
training and test data split, we repeat the process 100 times, to create 100 different training
and test datasets.

We evaluate the predictive performance using both point and interval estimates. For
point estimate for prediction, we use the median of the posterior predictive distribution. For
each of the 253 observations in a test dataset, we compute the absolute difference between
the observed value of the response variable and its predicted value (both on log scale), and
then compute the median of these differences, which we refer to as Median absolute deviation
(MAD) for prediction. For 100 test datasets, we get 100 values of MAD. For each test dataset,
the method with the smallest MAD is deemed to have the best MAD, and the MAD for
the other methods are compared relative to the best MAD. This is repeated 100 times, and
presented in the left panel of Figure 5. If a method has values close to 1, that indicates the
method has the smallest MAD frequently. The difference between the methods based on
different priors is not large, but overall, the spike and slab prior seems to be the best with
smallest values of MAD, followed by the horseshoe, and then by the lasso prior. We next
consider interval estimates for prediction by estimating 90% equal-tailed prediction intervals
for each observation in the test datasets. The resulting frequentist coverage of the prediction
intervals is shown in the right panel of Figure 5. All methods seem to have coverage close to
90%, shown by the dashed line, though there is some variability around 90%. The diamond
in each box plot shows the overall coverage across 100 test datasets, which seems fairly close
to 90%.

5. Discussion

In this article, we have introduced an algorithm based on the horseshoe prior, for
robust regression with hyperbolic errors, as an alternative to existing methods that rely on
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Figure 3: Results for simulation study under non-sparse true model with p = 30
and n = 200. Box plots in the top panel show the root mean squared error
(RMSE) corresponding to spike and slab (SS), horseshoe (H), and lasso (L)
priors for 100 datasets, for signals and noise variables respectively. Box plots in
the bottom left panel show the overall RMSE in estimating all the regression
coefficients, including the intercept. Box plots in the bottom right panel show
the overall RMSE relative to the RMSE of the best method; values of relative
RMSE close to 1 indicate that the method is frequently the best.
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Figure 4: Results for simulation study under non-sparse true model with p = 30
and n = 200. Box plots show the effective sample size (ESS) of the MCMC
samples for the regression coefficients, corresponding to spike and slab (SS),
horseshoe (H), and lasso (L) priors for 100 datasets, for signals and noise vari-
ables respectively.
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Figure 5: Results for the Boston housing dataset, after adding 30 noise variables
to the original dataset with p = 13 covariates. Box plots in the left panel show the
median absolute deviation (MAD) for out of sample prediction, corresponding to
spike and slab (SS), horseshoe (H), and lasso (L) priors relative to the method
with the least MAD for that dataset, for 100 test datasets. The right panel
shows the corresponding coverage for 90% prediction intervals; the dashed line
is at 0.9 and the diamonds represent the overall mean coverage over 100 test
datasets.
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the spike and slab or lasso priors. Our results based on simulation studies suggest that the
horseshoe prior can improve upon the lasso prior in estimating sparsity. The horseshoe prior
seems to be outperformed by the spike and slab prior, in terms of accuracy in recovering
true parameters, for moderate dimensional problems that we investigated in this article.

We found that the mixing in the Markov chain for the horseshoe prior is consistently
better than that of spike and slab priors. It is well known that posterior computation
for Bayesian variable selection with spike and slab priors, does not scale well with high
dimensions. So for large p, the horseshoe prior could offer an alternative approach, given
its improved mixing. For hyperbolic regression, we found computation under the horseshoe
prior to be somewhat unstable for large p, due to having to invert large p × p matrices.
Further investigation is needed regarding how to make the computation more stable. One
possible direction is using the regularized horseshoe prior of Piironen and Vehtari (2017).
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Abstract
In this paper, we present some possible ways to perform estimation and testing for

cubic smoothing splines. Special emphasis is placed on the analysis of correlated data, when
using semi-parametric regression models (Schimek, 2000), and the so-called spline growth
model (Nummi and Koskela, 2008; Nummi et al., 2017), an extension of the basic growth
curve model (Potthoff and Roy, 1964; Rao, 1965). Furthermore, practical applications in
fields such as medicine and animal breeding are introduced, highlighting the versatility and
efficacy of cubic smoothing splines in real-world applications.

Key words: Covariance structures; Eigenvalue decomposition; Growth curves; Semi-parametric
regression.

AMS Subject Classifications: 62J05, 62J10

1. Introduction

In our paper, we specifically delve into the intricacies of cubic smoothing splines.
One of the standout advantages inherent in smoothing splines is their adaptability, granting
precise control over the delicate balance between interpolating data points and maintaining
the overall smoothness of the curve. This control is facilitated by a smoothing parameter,
empowering researchers to fine-tune the model for optimal performance. For statistical
inference with smoothing splines and semi-parametric regression we can refer to the books
by Eubank and Spiegelman (1990), Green and Silverman (1993), Ruppert et al. (2003), Wu
and Zhang (2006), Harezlak et al. (2018) and Stasinopoulos et al. (2017), for example.

The notable flexibility of smoothing splines extends beyond their ability to capture
intricate data patterns. They also boast a range of theoretical properties that significantly
enhance their utility. In various scenarios, smoothing splines emerge as a compelling alter-
native to parametric models. This preference arises from the inherent challenge of justifying
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the choice of a parametric function, which often lacks a clear rationale or relies on a rough
approximation of the true underlying function form.

Characterized by their high flexibility, splines offer an advantageous choice by pro-
viding a flexible and accurate approximation of the true function form. This is particularly
valuable in situations where a clear parametric alternative may prove elusive or is based on a
rough approximation. The limitations of parametric models become especially evident when
testing different competing models against each other, as they typically also provide a lim-
ited set of possible alternative hypotheses. In contrast, cubic smoothing splines offer a very
broad family of alternative model choices. When pitted against corresponding parametric
models, they not only showcase their adaptability but also present a more comprehensive
and versatile set of alternatives for a more robust model comparison. In this context papers
by Speckman (1988), Eubank and Hart (1992), Azzalini and Bowman (1993), Cantoni and
Hastie (2002), Härdle et al. (1998), Lin and Zhang (1999), Verbyla et al. (1999), Schimek
(2000),Zhang and Lin (2003), Liu and Wang (2004), Nummi et al. (2011), and Nummi et al.
(2013) serve as valuable references. This paper concentrates on the inference of cubic smooth-
ing splines and semi-parametric regression. Our methods exhibits flexibility also in the sense
that they apply also under correlated data, further extending its utility for testing growth
curves (Koskela et al., 2006; Nummi and Mesue, 2013; Nummi et al., 2017), for example.

In Section 2.1, we present some methods used to estimate cubic smoothing splines and
corresponding semi-parametric regression models. Subsequently, in Section 3, we elucidate
techniques for accurately approximating the spline fit, and introduce a comprehensive set
of hypotheses and tests relevant to semi-parametric regression models. Furthermore, we
illustrate these methods with an example of medical testing, demonstrating their practical
application potential. In Sections 4 and 5, we focus on estimation and testing in a spline
growth model and its multivariate extension. These methods are illustrated with a practical
application on animal breeding. In Section 6, some concluding remarks are provided.

2. Cubic smoothing splines and semi-parametric regression

2.1. Cubic smoothing splines

Consider the vector y = (y1, y2, . . . , yn)⊤, observed at measuring points
x = (x1, x2, . . . , xn)⊤ on the interval [a, b], where a < x1 < x2 < · · · < xn < b. A cu-
bic smoothing spline can be expressed as

y = g + ϵ, (1)

where g = (g(x1), g(x2), . . . , g(xn))⊤ represents a vector of the smooth, twice-differentiable
curve g(·). The term ϵ = (ϵ1, . . . , ϵn)⊤ ∼ Nn(0, σ2R) accounts for normally distributed
errors, where R is a covariance matrix characterized by parameters within the vector θ.

The estimation of cubic smoothing splines g can be achieved through a penalized
least squares criterion (PLS). This process commences by defining the roughness matrix
K = ∇∆−1∇⊤, wherein the non-zero elements of the banded n × (n − 2) matrix ∇ and the
(n − 2) × (n − 2) matrix ∆ are given by

∇k,k = 1
hk

, ∇k+1,k = −
(

1
hk

+ 1
hk+1

)
, ∇k+2,k = 1

hk+1
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and
∆k,k+1 = ∆k+1,k = hk+1

6 , ∆k,k = hk + hk+1

3 ,

where k = 1, 2, . . . , (n − 2) and hj = xj+1 − xj, with j = 1, 2, . . . , (n − 1). The penalized
least squares criterion at points x1, x2, . . . , xn is then expressed as

Q1 = (y − g)⊤R−1(y − g) + αg⊤Kg (2)

The minimum with a fixed positive smoothing parameter α is a cubic smoothing spline (e.g.
Green and Silverman (1993))

g̃ = (H + αK)−1Hy = Sαy, (3)

where we denote H = R−1 and Sα = (H + αK)−1H is the so-called smoother matrix. It is
easily seen that if the covariance matrix R satisfies the equation

RK = K, or equivalently, K = HK, (4)

the smoother matrix reduces to the form Sα = (I + αK)−1. The resulting spline estimator
in this case becomes as Nummi and Koskela (2008),

ĝ = (I + αK)−1y. (5)

It can be seen that this estimator does not depend on the covariance matrix R. It is
demonstrated in Nummi et al. (2011) that certain important covariance structures used in
the analysis of repeated measures or longitudinal data satisfy condition (4). These structures
include the uniform covariance structure R = I + d211⊤ and the linear structure R =
I + XDX⊤, where d2 > 0, D is positive definite, and X = (1, x), for example. It is worth
noting that in this scenario, when the smoothing parameter α is fixed, the estimated splines
become simple linear functions of the observations y1, y2, . . . , yn, and further this offers also
the possibility to use the methodology in the case of correlated data, which will be tackled
in particular in Section 4.

2.2. Semi-parametric regression

The spline model in (1) seamlessly extends into a semi-parametric regression model

y = Ub + g + ϵ, (6)

where Ub represents the linear component, with U being a full-rank n × k matrix of values
of k explanatory variables (excluding the constant term), and b a k-vector of unknown
parameters. Semi-parametric regression models have been considered in Nummi et al. (2013),
Green and Silverman (1993), Schimek (2000), and Wu and Zhang (2006), for example. The
PLS criterion for this case is expressed as

Q2 = [y − (Ub + g)]⊤H[y − (Ub + g)] + αg⊤Kg. (7)

Minimizing with respect to b and g leads to the following estimates (Green and Silverman,
1993)

b̃ = [U⊤H(I − Sα)U]−1U⊤H(I − Sα)y (8)
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and
g̃ = Sα(y − Ub̃), (9)

where Sα = (H + αK)−1H. It can be shown that if the condition (4) holds, the estimates
simplify to (Nummi et al., 2013)

b̂ = [U⊤(I − Sα)U]−1U⊤(I − Sα)y, (10)

where ĝ = Sα(y − Ub̂), Sα = (I + αK)−1 and the fitted semi-parametric curve can be
obtained as

µ̂ = My, (11)
where M = Sα + Ũ[Ũ⊤U]−1Ũ⊤ and Ũ = (I − Sα)U, respectively. It appears that, once the
smoothing parameter α is fixed, the estimation process for both the cubic smoothing spline
and the semi-parametric model becomes quite straightforward. In the upcoming chapter, we
will delve into the methodologies employed for hypothesis testing.

3. Testing

3.1. Approximate fit

Testing in the context of cubic splines poses challenges, primarily because the smoother
matrix inherently lacks the properties of a projector matrix. Consequently, established meth-
ods, such as those developed for linear models, do not seamlessly apply to cubic splines. Here
we outline a few potential avenues and methodologies for conducting tests related to various
hypotheses.

Our approach is centered around approximating the smoother matrix Sα with a ma-
trix possessing the properties of a projector matrix. This approximation not only yields
a highly accurate representation of a cubic smoothing spline fit but also generates a cubic
spline itself, as it is rooted in a linear combination of cubic splines (Nummi et al., 2011). It
can be demonstrated that Sα can be decomposed as (see also Hastie (1996))

Sα = T(I + αΛ)−1T⊤, (12)

where the matrix of eigenvectors T = (t1, . . . , tn) can be directly calculated from the rough-
ness matrix K, and the eigenvalues Λ = diag(λ1, . . . , λn) of K are interrelated with Sα such
that the eigenvalues of Sα are given by γj = 1/(1 + αλi), indicating a reverse order of eigen-
vectors of K and Sα. Intriguingly, the sequence of eigenvectors of Sα appears to increase in
complexity like a sequence of orthogonal polynomials (see e.g., Ruppert et al. (2003)), and
the eigenvalues γj ∈ (0, 1) show how much dumping is made for each tj when the smoother
is applied. We can effectively approximate Sα by

Mc = TcT⊤
c , (13)

where Tc = (t1, t2, . . . , tc) denotes the first c eigenvectors of T, which can be chosen using
modified generalized cross-validation criteria (Nummi and Mesue, 2013)

GCV1(c) =
1
n

∑n
i=i[yi − ȳi]2

(1 − c
n
)2 , (14)
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where ȳi is now computed using the formula (5) with Sα replaced by Mc, for instance.
It was demonstrated in Nummi et al. (2011) that this yields a pretty good approximation
especially if the number of effective degrees of freedom is not unreasonably large. Further
decomposition of Tc (c > 2) takes the form Tc = (T2, Tc−2), where T2 encompasses the first
two eigenvectors, and Tc−2 comprises the remaining eigenvectors. Note that we can take
T2 = (t1, t2), where t1 = 1/

√
n and t2 is given by t2i = (xi − x̄)/S2

x, where x̄ is the mean
of xis and S2

x = ∑n
i=1(xi − x̄)2 (Nummi et al., 2011). It is easy to see that t1 and t2 span a

straight-line model.

We can now approximate ĝ for model (1) by

µ̃ = Mcy = (M1 + M2)y, (15)

where M1 = T2T⊤
2 and M2 = Tc−2T⊤

c−2 and further for the model (11) we have

µ̃ = M̃y = (Mc + M3)y, (16)

where M3 = Ū[Ū⊤U]−1Ū⊤ and Ū = (I − Mc)U, respectively.

3.2. Hypotheses and test statistics

Testing is based on sums of squares as defined in this paragraph. It is first noted that
if we have the correlation model R = I + XDX⊤, for example, we have M̃XDX⊤ = XDX⊤

and therefore
(I − M̃)(I + XDX⊤)(I − M̃) = (I − M̃). (17)

We can further note that, under normality and the assumed correlation model, the following
relationships hold (Nummi et al., 2013)

σ−2y⊤(I − M̃)y = σ−2Smin ∼ χ2
n−c−k. (18)

Similarly, we can define

σ−2y⊤(I − Mc)y = σ−2Sspl ∼ χ2
n−c, (19)

σ−2y⊤(I − M1)y = σ−2Slin ∼ χ2
n−2 (20)

and
σ−2y⊤(I − Pi)y = σ−2Sreg,i ∼ χ2

n−k−i, i = 1, 2, (21)

where Pi = Ui(U⊤
i Ui)−1Ui, where for i = 1, U1 = (1, U) and i = 2, U2 = (X, U), and

where X = (1, X), respectively. These sum-of-squares expressions can now be utilized for
the hypothesis testing of different special cases of the basic semi-parametric model. We can
now formulate a set of compelling hypotheses each designed to assess various aspects of the
models introduced. Note that the tests introduced in this section are applicable also to
correlated data, provided an appropriate form of covariance matrix is employed.
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3.2.1. Test 1: Cubic smoothing spline

The first test introduced here aims to scrutinize whether the basic linear model is
applicable when compared to the assumed cubic smoothing spline alternative (model (1)).
The hypotheses are formulated as follows

H0: µ = Xb2,

where X = [1, x] and b2 is a vector of two regression coefficients. The alternative hypothesis
is

Ha: µ = g,

where g represents the assumed spline model. Since McM1 = M1 (columns M1 are in the
span of Mc) it is observed that (I − Mc)(Mc − M1) = 0 and therefore Sspl and Slin − Sspl

are independent and

F1 = (Slin − Sspl)/(c − 2)
Sspl/(n − c) ∼ F (c − 2, n − c). (22)

Then observing a larger F1 than quantile F1−α(c − 2, n − c) yields the rejection of the null
hypothesis. It was shown in a power study of Nummi et al. (2011) that this test performed
very well when compared to other alternatives.

3.2.2. Tests 2: Semi-parametric model

A) Testing the significance of linear covariates in the full model

Suppose the full semi-parametric model may include a set of linear covariates, denoted
as U. We first test the significance of this set in the full model. The null hypothesis is

H0: µ = g,

and the alternative hypothesis, a full semi-parametric model, is

Ha: µ = Ub + g,

where Ub is a linear term and g is a smoothing spline term. Using similar arguments as
before, we get

F2A = (Sspl − Smin)/k

Smin/(n − k − c) ∼ F (k, n − k − c). (23)

If the observed F2A is larger than the critical value F1−α(k, n − k − c), we reject the null
hypothesis.
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B) Assessing the fit of the model with linear model

This test evaluates whether the assumed linear model provides a better fit compared
to a semi-parametric alternative. The hypotheses are defined as follows

H0: µ = Uk+2bk+2,

where Uk+2 = [X, U], X = [1, x], and bk+2 is a vector of k + 2 regression coefficients. The
alternative hypothesis remains the same as in part A. The test statistic for this hypothesis
becomes

F2B = (Sreg,2 − Smin)/(c − 2)
Smin/(n − k − c) ∼ F (c − 2, n − k − c). (24)

If the observed F2B exceeds the critical value F1−α(c − 2, n − k − c), we reject the null
hypothesis. According to Nummi et al. (2013), the power of this test was investigated
through a simulation study. The study found that estimating c from the observed data
results in only a minimal loss of power compared to the scenario where c is known.

3.2.3. Test 3: Linear model

Ultimately, we can explore the need to include the variable x, which was initially
presumed to be a smooth term (c > 2), as a linear term alongside other linear terms within
a full linear model. The hypotheses are formulated as

H0: µ = Uk+1bk+1,

where Uk+1 = [1, U], and bk+1 is a k + 1 vector of regression coefficients. The alternative
hypothesis is

Ha: µ = Uk+2bk+2,

where Uk+2 = [X, U] and this can be tested as

F3 = (Sreg,1 − Sreg,2)
Sreg,2/(n − k − 2) ∼ F (1, n − k − 2). (25)

Then observing a larger F3 than quantile F1−α(1, n − k − 2) yields the rejection of the null
hypothesis.

Example 1: PSA testing

As an illustration, we utilized part of the dataset gathered for the Finnprostate Study
VII conducted by Professor Teuvo L. J. Tammela in Finland in 1990-2000 at Tampere Univer-
sity. The primary objective of this study was to examine individuals susceptible to prostate
cancer. It is important to note that in this article, we will refrain from delving into the med-
ical intricacies of the subject matter. Instead, our focus is solely on employing this dataset
to exemplify the methodologies presented.
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Figure 1: Plot of approximated spline fit for the values of prostate-specific anti-
gen (log(ng/mL) as a function of values of alkaline phosphatase test (U/L).

In this instance, our examination of 537 individuals is centered on the variables
Prostate-Specific Antigen (PSA, ng/mL), Body Mass Index (BMI, kg/m2), Prostate Length
(Length, cm), and Alkaline Phosphatase test (AFOS, U/L). The primary aim of our study is
to construct a model for the log(PSA) value utilizing the variables AFOS, BMI, and Length.
To commence, we explore the relationship between PSA and AFOS, assuming that a suitable
spline model would best describe this connection. Employing the criteria GCV ∗(c), where c
ranges from 1 to 6, we obtain the values 6.3152, 0.9808, 0.9042, 0.8791, 0.8755, and 0.8769.
Consequently, our preferred choice is c = 5. It should be noted that for some measuring
points x1, . . . , xn, we have multiple values and therefore we need to replace the smoother
matrix Sα by

Sα = N(N⊤N + αK)−1N⊤, (26)

where N is an incidence matrix of corresponding measuring times. The approximated spline
fit is depicted in Figure 1. Upon subjecting this to a linear model test (Test 1), we obtain
F1 = 22.45, with the corresponding quantile F0.95(3, 532) = 2.622. This unequivocally rejects
the null hypothesis concerning a linear association.

Subsequently, we delve into semi-parametric model 6. Our preliminary analysis sug-
gests that BMI, Length, and the interaction term Alkaline×OI can be utilized as explanatory
variables in the U-matrix, where OI is the obesity indicator (OI = 1 if BMI > 30, and
0 otherwise). Alkaline with c = 5 is used in (16) for model fitting and testing. Using the
test statistic F2A, we evaluated the significance of this set of covariates within the full semi-
parametric model. The resulting value,F2A = 17.06, exceeds the corresponding critical value
F0.95(3, 529) = 2.62, indicating clear significance. Additionally, the value of the test statistic
F2B is 28.63, which also surpasses the critical value F0.95(3, 529) = 2.62. Consequently, the
null hypothesis is firmly rejected, confirming that the model is semi-parametric rather than
fully linear. Test 3 is not executed in this scenario, as it only becomes relevant if the null
hypothesis from Test 2B is accepted.
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4. Testing for growth data

In certain cases, growth modeling can be grounded in a theoretical framework, en-
abling the derivation of a parametric model for developmental processes. However, more
frequently, such a theoretical foundation may be lacking, necessitating the adoption of al-
ternative approximations. We found that cubic smoothing splines for many cases provide a
well justified alternative since they quite accurately follow the true growth function. In the
following, we outline the methodology for testing some relevant hypotheses when employing
cubic smoothing splines to model the growth function.

The growth curve model of Potthoff and Roy (Potthoff and Roy, 1964) can be written
as

Y = TBA⊤ + E, (27)
where Y = (y1, y2, . . . , yn) is the q × n matrix of independent q × 1 response vectors, T is a
q × p within-individual design matrix, A is an n × m between-individual design matrix, B
is an unknown p × m parameter matrix to be estimated and E is a q × n matrix of random
errors. It is assumed that the columns e1, . . . , en of E are independently normally distributed
as ei ∼ Nq(000,ΣΣΣ), i = 1, . . . , n.

We can write model (27) in a more general way by using cubic smoothing splines.
Let

Y = GA⊤ + E, (28)
where G = (g1, . . . , gm) is the matrix of smooth mean growth curves at time points t1, t2, . . . , tq.
We further assume that ΣΣΣ is a parsimonious covariance structure ΣΣΣ = σ2R(θθθ) with covari-
ance parameters θθθ. Model (28) is referred to as the spline growth model (SGM). Note that
we get the Potthoff and Roy model as a special case by setting G = TB. The smooth solu-
tion for the matrix of mean growth curves G can be obtained by minimizing the following
penalized least squares (PLS) objective function

Q = tr[(Y − GA⊤)⊤R−1(Y − GA⊤) + αAG⊤KGA⊤], (29)

where α is a fixed smoothing parameter and K is the roughness matrix defined in Section
2.1. It can be easily seen that Q can be rewritten n the form

Q = tr[(GA⊤ − (H + αK)−1HY)⊤(H + αK)(GA⊤ − (H + αK)−1HY)] + w, (30)

where H = R−1, (H+αK) is a positive definite matrix and w = tr[Y⊤H−1(H+αK)−1H−1Y−
Y⊤HY] does not depend on G. The function Q is minimized for fixed values of α and H
when GA⊤ = (H + αK)−1HY. Multiplying both sides of the equation on the right by
A(A⊤A)−1 gives the spline estimator

G̃ = (H + αK)−1HYA(A⊤A)−1. (31)

The estimator G̃ has one drawback when thinking about practical applications. The matrix
H is unknown, so it should be estimated from the data. However, in some special cases the
estimator is simplified to a form that does not depend on the covariance matrix. Suppose
that the matrix H fulfills the condition K = HK (or equivalently R fulfills the condition
K = RK). Then the spline estimator (31) simplifies to

Ĝ = (Iq + αK)−1YA(A⊤A)−1 = SYA(A⊤A)−1, (32)
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where S = (Iq + αK)−1 is the smoother matrix. The smoothing parameter α can be chosen
by using the generalized cross-validation criteria

GCV2(α) =
1

nq
tr[(Y − Ŷ)(Y − Ŷ)⊤]

(1 − m·edf
nq

)2
, (33)

where Ŷ = ĜA⊤ and edf = tr(S) is the effective degrees of freedom of the smoother matrix
S.

As in Section 3, for testing we need to approximate the smoother matrix with a matrix
that has the properties of a projection matrix. We can approximate the spline estimate (32)
with

Ğ = McYA(A⊤A)−1, (34)

where Mc = TcT⊤
c and Tc contains the c first eigenvectors of the smoother matrix S. The

number of eigenvectors c can be easily estimated using a modified generalized cross-validation
criterion obtained by replacing Ŷ and edf in formula (14) with Y̆ = ĞA⊤ and c, respectively.
We can now approximate the fitted spline curves with

Y̆ = ĞA⊤ = TcT⊤
c YA(A⊤A)−1A⊤ = TcΩ̂A⊤, (35)

where Ω̂ = T⊤
c YA(A⊤A)−1. The matrix Ω̂ contains all the relevant information for testing

mean curves and it is also an unbiased estimate of the parameter matrix Ω of the statistical
model Y = TcΩA⊤ + E. Therefore, we will henceforth focus on testing linear hypotheses of
the form

H0 : CΩΩΩD = 0,

where C and D are known ν × c and m × g matrices with ranks ν and g respectively. It is
shown in Nummi and Mesue (2013) that testing can be based on

F = Q∗/νg

σ̂2 ∼ F [νg, n(q − c)], (36)

where
Q∗ = tr([D⊤(A⊤A)−1D]−1[CΩ̂ΩΩD]⊤[CT⊤

c RTcC⊤]−1[CΩ̂ΩΩD]) (37)
and

σ̂2 = 1
n(q − c)tr[Y⊤(Iq − Mc)Y]. (38)

In real-life applications, the matrix R contains parameters to be estimated and there-
fore the distribution of the F -statistic is only approximate. However, if we are only interested
in progression in time we can drop the constant term by using C = [0, Ic−1], and if the uni-
form covariance model R = d21q1⊤

q + Iq is assumed, the test statistic Q∗ simplifies to

Q∗∗ = tr([CΩ̂ΩΩD][D⊤(A⊤A)−1D]−1[CΩ̂ΩΩD]⊤). (39)

It can be shown that the distribution of the test statistics Q∗∗ is exact. This is an important
result since the uniform covariance model is quite common and a good approximation in
many situations. In Nummi and Mesue (2013) other kinds of situations are discussed, that
give an exact version of the F -test introduced here.
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Figure 2: Plot of approximated spline fits for Finncattle bulls (solid curve) and
Ayrshire bulls (dashed curve).

Example 2: Testing bulls at a research station in Finland

In this example, we present our methodology using a subset of data pertaining to
2712 bulls tested at an experimental station in Finland during the years 1965 to 1977. The
original dataset comprised three breeds: Ayrshire, Finncattle, and Frisian. However, for the
purposes of this illustration, we focused on a specific subset consisting of 208 bulls born
in 1966, with 168 Ayrshire and 40 Finncattle bulls. The bulls underwent regular weighing,
conducted every 30 days starting from the age of 30 days. For more comprehensive details,
see the references Lindström and Maijala (1970) and Liski (1987).

To set up the spline growth model the between-individual design matrix A was defined
as follows. For the Finncattle bulls, the rows of A are (1, 0) and for the Ayrshire bulls the
rows of A are (0, 1). Using the generalized cross-validation criteria (33), we got the smoothing
parameter α = 4142. The number of eigenvectors c was then estimated using the modified
generalized cross-validation criteria (33). The function GCV2(c) was minimized at c = 7.
Figure 2 gives the approximated spline fits for the Finncattle bulls (solid curve) and the
Ayrshire bulls (dashed curve).

To test if the progression is the same in both groups, we used the 6 × 7 matrix
C = (0, I6) and 2 × 1 vector D = (1, −1)⊤. The value of the F-test statistic is

F = 102.1803,
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which gives the P-value P(F6,1040 ≥ 102.1803) ≈ 0. Therefore, the null hypothesis of equal
progression of the response variable in the two test groups (Finncattle and Ayrshire) is clearly
rejected. We also calculated the P-value of the permutation test. We randomly permuted the
rows of matrix A and re-calculated the value of the F-statistic using the permuted matrix A.
After permuting A and re-calculating F -statistic N = 100, 000 times, we got the estimated
permutation test P-value

#{Fi ≥ 102.1803}
N

= 0.00086.

Therefore, it can be affirmed that testing of the growth curves against each other can be
readily implemented also using computational methods.

5. Testing in the multivariate spline growth model

The testing of the spline growth model can be generalized straightforwardly to a
multivariate response case. The multivariate spline growth curve model can be written as

Y = GA⊤ + E, (40)

where

Y = (y1, . . . , yn) =


y11 y21 · · · yn1
y12 y22 · · · yn2
... ... . . . ...

y1s y2s · · · yns


is a qs × n matrix of the vectors of measurements of s responses and

G = (g1, . . . , gm) =


g11 g21 · · · gm1
g12 g22 · · · gm2
... ... . . . ...

g1s g2s · · · gms


is the corresponding qs × m matrix of smooth mean curves. See Nummi et al. (2017) for
more details. For the covariance matrix R we can take, for example, a multivariate version
of the uniform structure

R = (Is ⊗ 1q)D(Is ⊗ 1q)⊤ + Iqs

=


d2

11q1⊤
q + Iq d121q1⊤

q · · · d1s1q1⊤
q

d211q1⊤
q d2

21q1⊤
q + Iq · · · d2s1q1⊤

q
... ... . . . ...

ds11q1⊤
q ds21q1⊤

q · · · d2
s1q1⊤

q + Iq

 . (41)

If we now define the roughness part of the fitting criteria as

Ks = W ⊗ K,

where W = diag(α1, . . . , αs) is a diagonal matrix of smoothing parameters α1, . . . , αs and K
is the roughness matrix computed using the time points t1, . . . , tq, then the roughness matrix
Ks meets the condition

RKs = Ks (42)
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and the unweighted spline estimator becomes

Ĝ = (Iqs + W ⊗ K)−1YA(A⊤A)−1

=


S(α1) O O . . . O

O S(α2) O . . . O
... . . . ...

O O O . . . S(αs)

YA(A⊤A)−1, (43)

where S(αj) = (Iq + αjK)−1, for j = 1, . . . , s. If we use the approximation technique
introduced earlier we get

Ĝ =


M•1M⊤

•1 O O . . . O
O M•2M⊤

•2 O . . . O
... ... . . . ...

O O O . . . M•sM⊤
•s

YA(A⊤A)−1, (44)

where M•jM⊤
•j = Pj is an approximation matrix for the jth variable. Note that the dimen-

sions needed can be estimated using the generalized cross-validation criteria introduced in
33. A straightforward generalization of the earlier considerations gives us an estimator

Ω̂ΩΩ = M⊤
• YA(A⊤A)−1, (45)

where M• = diag(M•1, M•2, . . . , M•s), of the multivariate growth curve model

Y = M•ΩA⊤. (46)

Testing can be based on the linear hypothesis

H0 : CΩΩΩD = 0,

where C and D are known ν × c and m × g matrices with ranks ν and g, respectively, with

F = Q∗/νg

σ̂2 ∼ F [νg, n(sq − ctot)], (47)

where ctot = c1 + · · · + cs and

Q∗ = tr{[D⊤(A⊤A)−1D]−1[CΩ̂D]⊤[CM⊤
• RM•C⊤]−1[CΩ̂D]} (48)

and
σ̂2 =

s∑
l=1

1
n(q − cl)

tr[Y⊤
l (Iq − Pl)Yl]. (49)

If we are interested in testing the equality of the progression of spline curves, then we can
choose

C = diag([0, Ic1−1], . . . , [0, Ics−1]) and D = [1m−1, −Im−1]⊤

and, furthermore, if we assume that the covariance matrix has a uniform structure (41), the
test statistic simplifies to the form

Q∗∗ = tr{[CΩ̂D][D⊤(A⊤A)−1D]−1[CΩ̂D]⊤}, (50)

which does not depend on the covariance matrix R. The F statistic is then distributed as
F [df1, df2] with degrees of freedoms df1 = (ctot − s)(m − 1) and df2 = n(sq − ctot).
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6. Concluding remarks

In this paper, we explored various methodologies for estimating and testing cubic
smoothing splines. We place particular emphasis on analyzing correlated data within semi-
parametric regression models, as well as the spline growth model, an extension of the basic
growth curve model. Additionally, we introduced practical applications including medicine
and animal breeding. These examples underscore the versatility and effectiveness of cubic
smoothing splines in real-world scenarios.
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Abstract
The science of cryptography makes use of knowledge from several areas of mathe-

matics including number theory, algebraic and combinatorial structures, probability, linear
algebra, information theory and others. In this article we give a brief and selected review of
some combinatorial structures and highlight their applications in some cryptograhic schemes.
Among these structures are the orthogonal arrays, which were introduced by Prof C. R. Rao
more than seventy years ago for applications in statistics. Their use in this new field of
cryptography is yet another example of the versatility and power of these arrays.
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1. Introduction and preliminaries

Cryptography is an ancient subject, with its early forms traceable to the Pharaonic
period of ancient Egypt. The early forms of cryptography were basically some forms of
a ‘substitution cipher’ in which the sender substituted each letter in the plain text of the
message by another letter according to some substitution rule g. This substitution rule was
known by the receiver and so he could use d = g−1 to get the original plain text back from
the cipher text. It is known that different versions of this method of cryptography were used
by the Romans in Caesar’s time, the Indians in ancient times, and in the world wars as the
rotor-cipher machines, e.g., the Enigma machine (cf. Kahn, 1996).

Over time, these encryption and decryption methods have grown in sophistication
and complexity. Currently, cryptography is a field of fundamental importance for protecting
the confidentiality and integrity in communication. Various ideas from mathematics and
statistics, for instance, number theory, specially prime numbers and finite fields, combina-
torics and designs of experiments, sampling methods, results from probability theory, are
used to design a variety of cryptographic schemes.
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In this article, we first describe some selected combinatorial structures which are used
by statisticians in the context of designs of experiments and then, we give a flavour of the
usefulness of these structures in the context of cryptography. This selection is purely subjec-
tive and for the sake of brevity, many other interesting uses of these and other combinatorial
structures in cryptographic schemes could not be covered.

Section 2 describes the combinatorial structures with examples. Section 3 introduces
some areas in cryptography and uses the examples of Section 2 to illustrate how these
combinatorial structures are useful in building the schemes for these areas. Throughout, we
avoid mathematical details and give references where the details may be found.

2. Some combinatorial structures

In this section we briefly review some of the combinatorial structures which are used in
statistics and give examples which are later used in Section 3. For details on these structures
we refer to the books by Raghavarao (1971) and Street and Street (1987). More details on
the applications of these structures to cryptographic schemes can be found in the books by
Stinson (2004), and Stinson and Paterson (2018), and in the references cited.

We shall write 1n and In to denote the unit vector of order n and the identity matrix
of order n, respectively. Let Ja×b = 1a1′

b and Oa×b be an a × b null matrix. A finite field of
order s will be denoted by GF(s), where s is a prime or prime power. We write Ω to denote
a set of s symbols, labeled by 0, 1, . . . , s − 1.

2.1. Hadamard matrix

Definition 1: An n × n matrix Hn, with elements −1 and 1 is called a Hadamard matrix if
HnH ′

n = nIn.

As seen below, H1 and H2 exist. For n > 2, it is known that Hn exists only if n is
an integral multiple if 4. According to the Hadamard conjecture, the converse is also true.
Clearly, any two distinct rows of Hn differ in exactly n/2 positions. Also, if we multiply all
elements in a row (or column) of Hn by −1, the matrix still remains a Hadamard matrix.
So, without loss of generality, we can write all Hadamard matrices in the standard form, i.e.,
with all entries in first row and first column being equal to 1.

There are many methods for constructing these matrices, the simplest one is due
to Sylvester (1867) who showed that if Hn is a Hadamard matrix, then H2 ⊗ Hn is also a
Hadamard matrix of order 2n where ⊗ denotes Kronecker product. Hence, with H1 = (1),

and H2 =
(

1 1
1 −1

)
, a Hadamard matrix of order 2k can be constructed for every non-

negative integer k. These matrices are in standard form and all rows (columns) except the
first row (column) have +1 in exactly n/2 positions and −1 in the remaining n/2 positions.

Example 1: H8 constructed by Sylvester’s method is as follows:



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

COMBINATORICS IN CRYPTOGRAPHY 229

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


In statistics, Hadamard matrices are used in constructing designs for experiments,

e.g., optimal weighing designs. These matrices have also found applications in signal pro-
cessing and telecommunication. (cf. Yarlagadda and Hershey (1997) and Serberry, Wysocki
and Wysocki(2005)). In section 3.2 we highlight the use of these matrices in constructing
error-correcting codes.

2.2. Orthogonal arrays

In a series of landmark papers (1946, 1947, 1949) C R Rao proposed some combi-
natorial structures with applications to statistics, and gave their constructions. Since then,
these structures have been widely studied and the entire class of these structures has been
called Orthogonal arrays (OAs).

Definition 2: An M ×k array with entries from a set Ω of s symbols is an orthogonal array
(OA) with M runs, s symbols, strength t(0 ≤ t ≤ k) and index λ if every M × t sub-array
of this array contains each t-tuple of elements from Ω exactly λ times as a row. Clearly,
M = λst. Such an array will be denoted by OA(λst, k, s, t).

From Definition 2.2 it follows that an OA of strength t and index λ is also an OA
of strength t′ (0 ≤ t′ < t) and index λst−t′ . Also, if a Hadamard matrix H4n exists, then
writing it in the standard form and then deleting the first column, one can easily obtain an
OA(4n, 4n − 1, 2, 2).

Rao (1946, 1947) gave a method for obtaining the OA(sn, sn−1
s−1 , s, 2) whenever n ≥ 2,

over GF(s). For this, we write all n-tuples from GF(s) as rows to get an sn × n array
with columns C1, C2, . . . , Cn. Then the columns of the OA are of the form ∑n

i=1 ziCi where
zi ϵ GF (s), zi not all zero, and the first non-zero zi is unity. This method of construction
gives what are known as linear OAs and is illustrated in Example 2.

Example 2: The following is an OA(8,7,2,2), where the first 3 columns are written first
and then the next 4 columns follow as described above.

0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 0 1 1 1
0 1 1 1 0 1 0
1 0 0 1 1 1 0
1 0 1 0 0 1 1
1 1 0 1 0 0 1
1 1 1 0 1 0 0



230
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

MAUSUMI BOSE [Vol. 22, No. 3

Many other methods of construction of orthogonal arrays are available in the litera-
ture. Rao (1947) gave bounds for N for OA(N = λst, k, s, t) and Bush (1952) gave improved
bounds for arrays of index unity. Arrays of index unity are of special interest and as shown
in Bush (1952), if s(≥ 2) is a prime power then an OA(st, s + 1, s, t) of index unity exists
whenever s > t. Furthermore, an OA(s3, s + 2, s, 3) exists if s is a power of 2 and Example
3 gives such an OA.

Example 3: OA(8,4,2,3) of index unity.
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 1

For a comprehensive exposition on OAs we refer to Hedayat, Stufken and Sloane
(1999). In statistics, OAs are used in constructing designs, specially in the context of frac-
tional factorial designs, (cf. Mukerjee and Wu (2006)). In Section 3 we describe the use of
OAs in constructing codes and threshold schemes.

2.3. Binary block designs

Definition 3: A block design is an arrangement of v symbols in b blocks or sets of sizes
k1, . . . , kb, the ith symbol occurring ri times in the design, 1 ≤ i ≤ v. The incidence matrix
N of the design is a v × b matrix, such that its (i, j)th element equals the number of times
the ith symbol occurs in the jth block, 1 ≤ i ≤ v, 1 ≤ j ≤ b. For 1 ≤ i1 < i2 ≤ v, let λi1i2

denote the number of blocks containing symbols i1 and i2.

The design is binary if the symbols in each block are distinct, i.e., N is binary. A
binary design with r1 = . . . = rv = r and k1 = . . . = kb = k shall be written as a binary
(v, b, r, k) block design.

2.4. Balanced incomplete block designs (BIBDs)

Definition 4: A binary (v, b, r, k) block design with k < v and λi1i2 all equal (=λ, say) is
called a Balanced Incomplete Block Design (BIBD).

We write such a design as BIBD(v, b, r, k, λ). It follows from Definition 2.3 that
b ≥ v, vr = bk and r(k − 1) = λ(v − 1). A BIBD with v = b, r = k is called a symmetric
BIBD. BIBDs with k = 3 (or Steiner’s triple systems) have been specially studied and one
is shown in Example 4.

Example 4: A BIBD(v = b = 7, r = k = 3, λ = 1), with blocks as columns.
2 1 1 2 1 4 3
3 3 4 6 2 5 5
4 6 7 7 5 6 7
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Definition 5: A BIBD (v, b, r, k, λ) is said to be resolvable if its blocks can be partitioned
into r sets, each set containing b/r blocks, such that every set contains each treatment exactly
once.

Example 5: A resolvable BIBD(v = 9, b = 12, r = 4, k = 3, λ = 1) with blocks grouped
into 4 sets of 3 blocks is shown below, blocks within each set written as rows:

1 2 3
4 5 6
7 8 9

1 4 7
2 5 8
3 6 9

1 6 8
2 4 9
3 5 7

1 5 9
2 6 7
3 4 8

Several methods of construction of BIBDs are known, e.g., if a Hadamard matrix Hn

exists and is in standard form, then deleting its first row and column and replacing -1 by 0,
we get the incidence matrix of a symmetric BIBD with parameters (v = b = 4t − 1, r = k =
2t − 1, λ = t − 1). Again, if we delete a block from this BIBD and delete all symbols that
occur in this deleted block, we get the residual design as a BIBD(2t, 4t − 2, 2t − 1, t, t − 1).

Example 6: Starting from H12, we can construct a BIBD(11, 11, 5, 5, 2). Then the residual
design obtained from this is a BIBD(6, 10, 5, 3, 2).

In statistics, BIBDs are well studied and known to be A-,D-,E-optimal for a full set
of orthonormal treatment contrasts in the class of all block designs with v treatments in b
blocks of size k each. In Section 3 we illustrate their use in obtaining anonymous threshold
schemes and visual cryptographic schemes.

2.5. Pairwise balanced designs (PBDs)

Definition 6: A block design with ri all equal (= r, say) and λi1i2 all equal (= λ, say),
is called a Pairwise Balanced Design. It will be written as PBD(v, {k1, . . . , kp}, λ) where
k1, . . . , kp are the possible block sizes.

Example 7: A PBD(5, {3, 2}, 2) with blocks shown as columns

1 2 1 2 1 2 3 4 1 1
2 3 3 4 3 3 5 5 2 4
5 4 4 5 5

In Section 3 we illustrate their use in obtaining visual cryptographic schemes.

2.6. Partially balanced incomplete block designs (PBIBDs)

Definition 7: A binary (v, b, r, k) block design with k < v and λi1i2 taking only 2 values,
(= λ1, or λ2, say) for all 1 ≤ i1 < i2 ≤ v. will be called a Partially Balanced Incomplete
Block Design (PBIBD) with two associate classes.

Such a design will be written as PBIBD (v, b, r, k, λ1, λ2). There are various association
schemes underlying PBIBDs, these schemes determining which pair of symbols occur together
λ1 times and which occur λ2 times. For simplicity, we do not elaborate on association schemes
and refer to Raghavarao (1971), pp 121-127, for details.
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Example 8: A PBIBD (6, 4, 2, 3, 0, 1) with blocks as columns

1 1 2 3
2 4 4 5
3 5 6 6

In Section 3 we illustrate their use in obtaining visual cryptographic schemes and also mention
their use in key predistibution networks.

3. Applications in cryptography

3.1. Codes and error-correcting codes

Definition 8: Let Ω be a set of elements or symbols. A set of k-tuples of the symbols in
Ω, where k ≥ 1 is an integer, is called a code C over the alphabet Ω. Each k-tuple in C is
called a codeword. If Ω = GF(2), then C is a binary code.

The Hamming weight of a codeword is the number of ones in it. The Hamming
distance between any two codewords is the number of positions in which they differ. The
distance of a code C, denoted by d, is the minimal Hamming distance between any two
distinct codewords in C. A code with N codewords, each of length k over an alphabet Ω
consisting of s elements, and having distance d may be written as a (N, k, d, s) code.

An error-correcting code can correct errors incurred during the transmission of data
over noisy channels. A linear block code takes a sequence of m symbols from Ω and encodes
it as a sequence of k(> m) symbols. The redundant elements are added to the original
message to facilitate recovery of the message. The ability of a code to detect and correct
errors is measured by its distance d; a code with distance d can correct up to a maximum of
e errors where e = ⌊ (d−1)

2 ⌋ and can detect up to d − 1 errors.

3.1.1. Hadamard codes

Error-correcting codes obtained from Hadamard matrices have the maximal error
correcting ability for a given length of codeword and so these are useful when a message
is transmitted over a noisy or unreliable channel. For instance, as described in Serberry et
al. (2005), these codes were used in the 1960’s in the Mariner and Voyager space probes to
encode information transmitted back to the earth and due to the powerful error-correction
capabilities of these codes, it was possible to decode properly the pictures of Jupiter, Saturn,
Uranus, Neptune and their moons.

Hadamard matrices obtained from Sylvetser’s method of construction are usually
used for obtaining Hadamard codes as they lead to linear codes, but Hadamard matrices
constructed by other methods lead to codes too, though not necessarily linear. These latter
codes were first studied by Bose and Skrikhande (1959) in connection with symmetrical block
code designs.

Let n = 2k. A Hadamard code C is obtained from a Hadamard matrix H2k by
replacing −1 by 1 and 1 by 0. The rows of C are the 2k codewords, each of length 2k. As
discussed in Section 2.1, all rows of Hn, other than the first row, have +1 in exactly n/2
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positions and any two distinct rows of Hn differ in exactly n/2 positions. So, with n = 2k,
each non-zero codeword in C has Hamming weight 2k−1 and any two codewords in C have
Hamming distance equal to 2k−1.

Example 9: Let a message x be represented as a binary vector of length 3. So m = 3 and
we use a code based on H8 shown in Example 1, by replacing -1 by 1 and 1 by 0. Table 1
shows the original messages and the corresponding encoded messages given by codewords of
length 8 obtained from rows of H8.

Incidentally, it may be mentioned here that the rows on the right side of Table 1 can
also be obtained as a linear transform of the array on the left, over GF(2). Then, on deleting
the first column of zeros, we get an orthogonal array OA (8,7,2,2) which is isomorphic to the
one shown in Example 2. So an OA (8,7,2,2), with a column of zeros added to it, can also
give the same code as in Table 1, but the construction of the code from H8 is simpler.

Table 1: Original and Encoded messages

Original message Encoded message
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1 0 1
0 1 0 0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0
0 0 1 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 1 0 1 0
0 1 1 0 0 1 1 1 1 0 0
1 1 1 0 1 1 0 1 0 0 1

For a message x, the encoded message is transmitted and the received message is a
vector of length 8, say y, with a possible error, i.e., flipping of 0 and 1. To decode y, we find
the Hamming distance between y and the 8 codewords, the message corresponding to the
codeword with the least Hamming distance will be the original message. For example, if y
= 0 1 0 0 0 1 1 0, then the Hamming distance between y and the 8 codewords in their order
of Table 1 are 3,3,5,1,3,3,5,5. The least value 1 corresponds to the codeword 0 1 1 0 0 1 1 0.
So the original message is decoded correctly as 1 1 0. Thus, one error can be corrected.

A Hadamard code has a large block length (= 2k) compared to the message length
k. However, it can correct 2k−2 − 1 errors in a 2k-bit encoded message, which is extremely
good.

Moreover, we can improve upon code C by writing the code as C =
(

H2k

−H2k

)
and

then replacing −1 by 1 and 1 by 0 as before. So by this method, the code in Example 9 can
be improved upon. It is easy to see from Definition 2.1 that such a code C can accommodate
k + 1 messages while still having block length 2k and distance 2k−1. This code C is also
sometimes called a Hadamard code and it is the same as the first order Reed-Muller code
over the binary alphabet.
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3.1.2. Codes from orthogonal arrays

For a (N, k, d, s) code, the Singleton Bound is N ≤ sk−d+1. Codes for which N
attains this bound are called the maximum distance separable (MDS) codes as they have
the maximum possible distance between codewords. It can be shown that orthogonal arrays
with index unity are equivalent to MDS codes, i.e., an (sk−d+1, k, d, s) code is equivalent to
an OA(st, k, s, t), where t = k −d+1. So MDS codes can be obtained from orthogonal arrays
of strength unity which were discussed in Section 2.2.

Example 10: When t ≥ 2 is an integer and s is a prime power, an OA(st, s, s, t) exists and
this gives an MDS (st, s, s − t + 1, s) code which is the well known Reed Solomon code, being
optimal with respect to the Singleton bound.

There is another bound on N called the Sphere-packing Bound and a code for which
this bound is satisfied with equality is called a perfect code. It can be shown that for s a
prime power and an integer n ≥ 2, if we start from the linear OAs(sn, sn−1

s−1 , s, 2) constructed
as in Example 2 and then take the code which is the orthogonal complement of this OA,
we will get a perfect (sm, sn−1

s−1 , 3, s) code, where m = sn−1
s−1 − n. These codes are known as

Hamming codes. When s = 2, the code is (22n−n−1, 2n − 1, 3, 2).

Example 11: Starting from an OA(8,7,2,2), shown in Example 2, the orthocomplement of
this array gives a binary Hamming code or a (16,7,3,2) perfect code.

Interestingly, from a binary Hamming code C if we form a matrix A with its columns
being the codewords of C with weight 3, then it can be seen that A gives the incidence
matrix of a symmetric BIBD with 2n−1 treatments and blocks of size 3, i.e. a Steiner’s
triple system. So the (16,7,3,2) code constructed as above will give the incidence matrix of
the BIBD (7, 7, 3, 3,1) as shown in Example 4.

3.2. Threshold schemes

Let a and b be two integers, 2 ≤ a ≤ b. Suppose there is a secret K and a set of b
participants P . A dealer who does not belong to P , assigns each participant a ‘share’, i.e.,
some partial information about K.

The method of assigning these shares is called a (a, b) threshold scheme if any a
participants can compute the secret K by pooling their shares, and no set of a−1 participants
can recover K from their shares. The secret K can be chosen from a set of secrets K and
each share is chosen from a specified share set S.

These schemes have many uses, e.g., there may be a set of 5 individuals, each of
whom hold a key to a safe but the safe can be opened only if 3 or more persons use their
keys together, it cannot be opened by any single person or 2 persons. This is a (3,5) threshold
scheme.

An (a, b) threshold scheme is called an anonymous (a, b) threshold scheme if the par-
ticipants receive distinct shares and the recovery of the secret can be done by a participants
without knowing which participant holds which share.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

COMBINATORICS IN CRYPTOGRAPHY 235

3.2.1. Threshold (a, b) schemes from orthogonal arrays

A (t, k) threshold scheme can be obtained from an OA(st, k + 1, s, t). For assigning
the shares, the rows of the OA are first rearranged so that they can be grouped in sets of
st−1 rows, the last column of every row in the ith group having the symbol i, 0 ≤ i ≤ s − 1.
The scheme will have s secrets each secret corresponding to one group and s shares, each
share corresponding to one symbol of the OA. The participants know the OA which is used
in the scheme.

If the dealer wants to assign secret i, he chooses one row at random from the ith
group and assigns the element in the jth column to the jth participant, 1 ≤ j ≤ k. This will
be a (t, k) threshold scheme. Since the OA has strength t and index unity, if t participants
combine their shares, there will be a unique row of the OA which will match with their t
shares in the corresponding t columns, and so the secret will be revealed. This is because,
with the knowledge of the OA, participants will be knowing the group that this unique row
comes from. There will not be any such unique row if t − 1 or fewer participants combine
their shares, thus making the scheme secure. This scheme is not anonymous since in order
to reveal the secret, it must be known which participant held which share.

Example 12: The OA(8,4,2,3) in Example 3 gives a (3,3) threshold scheme where all
participants have to get together in order to reveal the secret.

3.2.2. Anonymous (a, b) threshold schemes from resolvable BIBDs

An anonymous (2, k) threshold scheme can be obtained from a resolvable BIBD with
λ = 1. To see this, consider a resolvable BIBD(v, b, r, k, 1). From Definition 2.4, r = v−1

k−1 and
the b blocks can be divided into r disjoint sets say L1, . . . , Lr, each set having b

r
blocks. The

dealer can share r secrets, each secret associated with a set and there will be v shares, each
share associated with one symbol. There can be k participants, the resolvable design being
known to all participants. Suppose the dealer picks a set Li as the secret and chooses any
random block from this set. He allocates the k symbols in this block to the k participants,
each getting one symbol. This will be a (2, k) anonymous threshold scheme as illustrated
below.

Example 13: Consider the resolvable BIBD with λ = 1 in Example 5. It is divided into 4
sets L1, . . . , L4, and so, there are 4 secrets. Since k = 3 there can be 3 participants. Suppose
the secret is L2 and the dealer chooses the block {2,5,8} and allocates 2, 5, and 8 to the 3
participants, respectively. Now if participants 2 and 3 get together, their combined share is
{5,8} and since the BIBD has λ = 1, there is a unique block which can have the symbols 5
and 8 together. So they can identify the secret L2 uniquely, while this identification cannot
be done by any single participant. Thus this is a (2,3) anonymous threshold scheme. This
scheme is anonymous as it it not necessary to know which participant held which share.

3.3. Visual cryptographic schemes

Visual cryptographic schemes (VCS) are threshold schemes which encode a secret
image or text in such a way that the decoding can be done simply by the human eye,
without any computations. Naor and Shamir (1994) introduced VCS for black and white
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images. In a (k, n) VCS with n participants, a secret image, or text is encrypted into n
shares, each share being printed on a transparency sheet. Each participant is given one
share, and if k of them stack their shares one on top of another, the secret is discernible
visually. If less than k participants stack their shares, the secret is not visible.

During encryption, each pixel of the original image is encrypted into a number of
subpixels, say m. This number m is called the pixel expansion of the VCS. The clarity with
which a reconstructed image is visible is measured by the relative contrast of the VCS. The
aim is to keep m small and relative contrast high.

For simplicity, we will only elaborate on VCS for black and white images.

Suppose the n participants are labeled as 1, . . . , n. Given a Boolean matrix A, let
Ai denote its ith row and Aij denote the Boolean ‘or’ of rows Ai and Aj. Let w(T ) be the
weight of a Boolean vector T . We assume that the secret image is a collection of black and
white pixels, and a black(white) pixel will be represented by 1(0).

Definition 9: A (2, n) VCS, with n participants and pixel expansion m, is defined by two
n × m Boolean basis matrices S1 and S0, respectively, for black amd white pixels such that
(i) S1 and S0 are equal up to a column permutation, i.e., w(S1

i ) = w(S0
i ), 1 ≤ i ≤ n, and

(ii) w(S1
i1,i2) > w(S0

i1,i2), 1 ≤ i1 < i2 ≤ n.

Let π be a random permutation of {1, . . . , m}. While encryption, if a pixel in the
secret image is black(white), then π is applied to the columns of S1(S0) and row i of the
permuted matrix forms the share of the ith participant. Thus each pixel of the image is
encrypted and distributed into n shares, each of which consists of m subpixels. The random
permutation used in allocating shares together with condition (i) of Definition 3.2 ensures
that no single participant can recover the image. Moreover, for any ii < i2, if shares i1 and
i2 are stacked together by aligning the subpixels, and the combined share is obtained by
taking the Booelan ‘or’ of these 2 shares, then condition (ii) of Definition 3.3 guarantees
that the grey level of a black pixel is darker than that of a white pixel and this makes the
recovered image discernible. For any i1 < i2, the quantity ξi1,i2 = m−1{w(S1

i1,i2) − w(S0
i1,i2)}

is positive in view of (ii), and it is called the relative contrast of the recovery of the image
by participants i1 and i2.

A VCS is said to be balanced if the ξi1,i2(1 ≤ i1 < i2 ≤ n) values are all equal (=ξ,
say) and unbalanced otherwise. In any balanced (2, n) VCS, for given n, the relative contrast
ξ is bounded above by (= ⌊n/2⌋⌈n/2⌉

n(n−1) ) = ξ0, say.

3.3.1. Obtaining (2, n) VCS from BIBDs

Blundo, De Santis and Stinson (1999) gave the following three constructions of bal-
anced (2, n) VCS, and for all of these the relative contrasts attains the upper bound ξ0 for
given n.

If a BIBD(n, b, r, k, λ) exits, then there exists a balanced (2, n) VCS with m = b and
ξ = ξ0 = (r − λ)/b with S1 as the incidence matrix of the BIBD and S0 = [Jn×r, On×(b−r)].
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Example 14: From the BIBD in Example 4 we have:

S1 =

0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 1 0 0 0 0 1
1 0 1 0 0 1 0
0 0 0 0 1 1 1
0 1 0 1 0 1 0
0 0 1 1 0 0 1

S0 =

1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0

After permuting the columns of S1 and S0, when a row of S1(S0) is assigned as a subpixel
corresponding to a black(white) pixel to a participant, he cannot know what the original
pixel was since in both cases he gets a Boolean vector with weight 3. But when any 2
participants combine their shares, ‘or’ of any 2 rows of S1(S0) give a Boolean vector with
weight 5(3). So, on recovery, if the original pixel was black, it appears darker to the human
eye than if the original pixel was white. So, ξ = (5 − 3)/7 = 2/7.

Suppose n is even. Then a (2, n) VCS exists with optimal ξ and smallest possible
pixel expansion (m = 2n − 2) if there exists a BIBD(n, 2(n − 1), n − 1, n/2, n/2 − 1).

Example 15: The BIBD (6, 10, 5, 3, 2) of Example 6 will give a (2, 6) VCS with optimal
ξ = 3/10 and smallest possible pixel expansion for this value of n as m = 10.

3.3.2. Obtaining (2, n) VCS from PBDs

Suppose n is odd. Then there exists a (2, n) VCS with pixel expansion m and optimal
ξ if there exists a PBD (n, {(n + 1)/2, (n − 1)/2}, r − m(n + 1)/4n) with exactly m blocks,
where r is the common replication number of each symbol. As before, S1 will be the n × b
incidence matrix of the PBD and S0 = [Jn×m, On×(m−r)].

Example 16: The PBD(5, {3,2},2) of Example 7 is a PBD with parameters as above with
n = 5, m = 10 and r = 5. So this will give a (2, 5) VCS with m = 10 and ξ = 3/10.

3.3.3. Obtaining (2, n) VCS from PBIBDs

Adhikary and Bose (2004) and Adhikary, Bose, Kumar and Roy (2005) used Latin
squares and PBIBDs to show that one can get unbalanced (2, n) VCS where the relative
contrast for some pairs of participants are more than the optimal bound of ξ for the balanced
case. Moreover, given v, since PBIBDs require only partial balance, they have fewer blocks
than BIBDs, and hence lead to VCS with smaller pixel expansion (m) than those from
BIBDs. We illustrate their method with PBIBDs below:

Example 17: The PBIBD (6, 4, 2, 3, 0, 1) in Example 8 gives (2, 6) VCS with S1 as the
incidence matrix of this design and S0 as shown below. This is an unbalanced (2, 6) VCS
and it can be checked that for some pairs of symbols the relative contrasts are ξ1,6 = ξ2,5 =
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ξ3,4 = 1/2 while for other pairs it is 1/4.

S1 =

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

S0 =

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

Given n, we may choose a suitable PBIBD from the tables of Clatworthy (1973) with
small b and large λ1 to get a (2, n) VCS with n = v and pixel expansion m = b. If a PBIBD
with v = n is not available, we can choose a PBIBD with v > n, construct S1 from its
incidence matrix and then delete v − n suitable rows from it to get S1 for the (2, n) VCS.

3.3.4. Optimal (2, n) VCS through general binary block designs

We now consider the scenario where both the given n and the allowable m are held
fixed and then we optimize with respect to the relative contrasts. As seen above, unbalanced
VCS play a crucial role in optimizing over the ξi1,i2 , but given n and m, there often does not
exist any VCS that maximizes each ξi1,i2 separately.

Let V(n, m) be the class of all (2, n) VCS, balanced or unbalanced, with n participants
and pixel expansion m. Then, in the spirit of A-and E-optimality in statistical design theory,
(cf. Shah and Sinha (1989)), Bose and Mukerjee (2006) introduced the notion of optimal VCS
that maximize the average, say ξ̄, or the minimum, say ξmin, of the ξi1,i2 , 1 ≤ i1 < i2 ≤ n,
over V(n, m).

Such optimal VCS were called Type I optimal and Type II optimal, respectively. A
VCS which is both Type I and Type II optimal will be called Type III optimal. Indeed, given
n, m, a VCS, say V ∗ which is Type I optimal, is also admissible in the sense that there cannot
exist another VCS, say V , with same n, m such that each ξi1,i2 under V is greater than or
equal to the corresponding ξi1,i2 under V ∗, the inequality being strict for some i1 < i2.

Bose and Mukerjee showed that the following binary block designs lead to Type III
optimal (2, n) VCS:

(i) Suppose m is odd. Let n = m. If there exists a binary (v, b, r, k) block design with
v = n = m such that r = (m − 1)/2, k = (m − 1)/2, and no two of the λij(1 ≤ i < j ≤ n)
differ by more than unity, then with basis matrices S1 as the incidence matrix of this design
and S0 = [Jn×(m−1)/2, On×(m+1)/2)] we get an optimal Type III (2, n) VCS.

(ii) Suppose m is even. If there exists a binary block design with v = n, b = m,
r1 = . . . = rv = m/2, kj = (n − δ)/2 (1 ≤ j ≤ m/2), kj = (n + δ)/2 (m/2 ≤ j ≤ m),
where δ = 1 if n is odd and = 0 if n is even, and no two of the λij(1 ≤ i < j ≤ n) differ
by more than unity, then with basis matrices S1 as the incidence matrix of this design and
S0 = [Jn×m/2, On×m/2)] we get an optimal Type III (2, n) VCS.

There are several broad classes of block designs which satisfy the conditions in (i) and
(ii) above. These include BIBDs, PBIBDs, symmetrical unequal block designs and regular
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graph designs with appropriately chosen parameters. We give examples based on BIBD and
PBIBD below. For more examples and results we refer to Bose and Mukerjee (2006).

Example 18: For n = m = 4t − 1, the BIBD (v = b = 4t − 1, r = k = 2t − 1, λ = t − 1)
discussed before Example 6, gives a Type III optimal VCS in V(4t − 1, 4t − 1). Again, the
residual BIBD (2t, 4t − 2, 2t − 1, t, t − 1) obtained from the earlier BIBD gives a Type III
optimal VCS in V(2t, 4t − 2). Again, if we delete the last rows of the matrices S1 and S0

from those used for the optimal VCS from the residual design, we get a Type III optimal
VCS in V(2t − 1, 4t − 2). So the designs in Example 6 gives optimal Type III VCS.

Example 19: For n = m = 2t, where 2 ≤ t ≤ 12, t ̸= 7, as shown in Table 1 of Bose
and Mukerjee (2006), we can find an initial block T of cardinality t, such that among the
ordered differences (mod n) arising out of the elements of T , each of 1, 2, . . . , n − 1 occurs
either ρ or ρ+1 times, where ρ = ⌊t(t − 1)/n − 1)⌋. Upon development of T we get a regular
graph design which leads to a Type III optimal VCS in V(2t, 2t), 2 ≤ t ≤ 12, t ̸= 7. When
t = 2 or 3, this design is also a PBIBD. Moreover, if we delete the last rows of S1 and S0

of the optimal VCS in V(2t, 2t) as obtained above, then we get a Type III optimal VCS in
V(2t − 1, 2t).

3.3.5. Optimal (k, n) VCS from block designs

Bose and Mukerjee (2010) studied (k, n) VCS and gave conditions for their existence
and also methods for getting optimal (k, n)VCS. For simplicity, we only give two examples
with k = 3, one obtained from BIBD and another from PBIBD.

For a binary (v = n, b, r, k) block design let λi1,i2,i3 denote the number of blocks
containing symbols i1, i2, i3, and ξ(i1, i2, i3) be the relative contrast for the recovery of the
image by the 3 participants i1, i2, i3, 1 ≤ i2 < i2 < i3 ≤ n. We call a (3, n) VCS optimal if it
maximizes the average of ξ(i1, i2, i3) over 1 ≤ i2 < i2 < i3 ≤ n. Given a design with incidence
matrix N , we take S1 = [Jn×(b−2r) N ] and S0 = [On×(b−2r) N̄ ] where N̄ is obtained from N
by interchanging its elements 1 and 0.

Example 20: Let n = 13. Then the BIBD (13, 26, 6, 3, 1) (given in Takeuchi (1962)) will lead
to an optimal (unbalanced) (3, 13) VCS. This will have pixel expansion m = 2(b − r) = 40
and ξ(i1, i2, i3) = 5/40 if i1, i2, i3 occur together in a block and 3/40 otherwise. It also
maximizes the minimum possible value of ξ(i1, i2, i3) among all (3, 13)VCS with m = 40.

Example 21: Let n = 20. The PBIBD (20, 16, 4, 5, 0, 1) (=design SR58 in Clatworthy (1973)
tables) will lead to an optimal (unbalanced) (3, 20) VCS. This will have pixel expansion
m = 2(b − r) = 24 and the smallest value of ξ(i1, i2, i3) = 1/24. It also maximizes the
minimum possible value of ξ(i1, i2, i3) among all (3, 20) VCS with m = 24.

It may also be noted that the two VCS in Examples 20 and 21 substantially reduce
the pixel expansion compared to the corresponding balanced (3, n) VCS as in Blundo et. al
(2003), which have m = 440 and m = 23256, respectively.
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3.4. Key predistribution schemes for distributed sensor networks using block
designs

Key predistribution schemes (KPS) is another area of cryptography where block de-
signs have been effectively used to get good schemes. These schemes are used in various
applications, for instance, in a military operation, where sensor nodes with secret keys in-
stalled in them, may be distributed in a random manner over a sensitive area and, once
deployed, these nodes are required to communicate with each other through secure keys in
order to gather and relay information.

The two main metrics for a KPS are the network size, i.e., number of nodes (n)
and the key storage k, i.e., the number of keys stored per node. Any two nodes within a
neighbourhood can communicate with each other if they have q(≥ 1) common keys, where
q is the intersection threshold of the network. If two nodes do not have q keys in common
then they can still communicate through multiple secure links if there is a sequence of one
or more intermediate nodes connecting them such that every pair of adjacent nodes in this
sequence share q common keys.

If some nodes are captured in an attack, all keys in them are lost but the remaining
nodes can still communicate (i.e., be resilient) using the remaining keys. For more details on
the applications, the security framework and models for these distributed sensor networks
(DSNs) we refer e.g., to Roman et al. (2005) and Du et al. (2005) and Martin (2009).

Key assignment schemes based on combinatorial designs is specially useful since using
the combinatorial structures of the underlying designs, one can study the connectivity and
resiliency properties of the scheme, and also carry out shared-key discovery and path-key
establishment in a structured manner. Camtepe and Yener (2004) used finite projective
planes and generalized quadrangles and Dong et al. (2008) used 3-designs to construct KPS
with q = 1. Lee and Stinson (2008) used transversal designs to construct KPS and give
schemes separately for q = 1 and for q = 2.

Bose, Dey and Mukerjee (2013) suggested one general construction method for KPS
for any given q and by varying the choices of the designs, this resulted in KPS for networks
with varying numbers of nodes, key-pool sizes and numbers of keys per node, thus providing
more flexibility in choosing a scheme suitable for the requirements of a situation. The
designs used were BIBDs, PBIBDs based on the group-divisible, Latin square and triangular
association schemes, and suitable duals of these designs. This method works for general q
and can cover a wide variety of values of n.

The complexity of the KPS scheme and its various metrics leads to involved algebra
and so we refrain from elaborating further in this area.

4. Conclusion

In this article, an endeavour has been made to highlight the fact that combinatorial
designs have a wide applicability in various areas of cryptography.

We have mainly focused on Hadamard matrices, orthogonal arrays, pairwise balanced
designs, balanced incomplete block designs and partially balanced incomplete block designs
and their applications in various areas of cryptography. There are many other topics that
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could not be covered, e.g. a combinatorial structure used often in the context of threshold
access structures is the perfect hash family (PHF). Long et al. (2006) and Martin and Ng
(2007) used generalized cumulative arrays focusing on the situation where all participants
have the same probability of being selected for activation. Bose and Mukerjee (2014) gave a
method where an unequal probability scheme given by PHFs leads to better levels of group
and participant anonymity, and also showed that BIBDs can be used to get schemes in this
context too.

The Anti-collusion Digital Fingerprinting Codes is another area of cryptography
where combinatorial designs have been used effectively, for instance, Trappe et al.(2003)
used BIBDs, Kang et al.(2006) used PBIBDs, Yagi et al.(2009) used finite geometries, Li et
al.(2009) used OAs, Bose and Mukerjee (2010) used partially cover-free families.

To conclude, our aim in this article is to highlight that there are various areas of
cryptography where combinatorial designs and structures give effective and efficient schemes.
We hope that this article will generate sufficient interest among statisticians who are already
familiar with these structures, to take up research in this area.
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Abstract
Split-plot designs are widely used in agricultural experiments because of its ability

to allocate different factors to plots of different sizes. In standard split-plot designs, main
plot treatments are allocated either in a completely randomized design or in a randomized
complete block design and subplot treatments are allocated within each main plot. In this
paper, we consider split-plot designs where main plot treatments are allocated in a connected
incomplete block design. We propose a method of construction and present a catalogue of
such designs. We also propose a method of analysis of such split-plot designs. We have
implemented proposed construction and analysis methods using R language.
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Prologue

Today, we are all united in our desire to pay our respect to Late Prof. Calyampudi
Radhakrishna Rao. Prof. Rao, an Oracle in the field of Statistics, left an indelible mark on
the fields of statistics, mathematics, and scientific research worldwide. His groundbreaking
contributions have influenced diverse areas, including economics, genetics, anthropology, and
medicine. Rao received numerous accolades, including the US National Medal of Science in
2002, and was awarded the International Prize in Statistics in 2023 - a distinction often
likened to the ‘statistics’ equivalent of the Nobel Prize. His legacy continues to inspire
generations, and he remains one of the most influential statisticians of all time. It gives us
immense pleasure to know that the Society of Statistics, Computer and Applications has
decided to bring out a Special Issue of the Statistics and Applications in memory of Late
Prof. C R. Rao. This paper is a tribute in honour and loving memory of Late Prof. C R
Rao who had a strong bondage with ICAR-Indian Agricultural Statistics Research Institute
(ICAR-IASRI), New Delhi and the Indian Society of Agricultural Statistics. He visited the
Institute during 2001 to receive Sankhyiki Bhusan Title conferred upon him by the Indian
Society of Agricultural Statistics. His keynote address on ‘Has Statistics a Future ? If So, in
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What Form?’ during the 60th Annual Conference of Indian Society of Agricultural Statistics
and International Conference on Statistics and Informatics organized by ICAR-IASRI, New
Delhi was published in the Journal of the Indian Society of Agricultural Statistics. The paper
had set the tone for the requirement of transformation in Statistics in the era of Information
and Communication Technology and Big Data. He has made monumental contributions to
Design of Experiments. We have also prepared a Technical Bulletin entitled ‘CR Rao’s Life
Sketch and its Influence on Designing of Experiments with a special reference to Agricultural
Sciences’ available at http://krishi.icar.gov.in/jspui/handle/123456789/41295.

By giving us an opportunity to contribute to the Special Issue, we have been given
a chance to say thank you, Prof Rao, for paving the way and developing the playground of
Statistics where all statisticians like us are working. We express our profound thankfulness
to the Guest Editors of this Special Issue and the Chair Editor of Statistics and Applications
for giving this opportunity to contribute in such an invaluable Special Issue.

1. Introduction

A split-plot design is a special kind of design in which two factors A and B with
m and s levels, respectively, are allocated such that m levels of factor A (also called main
plot treatments) are allocated in main plots using a suitable design and s levels of factor B
(also called subplot treatments) are allocated to s smaller subplots within each main plot.
These designs were originally developed by Fisher (1925). Popular choice of suitable design
for levels of factor A is either a completely randomized design or a randomized complete
block design. In a split-plot design, the main effect of B and interaction AB are estimated
with higher precision and main effect of A are estimated with lesser precision. The main
advantage of a split plot design is that the design can accommodate two different plot sizes
for two different factors and is, thus, used in many agricultural and other experiments where
one of the factor requires comparatively bigger plot size than the other factor. For example,
consider an experiment involving irrigation methods (factor A) and fertilizer doses (factor B).
It is possible to apply fertilizer doses in smaller plots but application of irrigation methods
require bigger plots. So one can apply irrigation methods to bigger plots first and then
each bigger plot is subdivided into smaller plots for application of different fertilizer doses.
Other such experiments include study of tillage systems (factor A) and various management
practices such as doses of fertilizer, pesticides etc. as factor B. Split plot designs are adopted
in all such experiments where it is not practical to apply both the levels of factor A and B
to plots of same size.

In certain situations it may not be possible to allocate all the m levels of factor A
in a randomized complete block design and the number of main plots in each block may
be restricted to k such that k < m. When m is moderately large, then it may not be
possible to maintain homogeneity within the blocks with m main plots as these plots are
bigger in size. Hence, it is advisable to use lesser number of main plots in such cases and as
a result, an incomplete split-plot designs with blocks being incomplete with respect to main
plot treatments is preferable. Robinson (1970) pioneered the idea of incomplete split-plot
designs in which he arranged the levels of factor A and B in balanced incomplete block (BIB)
designs. Bhargava and Shah (1975) considered incomplete split-plot design with main plot
treatments in an incomplete block design where they considered unequal block sizes for main
plot treatments and mainly studied tests for main effects of factor B and interaction AB.

http://krishi.icar.gov.in/jspui/handle/123456789/41295
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Mathew and Sinha (1992) went a step further and presented various optimum and exact
tests under fixed, random and mixed effects models in the case of unbalanced split-plot
designs where main plot treatments are replicated unequal number of times. Mejza (1985)
considered incomplete split-plot designs with main plot treatments in incomplete blocks and
presented an analysis procedure with a different model than we study here.

There are some other works on incomplete split plot designs where particular classes
of incomplete block designs were used either to allocate main plot and / or subplot treat-
ments. Ozawa et al. (2004) obtained incomplete split-plot designs using Kronecker product
of two component designs, one for levels of factor A and another for levels of factor B. Ozawa
and Kuriki (2006) constructed incomplete split-plot designs using semi-Kronecker product of
two types of α-resolvable designs. Kuriki and Nakajima (2007) constructed incomplete split-
plot designs by semi-Kronecker product of two resolvable designs with second design being a
square lattice design for factor B. Kristensen (2012) proposed four methods of constructing
incomplete split-plot designs using α-designs. Works on incomplete split-plot designs consid-
ering subplot treatments in an incomplete block design are also available, see, for example,
Robinson (1967); Mejza and Mejza (1984) and Mandal et al. (2020).

In this article, we consider incomplete split-plot designs where m levels of factor A
are arranged in a connected incomplete block design with blocks of each of size k such that
k < m and s levels of factor B are allocated in s subplots within each main plot. We propose
a methodology of analysis of data from experiments conducted using such designs following
the standard fixed effects additive linear model approach. Since in agricultural experiments,
generally factors and their levels are only a carefully chosen entities among which comparisons
are desired, and blocks are also not a random sample from bigger population of blocks,
random effects and mixed effects models for analysis of split-plot designs are not considered
here and thus, we restrict ourselves to fixed effects model only.

2. Construction

In this section, we present construction of incomplete split plot designs where m levels
of factor A are arranged in a connected proper binary incomplete block design with blocks
of same size and s levels of factor B are arranged randomly within each main plot. To
construct a design, take a binary connected proper incomplete block design D with number
of treatments m, number of blocks b and block size k < m. Arrange the m levels of factor
A using design D. Within each level of factor A, apply s subplot treatments at random.
Obtained design is an incomplete split plot design where blocks are incomplete with respect
to factor A and whole plots are complete with respect to factor B.

We illustrate the construction with an example.

Example 1: Let m = 5, s = 5, b = 5, k = 3. So a connected binary proper incomplete block
design D for factor A is

(1 4 5)
(2 3 5)
(1 3 4)
(2 3 4)
(1 2 5)
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In D, there are 5 blocks and in each block, three main plot treatments are allocated. Now,
randomly assign each of the s levels of factor B in each of the main plots. We get the
following incomplete split-plot design.

Block 1 1 ( 5 4 3 1 2 ) 4 ( 5 4 3 1 2 ) 5 ( 2 3 4 5 1 )
Block 2 2 ( 3 4 2 1 5 ) 3 ( 2 3 4 5 1 ) 5 ( 4 1 5 3 2 )
Block 3 1 ( 3 4 1 5 2 ) 3 ( 3 4 1 5 2 ) 4 ( 3 4 2 1 5 )
Block 4 2 ( 3 4 1 5 2 ) 3 ( 3 4 2 1 5 ) 4 ( 4 1 5 3 2 )
Block 5 1 ( 4 1 5 3 2 ) 2 ( 2 3 4 5 1 ) 5 ( 5 4 3 1 2 )

Remark 1: We recommend that the design D should be so chosen that it has high A- and
D-efficiency. One can use the available efficient incomplete block designs in literature for
this purpose. We utilized A-efficient incomplete block designs generated by the R package
ibd (Mandal, 2019). If the design D is equireplicate with r replications for each of the m
levels of factor A, then in the incomplete split-plot design, each AB combination appears
r times. Had a complete split-plot design with b blocks been chosen, each AB treatment
combination would have appeared b times. Since number of main plots in an incomplete
split-plot design is k in each block, it is expected that blocks would be more homogeneous
than a block containing m main plots. This will increase precision of comparisons among
main effects of factor A. Further, whenever r < b, incomplete split-plot designs is expected
to be more resource efficient because then they will require lesser number of main plots. For
example, consider an experiment conducted by Pandey et al. (2000) who used m = 5 levels
of irrigation regimes as factor A and s = 5 levels of Nitrogen doses as factor B and they used
complete split-plot design with four blocks. This experiment required 20 main plots and 100
subplots in total. Had an incomplete split-plot design as given in Example 1 with 5 blocks
with block size 3 been used, only 15 main plots and 75 subplots would have been required.

We have used the method to construct incomplete split-plot designs in the restricted
parametric range of m ≤ 6, s ≤ 6 and b ≤ 10. The list of parameters for which design has
been generated is available, see Mandal et al. (2019c). However, the proposed method is
general and works for any m, s, b, k provided a suitable connected incomplete block design
D with parameters (m, b, k) exists and is available in literature.

3. Analysis

In this section, we present a methodology for analysis of data from experiments
conducted using incomplete split-plot designs considered in this paper. We consider fixed
effect additive linear model for this purpose:

yjil = µ + ρj + αi + γji + βl + δil + ϵjil (1)

where yjil denote the observation from the experimental unit in jth block receiving ith level
of factor A and lth level of factor B, µ is the general mean, ρj is the effect of jth block,
αi is the main effect of ith level of factor A, γji is the interaction terms between blocks
and ith level of factor A, βl is the main effect of lth level of factor B, δil is the interaction
effect of ith level of factor A and lth level of factor B and ϵjil is the random subplot error
with zero mean and constant variance σ2, j = 1, 2, ..., b; i = 1, 2, ..., m; l = 1, 2, ..., s. Here
all the effects are fixed effects except subplot error. Note here that data do not exist for
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all (j, i, l) combinations since all levels of factor A do not appear within each block. Here
it may be mentioned that Mathew and Sinha (1992) also considered a model similar to (1).
However, they considered unbalanced cases, i.e., the blocks may be of unequal sizes and may
contain different number of main plot treatments and they also considered cases of random
and mixed effects scenarios. In our case, each block is of constant size k and contains k < m
main plot treatments and we do not consider random and mixed effect models.

In matrix notation, the model (1) may be represented as
y = µ1 + X1ρ + X2α + X3γ + X4β + X5δ + ϵ (2)

where y denotes the vector of n observations, 1 denotes the vector of ones, X1 denotes
n × b observation versus block incidence matrix, ρ denotes b × 1 vector of block effects, X2
denotes n × m observation versus factor A incidence matrix, α denotes m × 1 vector of
main effects of factor A, X3 denotes n × bk observation versus block-A incidence matrix, γ
denotes bk × 1 vector of block versus factor A interactions, X4 denotes n × s observation
versus factor B incidence matrix, β denotes s × 1 vector of main effects of factor B, X5
denotes n ×ms observation versus AB interaction incidence matrix, δ denotes ms×1 vector
of AB interaction effects and ϵ denotes n×1 vector of errors. We assume that errors are i.i.d.
normal with E(ϵ) = 0 and Var(ϵ) = σ2In. Under the given set-up of design construction,
n = bks and X1 = Ib ⊗ 1ks. The model (2) can be written as

y = Xθ + ϵ (3)
where X = (1 : X1 : X2 : X3 : X4 : X5) and θ = (µ, ρ′, α′, γ ′, β′, δ′)′.

Normal equations are given by
X′Xθ = X′y

where

X′X =



1′1 1′X1 1′X2 1′X3 1′X4 1′X5
X′

11 X′
1X1 X′

1X2 X′
1X3 X′

1X4 X′
1X5

X′
21 X′

2X1 X′
2X2 X′

2X3 X′
2X4 X′

2X5
X′

31 X′
3X1 X′

3X2 X′
3X3 X′

3X4 X′
3X5

X′
41 X′

4X1 X′
4X2 X′

4X3 X′
4X4 X′

4X5
X′

51 X′
5X1 X′

5X2 X′
5X3 X′

5X4 X′
5X5

 . (4)

Now, following relations can be verified:
X′

11 = ks1b X′
21 = sr

X′
31 = s1bk X′

41 = bk1s

X′
51 = r ⊗ 1s X′

1X1 = ksIb

X′
2X1 = sN1, say X′

3X1 = s1k ⊗ I′
b

X′
4X1 = k1s1′

b X′
5X1 = N3, say

X′
2X2 = sR X′

3X2 = N2, say
X′

4X2 = r′ ⊗ 1s X′
5X2 = R ⊗ 1s

X′
3X3 = sIbk X′

4X3 = 1s1′
bk, say

X′
5X3 = N4, say X′

4X4 = bkIs

X′
5X4 = r ⊗ Is, say X′

5X5 = R ⊗ Is
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with r being the vector of replications of levels of factor A and R being diagonal matrix with
elements of r. Therefore, equation (4) can be written as

X′X =



bks ks1′
b sr′ s1′

bk bk1′
s r′ ⊗ 1′

s

ks1b ksIb sN′
1 s1′

k ⊗ Ib k1b1′
s N′

3
sr sN1 sR N′

2 r ⊗ 1′
s R ⊗ 1′

s

s1bk s1k ⊗ Ib N2 sIbk 1bk1′
s N′

4
bk1s k1s1′

b r′ ⊗ 1s 1s1′
bk bkIs r′ ⊗ Is

r ⊗ 1s N3 R ⊗ 1s N4 r ⊗ Is R ⊗ Is

 . (5)

It may be seen that

X′y = (y... : y′
B.. : y′

.M. : y′
BM. : y′

.S. : y′
.MS)′

where y... denote the gross total of all observations, yB.. is the vector of block totals, y.M.

is the vector of totals for m levels of factor A, yBM. is the vector of totals corresponding to
block-factor A combinations, y..S is the vector of totals for s levels of factor B and y.MS is
the vector of totals corresponding to AB combinations.

One can verify that the number of rows in X′X is 1 + b + m + bk + s + ms, but
there are total 1 + 1 + (m + b − 1) + 1 + (m + s − 1) = 1 + b + 2m + s linearly dependent
rows and they are as follows: sum of 2nd to (b + 1)th row is equal to the first row, sum of
(b + 2)th row to (b + m + 2)th row is equal to the first row, summing rows for each level of
γji over i keeping j fixed gives row corresponding to jth (j = 1, 2, ..., b) block and similarly
summing rows for each level of γji over j keeping i fixed gives row corresponding to row of
ith (i = 1, 2, ..., m) level of factor A, summing of rows corresponding to s levels of factor
B gives the first row, summing rows for each level of δil over i keeping l fixed gives row
corresponding to lth (l = 1, 2, ..., s) level of factor B, summing rows for each level of δil over
l keeping i fixed gives row corresponding to ith level of factor A. Therefore, to get a solution
to the normal equations (3), one can set (1 + b + 2m + s) parameter estimates to zero. We
set µ̂ = 0, ρ̂j = 0, α̂i = 0, β̂l = 0∀j, i, l and we also set every sth component of δ̂ as zero, i.e.,
δ̂s = 0, δ̂2s = 0, ..., δ̂ms = 0. As a result, we get,

(
sIbk Ñ′

4
Ñ4 R ⊗ Is−1

)
=
(

γ̂

δ̂(−m)

)
=
(

yBM.

ỹ.MS

)
(6)

where Ñ4 is the matrix obtained after removing every sth row of N4, δ̂(−m) is the vector
after removing every sth element of δ̂ and ỹ.MS is the vector obtained after removing every
sth element of y.MS. From (6), we get,

γ̂ = 1
s

(
yBM. − Ñ′

4δ̂(−m)
)

.

After a little algebra, it may be seen that

δ̂(−m) = C−1
MSQMS

where CMS =
(
R ⊗ Is−1 − 1

s
Ñ4Ñ′

4

)
and QMS =

(
ỹ.MS − 1

s
Ñ4yBM.

)
.
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Denoting the model sum of squares due to fitting parameters µ, ρ, α, γ, β, δ with
R(µ, ρ, α, γ, β, δ), we get

R(µ, ρ, α, γ, β, δ) = γ̂ ′X′
3y + δ̂′X′

5y = 1
s

y′
BM.yBM. + Q′

MSC−1
MSQMS.

Similarly, it may be verified that

R(µ, ρ, α, γ, β) = γ̂ ′X′
3y + β̂′X′

4y = 1
s

y′
BM.yBM. + Q′

SC−1
S QS

where CS = bkIs−1 − bk
s

1s−11′
s−1 and QS = ỹ..S − y...

s
1s−1

R(µ, ρ, α, γ) = ρ̂′X′
1y + α̂′X′

2y + γ̂ ′X′
3y = 1

s
y′

BM.yBM.

R(µ, ρ, α) = ρ̂′X′
1y + α̂′X′

2y = 1
ks

y′
B..yB.. + Q′

MC−1
M QM

where CM = sRm−1 − s
k
Ñ1Ñ′

1 and QM = ỹ.M. − 1
k
Ñ1yB..

R(µ, ρ) = ρ̂′X′
1y = 1

ks
y′

B..yB..

and
R(µ) = 1

bks
y...2

Residual sum of squares after fitting the model (3) is given by

SSE = y′y − 1
s

y′
BM.yBM. − Q′

MSC−1
MSQMS. (7)

Theorem 1: Under model (3), SSE/σ2 ∼ χ2
bks−bk−ms+m.

Proof: It is well known that in a fixed effects linear model (3), SSE/σ2 ∼ χ2
n−rank(X). Here,

rank(X) = rank(X′X) = bk + ms − m. So the result follows.

3.1. Testing significance of interactions between A and B

Consider the null hypothesis H0 : δi1 = δi2 = · · · = δis∀i = 1, 2, ..., m versus H1 : At
least two of them are different. Under the null hypothesis, the reduced model is

y = µ1 + X1ρ + X2α + X3γ + X4β + ϵ.

The residual sum of squares under reduced model is

SSE1 = y′y − R(µ, ρ, α, γ, β) = y′y − 1
s

y′
BM.yBM. − Q′

SC−1
S QS.

Theorem 2: SSE1/σ2 ∼ χ2
bks−bk−s+1.
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Proof: The rank of the model matrix Xr1 = (1 : X1 : X2 : X3 : X4) is bk + s − 1 since out
of (1 + b + m + bk + s) rows of X′

r1Xr1, there are b + m + 2 dependencies. Hence, the result
follows. Now, SSE1 − SSE = Q′

MSC−1
MSQMS − Q′

SC−1
S QS. Therefore, the test statistic

for testing H0 : δi1 = δi2 = · · · = δis∀i = 1, 2, ..., m is

F1 = (SSE1 − SSE)/(m − 1)(s − 1)
SSE/(bks − bk − ms + m)

= (Q′
MSC−1

MSQMS − Q′
SC−1

S QS)/(m − 1)(s − 1)
SSE/(bks − bk − ms + m) ∼ F(m−1)(s−1),(bks−bk−ms+m)

under null hypothesis. Null hypothesis is rejected whenever calculated value of F1 >
Fα,(m−1)(s−1),(bks−bk−ms+m) where Fα,(m−1)(s−1),(bks−bk−ms+m) denotes the upper α percent point
of an F-distribution with (m − 1)(s − 1) and (bks − bk − ms + m) degrees of freedom.

3.2. Testing significance of main effects of factor B

Assuming that interactions between A and B is absent, we consider the null hypothesis
H0 : β1 = β2 = ... = βs = β, say versus the alternative H1 : At least two of them are different.
Consider the following test statistic

F2 = Q′
SC−1

S QS/(s − 1)
SSE/(bks − bk − ms + m)

which follows F(s−1),(bks−bk−ms+m), See Appendix for proof. One can reject the null hypothesis
when calculated value of F2 > Fα,(s−1),(bks−bk−ms+m).

3.3. Testing significance of main effects of factor A

Since main effects of A can be tested when interactions of A with B and with blocks
is absent, we assume that interactions between A and B is absent and then we consider the
null hypothesis H0 : α1 = α2 = ... = αm = α, say versus the alternative H1 : At least two of
them are different. One can see that

F3 = Q′
MC−1

M QM/(m − 1)
SSW/(bk − b − m + 1) ∼ F(m−1),(bk−b−m+1).

SSW = R(γ|µ, ρ, α) = R(µ, ρ, α, γ) − R(µ, ρ, α) = 1
s
y′

BM.yBM. − 1
ks

y′
B..yB.. − Q′

MC−1
M QM .

Above results can be summarized in the form of analysis of variance (ANOVA) table
as given in Table 1 where,

SSR = 1
ks

y′
B..yB.. − 1

bks
y...2 SSA = Q′

MC−1
M QM

SSW = 1
s
y′

BM.yBM. − 1
ks

y′
B..yB.. − Q′

MC−1
M QM . SSB = Q′

SC−1
S QS

SSAB = Q′
MSC−1

MSQMS − Q′
SC−1

S QS SST = y′y − 1
bks

y...2

Remark 2: The model formulation under a split-plot design often involves a whole-plot
error and a split-plot error, both of which are assumed to be random, satisfying the usual
normality assumptions. This formulation leads to two ANOVA tables: a whole-plot ANOVA
and a split-plot ANOVA. The present work considers a model that includes only one random
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Table 1: ANOVA table depicting analysis of incomplete split plot designs

Source Degrees of free-
dom

Sum of
squares

Mean squares F

Blocks b − 1 SSR - -
A m − 1 SSA MSA = SSA/(m − 1) F3 = MSA/MSW

Block × A bk − b − m + 1 SSW MSW = SSW/(bk −
b − m + 1)

B s − 1 SSB MSB = SSB/(s − 1) F2 = MSB/MSE
AB (m − 1)(s − 1) SSAB MSAB =

SSAB/(m − 1)(s − 1)
F1 =
MSAB/MSE

Error bks−bk−ms+m SSE MSE = SSE/(bks −
bk − ms + m)

-

Total bks − 1 SST - -

error term. For testing the significance of the main effects due to whole plot factor, we
assume that A × B interaction and block × A interactions are absent and then use the
mean square due to block × A interaction in the denominator of the F ratio and this F ratio
coincides with the corresponding F ratio in the whole-plot ANOVA.

3.4. Estimation of treatment contrasts

First we consider estimation of treatment contrasts of factor B. It may be seen that

β̂s−1 = C−1
S QS.

Thus, we can write
β̂ = C∗−

S Q∗
S (8)

where C∗
S = bkIs − bk

s
1s1′

s and Q∗
S = y..S − y...

s
1s.

Theorem 3: Let p′β be a linear parametric function such that p′1 = 0. Then p′β is
estimable.

Proof: Consider the estimator p′β̂ where β̂ is given by equation (8). Then,

E(p′β̂) = E(p′C∗−
S Q∗

S)

= p′C∗−
S E(y..S − y...

s
1s)

= p′C∗−
S (X′

4 − 1
s

X′
4X3X′

3)E(y)

= p′C∗−
S (X′

4 − 1
s

X′
4X3X′

3)(µ1 + X1ρ + X2α + X3γ + X4β)

= p′C∗−
S C∗

Sβ (after simplification)
= p′β

since p′1 = 0. This completes the proof.

It is easy to see that v(p′β̂) = p′C∗−
S pσ2 where v(.) denotes variance. So under

normality of errors in model (1), p′β̂ ∼ N(p′β, p′C∗−
S pσ2). Thus, testing of hypothesis
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H0 : p′β = b can be performed using the test statistic

Fs = (p′β̂ − b)2/(p′C∗−
S p)

SSE/(bks − bk − ms + m) .

Under null hypothesis Fs ∼ F1,bks−bk−ms+m.

Exactly on similar lines, it can be proved that for testing H0 : q′δ = d, one can use
the test statistic

Fms = (q′δ̂ − d)2/(q′C∗−
MSq)

SSE/(bks − bk − ms + m)
which follows F distribution with 1 and (bks − bk − ms + m) degrees of freedom under null
hypothesis. Here, δ̂ = C∗−

MSQ∗
MS with C∗

MS = R ⊗ Is−1 − 1
s
N4N′

4 and Q∗
MS = y.MS −

1
s
N4yBM..

Now consider a treatment contrast w′α of main effects of factor A. An estimator
of this treatment contrast is given by w′α̂ = w′C∗−

M Q∗
M where C∗

M = sRm − s
k
N1N′

1 and
Q∗

M = y.M. − 1
k
N1yB... To test H0 : w′α̂ = a, the following test statistic can be used:

Fm = (w′α̂ − a)2/(w′C∗−
M w)

SSW/(bk − b − m + 1) .

Under null hypothesis, Fm ∼ F1,(bk−b−m+1) and inferences can be made accordingly.

4. Concluding remarks

In this paper, we have proposed a method of construction of incomplete split-plot
designs where main plot treatments are allocated using a connected proper incomplete block
design. We have also presented an analysis methodology for the proposed designs. We have
implemented the proposed methods of construction and analysis using R language and the
same is available as part of an R package ‘ispd’ which can be accessed on https://cran.r-
project.org/web/packages/ispd/index.html, see (Mandal et al., 2019a). Further, we have
also implemented the construction and analysis methodology as part of an web application
which is available on http://drsr.icar.gov.in/ISPD/Home.jsp, see (Mandal et al., 2019b).
The will enable the experimenters and statisticians to use these designs with ease.
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Appendix

Proof of F2 following F(s−1),(bks−bk−ms+m):
First we prove that Q′

SC−1
S QS/σ2 ∼ χ2′

s−1 with non-centrality parameter θ′X′(X̃4−1
s
X31bk1′

s−1)
C−1

s (X̃′
4 − 1

s
1s−11′

bkX′
3)Xθ/2σ2.

Note that QS =
(
ỹ..S − y...

s
1s−1

)
= X̃′

4y − 1
s
X̃′

4X3X′
3y and hence Q′

SC−1
S QS =

y′(X̃4 − 1
s
X3X′

3X̃4)C−1
s (X̃4 − 1

s
X3X′

3X̃4)′y. Now, (X̃4 − 1
s
X3X′

3X̃4)C−1
s (X̃4 − 1

s
X3X′

3X̃4)′ is
idempotent because

(X̃4 − 1
s

X3X′
3X̃4)C−1

s (X̃4 − 1
s

X3X′
3X̃4)′(X̃4 − 1

s
X3X′

3X̃4)C−1
s (X̃4 − 1

s
X3X′

3X̃4)′

= (X̃4 − 1
s

X31bk1′
s−1)C−1

s (X̃′
4 − 1

s
1s−11′

bkX′
3)(X̃4 − 1

s
X31bk1′

s−1)C−1
s (X̃′

4 − 1
s

1s−11′
bkX′

3)

= (X̃4 − 1
s

X31bk1′
s−1)C−1

s CsC−1
s (X̃′

4 − 1
s

1s−11′
bkX′

3)

since

(X̃′
4 − 1

s
1s−11′

bkX′
3)(X̃4 − 1

s
X31bk1′

s−1)

= X̃′
4X̃4 − 1

s
X̃′

4X31bk1′
s−1 − 1

s
1s−11′

bkX′
3X̃4 + 1

s2 1s−11′
bkX′

3X31bk1′
s−1

= bk(Is−1 − 1
s

1s−11′
s−1 − 1

s
1s−11′

s−1 + 1
s

1s−11′
s−1)

= bk((Is−1 − 1
s

1s−11′
s−1)

= Cs.

Now, under H0,
Xθ = µ1 + X1ρ + X2α + X3γ + βX41s

= µ1 + X1ρ + X2α + X3γ + β1
= (µ + β)1 + X1ρ + X2α + X3γ.

Therefore,

(X̃′
4 − 1

s
1s−11′

bkX′
3)Xθ

= (X̃′
4 − 1

s
1s−11′

bkX′
3)((µ + β)1 + X1ρ + X2α + X3γ)

= (µ + β)X̃′
41 + X̃′

4X1ρ + X̃′
4X2α + X̃′

4X3γ − µ + β

s
1s−11′

bkX′
31

− 1
s

1s−11′
bkX′

3X1ρ − 1
s

1s−11′
bkX′

3X2α − 1
s

1s−11′
bkX′

3X3γ

= (µ + β)bk1s−1 + k1s−11′
bρ + r′ ⊗ 1s−1α + 1s−11′

bkγ−
µ + β

s
1s−11′

bks1bk − 1
s

1s−11′
bks(1k ⊗ Ib)ρ − 1

s
1s−11′

bkN2α − 1
s

1s−11′
bksIbkγ
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= r′ ⊗ 1s−1α − 1
s

1s−1sr′α

= 0

As a result, the non-centrality parameter is zero. Thus, Q′
SC−1

S QS/σ2 ∼ χ2
s−1 under H0.

Here, the degrees of freedom is equal to the rank of the matrix of the quadratic form (X̃4 −
1
s
X3X′

3X̃4)C−1
s (X̃4 − 1

s
X3X′

3X̃4)′ and the rank of this matrix is clearly s − 1.

To check independence of Q′
SC−1

S QS and SSE, we know that SSE = y′(I−XGX′)y
where G is a generalized inverse of X′X. Now,

(I − XGX′)(X̃4 − 1
s

X3X′
3X̃4)C−1

s (X̃4 − 1
s

X3X′
3X̃4)′

= (X̃4 − 1
s

X3X′
3X̃4 − XGX′X̃4 + 1

s
XGX′X3X′

3X̃4)C−1
s (X̃4 − 1

k
X3X′

3X̃4)′

= 0

because XGX′X̃4 = X̃4 and XGX′X3X′
3X̃4 = X3X′

3X̃4 due to properties of generalized
inverse matrix G. Hence, two quadratic forms Q′

SC−1
S QS and SSE are independent. Hence,

F2 under null hypothesis follows F-distribution with (s − 1) and (bks − bk − ms + m) degrees
of freedom. Proof of F3 ∼ F(m−1),(bk−b−m+1): where

SSW = R(γ|µ, ρ, α) = R(µ, ρ, α, γ) − R(µ, ρ, α) = 1
s
y′

BM.yBM. − 1
ks

y′
B..yB.. − Q′

MC−1
M QM .

First we prove that Q′
MC−1

M QM/σ2 ∼ χ2
m−1 under null hypothesis.

Q′
MC−1

M QM = (ỹ.M. − 1
k

Ñ1yB..)′C−1
M (ỹ.M. − 1

k
Ñ1yB..)

= (X̃′
2y − 1

k
Ñ1X′

1y)′C−1
M (X̃′

2y − 1
k

Ñ1X′
1y)

= y′(X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)y

= y′Ay

where A = (X̃2 − 1
k
X1Ñ′

1)C−1
M (X̃′

2 − 1
k
Ñ1X′

1). Now,

AA = (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)(X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1).

It may be seen that

(X̃′
2 − 1

k
Ñ1X′

1)(X̃2 − 1
k

X1Ñ′
1) = X̃′

2X̃2 − 1
k

X̃′
2X1Ñ′

1 − 1
k

Ñ1X′
1X̃2 + 1

k2 Ñ1X′
1X1Ñ′

1

= X̃′
2X̃2 − s

k
Ñ1Ñ′

1 − s

k
Ñ1Ñ′

1 + ks

k2 Ñ1Ñ′
1

= sRm−1 − s

k
Ñ1Ñ′

1

= CM .



256
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

B. N. MANDAL, RAJENDER PARSAD AND SUKANTA DASH [Vol. 22, No. 3

As a result,

AA = (X̃2 − 1
k

X1Ñ′
1)C−1

M CMC−1
M (X̃′

2 − 1
k

Ñ1X′
1)

= (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)

= A

Hence, the matrix of the quadratic form of Q′
MC−1

M QM/σ2 is idempotent. Thus, Q′
MC−1

M QM/σ2

∼ χ2
m−1 with non-centrality parameter 1

2σ2 θX′AXθ where Xθ = µ1 + Xρ + X2α since the
rank of the matrix A is m − 1. Under null-hypothesis, α = α1m. So the non-centrality
parameter can be shown to be zero as

AXθ = (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)(µ1 + X1ρ + αX21m)

= (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1){(µ + α)1 + X1ρ}

= (X̃2 − 1
k

X1Ñ′
1)C−1

M

{
(µ + α)X̃′

21 + X̃2X1ρ − µ + α

k
Ñ1X′

11 − 1
k

Ñ1X′
1X1ρ

}
= (X̃2 − 1

k
X1Ñ′

1)C−1
M

{
(µ + α)srm−1 + sÑ1ρ − µ + α

k
Ñ1ks1b − 1

k
Ñ1ksIbρ

}
= (X̃2 − 1

k
X1Ñ′

1)C−1
M

{
(µ + α)srm−1 + sÑ1ρ − (µ + α)srm−1 − sÑ1ρ

}
= 0.

Thus, Q′
MC−1

M QM/σ2 ∼ χ2
m−1.

Now note that

SSW = 1
s

y′
BM.yBM. − 1

ks
y′

B..yB.. − Q′
MC−1

M QM

= 1
s

y′X3X′
3y − 1

ks
y′X1X′

1y − y′Ay

= y′By

where B = 1
s
X3X′

3 − 1
ks

X1X′
1 − A.

To check independence of Q′
MC−1

M QM and SSW , we need to prove that AVB = 0
where A, B are as defined above and here V = σ2I. So it suffices to show that AB = 0.
Now,

AB = (X̃2 − 1
k

X1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ1X′

1)(
1
s

X3X′
3 − 1

ks
X1X′

1 − A).

The last two terms of AB may be simplified as

(X̃′
2 − 1

k
Ñ1X′

1)(
1
s

X3X′
3 − 1

ks
X1X′

1 − A)

= 1
s

X̃′
2X3X′

3 − 1
ks

X̃′
2X1X′

1 − X̃′
2A − 1

ks
Ñ1X′

1X3X′
3 + 1

k2s
Ñ1X′

1X1X′
1 + 1

k
Ñ1X′

1A (9)

= 1
s

X̃′
2X3X′

3 − 1
ks

sÑ1X′
1 − X̃′

2A − 1
ks

Ñ1X′
1X3X′

3 + 1
k2s

ksÑ1X′
1 + 1

k
Ñ1X′

1A.
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It may be checked that

X̃′
2A = (X̃′

2X̃2 − 1
k

X̃′
2X1Ñ′

1)C−1
M (X̃′

2 − 1
k

Ñ′
1X′

1)

= (sRm−1 − 1
k

sÑ1Ñ′
1)C−1

M (X̃′
2 − 1

k
Ñ′

1X′
1)

= X̃′
2 − 1

k
Ñ′

1X′
1.

Also,

1
k

Ñ1X′
1A = 1

k
Ñ1(X′

1X̃2 − 1
k

X′
1X1Ñ′

1)C−1
M (X̃′

2 − 1
k

Ñ1X′
1)

= 1
k

Ñ1(sÑ′
1 − 1

k
ksÑ′

1)C−1
M (X̃′

2 − 1
k

Ñ1X′
1)

= 0.

Hence, equation (9) can be simplified as

(X̃′
2 − 1

k
Ñ1X′

1)(
1
s

X3X′
3 − 1

ks
X1X′

1 − A)

= 1
s

X̃′
2X3X′

3 − X̃′
2 + 1

k
Ñ′

1X′
1 − 1

ks
Ñ′

1X′
1X3X′

3

= X̃′
2 − X̃′

2 + 1
k

Ñ′
1X′

1 − 1
k

Ñ′
1X′

1

= 0.

Thus, two quadratic forms Q′
MC−1

M QM and SSW are independent and hence, under null
hypothesis, the test statistic F3 follows F-distribution with (m − 1) and (bk − b − m + 1)
degrees of freedom. Null hypothesis should be rejected whenever calculated value of F3
exceeds Fα,(m−1),(bk−b−m+1) where Fα,(m−1),(bk−b−m+1) denotes the upper α percent point of
an F-distribution with (m − 1) and (bk − b − m + 1) degrees of freedom.
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Abstract
Meta-analysis has become a widely used tool for evaluating the efficacy and safety of

medical interventions, offering numerous advantages and utilities. However, recent studies
have raised questions about the accuracy of commonly used moment-based meta-analytic
methods, particularly for rare binary outcomes. This issue is further complicated in studies
with heterogeneous effect sizes. Likelihood-based mixed-effects modeling provides an alterna-
tive to moment-based methods, such as inverse-variance weighted fixed- and random-effects
estimators. In this review paper, we discuss several meta-analysis methods specifically de-
signed for analyzing rare event data. We elaborate on the use of continuity correction for
studies with zero total events, taking into account study heterogeneity. The problem is mo-
tivated, and results are illustrated using a well-known meta-analysis study. By exploring
and comparing these different methodologies, researchers can gain insights into the most
appropriate approaches for analyzing rare event data in meta-analytic studies.

Key words: Conditional likelihood; Mantel-Haenszel method; The Peto method; Confidence
distribution methods; Odds ratio.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Meta-analysis is a powerful statistical tool used to combine results from multiple
studies, particularly useful for making robust inferences about rare events, which require
large sample sizes due to their low frequency (less than 0.1%). Traditional clinical trials
often lack sufficient power to draw sound conclusions about rare adverse events, such as those
associated with pharmaceutical agents. The challenge lies in incorporating studies with few
or no observed adverse events into the analysis. While fixed-effect and random-effect meta-
analyses are common, Bayesian methodologies and confidence distribution approaches offer
alternatives. Each method has unique strengths and weaknesses, and the optimal approach
for analyzing rare events remains a topic of ongoing research. We try to clarify the idea that
rare event meta analysis may end up with some studies with zero total events. However,
those studies with zero events are also informative and should be included in the analysis
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and this demands the concept of continuity correction. Data analysis of meta analysis of rare
events is developed addressing these concerns and difficulty of zero total events depending
on what type methodology is used.

Meta-analysis is a convenient statistical tool that combines results from multiple
trials and makes a robust inference regarding the parameter of our interest. To make a valid
statistical inference for a rare event requires a trial with a large sample size. Regular clinical
trials are not sufficiently powered to draw a statistically sound conclusion regarding events
that often occur at a rate of less than 0.1%. Low-frequency events are commonly encountered
in the investigation of adverse events (e.g., suicide) associated with a pharmaceutical agent
(e.g., antidepressants). A further complication arises in rare adverse event studies because
clinical trials are typically designed to assess the efficacy rather than the safety of the product.
As a result, the chance of observing a reasonable number of such adverse events in a single
trial or study is relatively low. Quite often, in such situations, not even a single adverse
event is observed in efficacy trials. Utilizing such studies meaningfully in the analysis is
the greatest challenge in the meta-analysis of rare events. Several strategies have been
proposed to make a valid decision regarding the parameters of our interest, incorporating all
available studies. However, none of those is universally accepted, and as a result, the issue
is still open. Traditional methods of meta-analysis either treat the underlying treatment
effect as a fixed parameter across multiple studies or assume individual study treatment
effect as a random sample from a hypothetical pool of treatment effects. The first form
of meta-analysis is called fixed-effect meta-analysis, and the second form is called random-
effect meta-analysis. Bayesian methodologies are also used to allow hierarchical modeling
with a greater opportunity for sensitivity analysis. Recently, the third method, based on
the concept of confidence distribution, has been put forth as an attractive alternative for
meta-analysis of rare events. For each methodology, there are several estimation techniques
with respective strengths and weaknesses. This article discusses some characteristics of rare
event studies and provides an overview of meta-analytic methods suitable for the analysis of
rare events, along with the issues pertaining to those methods.

2. Zero total event studies

A study in which no outcome event is observed is called a zero-total event study.
Studies where outcome events are observed in one arm but not in the other arm are called
zero-cell studies. Zero total event studies in rare event analysis are contentious due to their
lack of events in one or both treatment arms, but recent literature suggests they should
not be excluded, despite challenges in variance computation and continuity correction. The
ubiquitous characteristic of rare event studies is the absence of events in either one or both
treatment arms. The answers have been contentious, and inconclusive. The core of the
issue is the argument that the zero total event studies do not contribute any information
towards the estimation of the effect and, hence, are irrelevant and should be removed from
the analysis Whitehead and Whitehead (1991); Sweeting et al. (2004). However, in general, a
zero total event study with a large sample size is expected to provide stronger evidence for any
hypothesized effect compared to a smaller sample size zero total study Friedrich et al. (2007);
Liu (2012); Kuss (2014). Furthermore, recent publications are providing theoretical support
to the relevance of the zero total event studies Liu et al. (2014); Xie et al. (2014). Therefore,
zero total event studies should not be excluded. The major obstacle to the inclusion of
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zero total event studies in a traditional meta-analysis is the numerical ill-conditioning for
the computation of variance of the effect size using ratio measures. Analysts are addressing
this problem by proposing the concept of Continuity Correction, even though there is no
consensus on what exact value we should use for the continuity correction. Additional
complexity arises when a significant heterogeneity exists among studies.

Example: Zero total event studies in meta-analysis of rositaglitazone and risk of
cardiovascular events

On November 14, the Food and Drug Administration (FDA) put a “black box warn-
ing” on Rositaglitazone’s product to inform consumers of such risks. On September 23, 2010,
the FDA limited access to Rositaglitazone because of concerns about increased cardiovascu-
lar risk. The most prominent study that led to the action by the FDA was the meta-analysis
conducted by Nissen and Wolski (2007). As part of the analysis, 42 trials were selected
from the published literature, the FDA website, and a clinical trial registry maintained by
the drug manufacturer (GlaxoSmithKline). Table 1 reports the myocardial infarction (MI)
events and deaths from cardiovascular causes (CVD) that were reported in the 42 clinical
trials included in the study. Of those 42 studies, four studies (9.5%; study 20, 31, 33, and
38) are zero total event studies for MI endpoint, and 19 studies (45%; study 2–4, 6, 7, 9,
10, 12, 14, 17, 21–24, 29, 31, 36–38) are zero total event studies for CVD endpoint. Overall,
there were 86 MIs and 39 CVDs in the rosiglitazone group and 72 MIs and 39 CVDs in the
control group.

2.1. Conditional likelihood

This section explains the practical reasons for not favoring the zero total event stud-
ies, mainly because of computational difficulty under the set up of conditional likelihood.
The most compelling argument for supporting the exclusion of zero total event studies comes
from the conditional likelihood inference perspective. The conditional maximum likelihood
estimation procedure estimates the parameter of interest by maximizing conditional like-
lihood given the minimal sufficient statistics for the nuisance parameters. Consider a se-
quence of observations {xt1, xt2, . . . , xtk}, and {xc1, xc2, . . . , xck} from k studies/trials with
{nt1, nt2, . . . , ntk}, and {nc1, nc2, . . . , nck} treatment, and control group sample sizes respec-
tively. Observations from an individual study form the following 2 × 2 table given in Table
2.

For a fixed observed event total ti, only random variable in the ith table is Xi (i =
1, 2, . . . , k) (count in the upper left cell), which follows a hyper-geometric distribution. The
corresponding conditional likelihood function given Ti = ti is as follows:

Lxti|ti(θ) = Pθ(Xti = xti|Ti = ti) =

(
nti

xti

)(
nci

ti−xti

)
ψxti

li∑
ν=ui

(
nti
ν

)(
nci
ti − ν

)
ψν
, (1)

and the joint conditional likelihood function is given by the following expression:

ϕ(xt1, xt2, . . . , xtk|t1, t2, . . . , tk) =
∏
Lxti|ti(θ), (2)



262
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

DULAL K. BHAUMIK, ANUP K. AMATYA AND SOUMYA SAHU [Vol. 22, No. 3
Table 1: Example data: Rositaglitazone and the risk of
cardiovascular events Nissen and Wolski (2007)

study Rosiglitazone Control
Total MI CVD Total MI CVD

1 357 2 1 176 0 0
2 391 2 0 207 1 0
3 774 1 0 185 1 0
4 213 0 0 109 1 0
5 232 1 1 116 0 0
6 43 0 0 47 1 0
7 121 1 0 124 0 0
8 110 5 3 114 2 2
9 382 1 0 384 0 0
10 284 1 0 135 0 0
11 294 0 2 302 1 1
12 563 2 0 142 0 0
13 278 2 0 279 1 1
14 418 2 0 212 0 0
15 395 2 2 198 1 0
16 203 1 1 106 1 1
17 104 1 0 99 2 0
18 212 2 1 107 0 0
19 138 3 1 139 1 0
20 196 0 1 96 0 0
21 122 0 0 120 1 0
22 175 0 0 173 1 0
23 56 1 0 58 0 0
24 39 1 0 38 0 0
25 561 0 1 276 2 0
26 116 2 2 111 3 1
27 148 1 2 143 0 0
28 231 1 1 242 0 0
29 89 1 0 88 0 0
30 168 1 1 172 0 0
31 116 0 0 61 0 0
32 1172 1 1 377 0 0
33 706 0 1 325 0 0
34 204 1 0 185 2 1
35 288 1 1 280 0 0
36 254 1 0 272 0 0
37 314 1 0 154 0 0
38 162 0 0 160 0 0
39 442 1 1 112 0 0
40 394 1 1 124 0 0
41 2635 15 12 2634 9 10
42 1456 27 2 2895 41 5
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Table 2: 2 × 2 contingency table for the ith trial/study

Event
yes no total

Treatment xti nti − xti nti
Control xci nci − xci nci
Total ti (nti + nci) − ti nti + nci

for li ≤ xti ≤ ui, where li = max(0, ti − nci), ui = min(nti, ti), and ψ = exp θ is the
odds ratio which is assumed to be the same across k studies involved in the analysis. The
value of θ that maximizes this conditional likelihood is called the conditional maximum
likelihood estimate (CMLE) for ψ. Note that Liψ(xti|ti) = 1, for zero total event studies,
does not directly contribute to the joint conditional likelihood. An asymptotic property
of CLME can be proved under a reasonable set of conditions. However, unlike the direct
maximum likelihood estimate, the CMLE, in general, is not efficient except for some special
(but important) situations, where the asymptotic variance attends the Cramer-Rao lower
bound (Andersen, 1970, see). Unfortunately, the CLME obtained from (2) is not derived
from one of those special situations and is not an efficient estimator of ψ. Thus, the most
reasonable basis for the exclusion of zero total event studies is based on a procedure that
maintains asymptotic properties and does not use all information contained in the data for
the parameter of interest. Furthermore, Xie et al. (2014) has shown conclusively that the
zero total event studies do contain information that is a function of ψ, πci, and sample sizes
ni.

The basic idea behind the derivation outlined by Xie et al. (2014) is as follows.
Suppose that Xti and Xci are independent binomial random variables following B(πti, nti),
and B(πci, nci), respectively. The full (unconditional) likelihood function is given as:

Lxt,xc(θ,πc) = Lxt,xc(πt,πc) =
k∏
i=1

(
nti
xti

)(
nci
xci

)
πxti
ti (1 − πti)nti−xtiπxci

ci (1 − πci)nci−xci . (3)

Under the assumption that the odds ratio is the same across k studies, πti and πci satisfy a
constraint {πti/(1 − πti)}/{πci/(1 − πci)} = eθ. From the likelihood principle, it follows that
the above likelihood function contains all information relevant for making an inference for
the parameter of interest. The full likelihood (3) can be rewritten as

Lxt,xc(θ,πc) = Lxt|t(θ)Dt(θ,πc), (4)

where Dt(θ,πc) = L(θ,πc)
Lx|t(θ)

. Xie et al. (2014) showed that Dt(θ,πc) is a function of both

θ and πc. Therefore, they argued that the conditional likelihood inference and full likeli-
hood inference are different, suggesting that “the conditional likelihood approach can in-
cur omission or distortion of information”. Clearly, the zero total event studies contribute∏
{i:ti=0}

(1 − πti)nti(1 − πci)nci portion of information to the full likelihood. But that portion

of information, which is also a function of both θ and πc, is omitted from conditional like-
lihood. As a result, inferences under conditional likelihood that effectively omit zero total
event studies will be weaker and less reliable.
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The conditional likelihood (1) is developed under a specific assumption that ti’s are
fixed in addition to the same assumption on nti and nci for each study. However, in general,
studies or trials that are included in meta-analysis do not have control over observed total
events. Consequently, the hypothesis testing under the assumption of fixed ti is conservative
and loses power when only the nti and nci are fixed. Thus, Xie et al. (2014) concluded that
zero total event studies do contain information on the intervention effect.

As described above, arguments for and against of excluding zero total event studies
are generally put forth by assuming a common odds ratio across studies. However, in contrast
to the conservative findings under such assumptions, simulation studies have suggested that
methods that exclude zero total event studies can have an inflated type I error rate when
odds ratios vary between studies Bhaumik et al. (2012). Furthermore, popular methods
used in practice have a tendency to overestimate the true odds ratio and underestimate the
between study heterogeneity. This also indicates that the zero total event studies do contain
relevant information on the parameters of our interest. In what follows, we discuss how to
include the zero total event studies in a meaningful way in meta-analysis.

3. Moment matching methods

In this section we discuss some frequently used meta analysis methods based on
weighted average estimates with the continuity correction when applied in sparse data. Tra-
ditional meta-analysis methods are perhaps the most useful methods that are used in prac-
tice. Those are derived based on the moment-matching approach. These methods include
various forms of weighted average estimates of the overall intervention effect. The inverse
variance weighted method, Mantel-Haenszel method, and Peto method are the three most
widely used methods under this category. These methods typically require some form of
adjustment when applied to sparse data. Although intended for different purposes in the
context of a chi-square test, such adjustment made in individual cells of 2 × 2 tables in
meta-analysis is known as the continuity correction.

3.1. Continuity correction

The controversy over continuity correction in meta-analysis of rare event studies per-
sists, with alternative correction factors proposed to mitigate bias and coverage issues, while
recent developments suggest methods avoiding continuity correction altogether could be
possible. As mentioned before, continuity correction is a controversial topic. There are com-
peting views on the appropriateness of the use of continuity correction in meta-analysis. In
the context of traditional analysis, there is no other choice but to discard zero total event
studies or to use a Bayesian approach without any continuity correction. The value that has
received the most attention for the continuity correction is 1/2. It was accepted as the value
for continuity correction on the basis of the argument put forth in Cox (1970). According
to Cox, when using the odds as the effect measure, choosing a correction factor of 1/2 gives
the least biased estimator of the true log odds in a single treatment group situation. The
factor 1/2 is also used to improve the approximation of a discrete distribution by a contin-
uous distribution (i.e. 1-degrees of freedom chi-square), or to obtain an approximation to
the product hypergeometric probability. However, adding a constant continuity correction
such as 1/2 can create some undesirable problems, including reversal of the effect direction,
particularly if the treatment arms are unbalanced Rücker et al. (2009). An investigation by
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Sweeting et al. (2004) concluded that using the continuity correction of 1/2 may be out-
performed in terms of both bias and coverage by other choices of correction factor when
studying the odds ratio between two groups. An important point to be noted here is that
the study was conducted under the assumption of fixed intervention effect across studies,
and excluding zero total event studies. They noted that the application of their alternative
continuity correction factor might not be applicable when using random-effect models. Two
alternative correction strategies that Sweeting et al. (2004) showed to be outperforming, un-
der fixed-effect assumption, are (1) to add a factor of the reciprocal of the size of the opposite
treatment arm to the cells, and (2) to use empirical continuity correction. However, they
also cautioned that not a single correction factor or method is superior in all situations, and
recommended to perform sensitivity analysis using several different correction factors. See
Sweeting et al. (2004) for details on the aforementioned alternative approaches for continuity
correction.

Recent efforts on methodological development and validation studies suggest that
the issue of continuity correction can potentially be avoided altogether using those methods
(in the frequentist domain) that do not require continuity correction. Furthermore, these
methods allow the inclusion of all studies in meta-analysis. Nonetheless, the Mantel-Hanszel
and Peto methods are widely used for meta-analysis of rare events. Therefore, these popular
classical methods, along with a somewhat underutilized but highly relevant method using
arcsine risk difference measure, are briefly described in the following sections.

3.2. Mantel-Haenszel method

The Mantel-Haenszel method for meta-analysis adjusts for potential confounding fac-
tors and uses weighted averages to estimate the combined odds ratio, with alternative conti-
nuity corrections recommended to mitigate bias and improve coverage. The Mantel-Haenszel
method was originally developed for stratified analysis adjusting for the third potential con-
founding factor. The fixed-effect meta-analysis can be viewed as a stratified design where
each individual study is treated as a stratum. Based on the Mantel-Haenazel method, the
pooled odds ratio across all K studies is estimated using the following expression:

ÔRMH =
∑K
i=1 xT i(nCi − xCi)/Ni∑K
i=1 xCi(nT i − xT i)/Ni

. (5)

Equation (5) can be rewritten as a weighted average estimate as follows:

ÔRMH =
∑K
i=1 wiÔRi∑K
i=1 wi

, (6)

where wi = xCi(nT i − xTi)
Ni

, and ÔRi = xT i(nCi − xCi)
xCi

(nT i − xT i) (7)

It is clear from equation (5) that zero cell studies contribute to the estimation of a combined
odds ratio. However, zero total event studies are implicitly excluded from the computation
unless a continuity correction is added. The weights in equation (7) are not reciprocals of the
variances of odds ratio estimates from individual studies. Therefore, the variance estimate
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of the combined odds ratio is not as straightforward as in the inverse variance method. The
Robins-Breslow-Greenland method is generally accepted as an easy-to-use variance estimator
for ln(ÔRMH). It has the following expression:

V̂ ar[ln(ÔRMH)] = S3

2S2
1

+ S5

2S1S2
+ S4

2S2
2
, (8)

where S1 =
K∑
i=1

xT i(nCi − xCi)
Ni

, S2 =
K∑
i=1

xCi(nT i − xTi)
Ni

,

S3 =
K∑
i=1

xTi(nCi − xCi)(xT i + nCi − xCi)
N2
i

, S4 =
K∑
i=1

xCi(nT i − xT i)(xCi + nT i − xT i)
N2
i

,

and S5 =
K∑
i=1

xCi(nT i − xT i)(xT i + nCi − xCi) + xT i(nCi − xCi)(xCi + nT i − xT i)
N2
i

. A null hy-

pothesis of equal odds in treatment and control subjects, i.e., ORMH = 1, may be tested by
the following χ2-test:

X2
MH =

[
K∑
i=1

xT i(nCi − xCi) − xCi(nT i − xT i)
Ni

]2

. (9)

The Mantel-Haenszel method with the continuity correction of 1/2 produces biased
estimates and low coverage rates for event rates below 1 percent Bradburn et al. (2007).
Therefore, under fixed-effect conditions, an alternative continuity correction is recommended
instead of 1/2 to reduce bias and improve coverage characteristics of this estimator Sweeting
et al. (2004).

3.3. The Peto method

The Peto method in meta-analysis of moderately rare events excludes zero total event
studies automatically and estimates the pooled log odds ratio based on weighted differences
from individual tables, with limitations in unbalanced data and close-to-1 odds ratios. The
Peto method is popular for meta-analysis of moderately rare events. Similar to the Mantel-
Haenszel method, this method does not require artificial continuity correction when events
are not observed in one of the treatment arms. However, the zero total event studies are au-
tomatically given zero weight and effectively are excluded from the analysis. When marginal
totals in Table 2 are fixed, the following two quantities are the mean and variance of hyper-
geometric distribution under the null hypothesis that the odds ratio is one.

Ei = (xT i + xCi)nT i
Ni

, (10)

and
Vi = (xT i + xCi)(Ni − xT i − xCi)nT inCi

N2
i (Ni − 1) . (11)
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Based on Ei and Vi, the Peto estimate of pooled log odds ratio from K independent tables
has the following expression:

ln(ÔR)Peto =
∑K
i=1(xT i − Ei)∑K

i−1 Vi
, (12)

and
V ar[ln(ÔR)Peto] = 1∑K

i−1 Vi
. (13)

The Peto estimator of the combined odds ratio is not a consistent estimator and can provide
severely biased results when applied to unbalanced data Greenland and Salvan (1990). The
validity of the Peto estimator in a meta-analysis of rare event studies is limited to the analysis
of reasonably balanced studies that have odds ratio close to 1.

3.4. Arcsine transformation

The arcsine transformation method is needed when the objective is to include all
studies in the meta-analysis, including those with very rare events or zero total events, while
stabilizing variance estimates to provide more accurate intervention effect estimates. Zero
event in either or both arms of a given study/trial does not necessarily indicate that the
true probability of an event is 0. On the contrary, it indicates that the event probability is
very small, and the sample size in the study is not large enough to observe an event. The
arcsine transform method estimates the combined effect by combining all studies including
the zero total event studies. The arcsine difference (AS) measure of intervention effect for
the ith study is defined as:

ASi = arcsin
√
pT i − arcsin

√
pCi, (14)

and its asymptotic variance given in equation (15) is finite and non-zero and depends only
on the study sample size.

σ2
ASi

= 1
4nT i

+ 1
4nCi

. (15)

Similar to the MH and Peto methods, the combined AS is a weighted mean of the individual
ASi’s, where the wi = 1/σ2

ASi
are the weights. Therefore,

ÂS =
∑K
i=1 wiASi∑K
i=1 wi

. (16)

Rücker et al. (2009) has recommended using 0.42/n instead of 1/4n in equation (15) to
estimate the variance conservatively for small event probabilities. Simulation studies of
Rücker et al. (2009) suggest that the bias of the estimate is slightly higher than the other
two methods mentioned above. The key advantage of this method is the variance stabilizing
property of the arcsine transformation, which leads to more robust estimation, even for the
rare events Rücker et al. (2009). Nevertheless, a lack of direct interpretation has limited its
wider use as a measure of intervention effect.
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3.5. Heterogeneity

Fixed-effect methods like Mantel-Haenszel and Peto can significantly overestimate
treatment effects in meta-analysis of rare events, especially in the presence of heterogeneity,
leading to inflated type I error rates and biases. Historically, the treatment effect hetero-
geneity has not received sufficient attention in the context of meta-analysis of rare events.
Using a continuity correction, majority of simulation studies are performed under the as-
sumption of fixed treatment effect Sweeting et al. (2004); Bradburn et al. (2007), or a small
heterogeneity Rücker et al. (2009). The rationale behind selecting the fixed treatment effect
is the negligible heterogeneity. The zero estimate, however, is not always due to the absence
of heterogeneous treatment effects but mainly due to the unavailability of adequate methods.
On the other hand, studies that evaluate heterogeneity are conducted for moderate event
rates. As a result, the performance of fixed-effect methods in the presence of heterogeneity is
not well understood, particularly for low event rates. Although those methods are expected
to perform poorly, only a few studies have extensively explored specific characteristics of the
poor performance. For example, Bhaumik et al. (2012) showed that the asymptotic bias of
combined odds ratio (with constant continuity correction “a”) in the presence of treatment
heterogeneity to be

Bias(θ̂wa) = −
(pt|ϵ − qt|ϵ)
n(qt|ϵpt|ϵ)

{
a+ pcqc − pt|ϵqt|ϵ

2(pt|ϵqt|ϵ + pcqc)

}

+ (pc − qc)
n(pcqc)

{
a+ pt|ϵqt|ϵ − pcqc

2(pt|ϵqt|ϵ + pcqc)

}
,

(17)

where pt|ϵ and pc are unobservable underlying true event rates, θ̂wa =
k∑
i=1

ŵi(τ 2)θ̂ia/
k∑
i=1

ŵi(τ 2),

and ŵi(τ 2) = 1
σ̂2
i (τ 2) . Their simulation study suggests that, for low event rates, the Mantel-

Haenszel and Peto methods can grossly overestimate the treatment effect (see Figure 1) and
produce an unacceptably high type I error rate. Therefore, in the presence of heterogene-
ity, the behavior of fixed-effect methods does not follow the patterns demonstrated in the
simulation studies without heterogeneity. The bias of the treatment effect is reduced when
random-effects methods with 1/2 continuity correction are used along with the improved es-
timates of heterogeneity parameters. However, even with alternative methods, an estimate
of heterogeneity may not produce a non-zero value when event rates are extremely low (e.g.,
1/1000). As the true state of heterogeneity is unknown a priori, a large bias and an inflated
type I error rate (see Figure 1) are potential threats associated with the validity of estimates
of treatment effects obtained from weighted average methods, including Mantel-Henszel,
Peto, and Dersimonial-Liard. These undesirable characteristics become more pronounced
for low event rates. Shuster (2010) has also raised similar concerns regarding the validity
of empirically based weighting in random effects and demonstrated that empirical weighting
produces substantial bias for the DerSimonian-Laird approach.
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Figure 1: Power curve of Q-test as a function of τ 2 for a low event rate (0.4%).
The true value of θ is set at 0. The αFE is a type I error rate for testing the null
hypothesis using the fixed-effect (Peto) method.

4. Likelihood based methods

4.1. Maximum marginal likelihood methods

The maximum marginal likelihood (MML) method in meta-analysis allows for si-
multaneous estimation of treatment effects and heterogeneity parameters, accommodating
studies with zero total events without requiring continuity corrections. The MML method is
model-based, an alternative to the moments matching methods. The major advantage of the
MML approach over traditional methods is that the zero total events studies can be included
without any artificial continuity corrections. It does have the flexibility of estimating both
the overall treatment effect, and the heterogeneity parameter(s) simultaneously.

Consider an observed 2 × 2 Table 2 for the ith study for a meta-analysis of k studies.
Suppose the probability of observing an event in the ith study is pti for the treatment group
and pci for the control group. The log-odds of adverse events in group j ∈ {T,C} can be
modeled as follows.

ln

(
pji

1 − pji

)
= µ+ ϵ1i + (θ + ϵ2i)Tji (18)

where Tji is the treatment indicator variable defined as Tji = 0 for j = c and Tji = 1 for
j = t; and ϵ1 ∼ N(0, σ2

µ) and ϵ2 ∼ N(0, τ 2) are the random-effects associated with mean
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log-odds of an event in control group µ, and treatment effect θ, such that(
ϵ1
ϵ2

)
∼ N

{(
0
0

)
,

(
σ2
µ ρσµτ

ρσµτ τ 2

)}
. (19)

Therefore, this model allows for heterogeneity in both the baseline risk and the treatment
effect. Conditional on the random effects, the likelihood function for the ith study is

l(xi|ϵ) = pxti
ti q

nti−xti
ti pxci

ci q
nci−xci
ci , (20)

where xi = (xti, xci) is the vector pattern of responses from study i. The models (18)-(19)
involve three parameters µ, θ, and Σ, where Σ denotes covariance matrix on the right hand
side of Equation (19). The marginal likelihood function for these parameters is obtained by
integrating the conditional likelihood (20) over the distribution of random effects as follows

h(β; xi) = h(xi) =
�
ϵ

l(xi|ϵ)g(ϵ)dϵ, (21)

where g(ϵ) represents the related bivariate normal density. As studies are assumed to be
independent, the full log-likelihood for k studies can be expressed as

logL =
k∑
i=1

log h(xi), (22)

and for a parameter vector β = (µ, θ,Σ), the first derivatives of the log-likelihood with
respect to β are

∂ logL
∂β

=
k∑
i=1

1
h(xi)

∂h(xi)
∂β

, (23)

where
∂h(xi)
∂β

=
�
ϵ

∂ log l(xi|ϵ)
∂β

l(xi|ϵ)g(ϵ)dϵ . (24)

A close-form solution of (24) is generally not available for nonlinear models. Therefore,
numerical techniques such as Gauss-Hermite quadrature are required for the integration of
the random effect space (i.e., ϵ). The marginal likelihood equation in (21) can be approxi-
mated numerically to any practical degree of accuracy by summing on a specified number of
quadrature nodes and the corresponding quadrature weights. Commercial software packages
such as SAS, STATA, SuperMix . can easily fit MML models, and the GLIMMIX procedure
in SAS or the glmer package in R can be used to fit alternative linearized approximation to
(24).

The MML models offer a variety of modeling strategies in the context of meta-analysis.
Treatment effect may be estimated with a single random effect (background incidence or
treatment effect) or a model with two correlated random effects. However, this flexibility to
construct a model with a combination of multiple random effects also creates room for model
mis-specifications. The detailed analysis of the impact of such model misspecification on the
characteristics and testing of the overall effect estimator and the heterogeneity parameter has
shown that the models that allow heterogeneity in both baseline rate and treatment effect
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across studies have low type I and type II error rates, and are the least biased compared to
other model specifications Amatya et al. (2015).

4.2. Beta-binomial model

The beta-binomial model offers a Bayesian framework for meta-analysis, allowing
for estimation of treatment effects and correlations between event probabilities across stud-
ies. The beta-binomial model is another alternative to the moment-based methods. In the
Bayesian setup, a meta-analysis of binary events can be performed in two ways using the
beta-binomial model. The first way is to adopt a univariate approach, where event probabili-
ties pT i and pCi are assumed to be independent. However, the individual binary observations
within the jth arm of the ith study (which add up to xji for j =∈ {T,C}) are allowed to
be correlated by imposing pji ∼ beta(αj, βj) as a prior. As a result, E(pj) = µj = αj

αj+βj
,

V ar(pj) = µ(1 −µ)θ/(1 + θ) with θ = 1/(αj + βj), and the correlation between observations
within jth arm of each study is ρj = 1/(αj + βj + 1), and the marginal distribution of xji is
the beta-binomial distribution with the following log-likelihood function:

lji(αj, βj) =lnΓ(nji + 1) + lnΓ(xji + αj) + lnΓ(nji − xji + βj)
+ lnΓ(αj + βj) − lnΓ(xji + 1) − lnΓ(nji − yji + 1)
− lnΓ(nji + αj + βj) − lnΓ(αj) − lnΓ(βj),

(25)

and the joint log-likelihood function is:

l(α,β) =
K∑
i=1

∑
j∈{T,C}

lji(αj, βj). (26)

The number of parameters is reduced further by modeling the mean function g(µj) = b0 +
b1xj, where g is a link function as in the generalized linear model, and xj = 1, if j = T and
xj = 0, if j = C. A specific link function for g determines the type of effect. For example,
the logit link function gives the log odds ratio, and the log link function measures log relative
risk. Kuss (2014) recommends avoiding the identity link to estimate the risk difference and
suggests to use the estimated event probabilities p̂C = g−1(b̂0) and p̂T = g−1(b̂0 + b̂1) from
the logit model for the control and treatment groups, respectively.

The second approach is to use the bivariate beta-binomial model which addresses
the correlation between the event probabilities of two treatment arms of the studies. The
correlation between control event rates (proportion) and treatment effects has been identified
in studies by various authors (Schmid et al., 1998, and references therein). Unlike the MML,
the bivariate beta-binomial model implies a linear relationship between pT and pC on the
original scale. Chu et al. (2012) described a beta-binomial model in two stages. In the first
stage, Xji is assumed to be independently binomially distributed, such that

P (XTi = xT i, XCi = xCi|nT i, nCi, pT i, pCi) =
∏

j∈{T,C}

(
nji
xji

)
(pji)xji(1 − pji)nji−xji . (27)
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In the second stage, the joint distribution of pT i, and pCi is specified using a Sarmanov beta
prior distribution as follows (see Luo et al., 2014):

pT i, pCi|αT , αC , βT , βC ∼ f(pT , pC ;αT , αC , βT , βC)

= beta(pT ;αT , βT )beta(pC ;αC , βC)
(

1 + ρ
(pT − µT )(PC − µC)

δT δC

)
,

(28)

where ρ is the correlation coefficient between pT i and pCi; beta(p;α, β) = [B(α, β)]−1pα−1(1−
p)β−1 with B(α, β) =

� 1
0 t

α−1(1−t)β−1dt; and µj = αj/(αj+βj), δ2
j = µj(1−µj)/(αj+βj+1),

and j ∈ {T,C}. As a result, the log marginalized likelihood function for the unknown
hyperparameters (αT , αC , βT , βC , ρ) is

log L(αT , αC , βT , βC , ρ)

=
k∑
i=1

log [PBB(xT i;nT i, αT , βT )PBB(xCi;nCi, αC , βC)]

+ log

1 + ρ

(
xT i+αT

nT i+αT +βT
− µT

) (
xCi+αC

nCi+αC+βC
− µT

)
δT δC

 ,
(29)

where PBB(x;n;α; β) is the probability mass function of a beta-binomial distribution, such
that

PBB(x;n;α; β) =
(
n

x

)
B(x+ α, n− x+ β)

B(α, β) . (30)

The maximum likelihood estimates (α̂T , α̂C , β̂T , β̂C , ρ̂) is obtained by maximizing likelihood
function (29). Based on these estimates, three overall effect measures are estimated as
follows:

Odds Ratio = ÔR = µ̂T/(1 − µ̂T )
µ̂C/(1 − µ̂C) = α̂T β̂C

α̂C β̂T
, (31)

Relative Risk = R̂R = µ̂T
µ̂C

= α̂T/(α̂T + β̂T )
α̂C/(α̂C + β̂C)

, (32)

Risk difference = R̂D = µ̂T − µ̂C = α̂T

(α̂T + β̂T )
− α̂C

(α̂C + β̂C)
. (33)

The variances of these estimates are calculated using the delta method.

5. Confidence distribution methods

Confidence distribution, in meta-analysis refers to a statistical method where the un-
certainty about a parameter (such as an effect size) is represented by a distribution rather
than a single point estimate. This distribution integrates information from multiple studies,
accommodating varying study sizes and results, including studies with zero total events.
Xie et al. (2011) have developed a unified framework for meta-analysis by combining con-
fidence distributions (CD) from individual studies. The combined CD function is obtained
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by appropriately weighting the individual distribution estimators. This is in contrast to the
traditional meta-analysis, where a combined estimate is obtained by averaging individual
point estimates with appropriate weights. The combined CD does have various optimality
conditions. This method also allows straightforward integration of data from all studies
including zero total events.

Suppose that the CD function Hi(θ) = Hi(Xi, θ), i = 1, . . . , k for the parameter θ
can be obtained from each study with corresponding samples Xi of size ni. A combined
confidence distribution function across k studies (Hc) is constructed as

Hc = Gc{gc(H1(θ), . . . , Hk(θ))}, (34)

where gc(u1, . . . , uk) = w1F
−1
0 (u1) + . . . + wkF

−1
0 (uk) is a monotonic function that has the

cumulative distribution function Gc(t) = P (gc(U1, . . . , Uk) ≤ t) for Ui ∼ U [0, 1]. The trans-
formation function F0(·) is weighted by fixed positive weights wi ≥ 0. The conventional
fixed- and random-effect meta-analysis approaches can be easily derived using the recipe in
(34) (see Xie et al., 2011).

5.1. Odds ratio

Meta-analysis of rare event studies using odds ratio under the CD framework was
developed by Liu (2012). This method uses exact p-values based on mid-p adaptation of
Fisher’s exact test for the odds ratio as the CD functions for individual studies and combines
them by applying the general CD combination method as described in (34). Using this exact
test, the p-value function for the odds ratio Ψ is obtained as follows:

pi(Ψ) ≡ pi(Ψ;xT i, xT i) = PrΨ(XT i > xT i|Ti = ti) + 1
2PrΨ(XT i = xTi|Ti = ti), (35)

where, the hypothesis of interest is

H0 : Ψ = Ψ0vs.H1 > Ψ0.

The XT i’s are assumed to follow a hypergeometric distribution conditional on Ti = XT i+XCi.
Then, for Li = max(0, ti − nCi), and Ui = min(nT i, ti). It follows that

PrΨ(XT i = xT i|Ti = ti) =

(
nT i
xT i

)(
nCi

ti − xT i

)
ΨxT i

Ui∑
s=Li

(
nT i
s

)(
nCi
ti − s

)
Ψs

, Li ≤ xT i ≤ Ui. (36)

The statistic pi(Ψ0) asymptotically follows U(0, 1). However, for the meta-analysis of rare
events, the asymptotic conditions are seldom valid, causing a substantial deviation of pi(Ψ0)
from U(0, 1). Nonetheless, Liu (2012) has shown that the general idea of a CD combining
algorithm can still be used in the finite sample setting after some adjustments. They also
showed that zero total event studies can provide meaningful contributions in the presence
of uncertainty. The impact of zero total event studies is appropriately accounted for in the
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sample size computation of the corresponding studies by using the weights:

wi ∝
[
{nT iπT i(1 − πT i)}−1 + {nCiπCi(1 − πCi)}−1

]−1/2
, (37)

which requires estimates of πCi and πT i. To improve an efficiency of the overall estimate,
Liu et al. (2014) proposed to model πCi using a beta(β1, β2) distribution. The parameters
of this beta distribution are estimated as follows:

(β̂1, β̂2, Ψ̂) = arg max
β1,β2,Ψ

k∑
i=1

Log

� 1

0
fψ(xCi, xT i|πCi)fβ1,β2(πCi)dπCi, (38)

where fβ1,β2(πCi) = πβ1−1
Ci (1 − πCi)β2−1/

� 0
1 π

β1−1
Ci (1 − πCi)β2−1d(xCi), fψ(xCi, xT i|πCi) =

c(xCi, xT i)πxCi
Ci (1 − πCi)nCi−xCiπxT i

T i (1 − πT i)nT i−xT i , and πTi = (ΨπCi)/(1 − πCi + ΨπCi). The
mean of the empirical conditional density of πCi is used as an estimate of πCi and an estimate
of πT i is calculated through π̂T i = (ΨπCi)/(1 − π̂Ci + Ψ̂π̂T i). This manipulation produces
positive estimates of πT i and πCi even for zero total event studies, allowing the inclusion of
these studies without any continuity correction. When xT i = 0 for all i, limiting weights are
calculated as follows

limΨ̂→0

(
wi/

k∑
i=1

wi

)2

= nCixCi/(1 − xCi)∑k
i=1 nCixCi/(1 − xCi)

.

The case where xCi = 0 for all i is handled similarly.

5.2. Risk difference

Tian et al. (2009) proposed a simple procedure to construct a 100(1 − α) 1-sided
confidence interval (CI) of the type (a,∞) for a common risk difference parameter ∆, based
on all data from k independent studies without any artificial continuity correction. Suppose
that n sets of k study-specific 1-sided CIs of any arbitrary level η can be constructed for ∆.
Let Jij = (aij,∞) be the ηj-level 1-sided CI obtained from the ith study, for i = 1, . . . , k,
and j = 1, . . . , n; such that 0 < η1 < η2 < . . . < ηn < 1, and ai1 > ai2 > . . . > ain. The final
combined interval for δ is (see Tian et al., 2009)

k∑
i=1

wi
n∑
j=1

w̃j {(I(∆ > aij) − ηj} ≥ c, (39)

where I(·) is the indicator function, wi is a study-specific weight, w̃j is a positive weight for
ηj-level intervals, and the critical value c is chosen such that

Pr

 k∑
i=1

wi
n∑
j=1

w̃j(Bij − ηj) < c

 ≤ α. (40)

In equation (40), (Bi1, . . . , Bik) are n independent random vectors whose components
are correlated Bernoulli variables such that Bi1 ≤ Bi2 ≤ . . . ≤ Bik and pr(Bij = 1) = ηj.
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Tian et al. (2009) suggested to use wi = 1/(nT i+nCi), and w̃j = {ηj(1−ηj)}−1 for the weights.
Yang et al. (2012) showed this procedure to be a special case under the CD framework, where
F−1

0 (u) is chosen to be ∑n
j=1 w̃j {I(u > 1 − ηj) − ηj}. Then,

Hc(∆) = Gc


k∑
i=1

wi
n∑
j=1

w̃j {I(Hi(δ) > 1 − ηj) − ηj}

 . (41)

For the detailed derivation of the proof, see Yang et al. (2012), where alternative equivalent
expression for Hc(∆) is also obtained by using the logistic function as a transformation
function.

6. Illustration

In their highly influential meta-analysis article, Nissen and Wolski (2007) concluded
that rosiglitazone was associated with a significant risk of myocardial infarction [odds ratio
(OR) 1.43, 95 % CI (1.03,1.98), P = 0.03] and an increase in the risk of death from cardio-
vascular causes, which had borderline significance [OR 1.64, 95 % CI (0.98 2.74); P = 0.06].
These conclusions were based on a fixed-effect meta-analysis using the Peto method. Soon af-
ter the release of these results, a series of reanalysis of the same data was published by others
using different methods. Diamond et al. (2007) has conducted the meta-analysis using three
conventional fixed-effect methods with two continuity corrections and including/excluding
zero total event studies. Stoto (2015) reported some results based on a Localio et al. (2008)
wide variety of statistical methods. Tian et al. (2009), Chu et al. (2012), and Liu et al.
(2014) have used a few relatively new approaches to analyze the rosiglitazone data. They
included all studies (including zero total event studies) without any continuity correction.
Chu et al. (2012) used the beta-binomial model, whereas Tian et al. (2009), and Liu et al.
(2014) used the confidence distribution methods. Estimates of various effect measures from
these articles are summarized in Table 3.

7. Bayesian methods

The Bayesian methodology in meta-analysis offers flexible modeling with hierarchi-
cal structures, integrating prior information and accommodating non-normal distributions
of random effects. Computational intensity has decreased with advancements in Monte
Carlo techniques and computing power, supporting complex analyses without major barri-
ers. Bayesian methodology is an alternative to the traditional meta-analysis methods. It
provides a broad range of modeling alternatives with multiple levels of hierarchy and natu-
rally integrates prior information on parameters of interest from other trials or studies. The
emphasis on hierarchical modeling accounts for uncertainty in all parameters including the
between-study heterogeneity. The flexibility of the Bayesian approach allows for rigorous
sensitivity analysis, which is particularly important for meta-analysis of rare events. Fur-
thermore, the Bayesian framework can be easily extended to non-normal distributions of
random effects. The computational complexity of the Bayesian approach is substantially
intensive compared to the traditional methods. Fortunately, software is readily available
that incorporates rapidly developing Monte Carlo techniques. Due to the unprecedented rise
in computational power of modern personal computers, complex computation in Bayesian
analysis is no longer a major barrier.
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Table 3: Various estimates of effect measures for rosiglitazone MI data

Method CC OR (95% CI) RR
(SE)

RD (95% CI)

Nissen Peto 0.5 1.43 (1.03, 1.98)
Diamond Fixed, IV TAC 1.34 (.097, 1.84)

Fixed, IV CC 1.29 (0.94, 1.76) .0015 (0, .0031)
Fixed, MH TAC 1.36 (1.00, 1.84)
Fixed, MH CC 1.28 (0.95, 1.72) .0020 (0, .0041)
Fixed, MH TAC+ 1.35 (1.00, 1.82)
Fixed, MH CC+ 1.26 (0.93, 1.69)

Localio Random [DL] NA 1.31 (0.91, 1.89)
Random [DL] 0.5 1.31 (0.95, 1.79)
Random [DL] TAC 1.33 (0.93, 1.91)
Conditional lo-
gistic

NA 1.45 (1.05, 2.01)

Exact stratified NA 1.45 (1.03, 2.04)
Random inter-
cept/slope

NA 1.37 (0.99, 1.90)

Chu Bivariate beta-
binomial

NA 1.291
(0.382)

0.0011 (SE=0.0013)

Tian Exact CD NA 0.0018 (-0.008, 0.004)
Liu Exact CD NA (.972, 2.00)

Adjusted Exact
CD

(1.04, 2.01)

CC: Constant (0.5) correction for continuity, CC+: constant correction for continuity that includes all
zero total event studies, IV: inverse variance, MH: Mantel-Haenszel, TAC: treatment arm correction for
continuity, TAC: treatment arm correction for continuity that includes all zero-total-event studies

The key elements of a generic Bayesian meta-analysis model are the prior distributions
on both the effect and the heterogeneity parameters. The simplest form of Bayesian random-
effect meta-analysis is as follows: (see Sutton and Abrams, 2001):

θ̂i ∼ f(θ̂i|θi, σ2
i )

θi ∼ π(θi|θ, τ 2)
θ ∼ h(θ)
τ 2 ∼ h(τ 2), (42)

where h(θ) and h(τ 2) are the prior distributions of effect parameter θ, and between-study
heterogeneity parameter τ 2 respectively. The resulting posterior distribution does have the
following form:

p(θ, τ, θi|θ̂i) ∝ h(θ)h(τ 2)
K∏
i=1

π(θi|θ, τ 2)
K∏
i=1

f(θ̂i|θi, σ2
i ). (43)

Inferences on parameters of interest are made from the mode of the posterior distribution
(43). Except for some cases of conjugate prior distributions, the posterior mode is usually
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not available in its closed form. Instead, Monte Carlo methods such as Gibbs sampling
are used to numerically approximate the mode of the posterior distribution. An example
of Gibbs sampling is found in a meta-analysis of randomized controlled trials comparing
sodium monobuorophosphate (SMFP) to sodium Buoride (NaF) dentifrices (toothpaste) in
the prevention of caries development Abrams and Sanso (1998). A complex example of a
Bayesian hierarchical model that incorporates a study-level component of variability and
facilitates extensive sensitivity analysis is found in Kaizar et al. (2006).

7.1. Strong prior

A strong prior in Bayesian analysis is one that conveys substantial prior belief or
information about the parameters of interest, such as the probability of events in the control
arm, treatment effect, or between-study heterogeneity. It can significantly influence the esti-
mated outcomes of a meta-analysis by anchoring the inference towards specific values based
on empirical data or subjective judgment. The prior distribution is not only a key part
of Bayesian analysis, but also it is one of the most difficult and controversial aspects of the
analysis. A non-informative prior is specified to express vague or general information of a pa-
rameter and to minimize a perceived subjective bias. On the other hand, an alternative prior
distribution can be specified to integrate prior belief or substantiated information relevant
to the estimation of the parameter of interest. Such informative priors may be formulated
by considering the plausible range of the parameters, based on observed distributions from
empirical studies, or based purely on subjective clinical judgment Warn et al. (2002). These
informative priors may influence the conclusion of the meta-analysis. When binary events
are of concern, prior distribution needs to be specified for the following three parameters:(1)
probability of events in the control arm, (2) treatment effect, and (3) between-study hetero-
geneity. Strong priors on some of these parameters may have a substantial impact on the
estimated overall treatment effect. The following Bayesian meta-analysis of rositaglitazone
data illustrates the impact of strong priors.

Let nji be the number of the participants in the ith trial who received the jth treat-
ment. Suppose that the probability of experiencing MI is pji. The observed MI incidences
xji may be modeled under the Bayesian framework as follows:

Xji ∼ binomial(pji, nji), for j ∈ {T,C}, and i = 1, 2, . . . , k
θi ∼ N(θ, τ 2), µi = logit(pCi)

logit(pT i) = µi + θi.

The model presented above can be easily implemented in the WinBugs program (see Warn
et al., 2002). To represent a plausible range of θ and τ , prior distributions N(0, 10), and
U(0, 2) are specified, respectively. Based on the specified priors and the observed data, the
WinBugs program computes posterior distributions of parameters using MCMC methods.
The posterior modes of θ and τ are estimated from these posterior distributions. A graphical
representation of the posterior distribution for this example data is displayed in Figure (2).

The posterior estimate of the combined odds ratio and heterogeneity from the above
modeling are given in Table 4, where noninformative independent prior U(0, 1) is specified
for PCi. This model specification assumes a fixed background MI incidence rate and hetero-
geneous between-study treatment effects. The results in Table 4 show a posterior estimate
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Figure 2: Posterior Distributions of τ and θ.

Table 4: Bayesian Meta-Analysis of 42 Rosiglitazone Trials

mean 2.5% 25% 50% 75% 97.5%
OR 0.608 0.379 0.522 0.617 0.720 0.883
τ 2 0.234 0.015 0.111 0.217 0.379 0.932

of the odds ratio of 0.608 with 95% credible interval of (0.379, 0.883), which is markedly
different from the moment based estimators in Table 3. It is noteworthy that the current
estimate is close to the estimate obtained from MML with random effects restricted only
to the treatment effect. A priori belief regarding the incidence of MI rate among type II
diabetes patients can be integrated by changing the parameters of the prior distribution of
PCi. Figure 3 displays the impact of different values of parameters of the prior distribution
of PCi. The posterior odds ratio remains below 1.0 as the prior becomes closer to the vague,
the same as the results in Table 4. However, a strong prior of uniform(0, 0.01) provides a
positive log odds ratio that is close to the moment-based results. Figure 3 essentially shows
that if one is willing (or has reason) to believe a priori that the prevalence of MI is extremely
rare, e.g., less than 6/1000, in a diabetic population, then the observed data supports an
elevated risk of MI among rosiglitazone users. In the absence of such prior information, the
model does not support the conclusion derived from the moment-based analyses.

This example clearly demonstrates the effect of prior distributions on the conclusion
of meta-analysis. A similar but less dramatic effect on the estimate of the log odds ratio is
also observed for different informative prior specifications of τ . However, when only a small
number of studies are available, a strong prior distribution on τ can significantly influence the
results of the analysis Sutton and Abrams (2001). The hierarchical Bayesian approach is used
to introduce a reasonable amount of uncertainty in the prior belief regarding distributions of
the model parameters. In the rosiglitazone example, a beta(a, b) prior distribution may be
used to model pc, and a gamma(s, r) hyper-prior may be placed on the parameters of the
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Figure 3: Posterior mean and 95% credible interval of odds ratio for varying
maximum values (max pc) of the prior distribution of pc ∼ unif(0,max pc)

beta distribution. The resulting full Bayesian model is

rT i ∼ binomial(pT i, nT i), rCi ∼ binomial(pCi, nCi)
µi = logit(pCi), logit(pT i) = µi + θi,

pCi ∼ beta(a, b), θi ∼ N(θ, τ 2)
a ∼ gamma(ra, sa), b ∼ gamma(rb, sb);

(44)

where, gamma (r, s) = sr

Γ(r)x
r−1e−sx for x > 0, r > 0 and s > 0. Table 5 presents the

estimates obtained from this model for different combinations of parameters of the gamma
hyper-prior distribution. For this illustration, ra and rb were varied while holding sa and sb
values fixed at 0.25 and 1.5, respectively. The posterior means of the log odds ratio are clearly
more consistent between 0.11 (OR=1.12) and 0.17 (OR=1.19) over different specifications
of hyper-prior distributions. These estimates of log odds ratios are closer to the estimates
obtained from the moment-based methods.
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Table 5: Hierarchical Bayesian Analysis of 42 Rosiglitazone Trials using
Different Gamma Hyper-prior Distributions.

α β log odds ratio (θ) τ 2

ra rb mean mean mean 2.5% 97.5% mean 2.5% 97.5%
0.0004 12.052 0.305 14.537 0.152 -0.252 0.513 0.069 0.000 0.651
0.0018 15.801 0.322 16.970 0.135 -0.263 0.530 0.077 0.000 0.709
0.0031 4.170 0.263 8.861 0.144 -0.206 0.529 0.062 0.000 0.600
0.0039 15.551 0.320 16.742 0.152 -0.240 0.524 0.071 0.000 0.612
0.0042 19.110 0.336 19.199 0.153 -0.251 0.551 0.065 0.000 0.622
0.0047 17.088 0.323 17.972 0.159 -0.237 0.512 0.066 0.000 0.621
0.0057 17.625 0.327 18.191 0.143 -0.223 0.549 0.061 0.000 0.627
0.0066 8.534 0.285 11.883 0.163 -0.221 0.538 0.074 0.000 0.660
0.0088 11.785 0.298 12.304 0.150 0.025 0.237 0.002 0.000 0.008
0.5884 16.796 0.332 17.959 0.146 -0.214 0.531 0.069 0.000 0.602
1.1903 7.241 0.291 11.447 0.139 -0.267 0.509 0.075 0.000 0.670
1.2831 13.824 0.317 15.963 0.112 -0.249 0.465 0.107 0.004 0.719
1.9515 1.021 0.259 7.270 0.173 -0.218 0.552 0.060 0.000 0.626
2.5283 14.976 0.342 16.910 0.137 -0.251 0.524 0.075 0.000 0.638
2.7945 16.991 0.360 18.552 0.120 -0.298 0.489 0.075 0.000 0.598
3.5064 3.797 0.292 9.580 0.161 -0.248 0.587 0.060 0.000 0.584
3.8382 15.027 0.357 17.441 0.131 -0.252 0.503 0.063 0.000 0.516
4.0664 8.528 0.326 12.920 0.123 -0.271 0.515 0.071 0.000 0.653
4.0838 7.780 0.323 12.488 0.140 -0.266 0.494 0.067 0.000 0.652

8. Discussion

Meta-analysis of safety data, particularly for rare events, poses challenges due to low
event rates in randomized controlled trials (RCTs) designed primarily for efficacy. These
issues include inadequate power to detect true risks and complexities arising from biases and
study design differences in observational studies. Analytical methods vary in handling het-
erogeneity, influencing conclusions on drug safety, as seen in meta-analyses of Rosiglitazone’s
association with myocardial infarction, highlighting the need for cautious interpretation and
sensitivity analysis. Meta-analysis of rare events data in general, and safety data in par-
ticular is a complex statistical problem with immense practical importance. Randomized
control trials (RCT) are generally not designed to study safety issues related to a treat-
ment. Therefore, individual trials may not provide adequate power to detect the true risk
of adverse events, particularly when the adverse event is rare. Post-marketing safety stud-
ies are usually conducted using large observational studies. A meta-analysis from a series
of large observational studies can provide a spurious degree of statistical precision, leading
to acceptance of low-level associations resulting from residual confounding Henry and Hill
(1999). Inherent biases and differences in study designs add further complexities to the
meta-analysis of observational studies. Consequently, the assessment of drug safety partly
relies on the meta-analysis of RCTs and other published literature. Although such reliance
on meta-analysis holds promises of synthesizing all available evidence, it is not without se-
rious pitfalls. Stoto (2015) discussed these issues using three high-profile examples. Stoto
(2015) concluded that the precision of the results of one meta-analysis can be deceptively
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low due to some typical characteristics of safety data extracted from efficacy studies. Those
characteristics include low adverse event rates, untestable clinical and methodological hetero-
geneity, and incomplete and inconsistent reporting of adverse effects. Consequently, different
syntheses can provide qualitatively different conclusions. For example, analytical methods
that avoid or deal with heterogeneity in different ways may lead to different conclusions
related to the risk of adverse events. A careful consideration is particularly important for
safety studies, where the standard Cochrans’ Q-test for detecting heterogeneity is known to
be significantly underpowered (see Figure 1). These studies often possess substantive het-
erogeneity of the populations under study, comparison groups, and length of follow-up. The
rationale for using the Peto method in such situations often points to its greater statistical
power which is considered to be more important in safety analysis than the consideration of
heterogeneity. However, one must not overlook a high type I error rate associated with such
methods in the presence of heterogeneity. Discrepancies originating from the use of various
methods are evident in the comparison of meta-analytical investigations of MI associated
with rosiglitazone. A decision to place severe restrictions on the utilization of the drug was
highly influenced by the results of the Peto method-based meta-analysis performed by Nissen
and Wolski (2007). That analysis yielded a 95% confidence interval of (1.031, 1.979) and a
p-value of 0.032 for testing that the odds ratio is 1, and thus concluded that rosiglitazone
was significantly associated with myocardial infarction. The subsequent meta-analyses by
others using different methods produced results that did not agree with Nissen and Wolski
(2007). The varying conclusions depended on the inclusion or exclusion of zero total event
studies Liu et al. (2014), continuity correction strategies Diamond et al. (2007), and effect
measure (RR vs. OR) and statistical method used for analysis Stoto (2015). Furthermore,
meta-analysis is itself an observational study of studies. When only a small number of ad-
verse events are observed, meta-analysis may not be able to disentangle confounding by the
indication and drug type. Over-reliance on a single analysis is not recommended when ana-
lyzing safety data. Fortunately, there are several commercial (SAS, STATA, StatXact) and
freely available software (RevMan, and Rgmeta, meta, exactmeta) to facilitate an extensive
sensitivity analysis when analyzing safety data involving adverse events that might occur in
one per thousand patients or fewer.
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Abstract
Gamma-ray bursts are intense, energetic explosions of gamma rays that are usually

accompanied by an afterglow, which is a longer-lived emission that is detected at longer
wavelengths, like X-ray, infrared, and radio. Classic gamma-ray burst data is often analyzed
using some sort of regression model (e.g., linear, piecewise linear, or a broken-power law
model) to relate the flux of the burst to the time since the event. While these models
may provide good fits, there is also often a “flaring” phenomena that tends to noticeably
deviate from the fitted model. One way we can characterize such a phenomena relative to
the underlying general trend is through a mixture-of-regressions model. Some applications in
astronomy, like color-luminosity relations for field galaxies, are known to have the variables
in the models prone to both intrinsic scatter and measurement error. This assumption is
also tenable for gamma-ray burst data where the variance of heteroscedastic measurement
errors can be reasonably known. Thus, we introduce a mixture-of-linear-regressions model
where the variance of the measurement error is roughly known. Estimation is accomplished
using an expectation-maximization (EM) algorithm framework with a weighted least squares
estimator that was developed for the non-mixture setting. The finite-sampling behavior of
our proposed model’s estimates is examined by a simulation study. We also demonstrate the
efficacy of this approach on a dataset involving the flux measurements of gamma-ray bursts,
where the variance of the measurement error for the flux measurements (the response) are
known. Our results for this data problem are compared with estimates obtained using
other traditional models, including the linear regression model and the mixture-of-linear-
regressions model.
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1. Introduction

Variability is an inherent part of the results of measurements and of the measurement
process. Measurement error models, also called errors-in-variables models, account for the
difference between a measured value of a quantity and its true value. The effect of such mea-
surement error and how to incorporate it into a statistical model has been long investigated,
with authoritative texts devoted to this topic, including Fuller (1987), Carroll et al. (2006b),
and Buonaccorsi (2010). Some issues that arise due to the presence of measurement error
include bias in parameter estimation for statistical models, loss of power, and masking the
features of the data, thus making graphical model analysis difficult. Specifically, the text
by Carroll et al. (2006b) covers measurement error in nonlinear models, with a special focus
on bias reduction, also called approximate consistency. For linear regression models with
measurement error in the predictors, it can cause an underestimate of the slope coefficients,
known as attenuation bias. In nonlinear models, the direction of the bias is likely to be more
complicated as treated in Carroll et al. (2006b). Such biases can of course lead to a loss of
power as well as mask certain important features of the data.

The statistical analysis of data with measurement error has a long history, especially
in econometrics, with Frisch (1935) being one of the earliest references. Measurement error
models are also employed in other diverse research areas, including nutrition (Carroll et al.,
2006a; Murillo et al., 2019), finance (Carmichael and Coën, 2008; Maddala and Nimalen-
dran, 1996), and astrostatistics (Kelly, 2007, 2012). With respect to astronomical research,
measurement error problems are widely employed due to the presence of intrinsic scatter,
a type of measurement error regarding variations in the physical properties of astronomical
sources that are not completely captured by the variables included in the (regression) model.
Feigelson and Babu (1992) provided an early introduction to measurement error models for
use in astronomical regressions. Morrison et al. (2000) studied galaxy formation with a
large survey of stars in the Milky Way using star velocities, which contained heteroscedas-
tic measurement errors. To verify galaxy formation theories, one can estimate the density
function from contaminated data that are effective in unveiling the numbers of bumps or
components. Kelly (2007) described a Bayesian method to account for measurement errors
in linear regression of astronomical data. In another study, Andrae (2010) presented an
overview of different methods for error estimation that are applicable to both model-based
and model-independent parameter estimates in astronomy.

The focus of the present work will be on developing a model for gamma-ray bursts
(GRBs), where we relate the flux of the burst to the time since the event. The flux mea-
surement is prone to both intrinsic scatter and measurement error, where the variance of
the measurement errors are available. Moreover, there is a “flaring” phenomena that tends
to noticeably deviate from traditional models that are fit to the data; e.g., linear regression
models. We propose a novel mixture-of-linear-regressions model with measurement error in
the response variable to characterize both the flaring phenomena relative and the underlying
general trend, as well as incorporate the measurement error in the flux measurement.

In the non-mixture setting, many methods have been proposed for performing lin-
ear regression when intrinsic scatter and/or measurement error is present. Clutton-Brock
(1967) proposed an effective variance method. Press et al. (1992) proposed a procedure for
minimizing an effective χ2-statistic. Stephens and Dellaportas (1992), Richardson and Gilks
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(1993), Dellaportas and Stephens (1995), and Gustafson (2004) each developed Bayesian ap-
proaches for estimating measurement error models. Some methods specifically developed for
and applied in astronomical research are the bivariate correlated errors and intrinsic scatter
(BCES) estimator (Akritas and Bershady, 1996) and the FITEXY estimator (Press et al.,
1992).

Finite mixture models are used to characterize the presence of unobserved subpop-
ulations (or latent classes) within an overall population. The theoretical, methodological,
and computational developments concerning finite mixture models is expansive, and the
application of such models have provided critical insights into problems spanning virtually
every research discipline. We refer to the texts by Titterington et al. (1985), Lindsay (1995),
McLachlan and Peel (2000), Frühwirth-Schnatter (2006), and Mengersen et al. (2011), as
well as the numerous references therein. Mixture models have enjoyed a strong presence in a
wide range of fields, spanning the biological, physical, and social sciences. In particular, they
have been successfully used in agriculture, astrostatistics, bioinformatics, economics, engi-
neering, marketing, healthcare, neuroscience, and psychology (McLachlan et al., 2019). Some
of the applications in astronomical research that use mixture models include classification of
astronomical bodies, identification of contaminants in astronomical images, and clustering
overlapping population of stars (Kuhn and Feigelson, 2019). These tasks are essential for
the study of stars and planet formation as well as analyzing multi-band astronomical images
(Feigelson et al., 2021). There are also precedents with using mixture models in the analysis
of GRBs. Tarnopolski (2019) analyzed different properties of GRBs from the Burst and
Transient Source Experiment (BATSE) using mixtures of multivariate skewed distributions.

Research at the intersection of (finite) mixture models and measurement errors is
fairly limited. Lindsay (1995) highlights examples where the joint distribution of observable
variables (including the observed surrogate variables, which are the variables whose true val-
ues are subject to measurement error) has a mixture form. Richardson et al. (2002) provides
a Bayesian treatment of mixture models in measurement error problems. For mixtures-of-
linear-regressions models, measurement error has only been studied in the predictors. This
model was introduced by Yao and Song (2015), who developed a deconvolution method
to estimate the observed surrogates and employed a generalized expectation-maximization
(GEM) algorithm (Dempster et al., 1977) for performing maximum likelihood estimation.
An extension of that work for the setting of mixtures of polynomial regressions was presented
in Fang et al. (2023). The distinction with the contributions in the present paper is that we
address the issue of measurement error in the response variable through a mixture structure.

This paper is organized as follows. In Section 2, we define the particular mixture
model used in this study. The challenges with this model mostly concern estimation and
inference, which are presented in Section 3. In particular, we extend the weighted least
squares (WLS) estimator developed by Akritas and Bershady (1996), but in the context
of our mixture model. In Section 4, we conduct a simulation study using our proposed
algorithm. In Section 5, we perform a thorough analysis of a GRB dataset using our mixture
model. We end with some concluding remarks in Section 6.
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2. The model

We first consider the setup for the classic mixture-of-linear-regressions model. Sup-
pose we have a random sample of response variables, Y1, . . . , Yn, that are each measured
with a vector of predictors, Xi = (1, Xi,1, . . . , Xi,p−1)T, p < n, for i = 1, . . . , n, such that
the first entry is a 1 to accommodate an intercept. Let Zi be a latent class variable with
P(Zi = j|Xi) = λj for j = 1, . . . , k, where λj > 0 and ∑k

j=1 λj = 1. Given Zi = j, the
relationship between a univariate observation Yi and Xi is the linear regression model

Yi = XT
i βj + ϵj. (1)

Here, ϵj ∼ N (0, σ2
j ), where σ2

j is the error variance for class (component) j, and βj =
(β0,j, . . . , βp−1,j)T is the p-dimensional vector of regression coefficients. Therefore, uncondi-
tional on Zi, but conditional on Xi, the Yis follow the mixture distribution

Yi | Xi ∼
k∑

j=1
λjN (XT

i βj, σ2
j ). (2)

Maximum likelihood estimation of mixtures of linear regressions is straightforward,
and typically performed using an EM algorithm. Bayesian inference can easily be performed
via classic MCMC algorithms. We refer to De Veaux (1989), Viele and Tong (2002), and
Hurn et al. (2003) for sound treatments of both approaches, which can be implemented
using, for example, the R package mixtools (Benaglia et al., 2009).

Suppose now that we have additive measurement error in the response variable, which
we can write using the following (additive) measurement error model:

Y ∗
i = Yi + δi. (3)

In the above, Yi is the true response value, Y ∗
i is the observed response variable (i.e., the

surrogate variable), and δi is the measurement error. The measurement error is assumed
to be independent of the Yi as well as to have zero mean and finite variance η2

i . In classic
measurement error models, including regression models where the measurement error occurs
in the predictor, a stronger assumption of normality is usually imposed on the distribution
of the δis. Regardless, the classic measurement error setting will seek out estimation of the
variance, with such methods discussed in Carroll et al. (2006b). One may, however, have
a known value of η2

i s or be able to posit a good estimate. In the GRB data discussed, we
can reasonably make this assumption through the reported errors in the flux measurement.
Therefore, we consider the setting where we observe the following for the ith observation in
the dataset:

(XT
i , Y ∗

i , η2
i ), (4)

where the true response is assumed to arise from the mixture structure discussed above in
(1) and (2).

In the non-mixture (i.e., classic multiple linear regression) setting, we know that
the ordinary least squares (OLS) estimator for β minimizes the residual sum of squares
∥Y − Xβ∥2, where Y is an n-dimensional vector consisting of the Yis and X is an n × p full-
rank design matrix with ith row XT

i . The OLS estimator is, thus, β̂OLS =
(
X TX

)−1
X TY,
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which is also equal to the maximum likelihood estimator (MLE) in this setting. In the
mixture setting, when performing maximum likelihood estimation via an EM algorithm, the
MLE for the jth component’s regression coefficient is calculated in the M-step at the tth
iteration of the algorithm as β̂(t+1)

j =
(
X TW(t)

j X
)−1

X TW(t)
j Y. In this expression, W(t)

j is
an n × n diagonal matrix with ith entry equal to the posterior membership probability of
the ith observation belonging to component j, which is determined through an application
of Bayes’ rule in the E-step. Note that the form of the β̂(t+1)

j is that of a WLS estimator
with weighting matrix W(t)

j . If there is measurement error in the predictors, as in the setting
considered by Yao and Song (2015), or in the response, as in the present consideration, then
the MLE just discussed will be biased. In our measurement error setting, we can modify
the WLS estimator above to reflect the WLS approach developed in Akritas and Bershady
(1996) for the non-mixture setting. This is the approach developed in the next section.

3. Estimating method

3.1. A WLS-based estimate

The model presented in the previous section has non-constant error variance (het-
eroscedasticity) for each observation. Though WLS was employed in the previous section
during estimation of the mixture-of-regression coefficients, WLS is a classic framework for
addressing heteroscedasticity. By design, WLS allows one to assign individual weights to the
observations, thus removing, or at least improving, the effects of heteroscedasticity. WLS is
an example of the broader class of generalized least squares estimators (Aitken, 1935). The
general idea of WLS is that less weight is given to those observations with a larger error
variance, which forces the variance of the residuals to be constant.

Akritas and Bershady (1996) note that the optimal weight for each observation com-
prises both the corresponding random error variance and the intrinsic scatter (measurement
error) variance. However, in a mixture-of-regressions setting, we also need to account for
the uncertainty of component membership, so we incorporate the unobserved Zijs into our
method. Conditional on component membership ki, we have

Y ∗
i = Yi + δi

= XT
i βki

+ ϵi,ki
+ δi

= XT
i βki

+ ϵ∗
i,ki

,

where ϵi,ki
∼ N (0, σ2

ki
). With this setting, we may develop a WLS-type approach while

working under the assumption that the variance of ϵ∗
i,ki

is independent of Y ∗
i ; see Akritas and

Bershady (1996). However, we need estimates of the variance of ϵ∗
i,ki

. Under our assumptions,
we have

Var(ϵ∗
i,ki

) = Var(ϵ·,ki
) + η2

i . (5)
Since Var(ϵ·,ki

) is unknown, Var(ϵ∗
i,ki

) is also unknown. We can extend the algorithm of
Akritas and Bershady (1996) combined with estimates obtained via an EM algorithm to
estimate Var(ϵ·,1), . . . , Var(ϵ·,k); see Algorithm 1.

As shown in Algorithm 1, an EM algorithm is employed in Step (1), and then WLS
is used to adjust the regression coefficients in Step (5). The difference between the WLS-
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Algorithm 1 WLS-based Algorithm
(1) Given the observed data

{
(xT

1 , y∗
1), . . . , (xT

n , y∗
n)
}

and η2
1, . . . , η2

n, obtain the mixture-of-
regressions coefficient estimates (β̂T

1 , . . . , β̂T
k )T using an EM algorithm.

(2) Calculate the residuals Rij = y∗
i − xT

i β̂j, for i = 1, . . . , n and j = 1, . . . , k.
(3) Calculate the weighted mean of the residuals for each component membership

R̄.j =
∑n

i=1 p̂ijRij∑n
i=1 p̂ij

,

where p̂ij are the final posterior membership probabilities from the EM algorithm in Step
(1).
(4) Obtain the estimates of Var(ϵ·,1), . . . , Var(ϵ·,k) from

V̂ar(ϵ·,j) =

∑n
i=1 p̂ij

[(
Rij − R̄.j

)2
− η2

i

]
+∑n

i=1 p̂ij

.

(5) Set V̂ar(ϵ∗
i,j) = σ̂∗2

ij = V̂ar(ϵ·,j) + η2
i and define Aj = diag(σ̂∗−2

1j p̂1j, . . . , σ̂∗−2
nj p̂nj). Then,

the WLS estimator based on the further weighting from the intrinsic scatter is

β̃j = (XTAjX)−1XTAjY∗,

for j = 1, . . . , k, where Y∗ = (Y ∗
1 , . . . , Y ∗

n )T is the vector of observed response variables Y ∗
i s.

based estimators, β̃1, . . . , β̃k, and the MLEs from the mixture-of-regressions EM algorithm,
β̂1, . . . , β̂k, will typically not be very large. The variance estimators from the classic mixture-
of-regressions model will naturally be smaller than our corrected estimator, since the former
excludes the variances from the response variable’s measurement error. Notice in Step (3)
that the weighted estimators of variances are obtained by subtracting the deviation of mea-
surement error from the overall deviation. Thus, the value of

(
Rij − R̄.j

)2
− η2

i can be
negative for some i or j, so we employ the usage of the hinge function for this difference;
i.e.,

[(
Rij − R̄.j

)2
− η2

i

]
+

=
{(

Rij − R̄.j

)2
− η2

i

}
∨ 0.

3.2. Asymptotic variance

Let ψ denote the vector of true unknown parameter values,

ψ =
(
λ1, . . . , λk−1,β

T
1 , . . . ,βT

k , σ2
1, . . . , σ2

k

)T
.

The asymptotic variance of the MLEs obtained via an EM algorithm in Step (1) of Algo-
rithm 1 can be obtained by the inverse of the information matrix I (ψ) that appears in the
asymptotic result √

n
(
ψ̂ −ψ

) L−→ N
(
0, I−1(ψ)

)
.

However, likelihood functions for mixture models are often complicated, which translates
to difficult calculations for the second derivatives of the likelihood function that comprise
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I (ψ). Thus, other approaches are necessary (see Chapter 14 of Lange, 2010). For example,
Efron and Hinkley (1978) suggested to use the observed Fisher information matrix instead.
Later, Louis (1982) introduced a technique for computing the observed information by using
calculations only done on the complete information when an EM algorithm is used.

The density for the k-component mixture-of-regressions model is

g(yi | x,ψ) =
k∑

j=1
λjf(yi | xi,θj),

where
f(yi | xi,θj) = 1

σj

ϕ

(
yi − xT

i βj

σj

)
is the probability density of the ith observation belonging to the jth component. Here,
θj =

(
βT

j , σj

)T
is the vector of parameters of the jth component and ϕ(·) is the density of

the standard normal distribution. We can, thus, write out the observed data loglikelihood
as

ℓO(ψ) =
n∑

i=1
log


k∑

j=1
λjf(yi | xi,θj)

 ,

which can be augmented with the vector of each observation’s unobserved component mem-
bership – zi = (zi1, . . . , zik)T such that zij = I{observation i belongs to component j} – to
construct the complete data loglikelihood

ℓC(ψ) =
n∑

i=1

k∑
j=1

zij log {λjf(yi | xi,θj)} .

The complete data is characterized through s = {(xT
i , yi, zT

i ), i = 1, . . . , n}. Since the zi

is unobserved, and hence “missing,” use of an EM algorithm is appropriate. We forego
stating the explicit E-step an M-step for this setting as it is quite standard in the mixture-
of-regressions literature; see, for example, Benaglia et al. (2009).

To compute the observed information in the EM algorithm, let S(s | ψ) and S((xT
i , yi) |

ψ) be the complete data score function and observed data score function, respectively. More-
over, let Is(ψ) be the complete data information matrix; i.e., the expected value of the
negative of the Hessian of the complete data loglikelihood. Then, by differentiation, the
observed data information matrix can be written as

I(ψ̂) = Is(ψ̂) −
[
Eψ

{
S(s | ψ)ST(s | ψ)

}
+ S

{
(xT

i , yi) | ψ
}

ST
{
(xT

i , yi) | ψ
}] ∣∣∣∣∣

ψ=ψ̂
.

Thus, the asymptotic variance-covariance of the estimator ψ̂ can be calculated based on
Var(ψ̂) = I(ψ̂)−1, and the estimated standard errors of the parameter estimates in ψ̂ are
the square root of the diagonal entries of this matrix. Note that in the present setting, we
are using the y∗

i in the role of the yi that appear in the preceding formulas. Moreover, the
MLE ψ̂ is actually based on the WLS estimators β̃j, j = 1, . . . , k in Step (5) of Algorithm
1, and not the β̂j calculated in Step (1); i.e.,

ψ̂ =
(
λ̂1, . . . , λ̂k−1, β̃

T
1 , . . . , β̃T

k , σ̂2
1, . . . , σ̂2

k

)T
.
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3.3. Bootstrap estimator for the standard errors

Even when estimation of ψ is trivial, estimation of standard errors (SEs) can be
computationally burdensome, especially when measurement error is involved. One alterna-
tive strategy is to use the parametric bootstrap (Efron and Tibshirani, 1993; Davison and
Hinkley, 1997), which theoretically should provide similar estimates to the standard errors
compared to the method involving the information matrix. This has become especially useful
for standard error estimation in mixture settings, as noted in Chapter 2 of McLachlan and
Peel (2000).

Algorithm 2 Parametric Bootstrap for Standard Errors
(1) Find ψ̂ by implementing Algorithm 1 using the observed data {(x1, y∗

1), . . . , (xn, y∗
n)}.

(2) Generate a bootstrap sample {(x1, y∗∗
1 ), . . . , (xn, y∗∗

n )}, where each y∗∗
i is a realization

from the (conditional) mixture distribution ∑k
j=1 λ̂jN

(
xT

i β̃j, σ̂2
j

)
.

(3) For each of y∗∗
i , generate the “observed” response by

y∗∗∗
i = y∗∗

i + δi,

where δi ∼ N (0, η2
i ) is generated using the known variabilities η2

1, . . . , η2
n.

(4) Find the estimate ψ̃ by implementing Algorithm 1 on {(x1, y∗∗∗
1 ), . . . , (xn, y∗∗∗

n )}.
(5) Repeat Steps (2) - (4) B times to generate the bootstrap sampling distribution
ψ̃(1), ψ̃(2), . . . , ψ̃(B).

Algorithm 2 outlines a parametric bootstrap to estimate standard errors in our
mixture-of-regressions model when specifying measurement error in the response. After
implementing Algorithm 2, the bootstrap variance-covariance matrix is easily computed as
the sample variance-covariance matrix of the generated values ψ̃(1), ψ̃(2), . . . , ψ̃(B). Thus,
bootstrap standard errors are readily available. When performing a bootstrapping procedure
in the mixture setting, one must be cognizant of the label switching problem, that is, we
want to enforce a meaningful identifiability constraint for a particular analysis. For example,
one could set β11 < . . . < βk1 (i.e., a constraint on the slope for the first predictor in the
model) or σ1 < . . . < σk. We will state the identifiability constraints used for our numerical
work in the next section.

4. Numerical studies

We now study the finite sampling behavior of the proposed estimators for our mixture-
of-regressions model with measurement error in the response. Our study considers mixtures
of regressions with one or two predictors, as well as two or three components. The basic
setting for our models involves iid data (xT

i , yi, ηi), i = 1, . . . , n such that the response
variable Yi is drawn from the model

Yi|Xi = xi ∼
k∑

j=1
λjN

(
xT

i βj, σ2
j

)
,

Y ∗
i = Yi + δi,
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where δi ∼ N (0, η2
i ) is the simulated measurement error in the response. To study the

effect of the measurement error on the proposed estimator for mixtures of both simple
and multiple linear regressions with different number of components, we consider the three
component structures: well-separated (WS), moderately-separated (MS), and overlapping
(OL). These three categorizations of separability were determined by considering component
mean structures and error variances that yield varying degrees of overlap with the generated
data. An explicit quantitative threshold was not employed to characterize if components are
WS, MS, or OL, but rather a visual check on simulated datasets was employed to ascertain
the appropriateness of the stated component structure. The 12 data-generating processes
used to characterize these different structures are summarized in Table 1.

Table 1: The 12 models used for the simulation study

Model Structure βT
1 βT

2 βT
3 σ2

1 σ2
2 σ2

3 λ1 λ2

Mixtures of Simple Linear Regressions
M1 WS (−10, 6) (10, 2) — 4 1 — 1/2 —
M2 MS (5, 15) (25, −15) — 4 1 — 1/2 —
M3 OL (5, 5) (15, −5) — 4 1 — 1/2 —
M4 WS (−10, 6) (10, 2) (30, −5) 4 1 9 1/3 1/3
M5 MS (5, 15) (20, 20) (25, −15) 4 1 9 1/3 1/3
M6 OL (−10, 20) (5, 5) (15, −5) 4 1 9 1/3 1/3

Mixtures of Multiple Linear Regressions
M7 WS (−10, 6, 4) (10, 2, 7) — 4 1 — 1/2 —
M8 MS (5, 15, 10) (25, −15, −10) — 4 1 — 1/2 —
M9 OL (5, 5, 9) (15, −5, 3) — 4 1 — 1/2 —
M10 WS (−10, 6, 4) (10, 2, 7) (30, −5, 10) 4 1 9 1/3 1/3
M11 MS (5, 15, 10) (20, 20, 5) (25, −15, −10) 4 1 9 1/3 1/3
M12 OL (5, 5, 9) (15, −5, 3) (−10, 20, 15) 4 1 9 1/3 1/3

For each simulation condition, we randomly generated B = 1000 datasets for the
sample sizes n ∈ {100, 250}. For each sample size, we generated the predictor variables as
Xij ∼ U(0, 1), while different measurement errors for the response were considered for each
mixture-of-regressions setting. The Monte Carlo samples for the 2-component mixtures of
regressions were generated under the two conditions of η2

i ∼ U(0, 0.1) and η2
i ∼ U(2, 6). The

Monte Carlo samples for the 3-component mixtures of regressions were generated under the
two conditions of η2

i ∼ U(0, 0.5) and η2
i ∼ U(5, 10).

For each simulated dataset, we estimate the parameters (βT
1 , . . . ,βT

k , σ2
1, . . . , σ2

k) using
Algorithm 1, and compare them with the estimates obtained via the “näıve” method, which
simply ignores the measurement error; i.e., estimation of the classic mixtures-of-regressions
model without measurement error in the response. The performance of the proposed method
under different conditions is assessed by calculating the mean squared error (MSE),

MSE(θ̂) = 1
B

B∑
t=1

(θ̂(t) − θ)2,

where θ̂(t) is the estimate of the parameter θ based on the tth Monte Carlo sample and θ is
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the true value. The relative efficiencies based on the MSEs for the näıve method versus the
proposed method are also calculated for all of the parameters.

4.1. Results for mixtures of simple linear regressions

Figure 1: Histograms of observed response variables for 2-component mixtures
of simple regression under different settings, with sample size n = 250

We first discuss the numerical results obtained for the 2-component mixtures where
we have a single predictor. In particular, we first focus on models M1, M2, and M3 in Table
1. Figure 1 shows the histograms of observed responses y∗ under different circumstances.
Even though these are histograms of the unconditional distribution of the response with
measurement error, it still gives an indication about the degree of separability that was
incorporated in the mixtures-of-regressions structure. In the WS setting, there are two
distinct regression relationships corresponding to the two different components. For the MS
and OL settings, the two components have a greater degree of mixing, thus it is harder
to identify to which component a certain data point belongs. Regardless, increasing the
variance of the measurement errors forces the two components to be closer to each other,
which compounds the ability to identify the distinct components.

Table 2 gives the MSEs and relative efficiencies (in parentheses) for the simulated
datasets from models M1, M2, and M3. The values in the parentheses represent the relative
efficiencies of MSEs for the näıve versus the proposed estimators. For example, the boldface
value of 1.0552 means the MSE when estimating β21 using the näıve method is 1.0552 times
the MSE when estimating the parameter using our proposed method. If the relative efficiency
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Table 2: The MSEs and relative efficiencies (in parentheses) of the näıve
estimators versus the proposed estimators for 2-component mixtures of simple
linear regressions; models M1, M2, and M3

n η2
i β10 β11 β20 β21 σ2

1 σ2
2

Well-Separated Components

100
U(0, 0.1)

0.3531 1.0550 0.0801 0.2461 0.6722 0.0425
(1.0002) (1.0001) (1.0019) (1.0008) (0.9843) (1.0235)

250 0.1359 0.4356 0.0338 0.1000 0.2551 0.0177
(1.0004) (1.0003) (1.0016) (1.0025) (0.9850) (1.0895)

100
U(2, 6)

0.6419 2.0757 0.3878 1.2180 8.2657 11.1670
(1.0099) (1.0121) (1.0580) (1.0551) (1.8492) (1.2782)

250 0.2442 0.7692 0.1616 0.4966 8.5673 12.1929
(1.0171) (1.0192) (1.0499) (1.0413) (1.8948) (1.2908)

Moderately-Separated Components

100
U(0, 0.1)

0.3684 1.1907 0.0943 0.3086 0.8366 0.0553
(0.9994) (0.9992) (1.0020) (1.0017) (1.0389) (1.0412)

250 0.1376 0.4311 0.0345 0.1184 0.3136 0.0234
(1.0004) (1.0022) (1.0016) (1.0032) (1.8558) (1.0260)

100
U(2, 6)

0.8202 3.1092 0.4664 1.7427 7.7301 10.2705
(1.0303) (1.023) (1.0611) (1.0492) (2.0686) (1.2932)

250 0.2920 0.9428 0.1760 0.6098 7.9266 12.2029
(1.0598) (1.0514) (1.0523) (1.0552) (2.1659) (1.3049)

Overlapping Components

100
U(0, 0.1)

0.3920 1.3037 0.0988 0.4589 1.0774 0.0820
(0.9990) (0.9997) (1.0027) (1.0004) (0.9799) (0.9861)

250 0.1587 0.5338 0.0446 0.1836 0.3580 0.0319
(0.9927) (1.0026) (0.9985) (0.9916) (0.9582) (1.0240)

100
U(2, 6)

1.3720 4.5647 0.8550 3.3583 7.0853 9.1205
(1.6076) (1.1515) (1.4303) (1.1468) (2.9174) (1.0341)

250 0.4532 1.8502 0.3732 1.6403 4.7926 11.0519
(1.3647) (0.9572) (1.0541) (0.8900) (3.5687) (1.3208)

is greater than 1, it means the MSE of proposed method is smaller, which leads to greater
precision of the estimator. We note that label switching did not appear to be present since a
check on the estimates of β10 and β20 showed that β̂10 < β̂20 was met for each sample. Thus,
no identifiability constraint had to be enforced for this set of simulations.

Overall, the proposed method appears to behave better than the näıve method with
respect to their relative efficiencies since they are greater than 1. For estimating the variances
Var (ϵ·,j) when a larger value is used (i.e., when σ1 = 2 rather than σ2 = 1), the average
relative efficiency for the settings with measurement error U(2, 6) is greater than 2. When
the measurement error is trivial, this translates to the behaviors of both methods being
nearly the same. Thus, we can conclude that our proposed method behaves better when the
measurement error is larger, which accounting for measurement error in such a circumstance
is likely of greater importance. Note that because our proposed method only accommodates
measurement error in the response after obtaining the maximum likelihood estimates via an
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EM algorithm, there is no adjustment to the mixing proportion estimates; i.e., λ̂ is the same
under both methods and, thus, the relative efficiency is necessarily 1.

When the sample size increases from 100 to 250, the MSEs decrease. Moreover, our
proposed method shows improvement over the näıve method. If we expand the values of
measurement error in the response, the MSEs become larger, however, the performance of
the proposed method according to the relative efficiencies is better for the same sample size.
It is reasonable to infer that, if we increase the measurement error, the estimators using our
proposed method will not represent our true parameters as accurately as those with smaller
measurement errors, but the performance of it will be much better than the näıve method,
which simply ignores the measurement error term.

Table 3: The MSEs and relative efficiencies (in parentheses) of the näıve
estimators versus the proposed estimators for 3-component mixtures of simple
linear regressions; models M4, M5, and M6

n η2
i β10 β11 β20 β21 β30 β31 σ2

1 σ2
2 σ2

3
Well-Separated Components

100
U(0, 0.5)

0.5330 1.5660 0.1870 0.4602 1.1617 3.5029 1.0515 6.1266 6.2885
(1.0025) (1.0012) (1.0158) (1.0089) (0.9996) (0.9982) (0.9757) (1.0225) (0.9800)

250 0.2262 0.6790 0.0617 0.1904 0.4619 1.3618 0.5769 1.3600 3.0806
(1.0030) (1.0025) (1.0071) (1.0111) (0.9987) (0.9992) (1.0280) (1.0891) (0.9848)

100
U(5, 10)

2.2853 7.9456 2.2967 5.6084 2.8218 8.8450 41.2184 119.5947 49.2994
(1.0224) (1.0170) (1.0354) (1.0261) (1.0474) (1.0461) (1.5465) (1.2127) (1.8582)

250 0.5122 1.6757 0.4544 1.4282 0.8378 2.7573 33.7626 53.1254 25.0650
(1.0230) (1.0188) (1.0258) (1.0275) (1.0260) (1.0323) (1.5797) (1.2139) (2.2608)

Moderately-Separated Components

100
U(0, 0.5)

0.6619 2.5107 1.8705 4.6683 0.7329 2.0314 1.9033 61.7355 59.8475
(0.9995) (0.9969) (1.0019) (1.0037) (0.9983) (0.9998) (0.9599) (0.9631) (1.0482)

250 0.2350 0.7756 0.5871 1.7277 0.1041 0.2834 0.8868 61.5826 64.6231
(1.0031) (1.0010) (1.0009) (0.9993) (1.0072) (1.0119) (1.0031) (0.9576) (1.0485)

100
U(5, 10)

6.1955 40.8465 7.4054 18.3020 11.4807 42.4403 51.5176 14.0030 167.5460
(1.0728) (1.0526) (1.0209) (1.0033) (1.0613) (1.0391) (1.5418) (2.2821) (1.4550)

250 0.9832 5.4059 1.9183 4.3903 2.0748 5.7883 32.2413 5.4198 151.2731
(1.0403) (1.0278) (0.9849) (0.9899) (1.0139) (1.0287) (1.6778) (1.8687) (1.4886)

Overlapping Components

100
U(0, 0.5)

2.0540 6.7647 1.8261 5.7137 0.2518 1.1633 12.227 6.7275 0.9974
(0.9966) (0.9952) (0.9980) (0.9902) (1.0026) (1.0309) (0.9672) (0.9896) (1.1254)

250 0.5923 2.2360 0.3429 1.7953 0.0773 0.3423 3.8101 1.9859 0.6644
(0.9976) (0.9932) (0.9970) (0.9876) (1.0037) (0.9989) (0.9477) (0.9813) (1.2213)

100
U(5, 10)

10.0582 35.1593 24.5870 38.8456 7.3339 16.6268 49.3850 42.0632 71.0176
(1.0882) (1.0617) (1.0170) (1.0321) (1.1401) (1.1119) (2.0085) (1.6594) (1.2376)

250 4.6846 10.0172 10.7153 18.6601 3.3252 6.3234 31.3635 36.5494 60.9078
(1.0657) (1.0444) (1.0185) (1.0413) (1.1256) (1.1043) (2.2489) (1.7373) (1.2545)

In Table 3 we report the MSEs and relative efficiencies (in parentheses) for our simu-
lated datasets from the 3-component setting. The models for this part of our discussion are
M4, M5, and M6 in Table 1. Label switching was present when comparing the bootstrap
samples for the moderately-separated cases. This was diagnosed by first noting that the
MSEs appeared to be fairly large for some parameters when the measurement error is large.
For example, the MSE of β21 for the moderately-separated setting with η2

i ∼ U(5, 10) and
sample size n = 100 was first found to be 133.1943, a value much larger than expected. Since
the values of β20 and β30 are close to each other, simply using the identifiability constraint
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β10 < β20 < β30 is not enough. To make the components distinct with each other and correct
the label switching in the simulation, we imposed the identifiability constraint of β10 being
the smallest estimated intercept of the three components and β21 > β31.

When the number of components increase, the MSEs become noticeably larger since
the model is growing in complexity. With a heavier-parameterized model, the estimation
becomes more challenging. When we increase the sample size and decrease the variance
of the measurement errors in the response, the MSEs of the unknown parameters becomes
smaller. Similarly, the relative efficiencies show that for the case with larger sample size and
bigger measurement error, our proposed method performs better than näıve method. For
overlapping and moderately-separated cases, the MSEs are fairly large for certain parameters
with large measurement error (e.g., with variances η2

i ∼ U(5, 10)), since the three components
are subject to heavy mixing and it becomes difficult to consistently distinguish different
components, thus leading to greater uncertainty in the estimators.

Figure 2: Scatter plots for datasets generated from each of the models
M1 − M6, inclusive (sample size n = 250), where dashed red lines are the
estimates obtained using Algorithm 1 and solid black lines are the lines based
on the true parameters

Figure 2 shows scatterplots of datasets generated from each of the six settings (models
M1 − M6) for mixtures of simple linear regressions with measurement error in the response.
Different colors and shapes indicate from which component each observation was generated.
The dashed red lines are the estimates obtained from our proposed method outlined in
Algorithm 1. The solid black lines are the lines based on the true parameters. According
to the scatterplots, the proposed method fits well in all settings as the dashed red lines
(estimates) are similar to the solid black lines (truth). Moreover, based on the relative
efficiencies reported earlier, it improves the performance of estimating parameters when
compared to the näıve method. Overall, these results are consistent with demonstrating the
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efficacy of our proposed method as a way to incorporate measurement error in the response
when the underlying data come from a mixture-of-regressions setting.

4.2. Results for mixtures of multiple linear regressions

We next consider the 2-component mixtures of multiple linear regressions with mea-
surement errors, which correspond to the models M7, M8, and M9 in Table 1. Figure 3
shows 3d scatterplots of data simulated from each of these models, where different colors
represent to which component each data point belongs. In the well-separated case, the two
components are very well-separated, thus making it very easy to distinguish to which com-
ponent each point belongs. For the moderately-separated and overlapping cases, there are
some areas where the two components are mixing, which is where we would expect to have
the greatest uncertainty as to how to classify those observations if we were estimating the
underlying model.

Figure 3: 3d scatterplots of the three different component structures for the
2-component mixtures of multiple linear regressions with sample size n = 250
and measurement error η2

i ∼ U(2, 6) for the response

In Table 4, we report the MSEs and relative efficiencies (in parentheses) for our
simulated datasets from the models M7, M8, and M9. Label switching did not appear
to be present since the identifiability constraint β10 < β20 is satisfied for all bootstrap
estimates. The overall behavior of these three 2-component mixtures of multiple linear
regressions are similar to those of the 2-component mixtures of simple linear regressions.
When we increase the sample size from 100 to 250, the MSEs become smaller and the
relative efficiencies improve. Meanwhile, because we add the predictor Xi2, the models are
more parameterized than when the components are simple linear regressions, thus making the
estimation more challenging, especially when the components are overlapping. For example,
with an overlapping component, with large measurement errors (variances η2

i ∼ U(2, 6)),
and with a sample size of n = 100, the boldface value in Table 4 is the MSE of the slope
parameter for Xi2, β12. This value of 19.2855 is a value much larger than the corresponding
setting with simple linear regression components. Naturally, when increasing the number of
predictor variables in settings with overlapping components, the increase in the MSEs reflect
the greater difficulty in being able to estimate the true parameters.
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Table 4: The MSEs and relative efficiencies (in parentheses) of the näıve
estimators versus the proposed estimators for 2-component mixtures of
multiple linear regressions; models M7, M8, and M9

n η2
i β10 β11 β12 β20 β21 β22 σ2

1 σ2
2

Well-Separated Components

100
U(0, 0.1)

0.5943 1.0542 0.9975 0.1654 0.2692 0.2721 0.6641 0.0429
(0.9997) (0.9998) (0.9994) (1.0005) (0.9998) (1.0009) (0.9711) (0.9570)

250 0.2344 0.3588 0.4091 0.0571 0.1029 0.1001 0.2772 0.0181
(1.0000) (0.9999) (1.0000) (1.0011) (1.0025) (0.9999) (0.9924) (1.0444)

100
U(2, 6)

1.1410 1.8997 1.9631 0.7192 1.2127 1.2058 7.8854 11.2173
(1.0242) (1.0242) (1.0200) (1.0356) (1.0453) (1.0334) (1.8798) (1.2486)

250 0.4703 0.7942 0.7993 0.2633 0.4658 0.4882 8.5387 12.1649
(1.0264) (1.0361) (1.0163) (1.0345) (1.0322) (1.0419) (1.8905) (1.2733)

Moderately-Separated Components

100
U(0, 0.1)

0.6763 1.2041 1.2587 0.1686 0.3052 0.3084 0.8869 0.0652
(1.0005) (0.9991) (0.9999) (1.0002) (0.9971) (1.0026) (0.9788) (0.9522)

250 0.2414 0.4074 0.4098 0.0721 0.1136 0.1233 0.3040 0.0223
(1.0003) (1.0008) (0.9994) (0.9985) (0.9973) (1.0015) (0.9714) (0.9977)

100
U(2, 6)

1.5240 2.9314 2.8395 0.9511 2.1858 1.6698 6.8091 10.6683
(1.0258) (1.0379) (1.0185) (1.0542) (1.0472) (1.0416) (2.1127) (1.2768)

250 0.5835 0.9993 0.9861 0.3567 0.5889 0.6688 7.0279 11.6471
(1.0181) (1.0142) (1.0195) (1.0337) (1.0452) (1.0421) (2.1744) (1.2959)

Overlapping Components

100
U(0, 0.1)

1.2866 2.3647 1.8994 0.4989 1.0341 0.7241 1.2633 0.2225
(1.0030) (1.0012) (1.0024) (1.0071) (1.0004) (1.0027) (0.9695) (0.9831)

250 0.3486 0.6162 0.5630 0.0847 0.1826 0.1721 0.3895 0.0461
(1.0041) (1.00021) (1.0033) (1.0082) (1.0007) (1.0029) (0.9744) (0.9672)

100
U(2, 6)

10.2329 18.2687 19.2855 6.5878 12.7481 7.5360 6.6059 16.4143
(1.0901) (1.0874) (1.1339) (1.1815) (1.1073) (1.1758) (2.4594) (1.1897)

250 3.0658 4.1279 3.3197 1.9051 2.8471 1.9667 6.3793 12.4284
(1.0561) (1.0346) (1.0758) (1.0923) (1.0537) (1.0557) (2.2934) (1.2622)

Finally, in Table 5, we report the MSEs and relative efficiencies (in parentheses) for
our simulated datasets from the models M10, M11, and M12. The overall behavior of
these three 3-component mixtures of multiple linear regressions are similar to those of the 3-
component mixtures of simple linear regressions. When we increase the sample size from 100
to 250, the MSEs become markedly smaller and the relative efficiencies improve. Meanwhile,
adding the predictor Xi2 creates heavier-parameterized model than when the components
are simple linear regressions, thus making the estimation more challenging. This, again, is
especially the case when the components are overlapping. Naturally, when increasing the
number of predictor variables in settings with overlapping components, the increase in the
MSEs reflect the greater difficulty in being able to precisely estimate the true parameters.

4.3. Summary of simulation results

The combination of simulation conditions we considered in this section is fairly broad
in ascertaining the applicability and robustness of our method. The conditions considered are
more extensive relative to the most closely-related works of Yao and Song (2015) and Fang
et al. (2023). The former only considered a two-component mixture structure (k = 2) in a
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Table 5: The MSEs and relative efficiencies (in parentheses) of the näıve
estimators versus the proposed estimators for 3-component mixtures of
multiple linear regressions; models M10, M11, and M12

n η2
i β10 β11 β12 β20 β21 β22 β30 β31 β32 σ2

1 σ2
2 σ2

3
Well-Separated Components

100
U(0, 0.5)

1.2136 1.9885 3.9334 0.3336 0.5340 0.5208 2.2203 3.8362 3.7758 1.0387 12.3354 5.5941
(1.0076) (1.0131) (0.9976) (1.0177) (1.0233) (1.0107) (0.9989) (0.9997) (0.9989) (0.9331) (0.9881) (0.9505)

250 0.3811 0.6459 0.6263 0.1039 0.1737 0.1823 0.8305 1.4460 1.3632 0.4005 0.0372 2.1773
(1.0026) (1.0021) (1.0029) (0.9925) (0.9926) (1.0119) (1.0002) (1.0000) (0.9989) (1.0085) (1.8628) (0.9591)

100
U(5, 10)

3.2963 5.2986 5.0973 4.5584 8.1695 8.1475 5.7028 8.8767 12.3215 85.2660 158.6470 74.7738
(1.0482) (1.0178) (1.0333) (1.0294) (1.0043) (1.0053) (1.0416) (1.0286) (1.0205) (1.3193) (1.2135) (1.5328)

250 0.9410 1.7008 1.6351 0.7914 1.3628 1.3607 1.5043 2.6883 2.6383 34.6107 45.3006 24.9767
(1.0164) (1.0207) (1.0115) (1.0113) (1.0046) (1.0110) (1.0186) (1.0253) (1.0261) (1.5534) (1.1457) (2.2178)

Moderately-Separated Components

100
U(0, 0.5)

1.9663 4.8574 4.1719 1.2241 2.8285 2.2239 4.9887 7.7760 6.6005 7.5266 9.7945 12.0505
(1.0006) (1.0011) (0.9981) (1.0009) (1.0036) (1.0086) (1.0005) (0.9981) (0.9991) (0.9960) (1.0163) (0.9652)

250 0.4809 1.1818 0.9333 0.1374 0.2160 0.2007 1.4692 2.5039 2.1921 0.6890 0.0400 3.3639
(0.9995) (0.9986) (0.9982) (1.0164) (1.0111) (1.0111) (1.0011) (1.0003) (0.9995) (0.9518) (1.8602) (0.9606)

100
U(5, 10)

12.9275 33.8055 22.2632 5.2212 15.3337 8.8258 18.1433 37.4492 25.1159 112.7497 70.9902 50.3589
(1.0199) (1.0141) (1.0321) (1.0872) (1.0573) (1.0569) (1.0159) (1.0131) (1.0092) (1.4687) (1.2221) (1.8285)

250 2.0909 4.3709 3.5039 1.2803 1.8202 1.7139 3.6181 6.3859 4.9530 37.6301 47.8919 23.1817
(1.0224) (1.0296) (1.0131) (1.0179) (1.0284) (1.0160) (0.9911) (0.9735) (0.9864) (1.6905) (1.1922) (2.4719)

Overlapping Components

100
U(0, 0.5)

10.3035 20.6498 15.4182 16.7390 21.5233 33.0813 3.3270 6.4835 4.3271 20.3703 8.4015 1.2845
(1.0063) (1.0067) (0.9903) (1.0017) (0.9917) (1.0050) (0.9996) (1.0079) (1.0006) (0.9868) (1.0189) (1.1515)

250 2.0177 3.6305 2.8213 1.6731 2.9781 2.3034 0.2443 0.5121 0.4392 5.4233 2.8357 0.1046
(0.9972) (1.0178) (1.0030) (0.9998) (0.9955) (0.9979) (1.0065) (1.0029) (1.0073) (0.9485) (0.9773) (1.4291)

100
U(5, 10)

21.8372 38.7232 31.4980 40.1613 50.7183 46.2146 12.5149 26.3528 18.1346 29.0741 26.5541 47.2962
(1.1114) (1.0869) (1.0810) (1.0269) (1.0467) (1.0616) (1.1389) (1.1391) (1.1859) (2.4170) (1.6763) (0.8082)

250 11.8025 17.7110 15.0034 36.2944 43.8553 25.0780 9.3447 17.8059 10.7296 24.4411 31.1152 51.5546
(1.0978) (1.0866) (1.0974) (0.9999) (1.0217) (1.0725) (1.1619) (1.1165) (1.1073) (2.6009) (1.7296) (0.9340)

single predictor. The latter considered two-component mixture structures (k = 2), but where
the components could be linear, quadratic, or cubic functions of a single predictor. In our
simulation work, we considered two-component and three-component mixtures (k = 2, 3),
each with one or two predictors. The parameters for the underlying regression components
are then selected to be well-separated, moderately-separated, or overlapping, yielding the
12 models in Table 1. Moreover, we considered two measurement error structures and two
sample sizes, further demonstrating the performance of our methods on a variety of models.

In general, the results reported in this section are consistent with results typically
seen in simulations involving mixtures. When the components are well-separated, the results
tend to be more stable compared to moderately-separated and overlapping settings. This, of
course, follows from the variables in both moderately-separated and overlapping component
models being harder to identify. Meanwhile, for the same model with the same component
setting (i.e., well-separated, moderately-separated, or overlapping), an increase in the sample
size yields a decrease in the MSE, while an increase in the the variances of the measurement
error increases the MSE.

Generally speaking, the MSEs of well-separated components are the smallest among
the three different types of component settings. When we assumed a smaller measure-
ment error, the MSEs are almost unanimously smaller, which makes sense due to smaller
measurement error infusing smaller variability in the response. Overall, 2-component mod-
els had better results than the three-component models. For example, for a 3-component
heavily-overlapping mixture model with measurement error U(5, 10) and sample size of 100,
the MSEs of βT

2 = (15, −5, 3) are (40.1613, 50.7183, 46.2146) (see Table 4), while the 2-
component heavily overlapping mixture model with measurement error U(2, 6) and sample
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size 100 for the same βT
2 has MSEs of (6.5878, 12.7481, 7.5360) (see Table 5).

Our routine developed to estimate the mixture models under consideration do occa-
sionally encounter some numerical issues, especially for the 3-component overlapping models.
Sometimes, bad solutions (i.e., estimates that are clearly far away from the true parame-
ter values) were obtained. This would occasionally occur even after starting the algorithm
from multiple random starting values. For practical purpose, in the 3-component simulated
datasets with B = 1000, we trimmed 40(≈ 4%) of the datasets that yield the largest devia-
tions from the true parameter value for any single estimates from β vectors. After omitting
those results, the MSEs were much more consistent with what was observed under the other
conditions. This strategy has been employed for other simulations involving mixtures with
complex structures; see, for example, Young (2014).

5. Example: Gamma-ray burst data

GRBs are key observations in gamma-ray astronomy, as they are extremely energetic
explosions that occur at random times in distant galaxies. Since the Big Bang, they are
considered the brightest electromagnetic events known to occur in the universe. The bursts
can last from ten milliseconds to several hours. These phenomena are still the subject of
intense research, but some theories suggest they arise during the birth of black holes or a
massive super-giant’s collapse. See the review article by Piran et al. (2013).

The launch of the Swift observatory (Gehrels et al., 2004) modernized how we observe
GRBs. The Swift observatory, which has collected and made available copious amounts of
GRB data, provides rapid notification of GRB triggers to the ground using a highly-sensitive
Burst Alert Telescope (BAT; Barthelmy, 2004). It also makes panchromatic observations of
the burst and its afterglow. On May 25th, 2005, the Swift BAT was triggered and located
GRB050525a1 (Blustin et al., 2006), the significance being that this was the first bright, low-
redshift burst to have been observed using the observatory. The X-ray decay ‘light curve’
of GRB050525a that was obtained includes both photo-diode (PD) mode (T < 2000s) and
photon-counting (PC) mode (T > 2000s) data. The data are plotted in Figure (4(a)), and
like many astronomical datasets, the GRB observations suffer from measurement error due
to the detection technique used.

The GRB050525a dataset consists of n = 63 brightness measurements in the 0.4 –
4.5 keV spectral band at times ranging from 2 minutes to 5 days after the burst. During
this period, the brightness faded by a factor of 100,000. Due to the wide range in times and
brightness, most analysis is done using logarithmic variables. The observations in the dataset
are: time since trigger (in seconds), X-ray flux (in units of 10−11 erg/cm2/s, 2−10 keV), and
the variability of the measurement error of the flux based on detector signal-to-noise values.

Blustin et al. (2006) fit the data with a power-law model; i.e., a linear regression
model. However, they note systematic deviations of the residuals at certain time points,
which they attempt to capture using temporal breaks, resulting in what they call a broken
power-law model; i.e., a piecewise linear regression model. The data and best-fit line using a
single breakpoint are shown in Figure 4(a). Blustin et al. (2006) note that the power-law fit

1The naming convention for GRBs is “GRByymmdd”, where a subsequent letter (i.e., a, b, c, etc.)
denotes the observation on a day when multiple GRBs occurred.
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of the pre-brightening PD mode data (T < 280s) extrapolates well to the pre-break PC mode
data. They concluded that the brightening at about 280s in the PD mode data represents a
flare in the X-ray flux, possibly similar to the sometimes much larger flares that are seen at
early times in other bursts. The authors further note that the flux returns to the pre-flare
decay curve prior to the start of the PC data.

(a) (b) (c)

Figure 4: Scatterplots of the GRB050525a data with (a) the best-fit line from a
broken power-law model, (b) the estimated 2-component measurement error
model fit, and (c) the estimated 2-component measurement error model fit on
the PD mode data

Blustin et al. (2006) do not directly model the flaring points in their modeling. The
flaring points are denoted by orange dots in Figure 4(a). In order to also capture the
characteristic of the flaring part of this phenomena, we fit the data with a mixture-of-linear-
regressions model, which can potentially identify separate regression models for the initial
burst. Moreover, we can incorporate the reported variability of the measurement error of
the flux through the model we developed in Section 2.

While we hypothesize that separate regression models could be appropriate for the
initial burst and the remaining flux measurements, we will proceed to assess the number of
components for the proposed mixture-of-linear-regressions model. We consider k = 1, 2, 3, 4
and select the best model according to results using the following model selection criteria:
Akaike’s information criterion (AIC; Akaike, 1973), the Bayesian information criterion (BIC;
Schwarz, 1978), the Integrated Completed Likelihood criterion (ICL; Biernacki et al., 2000),
and the consistent AIC (cAIC; Bozdogan, 1987). The number of components is chosen based
on the smallest respective model selection value. This was repeated with N = 100 random
starts, where the scores from the best start are given in Table 6. Among the model selection
criteria, AIC typically overestimates while BIC, ICL, and cAIC are good indicators for the
fit of a mixture model (Wedel and DeSarbo, 1995; McLachlan and Peel, 2000). In this case,
BIC, ICL, and cAIC all select k = 2 while AIC appears to overestimate by selecting k = 4.
We also compare the model selection results (AIC, BIC, and cAIC) to the simple linear
regression (SLR) fit2 with no measurement error. Each of these is just slightly larger than
the k = 1 fit, indicating that including the measurement error in the estimation provides

2Note that ICL, which is a penalized form of BIC, is not calculated for the SLR or the k = 1 fit. ICL
and its variants are designed to identify the number of components in a model-based clustering framework,
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a slight improvement over the traditional SLR fit. Regardless, based on these results we
proceed to use the fit for the 2-component model with measurement error in the response.

Table 6: Model selection criteria for determining the number of components
for the GRB dataset, where bold values indicate the number of components
chosen under that criterion

k AIC BIC cAIC ICL
1 −84.935 −80.649 −78.649 —
2 −156.654 −143.796 −137.796 −145.016
3 −130.872 −109.440 −99.440 −111.137
4 −158.57 −128.568 −114.568 −131.251

SLR −82.944 −76.515 −73.515 —

The model with known measurement errors in the responses that we fit is written as

yi ∼
{

xT
i β1 + ϵi1, with probability λ

xT
i β2 + ϵi2, with probability 1 − λ,

y∗
i = yi + δi,

(6)

where ϵij ∼ N (0, σ2
j ) are independent, i = 1, . . . , 63, and j = 1, 2, xi = (1, log10(ti)), ti is the

ith observation time since trigger (in seconds), y∗
i is the logarithm (base 10) of the X-ray

flux from the ith measurement, δi ∼ N (0, η2
i ), η2

i = log2
10(si), si is the reported variability

for the measurement error of the flux for the ith observation, and δi is independent of ϵij.

Table 7: Parameter estimates, estimated SEs from the parametric bootstrap,
and the estimated SEs using the observed information matrix

Parameter Estimates Bootstrap SEs Theoretical SEs
β10 −6.782 2.438 0.209
β11 −1.007 0.912 0.049
β20 −5.286 3.561 0.147
β21 −1.552 1.178 0.022
σ1 0.792 0.112 0.057
σ2 1.470 0.600 0.413
λ 0.601 0.197 0.249

For the WLS estimate β̃j in our mixture-of-regressions setting, we obtain standard
errors for the parameters using a parametric bootstrap with B = 1000. We then compare
the result with variance estimates for the WLS estimators using the inverse of the observed
information matrix (see Table 7). Based on the output, the standard errors from the para-
metric bootstrap are much larger than the inverse of observed information, especially for the

which is achieved through the estimated mean entropy that is used as the penalty term (Biernacki et al.,
2000; Baudry et al., 2010; Bertoletti et al., 2015). As noted in Bertoletti et al. (2015), “the ICL tends to be
less prone to discriminate overlapping groups, essentially becoming an efficient model-based criterion that
can be used to outline the clustering structure in the data.”
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intercepts. However, the standard errors for the variances, σ1 and σ2, and mixing proportion
λ are reasonable, as well as the intercepts β11 and β21.

The lines from the estimated model are shown in Figure 4(b), where each color rep-
resents the component based on the largest posterior membership probability. Based on this
figure there are clearly two distinct components: one with time T < 2000s and the other
with time T > 2000s. The result agrees with astronomers’ assessment about PD mode and
PC mode.

It is also worth investigating data within PD mode using our mixture model since it
involves the flaring points as well as regular data points. The data within PD mode consists
of the first n = 49 data points. We fit the non-log-transformed data (time since trigger as
predictor variable xi and X-ray flux as observed response variable y∗

i ) with a 2-component
mixture model using our proposed method. The fit for the model in (6) is

yi ∼
{

59.023 − 0.047xi + ϵi1, with probability 0.742
179.195 − 0.510xi + ϵi2, with probability 0.258,

where ϵi1 ∼ N (0, 2.932) and ϵi2 ∼ N (0, 4.412) for i = 1, . . . , 49. The estimated regression
lines from this fit are overlaid on the scatterplot of the PD mode data in Figure 4(c). Based on
the calculated posterior membership probabilities, the blue triangles are those observations
assigned to the first component and the red bullets are those observations assigned to the
second component. While our fit identified two clear components, the clusterings are clearly
affected by the time since trigger variable. Such a clustering affected by the predictor variable
is called assignment dependence, and is treated extensively by Hennig (2000). Such a feature
can be incorporated via the use of cluster-weighted models (see Gershenfeld, 1997; Ingrassia
et al., 2012, 2014). While our model is not a cluster-weighted model, we do note what it
is identifying in this particular part of our analysis. Referring again to Figure 4(c), the red
vertical dashed line is the break line of time before and after T = 280s. As discussed, data
points with T > 280s are considered as flaring points, and those points classified to the
second component give strong evidence in favor of this flaring assumption as they have a
noticeably different linear structure than those datasets before 280s. Thus, the fit from our
proposed mixture model gives evidence to the presence of a structural changepoint at this
time of T = 280s.

6. Conclusion

Measurement error in a response variable is considered as intrinsic scatter when in-
corporated as part of astronomical regression models. In this paper, we discussed a mixture-
of-regressions model where measurement error is treated in the response. We extended the
WLS method proposed by Akritas and Bershady (1996) to the mixture setting, and used
likelihood methods to compute the estimates of the parameters. Our proposed model differs
from the mixture-of-regressions model introduced by Yao and Song (2015), who modeled
measurement error in the predictors.

We conducted extensive simulation studies to characterize the performance of our
WLS-based algorithm to reflect weighting from the intrinsic scatter. The simulation study
included combinations of 2-component and 3-component models having either one or two
predictors, various degrees of separability between the components, and difference amounts
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of variability assumed for the measurement error. The overall results show that our method
can improve the performance of estimates, especially when the measurement error is not too
large. It is often the case that proposed numerical procedures for measurement error models
perform best when the measurement error is not too large. Moreover, mixture models with
well-separated components tend to do better in terms of their MSE and relative efficiencies
when compared to the näıve estimators that do not reflect the measurement error. Again,
numerical procedures for finite mixture models tend to do better under model settings with
well-separated components.

Our model was motivated as a way to analyze GRB data, for which we do have
a reliable estimate for the variability of the measurement error in the response variable.
In particular, a 2-component mixture-of-regressions model is tenable since it can be used
to characterize those flux measurements that are likely to be occurring during the flaring
portion of the GRB’s X-ray decay. Our model was able to make use of all of the reported
data, and provided a more nuanced view of these GRB data.

There are various considerations for future research to expand on the work presented
in this paper. For example, a more formal inference framework could be implemented for
determining the number of components. While we just applied model selection criteria in
our paper, one could proceed to perform (nonparametric) bootstrapping (McLachlan, 1987).
Moreover, one could investigate bootstrapping for developing certain goodness-of-fit tests of
our proposed model, some of which have appealing asymptotic properties (Babu and Rao,
2004).

Another possibility is to consider more flexibility to our general model. For example,
one might assume something other than Gaussian components for the mixture structure used
in this paper to achieve greater flexibility in the modeling process. Moreover, modifications
to Algorithm 1 could be investigated to handle different assumptions on the measurement
error δi. For example, one obvious setting is where the ηi are unknown, which is likely
to be the more common situation encountered in practice. Another possibility is that the
measurement error could also be conditioned on component membership ki, resulting in ηi

being replaced by ηki
in the variance in (5). However, such an assumption surely has added

identifiability issues that would require further constraints in order to perform estimation.

Another direction is how clustering can be affected by the predictor variable, which is
a limitation with our work that we briefly mentioned at the end of Section 5. In the analysis
of the PD mode data of the GRB, the predictor would be time since trigger. Expanding
our proposed mixture-of-regressions model to also incorporate such assignment dependence
would be a more flexible generalization. A cluster-weighted model could be a viable extension
to our approach as it could provide a reasonable mechanism to handle measurement errors
in both the response and predictor variables.
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Abstract
Mixed models have widespread appeal in many areas of statistical modeling including

small area estimation. Here we review a variety of different approaches for linear mixed model
selection eventually arriving at the specific problem of selecting variables in small area models
ranging from parametric and non-parametric area and unit level models to subarea small
area models.
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1. Introduction

Many model search strategies involve trading off model fit with model complexity in a
penalized goodness of fit measure. Asymptotic properties for these types of procedures in set-
tings like linear regression and ARMA time series have been studied. Yet, these strategies do
not generalize naturally to more complex models, such as those for modeling correlated data
or those that involve adaptive estimation. In these cases, penalties and model complexity
may not be naturally defined.

Since the introduction of Akaike’s information criterion (AIC, Akaike 1973, 1974), a
number of similar criteria have been proposed, including the Bayesian information criterion
(BIC; Schwarz 1978), a criterion due to Hannan and Quinn (HQ; 1979), and the generalized
information criterion (GIC; Nishii 1984, Shibata 1984). These procedures essentially amount
to minimize a criterion function, which may be expressed as

D̂M + λn|M |, (1)

where M represents a candidate model, D̂M is a measure of lack of fit by M , and |M | denotes
the dimension of M , usually in terms of the number of estimated parameters under M . The
difference is made by λn, where n is the sample size. This is called a “penalizer”, although
some authors refer λn|M | as the penalizer. For example, λn = 2 for AIC; λn = log(n) for
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BIC; and λn = c log{log(n)} for HQ, where c is a constant greater than 2 (Bozdogan 1987,
pp. 359).

1.1. Contributions of C. R. Rao

It should be no surprise that Professor C.R. Rao has made important contributions to
model selection (in addition to the many other fundamental results he has given the field).
Two specific examples are found in Rao and Wu (1989) and Bai et al. (1999). In both
cases, the problem under study was that of linear model seletion. Specifically, the authors
considered the (possibly overfit) linear model,

y = Xβ + ϵ, (2)

where y is a n-vector of response observations, X is a known design matrix, β is a p-vector
of unknown regression parameters, and ϵ is a random error n-vector. Certain components of
β may or may not be zero. There are thus 2p total submodels, one of which is assumed to
be the true model generating the responses.

Rao and Wu (1989) developed a criterion in the family of (1) with a flexible penalty
function and proved strong consistency of model selection (that is, finding the true model).
Their method allowed a wider range of penalty functions thus leading to improved small
sample performance by adaptively choosing the best penalty function from the collection
of candidate ones. Specifically, they entertained λn = αnγ where γ < 1. They called a
combination (α, γ) of interest if all of the models in a collection of new perturbed models
built off the fitted full model are correctly selected. There may in fact be more than one
combination of (α, γ) that share this property and thus Rao and Wu (1989) suggested that
additional work is warranted in choosing among them. In Bai et al. (1999), they derived a
particular choice of λn based on observed data, which makes it random. They then proved
that the consistency property can still hold.

2. Mixed model selection

Consider the following mixed linear model:

y = Xβ + Zα+ ϵ , (3)

where y = (yi)1≤i≤N is a vector of observations; β = (βj)1≤j≤p is a vector of unknown
regression coefficients (the fixed effects); α = (αj)1≤j≤m is a vector of unobservable random
variables (the random effects); ϵ = (ϵi)1≤i≤N is a vector of errors; and X, Z are known
matrices. We assume that E(α) = 0, Var(α) = G; E(ϵ) = 0, Var(ϵ) = R, where G and
R may involve some unknown parameters such as variance components; and α and ϵ are
uncorrelated.

2.1. Random factors not subject to selection

In this section, we consider the model selection problem when the random part
of the model, i.e., Zα, is not subject to selection. Let ζ = Zα + ϵ. Then, the problem is
closely related to a regression model selection problem with correlated errors. Consider the
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following general linear model:

y = Xβ + ζ , (4)

where ζ is a vector of correlated errors, and everything else is as in (3). We assume that there
are a number of candidate vectors of covariates, X1, . . . , Xq, from which the columns of X
are to be selected. Let K = {1, . . . , q}. Then, the set of all possible models can be expressed
as B = {k : k ⊆ K}, and there are 2q possible models. Let A be a subset of B that is known
to contain the true model, so the selection will be within A. In an extreme case, A may be
B itself. For any matrix M , let L(M) be the linear space spanned by the columns of M ;
PM the projection onto L(M): PM = M(MTM)−MT ; and P⊥

M the orthogonal projection:
P⊥

M = I−PM . For any k ∈ B, let X(k) be the matrix whose columns are Xj, j ∈ k, if k ̸= ∅;
and X(k) = 0 if k = ∅. We consider the following criterion for model selection:

CN(k) = |y −X(k)β̂(k)|2 + λN |k| = |P⊥
X(k)y|2 + λN |k| , (5)

k ∈ A, where |k| represents the cardinality of k; β̂(k) is the ordinary least squares (OLS)
estimator of β(k) for the model y = X(k)β(k) + ζ, i.e.,

β̂(k) = [X(k)TX(k)]−X(k)Ty

and λN is a positive number satisfying certain conditions specified below. Note that PX(k) is
understood as 0 if k = ∅. Denote the true model by k0. If k0 ̸= ∅, we denote the corresponding
X and β by X and β = (βj)1≤j≤p (p = |k0|), and assume that βj ̸= 0, 1 ≤ j ≤ p. This
is, of course, reasonable because otherwise the model can be further simplified. If k0 = ∅,
X, β, and p are understood as 0. For 1 ≤ j ≤ q, Let {j}c represent the set K \ {j}.
We define the following sequences: ωN = min1≤j≤q |P⊥

X({j}c)Xj|2, νN = max1≤j≤q |Xj|2, and
ρN = λmax(ZGZT ) + λmax(R), where λmax means largest eigenvalue. Let k̂ be the minimizer
of (5) over k ∈ A, which will be our selection of the model. The following theorem gives
sufficient conditions under which the selection is consistent in the sense that

P (k̂ ̸= k0) −→ 0 . (6)

Theorem 1. (Jiang and Rao 2003) Suppose that νN > 0 for large N ,

ρN/νN −→ 0 , while lim inf(ωN/νN) > 0 . (7)

Then, (4) holds for any λN such that

λN/νN −→ 0 and ρN/λN −→ 0 . (8)

The above procedure requires selecting k̂ from all subset of A. Note that A may
contain as many as 2q subsets. When q is relatively large, alternative procedures have been
proposed, in the (fixed effects) linear model context, which require less computation [e.g.,
Zheng and Loh (1995)]. In the following, we consider an approach which is similar, in spirit,
to Rao and Wu (1989). First, note that one can always express Xβ in (4) as

Xβ =
q∑

j=1
βjXj (9)
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with the understanding that some of the coefficients βj may be zero. It follows that k0 =
{1 ≤ j ≤ q : βj ̸= 0}. Let X−j = (Xu)1≤u≤q,u̸=j, 1 ≤ j ≤ q, ηN = min1≤j≤q |P⊥

X−j
Xj|2, and

δN be a sequence of positive numbers satisfying conditions specified below. Let k̂ be the
subset of K such that

(|P⊥
X−j

y|2 − |P⊥
X y|2)/(|P⊥

X−j
Xj|2δN) > 1 . (10)

The following theorem states that, under suitable conditions, k̂ is a consistent selection.
Recall that ρN is defined above Theorem 1.

Theorem 2. (Jiang and Rao 2003) Suppose that ηN > 0 for large N , and

ρN/ηN −→ 0 . (11)

Then, (6) holds for any δN such that

δN −→ 0 and ρN/(ηNδN) −→ 0 . (12)

2.2. Selection of random factors

We now assume that Zα in (3) can be expressed as

Zα =
s∑

j=1
Zjαj , (13)

where Z1, . . . , Zs are known matrices; each αj is a vector of independent random effects with
mean 0 and variance σ2

j , which is unknown, 1 ≤ j ≤ s. Furthermore, we assume that ϵ
in (3) is a vector of independent errors with mean 0 and variance τ 2 > 0, and α1, . . . , αs, ϵ
are independent. Such assumptions are customary in the mixed model context (e.g., Searle,
Casella, and McCulloch (1992), pp 233-234), therefore (13) represents a fairly general class
of mixed linear models. If σ2

j > 0, we say that αj is in the model; otherwise, it is not.
Therefore, the selection of random factors is equivalent to simultaneously determining which
of the variance components σ2

1, . . . , σ
2
s are positive, and which of them are zero. The true

model can be expressed as

y = Xβ +
∑
j∈l0

Zjαj + ϵ , (14)

where X = (Xj)j∈k0 and k0 ⊆ K (see section 2); l0 ⊆ L = {1, . . . , s} such that σ2
j > 0,

j ∈ l0, and σ2
j = 0, j ∈ L \ l0.

There are some important differences between selecting the fixed covariates Xj and
selecting the random factors. One difference is that, in selecting the random factors, we
are going to determine whether the vector αj, not a given component of αj, should be
in the model. In other words, the components of αj are all “in” or all “out”. Another
difference is that, unlike selecting the fixed covariates, where it is reasonable to assume that
the Xjs are linearly independent, in a mixed linear model it is possible to have j ̸= jT but
L(Zj) ⊂ L(ZjT ).
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First, note that in section 2.1 we discussed a procedure to determine the fixed part of
the model, which leads to a selection k̂ that satisfies (6). Note that the only place that the
determination of k̂ might use knowledge about Z, and hence about l0, is through λN , which
depends on the order of λmax(ZGZT ). However, under (13), λmax(ZGZT ) ≤ ∑s

j=1 σ
2
j ∥Zj∥2,

where for any matrix M , ∥M∥ = [λmax(MTM)]1/2. Thus, an upper bound for the order
of λmax(ZGZT ) is max1≤j≤s ∥Zj∥2, which does not depend on l0. Therefore, k̂ could be
determined without knowing l0. In any case, we may write k̂ = k̂(l0), be it dependent on l0
or not. Now, suppose that a selection for the random part of the model, i.e., a determination
of l0, is l̂. We then define k̂ = k̂(l̂). The following theorem shows that the combined procedure
is consistent.

Theorem 3. (Jiang and Rao 2003) Suppose that P (l̂ ̸= l0) → 0 and P (k̂(l0) ̸= k0) → 0.
Then, P (k̂ = k0 and l̂ = l0) → 1.

How does one actually obtain l̂? Jiang and Rao (2003) divided the vectors α1, . . . , αs,
or, equivalently, the matrices Z1, . . . , Zs into several groups. The first group is called the
“largest random factors”. Roughly speaking, those are Zj, j ∈ L1 ⊆ L such that rank(Zj)
is of the same order as N , the sample size. We can assume that L(X,Zu, u ∈ L \ {j}) ̸=
L(X,Zu, u ∈ L), j ∈ L1, where L(M1, . . . ,Mt) represents the linear space spanned by
the columns of the matrices M1, . . . ,Mt. Such an assumption is reasonable because Zj is
supposed to be “largest”, and hence should have contribution to the linear space. The second
group consists of Zj, j ∈ L2 ⊆ L such that L(X,Zu, u ∈ L\L1 \{j}) ̸= L(X,Zu, u ∈ L\L1),
j ∈ L2. The ranks of the matrices in this group are of lower order of N . Similarly, the third
group consists of Zj, j ∈ L3 ⊆ L such that L(X,Zu, u ∈ L \ L1 \ L2 \ {j}) ̸= L(X,Zu, u ∈
L \ L1 \ L2), and so on. Note that if the first group, i.e., the largest random factors, does
not exist, the second group becomes the first, and other groups also move on. Jiang and
Rao (2003) gave a procedure that determines the indexes j ∈ L1 for which σ2

j > 0; then a
procedure that determines the indexes j ∈ L2 for which σ2

j > 0; and so on.

3. Fence methods

Although criteria like (1) are broadly used, difficulties are often encountered, espe-
cially in some non-conventional situations. For example, consider the following linear mixed
model written at the unit level,

yij = xT
ijβ + ui + vj + eij, i = 1, . . . ,m1, j = 1, . . . ,m2, (15)

where xij is a vector of known covariates, β is a vector of unknown regression coefficients (the
fixed effects), ui, vj are random effects, and eij is an additional error term. It is assumed that
ui’s, vj’s and eij’s are independent, and that, for the moment, ui ∼ N(0, σ2

u), vj ∼ N(0, σ2
v),

eij ∼ N(0, σ2
e). It is well-known (e.g., Harville 1977, Miller 1977) that, in this case, the

effective sample size for estimating σ2
u and σ2

v is not the total sample size m1 · m2, but
m1 and m2, respectively, for σ2

u and σ2
v . Now suppose that one wishes to select the fixed

covariates, which are components of xij, under the assumed model structure, using BIC.
Then, it is not clear what should be in place of n in (1). In fact, in cases of correlated
observations, such as the example above, the definition of “sample size” is often unclear.
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Furthermore, suppose that normality is not assumed in the above linear mixed model.
In fact, the only distributional assumptions are that the random effects and errors are inde-
pendent, have zero mean and constant variances. Now, suppose that one, again, wishes to
select the fixed covariates using AIC, BIC, or HQ. It is not clear how to do this because the
likelihood is unknown.

Even in the conventional case, there are still practical issues regarding these criteria.
For example, BIC is known to have the tendency of overly penalizing. In such a case, one
may wish to replace the penalizer by c log(n), where c is a constant less than one. Question is:
What c? Asymptotically, the choice of c does not make a difference in terms of consistency
so long as c > 0. However, practically, it does. For example, comparing BIC with HQ, the
penalizer of the latter is lighter in its order (log{log(n)} vs log(n)), but there is a constant
c involved in HQ. If n = 100, we have log(n) = 4.6 and log{log(n)} = 1.5, hence, if the
constant c in HQ is chosen as 3, BIC and HQ are the same.

Finally, the definition of |M | in (1) can also cause difficulties. In some circumstances
like ordinary linear regression, this is simply the number of parameters in M , but in other
situations where nonlinear, adaptive models are fitted, this can be substantially more (e.g.,
Hastie and Tibshirani 1990, Friedman 1991, Ye 1998).

While there is extensive literature on parameter estimation in linear and generalized
linear mixed models, the other component, that is, mixed model selection, has received
much less attention. Only recently have some results emerge in the area of linear mixed
model selection. Datta and Lahiri (2001) discussed a model selection method based on
computation of the frequentist’s Bayes factor in choosing between a fixed effects model and
a random effects model. They focused on the following one-way balanced random effects
model for the sake of simplicity: yij = µ + ui + eij, i = 1, . . . ,m, j = 1, . . . , k, where the
ui’s and eij’s are normally distributed with mean zero and variances σ2

u and σ2
e , respectively.

As noted by the authors, the choice between a fixed effects model and a random effects
one in this case is equivalent to testing the following one-sided hypothesis H0: σ2

u = 0
vs H1: σ2

u > 0. In fact, hypothesis testing may be regarded as a special case of model
selection, but not all model selection problems can be formulated as hypothesis testing (see
further discussion in subsection 8.1). Jiang and Rao (2003) developed various generalized
information criteria (GICs) suitable for linear mixed model selection. Meza and Lahiri (2005)
demonstrated the limitations of Mallows’ Cp statistic in selecting the fixed covariates in a
nested error regression model which is a special case of the linear mixed models. The nested
error regression model is defined as yij = xT

ijβ + ui + eij, i = 1, . . . ,m, j = 1, . . . , ni, where
yij is the observation, xij is a vector of fixed covariates, β is a vector of unknown regression
coefficients, and ui’s and eij’s are the same as in the model above considered by Datta and
Lahiri (2001). Simulation studies carried out by Meza and Lahiri (2005) showed that the Cp

method without modification does not work well in the current mixed model setting when
the variance σ2

u is large; on the other hand, a modified Cp criterion developed by these latter
authors by adjusting the intra-cluster correlations performs similarly as the Cp in regression
settings. Another related paper is that of Vaida and Blanchard (2005) who proposed a
conditional AIC where the penalty term in this CAIC is related to the effective degrees of
freedom for a linear mixed model proposed by Hodges and Sargent (2001) which reflects an
intermediate level of model complexity between a full fixed effects model and a corresponding
mixed model conditional on the random effects variances.
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It should be pointed out that all these studies are limited to linear mixed models,
while model selection in generalized linear mixed models (GLMMs) has never been seriously
addressed in the literature in a general way (there are some fully Bayesian approaches for
special cases like logistic mixed effects models - see Kinney and Dunson (2007) for example).
In fact, our earlier simulation results suggested that in the case of GLMM selection, a
procedure like GIC is much more sensitive to the choice of λn than in linear mixed model
selection. It is these concerns, such as the above, that motivated the development of a new
principle for model selection that is potentially less subjective, and applicable to both linear
mixed models and GLMMs.

Jiang, Rao et al. (2008) proposed a new procedure for model selection, called the
fence methods. An essential part of this procedure is a measure of lack-of-fit, denoted
by QM = QM(y, θM), where M indicates the candidate model, y is an n × 1 vector of
observations, θM represents the vector of parameters under M , such that E(QM) is minimized
when M is a true model and θM the true parameter vector under M . Here by true model we
mean that M is a correct model but not necessarily the most efficient one. In the sequel we
use the terms “true model” and “correct model” interchangeably. One example of QM is the
negative log-likelihood function under a parametric model. Another example is the residual
sum of squares (RSS) under a parametric or semiparametric model. For more examples, see
Jiang, Rao et al. (2008).

The idea involves a procedure to isolate a subgroup of what are known as correct
models (of which the optimal model is a member). This is accomplished by constructing
a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is
constructed, the optimal model is selected from amongst those within the fence according
to a criterion which can be made flexible and incorporate scientific or economical concerns.
The fence is built by checking the following inequality for every candidate model M ,

Q̂M − Q̂M̃ ≤ cnσ̂M,M̃ , (16)

where Q̂M = infθM ∈ΘM
QM(θM , y), Q̂M̃ = minM∈M Q̂M , and M represents the set of can-

didate models. Here σ̂M,M̃ is an estimate of the standard deviation of the left side of (16).
Finally, cn is a tuning constant chosen below.

The motivation of (16) is to exam the closeness of Q̂M to its lower bound - when
the measure of lack-of-fit is close enough to the minimum the model is considered correct.
The reason for the appearance of σ̂M,M̃ on the right side is that, when M is correct, this is
an appropriate measure of the left side. Still, the constant cn plays an important role for
the finite sample performance of fence. Therefore, Jiang, Rao et al. (2008) proposed the
following method to choose cn adaptively.

1. Fence procedure with fixed cn.

1. ind M̃ such that Q̂M̃ = minM∈M Q̂M .

2. For each M ∈ M such that |M | < |M̃ |, compute σ̂M,M̃ , an estimator of σM,M̃ . Then,
M belongs to M̃−, the set of “true” models with |M | < |M̃ | if (2) holds.

3. Let M̃ = {M̃} ∪ M̃−, m0 = minM∈M̃ |M |, and M0 = {M ∈ M̃ : |M | = m0}. Let M0

be the model in M0 such that Q̂M0 = minM∈M0 Q̂M . M0 is the selected model.
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The following outlines an effective algorithm for fence. Let d1 < d2 < · · · < dL be all the
different dimensions of the models M ∈ M.

The fence algorithm: i) Find M̃ . ii) Compute σ̂M,M̃ for all M ∈ M such that
|M | = d1; let M1 = {M ∈ M : |M | = d1 and (16) holds}; if M1 ̸= ∅, stop. Let M0 be
the model in M1 such that Q̂M0 = minM∈M1 Q̂M ; M0 is the selected model. iii) If M1 = ∅,
compute σ̂M,M̃ for all M ∈ M such that |M | = d2; let M2 = {M ∈ M : |M | = d2 and (16)
holds}; if M2 ̸= ∅, stop. Let M0 be the model in M2 such that Q̂M0 = minM∈M2 Q̂M ; M0 is
the selected model. iv) Continue until the program stops (it will at some point).

In short, the algorithm may be described as follows: Check the candidate models,
from the simplest to the most complex; once one has discovered a model that falls within
the fence and checked all the other models of the same simplicity (for membership within
the fence), one stops. One apparent advantage of the fence algorithm is that one needs not
search the entire space of candidate models in order to find the optimal model. Here the
optimality is defined in terms of minimal dimension, i.e., |M |. However, as mentioned, the
criterion of optimality is flexible.

2. Forward-backward (F-B) fence procedure. The fence algorithm searches from the simplest
models and therefore may not need to search the entire model space in order to determine
the optimal model. On the other hand, such a procedure may still involve a lot of evaluations
when the model space is large. To make the fence procedure computationally more attractive
to large and complex models, the following variation of fence was proposed for situations of
complex models with many predictors.

To be more specific, we let M̃ be the full model. The idea is to use a forward-backward
procedure to generate a sequence of candidate models, among which the optimal model is
selected using the fence method. We begin with a forward procedure. Let M1 be the model
that minimizes Q̂M among all models with a single parameter; if M1 is within the fence, stop
the forward procedure; otherwise, let M2 be the model that minimizes Q̂M among all models
that add one more parameter to M1; if M2 is within the fence, stop the forward procedure;
and so on. The forward procedure stops when the first model is discovered within the fence.
The procedure is then followed by a backward elimination. Let Mk be the final model of the
forward procedure. If no submodel of Mk with one less parameter is within the fence, Mk will
be our selection; otherwise, Mk is replaced by Mk+1 which is a submodel of Mk with one less
parameter and is within the fence, and so on. This approach is called the forward-backward
(F-B) fence.

3. Adaptive fence procedure. Recall that M denotes the set of candidate models, which
includes a true model. To be more specific, we assume that there is a full model Mf ∈ M,
hence M̃ = Mf in (16); and that every model in M \ {Mf} is a submodel of a model in M
with one less parameter than Mf . Let M∗ denote a model with minimum dimension among
M ∈ M. First note that, ideally, one wishes to select cn that maximizes the probability
of choosing the optimal model. Here for simplicity the optimal model is defined as a true
model that has the minimum dimension among all true models. This means that one wishes
to choose cn that maximizes

P = P(M0 = Mopt), (17)
where Mopt represents the optimal model, and M0 = M0(cn) is the model selected by the
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fence procedure with the given cn. However, two things are unknown in (17): (i) under what
distribution should the probability P be computed; and (ii) what is Mopt?

To solve problem (i), note that the assumptions above on M imply that Mf is a true
model. Therefore, it is possible to bootstrap under Mf . For example, one may estimate the
parameters under Mf , then use a model-based bootstrap to draw samples under Mf . This
allows us to approximate the probability P on the right side of (17).

To solve problem (ii), we use the idea of maximum likelihood. Namely, let p∗(M) =
P∗(M0 = M), where M ∈ M and P∗ denotes the empirical probability obtained by boot-
strapping. Let p∗ = maxM∈M p∗(M). Note that p∗ depends on cn. The idea is to choose cn

that maximizes p∗. It should be kept in mind that the maximization is not without restric-
tion. To see this, note that if cn = 0 then p∗ = 1 (because when cn = 0 the procedure always
chooses Mf). Similarly, p∗ = 1 for very large cn, if M∗ is unique (because when cn is large
enough the procedure always chooses M∗). Therefore, what one looks for is “the peak in the
middle” of the plot of p∗ against cn. This procedure is also studied in detail in Jiang et al.
(2008).

Jiang, Rao et al. (2008) established consistency of fence, F-B fence and adaptive
fence methods under mild regularity conditions. Here consistency is in the sense that with
probability tending to one as the sample size increases the procedure will select the optimal
model.

3.1. Fence method for high dimensions and subtractive measures of fit

Computation in high dimensions (p large typically), can be a challenge. If m is large,
as is typically the case, this could result in a large number of Q̂(M)’s that have to be
evaluated. Jiang et al. (2011) introduced the idea of a subtractive measure in their work
on fence methods for gene set analysis (what they called the invisible fence). Let 1, . . . ,m
denote the candidate elements. A measure Q̂ is said to be subtractive if it can be expressed
as

Q̂(M) = s−
∑
i∈M

si, (18)

where si, i = 1, . . . ,m are some nonnegative quantities computed from the data, M is a
subset of 1, . . . ,m, and s is some quantity computed from the data that does not depend
on M . Typically we have s = ∑m

i=1 si, but the definition does not impose such a restriction.
Also the nonnegativity constraint on the si’s is only to ensure that Q̂(M) behaves like a
measure of lack-of-fit, that is, larger model has smaller Q̂(M).

For a subtractive measure, the models that minimize Q̂(M) at different dimensions
are found almost immediately. Let r1, r2, . . . , rm be the ranking of the candidate elements in
terms of decreasing si. Then, the model that minimizes Q̂(M) at dimension one is r1; the
model that minimizes Q̂(M) at dimension two is {r1, r2}; the model that minimizes Q̂(M)
at dimension three is {r1, r2, r3}, and so on. This is what Jiang et al. (2011) called a fast
algorithm for implementing the fence approach.
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3.2. Other approaches to mixed model selection

Muller et al. (2013) wrote a survey paper on linear mixed model selection and dis-
cussed some other methods not discussed above. These include the marginal AIC (Vaida
and Blanchard 2005), the bootstrap biased-correct mAIC of Shang and Cavanaugh (2008),
Srivastava and Kubokawa (2010), conditional AIC (Vaida and Blanchard 2005), the mod-
ified Schwarz approach of Pauler (1998), minimum description length (MDL) approaches,
shrinkage methods and Bayesian methods. Interested readers are directed to that survey
paper for more details.

4. Mixed model selection and small area estimation

Small area estimation (SAE) has received increasing attention in recent literature.
Here the term small area typically refers to a subpopulation or domain for which reliable
statistics of interest cannot be produced due to certain limitations of the available data.
Examples of small areas include a geographical region (e.g., a state, county, municipality,
etc.), a demographic group (e.g., a specific age × sex × race group), a demographic group
within a geographic region, etc. In absence of adequate direct samples from the small areas,
methods have been developed in order to “borrow strength”. See Rao and Molina (2015)
for a comprehensive account of various methods used in SAE. Statistical models, especially
mixed effects models, have played important roles in SAE. See Jiang and Lahiri (2006) for
an overview of mixed effects models in SAE.

While there is extensive literature on inference about small areas using mixed effects
models, including estimation of small area means which is a problem of mixed model pre-
diction, estimation of the mean squared error (MSE) of the empirical best linear unbiased
predictor (EBLUP; see Rao 2003), and prediction intervals (e.g., Chatterjee, Lahiri, and Li
2007), model selection in SAE has received much less attention. However, the importance of
model selection in SAE has been noted by prominent researchers in this field (e.g., Battese,
Harter, and Fuller 1988, Ghosh and Rao 1994). Datta and Lahiri (2001) discussed a model
selection method based on computation of the frequentist’s Bayes factor in choosing between
a fixed effects model and a random effects model. They focused on the following one-way
balanced random effects model for the sake of simplicity: yij = µ + ui + eij, i = 1, . . . ,m,
j = 1, . . . , k, where the ui’s and eij’s are normally distributed with mean zero and variances
σ2

u and σ2
e , respectively. As noted by the authors, the choice between a fixed effects model

and a random effects one in this case is equivalent to testing the following one-sided hypoth-
esis H0: σ2

u = 0 vs H1: σ2
u > 0. Note that, however, not all model selection problems can be

formulated as hypothesis testing. Fabrizi and Lahiri (2004) developed a robust model selec-
tion method in the context of complex surveys. Meza and Lahiri (2005) demonstrated the
limitations of Mallows’ Cp statistic in selecting the fixed covariates in a nested error regres-
sion model (Battese, Harter, and Fuller 1988), defined as yij = xT

ijβ + ui + eij, i = 1, . . . ,m,
j = 1, . . . , ni, where yij is the observation, xij is a vector of fixed covariates, β is a vector
of unknown regression coefficients, and ui’s and eij’s are the same as in the model above
considered by Datta and Lahiri (2001). Simulation studies carried out by Meza and Lahiri
(2005) showed that the Cp method without modification does not work well in the current
mixed model setting when the variance σ2

u is large; on the other hand, a modified Cp crite-
rion developed by these latter authors by adjusting the intra-cluster correlations performs
similarly as the Cp in regression settings. It should be pointed out that all these studies are
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limited to linear mixed models, while model selection in SAE in a generalized linear mixed
model (GLMM) setting has never been seriously addressed.

4.1. Fence methods for SAE model selection

One of the advantages of fence methods is that the criterion of optimality for selecting
the models within the fence is flexible. In SAE the problem of main interest is the estimation,
or prediction, of the small area means. For simplicity, consider the case of linear mixed mod-
els. Then, the small area mean is typically estimated by the best linear unbiased predictor,
or BLUP. Because an important measure of the accuracy of BLUP is its MSE, it makes sense
to take the latter into account. Therefore, we consider the following criterion for selecting
models within the fence when linear mixed models are under consideration. Suppose that
one is interested in a small-area specific mixed effect (e.g., the small area mean), θi, which is
a linear combination of fixed and random effects. Let θ̃i be the BLUP of θi. Let θ = (θi)1≤i≤m

and θ̃ = (θ̃i)1≤i≤m. Then, MSE(θ̃) = E(|θ̃ − θ|2) = ∑m
i=1 E(θ̃i − θi)2 = ∑m

i=1 MSE(θ̃i). Fur-
thermore, an explicit expression of MSE(θ̃i) can be obtained (e.g., Rao 2003, pp. 137). Note
that MSE(θ̃) typically depends on some unknown variance components. Let M̂SE(θ̃) be an
estimator of MSE(θ̃), say, by replacing the variance components by their REML estimators
(e.g., Jiang 2007). A model within fence is selected if (i) it has the minimum dimension;
and (ii) if there are more than one models chosen by (i), select the one that has the minimal
M̂SE(θ̃).

An interesting example is that from Jiang et al. (2010) who considered model selection
for non-parametric SAE models. Opsomer et al. (2008) proposed a spline-based nonpara-
metric model for SAE. The idea is to approximate an unknown nonparametric small-area
mean function by a penalized spline (P-spline). The authors then used a connection between
P-splines and linear mixed models (Ruppert, Wand, and Carroll 2003) to formulate the ap-
proximating model as a linear mixed model, where the coefficients of the splines are treated
as random effects. Consider, for simplicity, the case of univariate covariate. Then, a P-spline
can be expressed

f̃(x) = β0 + β1x+ · · · + βpx
p + γ1(x− κ1)p

+ + · · · + γq(x− κq)p
+, (19)

where p is the degree of the spline, q is the number of knots, κj, 1 ≤ j ≤ q are the knots,
and x+ = x1(x>0). Clearly, a P-spline is characterized by p, q, and also the location of the
knots.

Jiang et al. (2010) developed a simplified version of the adaptive fence in order to
choose p and q. First, since the optimal model is rarely either Mf or M∗, the minimal
model (dimensionwise; e.g., a model with only the intercept). Baseline adjustment and
threshold checking are used to deal with these two cases (see Jiang et al. 2008). The
baseline adjustment is done by generating an additional vector of covariates, say, Xa, so
that it is unrelated to the data. Then, define the model M∗

f as Mf plus Xa, and replace
Mf by M∗

f , but let M remain unchanged. This way one knows for sure that the new full
model, M∗

f , is not an optimal model (because it is not a candidate model). The threshold
checking inequality is given by Q̂M∗ − Q̂M∗

f
> d∗, where d∗ is the maximum of the left side

of the threshold inequality computed under the bootstrap samples generated under M∗. In
case the threshold inequality holds, we ignore the right tail of the plot of p∗ against cn that
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eventually goes up and stays at one.

Jiang et al. (2010) also constructed a a (large sample) confidence lower bound, for
example,

p∗ − 1.96
√
p∗(1 − p∗)/B (20)

where B is the bootstrap sample size. When selecting cn that maximize p∗ we take (20)
into account. More specifically, suppose that there are two peaks in the plot of p∗ against
cn located at cn,1 and cn,2 such that cn,1 < cn,2. Let p∗

1 and p∗
2 be the heights of the peaks

corresponding to cn,1 and cn,2. As long as p∗
1 is greater than the confidence lower bound at

p∗
2, that is, (4) with p∗ = p∗

2, we choose cn,1 over cn,2. Clearly, the selection is in favor of
smaller cn in order to be more conservative. (In other words, we are more concerned with
underfit than overfit.)

Consistency of selection under mild regularity conditions was then proven in the
following Theorem:

Theorem 4. (Jiang, Nguyen, and Rao 2010). Let M∗
0 denote the model selected

by the fence procedure with cn = c∗
n. Also, let Mopt denote an optimal model defined as

a true model with minimum dimension and minimum MSE(θ̃) among all the true models
within the (same) minimum dimension. Under the regularity conditions given therein, there
is c∗

n which is at least a local maximum and approximate global maximum of p∗, and the
corresponding M∗

0 is consistent in the sense that any δ, η > 0, there are N , N∗ such that

P{p∗(c∗
n) ≥ 1 − δ} ∧ P(M∗

0 = Mopt) ≥ 1 − η,

if m ≥ N and B ≥ N∗.

4.2. Variable selection for area and subarea level SAE models

In this section, we focus on variable selection under area level models and subarea
level SAE models which are extensively used in practice. A basic area level model, also
called the Fay-Herriot model (FH; Fay and Herriot 1979), uses direct estimators θ̂i of area
means θi(i = 1, . . . ,m) and associated area level covariates. Direct estimators are obtained
from area-specific unit level data, taking survey design into account. Area level covariates
are used to link the area means. This leads to a sampling model and a linking model given
by θ̂i = θi + ei and θi = xT

i β + vi respectively, where ei is the sampling error, β is the vector
of model parameter, xi is the p × 1 vector of area level covariates and vi is a random area
effect. Further, ei has mean 0 and known variance ψi, and the sampling errors are assumed
to be independent. In practice, the sampling variances ψi are obtained by smoothing their
direct estimators using generalized variance functions. The area effect vi has mean 0 and
variance σ2

v , and the area effects are assumed to be independent. Combining the sampling
model with the linking model leads to the FH model θ̂i = xT

i β+vi +ei which is then used for
variable selection. Note that the linking model alone cannot be used for variable selection
because the area means θi are not known.

Because of the sampling errors in the FH model, standard methods for linear regres-
sion models, such as the AIC, BIC and Mallows’ Cp used for variable selection, can lead to
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biased variable selection when applied to the FH model. Han (2013) used a conditional AIC
method for variable selection that accounts for the sampling errors in the FH model. This
method is fairly complex, and practitioners might prefer simple modifications to standard
methods that can account for sampling errors in the FH model. We give a brief description
of a simple method of estimating the ideal variable selection criteria under the linking model
that accounts for the sampling error (Lahiri and Suntornchost 2015). The resulting estima-
tion error is shown to converge to 0 in probability as the number of areas increases, unlike
the estimation error in the näıve criteria ignoring the sampling errors. The proposed method
performed well in simulations unlike the näıve method that ignores the sampling errors in
the FH model.

Let, MSEθ = 1
m−p

θT (Im − P )θ denote the ideal mean error sum of squares, where
θ = (θ1, . . . , θm)T , Im is the identity matrix of order m, and P = X(XTX)−1X is the
standard projection matrix based on the linking model. Then the estimator of MSEθ is given
by mseθ = MSEθ̂ − ψ̄w, where MSEθ̂ is obtained by replacing θ by its direct estimator θ̂,
and ψ̄w = 1

m−p

∑m
i=1(1 − hii)ψi with hii = xT

i (XTX)−1xi. We simply replace MSEθ by mseθ

in the ideal AIC, BIC and Cp which are functions of MSEθ. For example, the resulting
AIC = mlog{m−p

m
mseθ} + 2p. In the case of small m, the estimator mseθ could take a

negative value and Lahiri and Suntornchost (2015) suggested a simple modification that
leads to strictly positive estimator of MSEθ.

Two-fold subarea models are also often used in practice to estimate subarea and area
means. For example, Mohadjer et al. (2012) studied adult literacy for counties (subareas)
sampled from states (areas) in the United States, using data from the 2003 U. S. National
Assessment of Adult Literacy (NAAL). We have areas i and subareas j are sampled from
area i. Direct estimators of subarea means θij(j = 1, . . . , ni; i = 1, . . . ,m) and associated
subarea level covariate vector are denoted as θ̂ij and xij respectively. A two-fold subarea
model consists of a sampling model θ̂ij = θij + eij and a linking model θij = xT

ijβ + bij

respectively, where eij is the sampling error and bij = vi + uij is the sum of the random
area effect vi and subarea effect uij. The sampling errors eij are assumed to be independent
with zero means and known variances. Further, the area effect is independent of the subarea
effect, and the vi and uij are independent and identically distributed with zero means and
variances σ2

v and σ2
u respectively. Under the assumptions, the composite random effects bij

are correlated for each area i with covariance matrix Σi = σ2
v1i1T

i + σ2
uIi where 1i is the unit

vector of length ni and Ii is the identity matrix of order ni.

We cannot treat the linking model for the two-fold case as a FH-type model on the
subarea means because the composite random effects bij are correlated. It is necessary to
transform the covariance matrix Σi to a diagonal covariance matrix with equal diagonal
elements across areas i, and then apply the variable selection method to the transformed
linking model to get the ideal error mean sum of squares. Cai et al. (2020) obtained a
parameter-free transformation matrix Ai of order (ni − 1) × ni and full rank that makes the
covariance matrix of Aibi diagonal with equal diagonal elements across i = 1, . . . ,m, where
bi = (bi1, . . . , bim)T (Li and Lahiri (2019) used a similar transformation in the context of unit
level models). The transformed linking model is then used to get the ideal mean square error
sum of squares MSEθ∗ and its estimator mseθ∗ along the lines of the method used for the FH
linking model. Note that the transformed vector θ∗

i = Aiθi has length ni −1 unlike the vector
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θi with elements θij, j = 1, . . . , ni, and as a result each area loses one degree of freedom after
transformation. The variable selection criteria can then be computed using mse∗

θ, as in the
case of the FH model. Cai et al. (2020) report simulation results showing that the proposed
transformation method performs well in variable selection, unlike the naive method treating
the linking model as a FH-type model ignoring the correlations, especially as σ2

v increases.

Three-fold models linking sub-subarea means to related covariates and random effects
at the area, subarea and sub-subarea levels are also used in practice to estimate sub-subarea
means as well as subarea means. For example, the Program for the International Assessment
of Adult Competencies (PIAAC) in the United States used a three-fold model with census
divisions as areas, states within a census division as subareas and counties within a state as
sub-subareas. Cai and Rao (2022) extended the two-fold model variable selection method of
Cai et al. (2020) to variable selection to variable selection under three-fold models.
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Abstract
It is becoming increasingly clear that complex interactions among genes and environ-

mental factors play crucial roles in triggering complex diseases. Thus, understanding such
interactions is vital, which is possible only through statistical models that adequately ac-
count for such intricate, albeit unknown, dependence structures. In this article, we propose
and develop a novel nonparametric Bayesian model for case-control genotype data using
hierarchies of Dirichlet processes that offers a more realistic and nonparametric dependence
structure among the genes, induced by the environmental variables. In this regard, we pro-
pose a novel and highly parallelisable MCMC algorithm that is rendered quite efficient by
the combination of modern parallel computing technology, effective Gibbs sampling steps,
retrospective sampling and Transformation based Markov Chain Monte Carlo (TMCMC).
We devise appropriate Bayesian hypothesis testing procedures to detect the roles of genes
and environment in case-control studies. Applying our ideas to 5 biologically realistic case-
control genotype datasets simulated under distinct set-ups, we obtain encouraging results in
each case. We finally apply our ideas to a real, myocardial infarction dataset, and obtain
interesting results on gene-gene and gene environment interaction, that broadly agree with
the results reported in the literature, but provide further important insights.

Key words: Case-control study; Hierarchical Dirichlet process; Gene-gene and gene-environm-
ent interaction; Myocardial Infarction; Parallel processing; Transformation based MCMC.

1. Introduction

In spite of much research on gene-gene interaction, including genome-wide associa-
tion studies (GWAS), it has become increasingly clear that gene-gene interaction alone is
insufficient for explaining most complex diseases. Investigating environmental factors inde-
pendently of the genetic factors is not sufficient either – biomedical research points towards
the importance of interactions between genes and the environment in explaining complex
diseases. Indeed, according to Hunter (2005) (see also Mather and Caligary (1976)), consid-
ering only the separate contributions of genes and environment to a disease, ignoring their
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interactions, will lead to incorrect estimation of the disease proportion (the “population
attributable fraction”) that is explained by genes, the environment, and their joint effect.
In particular, environmental exposures are expected to influence gene-gene interactions of
the individuals. A comprehensive overview of gene-environment interaction with various
examples is provided in Bhattacharya and Bhattacharya (2020).

Since no simple relationship exists between the genes and environment, it is clear
that linear or additive models, as are mostly used so far, are inadequate for modeling gene-
environment interactions. Also, the logistic model based approaches, (see for example Ahn
et al. (2013), Wen and Stephens (2014) and Liu et al. (2015)) resting on Fisher’s definition
of interaction result in the inclusion of a large number of interaction terms even with a
moderate number of genetic and environmental factors.

The fact that the genetic data may arise from a stratified population with an unknown
number of subpopulations makes the problem all the more demanding. Wen and Stephens
(2014), in their attempt to study the genetic association with respect to genetic data arising
from multiple potentially-heterogeneous subgroups, assume the number of subgroups to be
known in advance. Also, the problem of quantifying the strength of heterogeneity, as acknowl-
edged by Wen and Stephens (2014), remains unanswered due to the above considerations and
the need of an appropriate prior. The Bayesian semiparametric model proposed by Bhat-
tacharya and Bhattacharya (2020) takes care of the above mentioned problems by proposing
a model based on Dirichlet Processes (DP) and a hierarchical matrix-normal distribution,
which encapsulates the mechanism of dependence among genes under environmental effects
with respect to genotype data arising out of a possibly stratified population. In a somewhat
similar spirit, Urbut et al. (2019) and Yang et al. (2024) propose mixture of multivariate
nornal distributions with appropriate covariance matrices relevant for the phenomenon under
study.

We now elaborate on a possible drawback of the dependence structure induced by the
modeling strategy of Bhattacharya and Bhattacharya (2020), which motivated us to develop
our present work based on Hierarchical Dirichlet Processes.

In their model, the relevant gene-gene covariance matrix for individual i is σ̃iiA,
where A is the gene-gene interaction matrix common to all the individuals in the absence
of environmental variables, and σ̃ii = σii + ϕ, with σii being the i-th diagonal element of a
symmetric, positive definite matrix not associated with the environmental variable, and ϕ is
a non-negative parameter, to be interpreted as the effect of the environmental variable E on
gene-gene interaction. Note that Bhattacharya and Bhattacharya (2020) assumed that the
covariance matrices for all the individuals are affected in the same way by the environmental
variable, which seems to be a limitation of the covariance structure. The environmental
variables may affect the gene-gene interactions of individuals differently depending on the
extent and type of their exposure to the environmental factors.

In this article, we introduce a novel Bayesian nonparametric model for gene-gene
and gene-environment interactions for case-control genotype data that solves the issues de-
tailed above. Our model represents the individual genotype data as finite mixtures based
on Dirichlet processes as before, but instead of the hierarchical matrix normal distribu-
tion, we introduce a hierarchy of Dirichlet processes that create appropriate nonparametric
dependence among the genes induced by the environment, case-control dependence, and de-
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pendence among the individuals. As we show, our modeling strategy satisfies all the desirable
properties, bypassing the drawbacks of the matrix-normal based model of Bhattacharya and
Bhattacharya (2020). The key idea of inducing such nonparametric dependence is to ensure
that the minor allele frequencies associated with every sub-population, individual, gene and
case/control status share a global pool of random parameters, in such a manner that only
the dependence structure is influenced by the environmental variables, not the marginal dis-
tributions of the minor allele frequencies. The last point is important biologically and so, it
requires care to model such intricate dependence.

Although our hierarchical Dirichlet process (HDP) model has parallels with the HDP
introduced by Teh et al. (2006), our HDP has one more level of hierarchy compared to Teh
et al. (2006). Moreover, the aforementioned special and intricate dependence structure has
not been considered in any previous HDP application.

Exploiting conditional independence structures of our Bayesian model, we develop a
novel and highly parallelisable Markov Chain Monte Carlo (MCMC) methodology that com-
bines the efficiencies of modern parallel computing infrastructure, Gibbs steps, retrospective
sampling methods, and Transformation based Markov Chain Monte Carlo (TMCMC). For
the hypothesis testing procedures, we essentially adopt and extend the ideas provided in
Bhattacharya and Bhattacharya (2020). Application of our model and methods to five
simulation experiments for the validation purpose yielded quite encouraging results, and ap-
plication to a real myocardial infarction (MI) case-control type dataset yielded results that
are broadly in agreement with the results reported in the literature, but provided new and
interesting insights into the mechanisms of gene-gene and gene-environment interactions.

The rest of our paper is structured as follows. We introduce our model in Section
2, and in Section 3 discuss the relevant dependence structures induced by our model. In
Section 4 we extend the Bayesian hypothesis testing procedures proposed in Bhattacharya
and Bhattacharya (2020) to learn about the roles of genes, environmental variables and their
interactions in case-control studies. In Section 5 we briefly discuss the results of application
of our model and methodologies to 5 biologically realistic simulated data sets, the details of
which are provided in the Annexure, described below. In Section 6 we analyze the real MI
dataset using our ideas, demonstrating quite interesting and insightful outcome. Finally, we
summarize our work with concluding remarks in Section 7.

Additional details are provided in the Annexure, whose sections have the prefix “A-”
when referred to in this paper.

2. A new Bayesian nonparametric model for gene-gene and gene-environme
nt interactions

2.1. Case-control genotype data

For s = 1, 2 denoting the two chromosomes, let ys
ijkr = 1 and ys

ijkr = 0 indicate the
presence and absence of the minor allele of the i-th individual belonging to the k-th group
(either control or case), for k = 0, 1, with k = 1 denoting case; at the r-th locus of j-th gene,
where i = 1, . . . , Nk; r = 1, . . . , Lj and j = 1, . . . , J ; let N = N1 +N2. Let Ei denote a set of
environmental variables associated with the i-th individual. In what follows, we model this
case-control genotype and the environmental data using our Bayesian nonparametric model,
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described in the next few sections.

2.2. Mixture models based on Dirichlet processes

Let yijkr = (y1
ijkr, y2

ijkr), and if L = max{L1, . . . , LJ}, let Yijk = (yijk1, yijk2, . . . , yijkLj
)

and Ỹijk = (ỹijk,Lj+1, . . . , ỹijkL), where Ỹijk are unobserved and assumed to be missing. We
introduce these unobserved variables to match the number of loci for all the genes, which
is required so that the vectors of minor allele frequencies come from the distribution having
the same dimension. This “dimension-matching” is required for the theoretical development
of our modeling ideas; see (5) and (6).

We assume that for every triplet (i, j, k), Xijk = (xijk1, . . . , xijkL) = (Yijk, Ỹijk) have
the mixture distribution

[Xijk] =
M∑

m=1
πmijk

L∏
r=1

f (xijkr|pmijkr) , (1)

where f (·|pmijkr) is the Bernoulli mass function given by

f (xijkr|pmijkr) = {pmijkr}x1
ijkr+x2

ijkr {1 − pmijkr}2−(x1
ijkr+x2

ijkr) . (2)

In the above, M denotes the maximum number of mixture components and pmijkr stands
for the minor allele frequency at the r-th locus of the j-th gene for the i-th individual of
the k-th case/control group. Note that minor allele frequency is the frequency at which the
second most common allele occurs in a given population.

Allocation variables zijk, with probability distribution

[zijk = m] = πmijk, (3)

for i = 1, . . . , Nk and m = 1, . . . , M , allow representation of (1) as

[Xijk|zijk] =
L∏

r=1
f
(
xijkr|pzijkijkr

)
. (4)

Following Majumdar et al. (2013), Bhattacharya and Bhattacharya (2018), we set πmijk =
1/M , for m = 1, . . . , M , and for all (j, k).

Letting pmijk = (pmijk1, pmijk2, . . . , pmijkL), we next assume that

p1ijk, p2ijk, . . . , pMijk
iid∼ Gijk; (5)

Gijk ∼ DP (αG,ikG0,jk) , (6)

where DP (αG,ikG0,jk) stands for Dirichlet process with expected probability measure G0,jk

having precision parameter αG,ik, with

log(αG,ik) = µG + βT
GEik, (7)

where Eik is a d-dimensional vector of continuous environmental variable for the i-th indi-
vidual in the k-th group, βG is a d-dimensional vector of regression coefficients, and µG is
the intercept term. The model can be easily extended to include categorical environmental
variables along with the continuous ones.
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2.3. Hierarchical Dirichlet processes to induce dependence between the genes
and case-control status

We further assume that for k = 0, 1,

G0,jk
iid∼DP (αG0,kHk) ; j = 1, . . . , J, (8)

where
log(αG0,k

) = µG0 + βT
G0Ēk, (9)

with

Ēk = 1
Nk

Nk∑
i=1

Eik. (10)

We postulate the last level of hierarchy as

Hk
iid∼ DP

(
αHH̃

)
; k = 0, 1, (11)

where
log(αH) = µH + βT

H
¯̄E, (12)

with
¯̄E = Ē0 + Ē1

2 . (13)

We specify the base probability measure H̃ as follows: for m = 1, . . . , M , i =
1, . . . , Nk, k = 0, 1, and r = 1, . . . , L,

pmijkr
iid∼ Beta (ν1, ν2) , (14)

under H̃ , where ν1, ν2 > 0.

This completes the specification of a hierarchy of Dirichlet processes to build depen-
dence among the genes and the distributions of genotypes of cases-controls given data. Note
that our model consists of one more level of hierarchy of Dirichlet processes than consid-
ered in the applications of Teh et al. (2006), who introduce hierarchical Dirichlet processes
(HDP). Specifically, for given k and Hk, our hierarchy levels are comparable to that of Teh
et al. (2006), but our extra level of hierarchy comes from (11), which creates dependence
between case and control; details and reasons for insisting on such dependence structure are
provided in Section 3.3.

Moreover, our likelihood based on Dirichlet processes ensuring at most M mixture
components, is significantly different from those considered in the applications of Teh et al.
(2006), which are based on the traditional DP mixture; see Mukhopadhyay et al. (2011),
Mukhopadhyay et al. (2012), Mukhopadhyay and Bhattacharya (2013) for details on the
conceptual, computational and asymptotic advantages of our modeling style over the tradi-
tional DP mixture.
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2.4. The Chinese restaurant analogy

An extended version of the Chinese restaurant metaphor used by Teh et al. (2006)
may be considered to illustrate our model. For k = 0, 1, the set of random probability
measures {G0,jk; j = 1, . . . , J} can be associated with J restaurants. Letting τijk denote the
number of tables at the j-th restaurant associated with the i-th individual, we denote by
ϕlijk the dish being served at table l of the j-th restaurant for the i-th individual. Note that
{ϕlijk; l = 1, . . . , τijk; i = 1, . . . , Nk} is a set of iid realizations from G0,jk. Thus, we have
different sets of realizations from G0,jk for different individuals i.

For k = 0, 1, we also let ΞRkk = {ξ1k, . . . , ξRkk} denote a set of Rk iid realizations
from Hk. Then it follows that for l = 1, . . . , τijk, i = 1, . . . , Nk, and for j = 1, . . . , J ,
ϕlijk ∈ ΞRkk. In other words, ΞRkk is the set of distinct elements in the set {ϕlijk; l =
1, . . . , τijk; i = 1, . . . , Nk; j = 1, . . . , J}, and, from the Chinese restaurant perspective, is the
set of global dishes among all the restaurants, given k.

Finally, let ζS = {η1, . . . , ηS} denote a set of S iid realizations from H̃ . Then it
follows that ζS is the set of distinct elements in {ΞRkk : k = 0, 1}. In other words, ζS is the
set of global dishes served in all the restaurants, irrespective of k = 0 or k = 1.

3. Discussion of the dependence structure induced by our HDP-based model

3.1. Dependence among individuals

It follows from the discussion in Section 2.4 that {ϕlijk; l = 1, . . . , Tmijk; i = 1, . . . , Nk}
∈ {ξ1k, . . . , ξRmkk}, where ξ1k, . . . , ξRmkk

iid∼ Hk. This shows that {ϕlijk; l = 1, . . . , Tmijk; i = 1,
. . . , Nk} in (15) are shared among the individuals, thus creating dependence among the sub-
jects.

For more precise insights regarding the dependence structure, let us first marginalize
over Gijk to obtain the joint distribution of PMijk = {p1ijk, . . . , pMijk} using the following
Polya urn distributions: given G0,jk, p1ijk ∼ G0,jk, and for m = 2, . . . , M ,

[pmijk|plijk; l < m] = αG,ik

αG,ik + m − 1G0,jk (pmijk) + 1
αG,ik + m − 1

Tmijk∑
t=1

ñtmijkδϕtijk
(pmijk) ,

(15)
where ∑Tmijk

t=1 ñtmijk = m − 1. Here ñtmijk = # {l < m : plijk = ϕtijk}.

Since conditionally on G0,jk, the marginal distribution of pmijk, for m = 1, . . . , M
and i = 1, . . . , Nk, is G0,jk, the marginal is unaffected by the environmental variable, but
the joint distribution of PMijk implied by the Polya urn distributions (15) shows that the
dependence structure of PMijk is influenced by the regression on Eik through αG,ik. This is
a very desirable property of our modeling approach, since, in reality, the population minor
allele frequencies for the case-control group are not expected to be affected by environmen-
tal variables, although environmental exposure is expected to influence dependence among
individuals and gene-gene interactions in individuals. Note that marginal distributions de-
pending upon environmental variables may be envisaged only under mutation, but since it
is an extremely rare phenomenon and the type of case control type genotype data we are
dealing with is not appropriate for such studies, we do not include mutational effects in our
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model.

3.2. Dependence among the genes

We now show that the gene-gene interactions of the i-th individual are affected by
Eik, but not the marginal effects of the genes.

Dependence among the genes for the i-th individual is induced by {ϕtijk; t = 1, . . . , τijk;
j = 1, . . . , J}, where, for t = 1, . . . , τijk, ϕtijk

iid∼ G0,jk, with G0,jk ∼ DP (αG0,kHk). In fact,
marginalizing over G0,jk yields the following Polya urn scheme for {ϕtijk; t = 1, . . . , τijk}:

[ϕtijk|ϕlijk; l < t] = αG0,k

αG0,k + t − 1Hk (ϕtijk) + 1
αG0,k + t − 1

Rtk∑
l=1

n̄ltikδξlk
(ϕtijk) , (16)

where n̄ltik = # {ℓ < t : ϕℓijk = ξlk}. Note that ∑Rtk
l=1 n̄ltik = t − 1.

It is clear from (16) that {ϕtijk; j = 1, . . . , J} share {ξlk; l = 1, . . . , Rk}, so that the
latter set creates dependence among the genes. Moreover, it is also clear from (16) that
the dependence structure does not depend directly upon Eik, but upon Ēk, through the
regression of log(αG0,k) on Ēk; see (9). In other words, the gene-gene dependence structure
of any individual is not directly influenced by the corresponding environmental variable.
However, the dependence structure is also influenced by n̄ltik, which depends upon the i-
th individual in the k-th case-control group through τijk, which is directly influenced by
Eik through αG,ik. Thus, as is desirable, our modeling style induces gene-gene interactions
that are specific to the individuals and are influenced by the corresponding environmental
variables and the averages of the environmental variables within the case-control groups that
the individuals belong to.

It is also interesting to observe that in spite of the individual-specific gene-gene inter-
actions, the marginal distributions of ϕtijk remains G0,jk for the non-marginalized version
and Hk for the marginalized version characterized by (16), signifying that the individual
genes are not affected by Eik.

3.3. Case-control dependence

Finally, we note that

[ξsk|ξlk; l < s] = αH

αH + s − 1H̃ (ξsk) + 1
αH + s − 1

Ssk∑
l=1

n̆lskδζl
(ξsk) , (17)

where n̆lsk = # {ℓ < s : ξℓk = ζl} and ∑Ssk
l=1 n̆lsk = s − 1. So, {ξsk; s = 1, . . . , Rk; k = 0, 1}

share {ζl; l = 1, . . . , S}, creating dependence between case and control status. Dependence
between case and control status are likely to be caused by various implicit factors and envi-
ronmental variables that are not accounted for in the study. These factors and environmental
variables may be insignificant individually, but together may exert non-negligible influence
on cases and controls.

A schematic diagram of our HDP-based model and the dependence structure is de-
picted in Figure 1. We remark that in a much simpler set-up, the original HDP proposed
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Figure 1: Schematic diagram of our HDP-based Bayesian model.
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in Teh et al. (2006) has also been used by De Iorio et al. (2015) for inferring population
admixture, allowing for correlations between loci due to linkage disequilibrium.

In Section A-1 we propose an MCMC procedure for the inferential purpose, and in
Section A-2 we provide a parallel algorithm for implementing the MCMC method.

4. Detection of the roles of environment, genes and their interactions with
respect to our HDP based model

4.1. Formulation of the tests and interpretation of their results

4.1.1. Bayesian test for the impact of the genes on case-control

To test if genes have any effect on case-control, we formulate as in Bhattacharya and
Bhattacharya (2018) and Bhattacharya and Bhattacharya (2020), the following hypotheses:

H01 : h0j = h1j; j = 1, . . . , J, (18)

versus
H11 : not H0, (19)

where

h0j(·) = 1
M

M∑
m=1

Lj∏
r=1

f
(
·|pr

mi0jk=0

)
; (20)

h1j(·) = 1
M

M∑
m=1

Lj∏
r=1

f
(
·|pr

mi1jk=1

)
. (21)

In the above, for k = 0, 1, ik is the index such that PMikjk = {p1ikjk, p2ikjk, . . . , pMikjk} is
some measure of central tendency of {PMijk = {p1ijk, p2ijk, . . . , pMijk} ; i = 1, . . . , Nk}. Ap-
propriate measures of central tendency, based on clusterings, is discussed in Section 4.2.1.

4.1.2. Bayesian test for significance of the environmental variables

To check if the environmental variables are significant, we shall test the following: for
ℓ = 1, . . . , d,

H02ℓ : βG,ℓ = 0 versus H12ℓ : βG,ℓ ̸= 0, (22)

H03ℓ : βG0,ℓ = 0 versus H13ℓ : βG0,ℓ ̸= 0, (23)

and
H04ℓ : βH,ℓ = 0 versus H14ℓ : βH,ℓ ̸= 0. (24)

4.1.3. Bayesian test for significance of gene-gene interaction

In our HDP based nonparametric model there is no readily available quantification
of gene-gene interaction unlike the models of Bhattacharya and Bhattacharya (2018) and
Bhattacharya and Bhattacharya (2020). Thus, in order to test for gene-gene interaction, it
is necessary to first reasonably define such a measurement.
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A measure of gene-gene interaction influenced by environmental variables

For our purpose, we first define

p̄mijk =
∑Lj

r=1 pmijkr

Lj

. (25)

With the above definition, for subject i belonging to case-control group k, we consider the
following covariance

C(i, j1, j2, k) = cov
(
logit(p̄zij1kij1k), logit(p̄zij2kij2k)

)
, (26)

as quantification of subject-wise gene-gene dependence that accounts for population mem-
berships of subject i with respect to genes j1 and j2, through zij1k and zij2k, where for any
p ∈ (0, 1), logit(p) = log

(
p

1−p

)
. Thus, gene-gene interaction associated with our model is

subject-specific.

While implementing our model using our parallelised MCMC methodology, we sim-
ulate C(i, j1, j2, k) at each iteration by generating {pmijkr : r = 1, . . . , Lj} as many times as
required from the respective full conditionals holding the remaining parameters fixed, and
then compute the empirical covariance corresponding to (26) using the generated iid samples
conditionally on the remaining parameters to approximate (26).

Formulation of the Bayesian tests for gene-gene interactions

To test for subject-wise gene-gene interaction, we consider the following tests: for
i = 1, . . . , Nk, k = 0, 1, and for j1, j2 ∈ {1, . . . , J},

H05ij1j2k : C(i, j1, j2, k) = 0 versus H15ij1j2k : C(i, j1, j2, k) ̸= 0. (27)

4.1.4. Interpretations of the results of the above tests

The cases that can possibly arise and the respective conclusions are the following:

• For some appropriate divergence measure d between two distributions, if max
1≤j≤J

d(h0j,

h1j), is significantly small with high posterior probability, then H01 is to be accepted.
If h0j and h1j are not significantly different, then it is plausible to conclude that the
j-th gene is not marginally significant in the case-control study.

• Suppose that H01 is accepted (so that genes have no significant role) and that at least
one of βG,ℓ or βG0,ℓ or βH,ℓ is significant, at least for some ℓ. This may be interpreted
as the environmental variable E having some altering effect on all the genes in a way
that doesn’t affect the disease status. If C(i, j1, j2, k) turns out to be significant, then
this would additionally imply that the environmental variable E influences interaction
between genes j1 and j2 for the i-th individual, but not in a way that is responsible for
the case/control status.

• If H01 is rejected, indicating that the genes are significant, but none of the βG,ℓ, βG0,ℓ,
βH,ℓ or C(i, j1, j2, k) are significant, then only the genes, not E, are responsible for the
disease. In that case, one may conclude that the disease is of purely genetic nature.
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• Suppose that H01 is rejected, none of βG,ℓ, βG0,ℓ, βH,ℓ is significant, but C(i, j1, j2, k) is
significant for at least some i, j1, j2, k. Then the environmental variable is not signif-
icant, and the case/control status of the individuals associated with significant gene-
gene interactions can be attributed to purely genetic causes triggered by gene-gene
interactions of the individuals.

• Now suppose that H01 is rejected, and at least one of βG,ℓ, βG0,ℓ, βH,ℓ is significant, but
none of the subject-wise gene-gene interactions is significant. Then the environmental
variable E does not significantly affect the interactions to determine the case/control
status, and marginal effects of the individual genes are responsible for the case/control
status of an individual.

• If, on the other hand, H01 is rejected, at least one of βG,ℓ, βG0,ℓ, βH,ℓ is significant,
and C(i, j1, j2, k) is significant for at least some i, j1, j2, k, then the environmental
variable is significant and is responsible for influencing gene-gene interactions within
the individuals with significant C(i, j1, j2, k), which, in turn, affects the case/control
status of the individuals.

4.2. Methodologies for implementing the Bayesian tests

4.2.1. Hypothesis testing based on clustering modes

As in Bhattacharya and Bhattacharya (2018) and Bhattacharya and Bhattacharya
(2020), here we exploit the concept of “central” clustering introduced by Mukhopadhyay
et al. (2011). Briefly, central clustering may be interpreted as a suitable measure of cen-
tral tendency of a set of clusterings. Mukhopadhyay et al. (2011) particularly consider
the mode(s) of the set of clusterings, and provide methods for appropriately obtaining the
mode(s) using a suitable metric that they propose to quantify distances between any two
clusterings. Their proposed metric is also computationally inexpensive, which makes the
concept based on central clusterings extremely useful in practice.

For k = 0, 1, let ik denote the index of the central clusterings of PMijk = {p1ijk, p2ijk,
. . . , pMijk}, i = 1, . . . , Nk. We then study the divergence between the two clusterings of

PMi0jk=0 = {p1i0jk=0, p2i0jk=0, . . . , pMi0jk=0}

and
PMi1jk=1 = {p1i1jk=1, p2i1jk=1, . . . , pMi1jk=1} ,

for j = 1, . . . , J . A schematic diagram illustrating the idea can be found in Bhattacharya
and Bhattacharya (2020).

Significantly large divergence between the two clusterings clearly indicates that the
j-th gene is marginally significant.

4.2.2. Enhancement of clustering metric based inference using Euclidean distance

As argued in Bhattacharya and Bhattacharya (2018), significantly large clustering dis-
tance between PMjk=0 and PMjk=1 indicates rejection of H0, but insignificant clustering dis-
tance does not necessarily provide strong evidence in favour of the null. In this regard, Bhat-
tacharya and Bhattacharya (2018) (see also Bhattacharya and Bhattacharya (2020)) argue
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that the Euclidean distance is an appropriate candidate to be tested for significance before ar-
riving at the final conclusion. Briefly, we first compute the averages p̄mijk = ∑Lj

r=1 pm,ijkr/Lj,
then consider their logit transformations logit (p̄mijk) = log {p̄mijk/(1 − p̄mijk)}. Then, we
compute the Euclidean distance between the vectors

logit
(
P̄Mi0jk=0

)
= {logit (p̄1i0jk=0) , logit (p̄2i0jk=0) , . . . , logit (p̄Mi0jk=0)}

and
logit

(
P̄Mi1jk=1

)
= {logit (p̄1i1jk=1) , logit (p̄2i1jk=1) , . . . , logit (p̄Mi1jk=1)} .

We denote the Euclidean distance associated with the j-th gene by

dE,j = dE,j

(
logit

(
P̄Mi0jk=0

)
, logit

(
P̄Mi1jk=1

))
,

and denote max
1≤j≤J

dE,j by d∗
E.

4.2.3. Formal Bayesian hypothesis testing procedure integrating the above de-
velopments

In our problem, we need to test the following for reasonably small choices of ε’s:

H0,d∗ : d∗ < εd∗ versus H1,d∗ : d∗ ≥ εd∗ ; (28)

H0,d∗
E

: d∗
E < εd∗

E
versus H1,d∗

E
: d∗

E ≥ εd∗
E
; (29)

for ℓ = 1, . . . , d,
H0,βG,ℓ

: |βG,ℓ| < εG,ℓ versus H1,βG,ℓ
: |βG,ℓ| ≥ εG,ℓ, (30)

H0,βG0,ℓ
: |βG0,ℓ| < εG0,ℓ versus H1,βG0,ℓ

: |βG0,ℓ| ≥ εG0,ℓ, (31)

H0,βH,ℓ
: |βH,ℓ| < εH,ℓ versus H1,βH,ℓ

: |βH,ℓ| ≥ εH,ℓ, (32)
and, for i = 1, . . . , Nk, k = 0, 1, j1, j2 ∈ {1, . . . , J},

H0,Ci,j1,j2,k
: |Ci,j1,j2,k| < εC,ij1j2k versus H1,Ci,j1,j2,k

: |Ci,j1,j2,k| ≥ εC,ij1j2k, (33)

If H0 is rejected in (28) or in (29), we could also test if the j-th gene is influen-
tial by testing, for j = 1, . . . , J , H0,d̂j

: d̂j < εd̂j
versus H1,d̂j

: d̂j ≥ εd̂j
, where d̂j =

d̂ (PMi0jk=0, PMi1jk=0); we could also test H0,dE,j
: dE,j < εdE,j

versus H1,dE,j
: dE,j ≥ εdE,j

.

4.2.4. Null model and choice of ε

To obtain the null posterior distribution, we fit our HDP-based Bayesian model to
the dataset generated from the HDP-based model where the genes are independent and
not influenced by the environmental variable, and where there is no difference between
the probabilities associated with case and control. For the null data we chose the same
number of genes, the same number of loci for each gene, and the same number of cases
and controls as the non-null data. We also choose the same value M as in the non-null
model, but set βG = βG0 = βH = 0. To generate the data from the null model, we first
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simulate, independently for j = 1, . . . , J , the set {pm1j0 : m = 1, . . . , M}, using the Polya urn
scheme involving H̃ and αH , and set {pm1j1 : m = 1, . . . , M} = {pm1j0 : m = 1, . . . , M},
so that there is no difference between the probabilities associated with case and control,
and that the genes are independent. Since the simulation method is independent of the
environmental variable, it is clear that the genes are not influenced by the environment.
Given the probabilities {pm1j1 : m = 1, . . . , M} and {pm1j0 : m = 1, . . . , M}, we then
simulate the data using our Bernoulli model. To the data thus generated, we fit our full
HDP-based Bayesian model, to obtain the null posterior.

As in Bhattacharya and Bhattacharya (2018) here also we specify ε’s as F −1 (0.55),
where F is the distribution function of the relevant benchmark null posterior distribution.
Bhattacharya and Bhattacharya (2018) showed that the choice F −1 (0.55), rather than the
median, ensures that the correct null hypothesis is accepted under the “0 − 1” loss. Note
that, for the median, the posterior probability of the true null is 0.5, while under the “0 − 1”
loss, the true null will be accepted if its posterior probability is greater than 1/2.

5. Simulation studies

For simulation studies, we first generate realistic biological data for stratified popu-
lation with known gene-environment interaction from the GENS2 software of Pinelli et al.
(2012). To this data, we then apply our model and methodologies in an effort to detect
gene-environment interaction effects that are present in the data. We consider simulation
studies in 5 different true model set-ups: (a) presence of gene-gene and gene-environment
interaction, (b) absence of genetic or gene-environmental interaction effect, (c) absence of
genetic and gene-gene interaction effects but presence of environmental effect, (d) presence
of genetic and gene-gene interaction effects but absence of environmental effect, and (e)
independent and additive genetic and environmental effects. The details of our simulation
experiments are provided in Section A-3 of the supplement. Here we briefly summarize the
results of our experiments.

In case (a), we correctly obtained clear significance of the influence of genetic effects.
Also, βH turned out to be very significant, demonstrating significant overall impact of the en-
vironmental variable on the genes. Interestingly, as one may expect, there are more instances
of significant gene-gene interactions in the case group compared to the control group. The
posteriors of the number of sub-populations gave high probabilities to the correct number of
sub-populations in all the 5 simulation experiments. Quite importantly, we demonstrate in
cases (a), (d) and (e) where the genes are relevant, that our HDP model can detect disease
predisposing loci (DPL) with more precision compared to the matrix-normal-inverse-Wishart
model for gene-environment interactions proposed in Bhattacharya and Bhattacharya (2020).
In case (b) using our ideas in conjunction with significance testing in a simple logistic re-
gression framework, we are correctly able to conclude that the genetic or gene-environmental
effects are insignificant. As in Bhattacharya and Bhattacharya (2020), the right conclusion
is arrived at in case (c) by utilizing our ideas in conjunction with the Akaike Information
Criterion (AIC) in the context of simple logistic regression. Using our Bayesian testing
procedure along with the aid of logistic regression, we have been able to correctly obtain
insignificance of the environmental variable and significance of the genes. In this experiment,
we found no gene-gene interaction in the control group and found two (marginal) instances of
gene-gene interaction among the cases. As regards case (e), we note as in Bhattacharya and
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Bhattacharya (2020) that additivity of genetic and environmental effects is not supported
even by our current HDP-based Bayesian model. In spite of this, we correctly obtained
significance of the environmental variable and precisely obtained the DPLs. But the lack
of the additivity criterion in our model seems to have forced gene-environment interactions.
Bhattacharya and Bhattacharya (2020) report similar results, who obtained, after eventually
resorting to logistic regression, the AIC-based best model consisting of the additive marginal
effects of the first gene and the environmental variable, along with an additive intercept,
which is broadly consistent with the data-generating mechanism.

6. Application of our HDP based ideas to a real, case-control dataset on
Myocardial Infarction

We now consider application of our model and methods to a case-control dataset
on early-onset of myocardial infarction (MI) from MI Gen study, obtained from the db-
GaP database http://www.ncbi.nlm.nih.gov/gap. The same dataset has been analyzed
by Bhattacharya and Bhattacharya (2018) without considering the sex variable as the co-
variate, and by Bhattacharya and Bhattacharya (2020), who incorporate the sex variable in
their gene-environment interaction model. Although Bhattacharya and Bhattacharya (2018)
obtained significant genetic and gene-gene interaction effects, their later study after consid-
ering sex as the environmental variable, revealed strong effects of the sex variable but no
significant gene-gene interaction, although many of the genes turned out to be individually
significant. In our current HDP based analysis, we once again obtain strong effects of the
sex variable, but in contrast with Bhattacharya and Bhattacharya (2020), although we ob-
tain significant genetic effects, none of the genes turned out to be significant individually.
Moreover, the subject-wise gene-gene interactions, although of small magnitude, turned out
to be significant in some cases, and interestingly (and apparently counter-intuitively) seem
to be instrumental in counter-acting the disease rather than provoking it.

6.1. Data description

We recall that the MI Gen data obtained from dbGaP consists of observations on
presence/absence of minor alleles at 727478 SNP markers associated with 22 autosomes and
the sex chromosomes of 2967 cases of early-onset myocardial infarction, 3075 age and sex
matched controls. The average age at the time of MI was 41 years among the male cases
and 47 years among the female cases. The data broadly represents a mixture of four sub-
populations: Caucasian, Han Chinese, Japanese and Yoruban. Using the Ensembl human
genome database (http://www.ensembl.org/) we could categorize 446765 markers out of
727478 with respect to 37233 genes.

As in Bhattacharya and Bhattacharya (2020) we considered 32 genes covering 1251
loci, for 200 individuals. These 1251 loci include 33 SNPs that are believed to be associated
with MI and also those that are believed to be associated with different cardiovascular end
points like LDL cholesterol, smoking, blood pressure, body mass, etc. Other than the 33
SNPs, the remaining 1218 SNPs are not known to be associated with the disease. See
Bhattacharya and Bhattacharya (2020) for the details and the relevant references.

Since the four broad sub-populations are not unlikely to admit further genetic sub-
divisions, it makes sense to set the maximum number of mixture components, M , to a
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value much larger than 4. As before, we set M = 30; we also set ν1 = ν2 = 1, so that
H̃ is the uniform distribution on [0, 1]. As in the simulation experiments, here also the
structures αG,ik = 0.1× exp (100 + µG + βGEik), αG0,k = 0.1× exp

(
100 + µG0 + βG0Ēk

)
and

αH = 0.1×exp
(
100 + µH + βH

¯̄E
)
, where µG, µG0 , µH

iid∼ U(0, 1) and βG, βG0 , βH
iid∼ U(−1, 1),

ensured adequate number of sub-populations and satisfactory mixing of MCMC. For the null
data and model, we follow the same procedure as discussed in Section 4.2.4.

6.2. Remarks on model implementation

Our parallel MCMC algorithm detailed in Section A-2 takes about 7 days to generate
30,000 iterations on our VMware consisting of 50 double-threaded, 64-bit physical cores,
each running at 2493.990 MHz. We discard the first 10, 000 iterations as burn-in, using the
subsequent 20,000 iterations for our Bayesian inference. Satisfactory mixing properties are
indicated by informal convergence diagnostics such as trace plots.

6.3. Results of the real data analysis

6.3.1. Effect of the sex variable

We obtain P (|βG| < εβG
|Data) ≈ 0, P (|βG0 | < εβG0

|Data) ≈ 0 and P (|βH | <

εβH
|Data) ≈ 1. In other words, although ¯̄E (here E being the sex variable) is insignificant,

both Eik and Ēk are very significant. Thus, in this study, sex seems to play an important
role in influencing the genes.

6.3.2. Roles of individual genes

With the clustering metric we obtained P (d∗ < ϵ1|Data) ≈ 0.030 while that with the
Euclidean distance we obtained P (d∗

E < ϵ2|Data) ≈ 0.540. That is, the maximum of the
gene-wise clustering metrics turns out to be significant, while the maximum of the gene-
wise Euclidean metrics is seen to be insignificant. The same ambiguity was also obtained by
Bhattacharya and Bhattacharya (2020). The tests of the marginal genes are expected to shed
some light regarding this dilemma. The posterior probabilities of the null hypotheses (of no
significant genetic influence) reveal that none of the individual genes are significant, for either
the clustering metric or the Euclidean metric. Our result is not much different from that of
Bhattacharya and Bhattacharya (2020) who also note that their marginal probabilities, at
least for the clustering metric, are not significantly small to provide strong enough evidences
against the nulls.

Now, at least from the clustering metric perspective, it is necessary to explain the issue
that all the genes are insignificant individually but still the maximum of the gene-wise clus-
tering metric values is significant. The key to this issue seems to be the correlations between
the distances, which are induced by gene-gene interactions. We explain this phenomenon
using a bivariate normal example. Let (X1, X2) have a bivariate normal distribution with
means 0, variances 1, and correlation ρ. Figure 2 depicts the median of max{X1, X2} as a
function of ρ, which is seen to be increasing as ρ decreases from 1 to -1. On the other hand,
the medians of the marginal distributions of X1 and X2 remain zero, irrespective of the value
of ρ. Thus, it seems that gene-gene interaction does have some role to play in this study.
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Figure 2: Bivariate normal example: Plot of the median of max{X1, X2} with
respect to the correlation ρ.

6.3.3. Gene-gene interactions

Unlike Bhattacharya and Bhattacharya (2020), where there is a single gene-gene cor-
relation structure for all the individuals, our current model has provision for subject-specific
gene-gene correlations. Figures 3 and 4 show the typical gene-gene correlations represen-
tative of cases and controls in all males and females respectively. Essentially, the pictures
represent the gene-gene correlation patterns for all the subjects. The color intensities cor-
respond to the absolute values of the correlations. Although the correlations are small in
all the subjects, the tests of hypotheses reveal some interesting structures. Figures 5 and
6 represent the all possible interacting patterns found in the study. Panel (a) of Figure 5
represents 9 male cases where no gene-gene interaction is significant. Panel (b) shows the
genetic interaction pattern in some male cases where AP006216.10 and C6orf106, interact
with all the other genes. Panel (c) shows the results of significance tests of gene-gene inter-
actions for some male cases, for whom only AP006216.10 interacts with all the other genes
in the study. A representative interaction pattern for the male controls shown in panel (d),
indicates that only C6orf106 or only AP006216.10 interacts with every gene, but in a few
subjects both AP006216.10 and C6orf106 interact with all the genes.

Even for the females, the two genes, AP006216.10 and C6orf106, play significant roles
in gene-gene interactions. Indeed, in our data, unlike the 9 male cases, there is no female for
whom all gene-gene interactions are insignificant. The relevant representative plots for the
females, given by Figure 6, shows that for all the female cases, only AP006216.10 interacts
with the other genes. For the female controls, either only AP006216.10 or only C6orf106
interacts with the other genes, or both AP006216.10 and C6orf106 interact significantly
with the other genes included in the study.

The messages gained from our analysis seem to be somewhat counter-intuitive but
perhaps quite insightful. Our tests indicate that the genes have insignificant marginal effect.
Thus, some external or non-genetic factors might have some significant role to play. But
for most of the subjects, at least one of the genes AP006216.10 and C6orf106 interact
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 0.00

 0.25

 0.50

 0.75

 1.00

(b) Male control.

Figure 3: Typical median gene-gene posterior correlation plot for male cases and
male control.

with every other gene. The subjects, for whom no significant genetic interactions involving
AP006216.10 and C6orf106 were detected, turned out to be male cases, indicating that the
lack of genetic interaction in these males failed to get them any preventive measure against
MI. On the other hand, the interactions of the genes AP006216.10 and C6orf106 with all
the genes seemed to reduce the risk of the disease for the other subjects. Thus, in this study,
the gene-gene interactions seem to have a beneficial effect on the subjects. It also seems
that only a small proportion of males are prone to the risk of having no beneficial gene-gene
interactions.

Note that our results are broadly consistent with those obtained by Bhattacharya
and Bhattacharya (2020) but are more precise and informative. Indeed, they also noted
relatively small impact of the individual genes and small gene-gene correlations. Our current
ideas and analyses also support their conclusion that external factors (in particular, sex) are
perhaps playing a bigger role in explaining case-control with respect to MI. We recall (see
Bhattacharya and Bhattacharya (2020)) that with respect to the data that we used, the
empirical conditional probability of a male given case is about 0.38, and that of a male given
control is about 0.50, so that females seem to be more at risk, given our data. The inherent
coherence of the Bayesian paradigm upholds the sex factor by attaching little importance to
the individual genes. However, in contrast with Bhattacharya and Bhattacharya (2020) who
found no interacting genes, here it turns out that the genes AP006216.10 and C6orf106 in
interaction with other genes generally lower the risk of the individuals with respect to MI.
Importantly, each of the few males having no such interactions turned out to be a case. This
seems to be roughly in accordance with the popular belief that males are more susceptible
to MI than females. Our Bayesian model coherently weaves together the prior and the data
and brings out this information in spite of the data-driven information that females are more
prone to MI than males. We also note that Lucas et al. (2012), who analyzed the same MI
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(a) Female case.
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(b) Female control.

Figure 4: Typical median gene-gene posterior correlation plot for female cases
and female controls.

dataset using logistic regression, reached the conclusion that there is no significant gene-gene
interaction. Thus, their result completely supports that of Bhattacharya and Bhattacharya
(2020) and are also very much in keeping with our current results.

6.3.4. Posteriors of the number of sub-populations

The posterior distributions of the number of sub-populations for the males and females
turned out to be quite similar, irrespective of case and control, with the mode at 3 and 4
components receiving the next highest probability. Thus, the 4 sub-populations, irrespective
of sex, are well-supported by our model, showing that these can not be further sub-divided
genetically. This is not unexpected, since the roles of the individual genes are not significant
in our study. Our result broadly agrees with Bhattacharya and Bhattacharya (2020) who
obtained for different genes, the modes at 5 components, with 4 components receiving the
next highest posterior mass.

7. Summary and conclusion

In this paper, we have proposed a novel Bayesian nonparametric gene-gene and gene-
environment interaction model based on hierarchies of Dirichlet processes. This model is a
significant improvement over that of Bhattacharya and Bhattacharya (2020) in the sense of
much clear interpretability and accounting for subject-specific gene-gene interactions. More-
over, the interactions arise as natural by-products of our nonparametric structure based
on HDP, and are not based on matrix normal distributions, as in Bhattacharya and Bhat-
tacharya (2018) and Bhattacharya and Bhattacharya (2020), and hence, are more realistic.
We propose a novel parallel MCMC algorithm to implement our model, that combines pow-
erful technology with conditionally independent structures inherent within our HDP based
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Figure 5: Presence/absence of gene-gene interactions for typical male cases and
controls: Blue denotes presence and white represents absence of gene-gene in-
teraction.
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(b) Female control.
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Figure 6: Presence/absence of gene-gene interactions for typical female cases
and controls: Blue denotes presence and white represents absence of gene-gene
interaction.
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model and efficient TMCMC methods. The Bayesian tests of hypotheses that we employ in
this paper are are appropriately modified versions of those proposed in Bhattacharya and
Bhattacharya (2020).

Applications of our ideas to biologically realistic datasets generated under 5 differ-
ent set-ups characterized by different combinations and structures associated with gene-gene
and gene-environment interactions demonstrated encouraging performance of our model and
methods. Our analysis of the MI dataset showed strong impact of the sex variable, which is
consistent with the results of Bhattacharya and Bhattacharya (2020). Our tests showed no
effect of the individual genes, which is also in keeping with Bhattacharya and Bhattacharya
(2020) who obtained relatively weak marginal effects. But most interestingly, even though
we obtained very weak gene-gene correlations in accordance with Bhattacharya and Bhat-
tacharya (2020) and Lucas et al. (2012), our tests on gene-gene interaction showed that two
genes, AP006216.10 and C6orf106, generally interact with all the other genes in a benefi-
cial way so as to fight the disease. Moreover, the only situations where all the gene-gene
interactions turned out to be insignificant, were the male cases, showing that the usual be-
lief that males are more prone to heart attack than females may hold some value from this
perspective.

Although many standard methods are commonly used in GWAS to identify the ge-
netic and the environmental effects, there are several reasons that point towards the fact
that our approach is not comparable with the existing methods.

So far, due to insufficient computational resources, we are compelled to restrict focus
on a relatively small portion of the data. For improving our computing infrastructure, we
have already taken the initiative of procuring supercomputing facilities from the Govt. of
India, a project led, on behalf of Indian Statistical Institute, by the second author of this
paper. With such a facility, we will be able to analyze the entire MI dataset with much ease.
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ANNEXURE

A-1. An MCMC method using Gibbs sampling and TMCMC

A-1.1. Full conditionals

Full conditional of Hk

First observe that for k = 0, 1, the full conditional of Hk is given by

[Hk| · · · ] ∼ DP

(
αH + n·k,

αHH̃ +∑S
s=1 nskδηs

αH + n·k

)
, (34)

where nsk = #{r ∈ {1, . . . , Rk} : ξrk = ηs} and n·k = ∑S
s=1 nsk.

Full conditional of G0,jk

Similarly, the full conditional of G0,jk is given, for j = 1, . . . , J and k = 0, 1, by

[G0,jk| · · · ] ∼ DP

(
αG0,k + n·jk,

αG0,kHk +∑Rk
l=1 nljkδξlk

αG0,k + n·jk

)
, (35)

where nljk = #{(t, i) ∈ {1, . . . , τijk} × {1, . . . , Nk} : ϕtijk = ξlk} and n·jk = ∑Rk
l=1 nljk.

The full conditionals of Hk and G0,jk given by (34) and (35) indicate generating
the infinite-dimensional random probability measures using Sethuraman’s characterization
of Dirichlet processes (see Sethuraman (1994)). However, in our case, forming the infinite-
dimensional Sethuraman’s construction is not necessary; instead, it will be required to simu-
late from the random probability measures having distributions (34) and (35). Such simula-
tions are possible using the retrospective method (see Papaspiliopoulos and Roberts (2008))
which avoids dealing with infinitely many objects.

Full conditional of pmijk

The associated Polya urn distribution of pmijk given PMijk\{pmijk}, derived by marginalizing
over Gijk, is the following:

[pmijk|PMijk\{pmijk}] = αG,ik

αG,ik + M − 1G0,jk (pmijk) + 1
αG,ik + M − 1

M∑
m2̸=m=1

δpm2ijk
(pmijk)

(36)

where Mtijk = #{m2 ∈ {1, . . . , M}\{m} : pm2ijk = ϕtijk} and δϕtijk
(·) denotes point mass

at ϕtijk.

Given zijk = m, on combining the Polya urn distribution with the likelihood∏L
r=1 f(xijkr|pmijkr) we obtain the following full conditional of pmijk:

[pmijk| · · · ] ∝ αG,ik

L∏
r=1

f(xijkr|pmijkr)G0,jk (pmijk) +
τijk∑
t=1

Mtijk

L∏
r=1

f(xijkr|ϕtijkr)δϕtijk
(pmijk) .

(37)
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Note that in (37), G0,jk, drawn from (35), is not available in closed form and only admits
the form dictated by Sethuraman’s construction, given, almost surely, by

G0,jk =
∞∑

l=1
p̃lδξ̃ljk

, (38)

where p̃1 = V1, p̃l = Vl
∏

s<l(1 − Vs), for l ≥ 2, with V1, V2, . . .
iid∼ Beta (αG0,k + n·jk, 1), and

for l = 1, 2, . . ., ξ̃ljk
iid∼ αG0,kHk+

∑Rk
l=1 nljkδξlk

αG0,k+n·jk
.

In (37), the posterior proportional to ∏L
r=1 f(xijkr|pmijkr)G0,jk (pmijk), which we de-

note by [G0,jk|Xijk], is the discrete distribution that puts mass Cijkp̃t
∏L

r=1 f(xijkr|ξ̃tjkr) to
the point ξ̃tjk, for t = 1, 2, . . ., where

Cijk =
( ∞∑

t=1
p̃t

L∏
r=1

f(xijkr|ξ̃tjkr)
)−1

(39)

is the normalizing constant. Combining these with (37) it follows that

[pmijk| · · · ] = αG,ikC̄C−1
ijk [G0,jk (pmijk) |Xijk] + C̄

τijk∑
t=1

Mtijk

L∏
r=1

f(xijkr|ϕtijkr)δϕtijk
(pmijk) ,

(40)

where

C̄ =
αG,ikC−1

jk +
τijk∑
t=1

Mtijk

Lj∏
r=1

f(xijkr|ϕtijkr)
−1

is the normalizing constant of [pmijk| · · · ].

A-1.2. Retrospective sampling methods

Retrospective method for simulating from [pmijk| · · · ]
From (40) it follows that, to draw from [pmijk| · · · ], it is required to simulate from [G0,jk (pmijk)
|Xijk] with probability proportional to C−1

ijk . However, since Cijk involves an infinite series,
its calculation is infeasible. The same issue also prevents the traditional simulation methods
to draw from the discrete distribution [G0,jk|Xijk]. In this case, the retrospective sampling
method proposed in Section 3.5 of Papaspiliopoulos and Roberts (2008) is the appropriate
method for our purpose. We first briefly discuss the role of such method in simulating from
[G0,jk|Xijk], and then argue that a by-product of the method can be used to estimate Cijk

arbitrarily accurately.

Retrospective method to draw from [G0,jk (pmijk) |Xijk]
Note that the retrospective method requires ∏L

r=1 f(xijkr|ϕtijkr) in our case to be uniformly
bounded for all ϕtijk, which holds in our case, as f(xijkr|ϕtjkr) represents the Bernoulli
distribution, which is bounded above by 1. We briefly describe the method as follows. Let

cℓ(K) =
K∑

a=1
p̃a

L∏
r=1

f(xijkr|ξ̃ajkr) (41)
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and
cu(K) = cℓ(K) + (1 −

K∑
a=1

p̃a). (42)

Let us also define p̆ℓ,a(K) = p̃a
∏L

r=1 f(xijkr|ξ̃ajkr)/cℓ(K) and p̆u,a(K) = p̃a
∏L

r=1 f(xijkr|ξ̃ajkr)
/cu(K). To simulate from [G0,jk|Xijk] we first generate U ∼ Uniform(0, 1), and given U ,
choose ξ̃tjk when

t−1∑
a=1

p̆u,a(K) ≤ U ≤
t∑

a=1
p̆ℓ,a(K). (43)

In fact, K needs to be increased and p̃t and ∏L
r=1 f(xijkr|ξ̃ajkr) simulated retrospectively, till

(43) is satisfied for some t ≤ K.

Retrospective method for estimating Cijk arbitrarily accurately

By choosing K to be large enough, the quantities cℓ(K) and cu(K) given by (41)
and (42), respectively, can be made arbitrarily close. In other words, for any ϵ > 0, there
exists K0 ≥ 1 such that |cℓ(K) − cu(K)| < ϵ, for K ≥ K0. Thus, for any such K ≥ K0,
one may approximate Cijk with [cℓ(K)]−1. In practice, it is only required to simulate Ũ ∼
Uniform(0, 1) and simulate from [G0,jk (pmijk) |Xijk] if Ũ ≤ C̄C−1

ijk . For sufficiently small ϵ

and for finite number of simulations, it will generally hold that Ũ ≤ C̄C−1
ijk if and only if

Ũ ≤ C̄ϵcℓ(K), for K ≥ K0, where

C̄ϵ =
[
c−1

ℓ (K) +
τijk∑
t=1

Mtijk

L∏
r=1

f(xijkr|ϕtijkr)
]−1

.

Retrospective method to simulate from αG0,kHk+
∑Rk

l=1 nljkδξlk

αG0,k+n·jk

The retrospective simulation method requires simulation of ξ̃ljk
iid∼ αG0,kHk+

∑Rk
l=1 nljkδξlk

αG0,k+n·jk
, for

l = 1, 2, . . .. This requires simulation from Hk with probability proportional to αG0,k. For
this, we first simulate U ∼ Uniform(0, 1). We then simulate a realization from Hk after
generating Hk from the Dirichlet process given by (34). Note that we do not have to
generate the entire random probability measure Hk for this; we only need to generate as
many realizations η∗

lk’s from αHH̃+
∑S

s=1 nskδηs

αH+n·k
and as many p∗

lk = V ∗
lk

∏
s<l(1−V ∗

lk); l = 1, 2 . . .,
with p∗

1k = V ∗
1k, with V ∗

lk
iid∼ Beta (αH + n·k, 1), as required to satisfy ∑t−1

l=1 p∗
lk < U ≤ ∑t

l=1 p∗
lk,

for some t ≥ 1 (with p∗
0 = 0). We then report ξ̃1jk = η∗

tk with probability proportional to
αG0,k and ξ̃1jk = ξl̃jk with probability proportional to nl̃jk, for l̃ ∈ {1, . . . , Rk}. We repeat
this procedure for generating ξljk; l ≥ 2, by sequentially augmenting the existing simulations
of η∗

lk’s and p∗
lk’s with new draws from H̃ and Beta (αH + n·k, 1), if needed. Indeed, note

that for augmentation of p∗
lk’s, only extra V ∗

lk’s need to be generated from Beta (αH + n·k, 1).

A-1.3. Updating the allocation and proportion variables

Updating procedure for zijk and pmijk
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The full conditional of zijk is given by the following:

[zijk = m| · · · ] ∝ πmijk

Lj∏
r=1

f (xijkr|pmijkr) ; (44)

for m = 1, . . . , M .

Recall that we have devised a method of simulating from the full conditional of pmijk

given the data and the remaining variables. For our convenience, we re-formulate the full
conditional in terms of the dishes ϕtjk and the indicators of the dishes, which we denote by
tmijk, where tmijk = t if and only if pmijk = ϕtijk; t = 1, . . . , τijk.

Now let τ
(m)
ijk denote the number of elements in PMijk\ {pmijk} that arose from

[G0,jk|Xijk]. Also let ϕm∗
tijk =

{
ϕm∗

tijkr; r = 1, . . . , L
}

; t = 1, . . . , τ
(m)
ijk denote the parameter

vectors arising from [G0,jk|Xijk]. Further, let ϕm∗
tijk occur Mmtijk times.

Then we update tmijk using Gibbs steps, where the full conditional distribution of
tmijk is given by

[tmijk = t| · · · ] ∝

 q∗
t,mijk if t = 1, . . . , τ

(m)
ijk ;

q0,mijk if t = τ
(m)
ijk + 1,

(45)

where
q0,mijk = αG,ikC−1

ijk ; (46)

q∗
t,mijk = Mmtijk

Lj∏
r=1

{
ϕm∗

tijkr

}n1mijkr
{
1 − ϕm∗

tijkr

}n2mijkr
. (47)

In (46) and (47), n1mijkr and n2mijkr denote the number of “a” and “A” alleles, respectively,
at the r-th locus of the j-th gene of the i-th individual, associated with the m-th mixture
component. In other words, n1mijkr = x1

ijkr + x2
ijkr and n2mijkr = 2 −

(
x1

ijkr + x2
ijkr

)
.

Let n∗
1tijkr = ∑

m:tmijk=t n1mijkr and n∗
2tijkr = ∑

m:tmijk=t n2mijkr. Then, for t =
1, . . . , τijk; r = 1, . . . , Lj; j = 1, . . . , J and k = 0, 1, update ϕ∗

tijk by simulating from its
full conditional distribution, given by

[ϕ∗
tijk| · · · ] ∼ [G0,jk|Xijk]. (48)

The above simulation from [ϕ∗
tijk| · · · ] is to be carried out by the retrospective method as

discussed above.

A-1.4. Updating the missing data

Updating Ỹijk

From (4) it follows that

[Ỹijk|zijk] =
L∏

r=Lj+1
f
(
yijkr|pzijkijkr

)
. (49)

Hence, given the other unknowns, Ỹijk can be updated by simply simulating from the
Bernoulli distributions given by (49).
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A-1.5. Relevant factor aggregations for updating the fixed-dimensional param-
eters

Relevant factors for updating µG and βG

Let

LG(µG, βG) =
1∏

k=0

Nk∏
i=1

J∏
j=1

M∏
m=2

[pmijk|plijk; l < m],

where [pmijk|plijk; l < m] is given by (15). Let πG(µG, βG) denote the prior on (µG, βG). Note
that πG(µG, βG)LG(µG, βG) is the product of the only factors in the joint model consisting
of µG and βG.

Relevant factors for updating µG0 and βG0

Now let

LG0(µG0 , βG0) ==
1∏

k=0

Nk∏
i=1

J∏
j=1

τijk∏
t=2

[ϕtijk|ϕlijk; l < t],

where [ϕtijk|ϕlijk; l < t] is given by (16).

Let πG0(µG0 , βG0) denote the prior on (µG0 , βG0). Then πG0(µG0 , βG0)LG0(µG0 , βG0)
is the functional form associated with µG0 and βG0 .

Relevant factors for updating µH and βH

Finally, we let

LH(µH , βH) =
1∏

k=0

Rk∏
s=2

[ξsk|ξlk; l < s],

where [ξsk|ξlk; l < s] is given y (17).

Let πH(µH , βH) be the prior on (µH , βH). Then πH(µH , βH)LH(µH , βH) is the func-
tional form to be considered for updating µH and βH .

A-1.6. Mixture of additive and multiplicative TMCMC for updating the fixed-
dimensional parameters in a single block

We shall update all the parameters µG, βG, µG0 , βG0 , µH and βH using a mixture
of additive and multiplicative TMCMC, where all the aforementioned parameters are given
either the additive move or the multiplicative move with equal probability, and where the
acceptance ratio will be calculated by evaluating the functional form

πG(µG, βG)LG(µG, βG) × πG0(µG0 , βG0)LG0(µG0 , βG0) × πH(µH , βH)LH(µH , βH)

at the numerator and the denominator corresponding to the proposed and the current values
of µG, βG, µG0 , βG0 , µH and βH , with all other unknowns held fixed at their current values,
multiplied by an appropriate Jacobian whenever the multiplicative move is chosen. For
details regarding mixture of additive and multiplicative TMCMC, see Dey and Bhattacharya
(2017).
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A-2. A parallel algorithm for implementing our MCMC procedure

Recall that the mixtures associated with gene j ∈ {1, . . . , J}, and individual i ∈
{1, . . . , Nk} and case-control status k ∈ {0, 1}, are conditionally independent of each other,
given the interaction parameters. This allows us to update the mixture components in
separate parallel processors, conditionally on the interaction parameters. Once the mixture
components are updated, we update the interaction parameters using a specialized form of
TMCMC, in a single processor. Furthermore, the parameters of the HDP are also amenable
to efficient parallelization. The details are as follows.

(1) (a) In processes numbered 0 and 1, simultaneously obtain the set of distinct elements
ΞRk,k; k = 0, 1, from {ϕtijk; t = 1, . . . , τijk; i = 1, . . . , Nk; j = 1, . . . , J}; k = 0, 1.

(b) Communicate ΞRk,k; k = 0, 1, to all the processes.

(2) (a) In process 0, obtain the set of distinct elements ζS from {ΞRk,k; k = 0, 1}.
(b) Communicate ζS to all the processes.

(3) In processes numbered 0 and 1, do the following in parallel for k = 0, 1:

(a) Simulate, following the retrospective method. η∗
lk

iid∼ αHH̃+
∑S

s=1 nskδηs

αH+n·k
; l = 1, 2,

. . . , L, for sufficiently large L.
(b) Communicate the simulated values to all the processes.

(3) Split {(j, k) : j = 1, . . . , J ; k = 0, 1} in the available parallel processes.

(a) For each (j, k), simulate, following the retrospective method.
ξ̃ljk

iid∼ αG0,kHk+
∑Rk

l=1 nljkδξlk

αG0,k+n·jk
; l = 1, 2, . . . , L.

(b) Communicate the simulated values to all the processes.

(4) (a) Split the triplets {(i, j, k) : i = 1, . . . , Nk; j = 1, . . . , J ; k = 0, 1} in the available
parallel processes sequentially into

T1 = {(i, j, 0) : i = 1, . . . , N0; j = 1, . . . , J}

and
T2 = {(i, j, 1) : i = 1, . . . , N1; j = 1, . . . , J} .

(b) Then parallelise updating of the mixtures associated with T1, followed by those
of T2.

(c) If, for any (i, j, k), retrospective simulation from [G0,jk|Xijk] requires more than
L simulations of ξ̃ljk in step (3) (a), then increase L to L∗, and
(i) For k = 0, 1, augment the simulations of {η∗

lk; l = 1, . . . , L} with new simula-
tions {η∗

lk; l = L + 1, . . . , L∗}.
(ii) For j = 1, . . . , J and for k = 0, 1, augment the simulations of

{
ξ̃ljk; l = 1, . . . , L

}
with new simulations

{
ξ̃ljk; l = L + 1, . . . , L∗

}
.
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(iii) Repeat (4) (a) and (4) (b).

(5) During each MCMC iteration, for each (i, j, k) in each available parallel processor,
update the allocation variables zijk, the proportions pmijk; m = 1, . . . , M , and the
missing data Ỹijk, using the methods proposed in Sections A-1.3 and A-1.4.

(6) Communicate the results of updating in (4) and (5) to all the processes.

(7) (a) During each MCMC iteration, update the parameters µG, βG, µG0 , βG0 , µH and
βH in a single block using a mixture of additive and multiplicative TMCMC, as
proposed in Section A-1.6, in process number 0.

(b) Communicate the updated results to all the processes.

A-3. Simulation studies

For simulation studies, we first generate realistic biological data for stratified popu-
lation with known gene-environment interaction from the GENS2 software of Pinelli et al.
(2012). To this data, we then apply our model and methodologies in an effort to detect
gene-environment interaction effects that are present in the data. We consider simulation
studies in 5 different true model set-ups: (a) presence of gene-gene and gene-environment
interaction, (b) absence of genetic or gene-environmental interaction effect, (c) absence of
genetic and gene-gene interaction effects but presence of environmental effect, (d) presence
of genetic and gene-gene interaction effects but absence of environmental effect, and (e)
independent and additive genetic and environmental effects.

As we demonstrate, our model and methodologies successfully identify the effects
of the individual genes, gene-gene and gene-environment interactions, and the number of
sub-populations. In all our applications, we set M = 30, ν1 = ν2 = 1, so that H̃ is
the uniform distribution on [0, 1]. We set αG,ik = 0.1 × exp (100 + µG + βGEik), αG0,k =
0.1 × exp

(
100 + µG0 + βG0Ēk

)
and αH = 0.1 × exp

(
100 + µH + βH

¯̄E
)
, where we assumed

µG, µG0 , µH
iid∼ U(0, 1) and βG, βG0 , βH

iid∼ U(−1, 1). This structure ensured adequate number
of sub-populations and satisfactory mixing of MCMC.

A-3.1.First simulation study: presence of gene-gene and gene-environment in-
teraction

A-3.1.1.Data description

As in Bhattacharya and Bhattacharya (2020) we consider two genetic factors as al-
lowed by GENS2 and simulated 5 data sets with gene-gene and gene-environment interaction
with a one-dimensional environmental variable, associated with 5 sub-populations. One of
the genes consists of 1084 SNPs and another has 1206 SNPs, with one disease pre-disposing
locus (DPL) at each gene. There are 113 individuals in each of the 5 data sets, from which
we selected a total of 100 individuals without replacement with probabilities assigned to
the 5 data sets being (0.1, 0.4, 0.2, 0.15, 0.15). Our final dataset consists of 46 cases and 54
controls. Since, in our case, the environmental variable is one-dimensional, d = 1.



356
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

DURBA BHATTACHARYA AND SOURABH BHATTACHARYA [Vol. 22, No. 3

A-3.1.2.Model implementation

We implemented our parallel MCMC algorithm on 50 cores in a 64-bit VMware with
64-bit physical cores, each running at 2793.269 MHz. Our code is written in C in conjunction
with the Message Passing Interface (MPI) protocol for parallelisation.

The total time taken to implement 30, 000 MCMC iterations, where the first 10, 000
are discarded as burn-in, is approximately 20 hours. We assessed convergence informally
with trace plots, which indicated adequate mixing properties of our algorithm.

A-3.1.3.Specifications of the thresholds ε’s using null distributions

Following the method outlined in Section 4.2.4 and setting M to be 30, we obtain
εd∗ = 0.200, εd̂1

= 0.167, εd̂2
= 0.167, εd∗

E
= 0.250, εd∗

E,1
= 0.185, εd∗

E,2
= 0.173, εβG

= 0.874,
εβG0

= 0.128, εβH
= 0.219.

A-3.1.4.Results of fitting our model

The posterior probabilities P (d∗ < εd∗ |Data), P
(
d̂1 < εd̂1

|Data
)

and P
(
d̂2 < εd̂2

|
Data) empirically obtained from 20, 000 MCMC samples, turned out to be 0.378, 0.317
and 0.324, respectively. Hence, H0,d∗ , H0,d̂1

and H0,d̂2
are rejected, suggesting the influence

of significant genetic effects in the case-control study.

However, P
(
d∗

E < εd∗
E
|Data

)
, P

(
d̂E,1 < εd̂E,1

|Data
)

and P
(
d̂E,2 < εd̂E,2

|Data
)

are
given, approximately, by 0.558, 0.561 and 0.550, respectively, which seem to contradict
the results of the clustering based hypothesis tests. This can be explained as follows. Since
G0,jk are discrete, the parameters pmijk, even if generated from G0,jk, coincide with positive
probability, so that the effective dimensionalities of logit

(
P̄Mi0jk=0

)
and logit

(
P̄Mi1jk=1

)
are

drastically reduced, so that the Euclidean distance between these two vectors is substan-
tially small. As such, the Euclidean distance fails to reject the null even if it is false. As
noted in Bhattacharya and Bhattacharya (2020), even the clustering metric in this scenario
is not completely satisfactory since this involves clustering distance between two empirically
obtained central clusterings which may not be very accurate unless the sample sizes for case
and control are very large. However, compared to the Euclidean distance, the clustering
metric turns out to be far more reliable.

To check the influence of the environmental variable on the genes we compute the
posterior probabilities P (|βG| < εβG

|Data), P
(
|βG0| < εβG0

|Data
)

and P (|βH | < εβH
|Data).

The probabilities turned out to be 0.544, 0.550 and 0.191, respectively, showing that βH is
very significant. That is, the environmental variable has a significant overall effect on the
genes.

The posterior probabilities of no gene-gene interactions for the controls and cases,
showed the prominence of several gene-gene interactions in both control and case groups. As
to be expected, in the case group, more instances of gene-gene interactions turned out to be
significant compared to the control group.

Also, encouragingly, The posteriors of the number of sub-populations gave high prob-
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(a) Index plot for the first gene
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(b) Index plot for the second gene.

Figure A-1: Presence of gene-gene and gene-environment interaction: Plots of
the Euclidean distances

{
dr

j

(
logit

(
pr

i0jk=0

)
, logit

(
pr

i1jk=1

))
; r = 1, . . . , Lj

}
against

the indices of the loci, for j = 1 (panel (a)) and j = 2 (panel (b)).

abilities to 5, the true number of sub-populations.

A-3.1.5.Detection of DPL

The correct positions of the DPL, provided by GENS2, are rs13266634 and rs7903146,
for the first and second gene respectively. Due to the LD effects implied by the highly cor-
related structure of our current HDP based model, the actual DPL are difficult to locate.
Notably, our model is considerably more structured than those of Bhattacharya and Bhat-
tacharya (2018) and Bhattacharya and Bhattacharya (2020), and any inappropriate depen-
dence structure would render the task of DPL finding far more difficult than our previous
models. Nevertheless, we demonstrate that our HDP model can detect DPLs with more pre-
cision compared to our previous matrix-normal-inverse-Wishart model for gene-environment
interactions.

Following Bhattacharya and Bhattacharya (2018) and Bhattacharya and Bhattacharya
(2020), and writing pr

ijk = {pmijkr : m = 1, . . . , M}, we declare the r-th locus of the j-th gene
as disease pre-disposing if, for the r-th locus, the Euclidean distance
dr

j

(
logit

(
pr

i0jk=0

)
, logit

(
pr

i1jk=1

))
, between logit

(
pr

i0jk=0

)
and logit

(
pr

i1jk=1

)
, is significantly

larger than dr2
j

(
pr2

i0jk=0, pr2
i1jk=1

)
, for r2 ̸= r. We adopt the graphical method as in our pre-

vious works. The red, horizontal lines in the panels of Figure A-1 represent the cut-off
value such that the points above the horizontal line are those with the highest 2% Euclidean
distances. The actual DPLs of the two genes, as well as their nearest neighbours with Eu-
clidean distances on or above the red, horizontal lines, are shown in the figures. That even
such small sets of SNPs with highest 2% Euclidean distances consist of close neighbours of
the true DPLs, is quite encouraging. Observe that the DPL detection is more precise for
the second gene in the sense that the closest neighbour of the actual DPL above the red,
horizontal line is closer to the true DPL than for the first gene.
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The above results on DPL detection is also a significant improvement over Bhat-
tacharya and Bhattacharya (2020) where highest 10% Euclidean distances were considered,
suggesting that our current HDP based model is more appropriate compared to our previous
matrix-normal-inverse-Wishart model for gene-environment interaction.

A-3.2.Second simulation study: no genetic or environmental effect

Here we use the same case-control genotype data set as used by Bhattacharya and
Bhattacharya (2018) in their second simulation study where genetic effects are absent, con-
sisting of 49 cases and 51 controls and 5 sub-populations with the mixing proportions
(0.1, 0.4, 0.2, 0.15, 0.15). We use the same environmental data set generated in our first
simulation study described in Section A-3.1, which is unrelated to this genotype data.

Here we obtain P (d∗ < εd∗|Data) ≈ 0.407. Although this does not cross the 0.5
benchmark, there is significant evidence in favour of the null, and falling short of 0.5 can
be attributed to the slight deficiency of the distance between the two approximate central
clusterings associated with case and control, as already discussed in the context of the first
simulation study.

Also, in this study, P (|βG| < εβG
|Data), P

(
|βG0 | < εβG0

|Data
)

and P (|βH | < εβH
|

Data) are given by 0.549, 0.550 and 0.649, respectively, suggesting insignificance of the
effect of the environmental variable on gene-gene interaction. As noted in Bhattacharya
and Bhattacharya (2020), however, it is not straightforward to test whether or not the
environment is responsible for the case-control status. This is because we have modeled
the genotype data conditionally on case-control instead of modeling the case-control status
conditionally on the environmental variable. Bhattacharya and Bhattacharya (2020) use
significance testing in a simple logistic regression framework to show insignificance of the
environmental variable. As before, our model assigned high posterior probability to 5 sub-
populations. Note that since there is no genetic effect in this study, the question of detecting
DPLs does not arise here.

A-3.3.Third simulation study: absence of genetic and gene-gene interaction ef-
fects but presence of environmental effect

In this study we consider a case-control genotype data set simulated from GENS2
where case-control status depends only upon the environmental data. The number of cases
here is 47 and the number of controls is 53. This is the same case-control genotype data set
as used by Bhattacharya and Bhattacharya (2020) in their third simulation study.

In this case, we find that P (d∗ < εd∗ |Data) ≈ 0.400, which provides reasonable ev-
idence in favour of the null, even though the 0.5 benchmark is not crossed. Moreover,
P (|βG| < εβG

|Data) ≈ 0.536, P
(
|βG0| < εβG0

|Data
)

≈ 0.518 and P (|βH | < εβH
|Data) ≈

0.504, suggesting that the environmental variable does not affect the genetic structure.
Bhattacharya and Bhattacharya (2020) show by means AIC, in the context of simple lo-
gistic regression, that the best model consists of the marginal effects of the second gene
and the environment. In conjunction with our HDP-based model which produces reasonable
evidence in favour of accepting the hypothesis of no genetic effect, it may be possible to
conclude that the environmental variable is responsible for the case-control status.
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(a) Index plot for the first gene
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(b) Index plot for the second gene.

Figure A-2: Presence of genetic and gene-gene interaction effects
but absence of environmental effect: Plots of the Euclidean distances{
dr

j

(
logit

(
pr

i0jk=0

)
, logit

(
pr

i1jk=1

))
; r = 1, . . . , Lj

}
against the indices of the loci, for

j = 1 (panel (a)) and j = 2 (panel (b)).

As before, 5 subpopulations get significant weight by our posterior distribution, and
again, the question of DPL detection is irrelevant here since there is no genetic effect.

A-3.4.Fourth simulation study: presence of genetic and gene-gene interaction
effects but absence of environmental effect

Here we use the same genotype data set as used by Bhattacharya and Bhattacharya
(2018) in their first simulation study associated with genetic and gene-gene interaction effects,
consisting of 41 cases and 59 controls and 5 sub-populations with the mixing proportions
(0.1, 0.4, 0.2, 0.15, 0.15). We use the same environmental data set generated in our first
simulation study described in Section A-3.1, which is unrelated to this case-control genotype
data.

Here we obtain P (|βG| < εβG
|Data) ≈ 0.549, P

(
|βG0| < εβG0

|Data
)

≈ 0.542 and
P (|βH | < εβH

|Data) ≈ 0.552, correctly suggesting insignificance of the environmental vari-
able with respect to its effect on the genetic structure. Using logistic regression, Bhat-
tacharya and Bhattacharya (2020) conclude that the environmental variable has no role
to play in the case-control status. Furthermore, we obtain P (d∗ < εd∗|Data) ≈ 0.390,
P
(
d̂1 < εd̂1

|Data
)

≈ 0.336 P
(
d̂2 < εd̂2

|Data
)

≈ 0.324. so that importance of genes is
correctly indicated by our tests. Interestingly, study of the posterior probabilities of no
gene-gene interactions for controls and cases showed no gene-gene interaction in the control
group and only two (marginal) instances of gene-gene interaction among the cases.

Figure A-2 shows the plots of Euclidean distances between cases and controls for the
loci of the two genes. In this case, Gene-1 has been located quite precisely, and for Gene-2 the
Euclidean distance for even the true DPL is very close to the red, horizontal line, indicating
encouraging performance.
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(a) Index plot for the first gene
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(b) Index plot for the second gene.

Figure A-3: Independent and additive genetic and environmental effects: Plots
of the Euclidean distances

{
dr

j

(
logit

(
pr

i0jk=0

)
, logit

(
pr

i1jk=1

))
; r = 1, . . . , Lj

}
against

the indices of the loci, for j = 1 (panel (a)) and j = 2 (panel (b)).

A-3.5.Fifth simulation study: independent and additive genetic and environmen-
tal effects

As in Bhattacharya and Bhattacharya (2020), we consider the situation where the
genetic and environmental effects are independent of each other and additive; the data
consists of 57 cases and 43 controls.

Note that, as in Bhattacharya and Bhattacharya (2020), in our current HDP-based
Bayesian model also there is no provision for additivity of genetic and environmental ef-
fects. As such, it is not expected to capture the true data-generating mechanism accu-
rately. Indeed, here we obtain P (d∗ < εd∗ |Data) ≈ 0.389, P

(
d̂1 < εd̂1

|Data
)

≈ 0.337 and
P
(
d̂2 < εd̂2

|Data
)

≈ 0.331, indicating significance of the genes. However, the test with
d∗

E does not yield overwhelming evidence against the null. Our tests of gene-gene in-
teraction indicated significant interactions for controls and particularly for cases. Also,
P (|βG| < εβG

|Data), P
(
|βG0| < εβG0

|Data
)

and P (|βH | < εβH
|Data) are given, approximately,

by 0.547, 0.550 and 0.367, the last value showing that the environmental variable does affect
gene-gene interaction. The lack of the additivity provision in our model seems to have forced
the gene-environment interaction in this case.

In spite of the lack of additivity of our model the Euclidean distances between cases
and controls for the gene-wise SNPs are not adversely affected, and the actual DPLs are
detected quite accurately; see Figure A-3. This brings forth the generality and usefulness of
our nonparametric dependence structure. As before, 5 sub-populations received significant
posterior probabilities.
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Abstract
Non-probability sampling involves selecting samples from a population in which the

probability of selection is unknown and some population units may have zero selection prob-
abilities. This differentiates it from probability sampling where selection is governed by a
probability model and every population unit has a non-zero chance of being selected. Non-
probability samples usually suffer from selection bias and hence may not represent the target
population accurately. An important problem that arises in this context is the prediction of
responses corresponding to non-sampled units, which should ideally have been sampled. In
this article, we propose three modeling frameworks to address this issue. We use propensity
scores to balance the sampled and non-sampled units and a Bayesian estimation scheme for
parameter inference and prediction. We incorporate a spatial poststratification scheme to
assess the predictive ability of our models on a simulated dataset. In addition, we perform
model selection routines to identify the optimal model having the best predictive ability.

Key words: Beta-Bernoulli; Metropolis Hastings sampler; Non-probability samples; Propen-
sity scores; Spatial poststratification.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

One of the most important aspects of any statistical investigation is the formulation
of a realistic and objective plan for data collection. These data should ideally be derived from
a sample that is a good representation of the target population in the sense that it reflects all
the conspicuous categories of the population adequately. Traditionally, the selection of such
samples is guided by an underlying probabilistic mechanism which ensures that each and
every population unit has a positive probability of being selected. The most well known of
these selection mechanisms is the so called simple random sampling, which has the property
that every sample of size, say n, has the same chance of being selected. This implies that each
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population unit has the same chance of being selected in the final sample. As a result, this
kind of sample is known as a probability sample and the corresponding plan is designated
as a probability sampling plan. Commonly used sampling mechanisms such as stratified,
cluster or systematic sampling (Neyman, 1934) and their combinations are all grounded in
the principle of probability sampling as opposed to non-probability sampling.

However, obtaining a truly parsimonious and representative probability sample is
often prohibitively difficult in a real setting due to various constraints. Even if such a
sampling scheme is implemented, it is a formidable task to obtain the requisite responses
from the selected sample units. In fact, response rates of major surveys have been declining
rapidly, casting doubts on the validity of probability samples as a proper representation of
the population. According to Pew Research Center, the response rates in typical telephone
surveys dropped from 36% in 1997 to only 9% in 2012 (Kohut et al., 2012). Such low response
rates, coupled with the complexity of implementation of probability-based survey designs
raise serious doubts as to the viability of such sampling frameworks in real-life settings.

The above considerations along with an explosion of data being generated through
various channels have led to an upsurge in the usage of non-probability sampling schemes.
These schemes, as the term suggests, does not involve any underlying probabilistic mech-
anism for implementation. As a result, such schemes are convenient to use and hence are
also referred to as convenience sampling schemes. Inferences from such samples are generally
model based. However, as population units “self-select” themselves, the samples so obtained,
often suffer from selection bias. This often results in the sample being non-representative of
the target population in the sense that the sample may fail to incorporate all the relevant
segments of a target population in the correct proportion. For example, in an email survey,
only those who are willing to participate respond, probably having particular demographic
characteristics. As a result, the demographic characteristics of those who do not participate
are under-represented in the sample. Having said that, there is a subtle difference between
selection bias and undercoverage in which certain sections of the population have absolutely
no representation in the sample. In other words, it can be said that undercoverage is an
extreme form of selection bias where a certain section of the population have absolutely zero
chance of being selected in the sample. In this context, we would like to state that the pro-
posed modeling frameworks have been designed to account for selection bias, not necessarily
undercoverage.

In order to explore the applicability of non-probability sampling schemes for sampling
from finite populations, the American Association of Public Opinion Research (AAPOR) con-
stituted two task forces, neither of which favoured their use (Baker et al., 2013). It was also
suggested that inferences about a population drawn from a non-probability sample is valid
subject to the verification of the modeling assumptions underlying the sampling scheme,
a rather difficult proposition. The report also outlined various forms of non-probability
samples such as convenience, snowball, network, mall-intercept and volunteer samples. One
common aspect of all these schemes is the non-probabilistic aspect of sample selection, which
results in biases, as mentioned before. Techniques for controlling biases have also been pro-
posed such as sampling match which involves selecting non-probability sample units such
that their characteristics match those in the population. This leads to the reduction of se-
lection bias specially when the distribution of covariates used for matching are similar for
the non-probability sample and the target population. A modified matching principle can
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be adopted for observational studies in which the non-probability sample units are matched
with those in a probability sample. Each unit in the non-probability sample can then be
assigned a weight as a form of quantification of its degree of matching with the probabil-
ity sample (Rubin, 1979). Rosenbaum and Rubin (1983) illustrated the use of propensity
scores in the context of observational studies when the distribution of covariates is different
in the treatment and control groups. This technique can be adopted for non-probability
sampling as well, since the covariate characteristics may differ between the sampled and
non-sampled groups. An extensive overview of matching procedures for causal inference and
their applicability in diverse fields have been provided by Stuart (2010).

Smith (1983) introduced the notion of non-probability sampling and discussed gen-
eral approaches for making inference from such samples. The basic formulation outlined
therein is to model the joint distribution of the response observations and the selection
probabilities of the population units. This formulation resembles the works of Rubin (1976),
Little (1982) and Little and Rubin (2002) on selection mechanisms and survey responses.
Smith (1983) also introduced the concept of poststratification and discussed its application
on quota sampling. In the context of the above framework, Elliott and Valliant (2017)
proposed two specific approaches of inference from non-probability samples, namely quasi-
randomization and super-population. The underlying idea for these two approaches is to
decompose the aforementioned joint distribution into the product of a conditional distribu-
tion of the response vector given that of the selection probabilities and the distribution of
the response vector given the covariates. Quasi-randomization involves modelling the first
component and estimating the selection probabilities as a way of correcting for the selection
bias. On the other hand, the superpopulation approach involves modeling the second com-
ponent. Although both approaches involve modeling, those are fundamentally different in
their character. However, both approaches are aimed at nullifying or correcting for the effect
of selection bias so as to make the resulting non-probability sample a better representation
of the population.

One approach is to use propensity scores to estimate the survey weights of the non-
probability sample and then proceed as in a regular probability sample; see Elliott and
Valliant (2017) for an informative review of quasi-randomization and the super-population
approach for non-probability samples. Chen et al. (2020) supplemented a non-probability
sample with a probability sample using only the observed covariates to estimate propensity
scores via logistic regression. Another approach is to use a nonignorable selection model to
remove the selection bias; see Smith (1983) for pioneering work in this direction. Xu and
Nandram (2019) used this approach to obtain full Bayesian analyzes; the references therein
provide a historical development of this area. It is difficult to make valid inference from a
non-probability sample with considerable selection bias. After all, a probability sample is
the gold standard (high quality), but a non-probability sample is likely to have low quality
(large bias, large mean squared error but unrealistically small variance). The key problem
of a non-probability sample is that it is very likely to lead to seriously biased estimates of
finite population quantities. Therefore, the large well-documented literature on selection
bias is pertinent in the study of non-probability samples; these articles are too numerous to
mention here; see Xu et al. (2020) and Choi et al. (2021) for recent applications, and the
references therein.

It is also possible to make inference about a finite population quantity using a sin-
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gle non-probability sample only; see Rao (2021) for a discussion. Supplementing a non-
probability sample with a small probability sample has recently received some attention.
But it is not quite practical to run a small probability survey in parallel with a non-
probability sample. Therefore, if one can make accurate finite population inference from
a non-probability sample only, this can be useful and economical. After all it costs money
and time to design and field even a small survey, and it is less practical that both a non-
probability sample and a probability sample will be available at the same time.

Survey samplers have long been using probability samples from one or more sources
in conjunction with census and administrative data to make valid and efficient inferences
on finite population parameters. This topic has received a lot of attention more recently in
the context of data from non-probability samples such as transaction data, web surveys and
social media data. Rao (2021) reviewed various probability survey methods that are used
to make valid inferences about finite population parameters. This allowed him to show how
these models can be extended to non-probability samples that can lead to “valid inferences
by themselves or when combined with probability samples”. Beaumont (2020) also reviewed
some approaches that can “reduce, or even eliminate the use of probability surveys, all
while preserving a valid statistical inference framework”. However, naive use of such data
can lead to serious sample selection bias and without adjustment to reduce selection bias
it can lead to the “big data paradox: the bigger the data, the surer we fool ourselves”
(Meng, 2018). Inevitably, non-probability samples will be more widely used in the future,
and we need to continue researching methods for obtaining valid (or at least acceptable)
inferences from them, possibly in combination with probability samples as illustrated in
several papers. Falling response rates and increasing respondent burden are often given as
reasons for using non-probability samples, especially in socioeconomic surveys. Robustness
to model misspecification is also important in non-probability samples; see, for example,
Marella (2023) and Rafei et al. (2022).

It is possible to use post-stratification to make satisfactory inference from a non-
probability sample only, and it is convenient to do so. It is not necessary to estimate
directly the selection probabilities for the non-probability sample; see Little (1993), Wang
et al. (2015), Wang et al. (2021), Nandram and Choi (2005, 2010). Propensity scores are
used to stratify the population, and they are not used as survey weights. However, too
many strata can lead to sparseness and some strata can be empty. Cochran and Chambers
(1965) suggested an optimal number of five strata (using quintiles); while this is good for
small samples, it may not be so good for large samples. For larger samples, we can use more
thinning, and a larger number of strata might be more efficient, say ten strata (using deciles).
We may not know the nonsampled covariates, but the minimal we can assume is that the
population size and the average covariates are known, a practical scenario. It is then possible
to generate surrogates of the the nonsampled covariates using a bootstrap procedure.

Here, we are not concerned with data integration nor small area estimation. But
there is also an emerging area in this direction; see Nandram and Rao (2024), Nandram and
Rao (2023), Nandram and Rao (2021) and Nandram et al. (2021) for a Bayesian approach
using propensity scores to estimate the selection probabilities with assistance from a small
probability sample; there are other Bayesian approaches such as Sakshaug et al. (2019),
Wísniowski et al. (2020), Salvatore et al. (2024) and Rafei et al. (2022), who used the non-
probability sample to supplement the probability sample. There has been a non-Bayesian
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literature also. One leading paper is Chen et al. (2020), who use the design approach with
double robustness and asymptotic theory. However, models will be better, if in fact, inference
about the finite population parameters is robust to the of assumptions of the models for
both the study variable and the participation variable. Other non-Bayesian approaches are
discussed by Elliot (2009), Elliott and Haviland (2007) and Robbins et al. (2021).

The primary objective of this article is to propose methodologies aimed towards re-
ducing selection bias when there exists significant difference in the characteristics between
sampled and non-sampled units. A related problem that will be addressed is the prediction
of the response observations for the non-sampled units for given values of their covariates. In
doing so, we will build on established ideas, for instance, post-stratification (Smith, 1983),
superpopulation approach (Elliot and Valliant, 2017) and propensity scores matching (Rosen-
baum and Rubin, 1983). The crux of our methodology will be to treat the non-sampled units
vis-a-vis their response as missing data (Rubin, 1976; Little and Rubin, 2002). Propensity
scores and post-stratification will be used to balance the covariate distributions between
the sampled and non-sampled groups. Lastly, we will perform the analysis in a hierarchical
Bayesian setup through Markov chain Monte Carlo methodology. Application of Bayesian
methodology in the context of non-probability sampling is a relatively unexplored domain. A
recent article in this space is by Sakshaug et al. (2019) which examines the exchangeability of
probability and non-probability sampling schemes by supplementing small probability sam-
ples with non-probability ones in a Bayesian paradigm. Their proposed method is applied
simultaneously on probability and non-probability surveys and is shown to reduce the vari-
ance and mean squared error of model based predictions corresponding to non-probability
samples relative to probability-only samples. However, the novel aspect of the methodology
proposed in this article is the integration of a spatial dimension in the model for binary
responses which enables us to better predict the response for the non-sampled units. Hav-
ing said so, we must emphasize that our target of inference and/or prediction is the finite
population proportion of success in the non-sampled group. However, we believe that our
framework can be effortlessly extended to estimate population means in general, arising from
continuous or discrete response variables by broadening the distributional structure of the
said variables.

This paper is organized as follows. In Section 2, we describe the simulation mechanism
for generating test data. In Section 3, we outline a modeling framework based on the Beta-
Bernoulli distribution for the purpose of prediction of responses for non-sampled units. In
Section 4, we introduce a modified model that incorporates a spatial dimension to the existing
modeling framework. In Section 5, we propose another spatial model that leads to more
precise prediction of responses for the non-sampled units. For each of these frameworks,
we discuss the mechanism of estimation and prediction in a hierarchical Bayesian setup. In
Section 6, we discuss some diagnostic measures for comparing the relative predictive abilities
of the aforementioned models, followed by concluding remarks and a discussion of future work
in Section 7.

2. Data simulation

As mentioned before, one of the principal characteristics of non-probability sampling
is that the distribution of covariates is different for the sampled and non-sampled groups.
This will be the basis for our simulation exercise aimed at generating the dataset on which
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our proposed methodologies will be tested later. For the purpose of simulation, let the
population size be 10,000, denoted as N , while the size of the sampled group be 1000,
denoted as n. We consider four (4) covariates, namely Age (X1), Race (X2), Gender (X3)
and Education level (X4) and a response Y such that

X2i = {
1 if ith subject is white
0 if ith subject is black; X3i = {

1 if ith subject is male
0 if ith subject is female;

X4i = {
1 if ith subject’s education is college or higher
0 if ith subject’s education is highschool or lower;

Yi = {
1 if ith subject’s response is Yes
0 if ith subject’s response is No,

where i = 1, ..., N . Finally, we assume the following distributions for the covariates

X1i ∼ N(55, 52), X1i ∼ N(65, 52);
X2i ∼ Bernoulli(0.3), X2i ∼ Bernoulli(0.5);
X3i ∼ Bernoulli(0.5), X3i ∼ Bernoulli(0.4);
X4i ∼ Bernoulli(0.5), X4i ∼ Bernoulli(0.6),

where the distributions in the first (left) column correspond to the subjects in the sampled
group (i = 1, ..., n) while those in the second (right) column correspond to those in the non-
sampled group (i = n+1, ..., N). The above choice of parameters was guided by the fact that
the distributions of each covariate for the sampled and non-sampled groups should not be too
different. This is critical, because in the poststratification step to be implemented next, it is
necessary for every stratum to have some sampled units. In other words, if the distributions
of particular covariates in the sampled and non-sampled groups are very different, there may
be stratum which will be devoid of any units from the sampled group. If so, it would not be
possible for us to predict the response of the non-sampled units for that stratum.

Finally, we assume that Yi∣pi
ind∼ Bernoulli (pi). Once the above covariate values are

simulated, we generate the probability of success (i.e.., Yi = 1) using the following logistic
regression function

pi = P (Yi = 1) = eα0 + α1X1i + α2X2i + α3X3i + α4X4i + ϵi

1 + eα0 + α1X1i + α2X2i + α3X3i + α4X4i + ϵi
, i = 1, 2, ..., N,

where the ϵ follow a standard normal distribution i.e.. ϵi ∼ N(0, 1). We assume (α0, α1, α2,
α3, α4) = (0.1, 0.01, 4,−5,−1). Once the N simulated values of pi are obtained, the corre-
sponding values of Yi are drawn from Bernoulli (pi). Table 1 depicts part of the simulated
data.

Here Ri is such that

Ri = {
1 if unit i belongs to the sampled group
0 if unit i belongs to the non-sampled group, i = 1, 2, ..., N.

It is important to note that Yi, (i = 1001, ..., 10, 000) will be assumed to be unobserved since
they relate to the non-sampled units. However, the covariates, Xi’s are always observed.
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Table 1: Simulated data set of the population

i Ri X1i X2i X3i X4i Yi

1 1 48 0 0 0 1
2 1 63 1 0 1 1
3 1 50 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

999 1 54 0 0 0 0
1000 1 56 1 1 1 0
1001 0 47 1 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

9998 0 64 1 0 0 1
9999 0 66 1 0 0 1
10000 0 59 1 0 0 1

Our sole purpose will be to predict these unobserved responses corresponding to the non-
sampled units using data from the sampled units. Towards that end, we will formulate various
modeling frameworks and will apply those on the above data. These will be illustrated in
the next sections.

3. Non-spatial model

Here we describe the general approach to predict the finite population proportion
using a non-spatial model.

3.1. Model specification

In order to specify the model framework, we need to define the propensity scores in the
context of our setup. The propensity score for a subject/entity is the conditional probability
of it being selected in a sample given its covariates. The foundational assumption in this
regard is that all pertinent covariates related to the sample units are included in the study.
Supposing xi is the covariate vector corresponding to the ith subject in the population, its
propensity score, π(xi) is given by

π(xi) = P (Ri = 1∣xi, ϕ), i = 1, 2, ..., N, (1)

where Ri has been defined in Sec 2 and ϕ is a vector of unknown parameters. We use a
logistic regression model to model π(xi) i.e..

π(xi) =
ex′iβ

1 + ex′iβ
, (2)

where β = (β0, β1, β2, β3, β4) is our target of inference. We assume a non-informative prior
on β i.e.. π(β) = 1. Assuming independence, the conditional distribution of Ri is given by

Ri∣β ∼ Bernoulli{π(xi)}.
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Accordingly, the posterior density of β can be expressed as

π(β∣R) ∝
N

∏
i=1

⎛
⎝

ex′iβ

1 + ex′iβ

⎞
⎠

Ri ⎛
⎝

1 − ex′iβ

1 + ex′iβ

⎞
⎠

1−Ri

=
N

∏
i=1

⎛
⎝

eRix′iβ

1 + ex′iβ

⎞
⎠

. (3)

It is important to note that our target of inference in this case is the finite population
proportion i.e.. 1

N ∑
N
i=1 Yi, where the sample values (Yi, i = 1, 2, ..., n) are observed and the

non-sample values (Yi, i = n + 1, ..., N) are missing. In the context of non-probability sam-
pling, the missing data mechanism can be assumed to be missing-at-random (MAR), given
the covariates (Little and Rubin, 2002). However, this is not a binding condition since in-
ference can be performed on non-probability samples accommodating for both nonignorable
nonresponse and selection biases (Nandram and Choi, 2010; Nandram, 2022).

3.2. Bayesian computation

Since the above posterior is not in closed form, we will need to perform the Metropolis-
Hastings algorithm (Hastings, 1970) in order to draw samples from it. For that purpose,
we need to define a suitable proposal density. We use Laplace approximation for that pur-
pose. The advantage of the Laplace approximation is that for small degrees of freedom, it
has increased flexibility to accommodate skewness, thus enhancing its effectiveness as an
approximation. It is worth noting that the Laplace approximation is simply used as a pro-
posal density (first approximation) in the Metropolis sampler. Accordingly, we assume that
β approximately follows a multivariate t distribution parametrized as

β∣σ2 ∼ N(β̂, γ2Σ̂); ν

γ2 ∼ χ2
ν

where Σ̂ = −(H(β̂))−1, β̂ being the mode of β.

Here ν is the degrees of freedom of the multivariate t distribution and acts as a tuning
parameter. The values of β̂ and −(H(β̂))−1 are obtained through numerical approximation.
For posterior simulation, we use Metropolis-Hastings algorithm with the following candidate
density for β

p(β) ∝ 1

[1 + (β − β̂)′Σ̂−1(β − β̂)
ν ]

5+ν
2

.

We first draw 10,000 sets of β = (β0, ..., β4). Then we drop the first B = 5000 iterates and
take every 5th of the remaining iterates i.e.. we take iterate number B + 1, B + 1 + k, B + 1 +
2k, ..., B+1+m×k where k = 5 and m = 1000 being the final sample size. Table 2 depicts the
posterior summaries of β = (β0, β1, β2, β3, β4) obtained from the simulated samples, which
are provided under Section 3.2 in the Annexure.

We use various diagnostics to assess the convergence of the chains, like trace and
autocorrelation plots, Geweke test and effective sample sizes. The trace and auto-correlation
plots are shown under Section 3.2 in the annexure. The plots and the diagnostics tests
indicate satisfactory mixing and convergence of the chains. In the context of simulated data,
the above estimates indicate that all the predictors have a significant effect on the response,
Ri. Specifically, being younger, being black, being male or having a high school or lower
degree significantly increase the odds of being sampled.
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Table 2: Posterior summaries of β for Beta-Bernoulli model

Parameter Mean Standard Deviation 95% HPD Interval
β0 9.957 0.448 (9.089, 10.775)
β1 -0.196 0.006 (-0.219, -0.189)
β2 -0.785 0.073 (-0.935, -0.652)
β3 0.264 0.071 (0.122 0.398)
β4 -0.416 0.074 (-0.551, -0.261)

3.3. Poststratification and prediction

As mentioned before, our principal aim is to predict the responses for the non-sampled
subjects using data from the sampled subjects. Towards that end, it is imperative to balance
(or adjust) the covariate distributions between the sampled and non-sampled groups. We
will achieve that through a combination of propensity scores and poststratification (Baker
et al., 2013) as depicted by Rubin (1979) and in Nandram and Choi (2010) who applied it
in the analysis of body mass index data in a small area context.

3.3.1. Poststratification

The poststratification procedure will be described in this section.

For the hth set of simulated values of β, the corresponding propensity score values
are given by

π
(h)
i = ex′iβ

(h)

1 + ex′iβ
(h)

, h = 1, 2, ..., 1000; i = 1, 2, ..., 10, 000.

Thus, we will have m = 1000 propensity score values for each of N = 10, 000 simulated
population units resulting in a N ×m = 10, 000 × 1000 matrix of propensity scores. Part
of this matrix is shown under Sec 3.3.1 in the Annexure. Given the simulated values of
the propensity scores, we create ten (10) strata by forming ten intervals from their deciles
for implementing the poststratification procedure. The ten intervals are shown in Table 3,
where Ij denotes the jth interval. Now, for each simulated value of β, we allocate the 10,000
population units into these strata/intervals based on their respective propensity score value.
Table 4 depicts the number of subjects allocated to each of these strata corresponding to
the sampled and non-sampled groups for four simulated values of β. Note that the sample
frequencies vary across the sub-strata because the deciles are based on 107(10, 000 × 1000)
propensity score values.

Table 3: Propensity score intervals

I1 I2 I3 I4 I5
(0, 0.0143] (0.0143, 0.0237] (0.0237, 0.0337] (0.0337, 0.0459] (0.0459, 0.0613]

I6 I7 I8 I9 I10
(0.0613, 0.0815] (0.0815, 0.1110] (0.1110, 0.1550] (0.1550, 0.2366] (0.2366, 0.9302]
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Table 4: Stratum allocation frequencies for sampled and non-sampled groups for
different values of β

Stratum Frequency
β Group I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Sampled 8 20 28 36 36 70 105 133 225 339
β(1) Non-sampled 985 916 955 1050 825 1042 911 874 820 622

Sampled 8 30 23 38 38 77 92 115 240 339
β(2) Non-sampled 1033 1208 852 967 825 1066 712 805 910 622
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Sampled 9 20 32 35 48 59 101 134 205 357
β(999) Non-sampled 1012 947 1057 967 960 926 846 823 783 679

Sampled 13 25 27 37 40 74 83 133 206 362
β(1000) Non-sampled 1203 1038 985 924 890 833 781 871 774 701

It can be easily verified that the cumulative frequencies of the sampled and non-
sampled units across all the strata/intervals are 1000 and 9000 respectively for all simulated
values of β. Conditional on the above poststratification, the covariate distribution for the
sampled and non-sampled groups can be assumed to be similar for each stratum. Hence,
for each stratum/interval, we can predict the response for the non-sampled units using data
for the sampled units. Prediction will be carried out using the superpopulation approach
mentioned in Section 1 by modeling the conditional density of the response vector (say, Y s)
given the covariate vector (say, Xs) for the sampled group respectively.

3.3.2. Prediction

The prediction procedure is described in this section.

Let yij denote the response for the jth unit in the ith stratum for the sampled group,
where i = 1, 2, ..., 10 and j = 1, 2, ..., ni, ni being the number of sampled subjects in stratum
i. For example, for β(1), the number of sampled subjects in the 1st stratum is 8 i.e.. ni = 8.
Let pi be the probability of success (i.e.. yij = 1) for the ith stratum. We have the following
model specification

Yij ∣pi ∼ Bernoulli(pi), i = 1, 2, ..., 10; j = 1, 2, ..., ni,

pi ∼ Beta(0, 0), i = 1, 2, ..., 10. (4)

The above prior is clearly improper and is also known as the Haldane prior. We have chosen
this prior for pi in order to make the inference as data driven as possible. The posterior of
pi is

π(pi∣yi) ∝ f(yi∣pi)π(pi) = p
∑ni

j=1 yij−1
i (1 − pi)ni−∑

ni
j=1 yij−1

i.e.. pi∣yi ∼ Beta(
ni

∑
j=1

yij, ni −
ni

∑
j=1

yij) . (5)

Here ∑ni
j=1 yij and ni − ∑ni

j=1 yij are respectively the number of 1’s and 0’s of the response
variable for the sampled data in the ith stratum. As an illustration, for β(1), there are 8
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sampled units and 985 non-sampled units in the 1st stratum. The response values for the
8 sampled units are (1, 0, 0, 1, 1, 0, 1, 1) i.e.. ∑ni

j=1 yij = 5 and ni − ∑ni
j=1 yij = 3. Hence, the

posterior distribution of p1 will be Beta(5, 3). Now, we can draw a random sample of p1
from a Beta(5, 3) distribution (say p̃1) and finally draw 985 values of yij from Bernoulli(p̃1).
The simulated values of y so drawn will be the predicted values of Y corresponding to the
1st stratum. Similarly, we can predict all the non-sampled response observations for all the
strata.

Once the above prediction is complete, we compute the proportion of successes i.e..
Y = 1 for the sampled and non-sampled groups separately as well as for all the N subjects
in the combined set corresponding to each β(h), h = 1, 2, ..., 1000. These are given by

P
(h)
all =

∑N
k=1 Y

(h)
k

N
and P

(h)
ns =

∑N
k=n Y

(h)
k

N − n
, h = 1, 2, ..., 1000.

The true values of the above quantities for the sampled, non-sampled and all individuals
taken together are 0.398, 0.509 and 0.498 respectively. The kernel density plots of the above
quantities are given in Figure 1. Here the bold (dashed) curve correspond to P

(h)
all (P (h)ns )

respectively.

(a) Combined (bold: P
(h)
all ; dashed: P

(h)
ns )

Figure 1: Kernel density plots of the proportion of positive responses predicted
for all individuals and non-sampled individuals for Beta-Bernoulli model

3.4. Model accuracy

To evaluate the accuracy of our prediction, we compute the 95% highest posterior
density (HPD) intervals of P

(h)
all and P

(h)
ns . If the true proportion values, reported above, lies

within and near the centre of the above intervals, it would indicate an accurate fit. However,
if the true value lies outside the intervals or towards the edge, that would be indicative of a
sub-optimal fit. The HPD interval for the true population proportion of positive responses
for all the sampled units taken together (P (h)all ) is found to be (.450, .559) while that for
the proportion of non-sampled subjects is (0.456, 0.577). In both cases, the true values i.e..
0.498 and 0.509 falls within and near the centre of the corresponding intervals. This indicates
that our prediction is pretty accurate.
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In addition to testing prediction accuracy, we also compare the predictive ability of
our modeling framework, based on the superpopulation methodology, with that of quasi-
randomization strategy, mentioned in Section 1, using the Horvitz-Thompson (Horvitz and
Thompson, 1952) and the Hajek estimators of the population proportion (of positive re-
sponses for all the N units). These are given by

P̂
(h)
HT =

Ŷ
(h)

HT

N
= 1

N

n

∑
i=1

Yi

Pr
(h)
i

and P̂
(h)
H = ∑

n
i=1 Yi/Pr

(h)
i

∑n
i=1 1/Pr

(h)
i

, h = 1, 2, ..., 1000,

where “HT” and “H” in the suffix denotes “Horvitz-Thompson” and “Hajek” respectively
while

Pr
(h)
i = nπ

(h)
i

∑N
i=1 π

(h)
i

, h = 1, 2, ..., 1000; i = 1, 2, ..., N.

Here n = 1000, N = 10, 000 while π
(h)
i is the propensity score for the ith subject

corresponding to the hth case. The histograms of the 1000 simulated values of P̂
(h)
HT and P̂

(h)
H

for the above estimators are shown in Figure 2. The corresponding 95% H.P.D interval of
the true population proportion (for all subjects taken together) are (0.478, 0.584) and (0.496,
0.543) respectively. In both cases, the true value, 0.498, falls within the above intervals but
more towards one of the edges. This is specially true for the Hajek estimator as the true
population proportion is nearly equal to the lower bound of the H.P.D interval, 0.496. Thus,
we can conclude that our proposed model has superior predictive properties compared to
the Horvitz-Thompson and Hajek estimators. This also indicates that the superpopulation
approach fares better than the quasi-optimization approach in predicting the response values
for the non-sampled units.

(a) Horvitz-Thompson (b) Hajek

Figure 2: Histograms of the proportion of positive responses for Horvitz-
Thompson and Hajek estimators

4. Standard spatial model

The Beta-Bernoulli framework developed in Section 3 enabled us to predict the pro-
portion of positive responses in the non-sampled group for each stratum. In doing so, it was
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assumed that the strata are independent of each other (i.e.. are uncorrelated). However,
since the boundaries of strata are fuzzy, subjects close to the edges of two adjacent strata
may have non-negligible correlation. Hence, it may be worthwhile to develop a modeling
framework taking into account the spatial relationship between neighbouring strata. In this
section, we will develop a Bayesian hierarchical model that incorporates this spatial asso-
ciation. Accordingly, we would like to test whether incorporating this spatial dimension in
the modeling framework improves the ability of the model to predict the responses for the
non-sampled individuals. This is a novel contribution in non-probability sampling.

4.1. Hierarchical model specification

For the proposed spatial modeling framework, the data and stratum-specific model
specification remain the same as for the Beta-Bernoulli model, depicted in (3.4). As men-
tioned in He and Sun (2000), we specify the following logistic mixed model for pi,

log(
pi

1 − pi

) = θ + νi,

where pi is the ith stratum-specific success probability for the sampled group, θ is the fixed
effect and νi is the ith stratum-specific random effect. Following He and Sun (2000), we use
a simultaneous conditional autoregressive model (SCAR) to specify the prior of νi. Towards
this end, we define the following 10×10 symmetric adjacency matrix (as we have 10 strata)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Cjk = 0(1) means the jth and kth strata are non-adjacent(adjacent) i.e.., does not
share (share) a boundary. According to He and Sun (2000), the eigenvalues of the adjacency
matrix C, given by λ = (λ1, λ2, ..., λ10), can be defined so that the following inequality holds

1
λmin
≤ ρ ≤ 1

λmax
.

where λmin and λmax are the minimum and maximum eigenvalues of C. Then, based on the
SCAR properties, discussed by Clayton and Kaldor (1987), the prior distribution of ν can
be shown to be

ν ∼MV N(0, δ2(I − ρC)−1), (6)

where ν = (ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9, ν10) and I is a 10 × 10 identity matrix. In order to
determine the prior distributions for θ, we employ the empirical logistic transform (Cox,
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2018). Suppose we have g sets of binary observations and in the jth set (j = 1, 2, ..., g), the
success probability, pj, is constant for that set. Let there be nj trials and Mj successes in
those trials. Then the empirical logistic transform is defined as

Zj = log(
Mj + 1

2

nj −Mj + 1
2
) with mean ϕj = log(

pj

1 − pj

) .

As per Gart and Zweifel (1967), an approximate unbiased estimator of the variance of Zj is
given by

V 2
j =

(nj + 1)(nj + 2)
nj(Mj + 1)(nj −Mj + 1).

In fact, it can be shown that Zj approximately follows a normal distribution with mean ϕj

and variance V 2
j i.e.. Zj ∼ N(ϕj, V 2

j ) (McCullagh, 2019). Using the above transformation,
the prior distribution of θ can be expressed as

π(θ) =
1

V π
⎛
⎝

1 + (θ − θ̂

V
)

2⎞
⎠

, −∞ < θ < ∞, (7)

which is a location-scale Cauchy distribution. Now, yk ∼ Bernoulli(
eθ

1 + eθ
) for k = 1, 2, ..., n

implying that p̂ = ȳ = 0.398. Thus, θ̂ = log(
p̂

1 − p̂
) = −0.4138. On the other hand, V is

obtained as

V =

¿
ÁÁÀ (n + 1)(n + 2)

n(M + 1)(n −M + 1) = 0.0646,

where M = ∑n
k=1 yk = 398 which is the total number of positive responses in the sampled

group. Finally, the prior for (δ2, ρ) is given by

π(δ2, ρ) =
1

(1 + δ2)2, δ2 > 0,
1

λmin

≤ ρ ≤ 1
λmax

. (8)

Combining the likelihood and priors specified in (6-9), the joint posterior density of (θ, δ2, ν, ρ)
is given by

π(θ, δ2, ν, ρ∣Y) ∝ f(Y∣θ, νi)π(ν ∣δ2, ρ)π(δ2, ρ)π(θ),

where

f(Y∣θ, νi) =
10
∏
i=1

ni

∏
j=1
{

eθ+νi

1 + eθ+νi
}

yij

{1 −
eθ+νi

1 + eθ+νi
}

1−yij

=
10
∏
i=1

ni

∏
j=1
{

e(θ+νi)yij

1 + eθ+νi
}
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and

π(ν ∣δ2, ρ) = 1√
∣δ2(I − ρC)−1∣

exp{−1
2νT (δ2(I − ρC)−1)−1ν} .

Combining these forms, the joint posterior density becomes

π(θ, δ2, ν, ρ∣Y) ∝
10
∏
i=1

ni

∏
j=1
{

e(θ+νi)yij

1 + eθ+νi
} × 1√

∣δ2(I − ρC)−1∣
exp{−1

2νT (δ2(I − ρC)−1)−1ν}

× 1
(1 + δ2)2 ×

1
V π((1 + ( θ−θ̂

V )2)
, (9)

where δ2 > 0, θ̂−10×V < θ < θ̂+10×V (the entire unimodal density lies in a narrower interval)
and 1

λmin
< ρ < 1

λmax
.

4.2. Bayesian computation

Based on the full posterior density specified in (9) above, the full conditional posterior
densities are given by

ν ∣θ, δ2, ρ, Y∝
10
∏
i=1
{

e(θ+νi)Ri

[1 + eθ+νi]ni
} exp{−1

2νT (δ2(I − ρC)−1)−1ν} ; (10)

θ∣ν, δ2, ρ, Y∝
10
∏
i=1
{

e(θ+νi)Ri

[1 + eθ+νi]ni
} × 1

V π((1 + ( θ−θ̂
V )2)

; (11)

δ2∣θ, ρ, ν, Y∝ 1√
δ2

exp{−1
2νT (δ2(I − ρC)−1)−1ν} × 1

(1 + δ2)2 ; (12)

ρ∣δ2, θ, ν, Y∝ 1√
∣(I − ρC)−1∣

exp{−1
2νT (δ2(I − ρC)−1)−1ν} . (13)

Since the full conditionals are not in closed form, we need to use a combination of specialized
sampling schemes to draw sample from those. Specifically, we use

1. Metropolis-Hastings algorithm to sample from π(ν ∣θ, δ2, ρ, Y).

2. Grid method to sample from the remaining three full conditionals, namely π(θ∣ν, δ2, ρ, Y),
π(δ2∣θ, ρ, ν, Y) and π(ρ∣δ2, θ, ν, Y).

In the first case, we need to determine the candidate generating density to be able to apply
Metropolis-Hastings algorithm. We apply the empirical logistic transformation towards this
end. As per this procedure,
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Zi∣νi ∼ N(θ + νi, V 2
i ) where V 2

i =
(ni + 1)(ni + 2)

ni(Mi + 1)(ni −Mi + 1) and Zi = log(
Mi + 0.5

ni −Mi + 0.5).

This implies that

ν ∼MVN((Z − θ), Σ),

where MVN implies multivariate normal distribution and Σ = diag(V 2
1 , V 2

2 , ..., V 2
10). Assum-

ing H = δ2(I − ρC)−1, the proposal density will be

ν ∣θ, δ2, ρ, Y ∝ exp{−1
2
[(ν − (Z − θ))T Σ−1(ν − (Z − θ))]} × exp{−1

2[ν
T H−1ν]}

= exp{−1
2
[νT Σ−1ν − 2νT Σ−1(Z − θ) + (Z − θ)T Σ−1(Z − θ) + νT H−1ν]}

= exp{−1
2
[νT (Σ−1 +H−1)ν − 2νT (Σ−1 +H−1)(Σ−1 +H−1)−1Σ−1(Z − θ)]} ,

which implies that the proposal density of ν ∣θ, δ2, ρ, Y is

ν ∣θ, δ2, ρ, Y ∼MV N {(Σ−1 +H−1)−1Σ−1(Z − θ), (Σ−1 +H−1)−1} . (14)

We use the grid method to draw samples from θ∣ν, δ2, ρ, Y and ρ∣δ2, θ, ν, Y. This is particu-
larly straightforward in the first case since θ and ρ are bounded, that is

θ̂ − 10 × V < θ < θ̂ + 10 × V , and 1
λmin
< ρ < 1

λmax
.

For the conditional posterior density ρ∣δ2, θ, ν, Y, we apply the following transformation on
δ2, since δ2, being positive, does not have an upper bound.

ϕ =
δ2

1 + δ2, 0 < ϕ < 1,

which results in the transformed density

ϕ∣θ, ρ, ν, Y∝
√

1 − ϕ

ϕ
exp{−1

2νT ( ϕ

1 − ϕ
(I − ρC)−1)

−1
ν} .

Once we have simulated the values of ϕ, we can back-transform to obtain the corresponding

values of δ2 since δ2 =
ϕ

1 − ϕ
.

Given the above discussion, it will now be straightforward to simulate observations
from the respective full conditionals. In doing so, we randomly select 100 sets of propensity
scores among the 1000 and the Gibbs sampler is run for each such set as follows:

1. Initial values for the parameters are selected as: ρ(0) = 0, δ2(0) = 1, θ(0) = 0.
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2. Given the intital values, a sample is drawn from ν ∣θ(0), δ2(0), ρ(0), Y using the Metropolis-
Hastings sampler through the candidate density derived in (15). Let the sampled value
be ν(1).

3. Given ν(1), a sample is drawn from θ∣ν(1), δ2(0), ρ(0), Y through the Grid method. Let
the sampled value be denoted as θ(1).

4. Given ν(1) and θ(1) obtained above, we sample from ρ∣ν(1), θ(1), δ2(0), Y again using the
Grid method. Let the sampled value be denoted as ρ(1).

5. Given the sampled values of ν(1), θ(1) and ρ(1), we draw a sample from ϕ∣θ(1), ρ(1), ν(1), Y
by applying Grid method again and perform the transformation δ2 = ϕ

1 − ϕ
to get the

corresponding value of δ2.

6. For implementing the grid samplers in steps (3 - 5), we use the upper and lower bounds
of the respective parameters and come up with the grid points.

7. At the completion of the above iteration, we obtain the first set of simulated values of
the parameters vis (ν(1), θ(1), ρ(1), δ2(1)).

We repeat the above steps 2 to 5 step for 11,000 times and do a burn-in of the first 2000
iterates. Then we do some thinning and keep the following iterates,

(ν(2001+9m), θ(2001+9m), ρ(2001+9m), δ2(2001+9m)),

where m = 1, 2, ..., 1000. In doing so, we are finally left with 1,000 sets of iterates.

As usual, we verify the convergence of the chains using trace and autocorrelation plots
along with Gweke test and effective sample sizes. The associated plots and tables are shown
under Section 4.2 in the Annexure. The plots are indicative of satisfactory convergence of
the chains. Posterior summaries are shown in Table 5.

Some notable observations can be made from the above table. For instance, random
effects corresponding to the second, fourth and tenth strata are significant which implies that
observations/subjects within these sub-classes have significant dependence. In addition the
fixed effect component, θ is also significantly negative. More importantly, the SCAR model
of He and Sun (2000) cannot capture the spatial correlation as the 95% credible interval of
ρ is (-0.342, 0.488) and hence contains zero. We will address this issue using an improved
modeling framework discussed in the next section.
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Table 5: Posterior summaries of parameters for first spatial model

Parameter Mean Standard deviation 95% Credible interval
ν1 0.817 0.708 (-0.559, 2.165)
ν2 0.886 0.458 (0.059, 1.846)
ν3 0.703 0.396 (-0.061, 1.453)
ν4 1.204 0.365 (0.420, 1.886)
ν5 0.539 0.297 (-0.093, 1.131)
ν6 0.438 0.260 (-0.046, 0.968)
ν7 0.334 0.195 (-0.051, 0.697)
ν8 0.007 0.174 (-0.371, 0.313)
ν9 -0.223 0.141 (-0.505, 0.051)
ν10 -0.431 0.119 (-0.665, -0.192)
θ -0.413 0.016 (-0.440, -0.378)
ρ 0.0744 0.231 (-0.342, 0.488)
δ2 3.925 3.554 (0.243, 11.423)

4.3. Prediction

Given the sampled values of the parameters obtained above, it is straightforward to
predict the responses for the non-sampled units. For each β, the number of non-sampled
individuals for each stratum is known (see Table 4). Moreover, for the ith stratum,

yij ∣pi ∼ Bernoulli(pi), i = 1, 2, ..., 10; j = 1, 2, ..., ni.

Hence, we can get a sample of the responses corresponding to the non-sampled group for
the ith stratum by drawing the requisite number of yij’s from Bernoulli(pi). Based on the
sampled values, we can evaluate the proportion of positive responses. This exercise should
be repeated for other sets of propensity scores as well. Accordingly, we randomly selected
100 sets of propensity scores and obtained 100 proportion values (of positive responses in
the non-sampled group). Based on those values, we form the highest posterior density
(HPD) intervals of the true proportion of positive responses as was done for the Beta-
Bernoulli model. The resulting interval is (0.449, 0.551) which is clearly narrower than those
corresponding to the Beta-Bernoulli, Hajek and Horvitz-Thompson estimators. In addition,
the true value of the proportion for all the subjects and for the non-sampled subjects lie near
the centre of the interval corresponding to the spatial model. Both of these implies that
the predictive ability of the spatial model is superior to the other models i.e.. the predicted
values of the response in the non-sampled group and the corresponding proportions obtained
from the spatial model is more accurate compared to those obtained from the other models,
namely Beta-Bernoulli, Horvitz-Thompson and Hajek. Histograms and density plots of the
proportions are shown under Section 5.2 in the Annexure.

5. Modified spatial model

In this section, we show how to improve the standard spatial model.
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5.1. Model specification

The spatial regression model outlined in Section 4 is motivated by the work of He and
Sun (2000). One shortcoming of their formulation is that it fails to account for positive and
monotonically weakening spatial correlation. To account for that, we introduce a modified
spatial model in this section for which we define the following 10 × 10 adjacency matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ρ ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

ρ 1 ρ ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

ρ2 ρ 1 ρ ρ2 ρ3 ρ4 ρ5 ρ6 ρ7

ρ3 ρ2 ρ 1 ρ ρ2 ρ3 ρ4 ρ5 ρ6

ρ4 ρ3 ρ2 ρ 1 ρ ρ2 ρ3 ρ4 ρ5

ρ5 ρ4 ρ3 ρ2 ρ 1 ρ ρ2 ρ3 ρ4

ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1 ρ ρ2 ρ3

ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1 ρ ρ2

ρ8 ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1 ρ
ρ9 ρ8 ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 0 < ρ < 1.

The structure of the adjacency matrix distinguishes it from the spatial model dis-
cussed in Section 4. Specifically, the underlying assumption for the above structure is that
subjects belonging to strata in close proximity have higher dependence than those belonging
to strata which are further apart. The logistic mixed model specification for pi remains the
same as was done for the standard spatial model in Sec 4.1 i.e..

log(
pi

1 − pi

) = θ + νi i = 1, 2, ..., 10,

θ and νi having the same connotation as before. The conditional distribution of yij remains
the same as for the standard spatial model i.e..

yij ∣θ, νi ∼ Ber(
eθ+νi

1 + eθ+νi
) , i = 1, 2, ..., 10, j = 1, 2, ..., ni.

The following priors are specified for the parameters (ν, θ, δ2, ρ)
ν ∣θ, δ2, ρ ∼ MV N(θj, δ2A),

π(θ, δ2, ρ) ∝
1

(1 + δ2)2,

where j is a 10 × 1 dimensional vector of 1’s while 0 < θ < 1 and 0 < ρ < 1. Combining the
likelihood and priors, the joint posterior density of (ν, θ, δ2, ρ) is given by

π(θ, δ2, ν, ρ∣Y) ∝ f(Y∣νi)π(ν ∣θ, δ2, ρ)π(θ, δ2, ρ),

where

f(Y ∣θ, νi) =
10
∏
i=1

ni

∏
j=1
{

eθ+νi

1 + eθ+νi
}

yij

{1 −
eθ+νi

1 + eθ+νi
}

1−yij

=
10
∏
i=1

ni

∏
j=1
{

e(θ+νi)yij

1 + eθ+νi
}
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and

π(ν ∣θ, δ2, ρ) = 1√
∣δ2A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} .

Thus, the joint posterior density is

π(θ, δ2, ν, ρ∣Y) ∝
10
∏
i=1

ni

∏
j=1
{

e(θ+νi)yij

1 + eθ+νi
} 1√
∣δ2A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} × 1

(1 + δ2)2

=
10
∏
i=1
{

e(θ+νi)Mi

(1 + eθ+νi)ni
} 1√
∣δ2A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} × 1

(1 + δ2)2 ,

where Mi = ∑ni
j=1 yij is the total number of positive responses in the ith subclass of the sampled

group.

5.2. Bayesian computation

The following full conditional posterior densities can be derived from the full posterior
shown above

ν ∣θ, δ, ρ, Y ∝
10
∏
i=1
{

e(θ+νi)Mi

(1 + eθ+νi)ni
} 1√
∣δ2A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} ; (15)

θ∣ν, δ, ρ, Y ∼ N (
jT (δ2A)−1ν

jT (δ2A)−1j
,

1
jT (δ2A)−1j

) ; (16)

δ2∣θ, ρ, ν, Y ∝ 1
(δ2)5 exp{−1

2(ν − θj)T (δ2A)−1(ν − θj)} × 1
(1 + δ2)2 ; (17)

ρ∣δ2, θ, ν, Y ∝ 1√
∣A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} . (18)

Following a similar method that was detailed in Section 4.2, we obtain the following proposal
density of ν ∣θ, δ, ρ, Y

ν ∣θ, δ, ρ, Y ∼MV N {(Σ−1 +H−1)−1(Σ−1Z +H−1θj), (Σ−1 +H−1)−1} ,

where H = δ2A and Σ = diag(V 2
1 , V 2

2 , ..., V 2
10) and

Zi = log
Mi + 0.5

ni −Mi + 0.5, V 2
i =

(ni + 1)(ni + 2)
ni(Mi + 1)(ni −Mi + 1),

The simulation steps will be similar to those mentioned in Section 4.2. As usual, convergence
is verified using trace plots, autocorrelation plots, Geweke test and effective sample size
procedures. All these tests indicate adequate convergence. Tables showing the p-values for
the Geweke test and effective sample sizes are shown under Section 5.2 in the Annexure
along with trace and kernel density plots of all the parameters. As shown in that table,
the effective sample sizes of all but one parameter is 1000, the same length as the chain,
thus indicating satisfactory convergence. Table 6 depicts the posterior summaries of all the
parameters.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

NONPROBABILITY SAMPLES WITH SPATIAL POSTSTRATIFICATION 381

Table 6: Posterior summaries for modified spatial model

Parameter Mean Standard deviation 95% Credible interval
ν1 0.429 0.442 (-0.491, 1.229)
ν2 0.722 0.340 (0.061, 1.382)
ν3 0.691 0.299 (0.125, 1.264)
ν4 0.449 0.271 (-0.131, 0.955)
ν5 0.171 0.240 (-0.316, 0.614)
ν6 -0.029 0.212 (-0.426, 0.418)
ν7 -0.210 0.170 (-0.547, 0.137)
ν8 -0.377 0.151 (-0.684, -0.100)
ν9 -0.417 0.141 (-0.671, -0.127)
ν10 -0.914 0.113 (-1.116, -0.687)
θ -0.024 0.463 (-0.963, 0.897)
ρ 0.664 0.203 (0.274, 0.972)
δ2 0.405 0.254 (0.077, 0.864)

A comparison of Tables 5 and 6 results in some important observations. Firstly, in the
modified spatial model, the random effects corresponding to five sub-classes are significant,
namely those for second, third, eighth, ninth and tenth subclasses. For the first spatial model,
this was true for only three subclasses. This indicates that the modified spatial model has
better discriminatory ability in capturing intra-subclass-specific spatial dependence com-
pared to the first spatial model. Secondly, the credible intervals for the modified spatial
model are in general narrower than those corresponding to the previous spatial model. This
implies that the modified spatial model generates more precise estimates of the parameters
relative to the original spatial model. Moreover, the correlation parameter (ρ) is significant
for the modified spatial model but was insignificant in the previous model. This is a major
finding since it implies that the modified model is more capable of capturing the underlying
spatial dependence between the sub-strata compared to the previous model. Thirdly, the
estimate for the variance component δ2 is much smaller for the modified model as compared
to the previous model. This indicates that the modified model has superior ability to control
for variance inflation of the strata specific random effects which indicate a better predictive
ability of the responses for the non-sampled units.

5.3. Prediction

Since the chains have converged, we can use the parameter estimates to predict the
responses corresponding to the non-sampled units as was done for the Beta-Bernoulli and
standard spatial models. The 95% highest posterior density intervals corresponding to the
modified spatial model along with those for the Beta-Bernoulli model, standard spatial model
and those of Horvitz-Thompson and Hajek estimators are shown in Table 7. All the intervals
relate to the prediction of the proportion of positive responses for all the subjects (sampled +
non-sampled). It is clear from Table 7 that the modified spatial model has superior predictive
ability compared to all the other models since it results in the narrowest HPD interval among
the model-based intervals; the width under the Hajek model is much too small. Moreover,
the true value of the proportion of positive responses for all the units viz. 0.4976, lies near
the centre of the above interval as well. So, we conclude that the modified spatial model is
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the optimal model for prediction. It is important to note here that the Hajek estimator is
usually more precise in a design-based situation Särndal et al. (1992). However, it is difficult
to evaluate the standard errors because it involves second-order inclusion probabilities. So,
we have used an output analysis from the Metropolis sampler to get repeated values of
the Hajek estimator like a bootstrap sample. These may not be the best estimates of the
standard errors as they might be small.

Table 7: 95% credible intervals for the different models

Model 95% HPD interval Width
Horvitz-Thompson (0.478, 0.584) 0.106

Hajek (0.497, 0.543) 0.046
Beta-Bernoulli (0.455, 0.559) 0.104

Spatial (0.433, 0.517) 0.084
Modified spatial (0.456, 0.537) 0.081

6. Model comparison

Based on the discussion in the previous section, specifically with regard to the param-
eter estimates and credible intervals depicted in Tables 5 and 6, it is evident that the modified
spatial model is more robust and has better predictive ability than the Beta-Bernoulli and
standard spatial models. In this section, we will use two more diagnostic tools, namely con-
ditional predictive ordinate (CPO) and log-pseudo marginal likelihood (LPML) to validate
this fact.

The conditional predictive ordinate (CPO), introduced by Geisser (1980), is used to
detect observations which are fitted poorly by a given parametric model. The CPO values can
be calculated based on the output of the Markov chain Monte Carlo simulation procedure.
The Monte Carlo approximation of CPO for the ith stratum is given by

ˆCPOi =
⎡⎢⎢⎢⎢⎣

1
M

M

∑
h=1

1
f(yi∣p(h)i )

⎤⎥⎥⎥⎥⎦

−1

, i = 1, 2, ..., 10; h = 1, 2, ..., 1000,

where ˆCPOi is the harmonic mean of f(yi∣p(h)i ). For the Beta-Bernoulli model, M = 1000,
p
(h)
i is the hth sample drawn from the posterior density of pi∣yi while yi ∼ Binomial(ni, pi)

for ith stratum (i = 1, 2, ..., 10, h = 1, 2, ..., 1000). For the spatial model, M = 100 and pi is
obtained from the following expression

pi =
eθ+νi

1 + eθ+νi
,

where (θ, νi) are drawn from their respective posterior densities through the Monte Carlo
simulation. Here also, yi∣pi ∼ Binomial(ni, pi) for the ith stratum (i = 1, 2, ..., 10). For our
proposed frameworks, each CPO value will correspond to a particular stratum and will
indicate which, if any, stratum is an outlier in terms of model fit. Table 8 depicts the CPO
values for each strata corresponding to the Beta-Bernoulli, basic spatial and modified spatial
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Table 8: CPO values for the proposed models

Stratum Beta-Bernoulli Spatial I Spatial II
1 0.061 0.119 0.206
2 0.029 0.041 0.071
3 0.046 0.021 0.074
4 0.041 0.077 0.082
5 0.037 0.037 0.063
6 0.039 0.047 0.047
7 0.028 0.039 0.041
8 0.023 0.035 0.034
9 0.021 0.027 0.027
10 0.0004 0.009 0.017

models. The spatial models are denoted as Spatial I (basic spatial) and Spatial II (modified
spatial) respectively.

In terms of assessing model fit, observations with CPO values less than 0.025 are
deemed as possible outliers while those with values less than .014 are regarded as extreme
observations (Ntzoufras, 2011). From the CPO values depicted in Table 8, it can be concluded
that for Beta-Bernoulli model, there are three outlying strata, namely strata 8, 9 and 10. Of
this, stratum 10 seems to be an influential point since the CPO value is lesser than 0.014.
For Spatial model I, there are two outlying strata (strata 3 and 10). Again, stratum 10 seems
to be an influential point. Finally, for Spatial model II, only the last stratum is identified as
an outlier but not an influential point. Hence, it is apparent that the modified spatial model
(Spatial II) performs better than the other models as per this diagnostic measure since it
has the lowest number of outlier strata and no influential strata.

In order to have a confirmatory assessment of model fit, we next calculate the log-
pseudo marginal likelihood (LMPL), which is a function of CPO, given by

LPML =
N

∑
i=1

log( ˆCPOi).

Larger values of LMPL indicate a better fit. The following table depicts the values of LMPL
for all the three models. Since the modified spatial model has the highest value of LMPL,
we conclude that it has superior predictive ability compared to the Beta-Bernoulli and the
standard spatial models. This validates the findings derived in Section 5.

Model LMPL
Beta-Bernoulli -38.11

Spatial -32.97
Modified spatial -29.39

7. Discussion

The standard method of obtaining a representative sample from a target population
is through a probability sampling scheme which involves the selection of population units
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according to a certain specified probability distribution. The most common of these methods
is simple random sampling in which each and every population unit is assigned the same
probability of selection. Having said that, implementation of an ideal probability sampling
scheme in a real life setting is prohibitively difficult due to restrictions on costs, manpower
and time among other things. This has led to the popularization of alternate sampling
schemes which are easier to implement on the field as well in the online space. Some examples
are convenience sample, volunteer sample, online polls etc.

However, one major disadvantage of these schemes is that selection of units are heav-
ily dependent on the choice and preference of the survey designer and is often guided by
convenience rather than an underlying probabilistic framework. Hence, these kinds of sam-
ples are known as non-probability samples and the generating scheme, a non-probability
sampling scheme. Consequently, the sample, so chosen, often comes with various biases
which may lead to a unreliable estimate of the parameter of interest. Selection bias is one
such bias which results in a sample that may lack representation of certain segments of the
target population. This results in a sample that is not a proper representation of the target
population.

Regardless of the above shortcomings, non-probability sampling schemes are becom-
ing increasingly popular due to the ease with which they can be implemented, both on the
ground and in the virtual space. However, it is equally critical not to sacrifice on the “rep-
resentativeness” of the final sample and the unbiasedness of the final estimate as it reflects
the true population parameter. Hence, it is utmost importance to come up with a general
framework that would enable us to predict the responses of sample units which should have
been sampled but were left out in a non-probability sampling scheme.

In this article, we have proposed three modeling frameworks that will enable us to
predict the non-sampled individuals responses from information obtained from the sampled
units. The underlying idea behind each of these frameworks was to first balance the covariate
distributions of the sampled and non-sampled groups/units. This was implemented using
the propensity scores for those units. The propensity scores quantified the probability that a
particular unit is incorporated in a sample given the values of its covariates and were obtained
using a Bayesian hierarchical model. Ten strata were constructed based on the quantiles of
the propensity scores so obtained. Finally, prediction of the unknown responses of the non-
sampled units were carried out using three models - a Beta-Bernoulli model and two spatial
models which accounted for possible spatial autocorrelation between the strata. Between
the two spatial models we proposed, one incorporated postive and gradually weakening
correlation structure while the other did not. We tested our models on a simulated dataset.
Estimation was carried out through Markov chain Monte Carlo simulation and Bayesian
bootstrap.

A comparison of the predictive abilities of the aforementioned models unambiguously
indicated the superiority of the spatial modeling framework over the non-spatial ones, namely
the Beta-Bernoulli, Horvitz-Thompson and Hajek estimators. Moreover, the spatial model
incorporating the gradually weakening spatial correlation structured performed considerably
better than the one which did not incorporate this feature and had the best predictive
ability of all the models. This points to the veracity of our assumption about the presence of
long range but diminishing spatial autocorrelation between strata, which was an interesting



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

NONPROBABILITY SAMPLES WITH SPATIAL POSTSTRATIFICATION 385

finding in its own right. Overall, we believe that our proposed methodology will contribute
to ongoing research in this important field of research. Our proposed methodology was
built on the superpopulation modeling framework. An interesting extension of our work
would be the formulation of predictive approaches combining the superpopulation and quasi-
randomisation frameworks.
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ANNEXURE BY SECTIONS

Section 3.2

The following table depicts part of the 1000 simulated values of β obtained using the
Metropolis-Hastings sampler on π(β∣R).

m β0 β1 β2 β3 β4
1 9.7473 -0.2002 -0.8234 0.2845 -0.4375
2 10.3579 -0.2096 -0.8713 0.2202 -0.4657
3 9.5018 -0.1960 -0.6962 0.1437 -0.5264
⋮ ⋮ ⋮ ⋮ ⋮

998 9.1859 -0.1921 -0.6716 -0.2068 -0.3391
999 10.1561 -0.2094 -0.6304 0.3223 -0.4608
1000 10.3528 -0.2090 -0.9777 0.1989 -0.5132

The following figures depict the autocorrelation plots, trace plots and the kernel density plots
for the simulated values of β = (β0, β1, β2, β3, β4) obtained from the Markov Chain Monte
Carlo run of the Bayesian Bootstrap model.

[β0] [β1]

[β2] [β3]
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[β4]

Section 3.3.1

Following is part of the propensity score matrix where the rows correspond to the subjects
(N = 10000) and columns correspond to 1000 simulated values of β.

i β(1) β(2) β(3) β(1000)

1 0.5331 0.5614 0.5552 0.5836
2 0.0158 0.0146 0.0178 0.0134
3 0.4336 0.4593 0.4518 0.4790
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

9998 0.0199 0.0188 0.0246 0.0181
9999 0.0135 0.0125 0.0168 0.0119
10000 0.0526 0.0519 0.0632 0.0497

Section 4.2

The following table shows the p-values corresponding to the Gweke test and the effective
sample sizes for (ν, θ, ρ, δ2) of the spatial model. All of the effective sample sizes are close
to the size of chain 1, 000, which is desirable.

Parameter P-value Effective sample size
ν1 0.098 1000
ν2 0.186 1000
ν3 0.459 874
ν4 0.357 1000
ν5 0.881 1000
ν6 0.752 1000
ν7 0.978 1000
ν8 0.049 899
ν9 0.285 1000
ν10 0.768 1000
θ 0.667 1000
ρ 0.796 890
δ2 0.721 926
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[β0]

[β1]

[β2]

[β3]

[β4]
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The following figures depict the trace plots, autocorrelation plots and the kernel density
plots for the simulated values of (ν, θ, ρ, δ2) obtained from the Markov Chain Monte Carlo
run of the Spatial model.

[ν1]

[ν2]

[ν3]

[ν4]

[ν5]
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[ν6]

[ν7]

[ν8]

[ν9]

[ν10]
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[ν11]

[ν12]

[ν13]

[ν1] [ν2]
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[ν3] [ν4]

[ν5] [ν6]

[ν7] [ν8]
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[ν9] [ν10]

[θ] [ρ]

[δ2]
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Section 4.3

The following figures depict the histogram and kernel density plots of the proportions of
positive responses predicted for i) all individuals P

(h)
all and ii) non-sampled individuals (P (h)ns )

based on the Spatial model. In the kernel density plot, the bold (dashed) curve corresponds
to P

(h)
all (P

(h)
ns ).

(a) All individuals (b) Non-sampled individuals

(c) Combined (bold: all subjects; dashed:
non-sampled subjects)
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Section 5.2

The following table shows the p-values corresponding to the Gweke test and the effective
sample sizes for (ν, θ, ρ, δ2) corresponding to the modified spatial model. All but one of the
effective sample sizes are equal to the size of chain i.e.. 1, 000, which is desirable.

Parameter P-value Effective sample size
ν1 0.10080200 1000
ν2 0.95000090 1000
ν3 0.45674993 1000
ν4 0.28452094 1000
ν5 0.91671578 1000
ν6 0.22139337 1000
ν7 0.47038949 1000
ν8 0.06734535 1000
ν9 0.11521862 1000
ν10 0.34214527 1000
θ 0.38160805 1000
ρ 0.74996683 905
δ2 0.94700833 1000

The following figures depict the trace and kernel density plots for the simulated values of
(ν, θ, ρ, δ2) obtained from the Markov Chain Monte Carlo run of the modified Spatial model.
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Abstract
Rao (1948) introduced the score test statistic as an alternative to the likelihood ratio

and Wald test statistics. In spite of the optimality properties of the score statistic shown in
Rao and Poti (1946), the Rao score (RS) test remained unnoticed for almost 20 years. Today,
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(1948) I test for spatial dependence and Durbin and Watson (1950) test for serial correlation,
can be given RS test statistic interpretation. At the same time, recent developments in the
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RS test we conclude that its impact in science goes far beyond its calendar starting point
with promising future research activities for many years to come.

Key words: Applications to Econometrics and Statistics; Hypothesis testing; Rao’s score;
Robust tests; Sequential testing.

Corresponding Author: Anil K. Bera
Email: abera@illinois.edu

http://www.ssca.org.in/journal.html


402
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

ANIL K. BERA AND YANNIS BILIAS [Vol. 22, No. 3

1. Prologue

C. R. Rao’s work was always inspired by some practical problems. In 1946, he was
deputed from the Indian Statistical Institute (ISI), Calcutta, to work on an anthropometric
project in the Museum of Anthropology and Ethnology at the Cambridge University, U.K.
While at Cambridge, Rao took the opportunity to contact R. A. Fisher, then the Belfour
Professor of Genetics, and registered for a Ph.D. degree in Statistics under Fisher’s guidance.
As recollected in Rao (2001), Fisher agreed under the condition that Rao spends time in
the Genetics Laboratory where Fisher was breeding mice to map their chromosomes. Rao
started by mating mice of different genotypes to collect the necessary data and additionally,
he was trying to develop appropriate statistical methodology to analyze the experimental
data. The problem was estimation of linkage parameters (recombination probabilities in the
various segments of the chromosomes) using data sets from different experiments, designed
in such a way that each data set had information on the same parameters. It was thus
necessary to test whether the parameters in different experiments are the same or not.

Rao wrote and published two papers based on this work. The first paper, Rao (1948),
deals with the general problem of testing simple and composite hypotheses concerning a
vector parameter. The test was based on the scores, derivatives of the log-likelihood function
with respect to the individual parameters. The paper was published in the Proceedings of
the Cambridge Philosophical Society, where he termed the test principle as a score test. In
this paper, we will refer to it as the Rao score (RS) test. The other paper, Rao (1950a),
contains the detail steps for analyzing the data involving the segregation of several factors
in mating of different genotypes. And it used the RS test for the meta-analysis of testing
the equality of parameters coming from different experimental data sets. That paper was
published in Fisher’s new journal Heredity. For more, see Rao (2001).

The rest of the paper is organized as follows. In Section 2, we start with the first
principle of testing, namely the Neyman-Pearson Lemma and derive the simplest version of
RS test and then discuss it in its full generality. There, we also provide RS test interpretation
to some of the classic tests in Econometrics and Statistics, such as the quintessential Pearson
(1900) goodness-fit-test, which was suggested mostly by pure intuition, but its theoretical
foundation can be buttressed by RS test principle. In Sections 3 and 4, we list a (somewhat
incomplete) catalogue of RS tests in Econometrics and Statistics. In Section 5, we outline
some of the possible ways an assumed probability model can be misspecified, and discuss
how the various RS tests can be robustified to make them valid under misspecification. We
close the paper in Section 6 (Epilogue) with some concluding remarks. At the outset let us
mention that while compiling the 75 years (from 1948 to 2023) history of the RS test, we
have included here some of our own past historical accounts and cited accordingly. Our aim
is to have a comprehensive review as far as possible at one place, like a one-stop-shopping
for the RS test history.

2. Score as an optimal test function: Rao and Poti (1946)

We start by introducing some notation and concepts. Suppose we have n independent
observations y1, y2, ..., yn on a random variable Y with density function f(y; θ), where θ is a
p × 1 parameter vector with θ ∈ Θ ⊆ Rp. It is assumed that f(y; θ) satisfies the regularity
conditions stated in Rao (1973, p.364) and Serfling (1980, p.144). The likelihood function is
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given by
L(θ,y) ≡ L(θ) =

n∏
i=1

f(yi; θ), (1)

where y = (y1, y2, . . . , yn) denotes the sample. Suppose we want to test H0 : θ = θ0 against
H1 : θ ̸= θ0 based on the sample y.

The foundation of the theory of hypothesis testing was laid by Neyman and Pearson
(1933) fundamental lemma. This lemma provides a way to find the most powerful (MP) and
uniformly most powerful (UMP) tests. According to the Neyman-Pearson (N-P) Lemma,
the MP critical region for testing H0 : θ = θ0 versus H1 : θ = θ1 having size α, is given by

ω(y) = {y | L(θ1) > κL(θ0)}, (2)

where κ is such that Pr[ω(y)|H0] = α.

If an MP test maximizes powers uniformly in θ1 ∈ Θ1 ⊆ Θ, the test is called UMP test.
Unfortunately, an UMP test rarely exists, and when it does not, there is no single critical
region best for all alternatives. We, therefore, try to find a critical region that is good for
alternatives close to the null hypothesis, called local alternatives, hoping that the region will
also be good for alternatives away from the null. Lehmann (1999, p.529) advocated for such
critical region when the sample size n is large, stating, “if the true value is at some distance
from θ0, a large sample will typically reveal this so strikingly that a formal test may be
deemed unnecessary.”

For a critical region ω(y), let us define the power function as

γ(θ) = Pr[ω(y)|θ] =
�
ω(y)

L(θ)dy. (3)

Assuming a scalar θ and that γ(θ) admits Taylor series expansion, we have

γ(θ) = γ(θ0) + (θ − θ0)γ′(θ0) + (θ − θ0)2

2 γ′′(θ∗), (4)

where θ∗ is a value in between θ and θ0. If we consider local alternatives of the form
θ = θ0 + n− 1

2 δ, 0 < δ < ∞, the third term will be of the order O(n−1). Therefore, from (4),
to obtain the highest power, we need to maximize

γ′(θ0) = ∂

∂θ
γ(θ)

∣∣∣∣∣∣
θ=θ0

= ∂

∂θ

�
ω(y)

L(θ0)dy =
�
ω(y)

∂

∂θ
L(θ0)dy, (5)

for θ > θ0, assuming the regularity conditions that allow differentiation under the sign of
intergration.

Using the generalized N-P Lemma given in Neyman and Pearson (1936), it is easy to
see that the locally most powerful (LMP) critical region for H0 : θ = θ0 versus H1 : θ > θ0,
is given by

ω(y) =
{

y
∣∣∣∣ ∂∂θL(θ0) > κL(θ0)

}
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or
ω(y) =

{
y
∣∣∣∣ ∂∂θ ln(L(θ0)) = ∂

∂θ
l(θ0) > κ

}
, (6)

where l(θ) denotes the log-likelihood function and κ is a constant such that the size of the
test is α. The quantity S(θ) = ∂l(θ)/∂θ is called the Fisher-Rao score function. The above
result in (6) was first discussed in Rao and Poti (1946), who stated that a LMP critical
region for H0 : θ = θ0 is given by

ω(y) = {y | κ1S(θ0) > κ2}, (7)

where κ2 is so determined that the size of the test is equal to a preassigned value α with κ1
as +1 or −1, respectively, for alternatives θ > θ0 and θ < θ0.

Let us define the Fisher information as

I(θ) = −E
[
∂2l(θ)
∂θ2

]
= V ar[S(θ)]. (8)

The result that under H0, S(θ0) is asymptotically distributed as normal with mean zero and
variance I(θ0), led Rao and Poti (1946) to suggest a test based on S(θ0)/

√
I(θ0) as standard

normal [or S2(θ0)/I(θ0) as χ2
1], for large n.

2.1. From Rao and Poti (1946) to Rao (1948): Test for the multiparameter
case

Rao and Poti (1946) can be viewed as a precursor to Rao (1948). Generalization of
the LMP test in (7) to the multiparameter case (p ≥ 2) is not trivial. There will be scores
for each individual paramter, and the problem is to combine them in an “optimal” way. Let
H0 : θ = θ0, where now θ = (θ1, θ2, ..., θp)′ and θ0 = (θ10, θ20, ..., θp0)′. Consider a scalar linear
combination

p∑
j=1

δj
∂l(θ)
∂θj

= δ′S(θ), (9)

where δ = (δ1, δ2, ..., δp)′ is a fixed vector and test the hypothesis H0δ : δ′θ = δ′θ0 against
H1δ : δ′θ ̸= δ′θ0, δ ∈ Rp.

We rewrite the Fisher information in (8) as

I(θ) = −E
[
∂2l(θ)
∂θ∂θ′

]
. (10)

Asymptotically, under H0, δ′S(θ0) is distributed as normal, with mean zero and variance
δ′I(θ0)δ. Thus if δ’s were known, a test could be based on

[δ′S(θ0)]2

δ′I(θ0)δ
, (11)

which under H0 will be distributed as χ2
1 as in Rao and Poti (1946). Note that our H0 : θ = θ0

for p ≥ 2 can be expressed as H0 ≡ ⋂
δ∈Rp

H0δ, i.e., the multiparameter testing problem can be
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decomposed into a series of single-parameter problems. To obtain a linear function like (9),
Rao (1948) maximized (11) with respect to δ. Using the Cauchy-Schwarz inequality

(u′v)2

u′Au
≤ v′A−1v, (12)

where u and v are column vectors and A is a non-singular matrix, we have

sup
δ∈Rp

[δ′S(θ0)]2

δ′I(θ0)δ
= S(θ0)′I(θ0)−1S(θ0). (13)

In (13), the supremum reaches at δ = I(θ0)−1S(θ0) and this provides an optimal linear
combination of scores.

Roy (1953) used Rao’s maximization technique (13) to develop his union-intersection
(UI) method of testing. Let H0 ≡ ⋂

j∈J
H0j, where J is an index set. Roy’s UI method gives

the rejection region for H0 as the union of rejection regions for all H0j, j ∈ J . Consider
testing H0δ : δ′θ = δ′θ0 against H1δ : δ′θ ̸= δ′θ0, δ ∈ Rp. Let H0 = ⋂

δ∈Rp
H0δ and H1 ≡ ⋂

δ∈Rp
H1δ.

If Tδ is the likelihood ratio (LR) statistic for testing H0δ against H1δ, then

T = sup
δ∈Rp

Tδ (14)

is Roy’s LR statistic for testing H0 against H1. This is the same principle that was used by
Rao (1948) to convert a “multivariate” problem into a series of “univariate” ones, as we have
seen in equation (13).

When the null hypothesis is composite, like H0 : h(θ) = c, where h(θ) is an r × 1
vector function of θ with r ≤ p, the general form of the RS test statistic is

RS = S(θ̃)′I(θ̃)−1S(θ̃), (15)

where θ̃ is the restricted maximum likelihood estimator (MLE) of θ, i.e., h(θ̃) = c. Asymp-
totically, under H0, the RS test statistic is distributed as χ2

r. Therefore, we observe two
optimality principles behind the RS test; first, in terms of LMP test as given in (6), and
second, in deriving the “optimal” direction for the multiparameter case, as in (13).

Rao (1948) suggested the score test as an alternative to the Wald (1943) statistic,
which for testing H0 : h(θ) = c is given by

W =
[
h(θ̂) − c

]′ [
H(θ̂)′I(θ̂)−1H(θ̂)

]−1 [
h(θ̂) − c

]
, (16)

where θ̂ is the unrestricted MLE of θ, and H(θ) = ∂h(θ)/∂θ is a r×p matrix with full column
rank r. Rao (1948, p.53) stated that his test (15), “besides being simpler than Wald’s has
some theoretical advantages.” For more on this see Bera (2000) and Bera and Bilias (2001).

Neyman and Pearson (1928) suggested their LR test as

LR = 2
lnL(θ̂)

L(θ̃)

 = 2
[
l(θ̂) − l(θ̃)

]
. (17)
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Their suggestion did not come from any search procedure satisfying an optimality criterion.
It was purely based on intuitive grounds; as Neyman (1980, p.6) stated, “The intuitive
background of the likelihood ratio test was simply as follows: if among the contemplated
admissible hypotheses there are some that ascribe to the facts observed probabilities much
larger than that ascribed by the hypothesis tested, then it appears ‘reasonable’ to reject the
null hypothesis.”

The three statistics RS, W, and LR, given respectively in (15), (16), and (17) are
referred to as the “Holy Trinity.” These tests can be viewed as three different distance mea-
sures between H0 and H1. When H0 is true, we should expect the restricted and unrestricted
MLEs of θ, namely θ̃ and θ̂ to be close, and likewise the log-likelihood functions l(θ̃) and
l(θ̂), respectively. The LR statistic in (17) measures the distance through the log-likelihood
function and is based on the difference l(θ̂) − l(θ̃). To see the intuition behind the RS test,
note that S(θ̂) = 0 by construction, and thus we should expect S(θ̃) to be cloes to zero if
H0 is true. Therefore, the basis of the RS test is S(θ̃) − S(θ̂) = S(θ̃), distance between θ̃

and θ̂ measured through the function S(θ). Finally to test H0 : h(θ) = c, W considers the
distance directly in terms of h(θ), and is based on

[
h(θ̂) − c

]
−
[
h(θ̃) − c

]
= h(θ̂) − c, where

h(θ̃) = c by construction, as we see in expression (16). It is interesting to note the similarity
between the Wald and the RS tests based on h(θ̂) and S(θ̃), respectively. Therefore the
RS test statistic is closer to W than LR. Therefore, it makes sense that Rao (1948, p.53)
mentioned his test as an alternative to W.

The interrelationships among these three tests can be brought home to the students
of Statistics through the following amusing story [see Bera and Premaratne (2001, p.58)]:
Once around 1946 Ronald Fisher invited Jerzy Neyman, Abraham Wald, and C.R. Rao to his
Cambridge University lodge for afternoon tea. During their conversation, Fisher mentioned
the problem of deciding whether his dog, who had been going to an “obedience school” for
some time, was disciplined enough. Neyman quickly came up with an idea: leave the dog free
for some time and then put him on leash. If there is not much difference in his behavior, the
dog can be thought of as having completed the course successfully. Wald, who lost his family
in the concentration camps, was adverse to any kind of restrictions and simply suggested
leaving the dog free and seeing whether it behaved properly. Rao, who had observed the
nuisances of stray dogs in Calcutta streets, did not like the idea of letting the dog roam freely,
and suggested keeping the dog on a leash at all times and observing how hard it pulls on
the leash. If it pulled too much, it needed more training. That night when Rao was back in
his Cambridge dormitory after tending Fisher’s mice at the genetics laboratory, he suddenly
realized the connection of Neyman and Wald’s recommendations to the Neyman–Pearson
LR and Wald tests, respectively. He got an idea and the rest, as they say, is history.

At this stage, it will be instructive to provide a geometric illustration highlighting the
fundamental connections and contrasts among the three tests [see Bera (1983, pp.56-60)].
For simplicity, let us consider the case of scalar θ, i.e., p = 1, and that the null hypothesis
is H0 : θ = θ0. In Figure 1, we plot the score function S(θ) = dl(θ)/dθ against θ, the solid
curved line. The unrestricted MLE θ̂ is obtained by setting S(θ̂) = 0, i.e., at the point D.
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Figure 1: Geometry of LR, W and RS statistics

From the Figure 1, it is easily seen that

l(θ̂) − l(θ0) =
� θ̂

θ0

S(θ)d(θ) =

= Area under the curve S(θ) from θ0(point C) to θ̂(point D). (18)

Therefore,
LR = 2[l(θ̂) − l(θ0)] = 2 · Area(CDF ). (19)

For our particular case, h(θ) = θ−θ0, H(θ) = 1 and c = 0. Thus, W in (16) can be expressed
as

W = (θ̂ − θ0)2I(θ̂) = CD2 · I(θ̂). (20)

I(θ̂) can be obtained from −d2l(θ)/dθ2 = −dS(θ)/dθ, evaluated at θ = θ̂, i.e., from tanϕθ̂ =
CG/CD. Therefore,

W = CD2 · CG
CD

= CD · CG = 2 · Area(△CDG). (21)

On the other hand, the RS test will be based on S(θ) at θ0, i.e., on the distance CF. The
variance of S(θ0) can be estimated by −dS(θ0)/dθ = tanϕθ0 = CF/CE. Hence,

RS = CF 2.
CE

CF
= CF · CE = 2 · Area(△CEF ). (22)
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From above, we can note the following features of the three tests. First, since the
tests are based on three different areas in general, they will yield conflicting inference if the
same critical value is used [see Berndt and Savin (1977)]. Second, the RS tests depends only
on S(θ) and the slope of S(θ) at θ0. We can draw many curved lines through F with the same
slope at F, and the dotted line A′FD′ is an example. This implies that there may be other
S(θ) functions, i.e., other likelihood function representing different alternative hypothesis,
with the same slope at θ0, giving rise to the same RS test statistic. In the literature, this
property is known as invariance property of the RS test principle [see Godfrey (1988, p.70)].
Finally, for both the RS and W tests, the variances can be calculated in a number of ways
which are asymptotically equivalent. This can lead to different versions of the test statistics.
It is not clear which versions will give better results in finite samples.

Example 1: Let us start with a simple example where yi ∼ IIDN(θ, 1), i = 1, 2, . . . , n,
and we test H0 : θ = θ0 = 0 against θ > 0. Here the log-likelihood and score functions are
respectively

l(θ) = Constant − 1
2

n∑
i=1

(yi − θ)2,

and S(θ) =
n∑
i=1

(yi − θ) = n(ȳ − θ),
(23)

where ȳ = ∑
i yi/n. Note that here S(θ) is linear in θ, and thus from Figure 1, all the three

tests LR, W, and RS will be identical. Given that S(θ0) = nȳ with V ar[S(θ0)] = n, we will
reject H0, if

√
nȳ > zα, where zα is the upper α percent cut-off point of standard normal

distribution. For fixed n, the power of this test goes to 1 as θ → ∞. Hence the score test√
nȳ > zα is not only LMP, but also UMP for all θ > 0.

Example 2: [Ferguson (1967, p.235)] Consider testing for the median of a Cauchy distri-
bution with density

f(y; θ) = 1
π

· 1
1 + (y − θ)2 , −∞ < y < ∞. (24)

Since here I(θ) = n/2, the RS test will reject H0 : θ = θ0 against H1 : θ > θ0, if

S(θ0)√
I(θ0)

=
√

2
n

n∑
i=1

2(yi − θ0)
1 + (yi − θ0)2 > zα. (25)

As θ → ∞ with n remaining fixed, min(yi − θ0)
p→ ∞, and S(θ0)/

√
I(θ0)

p→ 0. Thus the
power of the test tends to zero as θ → ∞. Therefore what works for local alternatives may
not work for not-so-local alternatives. This is in contrast to Example 1 where the LMP test
is also the UMP.

In the example below we illustrate one of the most famous tests in the Statistics
literature that was suggested long before 1948 and the theoretical foundation of which can
be buttressed by the RS test principle.

Example 3: [Pearson (1900) Goodness-of-fit test]. Consider a multinomial distribution with
p classes and let the probability of an observation belonging to the j-th class be θj(≥ 0),
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j = 1, 2, . . . , p, so that ∑p
i=1 θj = 1. Denote the observed frequency of the j-th class by nj

with ∑p
j=1 nj = n. We are interested in testing θj = θj0, j = 1, 2, . . . , p, where θj0 are known

constants. Pearson (1900) suggested the statistic

P =
p∑
j=1

(nj − nθj0)2

nθj0
=
∑ (O − E)2

E
, (26)

where O and E denote respectively, the observed and expected frequencies. Given the
profound importance of P in almost all branches of science, we demonstrate the theoretical
underpinnings of P based on the RS test principle. The log-likelihood function, score and
information matrix are respectively, given by [see Bera and Bilias (2001, p.17)]

l(θ) = Constant+
p∑
j=1

nj ln(θj) (27)

S(θ)
[(p−1)×1]

=


n1
θ1

− np

θp
n2
θ2

− np

θp

· · ·
np−1
θp−1

− np

θp

 (28)

and
I(θ)

[(p−1)×(p−1)]
= n

[
diag

(
1
θ1
,

1
θ2
, . . . ,

1
θp−1

)
+ 1
θp

11′
]

(29)

where 1 = (1, 1, . . . , 1)′ is a (p − 1) × 1 vector of ones. We end up with effectively (p − 1)
parameters since ∑p

j=1 θj = ∑p
j=1 θj0 = 1. Using the above expressions, it is easy to see that

S(θ0)′I(θ0)−1S(θ0) = P, (30)

where θ0 = (θ10, θ20, ..., θp0)′ [see Rao (1973, p.442) and (Cox and Hinkley, 1974, p.316)]. The
coincidence that P is same as the RS test, is an amazing result. Pearson (1900) suggested
his test mostly based on intuitive grounds almost 50 years before Rao (1948).

3. Some applications of the RS test in econometrics

RS test was well ahead of its time. It went unnoticed for very many years. It is fair to
say that econometricians can claim major credit in recognizing its importance and applying
the RS test in several useful contexts and coming up with closed form, neat test statistics.
Rao himself acknowledged this fact by writing [see Rao (2005, p.15)] “I am gratified to
see the large number of papers contributed by econometricians on the application of the
score statistic to problems in econometrics and the extensions and improvements they have
made.” More recently, statisticians are catching up with innovative applications. To obtain a
quantitative perception of the influence of Rao (1948), we plot the yearly citations for the last
75 years in Figure 2. The corresponding cumulative citations are depicted in Figure 3. First
thing to note is that the total number of citations in the last 75 years is only 980, apparently
a very low number for such a seminal paper. Of course, we need to take into consideration of
the fact that there are many papers, especially in the Statistics literature, that use the score
test without making any reference to Rao (1948). Second, there are only a handful citations
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during the first thirty years, i.e., until around 1978. That was the time econometricians
recognized the usefulness of the Rao test principle, and used it in developing several model
specification tests. There was another surge in its use after another 30 years, i.e., around
2008, in both the Statistics and Econometrics literature. Finally, from both Figures 2 and
3, it is clear that overall, the number of citations is still going up at an increasing rate,
indicating continuing influence of Rao (1948), as far as the citation numbers go.

Figure 2: Yearly number of citations
of Rao (1948): 1948-2023

Figure 3: Cumulative number of ci-
tations

Byron (1968) was probably the first to apply the RS test in Econometrics. He used
Silvey (1959) Lagrange multiplier (LM) version along with the LR statistic for testing ho-
mogeneity and symmetry restrictions in the demand system. In the Econometrics literature,
the RS test is known as the LM test - the terminology came from Silvey (1959). Note that
the restricted MLE θ̃ under the restriction H0 : h(θ) = c can be obtained from the first order
condition of the Lagrangian function

L = l(θ) − λ′[h(θ) − c], (31)

where λ is an r × 1 vector of Lagrange multipliers. The first order conditions are

S(θ̃) −H(θ̃)λ̃ = 0 (32)

h(θ̃) = c, (33)

where H(θ) = dh(θ)/dθ. Therefore, from (32) we have S(θ̃) = H(θ̃)λ̃. Given that H(θ)
has full rank, S(θ̃) = 0 is equivalent to λ̃ = 0. These multipliers can be interpreted as the
implicit cost (shadow prices) of imposing the restrictions h(θ) = c. It can be shown that

λ̃ = dl(θ̃)
dc

, (34)

i.e., the multipliers give the rate of change of the maximum attainable value of the log-
likelihood function with respect to the change in constraints. If H0 : h(θ) = c is true and
l(θ̃) gives the optimal value, λ̃ should be close to zero. Given this “economic” interpretation
in terms of Lagrange multipliers, it is not surprising that econometricians prefer the term
LM rather than RS. In terms of Lagrange multipliers, (15) can be expressed as

RS = LM = λ̃′H(θ̃)′I(θ̃)−1H(θ̃)λ̃. (35)
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After Byron (1968), it took another decade for econometricians to realize the poten-
tial of the RS test. The earlier notable contributions include Savin (1976), Berndt and Savin
(1977), Breusch (1978, 1979) and Godfrey (1978a,b,c). Possibly Breusch and Pagan (1980)
had been the most influential. They collected relevant research reported in the Statistics
literature, presented the RS test in a general framework in the context of evaluating various
econometric models, and discussed many applications. In a full length research monograph,
Godfrey (1988) provided a comprehensive account of most of the available RS tests in Econo-
metrics. Bera and Ullah (1991) and Bera and Bilias (2001) demonstrated that many of the
commonly used specification tests could be given a score-test interpretation. For the last
two-score years the RS tests had been the most common items in econometricians’ kit for
testing tools. It is not hard to understand the popularity of the score test principle in eco-
nomics. In most cases, the algebraic forms of W and LR tests can hardly be simplified
beyond their original formulae (16) and (17). On the other hand, in the majority of the
cases the RS test statistics can explicitly be reduced to neat and elegant explicit formulae
enabling its easy incorporation into computer software.

We will not make any attempt to provide a comprehensive list of applications of the
RS test in Econometrics, for there are far too many. For instance, consider the workhorse of
basic econometric modeling, the linear regression model:

yi = x′
iβ + ϵi, (36)

where yi is the i-th observation on the dependent variable, xi is the i-th observation on
k exogenous variables and ϵi ∼ IIDN(0, σ2), i = 1, 2, . . . , n. The ordinary least squares
(OLS) estimation and the related hypotheses tests are based on the four basic assumptions:
correct linear functional form; the assumptions of disturbance normality; homoskedasticity;
and serial independence. Just to name some of the uses of the RS test principle, test for
normality was derived by Bera and Jarque (1981) and Jarque and Bera (1987); Breusch and
Pagan (1979) proposed a test for homoskedasticity; and Godfrey (1978a,b) developed tests
for serial independence which are very close to the earlier Durbin and Watson (1950) test.

To see the attractiveness of the RS test, let us briefly consider the popular Jarque
and Bera (JB) test for normality. Bera and Jarque (1981) started with the Pearson (1895)
family of distributions for the disturbance term ϵi in (36). That means if the pdf of ϵi is
f(ϵi), we can write

d log f(ϵi)
dϵi

= c1 − ϵi
σ2 − c1ϵi + c2ϵ2

i

, i = 1, 2, . . . , n, (37)

where c1 and c2 are constants. The null hypothesis of normality can be stated as H0 : c1 =
c2 = 0 in (37). Given the complexity of ML estimation of σ2, c1, and c2 in the Pearson family
of distributions, W and LR tests are ruled out from a practical point of view. However, the
score functions corresponding to c1 and c2 in (37), evaluated under the normality assumption,
are given respectively by

S(c̃1) = n
√
b1

3 (38)

and
S(c̃2) = n

4 (b2 − 3), (39)
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where
√
b1 = m3/m

3/2
2 and b2 = m4/m

2
2 with mj = 1

n

∑n
i=1 ϵ̃

j
i , ϵ̃i = yi −x′

iβ̃ as OLS residuals,
j = 2, 3, 4. For large n, under normality

E
[√

b1

]
= 0, V ar

[√
nb1

]
= 6, (40)

E [b2] = 3, V ar
[√
nb2

]
= 24, (41)

and they are asymptotically normally distributed. Thus, a simple test statistic for normality
is given by

JB = n

[
(
√
b1)2

6 + (b2 − 3)2

24

]
, (42)

which is asymptotically distributed as χ2
2. It turns out that this test was mentioned by

Bowman and Shenton (1975) but was hardly used in practice due to its lack of theoretical
underpinnings. The RS test principle uncovered the theoretical justification of (42), ensuing
the asymptotic optimality of the test. As it is obvious, JB is based on the two moments, third
and fourth. One could have started with these two moments directly without going through
the full derivations. From that point of view this RS test has a moment test interpretation.

It is quite common to express specification tests in Econometrics as moment tests.
In a way “any” moment test can be obtained as a RS test under a suitably defined density
function. To see this, let us write the r moment restrictions as

Ef [m(y; θ)] = 0, (43)
where Ef [·] means that (43) is true only when f(y; θ) is the correct pdf. A test for the
hypothesis H0 : Ef [m(y; θ)] = 0 can be based on the estimate of the sample counterpart of
Ef [m(y; θ)], namely,

1
n

n∑
i=1

m(yi; θ). (44)

Now consider an auxiliary density function
f ∗(y; θ, γ) = f(y; θ) exp[γ′m(y; θ) − ϕ(θ, γ)], (45)

where ϕ(θ, γ) = ln
�

exp[γ′m(y; θ)]f(y; θ)dy, with γ as (r × 1) parameter vector.

Note that if f(y; θ) is the correct pdf, then γ = 0 in (45). The log-likelihood function
under the alternative hypothesis is

l∗(θ, γ) =
n∑
i=1

ln f ∗(yi; θ, γ). (46)

Therefore, the score function for testing γ = 0 in (45) is given by

∂l∗(θ, γ)
∂γ

∣∣∣∣∣
γ=0

=
n∑
i=1

m(yi, θ), (47)

and it provides the identical moment test as in (44). This interpretation of the moment test
as a score test was first noted by White (1994). It is easy to see that there are many choices
of auxiliary pdf f ∗(y; θ, γ) and the score test will be invariant with respect to these choices,
as depicted in Figuire 1. The LR and W tests, however, will be sensitive to the forms of
f ∗(y; θ, γ). This ends our coverage of the use of the RS test in Econometrics.
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4. Some applications of the RS test in statistics

Rao (1950b) proposed a sequential test of null hypotheses based on the score statistic
and his work on locally most powerful (LMP) tests in the case of one-sided alternative
hypotheses. His proposal was a reaction to Wald (1945) sequential probability ratio test
(SPRT) which was based on the idea of likelihood ratio test for the fixed sample case.

Wald’s SPRT statistic was devised to discriminate between different alternative hy-
potheses for the value of the unknown parameter θ. On the other hand, Rao (1950b) seeks
to test a null hypothesis H0 : θ = θ0 against a one-sided alternative hypothesis H1 : θ > θ0
with a test statistic that depends only on the null value.

For the fixed sample case, with sample of size N , the LMP test suggested by Rao and
Poti (1946) is defined by [also see equation (6)]

P ′
N(θ0) ≥ µPN(θ0), (48)

where P ′
N(θ0) is the first derivative of PN(θ) at θ = θ0, with µ chosen so as to maintain

Type-I error at a predetermined level. Motivated by this result, Rao (1950b) proposes a
sequential test of the form

P ′
n(θ0) ≥ A(N)Pn(θ0), (49)

with n ≤ N , A(N) a properly determined constant depending on the overall level of sig-
nificance, and N being the upper limit to the number of observations. According to this
sequential testing scheme, the sampling stops with rejection of the null hypothesis, at the
smallest value of n for which the inequality (49) holds true. If by the Nth sampled unit (49)
is not realized, the null is not rejected.

Berk (1953) proved that the sequential score tests against a one-sided alternative,
where the stopping rule is the first time a certain random walk exceeds a bounded interval,
are LMP tests asymptotically.

Sequential testing procedures that perform interim analyses during the evolution of
the experiment, with the goal of obtaining the result earlier than the termination time sug-
gested by the fixed sample analysis due to time or monetary cost considerations or ethical
reasons, are easier validated with the use of score-based test statistics rather than the ana-
logues of LR statistics. We may refer to chapters 9-11 of Sen (1981) for the role of score
processes in sequential nonparametrics, where it is mentioned (p.339) “it is comparatively
simpler to verify these regularity conditions [i.e., for the score] than those for the likelihood
function.”

Lombardi (1951), in a thesis on how to select a panel of judges for taste testing
and quality evaluation using scientifically sound methods, appears to be one of the first
applications of the sequential testing using Rao (1950b) methodology and its comparison
with Wald’s approach.

To diagnose the potential ability of candidate judges and to decide on the selection of
a taste panel, each candidate judge is required to perform a prespecified number of sample
comparisons. The number of sample comparisons that should be performed by each candi-
date judge before reaching to a decision on who to include in the taste panel is always a
concern.
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Bradley (1953), in conjunction with Lombardi, adapted Rao’s method to binomial dis-
tribution, and is an early effort to communicate these statistical procedures for the selection
of a taste panel to food technologists.

What makes the Rao procedure relatively more appropriate than that of Wald is
that a limit to the testing of any one potential judge may be set. In this application, N
denotes the maximum number of tests to be given to any judge. As it is noted by (Bradley,
1953, p.28): “The theory of the procedure needs further investigation since its properties
are not well known. However, when it is applied to sequences of triangle tests, apparently
satisfactory results are obtained.”

In another context, time-series researchers use sequential analysis to determine and
test for structural breaks. In a recent application, Bucci (2024) proposes a sequentially
computed score statistic to test for the number of regimes in multivariate nonlinear models.

4.1. The role of the score statistic in survival analysis

Another context where the RS test statistic has found fruitful applications for in-
ference is the analysis of survival data. The semiparametric proportional hazards model
proposed by Cox (1972) is a standard tool of analysis for time-to-an-event data met in
medical, engineering and economic applications. The parameter estimation using the partial
likelihoood of Cox (1975) initiated an intense research activity for the validation of inference.
The majority of the test statistics are special cases of weighted score statistics for different
weighting functions and different type of covariates.

The partial likelihood score statistic has a natural martingale characterization. By
rewriting the model within the counting process framework, Andersen and Gill (1982) were
able to obtain a general asymptotic theory of the score statistic and the associated estimator.
In a research related to sequentially computed score test statistic for repeated significance
tests, Tsiatis (1981) established the joint asymptotic normality of efficient scores test for the
proportional hazards model calculated over time. In a fundamental breakthrough, Sellke
and Siegmund (1983) showed that the score process (over time) of the partial likelihood
is approximated by a suitable martingale and thus behaves asymptotically like Brownian
motion.

Bilias (2000) offered an application of a repeated significance test in a retrospective
analysis of the Pennsylvania ‘Reemployment Bonus’ controlled experiments conducted by the
US Department of Labor. Their main purpose was to determine whether the offer of a bonus
amount to the unemployment insurance (UI) claimants, provided that they find a job with
some required permanence within a given period of time, can act as an incentive for more
intensive job-seeking with subsequent reduction of the unemployment spells. The response
of primary interest is the length of insured unemployment spell and it is assumed that it
follows a proportional hazard regression model. The statistic for measuring the effect of the
various bonus packages on the duration of insured unemployment relative to the existing
scheme is the partial likelihood score statistic. In carrying out sequential analysis, the score
statistic is evaluated repeatedly, at different points in chronological time, each time with the
available data. The retrospective sequential analysis concluded that the experiment could
be concluded earlier than the fixed sample analysis with gains in time and monetary savings.
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5. Robust RS tests under distributional and parametric misspecifications

As we have narrated in the previous sections the success of the RS test had been
phenomenal. However the main problem in these specification tests is that they are developed
under the assumption that the underlying probability model is correctly specified. When the
assumed model is misspecified, it is well known that the RS test loses its local optimal
properties.

While discussing the problem in statistical hypothesis testing, Haavelmo (1944, pp.65-
66) stated, “Whatever be the principles by which we choose a “best” critical region of size
α, the essential thing is that a test is always developed with respect to a given fixed set
of possible alternatives Ω0.” Haavelmo called Ω0, the a priori admissible hypotheses and
according to him, a test is not robust if we shift our attention to another admissible set Ω′

(that may be obtained by extending Ω0 to include new/different alternatives), for which the
proposed test has poor size and power properties.

Very often it is difficult to interpret the results of a test applied to a misspecified
model. For instance, while testing the significance of some of the regression coefficients in
the linear regression models, the results are not easily interpretable when a nonlinear model
is the appropriate one [see, White (1980), Bera and Byron (1983) and Byron and Bera
(1983)]. In the Statistics and Econometrics literature, most emphasis has been put on the
minimization of type-I and type-II error probabilities. There are, however, only a few works
that seriously consider the consequences and suggest remedies of misspecifying the a priori
admissible hypothesis – which can be called the type-III error.

Note that the model under our a priori admissible hypothesis could be misspecified
in a variety of ways. Here we consider only two kinds: distributional and parametric. In the
former case, the assumed probability density function differs from the true data generating
process (DGP). Kent (1982) and White (1982) analyzed this case and suggested a modified
version of the RS test that involves adjustment of the variance of the score function. In the
parametric misspecification case, the dimension of the assumed parameter space does not
match with the true one. Bera and Yoon (1993) developed a modified RS test that is valid
under the local parametric misspecification.

5.1. Robust RS test under distributional misspecification

Let the true DGP be described by the unknown density g(y) and f(y; θ) be our as-
sumed distribution. The RS test statistic given in (15) is not valid when g(y) and f(y; θ)
differ. This is because some of the standard results breakdown under distributional misspec-
ification. For instance, consider the information matrix (IM) equality:

Ef

[
∂ ln f(y; θ)

∂θ
· ∂ ln f(y; θ)

∂θ′

]
= Ef

[
−∂2 ln f(y; θ)

∂θ∂θ′

]
, (50)

where Ef [·] denotes expectation under f(y; θ). Let us now define

J(θg) = nEg

[
∂ ln f(y; θ)

∂θ
· ∂ ln f(y; θ)

∂θ′

]
(51)

K(θg) = nEg

[
−∂2 ln f(y; θ)

∂θ∂θ′

]
, (52)
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where θg minimizes the Kullback-Leibler information criterion [see White (1982)]

IKL = Eg

[
ln g(y)
f(y; θ)

]
. (53)

One can easily see that J(θg) ̸= K(θg), in general.

Example 4: Suppose we take f(y; θ) ≡ N(µ, σ2), and let the DGP g(y) satisfy
Eg[y] = µ, Eg[y − µ]2 = σ2, Eg[y − µ]3 = µ3 and Eg[y − µ]4 = µ4. Then it is easy to show
that

J(θg) =
[

1
σ2

µ3
2σ6

µ3
2σ6

µ4
4σ2 − 1

4σ4

]
(54)

and

K(θg) =
[

1
σ2 0
0 1

2σ2

]
. (55)

Hence, J(θg) = K(θg) if and only if µ3 = 0 and µ4 = 3σ4. We can clearly see the connection
of these conditions and the JB test for normality given in (42).

Due to this divergence between J and K, and noting that we defined the information
matrix I(θ) in (10) by taking expectation under f(y; θ) instead of under the DGP g(y),
the standard RS test in (15) is not valid. Let us define an estimator of θ by maximizing a
likelihood function based on the misspecified density f(y; θ) in place of the unknown DGP
g(y). Such an estimator is called quasi-MLE (QMLE). An early reference to QMLE can be
found in Koopmans et al. (1950, p.135) [for more on this see Bera et al. (2020)]. We will
denote QMLE of θ (under H0) by θ̃. Kent (1982) and White (1982) suggested the following
robust form of the RS test statistic for testing the H0 : h(θ) = c:

RS∗(D) = S(θ̃)′K(θ̃)−1H(θ̃)[H(θ̃)′B(θ̃)H(θ̃)]H(θ̃)′K(θ̃)−1S(θ̃), (56)

where H(θ) = ∂h(θ)/∂θ, B(θ) = K(θ)−1J(θ)K(θ)−1 and the notation RS∗(D) is used to
signify robust RS test statistic under distributional misspecification.

Under H0 : h(θ) = c, RS∗(D) is asymptotcally distributed as χ2
r even under distri-

butional misspecification, that is, when the assumed density f(y; θ) does not coincide with
the true DGP g(y). This approach of finding the asymptotically correct formula for variance
has its origin in Koopmans et al. (1950, pp.148-150); for more on this see Bera et al. (2021).
Expression (56) can be simplified if the parameter vector θ (p × 1) can be partitioned as
θ = (γ′, ψ′)′ where γ and ψ have dimensions m and r, respectively, m + r = p, and we test
H0 : ψ = ψ∗ (say). Let us also partition the score function S(θ) and J(θ) [similarly K(θ)] as

S(θ) = ∂l(θ)
∂θ

=
∂l(θ)

∂γ
∂l(θ)
∂ψ

 =
[
Sγ(θ)
Sψ(θ)

]
(say) (57)

and

J(θ) =
[
Jγ Jγψ
Jψγ Jψ

]
. (58)
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While testing H0 : ψ = ψ∗, under this setup h(θ) = ψ−ψ∗ and H(θ) = [0r×(p−r), I(r×r)], and
we can express RS∗(D) in (56) as [see also Bera et al. (2020)]

RS∗
ψ(D) = S ′

ψ(θ̃)
[
Kψ(θ̃) + Jψγ(θ̃)J−1

γ (θ̃)Kγ(θ̃)J−1
γ (θ̃)Jγψ(θ̃)

−Jψγ(θ̃)J−1
γ (θ̃)Kγψ(θ̃) −Kψγ(θ̃)J−1

γ (θ̃)Jγψ(θ̃)
]−1

Sψ(θ̃), (59)

where θ̃ = (γ̃′, ψ′
∗)′, the restricted MLE under H0 : ψ = ψ∗.

Example 5: In (37) the parameters c1 and c2 of the Pearson family of distributions can
be treated, respectively, as the “skewness” and “kurtosis” parameters. Suppose we test the
symmetry ignoring the (excess) kurtosis. Then we can start with the system (37) with c2 = 0,
that is,

d log f(ϵi)
dϵi

= c1 − ϵi
σ2 − c1ϵi

. (60)

After some derivation, it can be shown that the standard RS test for c1 = 0 is given by

RSc1 = n
(
√
b1)2

6 , (61)

which is essentially the first part of JB in (42). If f(ϵi) in (60) is not the true DGP, RSc1 will
not be valid; in particular, the asymptotic variance formula used in (61), V ar(

√
nb1) = 6 is

incorrect [see also equation (40)]. For instance in the presence of excess kurtosis, there will be
proportionately more outliers, resulting in higher variance, and thus “6” will underestimate
the true variance of

√
nb1. After incorporating the variance correction as in RS∗

ψ(D) in (59)
the robust RS test statistic can be written as [for further details see Premaratne and Bera
(2017)]:

RS∗
c1(D) = n

(
√
b1)2

[9 +m6m
−3
2 − 6m4m

−2
2 ]

, (62)

where mj = 1
n

∑n
i=1 ϵ̃

j
i , j = 2, 4, 6. From (62) we can write the population counterpart of the

V ar(
√
nb1) as

V ar(
√
nb1) = 9 + µ6µ

−3
2 − 6µ4µ

−2
2 , (63)

where µj denotes the j-th population moment of ϵ. Therefore, the construction of the robust
RS test statistic RS∗

c1(D) indicates that the true variance of
√
nb1 that is valid under excess

kurtosis is given by (63). If we impose normality, µ6 = 15σ6 and µ4 = 3σ4, then with
µ2 = σ2, (63) reduces to V ar(

√
nb1) = 9 + 15 − 6 × 3 = 6, as in (61).

Example 6: Consider the test for homoskedasticity under the regression framework of (36),
where we now explicitly specify the heteroskedastic structure as V ar(ϵi) = σ2

i = σ2 + δ′zi,
where δ is a r × 1 vector and zi’s are fixed exogenous variables, i = 1, 2, . . . , n. Assuming
normality of ϵi the RS statistic for testing homoskedasticity hypothesis H0 : δ = 0 is given
by [see Breusch and Pagan (1979)]

RSδ = ν ′Z(Z ′Z)−1Z ′ν

2σ̃4 , (64)

where νi = ϵ̃2
i − σ̃2, ν = (ν1, ν2, . . . , νn)′ and Z = (z1, z2, . . . , zn)′. The factor “2σ̃4” is the

consequence of the normality assumption, and therefore, the test in (64) will not be valid
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even asymptotically if ϵi’s are not distributed as normal. Using (61), the robust form of RS
test statistics can be derived as

RS∗
δ (D) = ν ′Z(Z ′Z)−1Z ′ν

ν′ν
n

. (65)

This is the same modification suggested by Koenker (1981). Note that the modification
amounts to replacing V ar(ϵ2

i ) = µ4 − µ2
2 = 3σ4 − σ4 = 2σ4 (derived under normality) by a

robust estimate, namely, by, 1
n

∑n
i=1(ϵ̃2

i − σ̃2)2 = (ν ′ν)/n. For other applications of RS∗(D)
see for instance, Lucas (1998) and Premaratne and Bera (2017).

In a similar fashion the Wald statistic in (16) can be robustified as [see Kent (1982),
White (1982), and Pace and Salvan (1997)]:

W ∗ = [h(θ̂) − c]′[H(θ̂)B(θ̂)H(θ̂)]−1[h(θ̂) − c], (66)

and asymptotically it has χ2
r distribution under the null hypothesis H0 : h(θ) = c. Thus,

robust RS∗ and W ∗ are obtained by robustifying the variance expressions, respectively,
of S(θ̃) and h(θ̂). However, similar robustification of LR statistic in (17) is not possible.
Kent (1982) showed that under distributional misspecification LR statistic is asymptotically
distributed as a weighted sum of r independent χ2

1 variables, and thus no obvious “variance”
adjustment is possible.

5.2. Robust RS tests under parametric misspecification

Consider a general statistical model represented by the log-likelihood function l(γ, ψ, ϕ)
where γ, ψ, and ϕ are parameter vectors with dimensions (m × 1), (r × 1) and (q × 1), re-
spectively. Thus our (p × 1) parameter vector is θ = (γ′, ψ′, ϕ′)′ and p = m + r + q.
Suppose an investigator sets ϕ = 0 and tests H0 : ψ = 0 using the log-likelihood function
l1(γ, ψ) = l(γ, ψ, 0). We will denote the RS statistic for testing H0 in l1(γ, ψ) by RSψ. Let
us also denote θ̃ = (γ̃′, 0, 0)′, where γ̃ is MLE of γ when ψ = 0 and ϕ = 0. The score vector
and the information matrix are defined, respectively, as

S(θ) = ∂l(θ)
∂θ

=


∂l(θ)
∂γ
∂l(θ)
∂ψ
∂l(θ)
∂ϕ

 =

Sγ(θ)Sψ(θ)
Sϕ(θ)

 (say) (67)

I(θ) = Eθ

[
−∂2l(θ)
∂θ∂θ′

]
=

 Iγ Iγψ Iγϕ
Iψγ Iψ Iψϕ
Iϕγ Iϕψ Iϕ

 . (68)

If l1(γ, ψ) were correctly specified, then the RS test statistic of (15), in the current context
can be written as

RSψ = Sψ(θ̃)′I−1
ψ·γ(θ̃)Sψ(θ̃), (69)

where Iψ·γ = Iψ − IψγI−1
γ Iγψ and it will be asymptotically distributed as central χ2

r. Under
this set-up, asymptotically RSψ will have the correct size and will be locally optimal.
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Let us now consider the case of parametric misspecification. Suppose the true log-
likelihood function is l2 = (γ, ϕ) = l(γ, 0, ϕ), so that the alternative l1(γ, ψ) becomes mis-
specified. Using the sequence of local DGP ϕ = δ/

√
n, Davidson and MacKinnon (1987) and

Saikkonen (1989) showed that under l2(γ, ϕ) with ϕ = δ/
√
n, RSψ in (69), under H0 : ψ = 0

will be distributed as non-central χ2
r with noncentrality parameter,

λ(δ) = δ′Iϕψ·γI−1
ψ·γIψϕ·γδ, (70)

with I ′
ϕψ·γ = Iψϕ·γ = Iψϕ − IψγI−1

γ Iγϕ. Owing to the presence of this non-centrality pa-
rameter, RSψ will reject the null hypothesis H0 : ψ = 0 more often than allowed by the
preassigned size of the test, even when ψ = 0. Therefore, under parametric misspecification,
RSψ will have an excessive size. For the expression of λ(δ) in (70), we note that the crucial
quantity is Iψϕ·γ, which can be interpreted as the conditional covariance between the scores
Sψ and Sϕ given Sγ. If Iψϕ·γ = 0, then the local presence of the misspecified parameter
ϕ = δ/

√
n will have no effect on the performance of RSψ.

Using the expression in (70), Bera and Yoon (1993) suggested a modification to RSψ
so that the resulting test is robust to the presence of ϕ. The modified statistic is given by

RS∗
ψ(P ) =[Sψ(θ̃) − Iψϕ·γ(θ̃)I−1

ϕ·γ(θ̃)Sϕ(θ̃)]′

[Iψ·γ(θ̃) − Iψϕ·γ(θ̃)I−1
ϕ·γ(θ̃)Iϕψ·γ(θ̃)]−1

[Sψ(θ̃) − Iψϕ·γ(θ̃)I−1
ϕ·γ(θ̃)Sϕ(θ̃)].

(71)

Here the notation RS∗(P ) is used to signify robust RS test statistic under parametetric
misspecification. Under H0 : ψ = 0, RS∗

ψ(P ) is asymptotically distributed as central χ2
r,

i.e., RS∗
ψ(P ) has the same asymptotic distribution as of RSψ in (69) based on the correct

specification. Thus, RS∗
ψ(P ) provides an asymptotically correct-size test under the locally

misspecified alternative l2(γ, ϕ).

RS∗
ψ(P ) essentially adjusts the asymptotic mean and variance of standard (unad-

justed) RSψ. Another way to look at RS∗
ψ(P ) is to view the quantity, Iψϕ·γ(θ̃)Iϕ·γ(θ̃)−1Sϕ(θ̃)

as the prediction of Sψ(θ̃) by Sϕ(θ̃). Here Sϕ(θ̃) is the score function of the parameter vec-
tor ϕ whose effect we want to take into account in constructing the robust version of the
test. Therefore, the net score S∗

ψ(θ̃) = Sψ(θ̃) − Iψϕ·γ(θ̃)I−1
ϕ·γ(θ̃)Sϕ(θ̃) is the part of Sψ(θ̃)

that remains after eliminating the effect of Sϕ(θ̃). In summary, S∗
ψ(θ̃ ⊥ Sϕ(θ̃), though Sϕ(θ̃)

has “peer” effect on Sψ(θ̃). Three more things regarding RS∗
ψ(P ) are worth noting. First,

RS∗
ψ(P ) requires estimation only under the joint null, namely for the constrained model in

which both ψ = 0 and ϕ = 0. Given the full specification of the model l(γ, ψ, ϕ), it is of
course possible to derive a RS test for H0 : ψ = 0 in the presence of ϕ. However, that requires
the MLE of ϕ, which could be difficult to obtain in some cases. Second, when Iψϕ·γ = 0,
RS∗

ψ(P ) = RSψ. This is a simple condition to check in practice. As mentioned earlier, if this
condition is true, RSψ is an asymptotically valid test in the local presence of ϕ. Finally, Bera
and Yoon (1993) showed that for local misspecification RS∗

ψ(P ) is asymptotically equivalent
to Neyman (1959) C(α) test, and therefore, shares its optimality properties.

Example 7: To illustrate the usefulness of the robust score statistic RS∗
ψ(P ), we now

consider the tests developed in Anselin et al. (1996) for the mixed regressive - spatial au-



420
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

ANIL K. BERA AND YANNIS BILIAS [Vol. 22, No. 3

toregressive (SAR) model with a SAR disturbance

y = ϕWy +Xγ + u

u = ψWu+ ϵ

ϵ ∼ N(0, Iσ2).
(72)

In this model, y is an (n × 1) vector of observations on a dependent variable recorded at
each of n locations, X is an (n×m) matrix of exogenous variables, and γ is a (m× 1) vector
of parameters, ϕ and ψ are scalar spatial parameters and W is an observable spatial weight
matrix with positive elements, associated with the spatially lagged dependent variable and
SAR disturbance u. This spatial weight matrix represents “degree of potential interactions”
among neighboring locations and are scaled so that the sum of the each row elements of W
is equal to one.

The conventional RS statistic for testing H0 : ψ = 0 is given by

RSψ = [ũ′Wũ/σ̃2]2

T
, (73)

where ũ = y − Xγ̃ are the OLS residuals, σ̃2 = ũ′ũ/n and T = tr[(W ′ + W )W ]. One very
interesting observation here is that RSψ is essentially same as the widely used Moran (1948)
I test. Let us now consider testing H0 under the local presence of ϕ. First, the crucial
quantity to consider is Iψϕ·γ which is equal to T and that can never be zero. Therefore
robustification of RSψ is needed. Anselin et al. (1996) derived the robust test as

RS∗
ψ(P ) = [(ũ′Wũ)/σ̃2 − T (Iϕ·γ)−1(ũ′Wy)/σ̃2]2

T [1 − T (Iϕ·γ)−1] , (74)

where
Iϕ·γ = [(WXγ̃)′M(WXγ̃) + T σ̃2]

σ̃2 , (75)

with M = I − X(X ′X)−1X ′. A comparison of (73) and (74) clearly reveals that RS∗
ψ(P )

modifies the standard RSψ by correcting the asymptotic mean and variance of the score
function Sψ.

In a similar way we can find RSϕ and RS∗
ϕ(P ) which are given, respectively, by

RSϕ = [(ũ′Wy)/σ̃2]2

Iϕ·γ
(76)

and
RS∗

ϕ(P ) = [(ũ′Wy)/σ̃2 − (ũ′Wũ)/σ̃2]2

Iϕ·γ − T
, (77)

where Iϕ·γ = Iϕ − IϕγI−1
γ Iγϕ using the submatrices of the partinioned form of I(θ) given in

(68). Anselin (1988) derived a joint RS test for H0 : ψ = ϕ = 0 under the framework of (72)
and that takes the following form

RSψϕ = [(ũ′Wũ)/σ̃2]2

T
+ [(ũ′Wy)/σ̃2 − (ũ′Wũ)/σ̃2]2

Iϕ·γ − T
. (78)
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This statistic is asymptotically distributed χ2
2. It is easy to verify that [see Bera et al. (2020,

Corollary 1)]
RSψϕ = RSψ +RS∗

ϕ(P ) = RSϕ +RS∗
ψ(P ). (79)

In other words, the directional RS test for ψ and ϕ can be decomposed into sum of the
unadjusted one-directional test for one type of alternative and the adjusted form for the
other alternative. Equalities in (79) can facilitate computations of the adjusted (robust) RS
tests after having the unadjusted versions which are easy to obtain and are reported in most
of the spatial software.

Anselin and Florax (1995) and Anselin et al. (1996) provided simulation results on
the finite sample performance of the unadjusted and adjusted RS tests and some related
tests. The adjusted tests RS∗

ψ(P ) and RS∗
ϕ(P ) performed remarkably well. Those had very

reasonable empirical sizes, remaining within the confidence intervals in all cases. In terms
of power they performed exactly the way they were supposed to.

5.3. Robust RS tests under both the distributional and parametric misspecifi-
cations

Now we combine the results of Sections 5.1 and 5.2 and develop robust tests RS∗
ψ(DP )

which provides a two-way protection against both types of misspecifications, distributional
(D) and parametric (P ). As we have noted in (59), RS∗

ψ(D) involves both the J(θ) and
K(θ) matrices in the variance expression of Sψ(θ̃). While to account of the parametric
misspecification, as we did in (71), Iψϕ·γ(θ̃)I−1

ϕ·γ(θ̃)Sϕ(θ̃) must be subtracted from Sψ(θ̃) to
center its mean to zero. The expression for RS∗

ψ(DP ) is given by [for details see Bera et al.
(2020)]:

RS∗
ψ(DP ) =

[
Sψ(θ̃) − Jψϕ·γ(θ̃)J−1

ϕ·γ(θ̃)Sϕ(θ̃)
]′

[
Bψ·γ(θ̃) + Jψϕ·γ(θ̃)J−1

ϕ·γ(θ̃)Bϕ·γ(θ̃)J−1
ϕ·γ(θ̃)Jϕψ·γ(θ̃)

−Jψϕ·γ(θ̃)J−1
ϕ·γ(θ̃)Bϕψ·γ(θ̃)Bψϕ·γ(θ̃)J−1

ϕ·γ(θ̃)Jϕψ·γ(θ̃)
]−1

[
Sψ(θ̃) − Jψϕ·γ(θ̃)J−1

ϕ·γ(θ̃)Sϕ(θ̃)
]
, (80)

where
Bψ·γ = Kψ + JψγJ

−1
γ KγJ

−1
γ Jγψ − JψγJ

−1
γ Kγψ −KψγJ

−1
γ Jγψ, (81)

similarly Bϕ·γ and

Bψϕ·γ = Kψϕ − JψγJ
−1
γ Kγϕ −KψγJ

−1
γ Jγϕ + JψγJ

−1
γ KγJ

−1
γ Jγϕ, (82)

and similarly Bϕψ·γ. Expressions for the general forms of J(θ) and K(θ) are given in (51)
and (52) and here we are using their partitioned forms for θ = (γ′, ψ′, ϕ′)′. Under H0 : ψ = 0,
the RS∗

ψ(DP ) test statistic will be asymptotically distributed as χ2
r in the presence of both

distributional and parametric misspecifications. Although RS∗
ψ(DP ) has rather a lengthy

expression as in (80), it is actually easy to compute requiring only θ̃ = (γ̃′, 0′, 0′)′. It can be
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easily seen that under no distributional misspecification, i.e., when f(y; θ) ≡ g(y), resulting
in K(θ̃) = J(θ̃),

RS∗
ψ(DP ) = RS∗

ψ(P ), (83)

and similarly under no parametric misspecification, i.e., when δ = 0 in ϕ = δ/
√
n,

RS∗
ψ(DP ) = RS∗

ψ(D). (84)

Finally, trivially when K = J and δ = 0,

RS∗
ψ(DP ) = RSψ (85)

as given in (69).

Example 8: Let us briefly go back to Example 7 and now introduce distributional misspeci-
fication along with the presence of parametric misspecification. This case has been rigorously
considered by Fang et al. (2014) and they demostrated both analytically and through exten-
sive simulations that RS∗

ψ(P ) and RS∗
ϕ(P ) as given, respectively in (74) and (77) are valid

under non-normality. Therefore, RS∗
ψ(DP ) = RS∗

ψ(P ) and RS∗
ϕ(DP ) = RS∗

ϕ(P ). This is a
somewhat unsual situation. For this model as given in (72), information matrix equality does
not hold, i.e., J(θg) ̸= K(θg) [see equations (51)-(53)]. However, still J−1KJ−1 = J−1. This
is a serendipitous situation, since no additional adjustment is needed for the distributional
misspecification. The intuition behind this serendipity is that the hypotheses ψ = 0 and
ϕ = 0 relate to the conditional mean (first moment) of y in (72) (conditional on the neigh-
borhood as captured by the W matrix). However, in general, only tests for variance (second
moment) and higher moments get affected by non-normality. A similar case appeared in
Bera et al. (2020) where they considered testing for random effects and serial correlation
within an error component model. Extensive simulation results are also given in Koley and
Bera (2022, 2024) demonstrating the robustness of the RS tests under non-normality in finite
sample in spatial regression model set up.

6. Epilogue

We started this survey paper by stating that C.R. Rao’s work was always inspired by
some practical problems. In his 2003 Econometric Theory (ET) Interview [see Bera (2003,
p.349)], on the RS test, Rao had the following to say, “The test evolved in a natural way
while I was analyzing some genetic data. As I recall, the problem was the estimation of a
linkage parameter using data sets from different experiments designed in such a way that
each data set had information on the same linkage parameter. It was, however, necessary
to test whether such an assumption could be made because of unforeseen factors affecting
the experiments. This required a test for consistency of estimates derived from different
experimental data sets.” Thus we had a new statistical test principle, after LR and W,
motivated by a practical problem in genetics. However, as we have narrated here, the
resulting RS test principle has a far reaching influence even beyond the Statistics, and in
particular, it has become one of the most useful model misspecification testing tools in the
Econometrics literature. In the history of any scientific field, once in a while there comes a
moment for a major breakthrough. Appearance of Rao (1948) was such a historical moment.
In fact, after that we have not witnessed any new test principle, beyond the trinity, LR, W
and RS.
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To keep our exposition simple and to be close to the spirit of Rao (1948), we have
sticked to the likelihood framework. However, it is easy to extend the RS test and its various
ramifications to the generalized method of moments (GMM) and estimating functions (EF)
frameworks [for more on these, see for instance Basawa (1991) and Bera et al. (2010)].
We have also largely confined ourselves to the asymptotic properties and distributions of the
tests. However there is a huge literature on the investigation of the finite sample performance
of the RS, particularly, in relation to that of LR and W and finding bootstrap critical values;
for example see, Mukerjee (1990, 1993) and Horowitz (1997).

To conclude, we can only speculate what is stored in the future. Given the current
vastness of the field we have lost “sharp moments of birth”, like that of Rao (1948). However,
considering that 75 years have already been passed, it might be a time for a brand new equally
good test principle.

Acknowledgements

We are profoundly thankful to an anonymous referee for her/his careful reading and
offering many pertinent comments which led to improvement of the paper. An earlier version
of the paper was presented at the Invited Memorial Session for Professor C. R. Rao, Joint
Statistical Meetings (JSM), Portland, Oregon, August 3-8, 2024. We are thankful to the
participants of that conference for their comments, especially to the organizer of the Session,
Professor Ronald L. Wasserstein, Executive Director of the American Statistical Association
(ASA), for giving us the opportunity to present our paper. This paper was also presented at
the Department of Statistics, University of Illinois at Urbana-Champaign (UIUC). We would
like to thank the attendees of the UIUC seminar for their constructive feedback that further
helped in producing an improved version. We are grateful to our research assistant (RA)
Anirudh Adhikary. Without his assistance this paper wouldn’t have taken off. We are also
grateful to our other RAs, Rong Yuwen, Tiancheng Guo, Scarlett He, Yice Zhang and Wenqi
Zeng for their diligent work on compiling the citation numbers and a very careful analysis.
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Roy, S. N. (1953). On a Heuristic Method of Test Construction and its use in Multivariate
Analysis. The Annals of Mathematical Statistics, 24, 220 – 238.

Saikkonen, P. (1989). Asymptotic relative efficiency of the classical test statistics under
misspecification. Journal of Econometrics, 42, 351–369.

Savin, N. E. (1976). Conflict among testing procedures in a linear regression model with
autoregressive disturbances. Econometrica, 44, 1303–1315.

Sellke, T. and Siegmund, D. (1983). Sequential analysis of the proportional hazards model.
Biometrika, 70, 315–326.

Sen, P. K. (1981). Sequential Nonparametrics: Invariance Principles and Statistical Infer-
ence. Wiley, New York.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New
York.

Silvey, S. D. (1959). The Lagrangian Multiplier test. The Annals of Mathematical Statistics,
30, 389–407.

Tsiatis, A. A. (1981). The asymptotic joint distribution of the efficient scores test for the
proportional hazards model calculated over time. Biometrika, 68, 311–315.

Wald, A. (1943). Tests of statistical hypothesis concerning several parameters when the
number of observation is large. Transanctions of the American Mathematical Society,
54, 426–482.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics, 16, 117–186.

White, H. (1980). Using least squares to approximate unknown regression functions. Inter-
national Economic Review, 21, 149–170.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica,
50, 1–25.



428
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

ANIL K. BERA AND YANNIS BILIAS [Vol. 22, No. 3

White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge.



Statistics and Applications {ISSN 2454-7395 (online)}
Special Issue in Memory of Prof. C R Rao
Volume 22, No. 3, 2024 (New Series), pp 429–448
http://www.ssca.org.in/journal.html

r-Power for Multiple Hypotheses Testing under
Dependence

Swarnita Chakraborty, Adebowale Sijuwade and Nairanjana Dasgupta
Department of Mathematics and Statistics, Washington State University, United States

Received: 28 March 2024; Revised: 13 September 2024; Accepted: 17 September 2024

Abstract
In an era of “big data” the challenge of managing large-scale multiplicity in sta-

tistical analysis has become increasingly crucial. The concept of r-power, introduced by
Dasgupta et al. (2016), presents an innovative approach to addressing multiplicity with a
focus on the reliability of selecting a relevant list of hypotheses. This manuscript advances
the r-power conversation by relaxing the original assumption of independence among hy-
potheses to accommodate a block diagonal correlation structure. Through analytical
exploration and validation via simulations, we unveil how the underlying dependence
structure influences r-power. Our findings illuminate the nuanced role that dependence
plays in the reliability of hypothesis selection, offering a deeper understanding and novel
perspectives on managing multiplicity in large datasets. Furthermore, we highlight the
practicality and applicability of our results in the context of a Genome-Wide Association
Study (GWAS).
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1. Introduction

Multiple hypotheses testing has always been a concern in scientific research due
to the challenge of increasing false discoveries with growing multiplicity. However, the in-
creasing prevalence of large-scale testing has brought this topic front and center. Despite
the progress made, researchers continue to seek the “holy grail” that balances statistical
power and control of false discoveries. The review of the literature, in this work aims to
contribute to the understanding and advancement of multiple hypotheses testing, foster-
ing the development of practical, feasible, and sensible methods in this field.

Multiple hypotheses testing has gained significant importance in various scien-
tific disciplines, including chemistry (metabolomics), biology (genomics, proteomics),
medicine (fMRI), and social sciences. As the scale of testing has expanded, controlling
for multiplicity has become a critical concern due to the inflation of Type I error rates
resulting from simultaneous testing. Traditional approaches like the Bonferroni Family-
wise Error Rate (FWER), which has been used for a long time, are conservative and
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hence, impractical when dealing with millions of hypotheses being tested. This research
area starting with Holm (1979), Simes (1986), Hochberg (1988), Hommel (1988), Sarkar
(1998) has persevered for the “gold standard” and has see-sawed between techniques that
are very conservative or too liberal. The introduction of the FDR (False Discovery Rate)
by Benjamini and Hochberg (1995) has marked a significant advancement, providing a
flexible and powerful framework for controlling false discoveries. The False Discovery Rate
(FDR) is a measure that estimates the expected proportion of false discoveries among all
the hypotheses that are rejected. Since the introduction of the FDR, numerous studies
have enhanced and refined its methodology. Benjamini and Yekutieli (2001) proposed
a modified procedure to accommodate dependence structures, ensuring valid control of
the FDR. Efron et al. (2001) introduced empirical Bayes methods that borrow strength
across hypotheses to improve FDR estimation. Building on these ideas, Efron (2004)
developed the “local FDR” approach, allowing for more precise estimation of the FDR.
Storey (2002) introduced the concept of q-values, which provide an intuitive interpreta-
tion of the FDR, enabling researchers to control the proportion of false discoveries at
various thresholds. Furthermore, Storey (2003), Storey (2007), Heller et al. (2006), Du-
doit et al. (2002), Dudoit et al. (2003), Pan (2002), Nichols and Holmes (2002), Nichols
and Hayasaka (2003), Worsley (2003), Ge et al. (2003), Storey (2011) provides a gen-
eral discussion of further developments related to FDR. These studies have significantly
enhanced our understanding of the False Discovery Rate (FDR) framework, shedding
light on its practical applications and uncovering its potential limitations. Storey (2011)
also provided a comprehensive review of these advancements, offering a valuable resource
for researchers in the field. While the FDR has been widely adopted and has greatly
influenced the field of multiple hypotheses testing, researchers continue to search for an
optimal method that balances statistical power and control of false discoveries.

Looking from a different perspective, practitioners often rely on available software
and commonly used packages in R, which incorporate a ranked “top-table” approach
following multiplicity corrections. Smyth et al. (2003) and Smyth and Speed (2003)
highlight this practice and emphasize the importance of revisiting the top-table approach
through the lens of multiplicity control. The fundamental question posed by practitioners
is how to design studies that allow the identification of features of interest without being
overwhelmed by multiplicity corrections and rigid notions of statistical significance. In re-
sponse to this question, researchers have explored selection-based-on-ranking approaches
within the multiplicity framework. Notable contributions in this line of research include
works by Smyth et al. (2003), Smyth (2005), Kuo and Zaykin (2011), Kuo and Zaykin
(2013), Knecht et al. (2003), Abbott et al. (2010).

Continuing in the same vein of research, Dasgupta et al. (2016) introduced the
notion of “r-power” to provide a mathematical framework for the top-table approach.
r-power is defined as the probability that no false positives exist among the test candi-
dates included in the top-table. However, their analysis assumes independence among
the hypothesis testing units, which is often an unreal assumption to implement in prac-
tice. Our study aims to relax the assumption of independence and re-formulate r-power
under dependence making it applicable to real-life scenarios. It begins by considering the
simplest case of equicorrelation and subsequently extends the analysis to more realistic
scenarios involving block diagonal correlation structures.

While numerous approaches have been proposed to assess dependence among test
candidates in multiple hypotheses problems, our method based on r-power offers a fresh
perspective on this issue. Recent methods, such as the one proposed by Leek and Storey
(2008), construct a dependence kernel to ensure independence of test statistics. Kim
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and van de Wiel (2008) propose a method that assesses dependence using a constrained
random correlation matrix. Sun and Tony Cai (2009) introduce a data-driven approach to
minimize the false non-discovery rate, assuming a two-state hidden Markov model for the
observed data. Additionally, Friguet et al. (2009) propose a conditional false discovery
rate (FDR) based on a factor model. Furthermore, Liu et al. (2016) develop a method
to assess dependence in multiple hypotheses testing using graphical models, where latent
binary Markov random fields represent the underlying true states of hypotheses, and the
observed test statistics appear as coupled mixture variables.

In contrast, our method takes a different perspective. We focus specifically on esti-
mating the probability of false positives within the selected list of hypotheses, rather than
considering the entire dataset and we incorporate block diagonal correlation structure to
assess dependence among the test candidates. By adopting this approach, our computa-
tional framework becomes efficient and easily understandable from a practitioner’s point
of view.

2. Introducing r-power

In the following, we reintroduce r-power, dropping the assumption of indepen-
dence. We only present the one-sided case: one-sided hypotheses, for one-sample prob-
lems, as it is the foundation of our main results in the sections to follow. Further details
on the formulation of r-power in the two-sided case are available in Dasgupta et al. (2016).
A practical approach to large scale testing, r-power focuses on selection-based ranking
and answer the question: can one merely rank a test-statistic and identify the top r
candidates from a set of hypotheses generated? By determining r-power, we measure
the reliability of this “top table”, with a focus on prioritizing features of interest over
multiplicity corrections. We now present the underlying multiple testing problem in its
canonical form.

2.1. Testing for normal means

Let X⃗ be a random vector following a multivariate normal distribution such that
X⃗ ∼ N(µ, Σ⃗), where µ = (µ1, . . . , µN) is the mean vector and Σ⃗ is the covariance matrix,
which can be one of the following: (i) an identity matrix (ii) an equicorrelated matrix
(iii) a block diagonal matrix with each block being equi-correlated.

Focusing on t-tests as the statistic of interest, we assume that the number of
observations is large, and that the t statistics can be approximated by normal z statistics.
Without loss of generality, we define our alternative hypothesis to be in the greater than
direction. Comparing to a known mean µ0, our hypotheses of interest are given by
H0i : µi ≤ µ0 and HAi : µi > µ0. We assume that for K of them are from µi = µ0 and
N − K of them are from µi = µ1, where µ1 > µ0. Letting ȳi, si denote the sample mean
and sample standard deviation for the ith hypothesis of interest, in the one-sided case, we
define our test statistic ti =

√
n(ȳi − µ0)/si. We assume that the number of observations

is large, and thus, ti are approximately N(0, 1) for K of the hypotheses and N(δ, 1) for
N − K of the hypotheses, with corresponding effect size δ =

√
n(µ1 − µ0)/σ.

2.2. Determining r-power

To determine r-power in the testing problem above, we consider the top r hy-
potheses among the test statistics t1, . . . , tN . Let G0, GA denote the groups of hypotheses
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supporting the null and alternative hypotheses respectively, with respective test statistics
t0
i and tA

i . In the case of independence, it is assumed that the N hypotheses are indepen-
dent, with equal variances, reducing the covariance structure to the identity matrix, and
t0
i and tA

i are i.i.d. N(0, 1) and N(δ, 1), respectively. We denote the respective null and
alternative order statistics by Z(i), U(j), i = 1, . . . , K, j = 1, . . . , N − K. Misclassification
occurs if the largest member of G0 is greater than or equal to the (N − K − r)th order
statistic from GA, or equivalently, Z(K) ≥ U(N−K−r). We define r-power as the probability
of correct classification, that is,

rP = P (Z(K) < U(N−K−r)). (1)

Assuming independence, we can write Σ⃗ = σ2I⃗N , resulting in an r-power of

rP
(1)(N, K, r, δ) =

� 1

0
Φ(Φ−1(t) + δ)Kβ(N − K − r, r + 1, t) dt, (2)

where Φ, ϕ denote the respective standard normal distribution and density. In
practice, r ≤ N − K is chosen by the researcher. Ranking selection based methods
such as r-power require some knowledge on the true number of null hypotheses. There
have been various methods proposed for estimating the null proportion K/N , such as Jin
(2008), Chen (2018), Sijuwade et al. (2023).

3. Incorporating dependence

With growing dimension and complexity comes an increased risk of Type I error
inflation and thus the assumption of independence becomes less realistic. We consider a
more general but practical option: a block diagonal correlation structure. This approach
is inspired by the success or similar methods from omics studies, in which genes, lipids
and metabolites tend to be related based on common chemical or biological properties.
Some compelling examples include the following. Perrot-Dockès et al. (2019) estimated
block diagonal covariance matrices to study seed quality based on omics information.
Pacini et al. (2017) established a method to reduce false discoveries in gene expression
studies using block diagonal correlation structures. To reduce computation complexity in
a sensitivity analysis problem, Broto et al. (2020) developed a method to estimate high
dimensional block-diagonal covariance matrices for Gaussian data. In practice, unstruc-
tured dependence is most realistic to consider for multiple testing, however, we show that
our proposed method is general enough to approximate it, but simple enough to obtain
reasonable estimates of r-power for implementation.

4. Motivating example: A GWAS study

Genome-Wide Association Studies (GWAS) aim to identify associations between
genetic variants, specifically Single-nucleotide polymorphisms (SNPs), and observed traits
or phenotypes. This study focuses on the association between SNPs and human choles-
terol levels. The dataset used in this study is based on 323 individuals from India, China,
and Malaysia, with 2,527,458 SNPs and cholesterol level measurements based on the Sin-
gapore Integrative Omics Study Saw et al. (2017). The purpose of this study was to
use this data as an example and understand the performance of r-power when the test
candidates (here, SNPs) are dependent. We focused our analysis on a subset consisting
of 316 individuals and 32,010 SNPs from Chromosome 1.
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Data description:

We downloaded the dataset from a public github repository basing their GWAS
analysis and tutorial on data from the Singapore Integrative Omics Study https://
github.com/monogenea/GWAStutorial/tree/master/public. Along with their meth-
ods in this tutorial, we also followed the GWAS methods for data pre-processing from
Reed et al. (2015). The dataset includes three sub-parts:

• Genotype: A SNP matrix with columns representing SNPs and rows representing
sample IDs. Genotype values range from 0 to 2, indicating different allele combi-
nations.

• Mapping File: Contains sample IDs, SNP IDs, chromosome numbers, SNP posi-
tions, and allele types.

• Phenotype: Includes sample IDs and continuous-scale cholesterol level measure-
ments.

Data pre-processing

SNPs with high missingness, low variability and genotyping errors were filtered
out. We conducted our entire analysis in R and utilized the libraries SNPRelate and
snpStats from the BiocManager package in R alongside commonly used packages for
data handling, visualization and parallel processing - tidyverse, doParallel, foreach
and wrote our own function for conducting the GWAS, based on the following

• Call Rate: The percentage of individuals in the study with available SNP informa-
tion. SNPs with a call rate below 1 were discarded, removing missing information.

• Minor Allele Frequency (MAF): MAF denotes the proportion of least common
alleles for each SNP. SNPs with MAF below 0.1 were discarded, focusing on those
with a higher frequency of less common alleles.

• Heterozygosity & Hardy Weinberg Equilibrium (HWE): Heterozygosity
occurs when each of the two alleles are present at a given SNP within an individual.
HWE is a condition where the population does not evolve over generations. More
specifically, this means that the alleles and genotype frequencies in a population will
remain constant from generation to generation in the absence of other evolutionary
influences.
A measure of HWE is given by the Inbreeding Coefficient: |F | = |1 − H/Hexp|,
where H is the observed heterozygosity, Hexp = 2pq is the expected heterozygosity
and p, q are the frequencies of the respective dominant and recessive alleles ‘A’ and
‘a’. We retain samples that are not too heterozygous (affecting sample quality) or
too homozygous (indicating inbreeding), discarding those with |F | > 0.1.

• Linkage Disequilibrium (LD): The presence of a statistical association between
allelic variants within a population due to the history of recombination, mutation,
and selection in a genomic region.

• Kinship Coefficient: A measure of relatedness among the individuals. It denotes
the probability that a pair of randomly sampled homologous alleles is identical
by descent. SNPs with a kinship coefficient above 0.2 were discarded, reducing
relatedness bias.

https://github.com/monogenea/GWAStutorial/tree/master/public
https://github.com/monogenea/GWAStutorial/tree/master/public
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After filtering based on call rate and MAF, 795668 SNPs remained. Following
preprocessing, 316 individuals and 32010 SNPs were retained for analysis.

Analysis and results

We fitted a generalized linear model for each of the 32010 SNPs using the top 20
principal components and the Origin variable (dichotomized) as the covariates with our
model structure. Our approach was motivated by Reed et al. (2015), Lipka et al. (2012);
Price et al. (2006), and Wang and Zhang (2021). We conducted principal component
analysis on a LD pruned dataset with an LD cut-off of 0.2. To understand the population
structure, we have conducted a principal component analysis on the SNPs. We have
pruned the SNPs with a linkage disequilibrium value higher than 0.2. We did so to
understand the underlying population substructure, if any, through principal components.
In our analysis, the top 21 principal components explained approximately 70% of the
variability and we included these PCs as covariates in our model. The first two principal

Figure 1: PCA Plot and Difference by Origin

Figure 2: PCA Plot and Difference by Gender
components account for 2.42% of the variability in the data. When we plot PC1 versus
PC2, we observe that SNPs originating from the same population tend to cluster together
(see Figure 1). Interestingly, when we examine the distribution of gender, we find it to
be fairly uniform across the different origins (see Figure 2). To ensure the reliability of
our findings and minimize the occurrence of false positives, we employed a robust set of
statistical procedures, including the Benjamini-Hochberg, Holmes, Sidak, and Benjamini-
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Yukuteli methods. SNPs identified by these methods are shown in Table 1.

Table 1: Comparison of Methods to Control False Discovery

Method SNPs Identified SNP ID
No Correction 1502 rs7527051, rs12406924, rs4844688,...
Bonferroni 1 rs7527051
Benjamini Hochberg 2 rs7527051, rs12140539
Benjamini & Yekutieli 0 -
Holm 1 rs7527051
Sidak Single-Step 1 rs7527051

The effect of the multiplicity correction methods on the number of identified SNPs
can been seen in 1, with 1502 SNP selections in the absence of any correction. Bonfer-
roni’s method, known for its stringent control of family-wise error rate (FWER), only
selected 1 SNP. On the other hand, Benjamini Hochberg’s method, aimed at control-
ling the false discovery rate (FDR), chose 2 SNPs. Interestingly, the Benjamini-Yekutieli
method, which considers positive regression dependency among SNPs instead of assuming
independence, did not select any SNPs. Additionally, Holm’s and Sidak’s procedures each
reported 1 SNP. The discrepancy between the number of significant SNPs obtained from
the various correction methods raises an important question: How many SNPs should we
follow up on? Whilst no multiplicity correction resulted in a large number of significant
SNPs, FDR & FWER corrections, yielded one or two significant SNPs. Striking the
right balance is essential to ensure the accuracy and reliability of our findings. Hence, in
addition to these established methods, we introduce our formulation of r-power allowing
dependence in our formulation. In the following section, we generalize the idea of r-power
under dependence.

5. Equicorrelation

Returning to the testing problem 2.1, we consider the equicorrelated case corre-
sponding to a joint distribution NN(µ, Σ⃗), where Σ⃗ = σ2[ρ⃗1N 1⃗T

N + (1 − ρ)I⃗N ], 0 ≤ ρ < 1.
We present the following result, from which the probability of correct classification can
readily be determined.

Theorem 1: r-power under Compound Symmetry

Under the equicorrelated testing scenario, we have

1. Σ⃗−1/2 = a1⃗N 1⃗T
N + (b − a)I⃗n, where

a = 1
σN

 1√
1 + (N − 1)ρ

− 1√
1 − ρ

 , b = a + 1
σ

√
1 − ρ

.

2. Σ⃗−1/2Y⃗ ∼ NN(Σ⃗−1/2µ, I⃗N).

3. For 1 − σ−2 < ρ < 1, the probability of misclassification is always less than the
equivalent probability under the independent testing scenario 2.1 with equivalent
dimensions, with corresponding classification probability rP

(1)(N, K, r, (b − a)δ),
following (2).
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Proof:

1. Let e⃗k denote the kth standard basis vector of RN , S⃗k =
k∑

i=1
e⃗i. Since ρ ̸= (N − 1)−1,

the Sherman-Morrison formula (A⃗ + u⃗v⃗T )−1 = A⃗−1 − (A⃗−1u⃗v⃗T A⃗−1)/(1 + v⃗T A⃗−1u⃗)
with u⃗ = v⃗ = 1⃗N , A⃗ = (1 − ρ)I⃗N , implies that Σ⃗ has symmetric positive definite
inverse Σ⃗−1 = C1(I⃗N − C2ρ⃗1N 1⃗T

N), C1 = σ−2(1 − ρ)−1, C2 = (1 + (N − 1)ρ)−1, since
1⃗N 1⃗T

N has spectrum λ1 = N, λ2 = · · · = λN = 0, and eigenvectors u⃗1 = 1⃗N , u⃗j =
e⃗1 − e⃗j, j = 2, . . . , N .

Let D⃗ = diag(l1, . . . , lN) where lj = 1/
√

C1(1 − C2ρλj), and let U⃗ denote the
matrix with columns u⃗j. Letting H⃗ = (⃗1N 1⃗T

N + diag(0, −N, . . . , −N))/N , H⃗U⃗ =
[⃗1N , 0⃗N , . . . , 0⃗N ]T + [(e⃗1 − S⃗N), e⃗2, . . . , e⃗N ]T = I⃗N . Since H⃗, U⃗ and their product are
symmetric, they commute, and we write H⃗ = U⃗−1.

Let d1 = D⃗11 = 1/(σ
√

1 + (N − 1)ρ), d2 = D⃗22 = 1/(σ
√

1 − ρ) and determine the
inverse square root Σ⃗−1/2 = U⃗D⃗U⃗−1, as indeed by the Spectral Theorem, (Σ⃗−1/2)2 =
U⃗D⃗2U⃗−1 = Σ⃗−1. Finally, we have the inverse square root Σ⃗−1/2 = U⃗ [d11⃗N , d2(S⃗N −
Ne⃗2), . . . , d2(S⃗N −Ne⃗N)]T /N , so set a = (d1−d2)/N, b = (d1+(N−1)d2)/N = a+d2.

2. Using characteristic functions, let i =
√

−1 denote the imaginary unit and r⃗ =
(r1, . . . , rN) denote an arbitrary deterministic vector. Setting s⃗ = (Σ⃗−1/2)T r⃗, we
have E(eir⃗T Y⃗ ∗) = E(eir⃗T Σ⃗−1/2Y⃗ ) = E(eis⃗T Y⃗ ) since Y⃗ ∼ NN(µ, Σ⃗). Observing that
Σ⃗−1/2Σ⃗(Σ⃗−1/2)T = I⃗N and s⃗T s⃗ = r⃗T r⃗ due to the symmetry of Σ⃗−1/2, we have
eis⃗T µ−s⃗T Σ⃗s⃗/2 = eir⃗T (Σ⃗−1/2µ)−r⃗T Σ⃗r⃗/2, as desired.

3. Without loss of generality, the mean vector can be written as µ = µ0(S⃗N − S⃗k) +
µ1(S⃗N − S⃗N−k). Then, Σ⃗−1/2µ = (µ0

∗)(S⃗N − S⃗k) + (µ1
∗)(S⃗N − S⃗N−k), where µ0

∗ =
µ0(a + (k − 1)b) + µ1b(N − k), µ1

∗ = µ0bk + µ1(a + b(N − k − 1)). The result follows
from the monotonicity of Φ and the observation that in the two-sided case, with
effect size δ∗ =

√
b(µ1

∗ − µ0
∗)/σ, we have δ∗/|µ1 − µ0| = (b − a) = (σ

√
1 − ρ)−1 > 1

when 1 − σ−2 < ρ < 1. We then compare with equation (2).

6. Block diagonal approach

We now move to a more general scenario based on the equicorrelated testing prob-
lem in our theorem, as equicorrelation is still too restrictive for practical applications. As
we mentioned on in Section 3, we extend the equicorrelated case to obtain an analytic
form for the probability of correct classification. Based on this recent research, and its
adjacency to r-power in application, we consider a block-diagonal correlation structure
based on the equicorrelated case which tends toward unstructured as the block size in-
creases. The probability of misclassification can be determined based on the distribution
of the within-block order statistics. We assume independent blocks in which each block
corresponds to test candidates belonging to either the null or alternative hypotheses or
a mix of both.

We now define the N × N block diagonal correlation matrix B⃗. For j = 1, 2, 3,
we assume respective null, mixed and alternative test candidate counts bj : ∑j bj = N
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and define the respective null, mixed and alternative major blocks and indices by B⃗(j) =
diag(B⃗(j)

1 , . . . , B⃗
(j)
bj

), defined as follows: each minor block B⃗
(j)
i is compound symmetric,

corresponding to test statistic vectors t⃗
(j)
i as in the normal means problem, with assumed

joint distribution N
N

(j)
i

(µ(j)
i , B⃗

(j)
i ), i = 1, . . . , bj for j = 1, 2, 3, based on a common effect

size δ > 0:

µ
(j)
i = δ


0⃗

K
(j)
i

j = 1
S⃗

N
(j)
i

− S⃗
K

(j)
i

j = 2
1⃗

N
(j)
i

j = 3
(3)

B⃗
(j)
i = σ2

ij[ρij 1⃗N
(j)
i

1⃗T

N
(j)
i

+ (1 − ρij)I⃗N
(j)
i

].

Here, S⃗k is defined as in our theorem, 0 < ρij < 1, σ2
ij > 0 denote the respective

correlation and variance of B⃗
(j)
i . Without loss of generality, we order the minor blocks

such that B⃗ = diag(B⃗(1), B⃗(2), B⃗(3)). We assume that each block corresponds to N
(j)
i test

candidates, null candidates K
(j)
i : ∑i,j K

(j)
i = K and research hypotheses r

(j)
i : ∑i,j r

(j)
i =

r, noting that N
(1)
i = K

(1)
i , K

(3)
i = 0, since j = 1, 3 correspond to only null or alternative

candidates respectively. We denote the null and alternative order statistics corresponding
to each sub-block B⃗

(j)
i by (Z(j)

i )(k), (U (j)
i )(l), k = 1, . . . , K

(j)
i , l = 1, . . . , N

(j)
i − K

(j)
i − r

(j)
i

and for convenience, denote the null, mixed and alternative major blocks by N⃗ , M⃗ , A⃗
corresponding to the null, mixed and alternative major blocks B⃗(j): N⃗ = B⃗(1), M⃗ =
B⃗(2), A⃗ = B⃗(3). Write B⃗ = diag(N⃗ , M⃗ , A⃗), where N⃗ = diag(N⃗1, . . . N⃗b1), and likewise for
M⃗, A⃗. We visualize the block diagonal B⃗ below,

adopting the notation ∏N⃗ = ∏
i,j:B⃗(j)

i ∈N⃗
and likewise for M⃗, A⃗. Under the above assump-

tions, misclassification occurs when any members of the top r table come from the null,
which occurs when any members the r

(j)
i -th hypotheses come from the corresponding

null group of any sub-block B⃗
(j)
i : the largest of the K

(j)
i -th null order statistics is at least
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the smallest of the N
(j)
i − K

(j)
i − r

(j)
i -th alternative test statistics. We compute r-power

corresponding to the block diagonal B⃗ as the classification probability

rP = P

(
max
N⃗,M⃗

(Z(j)
i )(K(j)

i ) < min
A⃗

(U (j)
i )(N(j)

i −K
(j)
i −r

(j)
i )

)
. (4)

We note that due to the structure of the means µ
(j)
i , the null and alternative test

statistics corresponding to the mixed block M⃗ are not exchangeable. However, the test
statistics corresponding to the null block N⃗ and alternative block A⃗ are (respectively), and
their distributions can be readily determined based on the normality in (3), via Theorem
5.3.1 of Tong (1990b) to obtain the r-power analytically. We show that if b2 ≤ 1, rP is
completely determined by the distribution

Fi,j,k,µ(x) =
�
R

Hijk

(
(x − µ)/σij + z

√
ρij√1 − ρij

)
ϕ(z) dz, (5)

where Hijk(z) =
N

(j)
i∑

m=k

(
N

(j)
i
m

)
Φ(z)mΦ(−z)N

(j)
i −m.

6.1. One-sided case, no mixed candidates

We use the shorthand Zij = (Z(j)
i )(K(j)

i ), Uij = (U (j)
i )(N(j)

i −K
(j)
i −r

(j)
i ), Kij = (K(j)

i )
and likewise for N

(j)
i , r

(j)
i . Define Mij = Nij − Kij − r

(j)
i > 0 and let Gij denote the

distribution function of Uij with corresponding density gij. Starting with the probability
of misclassification, due to our assumptions (3), we use the exchangeability of the t

(j)
i and

proceed as in Tong (1990a). The density corresponding to the distribution (5) is given
by

fi,j,k,µ = σ−1
ij (1 − ρij)−1/2

�
R

hijk

(
(x − µ)/σij + z

√
ρij√1 − ρij

)
ϕ(z) dz, (6)

where hijk(z) = k
(

Nij

k

)
Φk−1(z)ΦNij−k(−z)ϕ(z). Since b2 = 0, integrating by parts, we

obtain

rP = P

(
max

N⃗
Zij ≤ min

A⃗
Uij

)
=
∏
N⃗

P

(
Zi1 ≤ min

A⃗
(Uk3)

)
=
∏
N⃗

�
R

P (Zi1 ≤ u|u) gk3(u)du

=
∏
N⃗

�
R

(� u

−∞
P
(
σi1(Zi1

√
1 − ρi1 + Z

√
ρi1) ≤ x

)
dx

)
gk3(u)du

=
∏

B⃗i∈N⃗

�
R

(� u

−∞
fi,1,Ki1,0(x)dx

)
· ∂

∂u

1 −
∏

B⃗k∈A⃗

(1 − Fk,3,Mk3,δ(u))
 du

=
∏

B⃗i∈N⃗

�
R

−
(� u

−∞
fi,1,Ki1,0(x)dx

) ∂

∂u

∏
B⃗k∈A⃗

(1 − Fk,3,Mk3,δ(u))
 du

=
∏
N⃗

�
R

fi,1,Ni1,0(u)
∏
A⃗

(1 − Fk,3,Nk3−rk3,δ(u)) du.
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6.2. One-sided case, one mixed candidate

Let p denote the probability that the minimum of the top r table corresponds to
the mixed block M⃗ . Since the test candidates corresponding to the mixed block M⃗ are
not exchangeable, to streamline our analytical formulation, we assume the existence of
at most one mixed block. Since b2 = 1, using the density (6) and performing the change
of variables t = Φ

(
(x−µ)/σij+z

√
ρij√

1−ρij

)
, we obtain

p = P (min
A⃗

Uij = U12) =
∏
A⃗

P (Ui3 ≥ U12)

=
∏
A⃗

�
R

P (Ui3 ≥ u|u)g12(u) du

= 1
σ12

√
ρ12

∏
A⃗

�
R

P (Ui3 ≥ u|u)
� 1

0
ϕ

(
Φ−1(t) + (δ12 − u)σ−1

12

ρ
1/2
12 (1 − ρ12)−1/2

)

β(M12, K12 + r12 + 1, t) dtdu

=
∏
A⃗

�
R

fi,3,Ni3−ri3,δ(u)F1,2,M12,δ12(u) du,

where δij = δ1{i,j:B⃗(j)
i ∈M⃗,i>Kij}. We apply our theorem to obtain

P1 = P (max
N⃗,M⃗

Zij ≥ U12)

= P (Zi2 ≥ U12)
∏
N⃗

�
R

(� ∞

u

fi,1,Ki1,0(x)dx

)
f1,2,M12,δ12(u) du

=
[
1 − r

(1)
P

(
N12, K12, r12, δ/

(
σ12

√
1 − ρ12

))]∏
N⃗

�
R

(1 − Fi,1,Ki1,0(u)) f1,2,M12,δ12(u) du,

P2 = P (max
N⃗

Zij ≥ min
A⃗

Uij)

=
∏
i,N⃗

�
R

−
(� ∞

s

fi,1,Ki1,0(x)dx

) ∂

∂s

∏
k,A⃗

(1 − Fk,3,Mk3,δ(s))
 ds,

=
∏
N⃗

1 −
�
R

fi,1,Ni1,0(s)
∏
A⃗

(1 − Fk,3,Nk3−rk3,δ(s)) ds



and finally, we have rP = p(1 − P1) + (1 − p)(1 − P2).

6.3. Limiting behavior and the two-sided case

We examine 6.1 to determine the limiting behavior of rP due to the structural
similarity in each case. As the null proportion K/N tends to 1, since r ≤ N − K, across
A⃗, Fi,j,Mij ,µ tends to Fi,j,0,µ =

�
R ϕ(z)dz = 1 (using the binomial theorem), resulting in

vanishing products over A⃗ and an r-power of zero. The situation in which r → N − K
is similar. Likewise, as δ → ∞, Fi,j,k,δ → 0, following the limiting behavior of the terms
Φm(z) as z → −∞, rP tends to ∏N⃗

�
R fi,1,Ni1,0(u) du = 1. This aligns with our intuition
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from the independent case that as the effect size increases, it is easier to distinguish the
alternative from the null, and vice versa with increasing null proportion.

In the two-sided case, the test statistics t
(j)
i =

√
Nij|Xij − X̄|/σ are assumed to

be jointly distributed according to the folded normal, with mean vector entries 0 or δ
depending on whether or not they correspond to the null or alternative groups for their
respective blocks. We assume a Gaussian copula C(U1, . . . , UN) = ΦB⃗ (Φ−1(F1(X1)), . . . ,
Φ−1(FN(XN))) with covariance matrix B⃗ as in (3) and σij ≡ 1. For 1 ≤ l ≤ N , the
distributions Fl are given by 2Φ(z) − 1 and Φ(z + δ) + Φ(z − δ) − 1 respectively. We
then determine the r-power as rP = P (max

⃗N,M
Φ−1(Fk(Zij)) < max

A⃗
Φ−1(Fl(Uij)), 1 ≤ k ≤

b1 + b2 ≤ l ≤ N and proceed as in 6.1 and 6.2, replacing Φ, ϕ with Fl and its derivative in
Hijk(z) from (5). Since rP has no closed form expression in the block diagonal scenarios,
we approximate it numerically. One approach is to reexamine Fi,j,k,µ(x) in (5):

�
R

N∑
m=k

(
N

k

)
Φ(Az + B)m(1 − Φ(Az + B))N−mϕ(z)dz

=
N∑

m=k

N−k∑
j=0

(
N

k

)(
N − k

j

)
(−1)j

�
R

Φm+j(Az + B)ϕ(z)dz.

As in Owen (1980), Hartmann (2017), an application of the Fubini-Tonelli theorem and
a change of variables zk = yk + x − B/A, k = 1, . . . , m, s⃗ = (x, y1, . . . , ym) yields
�
R

Φm(Az + B)ϕ(z)dz

=
�
R

m∏
k=0

Φ(Az + B)ϕ(z)dz

=
�
R

� z

−∞
· · ·

� z

−∞

m∏
k=0

ϕ(Azk + B)ϕ(x) dz1 . . . dzkdx.

1√
(2π)m+1|V⃗ |

�
R

� z

−∞
· · ·

� z

−∞
exp

(−1
2 s⃗T V⃗ −1/2s⃗

)
dy⃗dx,

= 1√
(2π)m|Σ⃗A|

� −B/A

−∞
· · ·

� −B/A

−∞
exp

(−1
2 s⃗T Σ⃗−1

A s⃗
)

dy⃗,

V⃗ = e⃗T
1 e⃗1 − 2(e⃗T

1 1⃗m + 1⃗T
me⃗1) + 4(⃗1T

m1⃗m) + diag(0, 1, . . . , 1)/A2, Σ⃗A = 1⃗m1⃗T
m + A−2I⃗m.

We obtain the multivariate normal distribution function F⃗m(⃗0m, −(B/A)⃗1m, Σ⃗A),
which can be accurately approximated, as in Genz (1992). The two-sided case can be
handled similarly using Fl(z) = 2Φ(z)−1 or Φ(z+δ)+Φ(z−δ)−1 respectively, depending
on correspondence with the null or alternative.

7. Simulation study

In Section 6, we provided analytical formulae and examined the structure of r-
power under our block diagonal assumptions. To support our results, we conducted
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an empirical simulation study. We simulated rP under different scenarios for the one
and two-sided cases, letting b1 = b3 = 2, b2 = 1, Nij ≡ 104. We also varied the
number of nulls (Kij = (1, 3, 5, 7, 9) · 103), null proportions 10−4Kij, top-table size
(r = 50, 100, 250, 500, 750) and effect size (δ = 0.1, 0.5, 1, 2, 3). We compare the results
for the block diagonal against the independence and equicorrelated scenarios.

Our results are plotted in Figure 3 for the one-sided case and Figure 4 for the
two-sided case. In each figure, we look at r-power as a function of effect size, δ and top-
table/list size r. For illustration, we have provided the case with N = 5 blocks, assuming
b1 = b3 = 2 and writing ρk, k = 1, . . . , N as the correlation corresponding to block B⃗k,
i.e., ρ1 = ρ11, ρ2 = ρ21, ρ3 = ρ12, ρ4 = ρ13, ρ5 = ρ23. To highlight the impact of changing
correlation, we vary ρ across the null and alternative blocks respectively, starting with
(ρ1 = ρ2 = .7 and ρ4 = ρ5 = .6 with ρ3 = .5). Our findings support our expectations from
part 3 of our theorem and the tendency of the misclassification probability to increase
with r, mentioned in section (6.3). Since 1 − σ−2

ij = 0 < ρ < 1, equicorrelation overtakes
independence, given equal top table size and effect size with the block diagonal case
generally falling somewhere in between the two. The situation changes depending on
how the null and alternative correlations compare to each other. Additional results are
available upon request from the authors.

ρ1 = 0.7, ρ2 = 0.7, ρ3 = 0.4, ρ4 = 0.5, ρ5 = 0.5 ρ1 = 0.4, ρ2 = 0.4, ρ3 = 0.8, ρ4 = 0.9, ρ5 = 0.9

ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0.4, ρ4 = 0.4, ρ5 = 0.4 ρ1 = 0.4, ρ2 = 0.4, ρ3 = 0.9, ρ4 = 0.9, ρ5 = 0.9

Figure 3: One-sided case: r-power vs effect size δ (top left, top right) and
hypothesis selection size r for (bottom left, bottom right)

Since r-power depends upon the size of the top-table r and the number of nulls k,
if r > N −k, the top-table becomes unreliable as its length exceeds that of the number of
alternatives, thus containing members from the null. This supports our findings in Figure
3 (bottom left): as we increase r, we run the risk of this scenario occurring regardless of
the dependence structure. However, as the dependence among the alternatives increases,
dimensionality is impacted, reducing N −K, and when the true N −K tends to be smaller
than a given estimate, we are more likely to undershoot for a given choice of top-table size
r, reducing the r-power. On the other hand, if the dependence among the alternatives
is much smaller than that of the nulls (max

A⃗
ρij ≪ min

N⃗
ρkl), we see a reversal and expect
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ρ1 = 0.7, ρ2 = 0.7, ρ3 = 0.4, ρ4 = 0.5, ρ5 = 0.5 ρ1 = 0.4, ρ2 = 0.4, ρ3 = 0.9, ρ4 = 0.9, ρ5 = 0.9

Figure 4: r-power vs effect size

larger r-power than the compound symmetry case. This is supported by Figure 4, also
where the null correlations are lower than that of the alternatives (e.g. .4 vs .9, as shown),
r-power for the block diagonal performs worse than the independent case.

8. Revisiting GWAS results

We have seen in 4 that there was a clear discrepancy between the number of
significant SNPs obtained from the various correction methods which raised an important
question: How many SNPs should we follow up on? Whilst no multiplicity correction
resulted in a large number of significant SNPs, FDR & FWER corrections yielded one or
two significant SNPs. Hence, in addition to these established methods, we introduced r-
power for the block diagonal testing setup as in (3), comparing the reliability of selecting
top-5 SNPs. The Manhattan Plots denote the position of top-1 SNP with Bonferroni’s
cut-off and with Top-5 SNPs based on the ranked test statistic value, respectively.

The Manhattan Plots in Figure 5 show the SNP that was selected from the existing
methods (Bonferroni,Holm,Sidak,Benjamini-Hochberg) (above) and the position of the
top-5 SNPs (below). From these, we determine the confidence of these selected lists
based on r-power. First, we need to estimate the proportion of null hypotheses before
using r-power. For this study, we employed the Laplace-transform-based estimator from
Sijuwade et al. (2023) for its low mean square error in comparison to other estimators.
The resulting estimate yielded a null proportion of π0 = 0.9017, indicating that there
are 28,864 null hypotheses and 3,146 alternative hypotheses. Before evaluating r-power,
we also need to determine the block diagonal correlation approximation from the SNP
correlation matrix. We construct this by dividing the null and alternative groups and
performing variable clustering. The steps involved in determining the parameters of
r-power are as follows:

1. Conduct a cluster analysis on the SNPs in both the alternative and null groups
based on their mean values, assuming that the null and the alternative groups are
well separated.

2. Perform a clustering analysis using CLARA, an extension of the k-medoids al-
gorithm, which is suitable for handling large-scale data Kaufman and Rousseeuw
(2008).

3. Assess cluster quality using the widely adopted silhouette method to determine the
optimal number of clusters.

We analyzed the alternative group, identifying the top r = 5 SNPs, as depicted
in Figure 6 and observed two clusters displaying a wide range of correlation values.
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Figure 5: Bonferroni SNPs (top), Top 5 SNPs(bottom)

Figure 6: Cluster Plot of the Test Candidates
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Figure 7: Cluster Plot of the Null Candidates

To enhance the analysis, we subdivided each of these clusters into different blocks of
approximately equicorrelated variables using LD-pruning, resulting in an approximated
block diagonal correlation matrix. LD is calculated based on R2 values, and we considered
the absolute correlation values of the SNPs since our formulation on r-power is based on
positive correlation. Thus, for evaluating r-power, we consider 8 blocks, as illustrated in
Table 2.

In the analysis of the null group, we also identified two clusters. However, due to
the large number of candidates in the null hypothesis, calculating the correlation matrix
for all SNPs was not feasible. Instead, we focused on the number of null candidates with
a linkage disequilibrium (measured as R-squared) less than or equal to 0.4 from each
cluster. Since our goal in calculating r-power is to ensure that none of the selected top−r
candidates are from the null group, we want to avoid over-penalizing the probability by
considering all SNPs in the null group, regardless of their correlation. To do so, we choose
SNPs with low correlation within the null group to calculate r-power. Cluster 1 in the
null group which originally consisted of 14639 SNPS, has 5675 markers, with a linkage
disequilibrium threshold value of 0.4. Cluster 2 from the null group, which originally
consisted of 14225 SNPs and also has 5682 markers with linkage disequilibrium threshold
value 0.4.

We calculated rP for a block diagonal correlation with 10 blocks - 8 blocks from
alternative and 2 from the null as illustrated in Table 2. Although we have 10 blocks, we
needed to find the block allocation of the top-5 SNPs to calculate r-power. In our study,
the top-5 selected SNPs are “rs7527051” , “rs12140539” ,“rs1222153” , “rs1656014” and
“rs929137”. The cluster allocation is described in Table 2.

Under the assumption of block diagonal correlation, the r-power for selecting the
top 5 significant SNPs with an effect size of 4 was reported to be 91%, indicating a high
probability of correctly identifying the relevant SNPs. At an effect size of 3, the r-power
was reported to be 60%. Thus, the r-power method not only provides a powerful tool for
confidently selecting relevant SNPs but also offers valuable insights into the relationship
between effect size and r-power. By visualizing the r-power as a type of power curve,
researchers can gain a better understanding of how to choose the optimal value for r in
their r-power analysis.
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Table 2: Cluster Information and Correlation Among SNPs

Cluster Hypothesis Group Block Size Cluster Correlation No of SNPs
Cluster 1 Null 5675 0.4 0
Cluster 2 Null 5682 0.4 0
Cluster 1 Alternative 56 0.1 0
Cluster 1 Alternative 921 0.5 0
Cluster 1 Alternative 232 0.7 1
Cluster 1 Alternative 437 1 0
Cluster 2 Alternative 45 0.1 0
Cluster 2 Alternative 855 0.5 2
Cluster 2 Alternative 142 0.7 1
Cluster 2 Alternative 466 1 1

Figure 8: r-power of the top 5 selected SNPs

9. Conclusion

In this article, we addressed a fundamental issue concerning dependence with
respect to the normal means problem, making positive steps towards addressing the
complexity of the unstructured scenario by investigating dependence patterns, deriving
analytical formulae and offering practical solutions to multiplicity issues in large-scale
multiple-hypothesis testing problems. Our comprehensive simulation experiments serve
to support our findings and demonstrate robustness. Our simulation results consistently
show that a positive equicorrelated structure yields higher r-power compared to indepen-
dence among hypotheses and that the correlation structure within blocks significantly
effects the classification probability calculation.

Focusing on top tables, r-power offers insights into the robustness of the systematic
selection of candidates based on combinatorial methods. We find that high within-group
correlation reduces the effective dimensionality of the top-r table, in which case testing
becomes more conservative and in this way, r-power provides insight into test reliability.
From our findings, the correlation within the null group surpasses that of the research
group, r-power under the block diagonal setup tends to outperform the equicorrelated
scenario. Our formulation is built to address scenarios in which sources of variation are
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difficult to identify and various features are clustered. Examples of relevant domains for
future consideration and applications include but are not limited to large-scale testing
within genomics, metabolomics, proteomics and fMRI studies. Our GWAS results in par-
ticular, highlight the advantage of our approach in determining test reliability compared
to traditional methods, especially in in SNP detection and we are developing an R library
for its implementation.
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Abstract
Small area estimation methods are important tools for applied statisticians to help

policymakers in need of reliable statistics for lower level disaggregated populations. While
aggregated statistics at the higher level may be available from surveys, they are not useful
to estimate characteristics for lower level subpopulations. Often useful covariates for these
subpopulations are available, which can be integrated through innovative small area estima-
tion methodology to leverage aggregated data to produce better estimates and measures of
uncertainty for the disaggregated subpopulation means.

To serve our need we generalize the celebrated Fay-Herriot model, which has been
extensively used for several decades by many National Statistical Offices around the world,
to produce reliable small area statistics. We consider the traditional independence for the
Fay-Herriot linking model errors as well as various important spatially dependent models for
these errors. We conduct a hierarchical Bayesian analysis for all these models based on a
popular class of noninformative improper prior densities for the linking model parameters.
We illustrate the usefulness of our proposal by producing estimates of statewide four-person
family median incomes for the U.S. states for the year 1990. We create for our illustration the
aggregated statistics from the 1990 Current Population Survey. We evaluate the accuracy of
our state predictions against the corresponding incomes, deemed to be reliable, produced by
the 1990 Census. For all models and for all improper prior densities for the model parameters
considered here we prove the propriety of the resulting posterior distributions. The result
in Corollary 1 of Chung and Datta (2022, Survey Methodology, vol. 48, No. 2, pp. 463-489)
follows as a special case. Our empirical assessments amply demonstrate the usefulness of
our novel approach.
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1. Introduction

Preparation and implementation of effective social welfare and human development
policy proposals require reliable statistics measuring important population characteristics,
for example, income, employment, education, healthcare, agricultural productions and en-
vironmental safety. National statistical offices (NSO’s) around the world collect relevant
data and produce these statistics. Many nations and international organizations recognize
the need for these statistics at the national level as well as at su-bnational/sub-population
levels. These sub-populations may be geographic (states, counties or districts), demographic
(gender, race, age) or cross-classification of geographic and demographic factors (state level
poverty rates for the school-age children).

The NSOs and international organizations, for example, the World Bank, rely on
appropriate data to produce relevant statistics. Since national censuses are carried out every
five or ten years, these data will fail to capture the current state of the population when
the last census gets outdated. Decennial or quinquennial censuses are expensive. To gather
timely and less expensive data the NSOs conduct carefully planned sample surveys to collect
data from only a fraction of the population. It is well-documented in the statistics literature
that carefully planned surveys with reasonably large samples can be as accurate as a census.

Even if a nation may be doing well overall, often various segments of the nation
may not be doing as well. While any functioning government that cares to serve its peo-
ple requires accurate data for the entire nation, it also needs reliable disaggregated data
for various segments of the nation. For example, the U.S. government has mandated it by
law to produce timely and accurate disaggregated statistics measuring income, employment
and health service for various demographic groups at the county or state level. The Eu-
ropean Union and the United Nations have many programs that require accurate poverty
and income information for many geographic/demographic sub-populations. Production of
reliable, disaggregated statistics is known as small area estimation in survey sampling.

Sample surveys are generally designed to provide useful data in estimating various
characteristics of a population of interest. Sample sizes are so chosen to ensure that tra-
ditional design-based estimators are adequately accurate. Sample size is usually the key
thing, and when it comes to estimating a sub-population characteristic, based solely on the
part of the original sample which is in the sub-population, the sub-sample may be small or
empty. The version of the national level design-based direct estimate from the sub-sample
for a sub-population, if it has enough sample to be computed, may be highly variable, or
may be non-existent due to lack of sample. Sub-populations with low or no sample size
to produce reliable direct estimates are known as small areas. Due to limited resources, a
survey, by design, may not allocate any sample to many sub-populations. For example, the
American Community Survey (ACS) is conducted to produce reliable statistics for nearly
three thousand U.S. counties. However, the ACS usually samples about one-third of the
counties, resulting in many non-sampled small areas. Post-surveys some sub-populations
may also be defined for the current need, and there may not be any units selected from
these sub-populations. Again, resource constraints do not permit selection of new sample to
transform unreliable or unavailable small area estimates to reliable ones. To increase the ac-
curacy of inadequate direct estimates of small areas (or to produce estimates for non-sampled
areas), statistical methods advocate model-based approach to enable borrowing information
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from direct estimates of other domains and other data sources. In many applications, other
related surveys and administrative data provide useful covariates. A model-based estimate
of an area is produced by suitably shrinking a direct estimate (if available) to a synthetic
estimate of a regression function based on auxiliary variables.

In small area estimation if unit-level data are available, a unit-level small area model
by Battese et al. (1988) is often recommended for modeling. However, in many applications
to protect confidentiality of the respondents the organization conducting the survey releases
only summary data at the area-level for the areas sampled. In this setup, Fay and Herriot
(1979) introduced an area-level model. This popular model is known in small area estimation
as the Fay-Herriot model. In this model estimating the small area mean θi for a small area
i, if its direct estimator Yi is available, it is called a sampled area. We assume that Yi is
unbiased for θi. No direct estimator is available for an unsampled area.

Fay and Herriot (1979) proposed a linking model for all m small area means θi based
on a multiple linear regression of the θi’s on some available suitable covariates xi. For a
sampled area the model-based estimator of θi is obtained by shrinking its direct estimator Yi

to the synthetic regression estimator xT
i β̂, where β̂ is an estimator of the regression coefficient

β in the regression mean function xT
i β. If an area is unsampled, synthetic estimator xT

i β̂ is
the small area estimator of θi.

In small area estimation a population is partitioned into m sub-populations, and
a survey design samples m − m1 sub-populations and does not sample the other m1 sub-
populations (sometimes m1 = 0 but for the ACS it is positive). The Fay-Herriot model
described above uses the m − m1 direct estimators and covariate xi from all m areas to
estimate θi, ith sub-population mean, i = 1, . . . , m.

From cost and administrative considerations a survey, by design, may merge t1 sub-
populations and select a sample from this combined bigger sub-population. Suppose a direct
estimator S1 from this sample estimates η1, where, for example, η1 may represent the total
employment or total healthcare expenditure, then it is equal to the sum of θi’s for these
t1 sub-populations. In general, we assume that η1 is a known linear combination of the t1
θi’s. Similarly, t2 other sub-populations may be merged for sampling, and a direct estimator
S2 from a sample from this merged sub-populations may be formed which estimates the
corresponding population characteristic η2. Again, we assume that η2 is a known linear
combination of t2 θi’s. In this way, an estimator Sr is obtained which is an unbiased estimator
of ηr, where ηr is a known linear combination of θi’s. This setup is the motivation of the
problem that we will consider here. We assume that we have an r × 1 vector of estimators
S with its associated variance-covariance matrix DS. We assume that S is an unbiased
estimator of Cθ for an r × m known matrix C. We assume that rank of C is r and that DS

is a known, positive definite (p.d.) matrix. If r = m − m1 and each of the rows of C has all
elements 0 and one element 1 (first element in the first row, the second in the second row,
etc.), then η1 = θ1, η2 = θ2, etc. and we get the traditional Fay-Herriot setup (cf. Fay and
Herriot (1979)).

Alternatively, in the Fay-Herriot setup, suppose an area i is an union of ni sub-areas
and we are interested in estimating the sub-area mean θij based on available covariates
xij from that area. The ith area mean ηi is a known linear combination of the sub-area
means θij’s. A direct estimator Yi is available for ηi but there are no direct estimators
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of θij for the sub-areas. Our goal is to estimate the θij’s based on the survey estimates
Yi’s and the sub-area covariates xij’s. To address this problem we are expanding the scope
of the traditional Fay-Herriot model. Note that there is no direct estimate of θij. We
use θi to denote the vector (θi1, . . . , θini

)T and use the traditional independent Fay-Herriot
linking model where θij

ind∼ N(µij, σ2), j = 1, . . . , ni, i = 1, . . . , m, where for simplicity of
presentation we assume that µij’s and σ2 known. Suppose the survey estimator Yi is normally
distributed variance Di and mean ∑ni

j=1 cijθij, the coefficients cij’s are known. Under this
setup, simple algebra shows that (if we invoke a Bayesian setup), the posterior mean of θij

is θ̃ij = µij + {σ2cij/(Di + σ2 ∑ni
j=1 c2

ij)}(Yi − ∑ni
j=1 cijµij), and the posterior variance

σ̃2
ij =

σ2{Di + σ2 ∑
k ̸=j c2

ik}
Di + σ2 ∑ni

j=1 c2
ij

. (1)

This result makes sense. Since a θij appears only in the distribution of Yi and since all the
θij’s are independent, it follows that Yi|θij ∼ N(cij(θij − µij) + ∑ni

k=1 cikµik, Di + σ2 ∑
k ̸=j c2

ik)
and θij ∼ N(µij, σ2). These two distributions imply that θij|yi ∼ N(θ̃ij, σ̃2

ij). If r = [m/2],
and ni = 2 for i = 1, . . . , r, and ci1 = ci2 = 1, then θ̃i1 = θ̃i2 + µi1 − µi2, and σ̃2

i1 = σ̃2
i2. If

ni = 1 and ci1 = 1, the above expressions for the posterior mean and the variance for θi1 will
reduce to the results from the regular independent Fay-Herriot model.

For a comprehensive literature on small area estimation we refer to Rao and Molina
(2015) who documented the need for reliable small area statistics in many applications in
agriculture, education, healthcare, economy and industry. Here is an outline of the article. In
Section 2 we presented a generalized Fay-Herriot model for aggregated small area statistics.
We introduced the hierarchical Bayes (HB) model as well as the distribution of Fay-Herriot
linking model error under various spatial models. In Subsection 2.1, we introduced the
neighborhood matrix, an important element in spatial modeling. We outlined some useful
properties of the eigenvalues of this matrix and those of a couple of other matrices defined
from this matrix. In Section 3, we presented a set of sufficient conditions to ensure the
propriety of all the posterior distributions that result from the class of HB models and a
class of noninformative improper prior pdf’s introduced the last section. We illustrated our
novel ideas in Section 4 to the estimation of four-person households median incomes of the
forty-nine contiguous states of the US. Section 5 reviews the importance of the proposed
methodology. Finally, Section 6 presents detailed arguments to prove the propriety of the
posterior pdf’s for a couple of spatial models, and how these arguments can be modified for
the remaining models.

2. A generalized Fay-Herriot model for aggregated statistics

As it was described in Section 1, the aggregated statistics S is assumed to be an
unbiased estimator of Cθ. We present below an extended version of the popular Fay-Herriot
model to draw inference for θ based on the aggregated data S. The r × m matrix C is an
appropriate known matrix, described further in Remark 1.

The HB model:

(a) S|θ, β, σ2, ρ ∼ N(Cθ, DS),
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(b) θ|β, σ2, ρ ∼ N(Xβ, σ2Ω−1(ρ)),

(c) The prior pdf for β, σ2 and ρ is

π(β, σ2, ρ) = π(β) × g(σ2) × h(ρ), (2)

where π(β) is a bounded positive function corresponding to a prior pdf (may be improper),
g(σ2) is an appropriate (may also be improper) prior, and h(ρ) is a proper pdf for ρ defined
on an appropriate finite interval.

For the model above, DS is a known p.d. matrix. Also, X = [x1, . . . , xm]T is an
m × p matrix of covariates, with rank p. The regression coefficient β is a p × 1 vector. For a
particular model in (b), namely, the independent Fay-Herriot model, the matrix Ω = Im is
free from ρ. In this case, the model being free from ρ, a prior for ρ is not required. However,
we can use any proper prior for ρ and the posterior pdf of ρ will be the same as the prior
pdf. An improper uniform prior π(β) = 1 is extensively used in the Bayesian literature (see,
for example, Berger (1985) and Ghosh (1992)).

Remark 1: The part (b) of the above hierarchical model is known as the linking model (see
Rao and Molina (2015)). In order for the sampling and the linking models in the above
hierarchical model to be capable of producing inference for β under the frequentist setup
(without part (c) for prior specification), the matrix C needs to have certain structure.
In particular, the row space of CX must be the same as that of X. It is equivalent to
rank(CX) = rank(X), the estimability requirement of β based on the design matrix for S.
It implies that r ≥ rank(C) ≥ rank(CX) = rank(X) = p is a necessary condition on r.

The part (b) of the above hierarchical model implies a representation for the ith
component of θ, which is given by

θi = xT
i β + vi, i = 1, . . . , m, (3)

where the vi’s are also called random effects in mixed linear model. This decomposition
implies that the random effects vector v = (v1, . . . , vm)T is normally distributed with mean
vector 0 and variance-covariance matrix σ2Ω−1(ρ). We appropriately choose various forms
of m × m the p.d. matrix Ω to specify a class of models for θ. For the independent Fay-
Herriot model, Ω = Im which means that the θi’s are independently distributed. It is not
unreasonable to anticipate that if effective covariates are available, they can capture most
of the variability of the θi’s. Any unexplained variation among the θi’s will be modeled by
the random effects, and across small areas these random effects will not have any particular
pattern. This variability may be modeled through Ω = Im.

While the independent Fay-Herriot model is the default model, in a recent paper
Chung and Datta (2022) showed that in the absence of good covariates some spatially-
dependent models for the random effects vector improve the prediction of θi’s. In our case
when a majority of small areas have no direct estimators, and only a few (no less than p)
aggregated statistics are available that estimate some linear combinations of the small area
mean vector θ, importance of both effective covariates and good linking models explaining
the dependence of the components of θ cannot be overemphasized.
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2.1. A neighborhood matrix for spatial models with some useful results

For the Fay-Herriot model, Chung and Datta (2022) considered four different spatial
models for the random effects and showed that many of these models yielded better pre-
dictions of small area means for the non-sampled areas than the independent Fay-Herriot
model. They considered four spatial models which are determined by suitable structure of
the matrix Ω. These Ω matrices depend on a special matrix W, known as neighborhood or
incidence matrix.

The incidence matrix W is determined by the neighborhood structure of the small
areas. This matrix is an m × m non-null, symmetric, square matrix. All the diagonal
elements of this matrix are zero. In the popular version if two areas i and j are neighbors,
then Wij = 1, and it is zero otherwise. We now introduce additional matrices derived from
W and describe some properties of these matrices that would be useful in exploration of our
spatial models. For i = 1, . . . , m, we define the ith row sum of W by Wi·. We assume that
Wi· ≥ 1 for all i, and we define the diagonal matrix L = diag(W1·, . . . , Wm·). Using L and
W, we define two more matrices: W̃ = L−1W and R = L − W. The matrices W, W̃ are
non-null. Each matrix must have at least one nonzero eigenvalue. Since tr(W) = 0 = tr(W̃),
all the eigenvalues of each matrix sum to zero. Since W is symmetric, all its eigenvalues
are real. Let L−1/2 be a diagonal matrix such that the ith diagonal is W

−1/2
i· . Then all the

eigenvalues of the matrix L−1/2WL−1/2 will be real. Further, these eigenvalues are the same
as the eigenvalues of W̃. Hence, for both W, W̃, the smallest eigenvalue must be negative
and the largest must be positive.

Suppose λ̃i, i = 1, . . . , m, are the eigenvalues of W̃, which are real. We can order
them as λ̃m ≤ · · · ≤ · · · ≤ λ̃1. Note that the elements of the matrix W̃ are nonnegative,
diagonals are zero, and each row of the matrix sums to 1. It is a stochastic matrix. That
ensures that at least one of its eigenvalues is 1, and all other eigenvalues must be between
−1 and 1. Thus, −1 ≤ λ̃m < 0 < λ̃1 = 1.

Similarly, if λi’s are the eigenvalues of W, then these are finite and real. With the
smallest, λm, and the largest λ1, we get −∞ < λm < 0 < λ1 < ∞.

We consider four spatially dependent random effects models with variance-covariance
matrix σ2Ω(ρ)−1, defined through their associated p.d. “precision” matrices, depending on
a spatial parameter ρ. These models are simultaneous autoregressive (SAR), conditional
autoregressive (CAR), simple CAR (SCAR) and Leroux CAR (LCAR). For these models we
have

SAR: Ω2(ρ) = (Im − ρW̃)T(Im − ρW̃), ρ ∈ (−1, 1), (4)
SCAR: Ω3(ρ) = Im − ρW, ρ ∈ (λ−1

m , λ−1
1 ), (5)

CAR: Ω4(ρ) = L − ρW, ρ ∈ (−1, 1), (6)
LCAR: Ω5(ρ) = ρR + (1 − ρ)Im, ρ ∈ [0, 1). (7)

For all the models the ranges of the parameter ρ are defined above so that the Ω matrices
are p.d. Even though we have used the same notation σ2, ρ for the scale and the spatial
parameters in all four models (see stage (b) of the HB model), neither they admit the
same interpretations nor a combination of their values signifies equal variability and spatial
strength of dependence across the models. Finally, the SAR, SCAR and LCAR models
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include the traditional independent Fay-Herriot linking model as a special case.

3. The posterior distribution of the small area mean vector

We carry out inference for θ by conditioning on S = s from the HB model given in
Section 2. Our approach is computing-based, we will use the Monte Carlo method to generate
multiple copies of sample of θ from its posterior pdf. We use the Hamiltonian Monte Carlo
(HMC) algorithm to sample the posterior distribution, and we implement this algorithm
using the RStan software package (see Stan Development Team (2018)). The samples for θ
from its posterior distribution will be meaningful provided the posterior distribution, π(θ|s),
is proper. In the Theorem below we provide a set of sufficient conditions for the propriety
of π(θ|s).

We now describe conditions for propriety of the posterior distributions under various
spatial small area models given in (4)–(7). Let I(·) be the indicator function taking the
value 1 when its argument is true and 0 otherwise. We first provide general conditions for
the posterior propriety of the proposed models.

Theorem 1: For all the HB spatial models given above, and equations (2), and (4)–(7), the
posterior probability density functions are proper if the following conditions hold for some
positive constant N > 0:

(a)
� ∞

0 g(σ2)I(σ2 ≤ N)dσ2 < ∞.

(b)
� ∞

0 (σ2)−(r−p)/2g(σ2)I(σ2 > N)dσ2 < ∞.

If g(·) is a proper pdf, then (a) holds true automatically, and (b) is satisfied if r ≥ p.
We explained earlier the obvious necessity of the condition r ≥ p since at least p summary
statistics are needed to estimate p components of β when no substantive information about
β is available. Note that for all the spatial models we have the conditions (a) and (b) for
propriety of the respective posterior distribution. Under the popular family of noninformative
priors

π(β, σ2, ρ) ∝ (σ2)−αI(l < ρ < u), β ∈ Rp, σ2 > 0, (8)

the posterior pdfs are proper under the following conditions.

Corollary 1.1: For any of the HB spatial models given in (4)–(7) and with the prior in (8),
the posterior pdf is proper as long as α < 1 and r > p + 2 − 2α.

For the uniform prior with α = 0 (which is used in this paper), the propriety of the
posterior distributions for models (4)–(7) are guaranteed as long as r > p + 2. We prove the
Theorem in Section 6. The Corollary follows easily from the Theorem.

4. An illustration to a data from the current population survey

We illustrate our method to estimation of 1989 four-person family median incomes for
the U.S. forty-eight mainland states and the Washington, DC. We consider this application
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for two reasons. First, Chung and Datta (2022) used this application and applied the in-
dependent Fay-Herriot model and four spatial models to estimate the true median incomes,
θi’s, based on forty-nine direct estimates for these states coming from an annual supplement
of the Current Population Survey (CPS). Second, a reliable set of values of these incomes are
available from a large sample from the 1990 Census. Many SAE experts, for example, Ghosh
et al. (1996) treat these values as “true values” or “gold standards” and assess accuracy of
various sets of estimates against these values. The Census Bureau annually supplied accu-
rate estimates of median incomes for states to the U.S. Department of Health and Human
Service (HHS) agency that needed these estimates to implement a federal welfare program.
The annual state-level estimates of these parameters from the CPS data are less reliable due
to their large sampling standard deviations. To produce more reliable estimates the U.S.
Census Bureau considered model-based small area estimation by using effective auxiliary
data from other sources.

In our illustration for the four spatial and the independent Fay-Herriot model, we
consider two types of mean functions, specified by the regression function xT

i β. The most
effective regression function involves both the covariates x1 and x2 that are introduced above.
It has been found that x2 has more predictive power in predicting θi,s than x1. Here, x1 is
a weaker covariate and x2 is a stronger covariate. We consider two regression functions: one
with both the covariates (all covariates, k = 1), and the other with x1 (the weaker covariate,
k = 2).

Based on use of data types, we have full data case (Yi’s available for all areas, F ) and
aggregated data case (based on Sj’s, A). Within each mean function and data type, we have
fitted five versions of the Fay-Herriot model, resulting in a combination of 20 models and 20
sets of predictions of the θi’s.

Our goal is to estimate θi, the true 1989 four-person family median income of the ith
state, i = 1, . . . , 49, excluding Alaska and Hawaii. From the 1990 CPS we get Yi, the direct
estimate of θi. The Census Bureau statistician Bob Fay found out that the corresponding
1980 Census median income figure (xi1), and an adjusted 1980 Census median income xi2,
adjusted by per capita income data from 1979 and 1989, are two powerful covariates for
prediction of θi. The CPS data also provided Di, the sampling variance of Yi. In our
illustration we create a set of aggregated statistics S by grouping 49 states into 25 “super-
areas”, 24 groups of two states, and one lone state. In our illustration, we create required
aggregated statistics by calculating Si = Y2i−1 + Y2i, DSi = D2i−1 + D2i, i = 1, . . . , 24, and
S25 = Y49, DS25 = D49. We apply five versions of the Fay-Herriot model mentioned above to
this data and compare results from each of these models with the similar results presented by
Chung and Datta (2022). We will also compare the five proposed models among themselves
in terms of their prediction accuracy when we have only aggregated data but no data for the
individual states.

4.1. Four-person family median income estimation with all covariates

We have twenty different settings formed by combination of five types of model vari-
ance matrices in the Fay-Herriot model, two linear regressions and two data types for the
response. In our Bayesian analysis for these twenty settings we used uniform prior for the
regression and variance parameters that appear in the corresponding model. For each setting
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we used Rstan to generate 24000 representative, nearly independent, Monte Carlo samples
of all the parameters from the respective posterior distribution. Based on the posterior
samples for the jth model error variance type, kth mean function type, and the T th data
type, we computed Bayes estimate of θi, denoted by θ̂T,j,k,i. We also compute the posterior
standard deviation σT,j,k,i associated with θ̂T,j,k,i. We also computed summary and relative
frequency histograms of the spatial parameters ρ for the models that have this parameter
(j = 2, 3, 4, 5).

We use gi as the gold standard for θi from the 1990 Census to empirically evaluate
performance of θ̂T,j,k,i, i = 1, . . . , m, we compute for each set of predictions based on data type
T , the empirical mean squared error eMSPET,j,k = ∑49

i=1(θ̂T,j,k,i − gi)2/49 for j = 1, . . . , 5,
k = 1 (k = 2 is considered in Subsection 4.2). These values for k = 1 are presented in
the second column of Table 1 (for aggregated data), and Table 2 (for full data). We also
computed average posterior standard deviations σ̄T,j,k = ∑49

i=1 σT,j,k,i/49, T = A, F . These
values are given in the sixth column of the tables we created. Additionally, within each
model, using appropriate posterior quantiles, we constructed 95% central credible interval
for each θi. Using these intervals and the gold standard values we calculated empirical
coverage rates of these intervals by computing the fraction of the 49 intervals that included
the gi values (presented in the fifth column). We also presented in the fourth column average
length of these intervals.

In the absence of a direct estimate for a small area, a synthetic estimate based on
the estimated regression function and covariates from that area is a reasonable alternative.
In our case where we only have access to aggregated statistics based on data from multiple
areas, we do not typically have direct estimates for any areas. In this scenario, synthetic
estimates for all the areas may appear to be appealing. A synthetic estimate of θi for a
typical model is θ̂syn,T,j,k,i = xT

i β̂T,j,k, where T = A, F , j = 1, . . . , 5, and k = 1, 2. Here,
β̂T,j,k is a Bayes estimator of β under the T, j, kth setting. We note that all these results
corresponding to T = F for full data were obtained by Chung and Datta (2022).

At the early stage of small area estimation— pre-dating use of random effects or
hierarchical models— practitioners used synthetic estimates. For the synthetic estimates we
computed empirical MSPE by averaging the squares differences of the estimates from the gold
standard values, gi. We present these measures, represented as “syn MSPE” in the eighth
column of the tables. Under any Bayesian model, the accuracy of corresponding synthetic
estimates are evaluated by the posterior root mean squared error of each estimate. Averages
of these values are reported as synthetic average root posterior mean squared error (syn
ARPME) in the last column. Synthetic estimators usually tend to be biased, particularly
if the regression function is an inadequate fit for the θi’s, but they have smaller variances.
In the case of poor model fit, the bias term of the synthetic estimator usually gets elevated,
and the variance may fail to compensate for the larger bias, resulting in a large posterior
MSE of synthetic estimator.

Both Table 1 and Table 2 show that the synthetic estimates for each model have
smaller empirical MSPE than for their Bayesian counterparts. This is rather unusual unless
the covariates are very effective, which appears to be the case here. However, the Bayes
estimates have average posterior standard deviations in column 6 which are smaller than
the average root posterior means squared error of their synthetic estimate counterparts,
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Table 1: Aggregated data with all covariates

eMSPE eMSPE-PI AL CP APSD APSD-PI syn MSPE syn ARPME
FH 4.02 - 14.30 0.9509 3.15 - 2.10 3.47
SAR 3.87 3.70 % 14.21 0.9507 3.15 -0.07 % 2.12 3.70
SCAR 4.10 -2.03 % 14.26 0.9510 3.12 0.88 % 2.10 3.45
CAR 4.41 -9.72 % 14.62 0.9471 3.19 -1.37 % 2.13 3.56
LCAR 3.37 16.09 % 13.74 0.9489 3.09 1.82 % 2.42 3.98

empirical Mean squared prediction error (eMSPE), average posterior standard deviation (APSD), and re-
spective percentage improvements (PI) of spatial models over the independent FH model for Bayes predictor
of θ and synthetic estimator XT β̂, and also average length (AL), coverage probability (CP).

Table 2: Full data from forty-nine states with all covariates

eMSPE eMSPE-PI AL CP APSD APSD-PI syn MSPE syn ARPME
FH 2.88 - 7.63 0.9592 1.93 - 1.86 2.57
SAR 2.61 9.55 % 7.58 0.9592 1.94 0.34% 2.00 2.74
SCAR 3.03 -5.14 % 7.66 0.9592 1.95 -0.91% 1.86 2.57
CAR 2.64 8.47 % 7.48 0.9592 1.91 1.24% 1.98 2.63
LCAR 2.47 14.50 % 7.31 0.9592 1.85 4.19% 2.37 3.02

Table 3: Posterior mean/mode (standard deviation) of ρ for various models ans
data types.

Data type Covariate included SAR SCAR CAR LCAR
Aggregated x1,x2 -0.10 /-0.22(0.44) -0.09 /-0.09(0.14) -0.20 /-0.25(0.59) 0.47 / 0.22(0.28)

data x1 0.43 / 0.68(0.39) 0.02 / 0.17(0.13) 0.41 / 0.95(0.54) 0.71 / 0.98(0.24)
Full x1, x2 0.10 / 0.38(0.48) -0.06 / 0.11(0.14) 0.21 / 0.98(0.55) 0.57 / 0.78(0.27)
data x1 0.76 / 0.83(0.14) 0.14 / 0.18(0.04) 0.93 / 0.98(0.09) 0.85 / 0.98(0.13)

reported in column 9. Actually, by being the Bayes estimates, they will have smaller posterior
means squared error. Since few applications provide any set of gold standards to compare
estimates against, it is important to compare various estimates in terms of their variability
or concentration.

Even in the presence of powerful predictors Table 1 showed that only the LCAR
model emerged to be the best among the five sets (including the independent Fay-Herriot)
in terms of eMSPE, AL and APSD. Other spatial models turned out to be less competitive
or inferior to the independent FH model. If we turn to Table 2, even when we have direct
estimates from all 49 states, the LCAR model still turned out to be the best of the five
models in terms of the same measures. Among the other models, the SAR and CAR models
also improved over the independent FH model.

To assess efficiency loss due to data compression through aggregation, we compare
the results of Table 1 with those of Table 2. Across models the percentages increase in
eMSPE’s for the aggregated data over their counterparts for the full data, respectively, are
40, 48, 35, 67 and 36; the two smaller of the increases are for the SCAR and the LCAR
models. We note that in both the tables that all the CP’s are practically at the target 95%.
When we compare the average length of the credible intervals, the percentage increases for
the aggregated data across models over their counterparts for the full data, respectively, are
87, 87, 86, 95 and 88; this time, the smaller of the increases are for the models other than the
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Figure 1: Posterior relative frequency histogram of ρ for aggregated data with
all covariates

CAR. Among these spatial models, the LCAR model produced the smallest eMSPE and the
AL values. Finally, the rows corresponding to x1, x2 in Table 3 show that for both data types
the spatial parameter only for the LCAR model appears to be the one that is more likely
to be non-zero. The same conclusion emerges about the spatial models from the posterior
relative frequency histograms of ρ presented in Figures 1 and 2.

4.2. Four-person family median income estimation with the weaker covariate

Research shows that spatial random effects models tend to have better predictive
power than a corresponding independent Fay-Herriot model when no effective covariates are
available, see, for example, Chung and Datta (2022) and Vogt et al. (2023). For the median
income estimation problem based on direct estimates from all 49 mainland states Chung
and Datta (2022) showed that in the absence of any covariates some of the spatial models
do better than the independent Fay-Herriot model. Usually, the SAR or the LCAR model
provides the best prediction. In this section, we plan to investigate based on modeling of
only aggregated statistics if any of the spatial models would be better than the independent
Fay-Herriot model.

We note from Table 4 and Table 5 that for both aggregated data and full data cases
in the absence of powerful predictors of θi’s, all the spatial models provide better predictions
than the independent FH model when compared in terms of eMSPE, AL and APSD. In this
setting with low quality predictor, all synthetic estimators of θi’s have bigger average MSPE’s
than their Bayesian counterparts (see columns 2 and 8). In this case, the LCAR is the best
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Figure 2: Posterior relative frequency histogram of ρ with all covariates and 49
states data

spatial model across both data settings. Results from Table 4 and those corresponding to
the x1 rows in Table 3 show that the LCAR is the best of the spatial models and the spatial
parameter of this model appeared most likely to be different from zero. Moreover, from the
two relative frequency histograms of ρ in Figure 3 and Figure 4 it is obvious that for the
LCAR model 95% highest posterior density credible intervals of ρ will not include the zero
value. For the full data case we also note from the last row of Table 3 and Figure 4 that
the respective spatial parameter in all the spatial models appears very likely to be different
from zero.

Before concluding Subsection 4.1 and Subsection 4.2, from a quick look at the APSD’s
for the independent FH model reported in the first row of Table 1, Table 2, Table 4 and Table
5, we found out that the average of the posterior variances of the θi’s under the aggregated
data setting is nearly three times that quantity under the full data case. This substantial
increase in the posterior variances of θi under the aggregated data setting compared to the
full data setting can reasonably be explained by the expression of the posterior variance of
θi in equation (1) under the assumption of known model parameters.
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Table 4: Aggregated data with a weaker covariate

eMSPE eMSPE-PI AL CP APSD APSD-PI syn MSPE syn ARPME
FH 11.78 - 20.47 0.9513 4.02 - 14.44 4.77
SAR 6.76 42.64% 17.53 0.9507 3.77 6.09% 14.29 6.63
SCAR 10.60 10.06% 19.88 0.9513 3.99 0.75% 14.73 4.84
CAR 8.52 27.67% 18.58 0.9476 3.85 4.08% 14.17 5.06
LCAR 6.03 48.80% 16.39 0.9480 3.48 13.31% 14.20 6.55

Table 5: Full data from forty-nine states with a weaker covariate

eMSPE eMSPE-PI AL CP APSD APSD-PI syn MSPE syn ARPME
FH 7.27 - 9.09 0.9388 2.31 - 14.45 4.04
SAR 4.34 40.22% 7.73 0.9796 1.98 14.25% 14.61 7.65
SCAR 5.62 22.62% 8.75 0.9592 2.22 3.52% 15.36 4.27
CAR 4.62 36.35% 7.84 0.9388 2.01 12.97% 14.70 5.06
LCAR 4.54 37.51% 7.77 0.9592 1.97 14.36% 14.67 6.17
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Figure 3: Posterior relative frequency histogram of ρ for aggregated data and a
weaker covariate

5. Importance of the study

This study addresses an important problem in area-level small area estimation when
most or all of the small areas do not have a direct estimates for θi’s. Such data can not
be had due to not having a survey that collects data from the individual areas. Due to
administrative or budgetary considerations, a survey may do stratified sampling where each
stratum is formed by merging multiple targeted small areas. If the goal is to estimating
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Figure 4: Posterior relative frequency histogram of ρ with a weaker covariate
and 49 states data

total agricultural productions or total employments for the strata, our study shows that
the stratified means can be leveraged to reliably estimate the means for the original small
areas by integrating the strata level means of a response variable with area-level data from
covariates that have good predictive power to predict the small area means for the response.

For the setup we are considering here, the success of a generalization of the Fay-
Herriot model depends on the availability of effective predictor variables for the response
variable. In the absence of effective covariates, from the studies by Chung and Datta (2022)
and Vogt et al. (2023), it is known that various spatial alternatives to the independent
Fay-Herriot model produce significantly better predictions by accounting for the spatial
variation of the small area means. Even when no substantial spatial variation exists among
the means, the spatial models make marginally better predictions than the independent FH
model without sacrificing model fit. We demonstrated the usefulness and the strength of our
proposed method by applying this to an application that has been important to both the
HHS Department and the Census Bureau of the United States.

6. Proof of propriety of the posterior pdfs

We know that our vector of aggregated statistics S is r × 1 with r ≥ p. We assume
that

S|θ ∼ N(Cθ, DS), (9)
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where C is a known r ×m matrix of rank r, θ is an m×1 vector, and DS is a known positive
definite (p.d.) matrix of rank r.

Suppose the largest eigenvalue of DS is δ, which is finite and positive. Let N(x|µ, Σ)
denote the multivariate normal pdf with mean µ and p.d. variance-covariance matrix Σ
at x. Since δ−1 > 0 is the smallest eigenvalue of D−1

S , from the property of the minimum
eigenvalue we get that

(s − Cθ)T D−1
S (s − Cθ) ≥ δ−1(s − Cθ)T (s − Cθ)

⇒ N(s|Cθ, DS) ≤ KN(s|Cθ, δIr), (10)

where K > 0 is a generic known suitable constant, dependent on DS but free from s or θ.

We can select a matrix F((m−r)×m), dependent on C but known so that the m×m
matrix M = (CT , FT )T is non-singular. This implies that the rank of F is m − r. For an
(m − r) × 1 vector h2 note that

�
Rm−r

N(h2|Fθ, δIm−r)dh2 = K < ∞, (11)

where K is a generic and positive constant. By (10)-(11) we get that

N(s|Cθ, DS) ≤ KN(s|Cθ, δIr)
�

Rm−r

N(h2|Fθ, δIm−r)dh2

= K

�
Rm−r

N(h|Mθ, δIm)dh2, (12)

where h = (sT , hT
2 )T is an m × 1 vector.

Let M−1 = B. Let k be the smallest eigenvalue of the p.d. matrix MT M. Using
h − Mθ = M(Bh − θ) we get

(h − Mθ)T (h − Mθ) = (Bh − θ)T MT M(Bh − θ)
≥ k(Bh − θ)T (Bh − θ).

From the above, using k > 0, we get that

N(h|Mθ, δIm) ≤ KN(Bh|θ, δk−1Im). (13)

By (12)-(13), writing δk−1 = δ∗, we get

N(s|Cθ, DS) ≤ K

�
Rm−r

N(h|Mθ, δIm)dh2

≤ K

�
Rm−r

N(Bh|θ, δ∗Im)dh2. (14)

Recall that for the class of spatial models, the linking model is given by

θ|β, σ2, ρ ∼ N(Xβ, σ2Ω−1), (15)
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where X is a known m × p matrix of covariates of rank p, and Ω is an m × m p.d. matrix
that depends on a parameter ρ which varies on a known finite interval.

Let fS(s|β, σ2, Ω) =
�

Rm N(s|Cθ, DS)N(θ|Xβ, σ2Ω−1)dθ be the pdf of S given
β, σ2, ρ. Then from (14) we get

fS(s|β, σ2, Ω) ≤ K

�
Rm

�
Rm−r

N(Bh|θ, δ∗Im)N(θ|Xβ, σ2Ω−1)dh2dθ

= K

�
Rm−r

N(Bh|Xβ, δ∗Im + σ2Ω−1)dh2

= K

�
Rm−r

N(Bh − Xβ|0, δ∗Im + σ2Ω−1)dh2. (16)

Now, Bh − Xβ = B(h − MXβ). Let d = (hT
1 , 0T )T and

G =
[
CX 0
FX −Im−r

]
.

Then, we have
h − MXβ = d − Gϕ, (17)

where ϕ = (βT , hT
2 )T is a (p + m − r) × 1 vector. Now, define submatrices G1 and G2 to

introduce a column partition of the matrix G, where G1 is given by the first p columns of G,
and G2 is given by the last m − r columns of G. Columns of G2 are linearly independent.
So rank(G2) = m − r. Also, since we require CX ̸= 0, the columns of G1 cannot be linearly
expressed by the columns of G2. However, G1 = MX implies rank(G1) = rank(X) = p.
Hence, rank(G) = rank(G1) + rank(G2) = p + m − r.

Let Bd = d∗, BG = G∗. Then, by (17)

Bh − Xβ = B(h − MXβ) = B(d − Gϕ) = d∗ − G∗ϕ. (18)

Using (16) and (18) we get,

fS(s|β, σ2, Ω) ≤ K

�
Rm−r

N(d∗ − G∗ϕ|0, δ∗Im + σ2Ω−1)dh2. (19)

Further,

N(d∗ − G∗ϕ|0, δ∗Im + σ2Ω−1) = K|δ∗Im + σ2Ω−1|−1/2

× exp[−(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1)−1(d∗ − G∗ϕ)
2 ]. (20)

We consider four spatially dependent random effects models with variance-covariance
matrix σ2Ω(ρ)−1, defined through their associated p.d. “precision” matrices, depending on
a spatial parameter ρ: for all the models the parameter ρ is defined on an appropriate finite
interval so that the Ω matrices are p.d.

To continue our propriety proof, for convenience of notation, we denote Ωk(ρ) by Ωk,
for k = 1, . . . , 5. Here, Ω1(ρ) = Im is for the independent Fay-Herriot model. In the next
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two subsections we present detail arguments establishing the propriety of the posterior pdfs
for the SCAR and the SAR models. Under the same conditions, similar arguments can be
made for proving the propriety of the posterior pdfs for the CAR and the LCAR models; see
also Appendices A.3 and A.4 of Chung and Datta (2022). Result for the independent model
follows from the SAR or the SCAR model with ρ = 0.

Finally, suppose C =
[
0 Ir

]
, an r × m matrix. This is a special case of the general

setup considered in this paper. This special case was considered in Chung and Datta (2022).

6.1. The propriety for the SCAR model

For the eigenvalues λi’s of W, let Λ = diag(λ1, . . . , λm) and PW be an orthogonal
matrix such that W = PW ΛPT

W . For the SCAR model, Ω = Ω3 and

Ω−1
3 = PW [Im − ρΛ]−1PT

W . (21)

From this we get

(δ∗Im + σ2Ω−1
3 )−1 = PW [δ∗Im + σ2{Im − ρΛ}−1]−1PT

W ,

which implies that

(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
3 )−1(d∗ − G∗ϕ)

= (d∗∗ − G∗∗ϕ)T [δ∗Im + σ2{Im − ρΛ}−1]−1(d∗∗ − G∗∗ϕ)

=
m∑

i=1

{d∗∗i − gT
∗∗iϕ}2

δ∗ + σ2(1 − ρλi)−1 (22)

where d∗∗ = PT
W d∗, G∗∗ = PT

W G∗, d∗∗i is the ith element of d∗∗ and gT
∗∗i is the ith row of

G∗∗.

Clearly,

rank(G∗∗) = rank(G∗) = rank(G) = p + m − r = q (say).

We can select q linearly independent rows of G∗∗. By rearrangement of those rows we can
assume that the first q rows of G∗∗ could be taken as linearly independent. Then from (22)
we get

(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
3 )−1(d∗ − G∗ϕ) ≥

q∑
i=1

{d∗∗i − gT
∗∗iϕ}2

δ∗ + σ2(1 − ρλi)−1 .
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Using this inequality in equations (19)-(20) we get
�

Rp

fS(s|β, σ2, Ω)π(β)dβ ≤ K|δ∗Im + σ2Ω−1|−1/2

×
� �

π(β) exp[−(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
3 )−1(d∗ − G∗ϕ)

2 ]dh2dβ

≤ K
m∏

i=1
{δ∗ + σ2(1 − ρλi)−1}−1/2

×
� �

π(β) exp[−1
2

q∑
i=1

{d∗∗i − gT
∗∗iϕ}2

δ∗ + σ2(1 − ρλi)−1 ]dβdh2

≤ K
m∏

i=1
{δ∗ + σ2(1 − ρλi)−1}−1/2

×
�

Rq

exp[−1
2

q∑
i=1

{d∗∗i − gT
∗∗iϕ}2

δ∗ + σ2(1 − ρλi)−1 ]dϕ

= K
m∏

i=q+1
{δ∗ + σ2(1 − ρλi)−1}−1/2, (23)

where we assumed that π(β) is bounded above, which is satisfied by a uniform prior on Rp.

Now, we notice that for any positive constant N

δ∗ + σ2(1 − ρλi)−1 ≥ δ∗I(σ2 ≤ N) + σ2(1 − ρλi)−1I(σ2 > N)
⇒ {δ∗ + σ2(1 − ρλi)−1}−1/2 ≤ KI(σ2 ≤ N) + (σ2)−1/2(1 − ρλi)1/2I(σ2 > N). (24)

Since λi’s are finite and ρ is integrated over a finite interval, it follows that 1 − ρλi is a finite
positive quantity. Then, using q = m − r + p,

m∏
i=q+1

{δ∗ + σ2(1 − ρλi)−1}−1/2 ≤ K[I(σ2 ≤ N) + (σ2)−(m−q)/2I(σ2 > N)]

≤ K[I(σ2 ≤ N) + (σ2)−(r−p)/2I(σ2 > N)]. (25)

Now using π(σ2, ρ) = g(σ2)h(ρ) and that h(ρ) is a pdf, we get

� ∞

0

� u

l

m∏
i=q+1

{δ∗ + σ2(1 − ρλi)−1}−1/2g(σ2)h(ρ)dρdσ2

≤ K

� N

0
g(σ2)dσ2 + K

� ∞

N

g(σ2)(σ2)−(r−p)/2dσ2 < ∞, (26)

by sufficient conditions (a) and (b) in Theorem 1.

In particular, if g(σ2) = (σ2)−α, 1 − α > 0 ensures (a), and (r − p)/2 + α > 1 ensures
(b). Equivalently, we need α < 1 and r > p + 2 − 2α.
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6.2. The propriety of the posterior pdf under the SAR model

We now consider the SAR model. For this model

Ω2(ρ) = (Im − ρW̃)T(Im − ρW̃), −1 < ρ < 1.

Note that tr[Ω2(ρ)] = m + ρ2 ∑ ∑
w̃2

ij ≤ 2m. Let W∗ = L−1/2WL−1/2. Again,

Ω2(ρ) = L1/2(I − ρW∗)L−1(I − ρW∗)L1/2. (27)

Let ν1 ≥ · · · ≥ νm be the eigenvalues of W∗. From our discussions in Subsection 2.1 all νi’s
are real. Moreover, ν1 = 1 and |νi| ≤ 1. Since 1 − ρνi are the eigenvalues of I − ρW∗, for
−1 < ρ < 1, these eigenvalues are all positive. Hence the matrix is p.d. Actually, for all i,
0 < 1 − ρνi < 2.

Let l(1) = min Wi· and l(m) = max Wi·. Note that 1 ≤ l(1) ≤ l(m) < m. Define the
matrix

H = δ∗L + σ2(I − ρW∗)−1L(I − ρW∗)−1.

Since the matrix L − I is n.n.d., the matrix H − {δ∗I + σ2(I − ρW∗)−2} is n.n.d. It easily
follows that

|H| ≥ |δ∗I + σ2(I − ρW∗)−2| =
m∏

i=1
{δ∗ + σ2(1 − ρνi)−2}.

Let Σ2 = δ∗I + σ2Ω−1
2 . Note that Σ2 = L−1/2HL−1/2, and |L| < mm. Using these, and if

we use K to denote a suitable finite, positive and generic constant, not depending on any
parameters, we get that

|Σ2|−1/2 ≤ K
m∏

i=1
{δ∗ + σ2(1 − ρνi)−2}−1/2. (28)

Let PW∗ be the matrix of eigenvectors of W∗ such that PT
W∗W∗PW∗ = diag(ν1, . . . , νm) =

N∗. Then,

(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
2 )−1(d∗ − G∗ϕ)

= (L1/2d∗ − L1/2G∗ϕ)T H−1(L1/2d∗ − L1/2G∗ϕ)
≥ l−1

(m)(r − Fϕ)T {δ∗I + σ2(I − ρW∗)−2}−1(r − Fϕ)
= (r̃ − S̃ϕ)T {δ∗I + σ2(I − ρN∗)−2}−1(r̃ − S̃ϕ), (29)

where r = L1/2d∗, F = L1/2G∗, r̃ = l
−1/2
(m) PW∗r, and S̃ = l

−1/2
(m) PW∗F.

Suppose {i1, . . . , iq} is a subset of {1, . . . , m} so that the matrix S̃1 formed by plucking
the rows of S̃ corresponding to the indices {i1, . . . , iq} is non-singular. Note that this matrix
is determined by W.

From (29) we get

(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
2 )−1(d∗ − G∗ϕ) ≥

q∑
j=1

(r̃ij
− s̃T

ij
ϕ)2

δ∗ + σ2(1 − ρνij
)−2 . (30)
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Using equations (29)-(30) we get
�

π(β) exp[−(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
2 )−1(d∗ − G∗ϕ)

2 ]dϕ

≤ K

�
exp[−1

2

q∑
j=1

(r̃ij
− s̃T

ij
ϕ)2

δ∗ + σ2(1 − ρνij
)−2 ]dϕ

= K
q∏

i=1
{δ∗ + σ2(1 − ρνij

)−2}1/2. (31)

Hence we get

|Σ2|−1/2
�

π(β) exp[−(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
2 )−1(d∗ − G∗ϕ)

2 ]dϕ

≤ K
∏

i/∈{i1,...,iq}
{δ∗ + σ2(1 − ρνi)−2}1/2

≤ K[I(σ2 ≤ N) + I(σ2 > N)(σ2)−(m−q)/2 ∏
i/∈{i1,...,iq}

(1 − ρνi)]

≤ K[I(σ2 ≤ N) + I(σ2 > N)(σ2)−(r−p)/2], (32)

where we use the facts that −1 < ρ < 1 and −1 ≤ νi ≤ 1 to claim that 0 < 1 − ρνi < 2
for all i. From equation (32) if we continue our proof along the lines of the proof for the
SCAR model, we will get the propriety of the posterior pdf for the SAR model under the
same conditions.
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Abstract
This paper introduces several methodologies that solve the inverse problem of recover-

ing a multivariate sample from subsets of its associated marginal and joint integer moments.
These results rely in part on their univariate counterpart, which is examined in some de-
tail. It is also explained that some of them also apply to complex-valued data sets. Several
illustrative examples are presented.
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1. Introduction

Evidently, one can readily evaluate sample moments from a given data set. The
problem being considered herein, which consists of retrieving a sample of multivariate ob-
servations from certain of its marginal and joint sample moments, can be regarded as an
inverse problem.

Inverse problems generally involve determining certain causes from some effects. They
currently constitute a rich field of research. For instance, they appear in the Mathematics
Subject Classification index in connection with quantum theory, optics, harmonic analysis,
trigonometry, linear operators, and electromagnetic theory. Inverse problems of various
nature have, for example, also found applications in geophysics (Zhdanov, 2015), acoustics
(Klyuchinskiy et al. 2020), image processing (Zou et al. 2021), astronomy (Escárate et al.
2023), system identification (Blanken and Oomen, 2020), language processing (Nakanishi,
2024), machine learning (Koffer et al. 2023), signal processing (Giovannelli and Idier, 2015)
and tomography (Mohamad-Djafari, 2013).

The results introduced in this paper imply that a certain number of marginal and joint
moments actually hold all the information that is contained in a given data set since the latter

Corresponding Author: Serge B. Provost
Email: provost@stats.uwo.ca

http://www.ssca.org.in/journal.html


472
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

SERGE B. PROVOST, S. EJAZ AHMED AND ZHAOQI YANG [Vol. 22, No. 3

can be entirely retrieved from the former. Accordingly, such moments constitute sufficient
statistics. To some extent, this remark provides a justification for making use of moment-
based statistical methodologies such as the density function estimation techniques advocated
in Provost and Zheng (2015), Provost and Ha (2016), Jin et al. (2016), Zareamoghaddam
et al. (2017), Kang et al. (2019), Provost et al. (2020) and Provost and Zang (2024).

The problem of recovering a univariate sample of size n from its first n moments is
considered in Section 2 where the applicability of the result is discussed. The case of bivariate
observations and their sample moments is addressed in Section 3 where generalizations to
complex-valued and multivariate data sets are explored. All the results and their extensions
are illustrated by means of numerical examples. Lastly, some concluding remarks are offered
in Section 4.

2. A theorem relating a univariate data set to its moments

In this section, we state a result that was established in Provost et al. (2020), explain
that it holds in the complex domain, and discuss related considerations. Two numerical
examples are provided as well.

Theorem 1: A data set of size n can be recovered from the first n moments of the sample.
The proof of this result is given in the Appendix for the sake of completeness. The following
example illustrates the steps to follow when applying Theorem 1.

Example 1: Let n = 5 and the sample be {1.2, 3.4, 6.7, 8.1, 11.9}. The moments of orders
zero to five are 1, 6.26, 53.022, 511.6790, 5301.7767, 57492.260726 and, for j = 0, 1, 2, 3, 4, 5,
the ej’s as defined in the Appendix, are 1, 31.3, 357.29, 1814.543, 3910.731, 2634.91704. Ac-
cording to equation (1), the resulting polynomial is then −2634.91704+3910.731 x−1814.543 x2

+357.29 x3 − 31.3 x4 + x5, its five roots being {1.2, 3.4, 6.7, 8.1, 11.9}.

We note that the proof of Theorem 1 remains valid in the complex domain. It should
also be observed that any loss of precision can be avoided by making use of fractions.

Example 2: Let n = 3 and the sample be {2.4 + 5.1 i, 6.7 − 9.5 i, 11.8 + 1.4 i}, that
is, {12

5 + 51 i
10 , 67

10 − 19 i
2 , 59

5 + 7 i
5 } in fractional form. The moments of orders zero, one, two

and three are 1, 209
30 − i, 2389

100 − 1163 i
50 , and −56531

1500 + 38517 i
1000 , and for j = 0, 1, 2, 3, the ej’s

as defined in the Appendix are 1, 209
10 − 3 i, 17807

100 − 2781 i
100 , 93192

125 + 56127 i
250 . The polynomial,

x3 −
(

209
10 − 3 i

)
x2 +

(
17807
100 − 2781 i

100

)
x −

(
93192
125 + 56127 i

250

)
, is then obtained from equation (1)

and, as expected, its three roots are {12
5 + 51 i

10 , 67
10 − 19 i

2 , 59
5 + 7 i

5 }.

Since there exists a one-to-one correspondence between the observations and their
associated empirical distribution function, the following corollary to Theorem 1 holds.

Corollary 1: Given a simple random sample of size n from a continuous distribution, its
empirical distribution function Fn is uniquely specified by the first n sample moments.

In light of the strong law of large numbers, for every fixed x, the empirical distribution
function Fn(x) will converge almost surely to the underlying distribution function F (x).
Moreover, given a simple random sample of size n, the Glivenko-Cantelli theorem states
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that
sup
x∈ℜ

|Fn(x) − F (x)|

tends to zero almost surely, and that the convergence of Fn(x) to F (x) is uniform. However,
as was aptly pointed out by Ric̆ardas Zitikis, a colleague of the first author, a contradiction
would ensue if one were to let n tend to infinity in Corollary 1 as this result would then
imply that, given the integer moments of a random variable, its distribution could be specified
uniquely. This is clearly not the case since there exists distinct distributions whose integer
moments are all identical.

Consider for example the following density functions:

f1(x) = 1
4e−

√
|x|, x ∈ ℜ,

and
f2(x) = 1

4e−
√

|x|
(

cos(
√

|x|) + 1
)
, x ∈ ℜ,

which are plotted in Figure 1.

-100 0 100 200

10-10

10-8

10-6

10-4

0.01

1

Figure 1: Plots of f1(x) and f2(x) on a logarithmic scale for −200 < x < 200

Although these two distributions are clearly distinct, their kth moment,

m1(k) = 1
2

(
(−1)k + 1

)
Γ(2k + 2)

and
m2(k) = 1

2
(
(−1)k + 1

)
Γ(2k + 2)

(
1 − sin(k π/2)

2k+2

)
,

happen to coincide for k = 0, 1, 2, . . . .

To summarize, in the limit, Fn can specify the underlying population distribution
function. However, as previously illustrated, a population distribution function F may not
be uniquely specified by an infinite sequence of its integer moments. Thus, Corollary 1
cannot be extended beyond finite values of n.

It should also be pointed out that moment-based methodologies lend themselves to
the modeling of massive data sets since only a moderate number of moments are needed to
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apply such techniques, as opposed to other approaches such as those based on likelihoods
for which all the observations are required. Actually, ample information can generally be
secured from a fairly limited number of moments, whereas each data point contains an equal
amount of information that is inversely proportional to the sample size. Moreover, once a
new set of observations, {xn1+1, . . . , xn}, becomes available in addition to an initial dataset,
{x1, . . . , xn1}, there is no need to make use of each of the n1 original data points to compute
the moments since the hth updated moment will then be (n1mh +

n∑
i=n1+1

xh
i )/n where mh

denotes the hth sample moment as evaluated from the initial data set.

3. On recovering multivariate samples from their moments

The four propositions introduced in this section enable one to retrieve bivariate sets of
observations from some of their marginal and joint moments—or those of their component-
wise ranks, the observations on each variable being assumed to be distinct. It is explained
that each of the proposed methodologies also apply to multivariate data sets and that two
of them hold in the complex domain. Several numerical examples are provided.

Proposition 1: A bivariate sample {(x1, y1), . . . , (xn, yn)} can be retrieved from the first n
marginal moments of the first variable, that is,

m1,0, . . . , mn−1,0, mn,0,

in conjunction with the following bivariate sample moments:

m0,1, m1,1, . . . , mn−1,1,

where mj,k denotes the moment of orders j and k, which is equal to ∑n
i=1 xj

i yk
i /n.

Proof: In light of Theorem 1, the observations on the first variable, namely, x1, . . . , xn

can be retrieved from the given marginal moments. The remainder of the proof relies on a
representation of the joint moments that involves a Vandermonde matrix.

It is assumed that the following joint moments are known:

mj,1 = 1
n

n∑
1=1

x j
i yi, j = 0, . . . , n − 1.

This system of equations can be equivalently expressed as follows:

1
n


1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n... ... . . . ...

xn−1
1 xn−1

2 · · · xn−1
n




y1
y2
y3
...

yn

 =


m0,1
m1,1
m2,1

...
mn−1,1


where the above matrix is a Vandermonde matrix, which is nonsingular since the xi’s are
assumed to be nonidentical. Note that the vector of yj’s which is the unique solution of this
linear system, enables one to pair each of them appropriately with the corresponding xi.
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Remark 1: Given the definition of mj,k, it is apparent that the order of the n bivariate
sample points is immaterial. Thus, in applications, it suffices to set a certain order for the
xi’s, and the yj’s to be associated with these xi’s will be properly ordered in the solution
vector of the linear system.

Additionally, we note that the 2n moments that are specified in Proposition 1 are
jointly sufficient statistics, since they provide enough information to recover the entire bi-
variate sample of ordered observations—which, incidentally, requires 3n − 1 pieces of infor-
mation, namely, the observations on each variable and the ranks of n − 1 observations on
the second component relative to those on the first.

Example 3: Let the sample be {(1, 7), (2, 2), (5, 3)}. Given the marginal moments on the
first variable, one can determine that the observations on the first variable are 1, 2 and
5. Additionally, let the joint moments of orders (0,1), (1,1) and (2,1), that is, m0,1 = 4
m1,1 = 26/3 and m2,1 = 30, be available. The solution of the following system, which is
(7,2,3), yields the values of the yj’s to be associated with the xi’s:

1
3

 1 1 1
1 2 5
12 22 52


 y1

y2
y3

 =

 4
26/3
30

 .

As is the case for univariate observations, complex-valued bivariate or multivariate
observations can also be recovered. This can be readily achieved by initially implementing
Theorem 1 and then, solving a linear system of equations involving complex values.

Example 4: Let {(2.4+5.1 i, 7.3−1.8 i), (6.7−9.5 i, 2.2), (11.8+1.4 i, 9.8 i)} be the sample
to recover. Note that if the first three marginal moments of the first variables are given,
one can retrieve the three observations on the first component, which happens to be the
univariate data set utilized in Example 2. Now, assume that the joint moments of orders
(0,1), (1,1) and (2,1), namely, m0,1 = 19/6 + (8 i)/3, m1,1 = 231/25 + (851 i)/20 and m2,1 =
−(105469/600) + (640219 i)/1500 are available. As expected, the solution of the linear
system,

1
3

 1 1 1
12/5 + 51 i/10 67/10 − 19 i/2 59/5 + 7 i/5

−81/4 + 612 i/25 −1134/25 − 1273 i/10 3432/25 + 826 i/25


 y1

y2
y3



=

 19/6 + 8 i/3
231/25 + 851 i/20

−105469/600 + 640219 i/1500


is {y1, y3, y4} = {73/10 − (9 i)/5, 11/5, (49 i)/5}.

A trivariate observation vector (xi, yi, zi), i = 1, . . . , n, can be similarly recovered if,
in addition to the the first n marginal moments of the first variable from which the xi’s can
be specified, one knows m0,1,0, m1,1,0, . . . , mn−1,1,0 which will yield the yj’s associated with the
xi’s, as well as m0,0,1, . . . , m0,n−1,1 which will then yield the zk’s associated with the yj’s. By
proceeding in like fashion, Proposition 1 can extended to sets of multivariate observations.
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Example 5: Let the sample be {(2, 4, 6), (7, 3, 1), (5, 6, 3)}. Given the marginal moments on
the first variable, we can determine that the observations on that variable are 2, 5 and 7 and,
in light of Remark 1, we may let {x1, x2, x3} = {2, 7, 5} (or any other permutation thereof).
The joint moments of orders (0,1,0), (1,1,0) and (2,1,0) are m0,1,0 = 13/3 m1,1,0 = 59/3 and
m2,1,0 = 313/3, and the joint moments of orders (0,0,1), (0,1,1) and (0,2,1) are m0,0,1 = 10/3
m0,1,1 = 15 and m0,2,1 = 71. The solutions of the systems of equations,

1
3

 1 1 1
2 7 5
22 72 52


 y1

y2
y3

 =

 13/3
59/3
313/3


and

1
3

 1 1 1
4 3 6
42 32 62


 z1

z2
z3

 =

 10/3
15
71

 ,

yield the values of the yj’s to be paired with the xi’s, that is, {y1, y2, y3} = {4, 3, 6}, and
then those of the zk’s to be paired with the yj’s namely, {z1, z2, z3} = {6, 1, 3}).

Proposition 1 can also be extended as follows: Given the marginal moments of the first
variable up to order n, any additional set of n joint moments that does not include any of the
first variable marginal moments can be utilized to recover the sample. The resulting system
of equations can be solved by making use of an array of computing packages. This flexibility
in the selection of joint moments also applies in the case of multivariate observations.

Example 6: Let the sample be {(2, 4), (5, 6), (7, 3)}. Given the first three marginal moments
on the first variable which are {14/3, 26, 476/3}, it can be determined from Theorem 1 that
the observations on that variable are 2, 5 and 7. Now, assume that the joint moments
of orders (0,1), (1,2) and (2,3), namely, m0,1 = 13/3, m1,2 = 275/3 and m2,3 = 6979/3
are available. It then suffices to solve of system, {y1 + y2 + y3 = 13, 2y2

1 + 5y2
2 + 7y2

3 =
275, 4y3

1 + 25y3
2 + 49y3

3 = 6979} to obtain the corresponding values for the second variable,
that is, (4,6,3).

Proposition 2: A bivariate sample of size n can be retrieved from the first n marginal sam-
ple moments of each variable, that is, mi,0, i = 1, . . . , n, and m0,j, j = 1, . . . , n, where mi,j

denotes the sample moment of orders i and j, in conjunction with the ranks of the observa-
tions within each variable—or equivalently those of the corresponding pseudo-observations.

Pseudo-observations are the component-wise ranks of the data points divided by n.
Note that all the pseudo-observations originating from a given sample can be secured from
the associated empirical copula, as originally defined by Deheuvels (1979).

Proof: As previously explained, the data on each variable can be retrieved from the marginal
moments by appealing to Theorem 1. Then, given the ranks of the observations on each
variable, the observations can be appropriately paired.

Example 7: Let the original sample be {(1,7), (2,2), (5,3)}. First, it can be determined
from the first three marginal moments of each variable that the observations on the first
and second variables are respectively {1, 2 ,5}, and {2, 3, 7}. If in addition, it is known
that the ranks of the observations on each component are [r1, s1] = [1, 3], [r2, s2] = [2, 1] and
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[r3, s3] = [3, 2], then, it can readily be determined that the sample points are (1,7), (2,2)
and (5,3).

This approach can be directly extended to sets of multivariate observations.

Example 8: Consider the following sample of trivariate observations: {(2, 5, 7), (3, 4,
8),(1, 3, 6)}. Given the first three marginal moments of each of the three variables, it can
be determined from Theorem 1 that the observations on the first, second and third com-
ponents are {1, 2, 3}, {3, 4, 5} and {6, 7, 8}, respectively. If it is also known that the
ranks of these component-wise observations are [r1, s1, t1] = [2, 3, 2], [r2, s2, t2] = [3, 2, 3],
and [r3, s3, t3] = [1, 1, 1], it can then be readily determined that the sample points are (2, 5,
7), (3, 4, 8) and (1, 3, 6).

Proposition 3: A random sample of size n arising from a continuous bivariate distribution
can be retrieved from the first n marginal moments of each variable, that is, mi,0, i = 1, . . . , n
and m0,j, i, j = 1, . . . , n, in conjunction with the joint moments, m∗

0,1, . . . , m∗
n−1,1, of the

ranks of the observations.

Proof: In light of Theorem 1, the observations on each variable, namely, x1, . . . , xn, and
y1, . . . , yn, can be recovered from the marginal moments. The remainder of the proof relies
on a representation of the joint moments of the ranks that involves a Vandermonde matrix.
Let again ri and si denote the ranks of the observations with respect to the first and second
variables. By assumption, the joint moments, m∗

0,1, . . . , m∗
n−1,1, of the ranks are known with,

in general,

m∗
j,k = 1

n

n∑
i=1

s j
i r k

i , j = 0, . . . , n − 1.

Note that m∗
0,1 = (n + 1)/2. This system of equations can be equivalently expressed as

follows:

1
n


1 1 · · · 1
r1 r2 · · · rn

r2
1 r2

2 · · · r2
n... ... . . . ...

rn−1
1 rn−1

2 · · · rn−1
n




s1
s2
s3
...

sn

 =



m∗
0,1

m∗
1,1

m∗
2,1
...

m∗
n−1,1


where the above matrix is a Vandermonde matrix, which is nonsingular since the ri’s are
distinct. Note that the unique solution of this linear system will yield s1, . . . , sn, and associate
each of them appropriately with the corresponding ri, which will enable one to correctly pair
the known xi’s and yj’s.

Remark 2: Given the definition of m∗
j,k, it is apparent that the order of the n bivariate

sample points does not matter, since the pair of ranks corresponding to a given bivariate
observation will remain unchanged. Thus, in applications, it suffices to set a certain order for
the ri’s, and the sj’s to be associated with these ri’s will be properly ordered in the solution
vector of the linear system.

Example 9: Let the sample be {(1, 7), (2, 2), (5, 3)}. Given the marginal moments on each
variable, one can retrieve the observations on the first variables, namely, 1, 2 and 5, as well
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as the observations on the second variables which are 2, 3 and 7. It now remains to pair
them using Proposition 3. We have to determine the second component of the following
paired ranks: [r1, s1] = [1, 3], [r2, s2] = [2, 1] and [r3, s3] = [3, 2], that is, [s1, s2, s3] = [3, 1, 2].
The joint moments of the ranks of orders (0,1), (1,1) and (2,1) are m∗

0,1 = 2, m∗
1,1 = 11/3 and

m∗
2,1 = 25/3, respectively. Solving the following system will yield the ranks of the second

component, that is, [3,1,2], and enable one to correctly pair the data points:

1
3

 1 1 1
1 2 3
12 22 32


 s1

s2
s3

 =

 2
11/3
25/3

 .

This result can be generalized to the multivariate case by proceeding as in the gen-
eralization of the Proposition 1, except that in this case, the joint moments of the ranks
are utilized in addition to the marginal sample moments of each variable. As well, joint
moments of the ranks other than those specified in Proposition 3 can be utilized as was done
in Example 6 in conjunction with certain joint moments of the observations.

Example 10: Let the sample be {(2, 4, 6), (7, 3, 1), (5, 6, 3)}. Given the marginal moments
on each variable, one can retrieve the observations on the first, second and third variables,
that is, {2, 5, 7}, {3, 4, 6}, and {1, 3, 6}, respectively. We then have to determine the ranks
of the entries in second and third components, namely, [s1, s2, s3] = [2, 1, 3] and [t1, t2, t2] =
[3, 1, 2] and end up with the following set of ranks: [r1, s1, t1] = [1, 2, 3], [r2, s2, t2] = [3, 1, 1],
and [r3, s3, t3] = [2, 3, 2], which enables us to retrieve the original data set.

The joint moments of the ranks of orders (0,1,0), (1,1,0) and (2,1,0) are m∗
0,1,0 = 2,

m∗
1,1,0 = 11/3 and m∗

2,1,0 = 23/3, respectively. Let the given joint moments of the ranks of
orders (0,0,1), (0,1,1) and (0,2,1) be m∗

0,0,1 = 2, m∗
0,1,1 = 13/3 and m∗

0,2,1 = 31/3, respectively.

We started off with r1 = 1, r2 = 3 and r3 = 2; however, as per Remark 2, any
permutation thereof will lead to the data set with its trivariate observations appearing in a
different order. Thus, we first solve the following linear system, which will yield the ranks
of the second component entries, that is, [2,1,3]:

1
3

 1 1 1
1 3 2
12 32 22


 s1

s2
s3

 =

 2
11/3
23/3

 .

The solution of the linear system that follows will then yield the ranks of the third component
entries, which are [3,1,2]:

1
3

 1 1 1
2 1 3
22 12 32


 t1

t2
t3

 =

 2
13/3
31/3

 .

Proposition 4: A bivariate sample of size n can be retrieved on the basis of the first n
marginal sample moments of each variable in conjunction with any single additional joint
sample moment that does not involve moments of order zero.
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Proof: On applying Theorem 1, the set of observations on each variable can be determined
from the marginal moments. Then, given the ordered observations on the first variable, there
will be a unique permutation of the observations on the second variable that will yield the
given joint moment.

This assumes that the observations have been recorded with sufficient precision.

Example 11: Consider the sample S = {(1, 7), (2, 2), (5, 3)}. Given the marginal moments
of each variables, it can be determined that the first and second component values will re-
spectively be {1,2,5} and {2,3,7}. Assuming for instance that, it is known that the joint
moment m1,1 = 26/3, and, for instance, setting the the observations on the first component
in increasing order, that is, 1,2,5, we are seeking the permutation of {2,3,7} among the 6
possible ones that will yield the same joint moment of orders 1 and 1. This process will lead
to the identification of the correct bivariate data points that constitute the sample S. The
6 possible pairs of observations and their joint moment of order (1,1) are:

{(1, 7), (2, 3), (5, 2)} ⇒ m1,1 = 23/3
{(1, 7), (2, 2), (5, 3)} ⇒ m1,1 = 26/3
{(1, 2), (2, 7), (5, 3)} ⇒ m1,1 = 31/3
{(1, 2), (2, 3), (5, 7)} ⇒ m1,1 = 43/3
{(1, 3), (2, 2), (5, 7)} ⇒ m1,1 = 42/3
{(1, 3), (2, 7), (5, 2)} ⇒ m1,1 = 27/3.

Accordingly, we select the bold-faced set as the original sample since its joint moment of
order (1,1) coincides with that of S.

Proposition 4 which, incidentally, is implementable in the case of moderately sized
samples, can readily be extended to sets of multivariate observations.

Example 12: Consider the sample S = {(2, 4, 6), (7, 3, 1), (5, 6, 3)}. Given the first three
marginal moments of each variable, it can be determined that the observations on the first,
second and third components are {2,5,7}, {3,4,6}, and {1,3,6}, respectively. Assuming for
instance that, it is known that the joint moment m1,1,1 = 53, and setting the observations
on the first component in increasing order, that is, {2, 5, 7}, we are seeking the permutation
of {3, 4, 6} and that of {1, 3, 6} that will yield the same joint moment. This will enable us
to identify the correct triplet of trivariate observations comprising S. The 36 possible sets
of observations and their joint moments of order (1,1,1) are:

{(2, 3, 1), (5, 4, 3), (7, 6, 6)} ⇒ m1,1,1 = 106,
{(2, 3, 1), (5, 4, 6), (7, 6, 3)} ⇒ m1,1,1 = 84,
{(2, 3, 3), (5, 4, 1), (7, 6, 6)} ⇒ m1,1,1 = 290

3 ,
{(2, 3, 3), (5, 4, 6), (7, 6, 1)} ⇒ m1,1,1 = 60,
{(2, 3, 6), (5, 4, 1), (7, 6, 3)} ⇒ m1,1,1 = 182

3 ,
{(2, 3, 6), (5, 4, 3), (7, 6, 1)} ⇒ m1,1,1 = 46,
{(2, 3, 1), (5, 6, 3), (7, 4, 6)} ⇒ m1,1,1 = 88,
{(2, 3, 1), (5, 6, 6), (7, 4, 3)} ⇒ m1,1,1 = 90,
{(2, 3, 3), (5, 6, 1), (7, 4, 6)} ⇒ m1,1,1 = 72,
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{(2, 3, 3), (5, 6, 6), (7, 4, 1)} ⇒ m1,1,1 = 226
3 ,

{(2, 3, 6), (5, 6, 1), (7, 4, 3)} ⇒ m1,1,1 = 50,
{(2, 3, 6), (5, 6, 3), (7, 4, 1)} ⇒ m1,1,1 = 154

3 ,
{(2, 4, 1), (5, 3, 3), (7, 6, 6)} ⇒ m1,1,1 = 305

3 ,
{(2, 4, 1), (5, 3, 6), (7, 6, 3)} ⇒ m1,1,1 = 224

3 ,
{(2, 4, 3), (5, 3, 1), (7, 6, 6)} ⇒ m1,1,1 = 97,
{(2, 4, 3), (5, 3, 6), (7, 6, 1)} ⇒ m1,1,1 = 52,
{(2, 4, 6), (5, 3, 1), (7, 6, 3)} ⇒ m1,1,1 = 63,
{(2, 4, 6), (5, 3, 3), (7, 6, 1)} ⇒ m1,1,1 = 45,
{(2, 4, 1), (5, 6, 3), (7, 3, 6)} ⇒ m1,1,1 = 224

3 ,
{(2, 4, 1), (5, 6, 6), (7, 3, 3)} ⇒ m1,1,1 = 251

3 ,
{(2, 4, 3), (5, 6, 1), (7, 3, 6)} ⇒ m1,1,1 = 60,
{(2, 4, 3), (5, 6, 6), (7, 3, 1)} ⇒ m1,1,1 = 75,
{(2, 4, 6), (5, 6, 1), (7, 3, 3)} ⇒ m1,1,1 = 47,
{(2, 4, 6), (5, 6, 3), (7, 3, 1)} ⇒ m1,1,1 = 53,
{(2, 6, 1), (5, 3, 3), (7, 4, 6)} ⇒ m1,1,1 = 75,
{(2, 6, 1), (5, 3, 6), (7, 4, 3)} ⇒ m1,1,1 = 62,
{(2, 6, 3), (5, 3, 1), (7, 4, 6)} ⇒ m1,1,1 = 73,
{(2, 6, 3), (5, 3, 6), (7, 4, 1)} ⇒ m1,1,1 = 154

3 ,
{(2, 6, 6), (5, 3, 1), (7, 4, 3)} ⇒ m1,1,1 = 57,
{(2, 6, 6), (5, 3, 3), (7, 4, 1)} ⇒ m1,1,1 = 145

3 ,
{(2, 6, 1), (5, 4, 3), (7, 3, 6)} ⇒ m1,1,1 = 66,
{(2, 6, 1), (5, 4, 6), (7, 3, 3)} ⇒ m1,1,1 = 65,
{(2, 6, 3), (5, 4, 1), (7, 3, 6)} ⇒ m1,1,1 = 182

3 ,
{(2, 6, 3), (5, 4, 6), (7, 3, 1)} ⇒ m1,1,1 = 59,
{(2, 6, 6), (5, 4, 1), (7, 3, 3)} ⇒ m1,1,1 = 155

3 ,
{(2, 6, 6), (5, 4, 3), (7, 3, 1)} ⇒ m1,1,1 = 51

Accordingly, we select the bold-faced set as the original sample since its joint moment of
order (1,1,1) coincides with that of S.

Proposition 4 can as well be extended to complex-valued samples.

Example 13: Consider the sample S={(5.4 + 6.1 i, 9 + 3.4 i), (6.7, 3.3 i), (8 i, 1.9)}. Given
the first three marginal moments of the first and second components, which are respec-
tively {121/30+(47 i)/10, −679/75+(549 i)/25, −5783/120−(68451 i)/1000} and {109/30+
(67 i)/30, 518/25 + (102 i)/5, 423739/3000+ (750959 i)/3000}, one can determine the three
entries in each of the two components as was done in Example 2 for the univariate case.
Now, assume that, additionally, m1,1=1393/150 + (11057 i)/300, is provided. On keeping
the observations on first component in a given order and permuting those of the second
component, only one of the six joint moments of orders 1 and 1 so obtained will equal m1,1,
the corresponding set of paired observations being those included in S.

4. Concluding remarks

Four methodologies were introduced for the purpose of recovering a multivariate data
set from certain of its associated marginal and joint moments as evaluated from the ob-
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servations or their component-wise ranks. In fact, two of them also hold in the complex
domain. For a given multivariate sample, the evaluation of the marginal and joint moments
is straightforward and constitutes a direct problem. As explained in the Introduction, the
results introduced in this paper actually solve the inverse problem consisting of recovering
the original observations on the basis of certain marginal and joint moments.

Interestingly, a parallel can be established between Proposition 2 which makes use of
a number of marginal moments and all the component-wise ranks of the observations—or,
equivalently, the pseudo-observations—to recover the entire sample, and Sklar’s theorem as
introduced by Sklar (1959), which states that a joint distribution can be expressed in terms
of the marginal distributions and a function that depends only on the pseudo-observations,
which is referred to as a copula. In fact, copulas completely account for the dependence
between the variables. Several nonparametric copula density estimation techniques were
recently proposed in Provost and Zang (2024). For an introduction to copulas and related
results, the reader is referred to Nelsen (2006). All the calculations were carried out with the
symbolic computing package Mathematica, the code being available from the first author
upon request.
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APPENDIX

Proof of Theorem 1

Let S = {x1, x2, . . . , xn} be a sample of size n and M = {m1, m2, . . . , mn} where mh =∑n
i=1 xh

i /n. According to the fundamental theorem of algebra, p(z) = a0 + a1z + · · · +
an−1z

n−1 + zn is uniquely defined by its coefficients ai’s and it is also uniquely specified by
its n roots xi’s for i = 1, . . . , n. Moreover, given S, the coefficients of p(x) can be expressed
in terms of the sequence of moments M via the Newton-Girard identity. Accordingly, a
given polynomial of degree n, say p(x), can be represented as follows:

n∏
i=1

(x − xi) =
n∑

k=0
(−1)n−k en−k xk, (1)

where e0 = 1 and

eℓ = n

ℓ

ℓ∑
h=1

(−1)h−1 eℓ−h mh, ℓ = 1, . . . , n. (2)

Thus, given the first n sample moments associated with S, a sample of size n, one can express
the right-hand side of (1) as a polynomial whose roots are precisely {x1, x2, . . . , xn}. This
establishes that S is uniquely specified by M.





Statistics and Applications {ISSN 2454-7395 (online)}
Special Issue in Memory of Prof. C R Rao
Volume 22, No. 3, 2024 (New Series), pp 485–508
http://www.ssca.org.in/journal

Bayesian Variable Selection for Ultrahigh-dimensional
Sparse Linear Models

Minerva Mukhopadhyay1 and Subhajit Dutta2
1Interdisciplinary Statistical Research Unit,

Indian Statistical Institute Kolkata, 203 B. T. Road, Kolkata – 700108, WB, India.
2Applied Statistics Unit,

Indian Statistical Institute Kolkata, 203 B. T. Road, Kolkata – 700108, WB, India.
1,2Department of Mathematics and Statistics,

Indian Institute of Technology Kanpur, Kanpur - 208016, UP, India.

Received: 12 August 2024; Revised: 25 September 2024; Accepted: 30 September 2024

Abstract
We consider the problem of variable selection for the ultrahigh-dimensional linear

regression model, allowing the number of covariates pn to grow exponentially with n. As-
suming the true model to be sparse, we propose a set of priors suitable for this regime.
In the ultrahigh-dimensional setting, the selection of the unique true model among all the
2pn possible ones involves prohibitive computation. To cope with this, a two-stage model
selection algorithm is proposed. In the first stage, an efficient screening algorithm is em-
ployed to find a good dn-dimensional model, where dn ≪ n. In the next stage, an explicit
model search algorithm is employed on the space of all submodels of the first-stage-selected
model. Theoretical investigations justify the two-stage procedure. It is demonstrated that
the first-stage screening is expected to select a supermodel of the true model, consequently,
the second-stage algorithm identifies the true model with probability tending to one. This
procedure is computationally efficient, simple and intuitive. We validate the competitive
performance of the proposed algorithm with a variety of simulated and real data sets, and
compare with several frequentist as well as Bayesian methods.

Key words: Model selection consistency; Reversible jump MCMC; Screening consistency.

AMS Subject Classifications: 62H05; 11P70; 47A57.

1. Introduction

Variable selection in ultrahigh-dimensional regression setup has become a flourishing
area in the contemporary research, due to increasing availability of data in various fields
like genetics, finance, machine learning. Consider, for example, in genome-wide association
studies (GWAS), where a phenotype is measured for a panel of individuals and a large
number of single nucleotide polymorphisms (SNPs) are genotyped for each individual. The
goal is to identify SNPs that are statistically associated with the phenotype. Sparsity has
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frequently been identified as an underlying feature for such data sets, where among a large
number of covariates (SNPs) only a small subset are actually important.

Several variable selection methods have been proposed for high-dimensional data in
both the frequentist and the Bayesian paradigms. Two predominant classes of methods in
frequentist paradigm are penalized likelihood methods and screening based methods. Penal-
ized likelihood methods includes Least Absolute Shrinkage and Selection Operator (LASSO)
and its variants like the elastic net of Zou and Hastie (2005), the group LASSO of Yuan and
Lin (2006) and the adaptive LASSO of Zou (2006), etc., while the screening based methods
include sure independence screening (SIS) of Fan and Lv (2008), iterative SIS (ISIS) of Fan
and Song (2010), forward selection-based screening of Wang (2009), nonparametric indepen-
dence screening (NIS) of Fan et al. (2011), iterative varying-coefficient screening (IVIS) of
Song et al. (2014), etc. For a comprehensive review of frequestist variable selection method,
see Bühlmann and van de Geer (2011).

In situations with extreme sparsity LASSO-type estimates are outperformed by testing-
based subset selection methods (see, for example (Tibshirani, 1996, Section 11)), and tend
to overfit. On the other hand, screening based methods focus on marginal association of
covariates with the response, and therefore fail to capture the joint structure of the covari-
ates. As a result these methods suffer under presence of multicollinearity, which is almost
inenviable in high-dimensional scenario.

In the Bayesian literature, popular methods include the empirical Bayes variable
selection (see George and Foster (2000)), where a mixture of testing and optimization is
employed to identify the optimal model, fully testing-based methods like spike and slab
variable selection (see Ishwaran and Rao (2005)), and optimization and thresholding-based
shrinkage prior methods for variable selection like Bayesian LASSO (see Park and Casella
(2008)). Among recent developments, the methods of Bondell and Reich (2012), Liang et al.
(2013), Song and Liang (2015) and Castillo et al. (2015) use the idea of penalized credible
regions to accomplish variable selection in the ultrahigh-dimensional setting.

Among notable theoretical developments, Castillo et al. (2015) proved results related
to the posterior consistency for regression parameters, while Liang et al. (2013) have shown
the equivalence of posterior consistency and model selection consistency under appropri-
ate sparsity assumptions. Narisetty and He (2014) claim to prove the ‘strongest selection
consistency result’ using the spike and slab prior under under the log pn = o(n) setting.

Although the optimization based methods are fast and easily implementable to high-
dimensional framework, strong selection consistency property is usually not investigated for
these methods. Strong selection consistency, requiring posterior probability of the true model
stochastically converging to one, has been shown in Narisetty and He (2014), however, for
implementation they rely on the stochastic search variable selection (SSVS) algorithm which
is not scalable in high-dimensional situations.

Neighborhood search based SSVS algorithms for the optimal model search are rou-
tine for small values of pn and n, but the resulting computations are quite intensive for
higher dimensions due to a large number of possible models. Several authors have developed
methods to cope with the high-dimensionality, e.g., Shin et al. (2018) proposed a simpli-
fied shotgun stochastic search and screening algorithm that employs a variable screening to
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reduce neighborhood size in the SSVS algorithm, Li et al. (2023) have proposed a highly
scalable model-based screening method to explore model space efficiently.

In this paper, we propose a Bayesian method for variable selection and examine its
properties both theoretically and numerically, under sparsity assumption. Considering the
popular Zellner’s gn-prior (Zellner, 1986) framework, we propose a prior setup suitable for the
ultrahigh-dimensional situation. The proposed set of priors has the advantage of generating
closed form expressions of the marginals, which makes the resultant method as tractable as
the simple information criterion based methods like AIC or BIC.

In a pn ≫ n setting, the size of the model space becomes gigantic and a simple SSVS
algorithm can not identify the true model in a finite time. To cope with this situation, we
present a two-stage model selection procedure based on an initial screening. The first stage
algorithm is intended to select a good dn-dimensional model, where dn ≪ n. Under the
sparsity assumption, the posterior probability of the class of dn-dimensional supermodels of
the true model uniformly dominates that of of all dn-dimensional models. Motivated by this
result, we first employ a model search algorithm on the space of all dn-dimensional models.
Given an initial model, the algorithm transits to the neighboring dn-dimensional model with
the highest posterior probability. Due to the uniform dominance of the class of supermodels
and the less challenging goal of selecting any model in this class, the first-stage algorithm
selects a dn-dimensional supermodel quite efficiently while taking care of joint structure of
the covariates, unlike the other screening methods which rely on marginal information.

In the second stage, an SSVS algorithm is employed to search the space of submodels
of the first-stage-selected model. Given that a supermodel of the true model is selected at the
first stage, the second stage algorithm identifies the true model quite efficiently as dn ≪ n.
The proposed two-stage algorithm is fast and intuitive. Its good performance is supported
by theoretical results under the log pn = O(n) settings. To the best of our knowledge, this
is the first work on exponential growth of covariates with sample size. The performance of
the algorithm is validated extensively with ample simulated and real data sets.

In Section 2, the prior setup and the maximum-a-posteriori (MAP) approach are
described. In Section 3, the two-stage algorithm is introduced. Section 4 contains the
theoretical results justifying the proposed two-stage algorithm. In Sections 5 and 6, the per-
formance of the proposed algorithm is validated using simulated and real data sets. Section
7 contains concluding remarks. Proofs of all the theoretical results are provided in Section A.

2. The proposed prior setup and the MAP approach

Consider n data points, each consisting of pn centered regressors {x1,i, x2,i, . . . , xpn,i}
and a centered response yi with i = 1, 2, . . . , n. The vector of response yn is modeled as

yn = Xnβ + en, (1)

where Xn is the n × pn design matrix, β = (β1, β2, . . . , βpn)′ is the vector of regression
parameters and en is the vector of random errors. For simplicity, we assume that the design
matrix Xn is non-stochastic and en ∼ N(0, σ2In).

The space of all models that can be formed by taking at least one covariate is denoted
by G, and indexed by γ. Here, γ ∈ G is a subset of {1, . . . , pn} of size pn(γ) (1 ≤ pn(γ) ≤
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pn), indicating the index set of the covariates corresponding to the model Mγ. Under Mγ,
we assume yn = Xγβγ + en, where Xγ is a sub-matrix of Xn consisting of the pn(γ) columns
specified by γ and βγ is the corresponding vector of regression coefficients. We consider the
problem of selecting the sparsest model Mγ with γ ∈ G that best explains the data.

In a Bayesian approach, each model Mγ is assigned a prior probability and the cor-
responding set of parameters θγ = (β0, βγ, σ2)′ involved in Mγ, is also assigned a prior
distribution. Given prior probability P (Mγ) on Mγ and conditional prior density p(θγ|Mγ)
on θγ under Mγ, one computes the posterior probability of each model as follows

P (Mγ|yn) = P (Mγ)mγ(yn)∑
γ∈G P (Mγ)mγ(yn) , where mγ(yn) =

�
p(yn|θγ, Mγ)p(θγ|Mγ)dθγ

is the marginal likelihood and p(yn|θγ, Mγ) is the density of yn under Mγ. We consider the
maximum a-posteriori (MAP) approach which selects the model γ⋆ in G with the highest
posterior probability as the optimal model.

Throughout this paper, we have considered the following notations and conventions.
For two numbers a and b, the notations a ∨ b and a ∧ b denote max{a, b} and min{a, b},
respectively. For two sequences of real numbers {an} and {bn}, an ≲ bn indicates either
an/bn → 0 or an ≤ cbn for all sufficiently large n, and some constant 0 < c < ∞. Further, if
an ≳ bn and bn ≲ an, then we write an ∼ bn. For any square matrix A, λmax(A) and λmin(A)
are the highest and the lowest non-zero eigenvalues of A. For two square matrices A and
B of the same order, A ≤ B means that B − A is positive semidefinite. A model Mγ with
dimension pn(γ) < n is said to be of full-rank if rank(X ′

γXγ) = pn(γ).

2.1. Prior specification and posterior probability

Each model Mγ with γ ∈ G is assigned Bernoulli prior P (Mγ) = qpn(γ)
n (1 − qn)pn−pn(γ)

with qn = 1/pn. Given a model Mγ, we consider a conjugate prior on βγ as

βγ|σ2, Mγ ∼ N(0, gnσ2Ipn(γ)),

where gn is a hyperparameter. We impose the popular Jeffreys prior π(σ2) ∝ 1/σ2 on σ2.

The Bernoulli prior is widely used as a model prior probability because of its property
of penalizing the models of large dimensions. The choice qn = 1/pn has previously been
considered by Narisetty and He (2014). This prior is particularly useful for sparse regression
models, as it assigns 1/pn weight to each covariate. Thus, the prior probability of a model
increases pn times if one covariate is dropped.

Use of the inverse-gamma prior for error variance is fairly conventional in the literature
(see, e.g., George and Mcculloch (1993)). The Jeffreys prior is the limit of inverse-gamma,
as both the hyperparameters in the inverse-gamma prior approach zero. The property of
invariance under reparametrization makes it suitable as a prior on scale parameter.
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For the proposed set of priors, the posterior probability of the model Mγ is

P (Mγ|yn) ∝
(

1
pn − 1

)pn(γ) ∣∣∣I + gnX ′
γXγ

∣∣∣−1/2 (
R2⋆

γ

)−n/2
, (2)

where R2⋆
γ = y′

n

{
In − Xγ

(
Ipn(γ)/gn + X ′

γXγ

)−1
X ′

γ

}
yn.

Our prior choices are simple. Except the choice of gn, the set of priors is completely
specified. Rather than providing a specific choice of gn, we indicate the optimal order of gn

through theoretical consistency results. The availability of the analytic form of the posterior
probability generated by the proposed prior setup (in (2)) makes it easily implementable.

3. Implementation in ultrahigh-dimensional settings

Our model selection procedure is simple as it chooses the model with the highest
posterior probability in the model space G, i.e., the MAP model. However, identifying the
MAP model is a challenging task in an ultrahigh-dimensional settings. As pn = exp{O(n)},
it is impossible to evaluate all the 2pn − 1 models in G, even for small values of n. For
instance, if n = 5, the cardinality of G can be as large as exp(45). Thus, we need to develop
a screening algorithm to discard a large set of unimportant covariates initially. Following
the implementation of the screening algorithm, ideally, we will be left with a smaller set of
covariates which includes all the covariates involved in the MAP model. Then, an exhaustive
model search algorithm can be employed in the second stage to find the MAP model. We
describe the proposed two-stage algorithm in detail below.

Proposed two-stage algorithm. The proposed two-stage algorithm is based on the spar-
sity assumption, which states that among the large number of available predictors an in-
significant fraction of predictors is actually useful. Consequently, the dimension of the MAP
model is small. Now, let dn be a moderately large number, for instance dn ∼ log n. The first
step of the two-stage algorithm is devoted towards finding a good model of dimension dn.
As the number of useful predictors is small, it is expected that the dn-dimensional optimal
model chosen in first stage includes all the predictors of the MAP model. Towards finding
a dn-dimensional good model, a neighborhood-based search algorithm is employed on the
space of all dn-dimensional models. Below, we describe the algorithm.

Stage 1: Screening: The objective of the screening algorithm is to choose a dn-dimensional
model with high posterior probability. Given the choice of dn, we employ the following steps
to achieve this.

1. Initialization. Choose a model, say Mγ0 , of dimension dn, where γ0 ⊆ {1, . . . , p} is the
index set of the predictors in Mγ0 .

2. Evaluation. Fix r ∈ γ0. Define
k⋆ = argmaxl∈{1,...,pn}\γ0mγ0∪{l}\{r}(yn), and u = I

(
mγ0∪{k⋆}\{j}(yn) > mγ0(yn)

)
where I(A) is the indicator of the event A. If u = 1, then replace xr by xk⋆ in γ0. If
u = 0, then keep γ0 unaltered.
Repeat step 2 unless all the components in γ0 are evaluated.

3. Replication. Repeat Step 2 N(≥ 1) times.
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In Step 2, we replace the covariates of Mγ0 with the best possible inactive covariates of Mγ0 ,
provided the posterior probabilities increase by the replacements. To obtain the best result,
instead of starting with any dn dimensional model, one may choose the covariates of the
initial model Mγ0 by a forward regression method.

Finally, we argue that with a good initial model Mγ0 the choice of N in Step 3
is expected to be small. We provide the following three intuitive reasons for that: (i) In
the screening stage the objective is to arrive at any dn-dimensional model which contains
the MAP-covariates. This is a much easier task than searching for the MAP model. (ii)
Under reasonable assumptions, the posterior probability of the class of dn-dimensional models
containing the useful covariates, say G1,d, uniformly dominates the space of all dn-dimensional
models (see Section 4). As the screening algorithm transits to a higher posterior probability
model at each move, the complementary class of G1,d, having combined posterior probability
close to zero, is stepped aside by the algorithm soon. (iii) Unlike other forward or marginal
screening algorithms, the proposed algorithm compares the dn-dimensional models only.
Thus, in one hand the variable dimensional search problem is reduced to a fixed dimensional
one, on the other hand the joint structures of the covariates are taken care of.

Stage 2: Model selection: Suppose that the first-stage screening algorithm selects the
model Mγ⋆ . In the next stage, we aim to find the highest-posterior probability model among
the 2dn −1 models formed by the dn covariates present in Mγ⋆ . Towards that, we employ the
reversible jump MCMC (RJMCMC) algorithm described in Chipman et al. (2001, Section
3.5), which induces a Markov chain C with the class of all submodels of Mγ⋆ as the state
space, say G⋆. The stationary distribution of C is the posterior probability distribution of
the models restricted to G⋆. Thus, if the covariates of the MAP model of G is present in
γ⋆, then the MAP model lies in G⋆, and the second stage algorithm reaches the MAP model
quite easily, as the cardinality of G⋆ is fairly small.

Remark 1: In practice, the choice of dn can be as small as possible provided it is larger
than the cardinality of the MAP model. A smaller choice of dn results in faster execution
of both the algorithms. The complexity of the first stage screening algorithm is at most of
order O(Ndnpn). Even if one considers all the 2dn −1 competing models in G⋆ for comparison
in the second stage, the complexity of the second stage algorithm would be at most O(nd3

n),
if dn ∼ log n. Thus the total complexity of the two-stage algorithm is o(pr

n) for any r > 1.

Remark 2: As in the second stage, one could also employ an MCMC algorithm in the first
stage. In each iteration, the algorithm would choose a proposal model from the swap-
neighborhood of the current model and transit to the same according to a Metropolis-
Hastings transition function based on the posterior probabilities of the proposal and current
models. The algorithm would induce a Markov chain C1 in the state space Gd = {Mγ :
pn(γ) = dn} that would have the posterior probability distribution restricted to Gd as the
stationary distribution. After convergence, it would select model from the high-probability
posterior region, i.e., the region of supermodels. However, we avoid taking that path as the
proposed screening algorithm is much faster as we will see in the numerical section.

4. Model selection consistency

We consider a frequentist validation approach to theoretically justify the performance
of the proposed two-stage algorithm. Towards that, we assume existence of a unique data
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generating model, termed as the true model (Mγc), in the model space G. Under Mγc ,
yn = µn + en = Xγcβγc + en, where µn is the expectation of yn given Xn. The dimension of
Mγc , denoted by p(γc), is assumed to be small and free of n. The objective of this section is
to show that the two-stage algorithm selects the true model with probability tending to one.

Recall that, the first stage screening algorithm explores the class of all dn-dimensional
models Gd, and at each move it transits to a higher posterior probability model. Thus, it
is expected that after sufficient number of moves the algorithm selects a high posterior
probability model in Gd. The following subsection (Section 4.1) shows that the posterior
probability of the class of all dn-dimensional supermodels of the true model Mγc , namely, G1,d,
uniformly dominates Gd, with probability tending to one. Thus, with probability tending to
one, the high posterior probability model chosen in the first stage will be a supermodel of Mγc .

In the next stage, we search within the class of all sub-models of the selected model
in first stage. As dn (∼ log n) is small, the second stage RJMCMC algorithm converges
to the stationary distribution in finite time. In this case, the stationary distribution is
the distribution of posterior probabilities restricted to the sub-models of first stage selected
model. Section 4.2 shows that, provided a supermodel of Mγc is selected at first stage,
the restricted posterior distribution converges to a degenerate distribution having non-zero
probability mass at Mγc only, with probability tending to one. Thus, selection of true model
is guaranteed with probability tending to one.

Assumptions: Below, we list the assumptions under which our theoretical results hold.

(A1) The number of regressors pn = exp{b0n
r} with 0 < r ≤ 1 and b0 > 0 is free of n.

(A2) The true model Mγc is unique and its dimension, p(γc), is free of n. Let µn = Xγcβγc

be the true mean of yn, then µ′
nµn = O(n).

(A3) Let τmax and τmin be two positive constants, S be any subset of {1, . . . , pn} of cardinality
|S| ≲ log n and XS be the submatrix of Xn with the columns corresponding to S. Then,

n−1τmin ≤ infS λmin (n−1X ′
SXS) ≤ supS λmax (n−1X ′

SXS) ≤ nτmax.

(A4) Let ∆0 = {δn1−s} ∨ {4σ2p(γc) log pn} for some δ > 0 and 0 < s < 1/2 − ξ with
0 < ξ < 1/2, G0 = {γ ∈ G : Mγc ⊈ Mγ, pn(γ) ≲ log n} and Pn(γ) be the projection
matrix onto the span of Xγ. Then, for all sufficiently large n, we have

infγ∈G0 µ′
n(I − Pn(γ))µn > ∆0.

Assumption (A1) provides the rate of growth of pn as a function of n, allowing exponential
growth of pn with respect to n. Assumption (A2) provides the sparsity structure of the true
model. Assumption (A3) provides a restriction of the eigenstructure of small dimensional
models. By (A3), all models of dimension O(log n) are of full-rank, although the bounds on
the eigenvalues are quite permissive. Assumption (A4) is commonly termed as an identifia-
bility condition for model selection. The quantity µ′

n(I −Pn(γ))µn may be interpreted as the
Kullback-Leibler (KL) divergence of the distribution of yn under the model Mγ and Mγc . By
Moreno et al. (2015, Lemma 3), limn→∞{µ′

n(I −Pn(γ))µn}/n is strictly positive for any non-
supermodel of Mγc . (A3) additionally assumes a uniform lower bound for µ′

n(I − Pn(γ))µn

over non-supermodels of small dimension, and fixed a threshold value for the case with
log pn ∼ b0n. When log pn = b0n

1−r with r > 0 the condition is satisfied trivially.
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4.1. Consistency of the first-stage screening

Let Gd, G1,d and G2,d denote the classes of dn-dimensional models, supermodels and
non-supermodels of Mγc , respectively. Define P (Mγ | Gd, yn) as the posterior probability
distribution of the models restricted to Gd. The following theorem shows that for any model
γ ∈ Gd, the posterior probability of γ ∈ G1,d uniformly dominates that of γ ∈ G2,d, i.e.,

P (γ ∈ G1,d | Gd, yn) → 1, (3)

with probability tending to one, as pn → ∞. This implies that the posterior probability
distribution P (Mγ | Gd, yn) restricted to Gd, assigns nearly 0 probability to G2,d.

Theorem 1: Consider the model stated in (1) with pn satisfying (A1) and the prior setup
discussed in Section 2.1. Suppose there exists a true model Mγc satisfying (A2) which
generates yn, and let G1,d and G2,d be the classes of dn-dimensional supermodels and non-
supermodels of Mγc . Then, under the assumptions (A3) and (A4) and provided gn ≳ n,
the following statements hold with a probability at least 1 − exp{−c1n

ξ}, where ξ is as in
assumption (A4) and c1 > 0 is some constant free on n.

A. For some constant c2 > 0 and any ϵ > 0,

sup
γ1∈G1,d,γ2∈G2,d

P (Mγ2 |Gd, yn)
P (Mγ1 |Gd, yn) ≤ c2n

dn exp{−∆0(1 − ϵ)/(2σ2)}.

B. For some constant c3 > 0 and any ϵ > 0,∑
γ2∈G2,d

P (Mγ2|Gd, yn)∑
γ1∈G1,d

P (Mγ1|Gd, yn) ≤ c3n
dnp−(1−2ϵ)p(γc)

n .

C. For any γ ∈ Gd, P (γ ∈ G1,d | Gd, yn) → 1 with probability tending to one, as n → ∞.

In stage 1, the screening algorithm searches for a high-posterior probability model
in the restricted model space Gd. By part A of Theorem 1, the posterior probability of the
class of models in G1,d uniformly dominates that of G2,d. Thus, the proposed sequence of
O(Ndnpn) moves in the first-stage algorithm, wherein each move selects a higher posterior
probability model, is expected to reach a model in G1,d.

4.2. Consistency of the second-stage selection

As argued in the previous sub-section, the model Mγ⋆ selected in the first stage
screening is expected to be a dn-dimensional supermodel of Mγc . In the second stage, the
RJMCMC algorithm employed explores the class of the all submodels of Mγ⋆ , say G⋆. After a
sufficient number of iterations, the algorithm selects models as per the posterior distribution
restricted to G⋆. The next theorem shows that, if Mγ⋆ is any supermodel of Mγc , then the
posterior distribution restricted to G⋆ limits to a degenerate distribution having non zero
probability mass at Mγc , with probability tending to one. Therefore, provided Mγ⋆ is any
supermodel of Mγc , the second stage algorithm selects Mγc with probability tending to one.
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Theorem 2: Consider the model stated in (1) with pn satisfying (A1), and the prior setup
discussed in Section 2.1 with gn ∼ pδ

n with some 0 < δ < 2. Suppose there exists a true
model Mγc satisfying (A2), which generates yn. Let Mγ⋆ be a dn-dimensional supermodel of
Mγc , G⋆ = {Mγ : γ ⊆ γ⋆} be the class of all sub-models of Mγ⋆ , and P (Mγ | G⋆, yn) be the
posterior probability of models restricted to G⋆. Then, under assumptions (A3)-(A4), with
a probability at least 1 − cp−c0

n − exp{−cnξ}, where c0 < δ/2 and c > 0 are two constants,
ξ > 0 is as in (A4), and δ > 0 is as stated in the choice of gn, we have

inf
γ⋆∈G1,d

P (Mγc | G⋆, yn) ≥

1 + cnp(γc)+1
(

p2ϵ
n

gn

)1/2

+ c

(
n

√
gn

p1−2ϵ
n

)p(γc)
−1

for any ϵ < δ/2. Consequently, infγ⋆∈G1,d
P (Mγc | yn, G⋆) → 1, with probability tending to 1.

Theorem 2 states that, provided the first stage algorithm selects any supermodel of
Mγc , the second stage algorithm selects the true model with probability tending to one.

4.3. Consistency of the two-stage procedure

Finally, we argue that the two stage procedure selects the true model with probability
tending to one. Towards that, define P2(·|yn) as the probability distribution of the models
after the second stage. Let Mγ⋆ be the dn-dimensional model selected in the first stage, and
G⋆ = {Mγ : γ ⊆ γ⋆} be the class of all sub-models of Mγ⋆ . Then,

P2(Mγ|yn) = ∑
γ⋆∈Gd

P (Mγ|G⋆, yn)P (Mγ⋆|Gd, yn),

if in the first stage a model is selected randomly as per the posterior distribution restricted
to Gd, and in the second stage a model is selected randomly as per the posterior distribution
restricted to G⋆. The next theorem shows, with probability tending to one, P2(Mγc |yn) → 1.

Theorem 3: Consider the model stated in (1) with pn satisfying (A1), and the prior setup
discussed in Section 2.1 with gn ∼ pδ

n with some 0 < δ < 2. Suppose there exists a true
model Mγc satisfying (A2), which generates yn. Further, suppose that a two stage procedure
is employed to identify the true model, wherein the first stage selects a dn-dimensional model
Mγ⋆ randomly as per the posterior distribution (2) restricted to Gd (class of d-dimensional
models), and the second stage selects a model randomly from the posterior distribution (2)
restricted to the sub-models of Mγ⋆ (i.e., G⋆). Let P2(· | yn) be the probability distribution of
the models selected at the end of the two-stage procedure then under assumptions (A3)-(A4),
P2(Mγc |yn) → 1 as n → ∞, with probability tending to one.

Remark 3: The choice of the only hyperparameter gn in the prior setup is not specified.
However, from the above theoretical developments, we obtain an optimal range of gn value
required for consistency of the two-stage procedure. Theorem 1 holds for any gn satisfying
gn ≳ n, while Theorems 2 and 3 requires gn ∼ pδ

n with 0 < δ < 2. These provide a vast range
of plausible choices of gn. For practical purposes some sensitivity analysis would be useful.

5. Simulation study

We now study the performance of the proposed two-stage variable selection procedure
using a wide variety of simulated data sets. Under different simulation schemes, we present
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the proportion of times a variable selection algorithm selects the true model.

Our method: Our model selection algorithm is completely described in Section 3,
except for the choices of gn, dn and N . The choice of dn is taken to be [n/4] in each case. In
the first stage, we choose gn = npn and in the second stage, we choose gn = d2

n. Note that,
the theoretical condition on gn in Theorems 2 and 3 come from the consideration of the two-
stages together. However, practically, the task of the second stage is find the MAP model
among the 2dn − 1 models formed by dn covariates. Therefore, informed by Fernández et al.
(2001), the benchmark prior gn = max{n, d2

n} is considered in the second stage. Finally,
in the first-stage N = 10 iterations are considered, and in the second-stage, the RJMCMC
algorithm is iterated 6000 times, with a burning period of 3000 iterations. The post-burning
most visited model is considered as the optimal model.

Other methods: Among the frequentist variable selection methods, we consider three
approaches based on iterative sure independence screening (ISIS). An initial set of vari-
ables is first selected by ISIS, and then a penalized regression step is carried out using the
least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute devi-
ation (SCAD), or minimax concave penalty (MCP, Zhang (2010)) with the regularization
parameter tuned using the BIC. These three methods are termed as ISIS-LASSO-BIC, ISIS-
SCAD-BIC and ISIS-MCP-BIC. Among the Bayesian competitors, we consider two methods
based on Bayesian credible region (BCR joint and BCR marginal, Bondell and Reich (2012))
and Bayesian shrinking and diffusing prior (BASAD, Narisetty and He (2014)). We have
used R codes for all the methods. For ISIS, we have implemented codes from the R package
SIS. The R codes for BCR are obtained from the first author’s website, while the first author
of Narisetty and He (2014) kindly shared the codes for BASAD with us. Further, we have
implemented the approximate version of BASAD to reduce the computing time.

Simulation setup. We consider two values for n, namely, 50 and 100. For n = 50,
we choose pn = 100 and 500, while for n = 100 we choose pn = 500, 1000 and 2000. The
model yn = µn + en is considered as the true model, where µn = Xγcβγc . The vector βγc

is assumed to be sparse, i.e., p(γc) ≪ pn, and these p(γc) components are chosen randomly
from the set of all covariates. When pn ≤ 500, we set p(γc) = 5, while p(γc) = 10 is set for
higher values of pn. All the p(γc) values of βγc are taken to be equal to 2.

Each data row xi of the design matrix Xn = (x1, . . . , xn)′ is assumed to follow the
Gaussian distribution with mean 0 and covariance Σpn for i = 1, . . . , n. The covariance
structure of Σpn = ((σij)) for 1 ≤ i, j ≤ pn is taken to be of the following four types:

Case 1. (Identity) Σpn = I, i.e., there is no correlation among the covariates.

Case 2. (Block dependence) Σpn has a block covariance setting, where the active covariates
have common correlation ρ1 = 0.25, the inactive covariates have common correlation ρ2 =
0.75 and each pair of active and inactive covariate has correlation ρ3 = 0.50. This is an
interesting co-variance structure as it attributes different correlations depending on whether
the covariate is important, or not (also see Narisetty and He (2014)).

Case 3. (Equi-correlation) Σpn = 0.5I+0.511′, where 1 is the pn-dimensional vector of ones.
This exhibits a strong dependence structure uniformly among the covariates.

Case 4. (Auto-regressive) Here, we take σii = 1 for 1 ≤ i ≤ pn, and σij = 0.9|i−j| for
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1 ≤ i ̸= j ≤ pn. With the increase in distance, the correlation decreases here.

Although theoretically we consider only Gaussian errors, in simulation studies, we
consider two errors distributions, namely, the Gaussian and the heavy-tailed t distribution
with 2 degrees of freedom. In the tables below, we report the proportion of times each method
selects the true model in 100 random iterations. Additionally, we report the proportion of
times our first-stage screening algorithm chooses a supermodel of the true model.

Simulation results. Tables 1 and 2 contain the results corresponding to n = 50 and
n = 100, respectively. We notice that the covariance structure in Case 2 becomes singular
for pn ≥ 1000, and therefore, we have restricted Case 2 to pn ≤ 500.

Table 1: Proportion of times true model is selected by each
method for n = 50

Gaussian error
Methods Case 1 Case 2 Case 3 Case 4
↓ pn → 100 500 100 500 100 500 100 500

ISIS-SCAD-BIC 0.65 0.42 0.05 0.00 0.46 0.19 0.66 0.38
ISIS-MCP-BIC 0.44 0.23 0.02 0.00 0.12 0.04 0.50 0.24

BCR 0.26 0.00 0.45 0.00 0.15 0.00 0.22 0.00
BASAD 0.93 0.50 0.82 0.07 0.82 0.55 0.92 0.49
Proposed 0.99 0.84 0.72 0.09 0.96 0.80 1.00 0.87

Proposed (Step 1) 1.00 0.85 0.77 0.09 0.96 0.81 1.00 0.87
t2 error

Case 1 Case 2 Case 3 Case 4
Methods ↓ pn → 100 500 100 500 100 500 100 500
ISIS-SCAD-BIC 0.33 0.34 0.02 0.00 0.28 0.21 0.33 0.29
ISIS-MCP-BIC 0.26 0.26 0.02 0.00 0.20 0.17 0.27 0.26

BCR 0.15 0.01 0.29 0.00 0.12 0.00 0.20 0.00
BASAD 0.69 0.30 0.55 0.09 0.61 0.38 0.69 0.37
Proposed 0.69 0.60 0.54 0.08 0.66 0.53 0.72 0.59

Proposed (Step 1) 0.83 0.67 0.65 0.08 0.77 0.56 0.84 0.65

Among the three frequentist methods based on ISIS, we have reported the results for
SCAD and MCP only, as ISIS-LASSO-BIC is outperformed by these two methods. For the
other two methods, SCAD has shown uniformly better performance than MCP (see Table
1). For BCR, we observe that the joint version leads to singularity in several iterations in
the simulation settings. Therefore, we have reported results for the more stable marginal
version only. It is also clear from Tables 1 and 2 that ISIS is affected drastically when
the dependence structure varies among the different sets of covariates. For example, for
n = 100, ISIS-SCAD-BIC leads to the best performance under independence (Case 1) when
pn = 2000. However, it fails to identify the true model in a single instance under block-
diagonal covariance structure (Case 2). This is due to the fact that ISIS relies on marginal
information, and ignores the joint structure of the covariates.

Generally, the Bayesian methods turn out to be more robust than frequentist ap-
proaches. Among the Bayesian methods, BASAD and the proposed method clearly out-
perform BCR for all the cases. However, the performance of BASAD falls drastically for
higher values of pn. For example, when pn = 2000, BASAD fails completely, irrespective
of the underlying covariance structure. Note that BASAD needs to compute the inverse of
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Table 2: Proportion of times true model is selected by each method for
n = 100

Gaussian error
Methods ↓ Case 1 Case 2 Case 3 Case 4

pn → 500 1000 2000 500 500 1000 2000 500 1000 2000
ISIS-SCAD-BIC 0.85 0.39 0.28 0.00 0.64 0.18 0.02 0.84 0.43 0.25
ISIS-MCP-BIC 0.66 0.25 0.16 0.00 0.11 0.01 0.00 0.62 0.24 0.11
BCR 0.38 0.00 0.00 0.39 0.14 0.00 0.00 0.24 0.00 0.00
BASAD 0.93 0.19 0.00 0.92 0.93 0.36 0.00 0.98 0.27 0.00
Proposed 0.98 0.95 0.66 0.97 1.00 0.92 0.31 1.00 0.92 0.27
Proposed (Step 1) 1.00 0.96 0.66 0.97 1.00 0.92 0.31 1.00 0.93 0.57

t2 error
Methods ↓ Case 1 Case 2 Case 3 Case 4

pn → 500 1000 2000 500 500 1000 2000 500 1000 2000
ISIS-SCAD-BIC 0.44 0.41 0.32 0.00 0.39 0.29 0.30 0.45 0.36 0.30
ISIS-MCP-BIC 0.38 0.39 0.29 0.00 0.24 0.23 0.28 0.40 0.33 0.27
BCR 0.26 0.00 0.00 0.23 0.09 0.00 0.00 0.21 0.00 0.00
BASAD 0.91 0.06 0.00 0.75 0.78 0.19 0.00 0.88 0.12 0.00
Proposed 0.93 0.70 0.21 0.84 0.85 0.60 0.39 0.78 0.70 0.39
Proposed (Step 1) 0.96 0.70 0.48 0.87 0.95 0.60 0.39 0.78 0.71 0.40

the covariance matrix for each model, which is computationally prohibitive for such high-
dimensional data. To resolve this problem, they use a block covariance structure to simplify
some of the matrix computations and this might be one of the reasons behind its poor per-
formance. The strength of our proposed method is re-iterated from the simulation study,
especially for higher values of pn. Notably, there is a systematic improvement of the proposed
method over BASAD when we move from pn = 100 to pn ≥ 500, especially under cases 1, 3
and 4, for both the error distributions.

The performance of the first-stage screening algorithm is noteworthy. Except for the
high-dimension-low-sample size situation with high correlation, i.e., for n = 50, pn = 500 in
Case 2, this algorithm selects the true model for a high-proportion of times in all other cases.

To check the sensitivity of our method to the value of βγc , we perform a further
simulation study. We consider Case 1 (Σpn = I) with the Gaussian error distribution for
n = 100; and two choices of βγc . First, a set of equi-spaced values of βγc in the range [1, 2]
and next in the range [2, 3]. An increment of 0.2 is taken for pn = 500 so that we have
p(γc) = 6, and an increment of 0.1 is taken for pn = 1000 and 2000 so that p(γc) = 11. The
results are summarized in Table 3 below.

Table 3: Proportion of times true model is selected
by each method for n = 100

Methods ↓ βγc
= (1.0, 1.2, . . . , 2)′ βγc

= (2.0, 2.1, . . . , 3)′

pn → 500 1000 2000 500 1000 2000
ISIS-SCAD-BIC 0.66 0.40 0.24 0.82 0.47 0.33
ISIS-MCP-BIC 0.63 0.26 0.00 0.68 0.27 0.19

BCR 0.14 0.00 0.00 0.24 0.00 0.00
BASAD 0.99 0.14 0.00 0.98 0.28 0.00
Proposed 1.00 0.93 0.87 1.00 0.94 0.76

Proposed (Step 1) 1.00 0.93 0.87 1.00 0.94 0.76
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Good performance of the proposed method is further re-iterated from the numerical
results of Table 3. Also, it is observed that the method is not much sensitive to the level of
signal strength, as long as the minimal signal strength is not negligible.

6. Real data analysis

6.1. Metabolic quantitative trait loci experiment

The first example is related to a metabolic quantitative trait loci experiment which
links single nucleotide polymorphisms (SNPs) data to metabolomics data. The predictors
come from a GWAS study of the candidate genes for alanine amino-transferase enzyme
elevation in the liver along with the mass spectroscopy metabolomics data. A total of
10000 SNPs are pre-selected as candidate predictors, and the number of subjects included
in the data set is 50. The genotype of each SNP is coded as 0, 1 and 2 for homozygous
rare, heterozygous, and homozygous common allele, respectively. A particular metabolite
bin that discriminates well between the disease status of the clinical trial’s participants is
selected as the response variable.

The SAM approach of Song and Liang (2015) selected two SNPs, rs17041311 and
rs17392161. The first SNP has the same genotype as the SNP rs7896824, while the second
SNP shares the same genotype with eleven other SNPs. We implement our proposed method
by starting with dn = 5 till dn = 50 (which is the maximum possible value of dn). From our
analysis, the proposed method identifies all the SNPs (two from the first group, and all the
twelve from the second group) from dn = 25 onwards. We further observe that the proposed
method consistently identifies a new set of SNPs consists of rs6704330 and rs12744386. This
is a novel set of SNPs which were not detected in the earlier study, and further investigation
may establish their association with the metabolite under study.

For the sake of comparison, we implement all the competing methods from our sim-
ulations in Section 5. We first fix a value of the model size (dn), and then a model selection
method is used to obtain a dn-dimensional subset of the predictor variables. To assess the
relative performance of these methods, we compute both the mean and the median square
errors based on leave-one-out cross-validation (LOOCV). For all the methods, values of the
mean square errors turn out to be quite high. Therefore, we use the median square errors for
comparison. For increasing values of dn, Figure 1 below gives us an idea about the overall
performance of each of these methods. Clearly, BASAD yields the lowest median square of
errors, while the performance for our proposal is the second best.

6.2. Polymerase chain reaction

This data is related to a polymerase chain reaction. A total of n = 60 samples, with
31 female and 29 male mice, are used to monitor the expression levels of pn = 22575 genes.
Some physiological phenotypes, including numbers of phosphoenolpyruvate carboxykinase,
glycerol-3-phosphate acyltransferase, and stearoyl-CoA desaturase 1 are measured by quan-
titative real-time polymerase chain reaction. The relationship between the gene expression
level (perdictor) and phosphoenolpyruvate carboxykinase (response) is of interest in this
data. The gene expression data is standardized before the statistical analysis. To analyze
this data, we repeat the same procedure as in Section 6.1 above.
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Figure 1: Comparison of the different methods using median square errors

Figure 2: Comparison of the different methods using median square errors

Both BASAD and BCR could not be implemented for this data due to memory
overflow for this data. Figure 2 gives us the overall picture of the performance of the other
methods, and they all yield quite low median square errors. Clearly, ISIS-MCP leads to the
lowest overall errors, and the proposed method performs marginally better than ISIS-SCAD
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for dn = 15 to 35. However, the maximum difference in errors of the proposed method with
both methods based on ISIS is less than 0.11 over all values of dn.

7. Concluding remarks

This paper addresses the variable selection problem in ultrahigh-dimensional linear
regression settings. A new methodology for variable selection based on Zellner’s g-prior is
developed, taking into account the key features of the ultrahigh-dimensional regression set-
tings, such as sparsity and multicollinearity, and adapting it accordingly. Variable selection
in ultrahigh dimensions poses significant challenges due to the exponential growth of the
model space with the number of covariates. Despite its various advantages, the predominant
Bayesian variable selection procedure, the maximum a-posteriori (MAP) approach, becomes
impractical in this context due to the vast model space. To address this problem, we propose
a two-stepped model selection procedure that incorporates an initial screening.

While the idea of screening out unimportant covariates in the initial stage is not
new, existing screening algorithms typically rely on marginal utilities and overlook the joint
structure of the covariates. Our proposed screening algorithm takes the joint structure of
the covariates into account, demonstrating greater efficiency and robustness across various
correlation structures, as evidenced by our numerical results. In the second stage, we conduct
a thorough model search within the class of submodels of the first-stage-selected model.
Notably, we establish the strong selection consistency property of our two-stage algorithm
theoretically under exponential growth of pn with n. To our knowledge, this is the first
selection consistency result addressing the exponential growth of pn with n.

We conclude this section with some future directions. The effectiveness of our pro-
posed two-stage procedure is heavily dependent on the sparsity assumption of the optimal
model. While sparsity is commonly observed in high-dimensional regression, it is essential to
expedite the search for the MAP model in denser cases as well. Relevantly, the choice of dn

is a critical factor in our method. A smaller dn can enhance the speed and efficiency of both
algorithms but may also lead to exclusion of important covariates. Thus, it is necessary to
develop a mechanism for determining the optimal choice of dn based on the data at hand.
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A. ANNEXURE

This section contains the proof of all the theorems. In all the proofs, the notation c
is used as a generic symbol for constants. In many situations, the existence of a constant,
rather than the value, is important. In such cases, the constant is denoted by c. Thus, all
constants denoted by c are not necessarily the same.

A.1. Auxiliary results

In this section, we present auxiliary results which are used in proving the main results.

Lemma 1: Let Mγ, γ ∈ G and Mγ′ be two models with dimensions pn(γ) and pn(γ′),
where pn(γ), pn(γ′) ≲ log n. Further, suppose τmin ≤ λmin(A) ≤ λmax(A) ≤ n2τmax for some
τmin > 0 and τmax > 0 (free of n) for both matrices A = X ′

γXγ and A = X ′
γ′Xγ′ . Then,

∣∣∣I + gnX ′
γXγ

∣∣∣−1

∣∣∣I + gnX ′
γ′Xγ′

∣∣∣−1 =

∣∣∣I + gnX ′
γ′Xγ′

∣∣∣∣∣∣I + gnX ′
γXγ

∣∣∣ ≤ (1 + ϵ)
(

τmax

τmin ∧ 1

)pn(γ)∨pn(γ′)
n2pn(γ′)gpn(γ′)−pn(γ)

n ,

for any ϵ > 0, when gn ≳ n.

Proof: The j-th largest eigenvalue of any square matrix of the form I + A are 1 + λj(A),
where λj(A) is the j-th largest eigenvalue of A. Further, both X ′

γXγ and X ′
γ′Xγ′ are non-

negative definite. Therefore, the highest eigenvalue of I + gnX ′
γ′Xγ′ is 1 + gnn2τmax and the

lowest eigenvalue of I + gnX ′
γXγ is 1 + τmin. By the trivial bound λd

min(A) ≤ |A| ≤ λd
max(A),

where d is the dimension of A, we get∣∣∣I + gnX ′
γ′Xγ′

∣∣∣∣∣∣I + gnX ′
γXγ

∣∣∣ ≤ (1 + gnn2τmax)pn(γ′)

(1 + gnτmin)pn(γ)

= n2pn(γ′)gpn(γ′)−pn(γ)
n τ pn(γ′)

max τ
−pn(γ)
min

{1 + 1/(gnn2τmax)}pn(γ′)

{1 + 1/(gnτmin)}pn(γ)

≤ (1 + ϵ)
(

τmax

τmin ∧ 1

)pn(γ)∨pn(γ′)
n2pn(γ′)gpn(γ′)−pn(γ)

n ,

for any ϵ > 0 whenever gn ≳ n. The last inequality is due to the fact that both terms
(1 + gnn2τmax)pn(γ′) and (1 + gnτmin)pn(γ) converges to one as n → ∞ if gn ≳ n.

Lemma 2: Let Mγ be a full-rank model, R2⋆
γ = y′

n

{
In − Xγ

(
Ipn(γ)/gn + X ′

γXγ

)−1
X ′

γ

}
yn,

and R2
γ = y′

n {In − Pn(γ)} yn, where Pn(γ) = Xγ(X ′
γXγ)−1X ′

γ is the projection matrix on the
column space of Xγ. Then, under the assumptions (A2)-(A3), the following statements hold.

(a) R2⋆
γ ≥ R2

γ, and for any model Mγ satisfying (A3), supγ R2⋆
γ − R2

γ ≤ cn/(1 + gnτmin) for
some appropriate constant c > 0 with probability at least 1 − exp{−n},

(b) For any ϵ > 0, there exists an appropriate constant c > 0 such that R2
γc

> n(1 + ϵ)σ2,
and R2

γc
< n(1 − ϵ)σ2, with probability at least 1 − exp{−cn}.
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Proof: Part(a). Observe that Ipn(γ)/gn+X ′
γXγ ≥ X ′

γXγ, and so, In−Xγ

(
Ipn(γ)/gn + X ′

γXγ

)−1

X ′
γ ≥ In − Pn(γ), which proves R2

γ ≤ R2⋆
γ .

To see the other side, observe that under (A3), and uniformly over any model Mγ

Xγ

(
Ipn(γ)/gn + X ′

γXγ

)−1
X ′

γ = Xγ

(
X ′

γXγ

)−1/2
[
Ipn(γ) +

(
X ′

γXγ

)−1
/gn

]−1 (
X ′

γXγ

)−1/2
X ′

γ

≥ {1 + 1/(gnτmin)}−1 Pn(γ)

as λmax

(
Ipn(γ) +

(
X ′

γXγ

)−1
/gn

)
≤ 1 + 1/(gnτmin). Therefore,

sup
γ:pn(γ)≲log n

R2⋆
γ − R2

γ ≤ sup
γ:pn(γ)≲log n

y′
n

[
In − {1 + 1/(gnτmin)}−1 Pn(γ) − In + Pn(γ)

]
yn

= sup
γ:pn(γ)≲log n

1
1 + gnτmin

y′
nPn(γ)yn ≤ 1

1 + gnτmin
y′

nyn.

Now, y′
nyn ≤ 2∥µn∥2 + 2∥en∥2. By assumption (A2), ∥µn∥2 = O(n) and as ∥en∥2 ∼

σ2χ2
n, from Laurent and Massart (2000), we have ∥en∥2 ≤ 6nσ2 with probability at least

1 − exp{−n}. Therefore, with probability at least 1 − exp{−n}, R2⋆
γ − R2

γ ≤ cn/(1 + gnτmin)
for some appropriate constant c > 0.

Part(b). The random variable e′
n(I −Pn(γc))en/σ2 follows a χ2 distribution with (n−p(γc))

degrees of freedom. By (Laurent and Massart, 2000, Lemma 1), we have

P (R2
γc

> n(1 + ϵ)σ2) = P (y′
n(I − Pn(γc))yn > n(1 + ϵ)σ2)

= P
(
e′

n(I − Pn(γc))en > n(1 + ϵ)σ2
)

≤ exp
{

−c
(nϵ + p(γc))2

(n − p(γc))

}
≤ exp{−cn},

for some c > 0. Thus, the first part of the result follows. The proof of the second part
follows similarly from (Laurent and Massart, 2000, Lemma 1).

Lemma 3: Let yn = µn + en with en ∼ N(0, σ2I) and µ′
nµn = O(n). For any 0.5 < k < 1

and ϵ > 0, there exists a constant c > 0 such that n−k|µ′
nen| < ϵ with probability at least

1 − exp{−cn2k−1}

Proof: The random variable µ′
nen is distributed as a centered normal distribution with

variance σ2∥µn∥2. Therefore, we get

P
(
|µ′

nen| ≥ ϵnk
)

≤ exp{−cn2k/∥µn∥2} (4)

for an appropriate constant c > 0 depending on ϵ. By assumption (A2), ∥µn∥2 = O(n).
Therefore, the quantity on the right-hand side of the above expression is bounded above by
exp{−cn2k−1} for some c > 0. Thus, the result follows.
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A.2. Main results

A.2.1.Proof of Theorem 1

Proof: [Part A.] By (2), the ratio of posterior probabilities is

sup
γ1∈G1,d,γ2∈G2,d

P (Mγ2|Gd, yn)
P (Mγ1|Gd, yn) = sup

γ1∈G1,d,γ2∈G2,d

P (Mγ2 |yn)
P (Mγ1|yn)

= sup
γ1∈G1,d,γ2∈G2,d

∣∣∣I + gnX ′
γ1Xγ1

∣∣∣1/2

∣∣∣I + gnX ′
γ2Xγ2

∣∣∣1/2

(
R⋆2

γ1

R⋆2
γ2

)n/2

. (5)

By assumption (A3) and Lemma 1

sup
γ1∈G1,d,γ2∈G2,d

∣∣∣I + gnX ′
γ1Xγ1

∣∣∣1/2

∣∣∣I + gnX ′
γ2Xγ2

∣∣∣1/2 ≤ 2
(

τmax

τmin ∧ 1

)dn/2
ndn . (6)

Next, we write the last part in the RHS of (5) as follows:

sup
γ1∈G1,d,γ2∈G2,d

(
R⋆2

γ1

R⋆2
γ2

)n/2

≤ sup
γ1∈G1,d

(
R⋆2

γ1

R2
γ1

)n/2

sup
γ1∈G1,d

(
R2

γ1

R2
γc

)n/2

sup
γ2∈G2,d

(
R2

γc

R2
γ2

)n/2

sup
γ2∈G2,d

(
R2

γ2

R⋆2
γ2

)n/2

. (7)

We consider each term of the RHS of the above expression consecutively. By Lemma 2

sup
γ1∈G1,d

(
R⋆2

γ1

R2
γ1

)n/2

= sup
γ1∈G1,d

(
1 +

R⋆2
γ1 − R2

γ1

R2
γ1

)n/2

≤ sup
γ1∈G1,d

(
1 +

R⋆2
γ1 − R2

γ1

R2
γc

)n/2

≤
(

1 + c

1 + gnτmin

)n/2

, (8)

with probability at least 1 − exp{−n} for some c > 0. Consider the second term of (7)

sup
γ1∈G1,d

(
R2

γ1

R2
γc

)n/2

= sup
γ1∈G1,d

(
1 −

R2
γc

− Rγ1

Rγc

)n/2

≤ 1,

by the fact that R2
γc

− Rγ1 = y′
n (Pn(γ1) − Pn(γc)) yn ≥ 0 as γc ⊆ γ1 and consequently,

Pn(γ1) − Pn(γc) is non-negative definite matrix.

Next, consider the third expression of (7). The ratio

inf
γ2∈G2,d

(
R2

γ2

R2
γc

)n/2

= inf
γ2∈G2,d

(
1 +

R2
γ2 − R2

γc

R2
γc

)n/2

. (9)
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Now, by assumption (A4)
R2

γ2 − R2
γc

= µ′
n {I − Pn(γ2)} µn + e′

n {Pn(γc) − Pn(γ2)} en + 2µ′
n {I − Pn(γ2)} en

≥ µ′
n {I − Pn(γ2)} µn − 2µ′

nPn(γ2)en

≥ ∆0 − 2 |µ′
nen| ,

uniformly over G2,d as G2,d ⊆ G0, with probability one. By the choice of ∆0 in (A4) and
Lemma 3, we have |µ′

nen| = o (∆0) with probability at least 1 − exp{−cnξ} for ξ > 0 as in
(A4) and some c > 0. Thus, from (9), by the above derivations,

inf
γ2∈G2,d

(
1 +

R2
γ2 − R2

γc

R2
γc

)n/2

≥
(

1 + ∆0 {1 + o(1)}
nσ2(1 + ϵ)

)n/2

≳ exp
{
∆0(1 − ϵ)/(2σ2)

}
,

for any ϵ > 0. Finally, it can be verified by examining the definitions of R2
γ and R2⋆

γc
that the

last part of RHS of (7) is bounded above by 1. Thus, combining all the above facts we get,
for any ϵ > 0, and with probability at least 1 − exp{−cnξ} for some c > 0,

sup
γ1∈G1,d,γ2∈G2,d

(
R⋆2

γ1

R⋆2
γ2

)n/2

≤
(

1 + c

1 + gnτmin

)n/2

exp{−∆0(1 − ϵ)/(2σ2)}

and

sup
γ1∈G1,d,γ2∈G2,d

P (Mγ2|Gd, yn)
P (Mγ1|Gd, yn)

≤ 2
(

τmax

τmin ∧ 1

)dn/2
ndn

(
1 + c

1 + gnτmin

)n/2

exp{−∆0(1 − ϵ)/(2σ2)}

≤ cndn exp{−∆0(1 − ϵ)/(2σ2)} → 0,

for an appropriate constant c > 0. This completes the proof of part A.

[Part B.] Observe that, by choice of δ0 in (A4)∑
γ2∈G2,d

P (Mγ2|Gd, yn)∑
γ1∈G1,d

P (Mγ1|Gd, yn) ≤ sup
γ1∈G1,d,γ2∈G2,d

P (Mγ2 |yn)
P (Mγ1 |yn)

|G2,d|
|G1,d|

≤ cndn exp{−∆0(1 − ϵ)/(2σ2)}

(
pn

d

)
(

pn−p(γc)
d−p(γc)

)
≤ cndnpp(γc)

n exp{−2(1 − ϵ)p(γc) log pn}
≤ cndnp−(1−2ϵ)p(γc)

n

with probability at least 1 − exp{−cnξ} for some c > 0, and for any ϵ > 0.

[Part C.] Observe that P (γ ∈ Gd | Gd, yn) = 1. Therefore,
1 = P (γ ∈ G1,d | Gd, yn) + P (γ ∈ G2,d | Gd, yn)

= P (γ ∈ G1,d | Gd, yn)
{

1 + P (γ ∈ G2,d | Gd, yn)
P (γ ∈ G1,d | Gd, yn)

}

= P (γ ∈ G1,d | Gd, yn)
{

1 +
∑

γ2∈G2,d
P (Mγ2|Gd, yn)∑

γ1∈G1,d
P (Mγ1|Gd, yn)

}

≤ P (γ ∈ G1,d | Gd, yn)
{
1 + cndnp−(1−2ϵ)p(γc)

n

}
,
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with probability at least 1 − exp{−cnξ} from part B. Observe that from (A1) and the choice
of dn ∼ log n, the sequence ndnp−(1−2ϵ)p(γc)

n → 0, as pn → ∞. Further, as n → ∞, the
probability 1 − exp{−cnξ} converges to one. This completes the proof.

A.3. Proof of Theorem 2

Proof: Recall that, P (Mγc | yn, G⋆) is the posterior probability of the model Mγc , restricted
to the class G⋆. We will first provide an uniform probabilistic upper bound to P (Mγc | yn, G⋆)
for any fixed γ⋆ such that γc ∈ γ⋆. Observe that

P (Mγc | G⋆, yn) =

1 +
∑

γ⊆γ⋆,γ ̸=γc

P (Mγ | yn)
P (Mγc | yn)


−1

.

The ratio of posterior probabilities of any model to the true model is given by

P (Mγ|yn)
P (Mγc|yn) =

(
1

pn − 1

)pn(γ)−p(γc) (R2⋆
γc

R2⋆
γ

)n/2
∣∣∣I + gnX ′

γc
Xγc

∣∣∣1/2

∣∣∣I + gnX ′
γXγ

∣∣∣1/2 . (10)

We split G into two subclasses as follows:

(i) Supermodel of the true model, G⋆
1 = {γ : Mγc ⊂ Mγ} ∩ G⋆.

(ii) Non-supermodels, G⋆
2 = {γ : Mγc ⊈ Mγ} ∩ G⋆.

Case I: Super-models (γ ∈ G⋆
1) First, we obtain a uniform upper bound for the ratio of

the posterior probabilities of any model Mγ and Mγc , given in (10). Note that

R2⋆
γ

R2⋆
γc

=
R2⋆

γ

R2
γ

R2
γ

R2
γc

R2
γc

R2⋆
γc

≥
(

1 − ϵ

n(1 + ϵ)

)
R2

γ

R2
γc

(11)

by Lemma 3 and R2⋆
γ ≥ R2

γ, and with probability at least 1 − exp{−cn} for some c > 0.

Next, consider that for any ϵ > 0 and R = 2(1 + ϵ), we have

P

[
sup

γ⋆∈G1,d

sup
γc⊆γ⊆γ⋆

(
R2

γc
− R2

γ

)
< Rσ2{pn(γ) − p(γc)} log pn

]

= P

[
sup

{γ:γc⊆γ,|γ|≤dn}

(
R2

γc
− R2

γ

)
< Rσ2{pn(γ) − p(γc)} log pn

]
. (12)

The last equality holds due to the equality of the sets

{γ : γc ⊆ γ, |γ| ≤ dn} = {γ : γc ⊆ γ ⊆ γ⋆, γ⋆ ∈ G1,d}.
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Next, observe that the right-hand side (RHS) of (12) is bounded above by
∑

{γ:γc⊆γ,|γ|≤dn}
P
[(

R2
γc

− R2
γ

)
< Rσ2{pn(γ) − p(γc)} log pn

]

≤
dn−p(γc)∑

pn(γ)−p(γc)=1

(
pn − p(γc)

pn(γ) − p(γc)

)
exp {−R{pn(γ) − p(γc)} log pn/2}

≤
dn−p(γc)∑

pn(γ)−p(γc)=1
(pn − p(γc))pn(γ)−p(γc)p−R{pn(γ)−p(γc)}/2

n

≤ (dn − p(γc))p−ϵ
n → 0, (13)

where ϵ > 0 be any constant. Therefore, with probability at least 1 − cp−ϵ
n for any ϵ > 0 and

an appropriate c > 0, the following holds uniformly over {γ : γc ⊆ γ ⊆ γ⋆, γ⋆ ∈ G1,d}

(
R2⋆

γc

R2⋆
γ

)n/2

≤ (1 + ϵ)
(

1 − R(pn(γ) − p(γc)) log pn

n(1 − ϵ)

)−n/2

≲ (1 + ϵ)p(1+ϵ)(pn(γ)−p(γc))
n .

Again, by Lemma 1 and assumptions (A2)-(A3) we have
∣∣∣I + gnX ′

γXγ

∣∣∣−1/2

∣∣∣I + gnX ′
γc

Xγc

∣∣∣−1/2 ≤ cg−(pn(γ)−p(γc))/2
n np(γc),

where c > 0 is some appropriate constant. Therefore, summing the ratio of posterior prob-
abilities over Mγ ∈ G⋆

1 , we have

∑
γ∈G⋆

1

p(Mγ|yn)
p(Mγc |yn) ≤ np(γc) ∑

γ∈G⋆
1

cp(1+ϵ)(pn(γ)−p(γc))
n

{√
gn(pn − 1)}pn(γ)−p(γc)

≤
dn−p(γc)∑

pn(γ)−p(γc)=1

(
dn − p(γc)

pn(γ) − p(γc)

)
np(γc)c

(
p2ϵ

n

gn

)(pn(γ)−p(γc))/2

≤ c2dn−p(γc)np(γc)
(

p2ϵ
n

gn

)1/2

≤ c2dn−p(γc)np(γc)
(

p2ϵ
n

gn

)1/2

≤ cnp(γc)+1
(

p2ϵ
n

gn

)1/2

for any ϵ > 0 and a suitable choice of c > 0. When we choose ϵ < δ/3, we get that the above
expression converges to 0, as pn → ∞.

Case II: Non-super models (γ ∈ G⋆
2) We split R2⋆

γ /R2⋆
γc

as before in (11). Observe that

R2
γ − R2

γc
= y′

n(Pn(γc) − Pn(γ))yn

= µ′
n(Pn(γc) − Pn(γ))µn + 2µ′

n(Pn(γc) − Pn(γ))en + e′
n(Pn(γc) − Pn(γ))en

≥ µ′
n(Pn(γc) − Pn(γ))µn − 2|µ′

nen|.
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Note that µ′
n(Pn(γc) − Pn(γ))µn = µ′

n(I − Pn(γ))µn > ∆0 uniformly over the class of all
small dimensional non-supermodels by assumption (A4). Further, by Lemma 3, we get
|µ′

nen| = o (∆0) with probability at least 1−exp{−cnξ} for ξ > 0 as in (A4) and some c > 0.
Combining all these facts and using (A4), we have with probability at least 1 − exp{−cnξ}

sup
γ⋆∈G1,d

sup
γ∈G⋆

2

(
R2⋆

γ

R2⋆
γc

)−n/2

≤ (1 + ϵ)
(

1 + (1 − ϵ) ∆0

nσ2

)−n/2

≲ (1 + ϵ) exp
{
−(1 − ϵ)∆0/2σ2

}
.

Further, from Lemma 1, the ratio of determinants in the last term of (10) is less than
c
(
n

√
gnτmax

)p(γc)
for an appropriately chosen c > 0. Therefore,

sup
γ⋆∈G1,d

∑
γ∈G⋆

2

p(Mγ|yn)
p(Mγc|yn) ≤ c (npn

√
gnτmax)p(γc) exp

{
−(1 − ϵ) ∆0

2σ2

}
dn∑

q=1

(
dn

q

)
1

(pn − 1)q

≤ c

(
n

√
gn

p1−2ϵ
n

)p(γc)

, (14)

for any ϵ > 0, with probability at least 1−exp{−cnξ} for ξ > 0 as in (A4), and uniformly over
γ⋆ ∈ G1,d. Combining the above facts, we get, with probability at least 1−cp−c0

n −exp{−cnξ},
where c0 ≪ δ/2 and ξ > 0 is as in (A4),

inf
γ⋆∈G1,d

P (Mγc | yn, G⋆) ≥

1 + cnp(γc)+1
(

p2ϵ
n

gn

)1/2

+ c

(
n

√
gn

p1−2ϵ
n

)p(γc)
−1

for some ϵ ≪ δ/2, where δ is as in the choice of gn. For the choice of gn taken in Theorem
2, the above expression converges to 1 as pn → ∞.

A.4. Proof of Theorem 3

Proof: Observe that

P2(Mγc |yn) =
∑

γ⋆∈Gd

P2(Mγc , Mγ⋆|yn) =
∑

γ⋆∈Gd

P (Mγc |yn, G⋆)P1(Mγ⋆|yn)

=
∑

γ⋆∈G1,d

P (Mγc |yn, G⋆)P1(Mγ⋆ |yn) +
∑

γ⋆∈G2,d

P (Mγc|yn, G⋆)P1(Mγ⋆|yn),

where Mγ⋆ is the model chosen in the first stage. Observe that P (Mγc |yn, G⋆) = 0 if γ⋆ ∈ G2,d,
i.e., if the model chosen in the first stage is a non-supermodel. Therefore,

P2(Mγc |yn) =
∑

γ⋆∈G1,d

P (Mγc |yn, G⋆)P1(Mγ⋆ |yn)

≥ inf
γ⋆∈A1,d

P (Mγc | yn, G⋆)
[
1 +

∑
γ⋆∈G2,d

P1(Mγ⋆|yn)∑
γ⋆∈G1,d

P1(Mγ⋆|yn)

]−1

≥

1 + cnp(γc)+1
(

p2ϵ
n

gn

)1/2

+ c

(
n

√
gn

p1−2ϵ
n

)p(γc)
−1 [

1 + c3n
dn/2p−(1−2ϵ)p(γc)

n

]−1
,

with a probability at least 1 − cp−c0
n − 2 exp{−cnξ}, where c0 ≪ δ/2 and ξ > 0 is as in (A4).

Thus, P2(Mγc |yn) → 1 with probability tending to 1.



Statistics and Applications {ISSN 2454-7395 (online)}
Special Issue in Memory of Prof. C R Rao
Volume 22, No. 3, 2024 (New Series), pp 509–533
http://www.ssca.org.in/journal

On High-Dimensional Modifications of
the Nearest Neighbor Classifier

Annesha Ghosh1, Deep Ghoshal2, Bilol Banerjee1 and Anil K. Ghosh1
1Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India

2Department of Statistics, University of Illinois at Urbana-Champaign, USA.

Received: 06 May 2024; Revised: 26 September 2024; Accepted: 30 September 2024

Abstract
Nearest neighbor classifier is arguably the most simple and popular nonparametric

classifier available in the literature. However, due to the concentration of pairwise distances
and the violation of the neighborhood structure, this classifier often suffers in high-dimension,
low-sample size (HDLSS) situations, especially when the scale difference between the com-
peting classes dominates their location difference. Several attempts have been made in the
literature to take care of this problem. In this article, we discuss some of those existing
methods and propose some new ones. We carry out some theoretical investigations in this
regard and analyze several simulated and benchmark datasets to compare the empirical
performances of our proposed methods with some of the existing ones.

Key words: Dimension reduction; Feature extraction; HDLSS asymptotics; Mixture distri-
butions; Nearest neighbors.

AMS Subject Classifications: 62H30, 68T10

1. Introduction

In supervised classification, we use a training set of labeled observations from different
competing classes to form a decision rule for classifying unlabeled test set observations as
accurately as possible. Starting from Fisher (1936), Rao (1948) and Fix and Hodges (1951),
several parametric as well as nonparametric classifiers have been developed for this purpose
(see, e.g., Duda et al., 2007; Hastie et al., 2009). Among them, the nearest neighbor classifier
(see, e.g., Cover and Hart, 1967) is perhaps the most popular one. The k-nearest neighbor
classifier (k-NN) classifies an observation x to the class having the maximum number of
representatives among the k nearest neighbors of x. This classifier works well if the training
sample size is large compared to the dimension of the data. For a suitable choice of k
(which increases with the training sample size at an appropriate rate), under some mild
regularity conditions, the misclassification rate of the k-NN classifier converges to the Bayes
risk (i.e., the misclassification rate of the Bayes classifier) as the training sample size grows to
infinity (see, e.g. Devroye et al., 2013; Hall et al., 2008). However, like other nonparametric
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methods, this classifier also suffers from the curse of dimensionality (see, e.g., Carrerira-
Perpinan, 2009), especially when the dimension of the data is much larger than the training
sample size. In such high-dimension, low-sample-size (HDLSS) situations, the concentration
of pairwise distances (see, e.g., Hall et al., 2005; François et al., 2007), presence of hubs and
the violation of the neighborhood structure (see, e.g., Radovanovic et al., 2010; Pal et al.,
2016) often have adverse effects on the performance of the nearest neighbor classifier.

To demonstrate this, we consider some simple examples involving two d-dimensional
normal distributions. Descriptions of these examples are given below.

Examples 1 - 3: In these three examples, the first class has a normal distribution with
the mean vector 0d = (0, 0, . . . , 0)⊤ and the dispersion matrix Id (the d× d identity matrix),
while the second class has the mean vector µ1d = µ(1, 1, . . . , 1)⊤ = (µ, µ, . . . , µ)⊤ and the
dispersion matrix σ2Id. In Example 1, we consider a location problem where we take µ = 1
and σ = 1. Example 2 deals with a location-scale problem with µ = 1 and σ = 2. As Example
3, we choose a scale problem, where µ and σ are taken as 0 and 2, respectively.

In each of these examples, we carry out our experiment for 7 different choices of d
ranging between 10 and 1000 (d= 10, 20, 50, 100, 200, 500 and 1000). In each case, taking
an equal number of observations from the two competing classes, we form the training and
test sets of size 50 and 500, respectively. This is done 100 times, and the average test set
misclassification rates of the 1-NN classifier over these 100 trials are reported in Figure 1.

Note that in each of these examples, the distribution of each measurement variable
differs in two competing classes. So, each of them contains information about class separa-
bility, and as a result, the separability between the two classes increases with the dimension.
One can check that in each of these examples, the Bayes risk converges to 0 as the dimen-
sion grows. Therefore, the misclassification rate of any good classifier is also expected to go
down as the dimension increases. We observed the same for the 1-NN classifier in Example
1 (location problem), but surprisingly, in the other two cases, its misclassification rates were
close to 0.5 in high dimensions.

A careful investigation explains the reasons for this diametrically opposite behavior.
Let {X1,X2, .....,Xn1} and {Y1,Y2, .....,Yn2} be the training samples from two competing
classes (here we have n1 = n2 = 25) N(0d, Id) and N(µ1d, σ2Id), respectively. Now, for a
test case Z from N(0d, Id), one can show that for each i = 1, 2, . . . , n1, 1

d
∥Z − Xi∥2, being

the average of independent and identically distributed (i.i.d.) random variables, converges
in probability to 2 as d increases to infinity. Similarly, it can be shown that for each i =
1, 2, . . . , n2, 1

d
∥Z − Yi∥2 P→ 1 + µ2 + σ2. So, Z is correctly classified by the 1-NN classifier

(or any k-NN classifier with k ≤ min{n1, n2}) if µ2 + σ2 > 1, Note that it was the case in
all three examples. So, all observations from N(0d, Id) were correctly classified. But for a
test case Z′ from N(µ1d, σ2Id), we have 1

d
∥Z′ − Xi∥2 P→ 1 + µ2 + σ2 for i = 1, 2, . . . , n1 and

1
d
∥Z′ − Yi∥2 P→ 2σ2 for i = 1, 2, . . . , n2. So, it is correctly classified if and only if σ2 < 1 +µ2.

This condition was satisfied in Example 1, but not in the other two cases. Because of this
violation of the neighborhood structure (where observations from one class have all neighbors
from other classes), in Examples 2 and 3, the 1-NN classifier misclassified all observations
from N(µ1d, σ2Id) and had misclassification rates close to 0.5.
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This phenomenon of distance concentration in high dimension was observed by Hall
et al. (2005) for Euclidean distances and François et al. (2007) for fractional distances. Hall
et al. (2005) also studied the high dimensional behavior of some popular classifiers and
observed this undesirable behavior of the nearest neighbor classifier. To take care of this
problem, Chan and Hall (2009b) proposed an adjustment for the scale difference between
the competing classes. They suggested to compute

ρ1(Z,Xi) = ∥Z − Xi∥2 − 1
2

(
n1

2

)−1∑
s<t

∥Xs − Xt∥2 for i = 1, 2, . . . , n1,

ρ2(Z,Yi) = ∥Z − Yi∥2 − 1
2

(
n2

2

)−1∑
s<t

∥Ys − Yt∥2 for i = 1, 2, . . . , n2

and classify Z to the first (respectively, second) class if min ρ1(Z,Xi) < min ρ2(Z, Yi) (re-
spectively, min ρ1(Z,Xi) > min ρ2(Z, Yi)). Note that without the scale adjustments (second
terms on the right-hand side of the equations), it turns out to be the usual 1-NN classifier.
Figure 1 also shows the performance of this classifier (we refer to it as the CH classifier) in
Examples 1-3. In Example 1, it performed like the 1-NN classifier. Interestingly, in Example
2, while the 1-NN classifier failed, this scale adjustment led to improved performance by the
CH classifier in high dimensions. But in Example 3, like the 1-NN classifier, it also misclas-
sified almost 50% observations. Note that for any Z from N(0d, Id), here ρ1(Z,Xi)/d P→ 1
(i = 1, 2, . . . , n1) and ρ2(Z,Yi)/d P→ 1 + µ2 (i = 1, 2, . . . , n2) as d increases. So, it is correctly
classified if µ2 > 0. Again, for any Z′ from N(µ1d, σ2Id), we have ρ1(Z′,Xi)/d P→ µ2 + σ2 for
i = 1, 2, . . . , n1 and ρ2(Z′,Yi)/d P→ σ2 for i = 1, 2, . . . , n2. So, here also, we need µ2 > 0 for
correct classification. In Examples 1 and 2, we had µ2 > 0. So, the CH classifier performed
well in those two examples for large values of d. But in Example 3, where we had µ2 = 0, it
misclassified almost 50% observations. This example shows that the CH classifier may fail
to discriminate between two high-dimensional distributions differing only in their scales.

However, if we slightly modify Chan and Hall (2009b)’s proposal of scale adjustment,
we can take care of high dimensional scale problems as well. Our modified version (which

(a) Ex. 1: Location problem (b) Ex. 2: Location-scale (c) Ex. 3: Scale problem
(µ = 1, σ = 1) problem (µ = 1, σ = 2) (µ = 0, σ = 2)
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Figure 1: Misclassification rates of Bayes, NN, CH and MCH classifiers in Ex-
amples 1-3.
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we refer to as the Modified Chan and Hall classifier or the MCH classifier) had excellent
performance in all three examples (see Figure 1), especially for large values of d. In Section
2, we propose this modification and carry out some theoretical and numerical studies to
understand the high-dimensional behavior of the resulting classifier.

An alternative strategy to deal with any high-dimensional problem is to reduce the
dimension of the data and work on the reduced subspace. The simplest method of dimension
reduction is to consider some random linear projections (see, e.g., Fern and Brodley, 2003;
Fradkin and Madigan, 2003; Vempala, 2005, and the references therein), and we can adopt
that method for nearest neighbor classification as well. Another popular approach is to use
projections based on principal component analysis (see, e.g., Deegalla and Bostrom, 2006;
Maciończyk et al., 2023). But as pointed out in Dutta and Ghosh (2016), these methods often
lead to poor performance in high-dimensional classification problems. For instance, from our
description, it is quite clear that neither the principle component directions nor the random
projections are meaningful in Example 3. Also getting consistent estimates of the principal
components in high dimension is challenging (see, e.g., Jung and Marron, 2009). Other
approaches towards nearest neighbor classification of high-dimensional data include those
based on mean absolute difference of distances (see,e.g., Pal et al., 2016; Roy et al., 2022),
hubness-based fuzzy measures (see, e.g., Tomašev et al., 2014) and distance metrics learning
(see, e.g. Weinberger and Saul, 2009). Chan and Hall (2009a) proposed a robust version of the
nearest neighbor method for classifying high-dimensional data, but their method can be used
only for a specific type of two-class location problem. Instead of using random projections
or principal components, Dutta and Ghosh (2016) suggested extracting some distance-based
features from the data and performing nearest neighbor classification based on those features.
They proposed two such methods, one using transformation based on average distances
(TRAD) and the other using transformation based on inter-point distances (TRIPD). We
briefly discuss these two methods in Section 3 and also propose some other methods for
selecting distance-based features for nearest neighbor calssification of high dimensional data.
A comparative discussion of these methods is also given in this section based on our analysis
of some simulated data sets. Some benchmark data sets are analyzed in Section 4 to compare
the performances of these methods with two popular state-of-the-art classifiers, support
vector machines (see, e.g. Cristianini and Shawe-Taylor, 2003; Steinwart and Christmann,
2008; Scholkopf and Smola, 2018) and random forest (see, e.g., Breiman, 2001; Genuer and
Poggi, 2020), which are known to perform well for high dimensional data. Finally, a brief
summary of the work and some concluding remarks are given in Section 5. All proofs and
mathematical details are given in the Appendix.

2. Modified scale-adjusted nearest neighbor classifier

We have seen that while the 1-NN classifier failed in Examples 2 and 3, the scale-
adjusted CH classifier worked well in Example 2 when the dimension was large. But, in
Example 3, this scale adjustment could not improve the performance of the 1-NN classifier.
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This motivates us to look for a modified scale adjustment. We define

ρ∗
1(Z,Xi) = ∥Z − Xi∥ − 1

2

(
n1

2

)−1∑
s<t

∥Xs − Xt∥ for i = 1, 2, . . . , n1,

ρ∗
2(Z,Yi) = ∥Z − Yi∥ − 1

2

(
n2

2

)−1∑
s<t

∥Ys − Yt∥ for i = 1, 2, . . . , n2

and classify a test set observation Z to the first (respectively, second) class if min ρ∗
1(Z,Xi)

is smaller (respectively, larger) than min ρ∗
2(Z,Yi). Figure 1 shows that this modified scale

adjusted nearest neighbor classifier (henceforth referred to as the Modified Chan and Hall
classifier or the MCH classifier) had excellent performance in high dimensions in all three
examples. A small theoretical analysis explains the reasons for its superior performance.

Following our previous discussion on distance convergence, one can show that for a
test set observation Z from N(0d, Id), as d tends to infinity, we have ρ∗

1(Z,Xi)/
√
d

P→ 1/
√

2
for i = 1, 2, . . . , n1, while ρ∗

2(Z,Yi)/
√
d

P→
√

1 + µ2 + σ2 − σ/
√

2 for i = 1, 2, . . . , n2. So,
it is correctly classified if

√
1 + µ2 + σ2 > (σ + 1)/

√
2 ⇔ 1 + µ2 + σ2 > (σ + 1)2/2 ⇔

µ2 + 1
2(σ − 1)2 > 0. Again for an observation Z′ from N(µ1d, σ2Id), as d → ∞, we have

ρ∗
1(Z′,Xi)/

√
d

P→
√

1 + µ2 + σ2 − 1/
√

2 for i = 1, 2, . . . , n1 and ρ∗
2(Z′,Yi)/

√
d

P→ σ/
√

2 for
i = 1, 2, . . . , n2. So, here also, Z′ is correctly classified if µ2 + 1

2(σ − 1)2 > 0. This inequality
holds in all three examples considered in Section 1. This was the reason for the excellent
performance of the MCH classifier in high dimensions.

Like the usual nearest neighbor classifier, multi-class generalizations of CH and MCH
classifiers are quite straightforward. If there are J competing classes F1, F2, . . . , FJ with the
training samples {Xj1,Xj2, . . . ,Xjnj

} from the j-th class, (j = 1, 2, . . . , J), for classifying a
test case Z by the CH classifier, we can compute

ρj(Z,Xji) = ∥Z − Xji∥2 − 1
2

(
nj
2

)−1∑
s<t

∥Xjs − Xjt∥2 for j = 1, 2, . . . , J, i = 1, 2, . . . , nj

and assign Z to class j0 if min
1≤i≤nj0

ρj0(Z,Xj0i) < min
1≤i≤nj

ρj(Z,Xji) for all j ̸= j0. Similarly, for
the MCH classifier, one can compute

ρ∗
j(Z,Xji) = ∥Z − Xji∥ − 1

2

(
nj
2

)−1∑
s<t

∥Xjs − Xjt∥ for j = 1, 2, . . . , J, i = 1, 2, . . . , nj

and assign Z to class j0 if min
1≤i≤nj0

ρ∗
j0(Z,Xj0i) < min

1≤i≤nj

ρ∗
j(Z,Xji) for all j ̸= j0.

For the sake of simplicity, in Examples 1-3, we considered binary classification prob-
lems involving two normal distributions each having i.i.d. measurement variables. Now,
one may be curious to know how CH and MCH classifiers perform in high-dimensional
multi-class classification problems involving more general class distributions with possibly
dependent and non-identically distributed measurement variables. For this investigation, we
consider the following assumptions.
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(A1) In each of the J competing classes, the measurement variables have uniformly bounded
fourth moments.

(A2) If X = (X1, . . . , Xd)⊤ ∼ Fj and Y = (Y1, . . . , Yd)⊤ ∼ Fi (1 ≤ j, i ≤ J) are independent,
for U = X − Y, ∑r ̸=s |Corr(U2

r , U
2
s )| is of the order o(d2).

(A3) Let µj and Σj be the mean vector and the dispersion matrix of Fj (1 ≤ j ≤ J). For
each j = 1, . . . , J , there exists a constant σ2

j such that trace(ΣJ)/d → σ2
j as d → ∞.

Also, for each i ̸= j, there exists a constant ν2
ji such that ∥µj−µi∥2/d → ν2

ji as d → ∞.

Under (A1) and (A2), we have the weak law of large numbers (WLLN) (see, e.g.,
Feller, 1991) for the sequence of possibly dependent and non-identically distributed ran-
dom variables {U2

q : q ≥ 1},i.e.,
∣∣∣1
d
∥U∥2 − E

(
1
d
∥U∥2

)∣∣∣ P→ 0 as d → ∞ (note that if the
measurement variables are i.i.d., as they were in Examples 1-3, the WLLN holds under the
second moment assumption, (A1) and (A2) are not needed there). Assumption (A3) gives
the limiting value of E

(
1
d
∥U∥2

)
and hence that of 1

d
∥U∥2 = 1

d
∥X − Y∥2 for X ∼ Fj and

Y ∼ Fi (1 ≤ j, i ≤ J). So, under (A1)-(A3), we have high-dimensional convergence of all
pairwise distances and their limiting values (see Lemma 1 in Appendix). These assumptions
are quite standard in the HDLSS literature. Hall et al. (2005) considered the d-dimensional
observations as time series truncated at time d, and in addition to (A1) and (A3), they
assumed the ρ-mixing property of the time series to study the high dimensional behavior of
some popular classifier as d increases. Note that (A2) holds under that ρ-mixing condition.
François et al. (2007) observed that for high-dimensional data with highly correlated or de-
pendent measurement variables, pairwise distances are less concentrated than if all variables
are independent. They claimed that the distance concentration phenomenon depends on
the intrinsic dimension (see, e.g., Levina and Bickel, 2004; Camastra and Staiano, 2016) of
the data, instead of the dimension of the embedding space. So, in order to have distance
concentration in high dimensions, one needs high intrinsic dimensionality of the data or weak
dependence among the measurement variables. The assumption (A2) ensures that weak de-
pendence. Some other similar relevant conditions for the convergence of pairwise distances
can be found in (Ahn et al., 2007; Jung and Marron, 2009; Sarkar and Ghosh, 2019; Yata
and Aoshima, 2020; Banerjee and Ghosh, 2025). Under (A1)-(A3), we have the following
theorem on the misclassification rates of the usual nearest neighbor, CH and MCH classifiers.

Theorem 1: If J competing classes satisfy assumptions (A1)-(A3), and there are at least
two observations from each of them (i.e, nj ≥ 2 for all j = 1, 2, . . . , J), then we have the
following results.

(a) If ν2
ji > |σ2

j −σ2
i | for all j ̸= i, the misclassification probability of the k-nearest neighbor

classifier with k < min{n1, . . . , nJ} converges to 0 as the dimension d grows to infinity.
However, if ν2

ji < |σ2
j − σ2

i | for some j ̸= i, all observations from at least one class is
misclassified with probability tending to 1 as d diverges to infinity.

(b) If ν2
ji > 0 for j ̸= i, the misclassification probability of the CH classifier converges to 0

as d grows to infinity.

(c) Suppose that for all j ̸= i, either ν2
ji > 0 or σ2

j ̸= σ2
i . Then, the misclassification

probability of the MCH classifier converges to 0 as d grows to infinity.
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Note that in Examples 1-3, we had ν2
12 = µ2, σ2

1 = 1 and σ2
2 = σ2. The condition

ν2
12 > |σ2

1 − σ2
2| was violated in Examples 2 and 3, whereas the condition ν2

12 > 0 was
also violated in Example 3. We had poor performance of NN and CH classifiers in these
respective cases. But the condition ν2

12 > 0 or σ2
1 ̸= σ2

2 was satisfied in all three examples.
Consequently, the MCH classifier had good high-dimensional performance.

(a) Ex. 4: Two mixture (b) Ex. 5: Uniform vs. (c) Ex. 6: Normal(0d, 3Id) vs.
normal distributions mixture of uniforms standard t with 3 d.f.
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Figure 2: Misclassification rates of Bayes, NN, CH, and MCH classifiers in
Examples 4-6.

Now, we consider three more examples (Examples 4-6) to investigate how the MCH
classifier performs when at least one of the assumptions of Theorem 1 is violated.

Example 4: Each of the two classes is an equal mixture of two normal distributions. While
one class is a mixture of N(0d, Id) and N(1d, 2Id), the other one is a mixture of N(αd, Id)
and N((1d − αd), 2Id), where αd is a d-dimensional vector with entries 0 and 1 at even and
odd places, respectively.

Example 5: Here the two classes are Ud(1, 1.5) and an equal mixture of Ud(0.5, 1) and
Ud(1.5, 2), where Ud(a, b) denotes the d-dimensional uniform distribution over the region
{x ∈ Rd : a ≤ ∥S1/2x∥ ≤ b} for S = 0.5Id + 0.51d1⊤

d .

Examples 4 and 5 are dealing with mixture distributions. Here, (A1)-(A3) hold for each of
the four sub-classes, but (A2) is violated for both competing classes. We also consider the
following example:

Example 6: In this example, the two competing classes are N(0d, 3Id) and the standard
multivariate t-distribution with 3 degrees of freedom.

In Example 6, (A2) is violated for the t-distribution. Moreover, since the two classes
have the same mean vector and the same dispersion matrix, we have ν2

12 = 0 and σ2
1 = σ2

2.
For each example, we consider different values of d ranging between 10 and 1000, and in
each case, we form training and test samples of size 50 and 500, respectively, taking an equal
number of observations from each class. Each experiment is repeated 100 times to compute
the average test set misclassification rates of different classifiers, and they are reported in
Figure 2. In these examples, NN, CH and MCH classifiers, all had poor performance, and
they had misclassification rates close to 0.5 in high dimensions. These examples clearly
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show the necessity to develop some new methods for high dimensional nearest neighbor
classification, particularly for the examples involving mixture distributions. In the next
section, we propose and discuss some methods for this purpose.

3. Nearest neighbor classification using distance-based features

In the previous sections, we have seen that for high dimensional classification based
on nearest neighbors, the scale adjustment methods (CH and MCH) may not always be
helpful. To take care of this problem, we suggest extracting some distance-based features
from the data and constructing a suitable classifier on that feature space.

3.1. Classification based on minimum distances

Note that in a binary classification problem with training samples {X11,X12, . . . ,X1n1}
and {X21,X22, . . . ,X2n2} from the two competing classes, for classification of a test case
Z, the 1-NN classifier computes its minimum distances d1(Z) = min1≤i≤n1 ∥Z − X1i∥ and
d2(Z) = min1≤i≤n2 ∥Z − X2i∥ from Class-1 and Class-2, respectively. Then it classifies Z to
the first class if d2(Z) > d1(Z) or d2

2(Z) > d2
1(Z). Like the 1-NN classifier, the CH classifier

(a) NN and CH classifiers (b) NN and MCH classifiers (c) MDist classifier
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Figure 3: Scatter plots of training (top row) and test (bottom row) samples along
with the class boundaries estimated by NN, CH, MCH, and MDist classifiers in
Example 4.
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(a) NN and CH classifiers (b) NN and MCH classifiers (c) MDist classifier
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Figure 4: Scatter plots of the test samples and the class boundaries estimated
by NN, CH, MCH and MDist classifiers in Example 5.

also leads to linear classification in the d2
1−d2

2 space and classifies Z to the first class if d2
2(Z) >

d2
1(Z) +C1, where C1 = 1

2

[(
n2
2

)−1∑
s<t ∥X2s − X2t∥2 −

(
n1
2

)−1∑
s<t ∥X1s − X1t∥2

]
. Similarly,

the MCH classifier leads to linear classification in the d1−d2 space and classifies Z to the first
class if d2(Z) > d1(Z)+C2, where C2 = 1

2

[(
n2
2

)−1∑
s<t ∥X2s−X2t∥−

(
n1
2

)−1∑
s<t ∥X1s−X1t∥

]
.

The first and the second columns in Figure 3 show the class boundaries estimated by these
classifiers (the back line in the first and the second column shows the class boundary esti-
mated by the 1-NN classifier) in Example 4 for dimension 500. They also show the scatter
plots of (d1(·), d2(·))

(
or
(
d2

1(·), d2
2(·)

))
for all training (top row) and test (bottom row) sam-

ple observations. For the training data points, the leave-one-out method (see, e.g., Wong,
2015) is used to compute its minimum distances from the two classes. From this figure, it is
quite evident that minimum distances (or squared minimum distances) from the two classes
contain substantial information about class separability, but the resulting data clouds from
the two classes are not linearly separable in that space. As a result, NN, CH, and MCH
classifiers, all had poor performance. But we can overcome this problem if we use a suitable
nonlinear classifier in that space. For instance one can use the 1-NN classifier in the d1 − d2
space. This classifier, which is referred to as the MDist classifier, performed well in this
example. The last column in Figure 3 shows the class boundary estimated by the MDist
classifier. Note that it correctly classified almost all observations.

We observed a similar phenomenon in Example 5 as well (see Figure 4). Like Example
4, here also the observations from different sub-classes form distinct clusters in the d1 −
d2 space (or the d2

1 − d2
2 space). So, this feature space contains useful information about

class separability, but the feature vectors from the two classes are not linearly separable.
Therefore, while NN, CH and MCH classifiers had misclassification rates close to 50%, the
MDist classifier had an excellent performance.

In Example 6, we have the convergence of pairwise distances for observations from
the normal distribution, but not for observations from the multivariate t distribution. In
this example, NN, CH and MCH classifiers classified almost all observations into a single
class (see Figure 5), but the MDist classifier had much superior performance.
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(a) NN and CH classifiers (b) NN and MCH classifiers (c) MDist classifier
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Figure 5: Scatter plots of the test samples and the class boundaries estimated
by NN, CH, MCH and MDist classifiers in Example 6.

A similar idea of projecting the observations into a distance-based feature space and
using the nearest neighbor classifier on that space was also considered in Dutta and Ghosh
(2016), where the authors suggested using average distances d̄1(Z) = avgi∥Z − X1i∥ and
d̄2(Z) = avgi∥Z−X2i∥ from the competing classes as features. Figure 6 shows these features
for the test sample observations in Examples 4-6 and also the class boundaries estimated by
the resulting classifier, called the TRAD classifier (see Dutta and Ghosh, 2016). Here also,
for computing the feature vectors for the training sample observations, the leave-one-out
method is used. Figure 6(a) shows that in Example 4, we have reasonable separability in
the feature space, but the four distinct clusters are not as prominent as they were in Figure
3. Here we have some overlaps between the clusters corresponding to two competing classes.
As a result, TRAD performed better than NN, CH and MCH classifiers, but not as good as
the MDist classifier. This is also evident from Figure 7(a), which shows the average (over
100 replications) test set misclassification rates of these classifiers for various choices of d. In

(a) Ex. 4: Two mixture (b) Ex. 5: Uniform vs. (c) Ex. 6: Normal(0d, 3Id) vs.
normal distributions mixture of uniforms standard t with 3 d.f.
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Figure 6: Scatter plots of the test samples and the class boundaries estimated
by the TRAD classifier in Examples 4-6.
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(a) Ex. 4: Two mixture (b) Ex. 5: Uniform vs. (c) Ex. 6: Normal(0d, 3Id) vs.
normal distributions mixture of uniforms standard t with 3 d.f.
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Figure 7: Misclassification rates of Bayes, CH, MCH, TRAD and MDist classi-
fiers in Examples 4-6.

Example 5, the features based on average distances do not provide much separation between
the two classes (see Figure 6(b)). So, as expected, TRAD had much higher misclassification
rates (see 7(b). However, in Example 6, the d̄1 − d̄2 space shows almost the same degree of
separation as in the d1−d2 space (see Figure 6). So, the class boundaries estimated by TRAD
and MDist classifiers were almost similar, and they had almost similar misclassification rates.
(see Figures 7(c)).

The success of the MDist classifier motivates us to carry out some theoretical anal-
ysis to understand its high-dimensional behavior. For this investigation, we again consider
assumptions (A1)-(A3), and prove the perfect classification property of the MDist classifier
in high dimensions.

Theorem 2: Suppose that J competing classes satisfy assumptions (A1)-(A3), and from
each of them, there are at least two observations (i.e, nj ≥ 2 for all j = 1, 2, . . . , J). If for
all j ̸= i, ν2

ji > 0 or σ2
j ̸= σ2

i , the misclassification rate of the MDist classifier converges to 0
as d grows to infinity.

However, as we have discussed before, if the competing classes are mixtures of several
sub-classes, the assumptions (A1)-(A3) may hold for each of the sub-classes but none of
the competing classes (as in Examples 4). We have seen that in such situations, CH and
MCH classifiers often have poor performance in high dimensions. However, from the proof
of Theorem 2 (see Appendix), it is clear that in such cases, for each of the sub-classes,
the feature vectors of minimum distances converge to a point as the dimension increases.
If these points are distinct for each sub-class, we get some distinct clusters in the feature
space, and the MDist classifier leads to perfect classification. We have already seen that in
Example 4. A theorem similar to Theorem 2 can be stated for these mixture distributions as
well, but the conditions for perfect classification by the MDist classifier (i.e., the conditions
needed to ensure that for any two sub-classes from two competing classes, the feature vectors
converge to two distinct points, one for each sub-class) becomes mathematically complicated
to interpret. That is why we choose not to state that theorem here.
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Now we consider two interesting examples (Example 7 and 8) involving binary clas-
sification, where each of the two competing classes satisfies assumptions (A1)-(A3), but we
have ν2

12 = 0 and σ2
1 = σ2

2. So, in this case, the feature vectors (d1(·), d2(·)) corresponding
to two competing classes converge to the same limiting value as d increases. One may be
curious to know how the MDist classifier performs in such situations, and we investigate it
here. Here also, we consider different values of d ranging between 10 and 1000, form the
training and the test sets of size 50 and 500 by taking an equal number of observations
from the two classes and repeat the experiment 100 times to compute the average test set
misclassification rates of different classifiers.

Example 7: We consider two normal distributions having the same mean vector 0d but
different dispersion matrices Λ1=diag(λ11, . . . , λ1d) and Λ2=diag(λ21, . . . , λ2d). Here λ1i =
1/2 and λ2i = 2 for i ≤ d/2, whereas λ1i = 2 and λ2i = 1/2 for i > d/2.

Figure 8(a) show the scatter plots of the test set observations in the d1 − d2 space
and the class boundary estimated by the MDist classifier for d = 500. It is clear that
unlike previous examples, here the features based on minimum distances fail to discrimi-
nate between the two classes. As a result, the MDist classifier had much higher misclas-

(a) MDist classifier (Ex. 7) (b) TRAD classifier (Ex. 7) (c) MDist1 classifier (Ex. 7)
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Figure 8: Scatter plots of the test samples and the class boundaries estimated by
the MDist, TRAD and MDist1 classifiers in Example 7 (top row) and Example
8 (bottom row).
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(a) Ex. 7: Two normals with different (b) Ex. 8: Product of N(0, 3) vs
dispersion matrices having same trace product of univariate t3
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Figure 9: Misclassification rates of Bayes, NN, TRAD, MDist and MDist1 clas-
sifiers in Examples 7 and 8.

sification rates (see Figure 9(a)). The features based on average ℓ2 distances also fail to
provide any discriminatory information (see Figure 8(b)) in this case. The performance of
the TRAD classifier was even worse. It misclassified almost half of the test set observa-
tions (see Figure 9(a)). Surprisingly, in this example, we get a good result if instead of
ℓ2 distance (Euclidean distance), we use ℓ1 distance (Manhattan distance) for finding the
neighbors. If {X11,X12, . . . ,X1n1} and {X21,X22, . . . ,X2n2} are training sample observa-
tions from two competing classes (here we have n1 = n2 = 25), for any Z, we can use
d∗

1(Z) = min1≤i≤n1 ∥Z − X1i∥1 and d∗
2(Z) = min1≤i≤n2 ∥Z − X2i∥1 as features and perform

usual nearest neighbor classification on that feature space. Here also for computing d∗
1 and d∗

2
at the training data points, we use the leave-one-out method. Figure 8(c) shows the scatter
plot of these features for all test set observations and the class boundary estimated by the
1-NN classifier on this feature space (we call it the MDist1 classifier). Here we have two
distinct clusters in the feature space, one for each class. As a result, the MDist1 classifier
had an excellent performance and correctly classified almost all observations. The average
test set misclassification rate of this classifier (reported in Figure 9(a)) also tells us the same
story. Now, let us consider the following example.

Example 8: Here each of the two classes has i.i.d. measurement variables. In Class-1, they
follow the N(0, 3) distribution, while in Class-2, they follow the standard t distribution with
3 degrees of freedom.

Note that this is different from the multivariate t distribution considered in Example
6. In this example also, the features based on minimum ℓ2 distances and those based on
average ℓ2 distances do not provide much separability between the two classes (see Figure
8(d) and (e)), but the features based on minimum ℓ1 distances make the data clouds better
separated (see Figure 8(f)). As a result, the MDist1 classifier outperformed TRAD and
MDist classifiers (see Figure 9(b)).

To understand the high-dimensional behavior of the MDist1 classifier, we carry out
some theoretical investigations under the following assumptions, which are similar to (A1)-
(A3) stated before.
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(A1◦) In each of the J competing classes, the measurement variables have uniformly bounded
second moments.

(A2◦) If X = (X1, . . . , Xd)⊤ ∼ Fj and Y = (Y1, . . . , Yd)⊤ ∼ Fi (1 ≤ j, i ≤ J) are independent,
for U = X − Y, ∑r ̸=s |Corr(|Ur|, |Us|)| is of the order o(d2).

(A3◦) For independent random vectors X ∼ Fj and Y ∼ Fi (1 ≤ j, i ≤ J), E
(

1
d
∥X − Y∥1

)
=

1
d

∑d
q=1 E|Xq − Yq| converges to a constant τji as d → ∞.

Under (A1◦) and (A2◦), we have the convergence of pairwise ℓ1 distances. Following
similar steps as used in the proof of Lemma 1, one can show that for X ∼ Fj and Y ∼ Fi

(1 ≤ j, i ≤ J),
∣∣∣1
d
∥X − Y∥1 − E

(
1
d
∥X − Y∥1

)∣∣∣ P→ 0 as d → ∞.

For any q = 1, 2, . . . d, define e(q)
ji = 2E|Xq − Yq| − E|Xq − X ′

q| − E|Yq − Y ′
q |, where

X,X′ ∼ Fj and Y,Y′ ∼ Fi (j ̸= i) are independent random vectors. This quantity e
(q)
ji

can be viewed as the energy distance (see, e.g., Székely and Rizzo, 2023) between the q-th
marginals of Fj and Fi (F (q)

j and F (q)
i , say). Following Baringhaus and Franz (2004), one can

show that e(q)
ji is non-negative, and it takes the value 0 if and only if F (q)

j = F
(q)
i . So, for any

fixed dimension d, we have 1
d

[
2E∥X − Y∥1 − E∥X − X′∥1 − E∥Y − Y′∥1

]
= 1

d

∑d
q=1 e

(q)
ji =

ēji(d) ≥ 0, where the equality holds if and only if F (q)
j = F

(q)
i for q = 1, 2, . . . , d. Therefore,

it is somewhat reasonable to assume that Eji = limd→∞ ēji(d) > 0, which essentially says
that the average coordinate-wise energy distance is asymptotically non-negligible. Under
this assumption, we have the perfect separation property of the MDist1 classifier, which is
asserted by the following theorem.

Theorem 3: Suppose that J competing classes satisfy assumptions (A1◦)-(A3◦), and from
each of them, there are at least two observations (i.e, nj ≥ 2 for all j = 1, 2, . . . , J). If
the limiting value of the average coordinate-wise energy distance Eji > 0 for all j ̸= i, the
misclassification rate of the MDist1 classifier converges to 0 as d grows to infinity.

Note that while TRAD and MDist classifiers fail to discriminate between two distribu-
tions differing outside the first two moments, the MDist1 classifier can discriminate between
them as long as they differ in their one-dimensional marginals. That is why it outperformed
TRAD and MDist classifiers in Examples 7 and 8.

This classifier enjoys the perfect separation property in high dimensions even when the
competing classes are mixtures of several sub-classes, and these sub-class distributions satisfy
assumptions (A1◦)-(A3◦). It becomes clear from the proof of Theorem 3 (see Appendix) that
in such cases, for each of the sub-classes, the feature vectors of minimum ℓ1 distances (after
appropriate scaling) converge to a point as the dimension increases. If these points are
distinct for each sub-class, the MDist1 classifier leads to perfect classification. But here
also writing the conditions for perfect classification becomes mathematically complicated to
interpret. So, we decide not to state another theorem in this regard. However, our analysis
of simulated data sets clearly demonstrates this. Figure 10 shows the misclassification rates
of TRAD, MDist and MDist1 classifiers in Examples 1-6 along with those of 1-NN and Bayes
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classifiers. In all these examples including Example 4 and 5, where we deal with mixture
distributions, MDist and MDist1 classifiers had similar performance.

This figure shows another interesting phenomenon. In Examples 1-3, when the un-
derlying distributions are unimodal, the TRAD classifier, which considers the average of
distances from all observations, performed better than MDist and MDist1 classifiers, which
consider the distance of one nearest neighbor only. In Example 6 also, TRAD had an edge
over the other two classifiers. But, in the case of mixture distributions (see Examples 4 and
5), taking the average over all observations coming from different sub-classes does not seem
to be a meaningful option. In those cases, MDist and MDist1 classifiers outperformed the
TRAD classifier. These result shows that instead of always going for features based on a sin-
gle nearest neighbor from each class, sometimes it is more meaningful to consider distances
from multiple nearest neighbors. We can include these distances in the set of features and go
for classification in the extended feature space. We consider such methods in the following
subsection.

(a) Example 1 (b) Example 2 (c) Example 3
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Figure 10: Misclassification rates of Bayes, NN, TRAD, MDist and MDist1
classifiers in Examples 1-6.

3.2. Clssification based on multiple neighbors

Instead of considering only the distance of the first neighbor from each class, here
we consider the distances of the first r (r ≥ 1) neighbors from each class and use them
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as features. So, if there are J competing classes, we consider a total of Jr many features
and use the 1-NN classifier on that feature space. Here also, we can use ℓ2 distances or
ℓ1 distances as features, and the resulting classifier is referred to as rMDist and rMDist1
classifiers, respectively. One may also consider both ℓ1 and ℓ2 distances and deal with 2Jr
many features simultaneously. We refer to the resulting classifier as the rMDistC classifier.
In all these cases the value of r is chosen by minimizing the leave-one-out cross-validation

(a) Example 1 (b) Example 2 (c) Example 3
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Figure 11: Misclassification rates of different classifiers in Examples 1-8.
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estimate (see, e.g. Wong, 2015) of the misclassification rate. Figure 11 shows the average
test set misclassification rates of these classifiers in Examples 1-8. One can see that in most
of the examples, rMDist and rMDist1 classifiers performed better than MDist and MDist1
classifiers, respectively. The rMDistC classifier also performed well in almost all examples.
In Examples 7 and 8, it outperformed rMDist and rMDist1 classifiers.

A somewhat similar classification method was considered in Dutta and Ghosh (2016),
where the authors transformed each observation into an n-dimensional vector containing its
distances from all training sample observations. They also considered ℓ1 and ℓ2 distances
for transformation and called the resulting classifiers as TRIPD1 and TRIPD2. respectively.
Misclassification rates of those two methods are also reported in Figure 11. In Examples
1-3 and 6, their misclassification rates were similar to our proposed methods. In Example
4, they had the lowest misclassification rates, but in Example 5, they were outperformed by
our proposed classifiers. In Examples 7 and 8, the TRIPD2 classifier, which is based on ℓ2
distances, had higher misclassification rates. In Example 7, the performance of the TRIPD1
classifier was comparable to rMDist1 and rMDistC classifiers, but in Example 8, the rMdistC
classifier had a clear edge.

4. Results from the analysis of benchmark datasets

We analyze 10 benchmark datasets for further evaluation of the performance of the
proposed and existing methods discussed in the previous two sections. For these benchmark
datasets, since the true class distributions are not known, it is not possible to compute the
Bayes risks. Therefore, to facilitate comparison, we report the misclassification rates of two
popular classifiers, support vector machines (SVM) (see, e.g. Cristianini and Shawe-Taylor,
2003; Scholkopf and Smola, 2018) and random forest (RF) (see, e.g. Breiman, 2001; Genuer
and Poggi, 2020), which are known to perform well for high dimensional data. Since the
nearest neighbor classifiers are nonlinear, to make it fair, here we use the nonlinear SVM
for comparison. For our numerical study, we use the radial basis function kernel, where
all tuning parameters are chosen using the 5-fold cross-validation method (see, e.g., Wong,
2015). We use the R package caret for this purpose. The same package is used for the
random forest classifier as well, where we use default tuning parameters.

Out of these 10 datasets, Chowdary and Nutt datasets are taken from CompCancer
dataset-Schliep lab. The rest of the datasets are taken from the UCR Time Series Clas-
sification Archive. Detailed descriptions of these datasets are available at these respective
sources. The datasets taken from the UCR archive have specific training and test sets. We
merge these two sets and divide the pooled dataset randomly into two parts to form the
training and the test samples. Except for the Synthetic Control Chart data, in all other
cases, the sizes of training and test samples are taken to be the same as they are in the
data archive. Note that in all these cases, the size of the training sample is smaller than
the dimension. In the case of Synthetic Control Chart data, instead of an equal partition
(as in UCR achieve), we use training and test samples of size 60 and 540, respectively, so
that the training sample size does not become larger than the dimension. The datasets from
the CompCancer database do not have specific training and test samples. In these cases, we
divide the data sets into equal halves to form the training and the test samples. Brief de-
scriptions of these datasets are given in Table 1. In all these cases, we form the training and
the test samples in such a way that the proportions of different classes in the two samples are

https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm
https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm
http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/
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Table 1: Brief descriptions of the benchmark datasets.

dataset d J Sample size dataset d J Sample size
Train Test Train Test

Synthetic Control 60 6 60 540 Lightning7 319 7 70 73
Chowdary 182 2 52 52 Herring 512 2 64 64

Trace 275 4 100 100 Nutt 1070 2 14 14
Toe Segmentation1 277 2 40 228 Gordon 1628 2 90 91

Coffee 286 2 28 28 Colon Cancer 2000 2 31 31

Table 2: Average misclassification rates (in %) of different classifiers and their
standard errors (reported inside the bracket) in benchmark datasets.

Dataset Synth. Chowdary Trace Toe Seg- Coffee Lightning7 Herring Nutt Gordon Colon
Control ment.1 Cancer

NN 18.78 4.83 20.33 38.62 2.00 37.97 51.33 34.00 2.96 26.10
(0.28) (0.29) (0.37) (0.36) (0.31) (0.43) (0.59) (0.92) (0.16) (0.65)

MDist 10.02 7.98 13.51 42.80 2.61 39.29 45.53 14.14 1.92 32.42
(0.26) (0.45) (0.46) (0.45) (0.34) (0.47) (0.52) (0.74) (0.17) (0.95)

MDist1 12.29 7.04 18.88 37.30 4.43 35.72 47.20 15.71 1.19 34.74
(0.30) (0.46) (0.46) (0.45) (0.39) (0.52) (0.57) (0.70) (0.10) (0.94)

rMDist 10.06 6.56 14.90 40.92 2.93 38.16 46.86 15.14 1.73 22.06
(0.28) (0.37) (0.48) (0.38) (0.32) (0.42) (0.54) (0.86) (0.14) (0.92)

rMDist1 10.12 5.35 19.61 35.64 4.50 36.00 46.06 15.93 1.27 27.03
(0.27) (0.35) (0.44) (0.47) (0.39) (0.44) (0.63) (0.68) (0.10) (1.03)

rMDistC 9.25 5.90 15.01 35.61 3.07 34.67 46.88 14.21 1.64 24.65
(0.27) (0.32) (0.49) (0.47) (0.34) (0.47) (0.54) (0.80) (0.15) (0.96)

TRAD 14.78 7.31 24.48 49.93 4.11 37.28 48.08 12.07 6.52 18.06
(0.30) (0.34) (0.37) (0.41) (0.43) (0.39) (0.56) (0.72) (0.19) (0.72)

TRIPD1 7.67 4.42 23.25 33.92 6.14 31.47 47.36 17.57 1.21 25.77
(0.19) (0.25) (0.43) (0.32) (0.40) (0.39) (0.53) (0.95) (0.10) (0.66)

TRIPD2 6.42 5.38 21.08 38.15 3.79 32.27 50.50 8.93 3.38 21.58
(0.19) (0.30) (0.39) (0.34) (0.39) (0.40) (0.56) (0.86) (0.20) (0.62)

Random 13.07 5.00 14.23 38.21 3.21 28.29 40.30 21.07 0.93 29.55
Forest (0.24) (0.26) (0.48) (0.41) (0.45) (0.47) (0.47) (1.09) (0.11) (0.64)
Nonlin. 9.50 7.63 10.48 45.02 4.25 35.77 39.11 11.21 2.53 20.90
SVM (0.32) (0.50) (0.36) (0.37) (0.46) (0.47) (0.41) (0.75) (0.22) (0.75)

as close as possible. In each case, this partitioning is carried out 100 times, and the average
test set misclassification rates of different classifiers are reported in Table 2 along with their
corresponding standard errors. Overall performances of CH and MCH classifiers (especially,
that of the former one) were much inferior compared to all other classifiers considered here.
Therefore, we do not report them in this section.

Though the 1-NN classifier had the lowest misclassification rate in the Coffee dataset
and the second lowest misclassification rate in the Chowdary dataset, in many cases, its
performance was far from the best one (see Table 2). For instance, in Nutt and Synthetic
Control Chart datasets, its misclassification rates were much higher compared to all other
classifiers considered here. Furthermore, it had the highest misclassification rate in the Her-
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Figure 12: Boxplots showing the robustness of different classifiers in benchmark
datasets.

ring data set. TRAD also had relatively higher misclassification rates in many examples
(e.g., Synthetic Control Chart, Trace, Toe Segmentation, and Gordon datasets). Only in
the case of Colon Cancer data, it outperformed others. Our proposed classifiers had good
performance in most of these examples. While the classifiers based on multiple neighbors
(rMDist, rMDist1 and rMDistC) outperformed those based on single neighbors (MDist and
MDist1) in Chowdary, Toe Segmentation, and Colon Cancer data sets, in all other cases,
they had comparable performance. In Trace and Herring data sets, these classifiers per-
formed better than TRAD, TRIPD1 and TRIPD2 classifiers. Table 2 clearly shows that
the performances of our proposed classifiers, particularly for classifiers based on multiple
neighbors, were comparable to nonlinear SVM and random forest.

To compare the overall performances of different classifiers concisely and compre-
hensively, we used the notion of robustness introduced in Friedman (1994). If there are T
classifiers who have misclassification rates e1, e2, . . . , eT in a particular data set, the robust-
ness of the t-th classifier is computed as R(t) = et/e0, where e0 = min1≤t≤T et. So, in an
example, the best classifier has R(t) = 1, while higher values of R(t) indicate the lack of
robustness of the t-th classifier. For each of these benchmark data sets, we computed these
ratios for all classifiers, and they are graphically represented using box plots in Figure 12.
This figure clearly shows that the overall performances of all other classifiers were somewhat
better than the usual nearest neighbor classifier. It also shows that among our proposed clas-
sifiers, those based on multiple neighbors performed better than the corresponding classifiers
based on a single nearest neighbor. While the rMDist classifier exhibited better robust-
ness properties than TRIPD2, the rMDist1 classifier turned out to be more robust than the
TRIPD1 classifier. The rMDistC classifier, which considers both ℓ1 and ℓ2 distances of the
nearest neighbors, also had an excellent overall performance. If not better, the performances
of our proposed classifiers were comparable to the popular classifiers like nonlinear SVM and
random forest.

5. Concluding remarks

In this article, we have proposed some possible modifications to the nearest neighbor
classifier for the classification of high-dimensional data. We have seen that if the location
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difference among the competing classes gets masked by their scale difference, the usual
nearest neighbor classifier performs poorly in high dimensions. The adjustment proposed
by Chan and Hall (2009b) takes care of this problem, but the resulting classifier fails when
the competing classes differ outside their first moments. The MCH classifier overcomes
this limitation, and it can discriminate between two high-dimensional distributions differing
either in their locations or in their scales. However, this method may not work well in many
situations, especially when the class distributions are mixtures of several widely varying sub-
classes. The proposed classifiers based on minimum distances are helpful in such situations.
The MDist1 classifier can even discriminate among competing classes differing outside the
first two moments. Instead of considering only one neighbor from each class, sometimes it
is helpful to consider the distances of the first r neighbors and perform nearest neighbor
classification in that feature space. Analyzing several simulated and benchmark datasets,
we have amply demonstrated that if not better, our proposed classifiers yield competitive
performance in high dimensions.

In this article, we have used nearest neighbor classification on the feature space of ℓ1 or
ℓ2 distances. Though we have seen some theoretical advantages of using the ℓ1 distance, our
analysis of benchmark datasets clearly shows that in practice, there is no clear winner. So,
a user may wonder which of the two feature spaces to use in a given problem. One may also
like to use ℓp-distances for other choices of p or features based on other generalized distance
functions of the form φh,ψ(x,y) = h

{
1
d

∑d
i=1 ψ

(
|x(i) − y(i)|2

)}
where h : R+ → R+ and ψ :

R+ → R+ are continuous, strictly increasing functions with h(0) = ψ(0) = 0 as introduced
in Sarkar and Ghosh (2018). For suitable choices of h and ψ (e.g., when h(t) = t and ψ(t)
has non-constant completely monotone derivatives), it ensures the positivity of the energy
distance (as discussed in the paragraph before Theorem 3) in any finite dimension. Moreover,
if ψ is bounded, it also makes the resulting classifier robust against outliers. However, the
choice of the optimal features is a challenging problem, and it would be helpful if a data-
driven method can be developed for this purpose. Throughout this article, for our proposed
methods, we have always used the 1-NN classifier in the feature space. This is mainly for a fair
comparison with other competing nearest neighbor methods (e.g., CH, TRAD, TRIPD1, and
TRIPD2), where 1-NN classification is considered. However, in practice, one may use the k-
NN classifier for other values of k as well. For constructing the rMDistC classifier, though we
have considered the same number of ℓ1 and ℓ2 distances as features, it is possible to include r1
many ℓ1 distances and r2 many ℓ2 distance in the set of features. We avoid choosing different
values of r1 and r2 to reduce the computing cost at the cross-validation step. In practice,
distances from all of the first r neighbors may not always be important for classification.
In such cases, a suitable feature selection criterion would be helpful. Instead of feature
selection, one can also think about constructing an ensemble classifier (see, e.g. Dietterich,
2000; Zhang and Zhang, 2009; Kiziloz, 2021) like random forest, where we construct different
classifiers based on different sets of features and judiciously aggregate them. These problems
can be investigated in a separate work in future.
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APPENDIX

Lemma 1: If J competing classes satisfy (A1)-(A3), for two independent random vectors
X ∼ Fj and Y ∼ Fi (1 ≤ j, i ≤ J), ∥X − Y∥2/d

P→ σ2
j + σ2

i + ν2
ji, where ν2

ji = 0 for j = i.

Proof: Note that using Chebyshev’s inequality, for any ϵ > 0, we get

P
(∣∣∣∣1d∥X − Y∥2 − E

(1
d

∥X − Y∥2
)∣∣∣∣ ≥ ϵ

)
≤ 1
ϵ2V ar

(1
d

∥X − Y∥2
)
.

Now, V ar
(

1
d
∥X − Y∥2

)
= 1

d2

 d∑
s=1

V ar((Xs − Ys)2) +
d∑
s=1

d∑
t=1,t̸=s

Cov
(

(Xs − Ys)2, (Xt − Yt)2
)

Since the measurement variables from all classes have uniformly bounded fourth moments

(see (A1)), we have
d∑
s=1

V ar((Xs−Ys)2) = O(d). Also, one can show that under assumptions

(A1) and (A2),
d∑
s=1

d∑
t=1,t̸=s

Cov
(

(Xs − Ys)2, (Xt − Yt)2
)

= o(d2). So, V ar
(

1
d
∥X − Y∥2

)
→ 0

and hence
∣∣∣∣1d∥X − Y∥2 − E

(
1
d
∥X − Y∥2

)∣∣∣∣ P→ 0 as d → ∞.

Now, E
(

1
d
∥X − Y∥2

)
= E

(
1
d

∥∥∥(X − E(X)
)

−
(
Y − E(Y)

)
+
(
E(X) − E(Y)

)∥∥∥2
)

=
1
d
trace(Σj)+ 1

d
trace(Σi)+ 1

d
∥µj−µi∥2 → σ2

j+σ2
i +ν2

ji as d → ∞. So, 1
d
∥X−Y∥2 P→ σ2

j+σ2
i +ν2

ji.
Note that if X and Y follow the same distribution (i.e. j = i), we have ν2

ji = 0. 2

Proof of Theorem 1: (a) From Lemma 1, it is clear that for any test case Z from the j-th
class (j = 1, 2, . . . , J), 1

d
∥Z − Xiℓ∥2 P→ σ2

j + σ2
i + ν2

ji for i = 1, 2, . . . , J and ℓ = 1, 2, . . . , ni.
Therefore, for k < min{n1, n2, . . . , nJ}, the k-nearest neighbor classifier correctly classifies
Z if 2σ2

j < σ2
j + σ2

i + ν2
ji for all i ̸= j or equivalently, ν2

ji > σ2
j − σ2

i for all i ̸= j. Similarly, for
correct classification for a test case from the i-th class, we need ν2

ij > σ2
i − σ2

j for all j ̸= i.
Combining these, we get ν2

ji > |σ2
j − σ2

i | for all j ̸= i.

If ν2
ji < |σ2

j − σ2
i | for any pair (j, i), we have either ν2

ji < σ2
j − σ2

i or ν2
ji < σ2

i −
σ2
j . Without loss of generality, let us assume the first one. In that case, for any class-j

observation, the distances of its neighbors from the i-th class turn out to be smaller than
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those from j-th class with probability tending to 1 as d increases. So, all observations from
the j-th class are misclassified with probability tending to 1.

(b) From Lemma 1, it is clear that for any test case Z from the j-th class, 1
d
ρj(Z,Xjℓ) P→ σ2

j

for ℓ = 1, 2, . . . , nj whereas for any i ̸= j, 1
d
ρi(Z,Xiℓ) P→ σ2

j + ν2
ji for ℓ = 1, 2, . . . , ni. So, Z

is correctly classified if ν2
ji > 0 for all i ̸= j. Repeating this argument for j = 1, 2, . . . , J , we

get the result.

(c) Lemma 1 shows that for any test case Z from the j-th class, 1√
d
ρ∗
j(Z,Xjℓ) P→ σj/

√
2 for ℓ =

1, 2, . . . , nj whereas for any i ̸= j, 1√
d
ρ∗
i (Z,Xiℓ) P→

√
σ2
j + σ2

i + ν2
ji−σi/

√
2 for ℓ = 1, 2, . . . , ni.

So, Z is correctly classified if
√
σ2
j + σ2

i + ν2
ji > (σj + σi)/

√
2 or σ2

j + σ2
i + ν2

ji > (σj + σi)2/2
for all i ̸= j. Note that σ2

j + σ2
i + ν2

ji − (σj + σi)2/2 = ν2
ji + (σj − σi)2/2, which is positive

under the given condition. Now, the proof follows by the repetition of the same argument
for j = 1, 2, . . . , J . 2

Proof of Theorem 2: For the sake of simplicity, let us prove it for J = 2. For J > 2, it can
be proved similarly. From Lemma 1, for any training sample observation X1i (i = 1, 2, . . . , n1)
from the first class, as d grows to infinity, we have(

1√
d

min
1≤ℓ(̸=i)≤n1

∥X1i − X1ℓ∥,
1√
d

min
1≤ℓ≤n2

∥X1i − X2ℓ∥
)

P→ (σ1
√

2,
√
σ2

1 + σ2
2 + ν2

12) = a1, say.

Similarly, for a training sample observation X2i (i = 1, 2, . . . , n2) from the second class, as d
tends to infinity, we have(

1√
d

min
1≤ℓ≤n1

∥X2i − X1ℓ∥,
1√
d

min
1≤ℓ(̸=i)≤n2

∥X2i − X2ℓ∥
)

P→ (
√
σ2

1 + σ2
2 + ν2

12, σ2
√

2) = a2, say.

So, if a1 ̸= a2, the feature vectors obtained from two sets of training sample observations
converge to two distinct points a1 and a2, respectively. Now, for any test case Z, using Lemma
1, it can be shown that as d grows to infinity, ( 1√

d
min

1≤i≤n1
∥Z − X1i∥, 1√

d
min

1≤i≤n2
∥Z − X2i∥)

converges in probability to a1 and a2 for Z ∼ F1 and Z ∼ F2, respectively.

Therefore, for any Z ∼ F1 (respectively, F2), in the d1 − d2 space, while the scaled
versions of its distances from the feature vectors from Class-1 (respectively, Class-2) converge
to 0, those from the feature vectors from Class-2 (respectively, Class-1) converge to ∥a1 −a2∥
as d tends to infinity. So, it is correctly classified with probability tending to 1. Therefore,
for perfect classification by the MDist classifier, we need a1 and a2 to be distinct,i.e., 2σ2

1,
2σ2

2 and σ2
1 + σ2

2 + ν2
12 cannot be all equal. Note that these three quantities are equal if and

only if ν2
12 = 0 and σ2

1 = σ2
2, which cannot happen under the assumptions of Theorem 2. 2

Lemma 2: Suppose that X,X′ ∼ F1 and Y,Y′ ∼ F2 are four independent d-dimensional
random vectors with finite first moments. Then, we have

2E∥X − Y∥1 − E∥X − X′∥1 − E∥Y − Y′∥1 ≥ 0

where the equality holds if and only if F1 and F2 have identical one-dimensional marginals.
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Proof: First note that

2E∥X1 −Y1∥1 −E∥X1 −X2∥1 −E∥Y1 −Y2∥1 =
d∑
q=1

[
2E|Xq−Yq|−E|Xq−X ′

q|−E|Yq−Y ′
q |
]
.

Now, from Baringhaus and Franz (2004), we get

2E|Xq − Yq| − E|Xq −X ′
q| − E|Yq − Y ′

q | = 2
∞�

−∞

(
F

(q)
1 (t) − F

(q)
2 (t)

)2
dt,

where F (q)
1 and F

(q)
2 are the distribution functions of Xq and Yq, respectively. Clearly, it is

non-negative, and it takes the value 0 if and only if F (q)
1 = F

(q)
2 ,i.e., Xq and Yq have the same

distribution. This shows that 2E∥X1 − Y1∥1 −E∥X1 − X2∥1 −E∥Y1 − Y2∥1 ≥ 0, where the
equality holds if and only if Xq and Yq have the same distribution for all q = 1, , 2 . . . , d. 2

Proof of Theorem 3: As in the proof of Theorem 2, here also, for the sake of simplicity,
we prove the result for J = 2. For J > 2, it can be proved similarly.

Consider two random vectors X ∼ Fj and Y ∼ Fi (1 ≤ j, i ≤ 2). Under (A1◦) and
(A2◦), we have

∣∣∣1
d
∥X − Y∥1 − E

(
1
d
∥X − Y∥1

)∣∣∣ P→ 0 as d → ∞, and under (A3◦), we have
limd→∞ E

(
1
d
∥X − Y∥1

)
= τji. Lemma 2 shows that 2τ12 − τ11 − τ22 ≥ 0 and under the

assumption E12 > 0, the equality is ruled out. So, here we have 2τ12 − τ11 − τ22 > 0, which
implies that τ11, τ12 and τ22 cannot be equal.

Now note that for any training sample observation X1i (i = 1, 2, . . . , n1) from the
first class, as d grows to infinity,(

1
d

min
1≤ℓ( ̸=i)≤n1

∥X1i − X1ℓ∥1,
1
d

min
1≤ℓ≤n2

∥X1i − X2ℓ∥1

)
P→ (τ11, τ12) = a◦

1, say.

Similarly, for a training sample observation X2i (i = 1, 2, . . . , n2) from the second class, as d
tends to infinity,(

1
d

min
1≤ℓ≤n1

∥X2i − X1ℓ∥1,
1
d

min
1≤ℓ(̸=i)≤n2

∥X2i − X2ℓ∥1

)
P→ (τ12, τ22),= a◦

2, say..

Since τ11, τ12 and τ22 are not equal, we have a◦
1 ̸= a◦

2. So, the feature vectors obtained
from two sets of training sample observations converge to two distinct points a◦

1 and a◦
2,

respectively. For a test case Z, as d grows to infinity, (1
d

min
1≤i≤n1

∥Z−X1i∥1,
1
d

min
1≤i≤n2

∥Z−X2i∥1)
converges in probability to a◦

1 and a◦
2 for Z ∼ F1 and Z ∼ F2, respectively.

Therefore, for any Z ∼ F1 (respectively, F2), in the d∗
1 − d∗

2 space, while the scaled
versions of its distances from the feature vectors from Class-1 (respectively, Class-2) converge
to 0, those from the feature vectors from Class-2 (respectively, Class-1) converge to ∥a◦

1 −a◦
2∥.

So, it is correctly classified with probability tending to 1. 2
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Abstract
The field of verifiable secret sharing schemes was introduced by Verheul et al. and

has evolved over time, including well-known examples by Feldman and Pedersen. Stinson
made advancements in combinatorial design-based secret sharing schemes in 2004. Desmedt
et al. introduced the concept of frameproofness in 2021, while recent research by Sehrawat
et al. in 2021 focuses on LWE-based access structure hiding verifiable secret sharing with
malicious-majority settings. Furthermore, Roy et al. combined the concepts of reparable
threshold schemes by Stinson et al. and frameproofness by Desmedt et al. in 2023, to develop
extendable tensor designs built from balanced incomplete block designs, and also presented
a frameproof version of their design. This paper explores ramp-type verifiable secret sharing
schemes, and the application of hidden access structures in such cryptographic protocols.
Inspired by Sehrawat et al.’s access structure hiding scheme, we develop an ϵ-almost access
structure hiding scheme, which is verifiable as well as frameproof. We detail how the concept
ϵ-almost hiding is important for incorporating ramp schemes, thus making a fundamental
generalisation of this concept.

Key words: Combinatorial secret sharing; Tensor designs; Ramp schemes; Access structure
hiding; Verifiability; Frameproofness.

1. Introduction

A verifiable secret sharing scheme Verheul and van Tilborg (1997); Peng (2012);
Hofmeister et al. (2000); Pedersen (1991); Dehkordi et al. (2024) is a cryptographic protocol
that allows a dealer to distribute shares of a secret to a group of parties in such a way that
(i) the secret remains confidential and cannot be determined by any unauthorized collection
of parties, (ii) the secret can be reconstructed correctly by the authorized collection of
parties when they combine their shares, (iii) there is a mechanism for parties to verify the
correctness of the shares they receive and for the reconstruction process, and (iv) the scheme
can withstand malicious behavior from both the dealer and the parties, thus ensuring the
security and integrity of the secret sharing process.
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Repairable Threshold Schemes (RTSs) Stinson and Wei (2018); Laing and Stinson
(2018) are cryptographic schemes that allow for the reconstruction of lost or corrupted shares
in a threshold scheme without the need for the dealer who initially set up the scheme to be
involved in the repair process. In RTSs, a subset of authorized parties can collaboratively
reconstruct the lost share, ensuring the integrity and availability of the shared secret. Roy
and Roy (2023) explores the concept of repairable ramp schemes for secret sharing and var-
ious applications, including cloud storage, sensor-based IoTs, and electronic identification
cards. It proposes a protocol for extending schemes that allow for the retrieval of shares
through collaborative efforts in case of loss or corruption, thereby enhancing data security
and privacy. Roy and Roy (2023) also introduces the concept of tensor products of balanced
incomplete block designs (BIBDs), which help securely combine individual secrets from var-
ious systems, enabling multi-level or multi-system secret sharing schemes in a robust and
efficient manner. Desmedt et al. (2021) introduced the concept of frameproofness of secret
sharing schemes, which ensures the security and integrity of shared secrets and analyses the
resistance of a scheme to attempts of falsely implicating (framing) a (set of) player(s) in the
unauthorized disclosure of secret information. Roy and Roy (2023) establishes a theoretical
framework for frameproofness within its extension protocol, and ensures that its extended
scheme upholds the principles of frameproofness by leveraging concepts from combinatorial
design theory.

Sehrawat et al. (2021) provides a detailed discussion on how secret sharing can be
achieved with hidden access structures, allowing for a wide range of access policies to be
enforced in the secret sharing process. The scheme is designed to support verifiability even
when a majority of the parties are malicious, and its verification procedure does not incur any
communication overhead, making it “free” in terms of computational resources. The scheme
provides a maximum share size formula that allows for efficient sharing of secrets while main-
taining security guarantees. The share size is optimized to balance security and efficiency
considerations. It also includes mechanisms to detect and identify malicious behavior during
the secret sharing process.

1.1. Our contribution

This motivation clearly begs the question of verifiability of secret sharing schemes con-
structed as the extended tensor designs from Roy and Roy (2023), and how frameproofness
applies to the resulting composition. Our approach results in a fundamental generalisation
of the novel access structure hiding technique introduced by Sehrawat et al. (2021) to in-
corporate ramp schemes, thus allowing for a wider range of secret sharing schemes to use
this technique. We provide detailed explanations for how our generalised ϵ-almost access
structure hiding ramp-type tensor design satisfies all properties of an almost-verifiable se-
cret sharing scheme, as well as almost fully hides its access structure, and has a frameproof
version that does not lose any original information.

1.2. Organisation of the paper

Beginning with the introduction of various important types of secret sharing schemes
such as VSS schemes, RTSs, BIBDs and access structure hiding schemes in Section 1, we
define various notations, definitions and other preliminaries in Section 2. We introduce our
modified concept of ϵ-almost access structure hiding ramp-type tensor designs in section 3,
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where we provide a background of the existing theory of extending tensor designs by Roy
et al. Roy and Roy (2023), as well as demonstrate various secret sharing properties (such
as correctness, ϵ-correctness and computational secrecy for their tensor design schemes. We
also recall the concept of frameproof tensor designs through an example and show that it is
also applicable to our scheme, and detail an algorithm for access structure token generation
according to our requirements. In section 4, we state the mains results of this paper in the
form of Theorems 3, 4, 5 and 6. Sections 5 and 6 present detailed proofs of these theorems.
In Section 7, we enumerate a few applications of our results in the real world, and then
conclude in Section 8.

2. Preliminaries

Given a collection P = {P1, . . . , Pℓ} of (say) players in a secret sharing scheme, we
denote the power set of P, i.e. the set of all subsets of P, by 2P. The closure of a subset
A ∈ 2P is the set cl(A) := {C : C∗ ⊆ C ⊆ P for some C∗ ∈ A}. Given a security parameter
ω, a function δ(ω) is called negligible if for all c > 0, there exists an ω0 such that (ω) < 1/ωc

for all ω > ω0. Given a probability distribution X, the notation Pr[t ← X] denotes a
sampling of t by the distribution X.

Definition 1: Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be collections of probability distributions
(or ensembles) Xλ and Yλ over {0, 1}κ(λ) for some polynomial κ(λ). These two ensembles are
polynomially or computationally indistinguishable if for every (probabilistic) polynomial-time
algorithm D, for all λ ∈ N, and a negligible function δ,

|Pr[t← Xλ : D(t) = 1]− Pr[t← Yλ : D(t) = 1]| ≤ δ(λ).

Assume that there exist positive integers θ, Θ and ℓ, where θ < Θ ≤ ℓ. A (θ, Θ, ℓ)-
ramp scheme Paterson and Stinson (2013) involves a dealer selecting a secret and then
distributing a share to each of ℓ players in a manner that fulfills the following criteria:

Reconstruction: Any subset of Θ players has the ability to collectively determine the secret
using the shares they possess.

Secrecy: No subset of θ players is able to deduce any details regarding the secret.

The terms θ and Θ are referred to as the lower and upper thresholds of the scheme, respec-
tively. For the sake of convenience, we shall refer to collections of players C ∈ 2P such that
θ < |C| < Θ by the term ramp collection. In the event where Θ = θ + 1, the scheme is
recognized as a (Θ, ℓ)-threshold scheme. In the context of such a Θ-threshold scheme, the
problem of share repairability pertains to the identification of a secure protocol for restor-
ing the lost share of a specific player (Pi ∈ P). This process involves a certain subset of
d players (excluding Pi ∈ P) engaging in message exchange amongst themselves and with
Pi ∈ P, with the objective of successfully repairing its share. The smallest integer d required
to accomplish this task is known as the repairing degree of the scheme. If an honest-but-
curious coalition of no more than Θ − 1 players of a (Θ, ℓ)-threshold scheme combines all
the information it holds (this includes their shares, as well as all messages that they send or
receive during the protocol) and still obtains no information about the secret, then we say
that it is a (Θ, ℓ, d)-repairable threshold scheme, or a (Θ, ℓ, d)-RTS.
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Definition 2: Suppose 2 ≤ k < v. A (b, v, k, r, λ)-balanced incomplete block design or a
(b, v, k, r, λ)-BIBD is a design (X,B) such that:

1. |X| = v;

2. each block B ∈ B contains exactly k points;

3. every pair of distinct points from X is contained in exactly λ blocks.

Observe that if each point occurs in exactly r blocks, then the parameters b, v, k, r, λ of a
BIBD satisfy the following relations Stinson (2004):

(i) bk = vr;

(ii) λ(v − 1) = r(k − 1);

(iii) b ≥ v (and hence r > k).

We sometimes refer to a (b, v, k, r, λ)-BIBD as simply a (v, k, λ)-BIBD.

Definition 3: Let P = {P1, . . . , Pℓ} be a set of parties or players. A collection Γ ⊆ 2P is
monotone if A ∈ Γ and A ⊆ B imply that B ∈ Γ. An access structure Γ ⊆ 2P is a monotone
collection of non-empty subsets of P. Sets in γ are called authorized, and sets not in Γ are
called unauthorized.

Definition 4: For an access structure Γ, Γ0 = {A ∈ Γ : B ̸⊂ A for all B ∈ Γ \A} is the
family of minimal authorized subsets in Γ.

Definition 5: A computational secret sharing scheme with respect to an access structure
Γ, security parameter ω, a set of ℓ polynomial-time parties or players P = {P1, . . . , Pℓ}, and
a set of secrets K, consists of a pair of polynomial-time algorithms (Share, Recon), where:

• Share is a randomized algorithm that gets a secret k ∈ K and access structure Γ as
inputs, and outputs ℓ shares, {s(k)

1 , . . . , s
(k)
ℓ }, of k, and

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,
denoted by

{
s

(k)
i

}
i∈A

, and outputs a string in K,

such that the following two requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A ∈ Γ, it
holds that: Pr

[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= 1,

2. (Computational Secrecy) for every unauthorized collection B ̸∈ Γ and all distinct se-
crets k1, k2 ∈ K, it holds that the distributions

{
s

(k1)
i

}
i∈A

and
{
s

(k2)
i

}
i∈A
∈ B are

computationally indistinguishable (with respect to ω).
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Traditionally, secret sharing relies on honest participants. However, a verifiable secret
sharing (VSS) scheme is also required to withstand active attacks, specifically:

• a dealer sending inconsistent or incorrect shares to some of the participants during the
distribution protocol, and

• participants submitting incorrect shares during the reconstruction protocol.

VSS schemes were first introduced by Verheul and van Tilborg (1997). Clearly, Shamir’s
threshold scheme is not a VSS scheme, since it does not exclude either of these attacks.
Well-known examples of VSS schemes are Feldman’s VSS scheme Hofmeister et al. (2000)
and Pedersen’s VSS scheme Pedersen (1991).

The access structure hiding verifiable (computational) secret sharing scheme of Sehrawat
et al. (2021) defined below guarantees a relaxed definition of verifiability of shares of autho-
rised collections of players even when a majority of the parties are malicious. Their scheme
supports all monotone access structures, and its security — in particular, verifiability —
relies on the hardness of the LWE problem.

Definition 6: An access structure hiding verifiable (computational) secret sharing scheme
with respect to an access structure Γ, security parameter ω, a set of ℓ polynomial-time parties
or players P = {P1, . . . , Pℓ}, and a set of secrets K, consists of two sets of polynomial-time
algorithms, (HsGen, HsVer) and (VerShr, Recon, Ver), which are defined as follows:

• VerShr is a randomized algorithm that gets a secret k ∈ K and access structure Γ as
inputs, and outputs ℓ shares, {s(k)

1 , . . . , s
(k)
ℓ }, of k,

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,
denoted by

{
s

(k)
i

}
i∈A

, and outputs a string in K, and

• Ver is a deterministic Boolean algorithm that gets
{
s

(k)
i

}
i∈A

and a secret k′ in K as
inputs, and outputs b ∈ {0, 1},

such that the following three requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A ∈ Γ, it
holds that: Pr

[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= 1.

2. (Computational Secrecy) for every unauthorized collection B ̸∈ Γ and all distinct se-
crets k1, k2 ∈ K, it holds that the distributions

{
s

(k1)
i

}
i∈A

and
{
s

(k2)
i

}
i∈A
∈ B are

computationally indistinguishable (with respect to ω).

3. (Computational Verifiability) Every authorized collection A ∈ Γ can use Ver to verify
whether its set of shares

{
s

(k)
i

}
i∈A

is consistent with a given secret k ∈ K. Formally,
for a negligible function δ, it holds that:
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- If all shares s
(k)
i ∈

{
s

(k)
i

}
i∈A

are consistent with the secret k, then

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
= 1− δ(ω)

- If any share s
(k)
i ∈

{
s

(k)
i

}
i∈A

is inconsistent with the secret k, then

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 0

]
= 1− δ(ω).

• HsGen is a randomized algorithm that gets P and Γ as inputs, and outputs ℓ access
structure tokens

{
0

(Γ)
1 , . . . ,0

(Γ)
ℓ

}
, and

• HsVer is a deterministic algorithm that gets as input the access structure tokens of a
subset A ⊆ P

(
denoted

{
0

(Γ)
i

}
i∈A

)
, and outputs b ∈ {0, 1},

such that the following three requirements are satisfied:

1. (Perfect completeness) Every authorized collection of parties A ∈ Γ can identify itself
as a member of the access structure Γ, i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈A

)
= 1

]
= 1.

2. (Perfect soundness) Every unauthorized collection of parties B ̸∈ Γ can identify itself
to be outside of the access structure Γ, i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈B

)
= 0

]
= 1.

3. (Statistical hiding) For all access structures Γ, Γ′ ⊆ 2P where Γ ̸= Γ′, and for all
unauthorised collections B ̸∈ Γ, Γ′,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ = 2−ω.

3. ϵ-Almost access structure hiding ramp-type tensor designs

We incorporate the novel access structure hiding technique of Sehrawat et al. (2021)
in the tensor design obtained by extending BIBDs as introduced in the work of Roy and
Roy (2023). Since the scheme of Roy and Roy (2023) is a ramp scheme for both variants
(non-frameproof and frameproof, defined below) of the tensor design, we introduce the new
concept of an ϵ-almost access structure hiding ramp scheme.

Definition 7: Consider a (θ, Θ, ℓ)-ramp scheme, so that its access structure Γ is charac-
terised by the ramp bounds (θ, Θ). For ϵ = (ϵCorr, ϵ1, ϵ2, ϵ3), an ϵ-almost access structure
hiding (θ, Θ, ℓ)-ramp scheme with respect to a security parameter ω, a set of ℓ polynomial-
time parties or players P = {P1, . . . , Pℓ}, and a set of secrets K, consists of two sets of
polynomial-time algorithms, (HsGen, HsVer) and (VerShr, Recon, Ver), which are defined as
follows:
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• VerShr is a randomized algorithm that gets a secret k ∈ K and the bounds θ, Θ as
inputs, and outputs ℓ shares, {s(k)

1 , . . . , s
(k)
ℓ }, of k,

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,
denoted by

{
s

(k)
i

}
i∈A

, and outputs a string in K, and

• Ver is a deterministic Boolean algorithm that gets
{
s

(k)
i

}
i∈A

and a secret k′ ∈ K as
inputs, and outputs b ∈ {0, 1},

such that the following four requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A such that
|A| ≥ Θ, it holds that: Pr

[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= 1.

2. (ϵcorr-Correctness) for all secrets k ∈ K and every ramp collection C such that θ <

|C| < Θ, there exists ϵcorr > 0 such that: Pr
[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= ϵcorr.

3. (Computational Secrecy) for every unauthorized collection B with |B| ≤ θ and all
distinct secrets k1, k2 ∈ K, it holds that the distributions

{
s

(k1)
i

}
i∈A

and
{
s

(k2)
i

}
i∈A
∈ B

are computationally indistinguishable (with respect to ω).

4. (Computational Verifiability) Every authorized collection A such that |A| ≥ Θ can use
Ver to verify whether its set of shares

{
s

(k)
i

}
i∈A

is consistent with a given secret k ∈ K.
Formally, for a negligible function δ, it holds that:

- If all shares s
(k)
i ∈

{
s

(k)
i

}
i∈A

are consistent with the secret k, then

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
= 1− δ(ω)

- If any share s
(k)
i ∈

{
s

(k)
i

}
i∈A

is inconsistent with the secret k, then

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 0

]
= 1− δ(ω).

• HsGen is a randomized algorithm that gets P, θ and Θ as inputs, and outputs ℓ access
structure tokens

{
0

(Γ)
1 , . . . ,0

(Γ)
ℓ

}
, and

• HsVer is a deterministic algorithm that gets as input the access structure tokens of a
subset A ⊆ P

(
denoted

{
0

(Γ)
i

}
i∈A

)
, and outputs b ∈ {0, 1},

such that the following six requirements are satisfied:
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1. (Perfect completeness) Every authorized collection of parties A such that |A| ≥ Θ can
identify itself as a member of the access structure Γ, i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈A

)
= 1

]
=

1.

2. (ϵ1-Completeness) Every ramp collection of parties C (where θ < |C| < Θ) can almost
always identify itself as a member of the access structure Γ),
i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈A

)
= 1

]
= 1− ϵ1.

3. (Perfect soundness) Every unauthorized collection of parties B with |B| ≤ θ can iden-
tify itself to be outside of the access structure Γ, i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈B

)
= 0

]
= 1.

4. (ϵ2-Soundness) Every ramp collection of parties C (where θ < |C| < Θ) can almost
always identify itself to be outside of the access structure Γ, i.e.
Pr
[
HsVer

({
0

(Γ)
i

}
i∈B

)
= 0

]
= 1− ϵ2.

5. (Statistical hiding) For all ramp access structures Γ ̸= Γ′ and for all unauthorised
collections B with |B| ≤ θ, θ′,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ = 2−ω.

6. (ϵ3-Statistical Hiding) For all ramp access structures Γ, Γ′ ⊆ 2P where Γ ̸= Γ′, and for
all ramp collections C such that θ < |C| < Θ,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈C

,
{
s

(k)
i

}
i∈C

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈C

,
{
s

(k)
i

}
i∈C

]∣∣∣∣ ≤ ϵ3(ω).

3.1. Tensor design

Let A and B be the share matrices generated by ramp schemes with respectively b1
and b2 blocks having shares of sizes k1 and k2. Suppose A and B also denote the b1 × k1
and b2 × k2 matrices corresponding to the two schemes. The Krönecker product of A⊗B is
therefore

M =


a11B a12B . . . a1k1B
a21B a22B . . . a2k1B...
ab11B ab12B . . . ab1k1B

 . (1)

If the share matrix A is defined over the field Fp1 and B over the field Fp2 for some primes
p1 and p2, then we define the scalar multiplication as the simple integer multiplication:

Fp1 × Fp2 → Z
such that (x1, x2) 7→ x1 · x2.

The reason behind taking such a multiplication is that the product elements are not distin-
guishable from integers. Therefore, M is a matrix over the integer ring Z.
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Theorem 1 (Reconstruction from Tensor Designs, Roy and Roy (2023)): Consider a
(v1, k1, λ1, b1, r1)-BIBD A and a (v2, k2, λ2, b2, r2)-BIBD B.

1. The matrix A ⊗ Bd produces a tensor design (over the integer ring Z) for a (public)
integer d such that there are no multiplicative collisions of the type xi(yj + d) =
xk(yl + d) for (i, j) ̸= (k, l).

2. • If gcd(x1, x2, . . . , xv1) = 1;
• if gcd(y1, y2, . . . , yv2) = 1;

then A and B can be reproduced from a collection of players in the new scheme A⊗Bd,
hence enabling share repair and secret reconstruction.

For the purpose of real-world implementation, we consider a prime power q, which
is computed from p1, p2 and d such that it is sufficiently greater than all the elements in
A⊗ Bd.

3.2. Secret sharing properties of A⊗ Bd

Since A⊗Bd is a (θ, Θ, ℓ)-ramp scheme, it clearly satisfies the following properties of
Definition 7:

Perfect Correctness: From Lemmas 4–9 of Roy and Roy (2023), it is clear thatA⊗Bd is a
(θ, Θ, ℓ)-ramp scheme, for θ = (τ1−1)(τ2−1)+1 and Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1
+1}. Hence, any A with |A| ≥ Θ can reconstruct the secret with probability 1,
i.e. Pr

[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= 1.

ϵcorr-Correctness: Suppose θ < |C| < Θ and C gets partial information about A ⊗
Bd, i.e. it can reconstruct exactly one of A and Bd, say A (respectively Bd). Then
it must guess the secret of the other factor, i.e. Bd (respectively A) uniformly at
random at best, ie. with probability 1

p2
(respectively 1

p1
). Therefore, for all secrets

k ∈ K and such a ramp collection C, we denote ϵcorr := max
{

1
p1

, 1
p2

}
. Therefore,

Pr
[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]
≤ ϵcorr.

Computational Secrecy: Consider an unauthorised collection B, with |B| ≤ θ or θ <
|B| < Θ. Thus, B gets no information about the secret, which means it must guess (at
best) uniformly at random, the secrets of both the factors A and Bd of A⊗Bd. Hence,
given the access structure Γ, it holds for every unauthorised collection B ̸∈ Γ and every
pair of different secrets k1 ̸= k2 in K that the distributions

{
s

(k1)
i

}
i∈B

and
{
s

(k2)
i

}
i∈B

are computationally indistinguishable w.r.t. the parameter δ := 1
p1p2

, according to
Definition 1.

3.3. Frameproofness

The concept of framing a player (or a collection of players), and subsequently the
property of frameproofness of a secret sharing scheme was introduced by Desmedt et al. in
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Desmedt et al. (2021). Sehrawat et al. (2021) proposes an access structure hiding verifiable
secret sharing scheme, where it establishes indistinguishability of authorisation of any col-
lection of players by use of access structure tokens. For the collection P of all players in the
scheme, they make the following claim regarding its frameproofness:

“...the share of each party Pi is sealed as a PRIM-LWE instance such that the lattice
basis, Ai, used to generate it is known only to Pi. Since Ai is required to generate Pi’s share,
it is infeasible for any coalition of polynomial-time parties A ⊂ P to compute the share of
Pi ∈ P \A without solving the LWE problem.”

Furthermore, Roy and Roy (2023) shows that for the tensor design in Equation (1),
only two players — one from the r1 − 1 players possessing a11b11 and one from the b2 − 1
players possessing a12

a11
,
a13

a11
, . . . — can reconstruct the entire share of player P1, and hence,

frame this player. They address this problem by reducing the repetitive nature of shares of
the participants — by decreasing the size of each share, while retaining all the information
that a player had in the previous construction. In fact, the secret reconstruction for the
modified scheme is then shown to require at τ1 + τ2 players. Additionally, Theorem 2 below
ensures that F (A,B) is simply a Θ-threshold scheme for Θ = τ1 +τ2 (and not a ramp scheme
like (AoB).

Example

Consider an example, where matrix A represents a 2-(4, 3, 2)-BIBD and B a 2-(5, 4, 3)-
BIBD over the points {1, 2, 3, 4} and {1, 2, 3, 4, 5}, respectively (note that r1 = 3, r2 = 4),
and d = 21. The Krönecker product tensor design obtained from these two matrices is
represented by the matrix A⊗ Bd as defined in Roy and Roy (2023):



22 23 24 25 44 46 48 50 66 69 72 75
23 24 25 26 46 48 50 52 69 72 75 78
24 25 26 22 48 50 52 44 72 75 78 66
25 26 22 23 50 52 44 46 75 78 66 69
26 22 23 24 52 44 46 48 78 66 69 72
44 46 48 50 66 69 72 75 88 92 96 100
46 48 50 52 69 72 75 78 92 96 100 104
48 50 52 44 72 75 78 66 96 100 104 88
50 52 44 46 75 78 66 69 100 104 88 92
52 44 46 48 78 66 69 72 104 88 92 96
66 69 72 75 88 92 96 100 22 23 24 25
69 72 75 78 92 96 100 104 23 24 25 26
72 75 78 66 96 100 104 88 24 25 26 22
75 78 66 69 100 104 88 92 25 26 22 23
78 66 69 72 104 88 92 96 26 22 23 24
88 92 96 100 22 23 24 25 44 46 48 50
92 96 100 104 23 24 25 26 46 48 50 52
96 100 104 88 25 26 22 23 48 50 52 44
100 104 88 92 25 26 22 23 50 52 44 46
104 88 92 96 26 22 23 24 52 44 46 48


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On applying certain permutations on each block of A ⊗ Bd (and removing zeroes),
we obtain a scheme that extends the BIBDs A and B, where it is no longer possible to
reconstruct the secret from just two players. The full algorithm may be found in Roy and
Roy (2023). The shares of players in this version, which we shall denote here by F (A,B),
are: 

22 50 72
23 46 78
25 48 72
22 52 75
24 46 66
50 72 88
46 78 92
48 72 100
52 75 88
46 66 96
72 88 25
78 92 23
72 100 24
75 104 26
66 92 23
88 25 48
92 23 52
100 25 48
88 26 50
96 23 44


3.4. Secret sharing properties of F (A,B)

From Theorem 2 stated below, it is clear that F (A,B) is a (θ, Θ, ℓ)-ramp scheme,
for θ = τ1 + τ2 and Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1 + 1}. Therefore, it clearly satisfies
the following properties of perfect correctness for all authorised collections of players of size
greater than Θ, ϵcorr-correctness for ramp collections of players that are authorised, and
computational secrecy for all unauthorised collections of players (irrespective of size), from
Definition 7.

A complete explanation is very similar to that for A⊗ Bd given in Section 3.2.

3.5. Graphical representation

Definition 8: A bipartite graph G = (V , E) is said to induce a tensor design B if

• the vertex set V = P⊔V the disjoint union of the set of players P = {P1, . . . , Pb} and
the set of points V = {x1, . . . , xv} of B, and

• the edge set is the collection ⋃ i∈[b]
j∈[v]
{(Pi, xj) : xj ∈ share of Pi}.

Theorem 2: Given a bipartite graph G inducing a tensor design B, and given subsets
δ(Pi) ⊆ N(Pi) of size s,



546
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

A. ROY, B. K. ROY, K. SAKURAI AND S. TALNIKAR [Vol. 22, No. 3

(i) If ⋃i∈[b] δ(Pi) = V, then reconstruction of the modified scheme F (A,B) is possible.

(ii) If s ≥ 1, then (i) holds.

3.6. Defining access structure tokens

Consider first, the Krönecker product tensor design A⊗Bd as defined in Equation (1).

Let a1, . . . , av1 ∈ Fp1 be the elements in A and b1, . . . , bv2 ∈ Fp2 be the elements in
B. The access structure tokens for the share of each player are elements of ∈ Zv1

2 × ∈ Zv1
2 ,

computed according to Algorithm 1.

Algorithm 1 HsGen: Access structure tokens for the tensor designs A⊗ Bd and F (A,B)

γ
$←− Perm ({0, 1}v1 × {0, 1}v2).

for 1 ≤ i ≤ b1b2 do: //player Pi

for 1 ≤ j ≤ v1 do: //element aj

0̂
(1,Γ)
i ← (ω1, . . . , ωv1) such that ωj = 1 if and only if element aj of A occurs

as a product ajbl in the share of Pi.
end for
for 1 ≤ l ≤ v2 do: //element bl

0̂
(2,Γ)
i ← (ω1, . . . , ωv2) such that ωl = 1 if and only if element bl of B occurs as

a product ajbl in the share of Pi.
end for(
0

(Γ)
1 , . . . ,0

(Γ)
b1b2

)
← γ

(
0̂

(1,Γ)
1 ∥0̂(2,Γ)

1 , . . . , 0̂
(1,Γ)
b1 ∥0̂

(2,Γ)
b2

)
. //permutation

end for

Logical condition

From Algorithm 1, it is clear that the authorisation of a collection of players B can
be determined directly from the intermediate vectors 0̂(1,Γ)

i and 0̂(2,Γ)
i used to compute their

access structure tokens. Consider the two logical statements P and Q:

P : B ∈ Γ (2)

Q :
(∨

i∈B
0̂

(1,Γ)
i has Hamming weight ≥ τ1

)
∧
(∨

i∈B
0̂

(2,Γ)
i has Hamming weight ≥ τ2

)
.

Then from the definition of 0̂(1,Γ)
i and 0̂(2,Γ)

i , it is clear that P ↔ Q. The proceeding lemma
easily follows from this observation:

Lemma 1: Let Γ denote the access structure for the tensor design A⊗Bd. Then there exist
parameters θ and Θ such that Γ is fully characterised by the following three conditions on
any collection of players B ∈ 2P:

1. If |B| < θ, then B ̸∈ Γ.

2. If θ ≤ |B| < Θ, then B may or may not belong to Γ, i.e. it may or may not be
authorised.
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3. If |B| ≥ Θ, then B ∈ Γ.

Proof: The proof follows by checking which collections of players satisfy the condition Q.
If τ1 and τ2 are the reconstruction numbers of A and B, respectively. Then from Lemmas 4
and 7 of Roy and Roy (2023), θ = (τ1 − 1)(τ2 − 1) + 1. Also, from Lemmas 5, 6, 8 and 9
of Roy and Roy (2023), Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1 + 1}.

Further observe that the permutation γ in Algorithm 1 ensures that a collection of
players B of size t < Θ cannot simply examine their tokens and conclude (with probability
1) whether or not it is authorised.

4. Main results

Theorem 3: Given a positive integer d that satisfies Theorem 1, consider the tensor designs
A⊗ Bd with ramp structure (θ, Θ, ℓ), for a secret k, and shares s

(k)
i for each player Pi ∈ P.

Then there exists an access structure token generation algorithm that makes A ⊗ Bd an
ϵ-almost access structure hiding (θ, Θ, ℓ)-ramp tensor design.

Theorem 4: Given a positive integer d that satisfies Theorem 1, consider the tensor designs
F (A,B) with ramp structure (θ, Θ, ℓ), for a secret k, and shares s

(k)
i for each player Pi ∈ P.

Then there exists an access structure token generation algorithm that makes F (A,B) an
ϵ-almost access structure hiding (θ, Θ, ℓ)-ramp tensor design.

Theorem 5: The access structure hiding tensor design A⊗ Bd is verifiable.

Theorem 6: The access structure hiding tensor design F (A,B) is verifiable.

5. Proof of Theorems 3 and 4

Proof: [Proof of Theorem 3.] This is easily seen as the scheme A ⊗ Bd satisfies the six
properties enumerated in Definition 7.

Completeness and ϵ1-completeness:

Case 1: |A| ≥ Θ. Since the access structure tokens of any collection of size at least Θ
always satisfy the logical condition (2), A can simply check this condition and output
1. Therefore,

Pr
[
HsVer

({
0

(Γ)
i

}
i∈A

)
= 1

]
= 1.

Case 2: θ < |C| < Θ, and C is authorised. Let |C| = T , such that θ < T < Θ and C is
an authorised collection of players.

Number of permutations that fix the access structure tokens of C = (ℓ− T )!
Total number of permutations on all ℓ access structure tokens = ℓ!

As there is a uniformly random distribution on the access structure tokens, C can
make a uniformly random guess from {0, 1} about its authorisation status. Therefore,
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the probability that any collection of size T can identify itself as authorised can be
bounded above by the summation

∑
C∈Γ

with |C|=T

(ℓ− T )!
ℓ! ≤ 1(

ℓ
T

) ,

and thus, Pr
[
HsVer

({
0

(Γ)
i

}
i∈C

)
= 1

]
≤

∑
θ<T <Θ

1(
ℓ
T

) . (3)

Denoting ϵ1 := ∑
θ<T <Θ

1(
ℓ
T

) , we then have

Pr
[
HsVer

({
0

(Γ)
i

}
i∈C

)
= 1

]
≥ 1− ϵ1.

Soundness and ϵ2-soundness:

Case 1: |B| ≤ θ. Since the access structure tokens of any collection of size at most θ never
satisfy the logical condition (2), B can simply check this condition and output 0.
Therefore,

Pr
[
HsVer

({
0

(Γ)
i

}
i∈B

)
= 0

]
= 1.

Case 2: θ < |C| < θ, and C is unauthorised. Let |C| = T , such that θ < T < Θ and C
is an unauthorised collection of players. We arrive at the upper bound ϵ2 := ∑

θ<T <Θ

1(
ℓ
T

)
as in Equation (3), by the same argument as for ϵ1-completeness above. Hence,

Pr
[
HsVer

({
0

(Γ)
i

}
i∈C

)
= 0

]
≥ 1− ϵ2.

Statistical hiding and ϵ3-statistical hiding: As A⊗ Bd is a (θ, Θ, ℓ)-ramp scheme, any
non-ramp collection of parties can simply count the access structure tokens of all its players
and determine its authorisation.

Case 1: |B| ≤ θ. By definition of the access structure tokens, ∨
i∈B

0̂
(1,Γ)
i < τ1 and ∨

i∈B
0̂

(2,Γ)
i <

τ2.
Thus, for any such collection and for any access structure Γ′ ⊆ 2P characterised by the
ramp bounds (θ, Θ) such that B ̸∈ Γ′, Γ′ |

{
0

(Γ)
i

}
i∈B

follows the uniform distribution.
Hence,

Pr
[
Γ′ |

{
0

(Γ)
i

}
i∈B

]
= 2

ℓ(ℓ− 3) = 2
2b1b2(2b1b2 − 3) .

And therefore,
∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ = 0.
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If Γ′ is any other type of access structure (which does not characterise a ramp scheme),
then Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
= 0.

And therefore,
∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣
= 2

2b1b2(2b1b2 − 3).

Case 2(a): θ < |C| < Θ and C is unauthorised. Since C is an unauthorised collection
of parties, it knows no information about either factor, A, Bd, of A ⊗ Bd. Therefore,
by the same arguments as for Case 1,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ = 2
2b1b2(2b1b2 − 3) .

Case 2(b): θ < |C| < Θ and C has partial information about the secret. Let us as-
sume C knows the secret of the factor A of A ⊗ Bd. Then it must guess the shares
of players of Bd at best uniformly at random. So, a similar computation as in Case 1
allows us to arrive at the bound∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ ≤ 2
2b2(2b2 − 3) .

On the other hand, if C knows the secret of the factor Bd of A⊗ Bd, then the bound
becomes∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ ≤ 2
2b1(2b1 − 3) .

The equality in the two previous inequalities can be achieved when Γ′ is not a ramp
type scheme even when C has information about one threshold scheme. To sum it up,
the required value for the parameter ϵ3 is therefore the maximum of these two bounds.
Without loss of generality, we have assumed that b1 ≤ b2 and hence among the three
expressions on the right side, the last one is the largest.
Thus,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ ≤ 2
2b1(2b1 − 3).

The proof of Theorem 4 is exactly similar to the proof above.

6. Proof of theorems 5 and 6

Proof: If A is an authorised collection of parties (irrespective of its size), then clearly,

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
= 1
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as A can reconstruct the secret perfectly.

Recall the definition of the prime power q from Section 3.1. For an unauthorised
collection of parties A such that A cannot compute all elements of even one of A or Bd,

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
≤ 1

q

and therefore, Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 0

]
≥ 1− 1

q
. (4)

For a ramp collection of parties A such that θ < |A| < Θ, i.e. A can compute all
elements of exactly one of A or Bd,

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
≤ max

{
1
p1

,
1
p2

}

and therefore, Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 0

]
≥ 1−max

{
1
p1

,
1
p2

}
. (5)

The bounds in Equations (4) and (5) are simply because A and Bd are τ1- and τ2-
threshold schemes based on Shamir schemes Shamir (1979), which means any collection of
players that cannot reconstruct the entire secret cannot obtain any information about the
secret.

The proof of Theorem 6 is exactly similar to the proof above.

7. Applications

Our technique has real-world applications in a very wide range of domains, includ-
ing secure multiparty computation Chaum (1989); Andrychowicz et al. (2016); Smart et al.
(2024), secure distributed storage Garay et al. (1997); Rajasekaran and Duraipandian (2024),
attribute-based encryption Nali et al. (2005); Ibraimi et al. (2009); Saidi et al. (2024);
Asaithambi et al. (2024), access control mechanisms Eland (1978); di Vimercati (2011);
Gondara (2011); Nour et al. (2022), secure cloud computing Xu et al. (2009); Cui and Yi
(2024), e-voting systems Rabia et al. (2023), secure data sharing in blockchain technol-
ogy Zhang and Lin (2018); Alshehri et al. (2023); Wang et al. (2023), and privacy-preserving
machine learning algorithms Çatak (2015); Xu et al. (2015); Qin et al. (2024); Mestari et al.
(2024), to name a few.

For example in cloud storage systems Shin et al. (2017), our technique can enhance
data integrity and availability by enabling authorized parties to reconstruct lost or corrupted
shares without involving the initial dealer, avoiding framing of various parties, and compu-
tationally easy verification of shares against malicious adversary interactions.

Within sensor-based IoT systems Sikder et al. (2018), repairable ramp schemes safe-
guard the confidentiality and integrity of sensitive information exchanged among devices.
The ability to repair lost or corrupted shares while maintaining frameproofness, and veri-
fiability of these shares, along with the ability to ensure their completeness and soundness
without the need to actually access the shares ensures uninterrupted operation and security,
critical for IoT applications.
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Furthermore, repairable ramp schemes are instrumental in multi-level security sys-
tems Gao and Xiao (2011); Wagner (1997), such as those employed by government agencies
and financial institutions. Our techniques would only improve their guarantees of security,
while maintaining accessibility of critical information. They would also enable secure col-
laborative data sharing in environments where multiple parties require access to confidential
data.

8. Conclusion and future work

In this paper, we discuss verifiability and frameproofness of access structure hiding
ramp-type tensor designs. We do this through the introduction of a new type of secret
sharing scheme, called an ϵ-almost access structure hiding (θ, Θ, ℓ)-ramp tensor design, thus
making an essential generalisation of the existing novel design introduced by Sehrawat et al..
We explore ways of enhancing data security and privacy, especially Roy et al.’s concept of
extending repairable threshold schemes, using tensor products of balanced incomplete block
designs. This concept provides a fundamental generalization of existing designs, and thus
plays an important role in enhancing the security and verifiability of secret sharing schemes
by providing a mechanism for parties to verify the correctness of the shares they receive and
ensuring that the reconstruction process is accurate. By incorporating ramp schemes, the
construction becomes more robust against malicious behavior and unauthorized access, thus
strengthening the overall security and integrity of the secret sharing process. We also list a
few real-world applications where our techniques could be utilised for improved security.

While we demonstrate our concept of ϵ-almost access structure hiding for only extend-
able combinatorial tensor designs, it opens up a wide range of possibilities for any ramp-type
scheme to incorporate this technique for further improvement of confidentiality, secrecy and
verifiability.

Acknowledgements

The authors express their thanks to the Editors for their guidance and counsel. The
authors are also grateful to the reviewer for valuable comments and suggestions of generously
listing many useful references.

Bibliography

Alshehri, S., Bamasag, O., Alghazzawi, D. M., and Jamjoom, A. (2023). Dynamic se-
cure access control and data sharing through trusted delegation and revocation in a
blockchain-enabled cloud-iot environment. IEEE Internet Things, 10, 4239–4256.

Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L. (2016). Secure mul-
tiparty computations on bitcoin. Communications of the ACM, 59, 76–84.

Asaithambi, S., Ravi, L., Devarajan, M., Selvalakshmi, A., Almaktoom, A. T., Almazyad,
A. S., Xiong, G., and Mohamed, A. W. (2024). Blockchain-assisted hierarchical
attribute-based encryption scheme for secure information sharing in industrial inter-
net of things. IEEE Access, 12, 12586–12601.



552
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

A. ROY, B. K. ROY, K. SAKURAI AND S. TALNIKAR [Vol. 22, No. 3
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For successful policy-making,
a government needs good statistics
as well as good statisticians.
One is not a substitute for the other.

Calyampudi Radhakrishna (C.R.) Rao

1. Introduction

Advancements in science, medicine and technology have extended life expectancy
and improved health outcomes over the past half-century in the U.S., but not everyone has
benefited equally. Researchers studying mortality have noted a precipitous rise in deaths
between 1999 and 2005 due to such causes as Suicide, Alcohol consumption and Drug ac-
cidental overdose. Here, these causes of deaths are collectively denoted by the acronym:
SAD. This phenomenon was characterized initially among non-Hispanic white Americans –
mostly without a four-year college degree – as “deaths of despair” by Anne Case and An-
gus Deaton (Case and Deaton, 2015). They noted that white working-class lives over the
last half century were affected by long-term labor market declines (Case and Deaton, 2020)
which, in turn, led to a decline of families and relationships, limited access to high-quality
healthcare, increased social isolation and loneliness, and a general loss of hope for the future
(George et al., 2021). Simultaneously, increases in ease of access to handguns, inexpensive
alcohol, and prescription or non-prescription drugs including opioids have played their role
in these excess, premature, and sometimes preventable, SAD deaths (George et al., 2021;
Shiels et al., 2020).

Notably, while the historic deaths of despair were largely observed among non-Hispanic
whites in rural America, more recently, around 2015, they increased across all races (Hede-
gaard et al., 2018b,a). In 2017, there were 158,000 documented despair-related deaths that
contributed to the longest sustained decline in life expectancy since 1915 (Woolf et al.,
2018). In the period between 2000 and 2017, there were 1,446,177 drug poisoning, suicide,
and alcohol-induced premature deaths in the U.S., that included 563,765 drug poisoning
deaths (17.6 per 100,000 person-years), 517,679 suicides (15.8 per 100,000 person-years),
and 364,733 alcohol related deaths (10.5 per 100,000 person-years). These amounted to
451,596 excess deaths than those expected based on the rates of 2000 (Shiels et al., 2020).
For instance, alcohol related deaths increased by 77% from 2000 (19,627) to 2016 (34,857).
Alcohol deaths have risen in all races/ethnicities and across all age groups in both men and
women between 2000 to 2016 (Spillane et al., 2020).

Opioid-related deaths have increased dramatically in the past two decades in the U.S.
In 2016 alone, there were 45,838 opioid related deaths, and in 2017, the U.S. Department
of Health and Human Services declared the opioid epidemic as a “public health emergency”
(U.S. Department of Health and Human Services, 2023). Increase in mortality due to drug
overdose rose by 15%, while alcohol-related and suicide deaths have increased yearly by
4.1% and 1.5% respectively (Shiels et al., 2020). Trajectories in the former rates of mortality
have also varied by geographical regions – high in some predominantly rural states such as
Maine, Kentucky and West Virginia, with the lowest in other largely rural states such as
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Nebraska and Iowa (Rigg et al., 2018). The distribution of local patterns of the phenomenon
is complex, and national-level analyses (e.g., Jalal et al. (2018)) seldom consider myriad key
factors that may influence the data. These include different types of opioids (say, cheaper
synthetic ones, e.g., Fentanyl), societal stigma (which in turn influences treatment seeking
behaviors), differences in reporting or physician training, accuracy of determination of the
cause of death, effectiveness of different interventions in addressing the specific types of
opioid use, etc.

Discussions that focus on opioid mortality often overlook the intersectionality among
its various social determinants including educational attainment or employment dynamics
of a population. The effects of such factors are both spatial as well as temporal in nature.
Taking cognizance of the fact that despair is, in general, a complex psychosocial phenomenon,
we chose to focus our study specifically on SAD as the notified causes of death (as given by
the ICD-10 codes) in the mortality database. Attempts were made in the past to broadly
study national level data on socioeconomic disparities, mortality statistics, or the opioid
epidemic (Wallace et al., 2019; Case and Deaton, 2021; Jalal et al., 2018). However, for
gaining key insights into SAD deaths, we think it is more effective to concentrate on the
occurrence (or recurrence) of mortality patterns in a particular highly-affected geographical
region, which could then be partitioned into spatial and temporal subregions for systematic
investigation. Towards this, in the present study, we focused on the Appalachian Region
(AR) that is known for high rates of poverty and mortality due to despair as well as being
among those parts of the U.S. that were seriously affected by drug overdose deaths over the
past few decades (Rigg et al., 2018; NACo and ARC, 2019).

Notably, AR is a 205,000-square-mile region that spans the Appalachian Mountains
from southern New York to northern Mississippi. It includes all of West Virginia (WV) and
parts of 12 other states: Alabama (AL), Georgia (GA), Kentucky (KY), Maryland (MD),
Mississippi (MS), New York (NY), North Carolina (NC), Ohio (OH), Pennsylvania (PA),
South Carolina (SC), Tennessee (TN), and Virginia (VA). AR includes 423 counties (around
13% of all counties in the U.S.) and 8 independent cities in 13 states, and has a population of
approximately 25 million people. It is divided into 5 sub-regions: Northern, North Central,
Central, South Central, and Southern. As per the Appalachian Regional Commission (ARC),
the region has overall low educational attainment, increasing unemployment and poverty. In
2019, 24.9% and 24.6% of eligible individuals earned Bachelor’s degrees in mining and non-
mining counties respectively compared to 32.8% in the rest of the U.S. (Bowen et al., 2020).
Between 2005 and 2020, employment in the coal industry fell by around 54% (Bowen et al.,
2020). Between 2013 and 2017, poverty rates in Appalachia averaged 16.3% compared to
14.6% for rest of the U.S. A regional analysis indicates that poverty rates ranged between
6.5% to 41% with poverty mostly concentrated in central Appalachia encompassing Eastern
KY and WV (Appalachian Regional Commission, 2019).

AR has seen a steeper rise in deaths of despair since around 1998, especially among the
middle-aged population, as compared to the non-Appalachian regions of the country (Meit
et al., 2017). While the region is home to around 32.5% of the U.S. population, it accounted
for 49.6% of excess deaths in U.S. caused by the increase in midlife mortality during 2010-
2017 (Meit et al., 2019; Woolf et al., 2019). Further, Meit et al. (2019) have noted that this
disparity in deaths of despair is more evident in the Central and North Central Appalachian
sub-regions. Accidental drug overdoses were identified as a major contributor towards the
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rising deaths of despair in AR between 1999 and 2017, sustained by the easy and abundant
availability of prescription opioids and heroin in the region (Woolf et al., 2019; Monnat, 2020).
In rural Appalachia, women have been found to be at a higher risk of committing suicide
than men (Christine et al., 2020). Declining manufacturing and mining industries, persistent
poverty, rurality, social isolation, and physically demanding and injury-prone manual labor
jobs have been studied as some of the possible socio-economic determinants of distress in
AR, e.g., George et al. (2021), Rigg et al. (2018), Meit et al. (2017), Meit et al. (2019),
Woolf et al. (2019), and Monnat (2020).

In this study, our aim is to identify sub-regions of AR with high prevalence of SAD
deaths at multiple time-periods, and to investigate the association of SAD mortality trends
in these sub-regions with their economic and demographic characteristics. Given the dy-
namic nature of such characteristics at local (county) levels, we divided the overall study
time-period of 1979-2017 into eight five-year periods, and identified flexibly-shaped spatial
clusters of AR counties based on high SAD mortality rates for each period. Further, 8
metaclusters were constructed by combining spatially contiguous counties that had multiple
occurrences among the clusters identified in different time-periods. These 8 metaclusters
represent sub-regions with persistent prevalence of high SAD mortality in AR, which were
then characterized based on relevant covariates. The metaclusters were compared with re-
spect to temporal trends in various demographic and economic parameters such as annual
average overall employment rate, industry-specific employment rates (mining and manufac-
turing), population size, median age, and median household income. After description of
the methods and results in the subsequent sections, we end with an overall discussion of the
analysis, its findings and limitations.

2. Data

We obtained the time-series data of age-adjusted mortality rates due to the three SAD
causes (based on the corresponding ICD 10 codes) for each county in AR from the publicly
accessible Mortality Information and Research Analytics System (MOIRA) of University
of Pittsburgh (www.moira.pitt.edu). MOIRA data is sourced from the Centers for Disease
Control and Prevention (CDC) National Center for Health Statistics (NCHS), and the U.S.
Census Bureau. The MOIRA system facilitates extraction and visualization of U.S. mortality
and population data in a standardized format and categorized by causes of death given by
International Classification of Diseases (ICD 10) codes. Data was collected for the period
1979-2017, which also contained mortality rates grouped by sex and race. Additional data
such as on employment, wages, population size, median age, and median household income
was obtained from the official websites of the U.S. Bureau of Labor Statistics (www.bls.gov)
and the U.S. Census Bureau (www.data.census.gov).

3. Methods

For each of the eight five-year periods, we performed spatial clustering of the 423
Appalachian counties based on county-level SAD Age-Adjusted mortality Rates (AAR) using
a flexibly shaped spatial scan statistic due to Tango and Takahashi (2005) implemented with
a restricted likelihood ratio in the R package rflexscan (Otani and Takahashi, 2021). The
counties appearing in these spatial clusters were identified and ranked by their number
of occurrences over the eight time-periods. Recurrent counties, i.e., counties with more
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than one occurrence in the time-period-specific clusters, were combined using the K (=1)
nearest-neighbor strategy to obtain the final spatiotemporal metaclusters. We characterized
the metaclusters using known Socio-Economic Status (SES) and race-based county labels
(Wallace et al., 2019). Smooth log-transformed trends of SAD AAR were obtained using
the MortlitySmooth package in R (Camarda, 2012) and were plotted by age, sex, race, and
SAD causes of death for each of the 8 metaclusters. SAD AARs were also predicted using
the same library beyond 2017 for each metacluster until 2020, to avoid conflation with the
Covid-19-associated mortality rates of the same areas thereafter.

Trends of annual employment rate in the mining and manufacturing industries were
also plotted for the metaclusters. In addition, distributions of average annual unemployment
rates in the metaclusters in five-year periods were visualized using boxplots. Percentage
changes in population size and median age of the population of the metaclusters from 1980
to 2020 were also evaluated for the metaclusters. Total population of metaclusters in a
year was calculated as the sum of census population of the counties. Median age of the
metaclusters for a given year was calculated as the median of the county-wise median age.
In addition, median household income of the metaclusters was calculated as the median
of the county-wise median household income. Since the county-wise estimates of median
household income were available for the years 1979 and 2021 (which are based on the 1980
and 2020 census, respectively), the percentage change was calculated from 1979 to 2021. All
the three metacluster-wise percentage changes were obtained as the median of the percentage
changes calculated for the respective counties during the mentioned period.

4. Results

Spatially-flexible scan statistics identified clusters comprising of the counties in AR
with relatively higher SAD age-adjusted mortality rates (AAR) for each of the 8 five-year
time-periods (Figure 2). Although the compositions of the clusters vary across time-periods,
some counties appeared recurrently in the identified clusters over time. Such counties are
mostly concentrated around the South Central, Central, and North Central Appalachia, with
a few in Northern and Southern regions. Assuming that a higher number of recurrences of any
county in the clusters over the eight time periods would indicate a longer prevalence of SAD
mortality therein, we used the K (=1) nearest-neighbor strategy for selecting nearby counties
that have multiple such recurrences, and then combining them to form a metacluster. The
neighborhood of (two or more) counties is determined by their sharing of common boundary
lines or points even if they lie across different states.

The above procedure led to the construction of 8 metaclusters of counties spanning
across AR that are both spatially contiguous and temporally recurrent hotspots of SAD
deaths (Figure 3). Five of these eight metaclusters are located around the western regions
of the Central and South-Central Appalachia, with one cluster extending to the lower region
of the North Central Appalachia. Among the remaining three clusters, which are relatively
smaller in size, two are located in the Northern Appalachia and one in the Southern Ap-
palachia. Details of the identified metaclusters are provided in Table 1. A closer look at
the physical map of the Appalachian region (Figure 3 inset) reveals the location and the
underlying landform patterns of these metaclusters. Evidently, the metaclusters are located
mostly along the Valley & Ridge region, and the southern part of the Blue Ridge Mountains.
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Figure 1: Details of spatiotemporal metaclusters

To illustrate if spatiotemporal patterns of socioeconomic status (SES) have any asso-
ciation with the identified metaclusters of high SAD mortality rates, we used the SES class
labels due to Wallace et al. (2019). The labels 1 & 8 represent high SES, 2 mid/low SES, and
4 mid SES; where 1 & 2 are semi-urban, 8 is rural, and 4 mostly-rural counties. Thus, Figure
4 provides us with a nuanced characterization of each metacluster. We observe that 6 out
of 8 metaclusters have a majority of their counties falling in low SES categories. However,
the two metaclusters in PA – Eastern PA and Western PA – appear to be distinctive from
the rest as they have a more balanced distribution of both semi-urban and rural counties
with high as well as mid SES. We discuss about this point further below. Here, we note that
the categorization by Wallace et al. (2019), which is based on relatively recent SES of the
counties, may not capture the full dynamics of SES over the entire time-period of this study.

Historical trends of SAD AAR (in logarithmic scale) in each of the 8 metaclusters
from 1979 to 2017 for different causes of deaths of despair, age groups, races and sexes are
presented in the Figures 5, 6, 7 and 8, respectively. The changing dynamics of the cause-
specific SAD AARs in the 8 metaclusters is visualized in Figure 5. While the contribution
of drug overdose deaths to SAD AAR was almost negligible in the early 1990s, it has grown
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Figure 2: Spatial clustering of the AR counties in terms of their SAD AAR
in each of the 8 successive 5-year time-periods between 1979 and 2017. The
identified clusters’ boundaries are shown with red lines. AR (grey area) and the
state boundaries (black lines) are included for visual reference.

Figure 3: The 8 spatial metaclusters of SAD deaths in AR produced from the
spatial clusters over time-periods between 1979 and 2017. These are shown in
distinct colors and their labels in the legend. For visual reference, AR (grey
area) and the state boundaries (black lines) are included along with an inset
physical map of AR (due to www.usgs.gov).

continuously at a fast pace since then, and has become comparable to those due to suicides
and alcohol related deaths. In fact, in some metaclusters (TN and VA + North NC), drug
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Figure 4: Characterization of the spatial metaclusters based on the known SES
classification (given in the color-key) of their constituent counties.

overdose mortality AAR has even surpassed that of alcohol-related deaths and suicides. A
slightly improved scenario on drug-overdose deaths could be noted in metacluster 3 (KY)
by comparing the trends in Figures 5 and 6 during towards the end of the study period.
Notably, the AAR trends of suicides and alcohol related deaths have remained high, and in
fact, more or less constant, over the study period in all metaclusters.

Notably, the most alarming pattern appears in Figure 6 in which the SAD mortality
AARs for both the younger and older age groups have increased over the years in all meta-
clusters; but the rate of change is markedly higher for the former age group of < 45 years.
SAD AAR for the older age group (≥ 45 years) has been high since 1979, with occasional
plateauing around the last decade of the 20th century, before it started increasing again,
albeit at a slower pace compared to the younger age group. The trend for the younger age
group is present in every metacluster, rising from around 12-20 per 100,000 in the year 1979
to around 33-55 per 100,000 in the year 2017, i.e., at the end of the study-period. Interest-
ingly, while the SAD AAR trends have continued to rise over the decades, Figure 7 shows
little racial difference therein between whites and non-whites, except for marginally higher
rates for the whites in the last two decades. Overall, the gradual and continual rise in the
SAD AARs among the female and the younger populations – vis-a-vis the traditional trends
of the male and the older populations – are clearly visible from Figures 6 and 8 respectively.

Moreover, the younger age group’s SAD AAR has been continuously increasing in all
metaclusters, except for metacluster 3 (KY) where a downward trend was observed in the
last decade. In all other metaclusters, the gap between the SAD AAR of the younger and
the older populations has continued to get narrower. Metacluster 6 (VA + North NC) has
seen the sharpest rise in SAD mortality rate of the younger age group in recent years, with
its value reaching almost 90 per 100,000. This phenomenon of alarmingly increasing SAD
AAR among the younger age group is prevalent among all races, with almost similar trends
for the non-Hispanic white and the other race groups (Figure 7). Although the SAD AAR
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Figure 5: Longitudinal trends of SAD AAR for different causes of deaths of de-
spair in the 8 spatial metaclusters of AR. The historically more common causes,
i.e., suicides and alcoholism (SA: green curves) are compared with the drug
overdoses (D: red curves).

for younger age groups has been consistently high for the male population as compared to
the female population, the rate of increase of the SAD AAR has been evidently higher for
the female population in all metaclusters (see Figure 8).

For a visual comparison of the different metaclusters, Figure 9 overlays their trends
of SAD AAR from 1979 to 2020 along with that of the remaining counties in AR (shown as a
bold grey curve). Naturally, the latter, denoted by ”Rest”, has lower SAD AAR than every
metacluster for every observed time-period while following a similarly increasing trend over
time. In addition to this baseline trend, we also included the projected trend of SAD AAR
for the time-period beyond 2017, up to 2020 (i.e., the pre-pandemic years), as shown to the
right of the dotted line. Overall, it is evident that the SAD AAR has been increasing in all
metaclusters ever since 1979, and with a higher pace since around 2000. The projections
provide clear insights into the temporal patterns for the metaclusters. For instance, the
distinctive decline in SAD mortality of metacluster 3 (KY) in the last decade stands out
among all of these trends. Metaclusters 1 (AL) and 5 (TN) started with very similar trends
but went on to stray – during the 1990s – the most apart from each other. In fact, the latter is
projected to have the highest SAD AAR among all the metaclusters exactly when the former
is supposed to have AAR even lower than the Rest. Most importantly, several metaclusters
{1, 2, 7, 8}, spanning various sub-regions of AR, that had exhibited different trends in the
first decade, seemed to converge towards the Rest by the end of the study-period.
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Figure 6: Longitudinal trends of SAD AAR for different age-groups in the 8
spatial metaclusters of AR. The older groups (≥ 45 years: green curves) are
compared with the younger groups (<45 years: red curves).

To gain insights into the socioeconomic conditions of each metacluster, the unem-
ployment rates of the counties in the eight metaclusters for each 5-year period from 1990 to
2020, are presented as boxplots in Figure 10. Although their scale and range of variation
differ across the metaclusters, the trends are similar e.g., the lowering of unemployment rates
between 2000 and 2005, and then again around 2015. Comparing these trends with those
of the SAD AAR (Figure 9), we can clearly observe sharp increases in the gradient of the
SAD AAR around the years of higher unemployment rate. For instance, in the year 1995,
unemployment rates of metaclusters 3 (KY), 4 (South NC + SC + GA), 5 (TN), and 7
(Western PA) were very high, and around the same time, sharp upward shift in the trend
of SAD AAR can be observed for these metaclusters in Figure 10. However, there are no
apparent reduction in the gradient of the trends of SAD mortality rate during periods of
lower unemployment rates, possibly hinting at deeper structural reasons for despair that may
not be fully mitigated by employment alone.

The heightened problem of unemployment in the AR over the past few decades is
generally associated with the steady decline in mining and manufacturing industries in the
region. Historical trends of annual average number of jobs in these industries in the 8
metaclusters are plotted against the national average in Figure 11. Clearly, the decline in
such jobs has continued over the past five decades for every metacluster, despite a brief
recovery in mining during 2010-2015. This could be attributed to a wide array of factors
ranging from demographic changes in terms of aging and migration to economic drivers such
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Figure 7: Longitudinal trends of SAD AAR for different races in the 8 spatial
metaclusters of AR. The whites (red curves) are compared with the other races
(green curves).

as outsourcing and global trade. Towards this, metacluster-wise median percentage change
in population size, median age, and median household income, between 1980 and 2020 (Table
2) provide key insights into the shifts in the demographic and economic characteristics of
each metacluster over the study-period. Interestingly, in 5 metaclusters, the population sizes
have decreased between 5% and 29%. The same metaclusters, except for Western PA, are
also characterized by higher rise in the median age of their population and much lower rise
in their median household income as compared to the corresponding national change figures.
The TN metacluster which has reported the highest SAD AAR in the last decade, has also
seen the highest decline in population with the highest rise in median age and a decline in
median household income.

Now we compare two metaclusters that are both from the same state, PA. The pop-
ulation of the Western PA metacluster decreased by 5% and its median age rose although
lower than that of the U.S. Yet, its median household income has risen, in fact, by a greater
percentage than the national average. This is likely to be driven by the urban sectors of
the economy owing to Pittsburgh, the most prominent city in AR, in contrast to the age-
ing populations with limited opportunities for income generation among most of the other
metaclusters that also have shrinking populations. Interestingly, it is also distinct from East-
ern PA, which is one of the three metaclusters that have seen their populations rise. This
metacluster has seen a 61% jump in population size and 51% increase in median household
income, both of which are much higher than the national increments. These results not only
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Figure 8: Longitudinal trends of SAD AAR for females (green curves) and males
(red curves) in the 8 spatial metaclusters of AR.

Figure 9: Trends of SAD AAR from 1979 to 2020 between 8 spatial metaclusters
(as curves of different colors) are compared with the “Rest” of the Appalachian
counties (bold grey curve). The predicted death rates for the time-period beyond
2017 are shown to the right of the dotted line.

showcase the distinct characteristics of these metaclusters even if they are from the same
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Figure 10: Unemployment rates (y-axis) over time (x-axis) are compared for
the 8 spatial metaclusters (as labeled on the right) with boxplots for counties
therein.

state, but also underscores how the complex problem of SAD deaths may not be adequately
addressed merely by reducing poverty.

More granular insights can be derived from the county-level scatterplot of such changes
in the demographic and economic parameters, upon grouping by the metaclusters, as shown
in Figure 12. The inter-metacluster variation is more prominent in terms of the changes in
population size. In general, counties with decline in population and steeper rise in median
age have seen minimal rise in median household expenditure (smaller dots). Those with
positive increases in population (appearing to the right-hand side of the dotted line) have
witnessed rise in median household income (larger dots). As expected, higher rise in pop-
ulation is associated with lower rise in median age, but with some metaclusters that serve
as notable exceptions. Moreover, we can observe intra-metacluster heterogeneity in terms of
the changes in the demographic parameters and their interplay with household income. For
example, some metaclusters have counties with moderate to high increases in their median
age but notable rises in median household incomes. Such heterogeneities, within and across
the metaclusters, may indicate the complexity underlying the phenomenon of SAD mortality,
and underscore the need for investigating its social determinants at local community levels.

5. Discussion

Certain classic texts such as The Other America by Michael Harrington and Night
Comes to the Cumberlands by Harry Caudill introduced Appalachian poverty to Americans
during the early 1960s. The intense deprivation and hardships in AR led the then President
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Figure 11: Longitudinal data on the average number of (A) mining and (B)
manufacturing jobs in the 8 spatial metaclusters are shown (in different colors)
against the national average (dotted).

John F. Kennedy to establish the President’s Appalachian Regional Commission (PARC)
in 1963. In its report, PARC categorically noted that “Appalachia is a region apart – both
geographically and statistically” (PARC, 1964). In particular, AR “lags behind the rest of the
Nation in its economic growth and that its people have not shared properly in the Nation’s
prosperity.” In the subsequent decades, many steps have been taken towards reduction of the
abject poverty in AR using various mechanisms, e.g., the Appalachian Regional Development
Act of 1965 (ARDA), which designated AR as a special economic zone and provided spending
of more than $23 billion. Six decades later, the observable and compelling phenomenon of
SAD deaths makes it vital for the researchers to analyze patterns of such dire yet disparate
outcomes that have persisted in certain areas – and even evolved during the opioid epidemic
– against the complex socioeconomic background of AR.

In rural communities, residents are more likely to work in physically demanding and
injury-prone job sectors such as farms, factories, and mines, as compared to their urban coun-
terparts. These place workers at increased risks for chronic pain and disability (Keyes et al.,
2014). Between 2015 and 2019, the share of Appalachian residents who reported a disability
was 16.2% compared to 12.6% for the U.S. (Pollard and Jacobsen, 2021). Indeed, the preva-
lence of midlife pain epidemic in the U.S., which was highlighted by Case and Deaton (2015),
exacerbated by the surge in the use of prescription (or otherwise) painkillers since the mid-
1990s, has well-documented links to both addiction and SAD deaths in AR (Quinones, 2015).
Not surprisingly, therefore, many Appalachian communities that are mining-dependent be-
came targets for heavy marketing of Oxycodone and other strong prescription opioids much
earlier than the rest of the country (Rigg et al., 2018). Detailed patterns of such substance
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Figure 12: Percentage change in median age of the counties (grouped by their
metacluster-specific colors) plotted against percentage change in their total pop-
ulation from 1980 to 2020. Size of the points is proportional to the percentage
increase in the median household income of the counties.

and polysubstance uses among different population groups in the U.S. over the past 5 decades
were identified by our previous studies based on NSDUH population surveys on substance
use (Ray et al., 2022).

In the present study, we identified 8 metaclusters of high rates of SAD deaths in
AR over the period 1979-2017 based on U.S. county- and cause-specific mortality data. We
observed patterns for each metacluster such as the dynamics for SAD mortality due to drug-
overdoses, and its rising trends among the younger age group and women. We also noted
heterogeneity among the metaclusters not only in terms of SES and rural/urban compositions
but also their demographic and socioeconomic dynamics over the study-period. The patterns
from our analysis showcase the need for further dissection of the data and covariates to
detect the contributions of local vulnerabilities within each metacluster. For instance, the
roles of such social determinants as poor public transport infrastructure that limits access
to better jobs and healthcare, or sub-standard schools that may not prepare students for
newer careers, cannot be ignored (George et al., 2021). Based on our past use of subcounty-
scale characteristics such as CDC Social Vulnerability Index, and techniques such as Small
Area Estimation, we think further disaggregation of the SAD mortality data can lead to
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a more nuanced understanding of despair in the diverse communities of AR, and thus aid
public health and policy-making (Stacy et al., 2023). Structural solutions at local levels can
address issues involving strategies that may go beyond even poverty and unemployment.

We understand that our study has certain limitations. While different approaches of
space-time clustering are known (e.g., Knox test), the one that we adopted here is based on
our intention to avoid the identified clusters from being necessarily temporally contiguous.
Therefore, to allow for the occasional “ups and downs” in the SAD mortality rates within a
cluster, we first clustered the AR counties in each successive 5-year window, and then used
their recurrence for constructing the metaclusters. Further, to allow flexibly shaped clusters,
we decided not to use scan statistics based on a circular window (say, due to Kulldorff),
which have difficulty in correctly detecting irregularly shaped clusters that are more realis-
tic. Instead, we applied the flexible spatial scan statistic of Tango and Takahashi (2005),
which is able to detect a cluster of any shape reasonably well as its relative risk increases
during the Monte Carlo simulation used in this approach.

Figure 13: Metacluster-wise median % change in population size, median age,
and median household income (in USD). Data Source: U.S. Census Bureau.

Dedication

We dedicate this paper to the memory of the legendary statistician, the late Professor
C.R. Rao (1920-2023). Following his retirement from the Indian Statistical Institute, Dr. Rao
had had a second illustrious academic career in the U.S.; in particular, at the University of
Pittsburgh and the Pennsylvania State University. Incidentally, both of these institutions
are located in AR, the region of focus in the present study. As the quote at the beginning
of the paper underscores, Dr. Rao had a profound interest in the use of statistics for policy-
making and public health (Rao et al., 2017a,b). While his work was extended by us to
address some recent public health problems (e.g., Guha et al. (2022)), his longevity provided
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us with a direct historical connection to the classical past of statistics and its luminaries such
as R.A. Fisher and P.C. Mahalanobis. One of the authors (SP) had the privilege of having
Dr. Rao as a colleague at his eponymous institute in Hyderabad, India.

As a tribute to this trailblazing statistical scientist and an outstanding and prolific
author as well as a wise and witty mentor to many, we echo the sentiment expressed in the
Proceedings of the (U.S.) National Academy of Sciences earlier this year (DasGupta, 2024),
“Goodbye, Dr. Rao. Thank you for your inspiration and guidance. We will remember you.”
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Abstract
The unit root test – a test of the null hypothesis that a first-order autoregressive model

is a random walk model against the alternative hypothesis that the model is a stationary
model - has played a significant role in time series literature. The benchmark unit root
test is the well-known Dickey-Fuller test widely extended to cover a variety of applications.
However, to the best of our knowledge, all available unit root tests assume no measurement
errors in the observed data. In this paper, we first investigate the effects of sampling errors,
alternatively called as measurement errors, on the biases of the commonly used estimators of
autocorrelation coefficient and the Dickey-Fuller test statistics. We then propose alternative
estimators for the autocorrelation coefficient and the Dickey-Fuller test statistics to reduce
such biases due to sampling errors. In our study, we prove that the adjusted estimators of
the autocorrelation coefficient and the test statistics have the same asymptotic distributions
as that of the Dickey-Fuller test statistics. Moreover, we conduct Monte Carlo simulation
studies to investigate the performance of our proposed test statistics in terms of unbiasedness,
the probability of Type-I error, and power of the test. Our simulation results demonstrate
that the proposed estimators can reduce bias due to sampling errors. Finally, we apply the
proposed test statistics to the Current Population Survey (CPS) data on unemployment of
the United States during the period 1990 - 2013.

Key words: Unit root; Autoregressive coefficient; Sampling errors; Measurement errors; Like-
lihood ratio.

AMS Subject Classifications: 62F10, 62F12 , 62H20, 62M10

1. Introduction

Measurement errors in time series data occur in different applications of ecology, eco-
nomics, finance, repeated surveys, and other disciplines. In ecological research, Shenk et al.
(1998) introduced the concept of sampling errors in the form of measurement errors. Specif-
ically, they investigated the effects of sampling variances on the first-order autoregressive
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population models in order to estimate population abundance. The concept was then stud-
ied in the context of time series population models such as the ones given in De Valpine and
Hastings (2002), Dennis et al. (2006), Buonaccorsi and Staudenmayer (2009).

In Economics and Finance, Walters and Ludwig (1981) studied effects of measure-
ment errors on the estimation of stock-recruitment relationships. Moreover, they obtained
estimates of measurement errors. Besides the applications in stock markets, the measure-
ment errors in time series data were also considered in other applications such as the U.K.
GDP (Smith et al., 1998) and the U.S. GDP (Aruoba et al., 2016).

Time series data with measurement errors also occur in the context of repeated surveys
where the actual characteristics of interest are usually not observed but are estimated by
survey direct estimates. The problem was first considered in Scott and Smith (1974) where
the authors considered an autoregressive time series model with sampling errors. The study
was then further pursued by many researchers, such as Scott et al. (1977), Bell and Hillmer
(1990) Ludwig and Walters (1981), Bell and Hillmer (1990), Staudenmayer and Buonaccorsi
(2005), Rossi and Santucci de Magistris (2018).

Beside parameter estimation, one crucial tool for autoregessive time series analysis is
the test of unit root. The benchmark unit root test was introduced by Dickey and Fuller
(1979), where they obtained the test statistic and derived the asymptotic distribution of
their test statistic under the null hypothesis of unit root. The test has been widely extended
to higher order time series models and applied in many contexts during the last few decades.
However, the test statistic was originally designed for real-time series data without accounting
for sampling errors commonly found in repeated survey data. Ignoring sampling errors could
cause biases to the test statistic and lead to a wrong conclusion of the unit root test in the
presence of sampling errors. Therefore, to avoid such biases, effects of sampling errors to
the unit root test deserve investigation and an effective adjustment to the test statistics is
required. However, to the best of our knowledge, there is no unit root test for time series
data with measurement errors available in literature.

In this paper, we investigate the effect of sampling errors on the unit root test of
Dickey and Fuller (1979). Our study suggests that ignoring sampling errors could cause biases
in the estimation of autocorrelation coefficient and the Dickey-Fuller unit root test statistics.
Thus, we propose a modification of the Dickey-Fuller test that is bias-corrected for sampling
errors. We derive its asymptotic properties, and conduct Monte Carlo simulation studies to
investigate the performance of our proposed method by considering the unbiasedness, the
probability of Type-I error, and the power of the test. Moreover, we apply the proposed
test statistics to the Current Population Survey (CPS) data on unemployment of the United
States during the period 1990 to 2013. The numerical results demonstrate that the new test
can reduce the bias of the original Dickey-Fuller test when there is a present of sampling
errors.

The organization of this paper is as follows. In Section 2, we review the Dickey-Fuller
unit root test statistic for the first-order autoregressive model. In Section 3, we propose an
adjusted estimate of the Dickey-Fuller unit root in the presence of sampling errors. In Section
4, we demonstrate Monte Carlo simulations to study the performance of the proposed test
statistic in different aspects such as bias, probability of Type-I error, and power of the test.
In Section 5, we apply the proposed test statistic to the Current Population Survey (CPS)
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data on unemployment of the United States during the period 1990 to 2013. In Section 6, we
offer some concluding remarks. Finally the proofs of theoretical properties of the proposed
test statistic and important lemmas are provided in Section 7.

2. Unit root test for AR(1) model

Consider the first order autoregressive model for the time series {Yt : t = 1, 2, . . . , T},
defined as

Yt = ρYt−1 + et, (1)

where ρ is the regression coefficient and {et} is a sequence of independent normal random
variables with mean zero and unknown variance σ2

e .
The least squares estimate ρ̂Y of the autocorrelation coefficient ρ is defined as

ρ̂Y = SY,T (1)
SY,T (0) , (2)

where SY,T (k) =
T∑

t=2
Yt−1Yt+k−1.

Dickey and Fuller (1979) constructed the unit root test statistic under the null hypothesis
that ρ = 1 as

τ̂ =
(ρ̂Y − 1)

√
T∑

t=1
Y 2

t

√
σ̂2

, (3)

where

σ̂2 = 1
T − 2

T∑
t=2

(Yt − ρ̂Y Yt−1)2.

Moreover, they obtained the asymptotic distribution of ρ̂Y as

T (ρ̂Y − 1) d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
∞∑

i=1
γ2

i Z2
i

,

where Zi
iid∼ N(0, 1) and γi = (−1)i+1 2

(2i − 1)π .

Consequently, the asymptotic distribution of the test statistic τ̂ is obtained as

τ̂
d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

. (4)
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3. Unit root test for AR(1) with measurement errors

In this section, we consider the model in (1) when the actual time series {Yt : t =
1, 2, . . . , T} is unobserved but its predicted value from a survey {Wt : t = 1, 2, . . . , T} can
be obtained. Specifically, the model considered in this section consists of two sub-models:
the autoregressive model for the actual time series defined in (1) and the sampling model
assuming that the observed value can be written as a sum of the actual value and a sampling
error. In particular, the sampling model is

Wt = Yt + ut, (5)

where {Wt : t = 1, 2, . . . , T} is the sequence of observed variables with W0 = 0 and {ut :
t = 1, 2, . . . , T} is the sequence of sampling errors assumed to be independently normally
distributed with mean zero and known variances σ2

ut. The assumption of known sampling
variances σ2

ut often follows from the asymptotic variances of transformed direct designed-
based estimates such as in Efron and Morris (1975), Carter and Rolph (1974), Lahiri and
Suntornchost (2015), and Marhuenda Garćıa et al. (2016).

To construct an adjustment of the unit root test, we first investigate the effect of
ignoring the sampling errors to the estimations of the autocorrelation coefficient and the
Dickey- Fuller unit root test statistic. By substituting Yt with the survey estimate Wt in (2),
the naive estimate of the autocorrelation coefficient is

ρ̂W = SW,T (1)
SW,T (0)

and the naive test statistic is

τ̂naive =
(ρ̂W − 1)

√
SW,T (0)√

σ̂2
W,e

, (6)

where
σ̂2

W,e = 1
T − 2

T∑
t=2

(Wt − ρ̂W Wt−1)2.

Applying the conditional expectation, we found that

E (SW,T (0)|Yt) =
T∑

t=2
Y 2

t−1 +
T∑

t=2
σ2

u,t−1,

E (SW,T (1)|Yt) =
T∑

t=2
YtYt−1.

Therefore, by applying the first order Taylor series approximation, we can show that the
naive estimator of the autocorrelation coefficient, ρ̂W , is asymptotically biased and then
the estimator is not reliable. Hence, following Lahiri and Suntornchost (2015), we propose
an adjustment to each component in ρ̂W by removing the biases of SW,T (0) and SW,T (1).
Therefore, the proposed estimate of the autoregressive coefficient ρ is defined as

ρ̂Adj = SW,T (1)
S̃W,T (0)

,
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where S̃W,T (0) = SW,T (0) − Sσu(0), and Sσu(0) =
T∑

t=2
σ2

u,t−1. Applying the first order Taylor

series approximation, we prove in Theorem 1 that

ρ̂Adj − ρ̂Y = op(1), (7)

under the assumption ρ = 1.
Moreover, we show in Theorem 2 that T (ρ̂Adj − 1) has the same asymptotic distribution as
T (ρ̂Y − 1). In particular,

T (ρ̂Adj − 1) d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
∞∑

i=1
γ2

i Z2
i

,

where Zi
iid∼ N(0, 1) and γi = (−1)i+1 2

(2i − 1)π .

Furthermore, we construct an adjusted estimate for σ2 subject to sampling errors,
defined as

σ̂2
Adj,e = |σ̂2

W,e,1 − σ̂2
W,e,2|, (8)

where

σ̂2
W,e,1 = 1

T − 2

T∑
t=2

(Wt − ρ̂AdjWt−1)2,

and

σ̂2
W,e,2 = 1

T − 2

T∑
t=2

(
σ2

u,t + ρ̂2
Adjσ

2
u,t−1

)
.

Then, we propose an adjusted test statistic for the unit root test of the first order autore-
gressive model subject to measurement errors defined as

τ̂Adj =
(ρ̂Adj − 1)

√
S̃W,T (0)√

σ̂2
Adj,e

. (9)

Moreover, we prove in Theorem 3 that the proposed test statistic has the same asymptotic
distribution as the true estimate τ̂Y . In particular,

τ̂Adj
d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

, (10)

where γi = (−1)i+1 2
(2i−1)π and Zi

iid∼ N(0, 1).
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4. Monte carlo simulations

In this section, we conduct Monte Carlo simulations to study the performance of
the proposed test statistic compared to the naive test that ignores sampling errors. For
our simulation experiment, we set the true sampling variances of ut, σ2

ut in model (5), by
using estimated variances of 288 monthly survey-weighted direct estimates of the number of
unemployed workers obtained from the U.S. Current Population Survey (CPS) conducted
during the period 1990 - 2013. There are 12 simulation settings based on four selected
states with different ranges of sampling standard deviations and three different values of
the regression standard deviation σe of the autoregressive model (1). The values of σe are
specified by the ratio k = σ̄u

σe

where σ̄u is the average of sampling standard deviations defined

as σ̄u = T −1∑T
t=1 σut. The three values of k considered are 0.75, 1, and 1.25 representing the

cases where the average of standard deviations of sampling errors is smaller than, equal to,
and larger than the regression standard deviation, respectively. In addition, we consider four
different lengths (T ) of time series, T ∈ {25, 50, 100, 250}, to study asymptotic behaviours
of the test statistics. Each setting is repeated for 20,000 simulation runs. In particular,the
steps of simulation are as follows.

1. For each combination of state and k, calculate the regression variance σ2
e from σe = σ̄u

k
.

2. For each simulation setting and each l = 1, 2, . . . , 20, 000,

(a) generate the variance components and sampling errors {(u(l)
t , e

(l)
t ) : t = 1, 2, . . . , 250},

(b) calculate the time series {Y
(l)

t : t = 1, 2, . . . , 250}, from model (1) with ρ = 1,
(c) generate {W

(l)
t : t = 1, 2, . . . , 250} from model (5),

(d) calculate τ̂
(l)
true, τ̂

(l)
naive, and τ̂

(l)
Adj from the fomula in (3), (6), and (9), respectively.

To study the performances of the test statistics, we first consider different percentiles
of the estimated test statistics and the estimated values of the probability of Type-I error.
The estimates of the test statistics in different percentiles by using data from one selected
state, State 3, are presented in Tables 1 - 3, respectively for the cases of k = 0.75, 1, and
1.25.

From Tables 1 - 3, we can see that the percentiles of the true test statistics and
the proposed test statistic are close together, particularly those values between the 10th
and 90th percentiles. In contrast, the naive test statistics are much lower than the true
estimates in all cases. These results suggest that the naive estimator of the Dickey-Fuller
test statistic underestimates the true test statistic, while the proposed estimator can reduce
such underestimation.

Next, we consider the accuracy of the estimated probability of Type-I error, computed
as the portion of the number of replications in which the unit root hypothesis is rejected
when the actual time series is generated from the true autoregressive model (1) with ρ = 1.
In particular, the estimated probability of Type-I error is computed as

α̂ = 1
L

L∑
l=1

1{τ̂
(l)
· reject H0},
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Table 1: The empirical percentiles of the different test statistics for k = 0.75

Length (T ) Statistics Percentiles
1 10 25 50 75 90 99

T = 25
τ̂true -2.58 -1.61 -1.06 -0.51 0.21 0.87 2.28
τ̂naive -3.88 -2.40 -1.65 -0.98 -0.34 0.25 1.24
τ̂Adj -3.41 -1.78 -1.07 -0.46 0.32 1.24 4.16

T = 50
τ̂true -2.60 -1.68 -1.11 -0.53 0.22 0.90 2.08
τ̂naive -3.91 -2.58 -1.82 -1.06 -0.36 0.20 1.10
τ̂Adj -3.10 -1.78 -1.11 -0.47 0.31 1.17 3.21

T = 100
τ̂true -2.65 -1.61 -1.09 -0.54 0.23 0.86 2.06
τ̂naive -3.87 -2.48 -1.76 -1.05 -0.37 0.19 1.13
τ̂Adj -2.64 -1.65 -1.08 -0.48 0.27 0.97 2.41

T = 250
τtrue -2.69 -1.62 -1.12 -0.55 0.19 0.87 2.16
τ̂naive -3.88 -2.46 -1.78 -1.09 -0.38 0.22 1.12
τ̂Adj -2.56 -1.64 -1.10 -0.54 0.21 0.91 2.20

Table 2: The empirical percentiles of the different test statistics for k = 1

Length (T ) Statistics Percentiles
1 10 25 50 75 90 99

T = 25
τ̂true -2.68 -1.65 -1.09 -0.54 0.16 0.92 2.16
τ̂naive -4.25 -2.81 -2.04 -1.29 -0.59 0.03 0.94
τ̂Adj -3.87 -2.04 -1.25 -0.54 0.27 1.26 5.48

T = 50
τ̂true -2.63 -1.70 -1.15 -0.56 0.18 0.84 2.22
τ̂naive -4.59 -3.05 -2.25 -1.41 -0.68 -0.09 0.77
τ̂Adj -3.50 -1.85 -1.16 -0.51 0.29 1.20 4.94

T = 100
τ̂true -2.52 -1.67 -1.13 -0.57 0.15 0.84 1.88
τ̂naive -4.49 -3.02 -2.19 -1.40 -0.67 -0.11 0.67
τ̂Adj -2.95 -1.71 -1.10 -0.50 0.23 1.02 3.23

T = 250
τtrue -2.58 -1.62 -1.11 -0.51 0.21 0.86 2.04
τ̂naive -4.46 -2.95 -2.15 -1.34 -0.64 -0.07 0.86
τ̂Adj -2.75 -1.65 -1.09 -0.49 0.24 0.97 2.68

where 1{τ̂
(l)
· reject H0} is equal to 1 if the specific test statistic τ̂ (l)

· ∈ {τ̂true, τ̂Adj, τ̂naive} rejects
ρ = 1, and is equal to 0 for otherwise. The results for the tests with significance level
0.05 are presented in Table 4 as follows. From Table 4, we can see that the estimated
probabilities of Type-I error of the true test statistic τ̂true and the proposed test statistic
τ̂adj are approximately 0.05 in all cases. In contrast, the naive test statistic τ̂naive produces
estimated probabilities of Type-I error different from 0.05 for all cases. Specifically, the
values are approximately 0.2, 0.3, and 0.4 for the cases corresponding to k = 0.75, 1, and
1.25, respectively. This result suggests that the bias of the estimated probability of Type-I
error obtained from the naive test statistic is higher when the sampling variance is higher.
Moreover, the naive test statistic gives different conclusions from the actual test statistic.
In contrast, our proposed test provides the same conclusion as the true test even with the
large values of sampling variances.

Finally, we investigate the performance of the proposed test regarding the estimation
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Table 3: The empirical percentiles of the different test statistics for k = 1.25

Length (T ) Statistics Percentiles
1 10 25 50 75 90 99

T = 25
τ̂true -2.58 -1.62 -1.06 -0.47 0.23 0.86 2.17
τ̂naive -4.09 -2.45 -1.71 -1.00 -0.35 0.25 1.24
τ̂Adj -3.58 -1.76 -1.05 -0.44 0.34 1.33 4.53

T = 50
τ̂true -2.64 -1.61 -1.10 -0.49 0.18 0.87 1.89
τ̂naive -4.05 -2.50 -1.81 -1.08 -0.44 0.10 0.93
τ̂Adj -3.14 -1.68 -1.06 -0.44 0.31 1.14 3.16

T = 100
τ̂true -2.59 -1.59 -1.08 -0.50 0.20 0.87 2.00
τ̂naive -3.84 -2.51 -1.76 -1.06 -0.42 0.16 0.91
τ̂Adj -2.65 -1.59 -1.07 -0.46 0.20 1.03 2.34

T = 250
τ̂true -2.62 -1.59 -1.10 -0.50 0.22 0.90 1.98
τ̂naive -3.81 -2.50 -1.80 -1.07 -0.37 0.19 0.99
τ̂Adj -2.59 -1.61 -1.09 -0.49 0.22 0.96 2.21

Table 4: The empirical estimates of Type-I error

Values of the ratio k
k = 0.75 k = 1 k = 1.25

τ̂true τ̂naive τ̂Adj τ̂true τ̂naive τ̂Adj τ̂true τ̂naive τ̂Adj

State 1 0.0490 0.2090 0.0495 0.0450 0.3092 0.0485 0.0422 0.4078 0.0492
State 2 0.0450 0.1955 0.0470 0.0445 0.2895 0.0410 0.0511 0.4099 0.0656
State 3 0.0480 0.2010 0.0465 0.0485 0.3210 0.0535 0.0532 0.4104 0.0572
State 4 0.0475 0.1955 0.0455 0.0550 0.2915 0.0565 0.0473 0.4031 0.0488

of the power of the test for different values of the autocorrelation coefficient ρ, varying in
the set {0.85, 0.9, 0.95, 0.975, 0.99, 0.995}. The simulation setting in this post is the same
as previous algorithm except in the step 2(b), instead of using the data with a unit root,
the time series {Y

(l)
t : t = 1, 2, . . . , 250}, is generated from model (1) with specific ρ = ρ0,

where ρ0 ∈ {0.85, 0.9, 0.95, 0.975, 0.99, 0.995}. The numerical results of the estimated power
functions of the true test statistic τ̂true and the proposed test statistic τ̂Adj for k = 0.75, 1, 1.25
are presented in Figures 1-3, respectively.

From Figures 1-3, we can see that the estimated powers of the two tests are lower
when the true value of ρ gets closer to one. The powers of the proposed test are close to the
powers of the true test. These results suggest that the proposed test performs well in terms
of the power of the test.

5. Applications

In this section, we apply the proposed test statistic to the CPS survey data of the four
selected states, comparing with the naive test statistic ignoring sampling errors. Numerical
results including the test statistics with their associated probabilities of Type-I errors are
presented in Table 5.
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Figure 1: Empirical estimates of the power for k = 0.75

Figure 2: Empirical estimates of the power for k = 1
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Figure 3: Empirical estimates of the power for k = 1.25

Table 5: The estimated test statistics and the corresponding p-values for four
selected states

τ̂naive τ̂Adj

Calculated test Statistic p-value Calculated test Statistic p-value
State 1 -6.59 < 1 × 10−4 -1.32 0.17
State 2 -4.89 < 1 × 10−4 -0.86 0.35
State 3 -7.90 < 1 × 10−4 -1.51 0.12
State 4 -4.18 < 1 × 10−4 -0.76 0.39

From Table 5, we observe the same behavior of the two estimates as the simulation
results presented in Tables 1 – 3. In particular, the naive test provides much lower values of
the test statistic than the proposed test statistics. The naive test statistics for the four states
reject the null hypothesis and conclude that the time series are stationary. In contrast, the
proposed test provides larger values of the p-values than 0.01 in all cases. Therefore, the
proposed test suggests that the actual time series have a unit root at the significant level
0.01.

6. Conclusions and discussions

In this paper, we investigated the effects of sampling errors on the commonly used
autocorrelation coefficient estimator and the well-known Dickey-Fuller unit root test statis-
tic. We found that ignoring sampling errors could cause biases in the estimations of the
correlation coefficient and the test statistic. This will lead to a wrong conclusion of the unit
root test. Therefore, in our study, we introduced a new autocorrelation coefficient estimator
and a unit root test statistic in order to reduce biases caused by sampling errors. Moreover,
we obtained asymptotic distributions of our proposed estimator ρ̂Adj and the proposed test
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statistic τ̂Adj and showed that the two estimators have the same asymptotic distributions
as of the estimators without measurement errors. Furthermore, we conducted simulation
studies and applied the proposed method to real data. Numerical results suggested that our
proposed method have good performances in terms of bias reduction, the accuracies of the
estimated probability of Type-I error and the estimated power of the unit root test.
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APPENDIX

A. Appendix: theoretical properties

In this section, we prove asymptotic properties of the adjusted estimators of the
correlation coefficient and the unit root test statistic discussed in Section 3. We first obtain
some important moment properties in Lemma 1 and then prove the three main results
respectively in Theorem 1, Theorem 2, and Theorem 3.

Lemma 1: Under the assumption that ρ = 1, we have

1. E (SY,T (0)) = 1
2T (T − 1)σ2

e ;

2. E (SY,T (1)) = 1
2T (T − 1)σ2

e ;

3. Var (SY,T (0)) = 1
3T (T − 1)(T 2 − T + 1)σ4

e ;

4. Var (SY,T (1)) = 1
3T (T − 1)(T 2 − T + 1)σ4

e ;

5. for any positive integer k, E(S−k
Y,T (0)) = O(T −2k) ; and

6. for any positive integers l and k, E(S−k
Y,T (0)Sl

Y,T (1)) = O(T 2(l−k)).
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Proof:

1. Given that Y0 = 0,

SY,T (0) =
T −1∑
t=1

 t∑
j=1

ej

2

=
T −1∑
i=1

(T − i)e2
i +

T −1∑
i=2

i−1∑
j=1

(T − i)eiej. (11)

By the property that {ei}i≥1 is a sequence of independent random variables with zero
mean and variance σ2

e ,

E (SY,T (0)) =
T −1∑
i=1

(T − i)σ2
e = 1

2T (T − 1)σ2
e .

2. Note that

SY,T (1) = SY,T (0) +
T∑

t=2
etYt−1.

Since E(ei) = 0 and ei and Yi−1 are independent, E (SY,T (1)) = E (SY,T (0)).

3. Since {ei}i≥1 is a sequence of independent random variables with zero mean and vari-
ance σ2

e , {e2
i } and {eiej} are uncorrelated sequences of uncorrelated random variables

such that Var(e2
i ) = 2σ4

e and Var(eiej) = σ4
e for i ̸= j. From (11),

Var (SY,T (0)) =
T −1∑
i=1

(T − i)2 Var
(
e2

i

)
+

T −1∑
i=2

i−1∑
j=1

(T − i)2 Var (eiej)

= T (T − 1)(T 2 − T + 1)σ4
e .

4. Note that

Var
(

T∑
t=2

etYt−1

)
=

T∑
t=2

Var(etYt−1) + 2
∑

2≤i<j≤T

Cov(eiYi−1, ejYj−1)

= 1
2T (T − 1)σ4

e ,

and

Cov
(

SY,T (0),
T∑

t=2
etYt−1

)
= Cov

(
T∑

t=2
Y 2

t−1,
T∑

t=2
etYt−1

)

=
T∑

t=2
Cov

(
Y 2

t−1, etYt−1
)

+
T∑

t=2

t−1∑
s=2

Cov
(
Y 2

t−1, esYs−1
)

+
T∑

t=2

T∑
s=t+1

Cov
(
Y 2

t−1, esYs−1
)
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= 1
3T (T − 1)(T − 2)σ4

e .

Then,

Var (SY,T (1)) = Var (SY,T (0)) + Var
(

T∑
t=2

etYt−1

)
+ 2 Cov

(
SY,T (0),

T∑
t=2

etYt−1

)

= 1
3T (T − 1)(T 2 − T + 1)σ4

e + 1
2T (T − 1)σ4

e + 2
3T (T − 1)(T − 2)σ4

e

= 1
6T (T − 1)(2T 2 + 2T − 3)σ4

e .

5. To find the order of E(SY,T (0)−k), we apply the second order Taylor approximation to
the function f(x) = x−k about µ = E(SY,T (0)) as follows.

E(SY,T (0)−k) = 1
Ek(SY,T (0))

+ k(k + 1)
2

Var(SY,T (0))
Ek+2(SY,T (0))

+ O(T −2k)

= O(T −2k) + O(T −2(k+2))O(T 4) + O(T −2k)
= O(T −2k).

6. Similarly, we apply the second order Taylor approximation to the function f(x, y) =
y−kxl about µ = (E(SY,T (1)),E(SY,T (0))) to find the order of E(SY,T (0)−kSY,T (1)l) as
follows.∣∣∣∣∣E

(
SY,T (1)l

SY,T (0)k

)∣∣∣∣∣ ≤
∣∣∣∣∣E

l(SY,T (1))
Ek(SY,T (0))

∣∣∣∣∣+
∣∣∣∣∣ l(l − 1)

2
El−2(SY,T (1))
Ek(SY,T (0))

Var(SY,T (1))
∣∣∣∣∣

+
∣∣∣∣∣k(k + 1)

2
El(SY,T (1))

Ek+2(SY,T (0))
Var(SY,T (0))

∣∣∣∣∣
+
∣∣∣∣∣2kl

El−1(SY,T (1))
Ek+1(SY,T (0))

Cov(SY,T (1), SY,T (0))
∣∣∣∣∣+ O(T −2(l−k))

≤ O(T 2(l−k)) + O(T 2(l−k)) + O(T 2(l−k)) + O(T 2(l−k)) + O(T −2(l−k))
= O(T 2(l−k)).

Theorem 1: Under the assumption that ρ = 1,

ρ̂Adj − ρ̂Y = op(1) as T goes to infinity.

Moreover,
ρ̂Adj − ρ = op(1) as T goes to infinity.

Proof: To prove the theorem, we will show that E(ρ̂Adj − ρ̂Y )2 = O(T −2) by proving the
following statements:

(1) E(ρ̂Adj − ρ̂Y ) = O(T −2),
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(2) Var(ρ̂Adj − ρ̂Y ) = O(T −2).

To prove (1), apply the second order Taylor series expansion to the function f(x, y) =
x

y
around (SY,T (1), SY,T (0)) as follows.

ρ̂Adj − ρ̂Y = 1
SY,T (0)(SW,T (1) − SY,T (1)) − SY,T (1)

S2
Y,T (0)(S̃W,T (0) − SY,T (0))

+ SY,T (1)
S3

Y,T (0)(S̃W,T (0) − SY,T (0))2

− 1
S2

Y,T (0)(SW,T (1) − SY,T (1))(S̃W,T (0) − SY,T (0)) + Op(T −2).

Then, apply the conditional expectation given Y , we have

E (ρ̂Adj − ρ̂Y |Y ) = SY,T (1)
S3

Y,T (0) Var
(
S̃W,T (0)

∣∣∣Y )
− 1

S2
Y,T (0) Cov

(
SW,T (1), S̃W,T (0)

∣∣∣Y )

= SY,T (1)
S3

Y,T (0)

(
2

T∑
t=2

σ4
u,t−1 + 4

T∑
t=2

Y 2
t−1σ

2
u,t−1

)

− 2
S2

Y,T (0)

T∑
t=2

(YtYt−1 + Yt−1Yt−2) σ2
u,t−1 + Op(T −2).

Let σ2
u = max

1≤t≤T
σ2

u,t. We can show that

|E (ρ̂Adj − ρ̂Y |Y )| ≤ 2|SY,T (1)|
S3

Y,T (0) Tσ4
u + 4|SY,T (1)|

S2
Y,T (0) σ2

u + 5
SY,T (0)σ2

u + Op(T −2). (12)

From Lemma 1, we can show that

E
(

|SY,T (1)|
S3

Y,T (0)

)
= O(T −4),

E
(

|SY,T (1)|
S2

Y,T (0)

)
= O(T −2),

E
(

1
SY,T (0)

)
= O(T −2).

Therefore, |E(ρ̂Adj − ρ̂Y )| = O(T −2).

To prove (2), we note that

Var(ρ̂Adj − ρ̂Y ) = E (Var(ρ̂Adj − ρ̂Y |Y )) + Var (E(ρ̂Adj − ρ̂Y |Y ))
≤ E (Var(ρ̂Adj|Y )) + E

(
E2(ρ̂Adj − ρ̂Y |Y )

)
. (13)
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To bound the first term of (13), we apply the first order Taylor approximation to the function
f(x, y) = x

y
around the point (SY,T (1), SY,T (0)) as follows.

SW,T (1)
S̃W,T (0)

= SY,T (1)
SY,T (0) + 1

SY,T (0)(SW,T (1) − SY,T (1)) − SY,T (1)
S2

Y,T (0)(S̃W,T (0) − SY,T (0)) + Op(T −2).

Therefore,

Var
(

SW,T (1)
S̃W,T (0)

∣∣∣∣∣Y
)

= 1
S2

Y,T (0) Var (SW,T (1)|Y ) +
S2

Y,T (1)
S4

Y,T (0) Var
(
S̃W,T (0)

∣∣∣Y )
− 2SY,T (1)

S3
Y,T (0) Cov

(
SW,T (1), S̃W,T (0)

∣∣∣Y )
+ O(T −2)

:= A1 + A2 + A3 + Op(T −2).

To bound E(A1), we notice that

Var (SW,T (1)|Y ) =
T∑

t=2
(Y 2

t σ2
u,t−1 + Y 2

t−1σ
2
u,t + σ2

u,tσ
2
u,t−1 + 2YtYt−2σ

2
u,t−1)

≤
T∑

t=2
(2Y 2

t + Y 2
t−1 + Y 2

t−2)σ2
u + Tσ4

u

≤ 6SY,T (0)σ2
u + Tσ4

u.

From Lemma 1, we have E(A1) = E
(

6σ2
u

SY,T (0) + Tσ4
u

S2
Y,T (0)

)
= O(T −2).

For the term A2, we have

Var
(
S̃W,T (0)

∣∣∣Y )
= 2

T∑
t=2

σ4
u,t−1 + 4

T∑
t=2

Y 2
t−1σ

2
u,t−1 ≤ 2Tσ4

u + 4σ2
uSY,T (0).

From Lemma 1, E(A2) = E
(

2S2
Y,T (1)

S4
Y,T (0) Tσ4

u +
4S2

Y,T (1)
S3

Y,T (0) σ2
u

)
= O(T −2). For the last term A3,

we notice that

Cov
(
SW,T (1), S̃W,T (0)

∣∣∣Y )
= 2

T∑
t=2

(YtYt−1 + Yt−1Yt−2)σ2
u,t−1 ≤ 10σ2

uSY,T (0).

Hence, E(A3) = E
(

20σ2
uSY,T (1)

S2
Y,T (0)

)
= O(T −2). This implies that E (Var(ρ̂Adj|Y )) = O(T −2).

To consider E
(
E2(ρ̂Adj − ρ̂Y |Y )

)
, we apply (12) and Cauchy-Schwartz inequality to obtain

E2 (ρ̂Adj − ρ̂Y |Y ) ≤ 3
(

2|SY,T (1)|
S3

Y,T (0) Tσ4
u

)2

+ 3
(

4|SY,T (1)|
S2

Y,T (0) σ2
u

)2

+ 3
(

5
SY,T (0)σ2

u

)2

=
12S2

Y,T (1)
S6

Y,T (0) T 2σ8
u +

48S2
Y,T (1)

S4
Y,T (0) σ4

u + 75
S2

Y,T (0)σ4
u.
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From Lemma 1, E
(
E2(ρ̂Adj − ρ̂Y |Y )

)
= O(T −4). Hence, from (13), Var(ρ̂Adj−ρ̂Y ) = O(T −2).

From (1) and (2), we have E(ρ̂Adj − ρ̂Y )2 = O(T −2). Therefore, ρ̂Adj − ρ̂Y = op(1) as
T goes to infinity. Moreover, since ρ̂Y − ρ = op(1), we have ρ̂Adj − ρ = op(1) as T goes to
infinity.

Having proved the asymptotic property of ρ̂Adj , we will prove the asymptotic distri-
bution of the test statistics τ̂Adj by first obtaining some important lemmas as follows.

Lemma 2: Under the assumption that ρ = 1 ,
1

T 2 S̃W,T (0) −
∞∑

i=1
γ2

i Z∗2
i = op(1)

as T goes to infinity, where γi = (−1)i+1 2
(2i − 1)π and Z∗

i
iid∼ N(0, σ2

e).

Proof: We know from Dickey (1976) that

1
T 2 SY,T (0) −

∞∑
i=1

γ2
i Z∗2

i = op(1),

as T goes to infinity. To prove this lemma, we will show that
1

T 2 S̃W,T (0) − 1
T 2 SY,T (0) = op(1) (14)

as T goes to infinity.
First, we notice that

S̃W,T (0)
T 2 − SY,T (0)

T 2 = 1
T 2

T∑
t=2

2Yt−1ut−1 + 1
T 2

T∑
t=2

(u2
t−1 − σ2

u,t−1).

Since E(Ytut) and E
(
u2

t − σ2
u,t

)
are equal to zero for all t,

E
(

S̃W,T (0)
T 2 − SY,T (0)

T 2

)
= 1

T 2

T∑
t=2

2E (Yt−1ut−1) + 1
T 2

T∑
t=2

E(u2
t−1 − σ2

u,t−1) = 0. (15)

Since {Ytut}1≤t≤T and {u2
t − σ2

u,t}1≤t≤T are uncorrelated random sequences,

Var
(

S̃W,T (0)
T 2 − SY,T (0)

T 2

)
= 1

T 4

T∑
t=2

4 Var(Yt−1ut−1) + 1
T 4

T∑
t=2

Var(u2
t−1 − σ2

u,t−1)

≤ 1
T 4 σ2

eσ2
u · 1

2T (T − 1) + 2
T 4 Tσ4

u (16)

= O(T −2).

Hence, from (15) and (16), (14) is proved. Consequently,

1
T 2 S̃W,T (0) −

∞∑
i=1

γ2
i Z∗2

i = op(1),

as T goes to infinity.
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Theorem 2: Under the assumption that ρ = 1, the statistics T (ρ̂adj − 1) has the same
limiting distribution as T (ρ̂Y − 1) as T goes to infinity. In a particular,

T (ρ̂Adj − 1) d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

,

where γi = (−1)i+1 2
(2i−1)π and Zi

iid∼ N(0, 1).
Proof: From the definition of ρ̂Adj, T (ρ̂Adj − 1) can be simplified as

T (ρ̂Adj − 1) = T

(
SW,T (1) − S̃W,T (0)

S̃W,T (0)

)
=
( 1

T 2 S̃W,T (0)
)−1 ( 1

T

(
SW,T (1) − S̃W,T (0)

))
. (17)

From (1) and (5), we have

1
T

(
SW,T (1) − S̃W,T (0)

)
= 1

T

T∑
t=2

(
(Yt−1 + ut−1)(Yt + ut − Yt−1 − ut−1) + σ2

u,t−1

)

= 1
T

T∑
t=2

(
(Yt−1 + ut−1)(et + ut − ut−1) + σ2

u,t−1

)

= 1
T

T∑
t=2

Yt−1et + 1
T

T −1∑
t=1

etuT − Y1u1

T
− 1

T

T −1∑
t=2

etut−1

+ 1
T

T∑
t=2

etut−1 + 1
T

T∑
t=2

utut−1 − 1
T

T∑
t=2

(u2
t−1 − σ2

u,t−1). (18)

Notice that each of the terms in (18) except 1
T

T∑
t=2

Yt−1et is a sum of uncorrelated random
variables with zero means and finite variances. Therefore, by the law of large number, each
of those terms converges in probability to zero.
Following the results of Fuller (1976) that

1
T

T∑
t=2

Yt−1et
d−→ 1

2

( ∞∑
i=1

√
2γiZ

∗
i

)2

− σ2
e

2 ,

where γi = (−1)i+1 2
(2i − 1)π and Z∗

i
iid∼ N(0, σ2

e), we can show that

1
T

(
SW,T (1) − S̃W,T (0)

)
d−→ 1

2

( ∞∑
i=1

√
2γiZ

∗
i

)2

− σ2
e

2 . (19)

From Lemma 2, (17), and (19),

T (ρ̂Adj − 1) d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

, (20)

where γi = (−1)i+1 2
(2i − 1)π and Zi

iid∼ N(0, 1).
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Lemma 3: Define the statistic σ̂2
Adj,e as

σ̂2
Adj,e = |σ̂2

W,e,1 − σ̂2
W,e,2|,

where

σ̂2
W,e,1 = 1

T − 2

T∑
t=2

(Wt − ρ̂AdjWt−1)2,

and

σ̂2
W,e,2 = 1

T − 2

T∑
t=2

(
σ2

u,t + ρ̂2
Adjσ

2
u,t−1

)
.

Then, under the assumption that ρ = 1,

σ̂2
Adj,e − σ̂2

e = op(1).

In particular, σ̂2
Adj,e − σ2

e = op(1).

Proof: Notice that

(T − 2)σ̂2
W,e,1 =

T∑
t=2

(Yt − ρ̂Y Yt−1 + (ρ̂Y − ρ̂Adj)Yt−1 + ut − ρ̂Adjut−1)2

= (T − 2)σ̂2
e + (ρ̂Y − ρ̂Adj)2SY,T (0) +

T∑
t=2

(ut − ρ̂Adjut−1)2

+ 2(ρ̂Y − ρ̂Adj)
T∑

t=2
Yt−1(ut − ρ̂Adjut−1) + 2

T∑
t=2

(Yt − ρ̂Y Yt−1)(ut − ρ̂Adjut−1)

= (T − 2)σ̂2
e + (ρ̂Y − ρ̂Adj)2SY,T (0) +

T∑
t=2

(ut − ρ̂Adjut−1)2

+ 2
T∑

t=2
(et + (ρ − ρ̂Adj)Yt−1) (ut − ρ̂Adjut−1).

Then,

(T − 2)(σ̂2
W,e,1 − σ̂2

W,e,2 − σ̂2
e) = (ρ̂Y − ρ̂Adj)2SY,T (0) +

T∑
t=2

(ut − ρ̂Adjut−1)2

+ 2
T∑

t=2
(et + (ρ − ρ̂Adj)Yt−1) (ut − ρ̂Adjut−1)

−
T∑

t=2

(
σ2

u,t + ρ̂2
Adjσ

2
u,t−1

)

= (ρ̂Y − ρ̂Adj)2SY,T (0) +
T∑

t=2
(u2

t − σ2
u,t) + ρ̂2

Adj

T∑
t=2

(u2
t−1 − σ2

u,t−1)

− 2ρ̂Adj

T∑
t=2

utut−1 + 2
T∑

t=2
etut + 2(ρY − ρ̂Adj)

T∑
t=2

Yt−1ut
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− 2ρ̂Adj

T∑
t=2

etut−1 − 2ρ̂Adj(ρY − ρ̂Adj)
T∑

t=2
Yt−1ut−1

= op(T ),

where we use Theorem 1, Lemma 2, and the weak law of large number to obtain the last
equation. Therefore, σ̂2

W,e,1 − σ̂2
W,e,2 − σ̂2

e = op(1). Consequently, σ̂2
Adj,e,1 − σ2

e = op(1).

Applying Lemma 2 - Lemma 3, we obtain the asymptotic distribution of the proposed
statistic τ̂Adj in the following theorem.

Theorem 3: Let τ̂Adj be a statistic defined by

τ̂Adj =
(ρ̂Adj − 1)

√
S̃W,T (0)√

σ̂2
Adj,e

.

Then τ̂Adj has the same asymptotic distribution as τ̂ in (4). That is

τ̂Adj
d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

,

where γi = (−1)i+1 2
(2i − 1)π and Zi

iid∼ N(0, 1).

Proof: From Lemma 2 and Lemma 3, we have

1
T 2 S̃W,T (0) · 1

σ̂2
Adj,e

p−→
∞∑

i=1
γ2

i

Z∗2
i

σ2
e

,

where γi = (−1)i+1 2
(2i − 1)π and Z∗

i
iid∼ N(0, σ2

e).

Then, √√√√ 1
T 2 S̃W,T (0) · 1

σ̂2
Adj,e

p−→

√√√√ ∞∑
i=1

γ2
i Z2

i , (21)

where Zi
iid∼ N(0, 1).

From (20) and (21), we can conclude that

τ̂Adj = T (ρ̂Adj − 1) ·
√√√√ 1

T 2 S̃W,T (0) · 1
σ̂2

Adj,e

d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

.
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Abstract
A test statistic for a fixed contrast comparison of high-dimensional mean vectors

is introduced. The statistic can be used when the dimension of the vectors exceeds the
sample size, and the data may not necessarily follow a multivariate normal distribution. The
components of the test statistics are defined as U -statistics with optimal properties, where
the same estimators are given equivalent, computationally highly efficient, formulation for
practical applications. The properties of the statistic are studied under a general multivariate
model and certain mild assumptions. Through simulations, the statistic is shown to have an
accurate size control and high power properties. An extension of a set of fixed orthogonal
contrasts is also discussed.

Key words: High-dimensional tests; Multivariate inference; Contrast comparisons; U -statistics.

AMS Subject Classifications: 62H11, 62H30

1. Introduction

Let Xik = (Xik1, . . . , Xikp)T ∼ Fi, k = 1, . . . , ni, be a random sample of ni vectors
from ith non-degenerate p-variate distribution, denoted Fi, which need not necessarily be
multivariate normal, i = 1, . . . , g ≥ 2. Further, the g populations are assumed to be inde-
pendent, with E(Xik) = µi ∈ Rp and Cov(Xik) = Σi ∈ Rp×p, and Σi > 0, ∀ i.

Most of the testing problems in multivariate theory pertain to the two basic pa-
rameters, µi and Σi; e.g, single- and multi-sample hypotheses for µi, such as µi = 0,
µ1 = . . . = µg (g ≥ 2). These hypotheses are termed global hypotheses, and their rejection
often implies further exploration to sort out potential contributors to the rejection. For
example, for g = 1, a level profile analysis is carried out to test if all components of µ are
same, i.e. if µ1 = . . . = µp.

In practice, however, situations exist, mainly in multi-sample cases, where certain
specific contrast comparisons among µi are of interest. For example, for g = 3, it might be
of interest to test if µ1 − 2µ2 + µ3 = 0. In general, such a contrast hypothesis is formulated

Corresponding Author: Rauf Ahmad
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as

H0 :
g∑

i=1
ciµi = 0 vs. H1 : Not H0, (1)

with ∑g
i=1 ci = 0, a condition which is an inevitable component of the definition of a contrast.

In the aforementioned example, (c1, c2, c3) = (1, −2, 1).

Note that, for g = 2, the condition implies c2 = −c1 which, without loss of generality,
can be taken as c1 = 1 ⇒ c2 = −1, so that H0 reduces to the usual two-sample hypothesis
H0 : µ1 = µ2. Although, it is also a special form of contrast, the main advantage of contrast
testing is apparent for the case of more than two populations.

Our objective in this article is to construct tests for H0 in (1) when the dimension
p may be large, and possibly larger than the sample sizes, i.e., p ≫ ni, the Fi may be
non-normal, and Σi may be unequal. For the classical case, i.e., p < ni, with Fi assumed
multivariate normal, and often Σi = Σ ∀ i (homoscedasticity assumption), the multivariate
theory offers likelihood-ratio tests leading to Wilks’ Λ criterion, which is further related to
an F-statistic, and for moderately large sample sizes, follows an approximate χ2-distribution;
see e.g Anderson (2003).

As the likelihood-ratio testing framework collapses for high-dimensional data, par-
ticularly when p ≫ ni, new testing strategies are needed to cope with this issue. In this
context, we are interested to introduce tests of (1) for p ≫ ni under multivariate Behrens-
Fisher setting, additionally relaxing normality assumption which is replaced with alternative
mild assumptions stated below.

The test statistics are composed of estimators defined as U -statistics with optimality
properties. The same estimators are alternatively also defined as simple functions of empirical
covariance estimators, which makes them computationally very efficient. The U -statistics
version, however, helps study their theoretical properties, including limiting distribution,
conveniently, where the efficient formulation is useful for practical applications.

Whereas high-dimensional mean testing has generally attracted huge attraction in
the recent past (see a list of references in Ahmad, 2019b), problems like contrast comparison
have mostly been dealt with under the general rubric of multiple testing theory. For a related
work in the classical case, i.e., n > p, see Hayter (2014) and the references cited therein.
A general, comprehensive reference for multiple testing problems, including for large data,
containing abundant further references, is Dickhaus (2014).

Section 2 introduces test statistic for a single contrast hypothesis in (1), with an ex-
tension to a set of orthogonal contrasts in Section 3. Evaluation of the proposed tests through
simulations is given in Section 4. Some technical results are deferred to the Appendix.

2. Test of a single contrast

Given the data set up in Sec. 1, let Xi = (XT
i1, . . . , XT

ini
)T ∈ Rni×p be the data matrix

corresponding to the ith sample, so that the unbiased estimators of µi and Σi are defined as

Xi = 1
ni

XT
i 1ni

, Σ̂i = 1
ni − 1XT

i Cni
Xi, (2)
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respectively, where Cni
= Ini

− Jni
/ni is the centering matrix with Ini

as identity matrix
and Jni

= 1ni
1T

ni
with 1ni

a vector of 1s. All vectors are column vectors by default.

Further, we denote vector inner product of a, b ∈ Rp as ⟨a, b⟩ = aTb : Rp 7→ R,
so that ∥a∥2 = aTa is the (squared) norm of a, and ∥A∥2 = tr(ATA) : Rq×p 7→ R is
the Frobenius norm of A ∈ Rq×p. Moreover, ⊗ and ⊕ are Kronecker product and sum,
respectively.

To consider a test statistic for H0 in (1), we can logically begin with the point esti-
mator, ∑g

i=1 ciXi = X0, and note that, under independence,

E(X0) = µ0 =
g∑

i=1
ciµi and Cov(X0) = Σ0 =

g∑
i=1

c2
i

Σi

ni

. (3)

In the classical setting, assuming normality and homoscedasticity, a test for (1) can be
defined as T2 = c−1

0 XT
0 S−1

0 X0 with c0 = ∑g
i=1 c2

i /n2
i , where S0 = ∑g

i=1(ni − 1)Σ̂i/(n − g)
is the pooled estimator of Σ0 and n = ∑g

i=1 ni. The T2 statistic has optimality properties
under the aforementioned assumptions, but its validity rests on the invertibility of S0 which,
in turn, holds if and only if n − g > p. As this condition is not satisfied for high-dimensional
data, and definitely not when p ≫ ni, T2 collapses in this case and needs a modification.

The test statistic that we intend to propose for (1) is based on a modification of
T2-type statistics for testing different hypotheses on location parameters (see e.g Ahmad,
2014, 2019b). To see how this modification may work for the present case, first assume,
tentatively, that Σi are known and, to avoid singularity issue of their empirical estimators
at a later stage, consider the criterion

A = A1

tr(Σ0)
, (4)

with A1 = ∥X0∥2, X0, Σ0 as in (3), and tr(·) is the trace operator. It follows that

∥X0∥2 =
( g∑

i=1
ciXi

)T ( g∑
i=1

ciXi

)
=

g∑
i=1

c2
i ∥Xi∥2 +

g∑
i=1

g∑
j=1

i ̸=j

cicj⟨Xi, Xj⟩.

Partitioning ∥Xi∥2 as

∥Xi∥2 = 1
n2

i

ni∑
k=1

∥Xik∥2 + 1
n2

i

ni∑
k=1

ni∑
r=1

k ̸=r

⟨Xik, Xir⟩ = 1
ni

Ei +ni − 1
ni

Ui = Qi + Ui,

we can further write A1 as

A1 = ∥X0∥2 =
g∑

i=1
c2

i Qi +
g∑

i=1
c2

i Ui + 2
g∑

i=1

g∑
j=1

i<j

cicjUij = A11 + A12, (5)

with A11 = ∑g
i=1 c2

i Qi, where Qi = (Ei −Ui)/ni, Ei = ∑ni
k=1 ∥Xik∥2/ni. Moreover

Ui = 1
ni(ni − 1)

ni∑
k=1

ni∑
r=1

k ̸=r

⟨Xik, Xir⟩ and Uij = ⟨Xi, Xj⟩ = 1
ninj

ni∑
k=1

nj∑
l=1

⟨Xik, Xjl⟩ (6)
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are, one- and two-sample U -statistics with symmetric kernels, h(Xik, Xir) = ⟨Xik, Xir⟩ and
h(Xik, Xjl) = ⟨Xik, Xjl⟩, respectively. The motivation behind this decomposition becomes
clear from the moments of the components of A1 as summarized in the following theorem,
proved in Appendix B.1.

Theorem 1: Given the partition of A1 in (5) with

A11 =
g∑

i=1
c2

i Qi, A12 =
g∑

i=1
c2

i Ui + 2
g∑

i=1

g∑
j=1

i<j

cicjUij, (7)

we have E(A11) = tr(Σ0), E(A12) = ∥µ0∥2 and Var(A12) = 2∥Σ0∥2 + R, where

R = 4
g∑

i=1
(ciµi)T c2

i Σi

ni

(ciµi) + 4


g∑

i=1

g∑
j=1

i<j

(ciµi)T c2
jΣj

nj

(ciµi) +
g∑

i=1

g∑
j=1

i<j

(cjµj)T c2
i Σi

ni

(cjµj)



+ 8


g∑

i=1

g∑
j=1

i<j

(ciµi)T c2
jΣj

nj

(cjµj) +
g∑

i=1

g∑
j=1

i<j

(cjµj)T c2
i Σi

ni

(ciµi)



+ 8


g∑

i=1

g∑
j=1

g∑
j′=1

i<j<j′

(ciµi)T c2
jΣj

nj

(ci′µi′) +
g∑

i=1

g∑
i′=1

g∑
j=1

i<i′<j

(cjµj)T c2
i Σi

ni

(cj′µj′)


Under H0, E(A12) = 0, Var(A12) = 2∥Σ0∥2, where E(A11), Var(A11) remain same.

We observe that, E(A11) is independent of µi, hence of µ0, and E(A12) is independent
of Σi, hence of Σ0. Further, under H0, E(A12) = 0 and Var(A12) = 2∥Σ0∥2, so that

E(A) = 1 + ∥µ0∥2

tr(Σ0)
= 1 (8)

Var(A) = 2∥Σ0∥2

[tr(Σ0)]2
. (9)

From the proof in Appendix B.1, we note that we use a slight approximation for Var(A12)
since the first term in 2∥Σ0∥2 has denominator ni(ni − 1), not n2

i , which, precisely, gives
Var(A12) = 2∥Σ0∥2[1+o(1)] and Var(A) = [2∥Σ0∥2/[tr(Σ0)]2][1+o(1)]. As (ni −1)/ni makes
no difference for the final limit as ni → ∞, we skip o(1) term when the context is clear.

Note also that, Var(A11) is not reported in Theorem 1. It will be a part of main
theorem, Theorem 2, where it is shown that A11 is a simple plug-in, consistent estimator of
E(A11) = tr(Σ0) for ni, p → ∞, in the sense that A1 / tr(Σ0) and [A1 / tr(Σ0)][tr(Σ0)/ A11]
have essentially the same limit. We can thus consider the following test statistic for H0

T = A1

A11
= 1 + A12

A11
. (10)
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With normality assumption relaxed, we replace it with a general multivariate model. Given
Xik ∈ Rp, let Yik = Xik − µi, and define

Yik = ΓiZik, k = 1, . . . , ni, i = 1, . . . , g, (11)

with Γi = Σ1/2
i , Zik ∈ Rp, Zik ∼ Fi, where E(Zik) = 0p and Cov(zik) = Ip ∀ i. Here, 0p is

a vector of zeros and Ip denotes the identity matrix. We supplement Model (11) with the
following assumptions, where νis = λis/p and λis, s = 1, . . . , p, denote the eigenvalues of Σi.

Assumption 1: E(Y 4
iks) = γis ≤ γ < ∞ ∀ s = 1, . . . , p, ∀ i = 1, . . . , g, γ ∈ R+.

Assumption 2: limp→∞
∑p

s=1 νis = νi0 ≤ ν ∈ R+, ∀ i = 1, . . . , g.

Assumption 3: limni,p→∞ p/ni = ξi ≤ ξ = O(1), ∀ i = 1, . . . , g.

Assumption 4: limni→∞ ni/n = ρi ≤ ρ = O(1), ∀ i = 1, . . . , g, n = ∑g
i=1 ni.

Assumption 5: limp→∞ µT
i Σkµj/p = ϕijk ≤ ϕ = O(1), ∀ i, j, k = 1, . . . , g.

Assumption 1 helps deal with moments of quadratic forms under Model (11). Assump-
tion 2 is often used in high-dimensional inference. Assumptions 3-4 ensure a non-degenerate
limit by controlling simultaneous rates of convergence among sample sizes and in relation to
dimension. Assumption 5 is only needed under the alternative. Using Theorem 1 and the
probability convergence of A11 (see Appendix B.2), we write

T −1 = A12

tr(Σ0)
[1 + oP (1)],

with A12 as in (7), E(T −1) = ∥µ0∥2/ tr(Σ0) and

σ2
1 = 2∥Σ0∥2 + R

[tr(Σ0)]2
,

where, under H0, E(T −1) = 0, σ2
0 = 2∥Σ0∥2/[tr(Σ0)]2. Theorem 2 gives the distribution of

T̃ = (T − E(T))/σT with T̃0 as its value under H0. For proof, see Appendix B.2.

Theorem 2: Let T̃ be as defined above. Under Model (11) and Assumptions 1-5, T̃ D−→
N(0, 1), as ni, p → ∞. In particular, under H0, T̃0

D−→ N(0, 1).

For power of T̃, let Zα be the quantile of Z ∼ N(0, 1), and T̃, T̃0 be as in Theorem
2. For any ni and p, P (T̃0 ≥ Zα) = α and P (T̃ ≥ −δ + τZα) = 1 − β define the size and
power of the test, respectively, where δ = ∥µ0∥2/

√
2∥Σ0∥2 + R and τ = σ0/σ1, with σ2

0 and
σ2

1 as Var(T) under the null and alternative, respectively, as in Theorem 2. It follows, under
the assumptions, that τ → [2 + ξ−1]−1/2O(1) = O(1) and δ = ni[2 + ξ−1]−1/2O(1) = O(ni),
so that 1 − β = 1 - P [T̃ ≤ −(ni + Zα)O(1)] ⇒ 1, as ni, p → ∞.

We need to estimate Var(T). As A11
P−→ ∑g

i=1
∑∞

s=1 c2
i ξiνi0, Var(T) basically follows

from Var(A12) which is composed of ∥Σi∥2 and ∥ΓiΓj∥2, where Γi = Σ1/2
i , since, under H0,

∥Σ0∥2 =
g∑

i=1

c4
i

ni

∥Σi∥2 + 2
g∑

i=1

g∑
i=1

i<j

c2
i c

2
j

ninj

∥ΓiΓj∥2. (12)



600
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

RAUF AHMAD [Vol. 22, No. 3

The estimators are defined as below, where Γ̂i = Σ̂1/2
i .

Definition 1: Estimators of ∥ΓiΓj∥2, ∥Σi∥2, under Model (11), are defined as below, where
νi = (ni − 1)/ni(ni − 2)(ni − 3), Qi = ∑ni

k=1 ∥X̃ik∥2, X̃ik = Xik − Xi, i = 1, . . . , g.

Eij = ∥Γ̂iΓ̂j∥2, (13)
Ei = νi

[
(ni − 1)(ni − 2)∥Σ̂i∥2 + [∥Γ̂i∥2]2 − n Qi

]
, (14)

As functions of empirical Σ̂i, the estimators are computationally very efficient. They
are unbiased and high-dimensional consistent. To prove these properties, however, an alter-
native formulation of the same estimators, in terms of U -statistics, is very helpful.

Given Model (11), let Dikr = Yik −Yir with E(Dikr) = 0, Cov(Dikr) = 2Σi = 2∥Γi∥2,
and Σ̂i can be written as U -statistic with symmetric kernel h(Xik, Xir) = DikrDT

ikr/2, i.e.,

Σ̂i = 1
Q(ni)

ni∑
k=1

ni∑
r=1

k ̸=r

1
2DikrDT

ikr

where Q(ni) = ni(ni − 1). Denote further Aijkrls = DT
ikrDjls and Aikrls = DT

ikrDils with
E(A2

ijklrs) = 4∥ΓiΓj∥2, E(A2
ikrls) = 4∥Σi∥2. The U -statistics forms of Eij and Ei follow as

Eij = 1
Q(ni)Q(nj)

ni∑
k=1

ni∑
r=1

π(k,r)

nj∑
l=1

nj∑
s=1

π(l,s)

1
4 A2

ijklrs (15)

Ei = 1
P (ni)

ni∑
k=1

ni∑
r=1

ni∑
l=1

ni∑
s=1

π(k,r,l,s)

Bikrls, (16)

where P (ni) = ni(ni − 1)(ni − 2)(ni − 3), Bikrls = A2
ikrls + A2

iksrl + A2
ilrsk and π(·) implies all

involved indices pairwise unequal. Note that, Ei and Eij are one- and two-sample U -statistics
with symmetric kernels Bikrls /4 and A2

ijklrs /4, respectively; see e.g Koroljuk and Borovskich
(1994). The following theorem summarizes the properties of estimators. The proof of this
theorem is a tedious computational exercise of projection properties of U -statistics and is
omitted for simplicity; see e.g Ahmad (2017).

Theorem 3: Given Model (11), Assumption 1, and Eij, Ei as in (15)-(16). Then, E(Eij) =
∥ΓiΓj∥2 and E(Ei) = ∥Σi∥2. Further,

Var(Eij) = 2
(ni − 1)(nj − 1)

[
(ni + nj − 1)∥ΣiΣj∥2 +

{
∥ΓiΓj∥2

}2
+ M2O(n) + M3O(1)

]
,

Var(Ei) = 4
P (ni)

[
a(ni)∥Σ2

i ∥2 + b(ni)
{
∥Σi∥2

}2
+ M2O(n3

i ) + M3O(n2
i )
]
,

Cov(Eij, Ei) = 4
Q(ni)

[
ni tr(Σ3

i Σj) + M2O(ni)
]

,

where a(ni) = 2n3
i − 9n2

i + 9ni − 16, b(ni) = n2
i − 3ni + 8, P (ni) = ni(ni − 1)(ni − 2)(ni − 3),

Q(ni) = ni(ni − 1), and M2, M3 are given in Lemma 1.
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Note that, less emphasis on terms involving M2, M3 etc. is due to the fact that they
eventually vanish, exactly under normality, and asymptotically under Model (11) and the
assumptions. For the rest, Theorem 3 yields Var(Ei / E(Ei)) ≤ O(1/ni), Var(Eij / E(Eij)) ≤
O(1/ni+1/nj), Cov(Ei / E(Ei), Eij / E(Eij)) ≤ O(1/ni), i.e., the ratios are uniformly bounded
in p. This, in particular, implies that p does not influence the non-degenerate limit of T̃ in
Theorem 2. Following corollary can now replace Theorem 2 for practical applications.

Corollary 3.1: Theorem 2 remains valid if Var(T̃) is replaced with V̂ar(T̃) obtained by
substituting Eij for ∥ΓiΓj∥2 and Ei for ∥Σi∥2 in (12).

3. Test of a set of orthogonal contrasts

Often, the researcher is interested to simultaneously test a set of multiple contrasts.
In principal, this set can be of any cardinality, but only a set of orthogonal contrasts makes
sense since any contrast beyond orthogonal set will carry redundant information. For g
populations, an orthogonal set consists of m = g − 1 contrasts. We are thus interested in
simultaneous testing of a set of m contrasts, i.e.,

H0q :
g∑

i=1
ciqµiq = 0 vs. H1q : Not H0q, q = 1, . . . , m, (17)

where ∑g
i=1 ciq = 0, as before, with additional orthogonality constraint, ∑g

i=1 ciqciq′ = 0,
q ̸= q′. Extending the notations in Sec. 2, we can re-write the set of hypotheses in (17) as

H0s : Ξs = 0 vs. H1s : Not H0s, (18)

where s refers to the set of contrasts, with Ξs = (µT
01, . . . , µT

0m), µ0q = ∑g
i=1 ciqµiq. Letting

X0q = ∑g
i=1 ciqXiq estimate µ0q, an estimator of Ξs ∈ Rm×p follows as

Ms = (XT
01, . . . , XT

0m) ∈ Rm×p.

Denoting Σ0q = ∑g
i=1 c2

iqΣiq/ni and using Cov(X0q, X0q′) = 0 for q ̸= q′„ we get

E(Ms) = Ξs and Cov(Ms) = Σs = diag(Σ01, . . . , Σ0m) = ⊕m
q=1Σ0q,

It is obvious then that the theory for m orthogonal contrasts extends straightforwardly from
that of one contrast in Sec. 2, where the orthogonality condition particularly simplifies the
computations. Thus, partitioning ∥X0q∥2 similarly as ∥X0∥2 in Sec. 2, we have

∥X0q∥2 =
g∑

i=1
c2

iqQiq +
g∑

i=1
c2

iqUiq + 2
g∑

i=1

g∑
j=1

i<j

ciqcjqUijq = A11q + A12q,

with
A11q =

g∑
i=1

c2
iqQiq, A12q =

g∑
i=1

c2
iqUiq + 2

g∑
i=1

g∑
j=1

i<j

ciqcjqUijq,

where Qiq = (Eiq − Uiq)/ni, Eiq, Uiq, Uijq are defined as for single contrast, except for each
q now. The rest of the theory proceeds likewise, so that Theorem 2 and Corollary 3.1 stand
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Table 1: Estimated size of T̃ for three distributions with three covariance triplets

Normal Uniform Exponential
n1, n2, n3 p S1 S2 S3 S1 S2 S3 S1 S2 S3

10, 20, 30 50 0.061 0.044 0.060 0.048 0.060 0.052 0.062 0.058 0.065
100 0.051 0.051 0.057 0.052 0.054 0.056 0.055 0.055 0.058
300 0.048 0.055 0.054 0.055 0.055 0.053 0.057 0.052 0.054
500 0.050 0.056 0.049 0.051 0.055 0.053 0.055 0.057 0.057

1000 0.044 0.052 0.051 0.046 0.048 0.051 0.052 0.054 0.055
20, 30, 50 50 0.050 0.048 0.045 0.049 0.052 0.045 0.049 0.057 0.054

100 0.052 0.057 0.046 0.056 0.055 0.047 0.047 0.055 0.052
300 0.054 0.053 0.054 0.052 0.048 0.051 0.055 0.054 0.053
500 0.047 0.050 0.048 0.055 0.052 0.052 0.058 0.056 0.055

1000 0.051 0.053 0.055 0.053 0.053 0.048 0.051 0.048 0.051
30, 50, 100 50 0.054 0.053 0.048 0.051 0.054 0.052 0.056 0.049 0.048

100 0.057 0.049 0.055 0.050 0.051 0.055 0.055 0.054 0.052
300 0.055 0.048 0.052 0.055 0.054 0.050 0.053 0.052 0.052
500 0.055 0.047 0.050 0.054 0.052 0.051 0.053 0.050 0.047

1000 0.049 0.051 0.053 0.049 0.051 0.052 0.049 0.053 0.051

valid for any Tq defined for qth contrast, using corresponding A11q and A12q. We therefore
leave the unnecessarily repetitive details, and rather focus on the following important re-
marks which highlights the essential differences with the single contrast case.

First, the emphasis on making an orthogonal set of contrasts is due to the fact that
such a set picks all information from the data without retaining much redundancies. It
is further substantiated by the orthogonality condition, ∑g

i=1 ciqciq′ = 0, which, because of∑g
i=1 ciq = 0, mimics the numerator of a covariance.

Second, the theory of set of orthogonal contrasts pertains to the case of planned
comparisons within the ambit of multiple testing. It differs from, e.g, Scheffé’s method of all
possible contrasts (Scheffé, 1959, Ch. 3), originally devised as a post-hoc strategy after global
univariate ANOVA hypothesis is rejected. Scheffé’s method allows infinitely many contrasts,
although practically only a finite set is recommended and practically used in order to keep
better error control.

Third, since many hypotheses are tested simultaneously, an error control mechanism is
called for. With g relatively small or moderate in practice, a simple Bonferroni adjustment
would suffice, which controls the family wise error rate in the strong sense. Otherwise,
some researchers recommend a comparison-wise error control. For comprehensive theoretical
results on multiple testing and error control procedures, see Dickhaus (2014). For a high-
dimensional multiple testing framework, see Ahmad (2019a) and the references therein.

4. Simulations

We assess the accuracy of the proposed test statistics, particularly focusing on its
robustness to normality assumption and validity under high-dimensional settings. For sim-
plicity, we consider T̃ in Theorem 2 for g = 3. We generate p-dimensional random vectors
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of sizes (n1, n2, n3) from normal, exponential and uniform distributions, where

n1 ∈ {10, 20, 30}, n2 = {20, 30, 50}, n3 = {30, 50, 100}, p = {50, 100, 300, 500, 1000}.

All (n1, n2, n3, p) quadruplets are used under three triplets of covariance structures, denoted,
S1: (CS, AR, UN), S2: (CS1, CS2, AR) and S3: (CS, AR1, AR2), which are composed of
compound symmetric (CS), Autoregressive of order 1, AR(1), and unstructured (UN) ma-
trices. They are defined as CS: Σ = (1 − ρ)Ip + ρJp, AR: Cov(Xk, Xl) = κρ|k−l|, ∀ k, l, and
UN: Σ = (σij)p

i,j=1 with σij = 1(1)p (i = j) and ρij = (i − 1)/p (i > j), respectively. Here,
I denotes identity matrix and J is a matrix of 1s. We use κ = 1 for all three triplets, where
CS1, CS2, and AR1, AR2, refer to CS and AR with ρ = 0.3 and ρ = 0.7, respectively.

The nominal level is set at α = 0.05, for both size and power. Moreover, for power, we
set H1 by letting µ1 deviate from H0 in a monotonically increasing fashion, i.e., µ1 = δrp1,
p1 = (1/p, . . . , p/p), δr = 0.2(0.2)1. Finally, we used two contrast vectors, (c1, c2, c3) = (1,
0, -1) and (1, -2, 1), and due to similarity of results, only the first case is discussed here.

The estimated size and power are obtained by averaging over 2000 simulations. Table
1 reports the size for all distributions and Tables 2-3 report the power, respectively, for normal
and uniform distributions. The power results for exponential distributions were very similar
to those for uniform, and are therefore not reported.

All simulations are carried out in SAS/IML where data for the three multivariate dis-
tributions are generated by using appropriate arguments for corresponding built-in SAS/IML
functions. For this, first, by using the square root of the assumed covariance matrix (e.g,
compound symmetry), a sequence of multivariate normal vectors is generated which follows
this structure. Then, by probability integral transform, it is converted into a uniform se-
quence, say U , which is adjusted for its mean and variance by subtracting a mean vector
of length p (with each entry 1/2) and multiplying by the square root of a p × p diagonal

Table 2: Estimated power of T̃ for normal distribution with three covariance triplets

S1 S2 S3
n1, n2, n3 p/δ 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

10, 20, 30 50 0.151 0.963 1.000 0.146 0.962 1.000 0.131 0.923 1.000
100 0.203 0.998 1.000 0.195 0.985 1.000 0.187 0.998 1.000
300 0.351 1.000 1.000 0.329 1.000 1.000 0.345 1.000 1.000
500 0.441 1.000 1.000 0.461 1.000 1.000 0.438 1.000 1.000

1000 0.528 1.000 1.000 0.545 1.000 1.000 0.582 1.000 1.000
20, 30, 50 50 0.263 1.000 1.000 0.269 1.000 1.000 0.252 1.000 1.000

100 0.385 1.000 1.000 0.392 1.000 1.000 0.368 1.000 1.000
300 0.700 1.000 1.000 0.699 1.000 1.000 0.714 1.000 1.000
500 0.865 1.000 1.000 0.866 1.000 1.000 0.831 1.000 1.000

1000 0.942 1.000 1.000 0.998 1.000 1.000 0.917 1.000 1.000
30, 50, 100 50 0.426 1.000 1.000 0.435 1.000 1.000 0.423 1.000 1.000

100 0.637 1.000 1.000 0.647 1.000 1.000 0.649 1.000 1.000
300 0.956 1.000 1.000 0.948 1.000 1.000 0.947 1.000 1.000
500 1.000 1.000 1.000 0.994 1.000 1.000 0.999 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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covariance matrix (with each diagonal entry 1/12). The exponential distribution follows by
an additional log-transformation of U followed by its corresponding adjustment.

We observe accurate size control under all parameters. In particular, the performance
for small or moderate sample sizes and for increasing dimension, for all covariance triplets,
is noteworthy. A slight fluctuation of size can be seen for the exponential distribution but it
stabilizes itself for even moderate sample sizes. Of particular mention is the power which is
not only reasonably high, but also increases for increasing p as well as for increasing ni.

The performance of the statistic for non-normal cases further implies its robustness
under the general model. The overall performance of the statistic supports its use in practice
for high-dimensional data with moderate sample sizes and departures from normality.

Table 3: Estimated power of T̃ for uniform distribution with three covariance triplets

S1 S2 S3
n1, n2, n3 p/δ 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

10, 20, 30 50 0.143 0.961 1.000 0.134 0.965 1.000 0.142 0.956 1.000
100 0.198 0.995 1.000 0.190 0.998 1.000 0.181 0.999 1.000
300 0.315 1.000 1.000 0.329 1.000 1.000 0.351 1.000 1.000
500 0.463 1.000 1.000 0.472 1.000 1.000 0.446 1.000 1.000

1000 0.586 1.000 1.000 0.619 1.000 1.000 0.530 1.000 1.000
20, 30, 50 50 0.255 1.000 1.000 0.240 0.998 1.000 0.243 1.000 1.000

100 0.349 1.000 1.000 0.368 1.000 1.000 0.368 1.000 1.000
300 0.697 1.000 1.000 0.686 1.000 1.000 0.705 1.000 1.000
500 0.884 1.000 1.000 0.805 1.000 1.000 0.811 1.000 1.000

1000 0.883 1.000 1.000 0.936 1.000 1.000 0.960 1.000 1.000
30, 50, 100 50 0.412 1.000 1.000 0.415 1.000 1.000 0.447 1.000 1.000

100 0.660 1.000 1.000 0.618 1.000 1.000 0.628 1.000 1.000
300 0.957 1.000 1.000 0.958 1.000 1.000 0.954 1.000 1.000
500 0.998 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5. Discussion and remarks

A test statistic for contrast comparison of mean vectors is introduced when the di-
mension of the vectors is large, even exceeding the number of vectors. Relaxing normality
assumptions, properties of the test statistic, including its limit under high-dimensional set
up, is provided for a general multivariate model and a few mild assumptions. The statis-
tic is simple and composed of computationally efficient estimators. Simulations are used
to demonstrate the theoretical properties of the test statistic. An extension to a set of
orthogonal contrasts is also given.
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APPENDIX

A. Some basic results

Lemma 1: For Zik ∈ Rp, k = 1, . . . , ni, defined in Model (11), let ZT
ikZik and ZT

ikZir, k ̸= r,
be quadratic and bilinear form of independent components from sample i, and ZT

ikZjl, k ̸= l,
i ̸= j, be the bilinear form composed of vectors from two independent samples. Also let γ
be as defined in Assumption 1 and ⊙ denotes the Hadamard product. Then E(ZT

ikZir) = 0,
E(ZT

ikZjl) = 0, E(ZT
ikZik) = ∥Γi∥2, E(ZT

ikZir)2 = ∥Σi∥2, E(ZT
ikZjl)2 = ∥ΓiΓj∥2. Further,

E(ZT
ikZik)2 = 2∥Σi∥2 + [∥Γi∥2]2 + M1

E(ZT
ikΣZik)2 = 2∥Σ2

i ∥2 + [∥Σi∥2]2 + M2

E(ZT
ikZir)4 = 6∥Σ2

i ∥2 + 3[∥Σi∥2]2 + M3

E(ZT
ikZjl)4 = 6∥ΣiΣj∥2 + 3[∥ΓiΓj∥2]2 + M4,

with M1 = (γ − 3) tr(Σi ⊙ Σi), M2 = (γi − 3) tr(Σ2
i ⊙ Σ2

i ), M3 = 6(γ − 3) tr(Σ2
i ⊙ Σ2

i ) +
(γi − 3)2 tr(Σi ⊙ Σi)2, and M4 = 6(γ − 3) tr(Σ2

i ⊙ Σ2
j) + (γ − 3)2 tr(Σi ⊙ Σi) tr(Σj ⊙ Σj).

All moments in Lemma 1 reduce to those under normality for γ = 3; see Searle (1971).

Lemma 2: (Jiang, 2010, Page 183) Let Y1, Y2, . . . be iid r.vs. with E(Yi) = 0, Var(Yi) = 1,
and bni be constants, 1 ≤ i ≤ n. Then ∑n

i=1 bniYi
D−→ N(0, 1) as n → ∞, if maxi b2

ni → 0.

B. Main proofs

B.1. Proof of theorem 1

With E(Qi) = ∥Γi∥2/ni, E(Ui) = ∥µi∥2, E(Uij) = ⟨µi, µj⟩, we get, by independence,

E(A11) =
g∑

i=1
c2

i ∥Γi∥2/ni = tr(Σ0)

E(A12) =
g∑

i=1
c2

i ∥µi∥2 + 2
g∑

i=1

g∑
j=1

i<j

cicj⟨µi, µj⟩ =
( g∑

i=1
ciµi

)T ( g∑
i=1

ciµi

)
= ∥µ0∥2.

Var(A12) = Var
 g∑

i=1
c2

i Ui + 2
∑
i<j

cicjUij



= Var
( g∑

i=1
c2

i Ui

)
+ 4 Var


g∑

i=1

g∑
j=1

i<j

cicjUij

+ 4 Cov


g∑

i=1
c2

i Ui,
g∑

i=1

g∑
j=1

i<j

cicjUij


=

g∑
i=1

c4
i Var(U)i + 4

g∑
i=1

g∑
j=1

i<j

c2
i c

2
j Var(Uij) + 8

g∑
i=1

g∑
j=1

g∑
j′=1

i<j<j′

c2
i cjcj′ Cov(Uij, Uij′)

+ 8
g∑

i=1

g∑
i′=1

g∑
j=1

i<i′<j

cici′c2
j Cov(Uij, Ui′j) + 4

g∑
i=1

g∑
j=1

i<j

c3
i cj Cov(Ui, Uij) + 4

g∑
i=1

g∑
j=1

i<j

c3
i cj

Cov(Uj, Uij)
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where the remaining covariances vanish when all indices are unequal. Using the second order
moments of one- and two-sample U -statistics (see e.g Koroljuk and Borovskich, 1994), i.e.,

Var(Uni
) = 2

[
2(ni − 1)µT

i Σiµi + ∥Σi∥2
]

/ni(ni − 1)
Var(Uninj

) = [niµ
T
i Σjµi + njµ

T
j Σiµj + ∥ΓiΓj∥2]/ninj

with (see also Ahmad, 2019b) Cov(Uni
, Uninj

) = 2µT
j Σiµi/ni, Cov(Unj

, Uninj
) = 2µT

i Σjµj/nj,
Cov(Uninj

, Uninj′ ) = µT
j Σiµj′/ni, and Cov(Uninj

, Uni′ nj
) = µT

i Σjµi′/nj, we get

Var(A12) = 2
g∑

i=1

c4
i ∥Σi∥2

ni(ni − 1) + 4
g∑

i=1

g∑
j=1

i<j

c2
i c

2
j∥ΓiΓj∥2

ninj

+ 4
g∑

i=1

c4
i µ

T
i Σiµi

ni

+ 4


g∑

i=1

g∑
j=1

i<j

c2
i c

2
jµ

T
i Σjµi

nj

+
g∑

i=1

g∑
j=1

i<j

c2
jc

2
i µ

T
j Σiµj

ni



+ 8


g∑

i=1

g∑
j=1

i<j

cic
3
jµ

T
i Σjµj

nj

+
g∑

i=1

g∑
j=1

i<j

c3
i cjµ

T
j Σiµi

ni



+ 8


g∑

i=1

g∑
j=1

g∑
j′=1

i<j<j′

c2
i cjcj′µT

j Σiµj′

ni

+
g∑

i=1

g∑
i′=1

g∑
j=1

i<i′<j

cici′c2
jµ

T
i Σjµi′

nj

 .

Slightly re-arranging the terms, we get the required expression as

Var(A12) = 2
g∑

i=1
c4

i

∥Σi∥2

ni(ni − 1) + 4
g∑

i=1

g∑
j=1

i<j

c2
i c

2
j

∥ΓiΓj∥2

ninj

+ 4
g∑

i=1
(ciµi)T c2

i Σi

ni

(ciµi)

+ 4


g∑

i=1

g∑
j=1

i<j

(ciµi)T c2
jΣj

nj

(ciµi) +
g∑

i=1

g∑
j=1

i<j

(cjµj)T c2
i Σi

ni

(cjµj)



+ 8


g∑

i=1

g∑
j=1

i<j

(ciµi)T c2
jΣj

nj

(cjµj) +
g∑

i=1

g∑
j=1

i<j

(cjµj)T c2
i Σi

ni

(ciµi)



+ 8


g∑

i=1

g∑
j=1

g∑
j′=1

i<i′<j

(ciµi)T c2
jΣj

nj

(ci′µi′) +
g∑

i=1

g∑
i′=1

g∑
j=1

i<j<j′

(cjµj)T c2
i Σi

ni

(cj′µj′)


= 2

g∑
i=1

c4
i

∥Σi∥2

ni(ni − 1) + 4
g∑

i=1

g∑
j=1

i<j

c2
i c

2
j

∥ΓiΓj∥2

ninj

. (19)
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B.2. Proof of theorem 2

The strategy, as explained around Theorem 2, is to combine the consistency of A11 and
weak limit of A12. First, E(Ei) = tr(Σi)/ni + ∥µi∥2, E(Ui) = ∥µi∥2, give E(Qi) = tr(Σi)/ni,
independent of µi. As ci are known constants, we get, for A11 = ∑g

i=1 c2
i Qi, by independence,

Var(A11) =
g∑

i=1
c4

i Var(Qi),

where Qi = (Ei −Ui)/ni. It thus suffices to focus on Qi. From Lemma 1 and Sec. B.1,

Var(Qi) ≤ 1
n2

i

{Var(Ei) + Var(Ui)} = 1
n2

i

{
1
ni

Var(∥Xik∥2) + 2∥Σi∥2

ni(ni − 1)

}

≤ 1
n2

i

{
(γi − 1)∥Σi∥2

ni

+ 2∥Σi∥2

ni(ni − 1)

}
= γi + 1

n3
i

∥Σi∥2

≤ (γi + 1)c2
i O

( 1
ni

)
,

under the assumptions. It proves the consistency of Qi, hence of A11, as ni, p → ∞. Now
consider T in (10) which, using the consistency of A11, can be written as

T −1 = A12

tr(Σ0)
· tr(Σ0)

A11
= A12

tr(Σ0)
[1 + oP (1)].

Using moments in Sec. B.1 and, for convenience, ignoring the oP (1) factor, we have

E(T −1) = ∥µ0∥2

tr(Σ0)
, σ2

1 = 2∥Σ0∥2 + R
[tr(Σ0)]2

,

which, under H0, reduce, respectively, to E(T −1) = 0, σ2
0 = 2∥Σ0∥2/[tr(Σ0)]2, where R is

given in Theorem 1. Denote U = (UT
1 , UT

2 )T, where the sub-vectors,

U1 = (c2
1U1, . . . , c2

gUg)T, U2 = (c1c2U12, . . . , c1cgU1g, c2c1U21, c2c3U23, . . . , cg−1cgUg−1,g)T

are composed of one- and two-sample U -statistics of all distinct pairs, respectively. We can
write A12 = 1T

GU, with 1G a vector of all 1s of dimension G = g + g(g − 1) = g2. Note that,
elements in U2 such as U12 and U21 are same, by symmetry of the kernel, but are repeated
to count all possible cases, so that A12 can be represented as a linear combination of the
entire vector U. We note that E(A12) = 1T E(U) = ∥µ0∥2 and Var(A12) = 1T Cov(U)1 =
2∥Σ0∥2 + R, as in Theorem 1, where

Cov(U) =
(

Cov(U1) Cov(U1, U2)
Cov(U2, U1) Cov(U2)

)
.

It follows that Cov(U1) and Cov(U2), on the diagonal of Cov(U), lead to 2∥Σ0∥2 in Var(A12),
where Cov(U1, U2) leads to R. Further, under independence, Cov(U1) is a diagonal matrix,
and off-diagonal elements of Cov(U2), i.e., Cov(Uij, Ui′j′), are also zero when i ̸= i′, j ̸= j′.
The rest of the terms in Cov(U) are of the form, e.g, Cov(Uij, Ui′j) = µT

i Σjµi′/ni, which



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

TESTING HIGH DIMENSIONAL CONTRASTS 609

constitute R and, under the assumptions, are uniformly bounded in the limit, and the same
holds for the elements of off-diagonal blocks, Cov(U1, U2). However, R = 0 under H0, and
also R /[tr(Σ0)]2 → 0 asymptotically under H1, so that σ2

1/σ2
0 → 1 in the limit. Hence,

Cov(U)/[tr(Σ0)]2 can be considered as a diagonal matrix for the limit.

Further, E(T −1) is uniformly bounded, and so is 2∥Σ0∥2/[tr(Σ0)]2 ≤ 2, under the
assumptions, where these bounds remain intact for any p, so that we can use a sequential
limit. Writing 1T(U − E(U)) = A12 − E(A12), with corresponding elements Ui − E(Ui) and
Uij − E(Uij), and associated kernels, ⟨Xik, Xir⟩ − ∥µi∥2, and ⟨Xik, Xjl⟩ − ⟨µi, µj⟩, it follows,
from the asymptotic theory of U -statistics (Koroljuk and Borovskich, 1994), that, for any p,

nic
2
i Ui

D−→
p∑

s=1
λis(z2

is − 1) and √
ninjUninj

D−→
p∑

s=1
λisλjsziszjs,

as ni → ∞, where zis, zjs are iid N(0, 1) variables, and independent of each other, and λis

are the eigenvalues of Σi. Now, taking p and the denominator into account, and applying
Lemma 2 for p → ∞, the required limit follows by a simple application of the Cramér-Wold
device and Slutsky’s theorem (van der Vaart, 1998), as was similarly done in Ahmad (2019b).
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Abstract
We study the null distribution of the Hölder mean with a scalar parameter m ∈

(−∞, +∞) of i.i.d. P -values for testing n ≥ 2 null hypotheses subject to the familywise
error rate (FWER) control. We find the exact critical values for n = 2, 3 and the asymptotic
critical values for n > 3 for selected values of m. We use them in a closed multiple testing
procedure (MTP) which we illustrate by a numerical example. We compare the powers of
the tests of the intersection hypothesis H0 = ∩n

i=1Hi for n = 2 and 3 using the Hölder means
with different values of m to find the best choice. Asymptotic critical values are not very
accurate (are generally too conservative) and so power comparisons are not performed for
larger n.

Key words: Arithmetic mean; Closed procedure; Distribution theory; Familywise error rate;
Geometric mean; Harmonic mean; Hölder mean; Power comparison.

AMS Subject Classifications: 62E99

1. Introduction

In Gou and Tamhane (2024) we studied the null distribution of the harmonic mean
of the P -values with application to multiple testing. We compared the resulting multiple
testing procedure (MTP) with the commonly used P -value based MTPs of Holm (1979),
Hochberg (1988) and Hommel (1988) and found it to be generally more powerful.

The arithmetic, geometric and harmonic means are special cases of Hölder mean, so
it is natural to ask whether in the class of all the Hölder mean based MTPs, if there is some
subclass that is more powerful under certain non-null configurations of interest. However,
we must first derive the null distribution of the Hölder mean and obtain its critical values.
This is the main focus of the present paper. In Section 6 we give a closed MTP (Marcus
et al., 1976) that uses the Hölder means for testing multiple hypotheses.
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Consider testing n ≥ 2 hypotheses, H1, . . . , Hn, subject to the strong familywise error
rate (FWER) control requirement (Hochberg and Tamhane, 1987):

FWER = Pr{Reject at least one true Hi} ≤ α (1)

where α ∈ (0, 1) is prespecified. Let P1, . . . , Pn denote the P -values associated with the
hypotheses H1, . . . , Hn. The overall null hypothesis is denoted by H0 = ∩n

i=1Hi. We will
assume that under H0, the Pi’s are independent and identically distributed (i.i.d.) uniform
random variables over [0, 1]. This assumption is relaxed to allow for de[endent P -values in
simulations reported in Section 8.

Consider a given real-valued parameter m ∈ (−∞, ∞) and weights

wi > 0 (i = 1, . . . , n) such that
n∑

i=1
wi = 1. (2)

Then the weighted Hölder mean of the P -values P1, . . . , Pn with parameter m is defined as

P̄n(m, w) =
(

1
n

n∑
i=1

wiP
m
i

)1/m

. (3)

The unweighted Hölder mean corresponds to w1 = · · · = wn = 1/n and is denoted
simply by P̄n(m), dropping w in the notation. The arithmetic, geometric and harmonic
means are special cases of the Hölder mean for m = 1, 0 and −1, respectively. The Hölder
means for selected values of m have been previously considered by Vovk and Wang (2020)
and by Tian et al. (2023). Here we study them in more detail with focus on their exact null
distributions for n = 2 and their asymptomatic null distributions for n > 2.

The outline of the paper is as follows. Section 2 gives expressions for the c.d.f. of
the unweighted Hölder mean for general m and n = 2. Section 3 gives expressions for the
cumulative distribution function (c.d.f.) of the weighted Hölder mean for selected values of
m and the expressions for their lower α critical values for n = 2. Section 4 gives the critical
values for n = 3. Section 5 derives the asymptotic null distributions of the unweighted
Hölder mean. Section 6 gives the closed MTP based on the Hölder means. Section 7 gives
a numerical example to illustrate this MTP for harmonic, geometric and arithmetic means.
Section 8 gives a numerical type I error and power comparisons for testing H0 = ∩n

i=1 for
n = 2 and as well as for type I error for selected n ≥ 10. Finally Section 9 gives concluding
remarks. Derivations of all analytical results and proofs of theorems are presented in the
Appendix.

2. Null distribution of unweighted Hölder mean for general m and n = 2

Before we state the main theorem of this section about the null distribution of P̄2(m),
we show in Figure 1 how the rejection boundaries in the (P1, P2) space change with m for
selected values of m = −∞, −1, 0, 1, ∞ for fixed α = 0.25. (A large value of α is chosen
so that the plotted rejection boundaries are distinguishable from each other.) The rejection
boundaries also change with α but their relative behavior with respect to m remains the same.
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m = +∞ m = 1

m = 0
m = −1
m = −∞

0 1

1

P1

P2

Figure 1: Rejection boundaries for selected values of m

Notice from this figure that the rejection boundaries for m = 0, −1 and −∞ go from
the top edge of the square to the right edge, while for m = 1 and ∞ they go from the bottom
edge to the left edge. By the continuity in m and symmetry in P1 and P2, it follows that
there exists an m = m∗ ∈ (−∞, ∞) and an associated critical value c = c∗ ∈ (0, 1), for
which the rejection boundary connects the top left corner (P1, P2) = (0, 1) to the bottom
right corner (P1, P2) = (1, 0). This rejection boundary is shown by a dotted line in the figure
and we refer to it as the critical boundary.

Given that the rejection boundary is defined by P m
1 + P m

2 = 2cm and the critical
boundary passes through the points (0, 1) and (1, 0), it follows that for the critical boundary
we have 2(c∗)m∗ = 1 or c∗ = (1/2)1/m∗ .

The following numerical example illustrates the calculation of m∗ and c∗ for α = 0.05.
First note that

α = Pr{P̄2(m) ≤ c} = Pr{P1 ≤ (2cm − P m
2 )1/m} =

� 1

0
(2cm − xm)1/mdx.

Substitute m∗ = 1/3 and 2(c∗)m∗ = 1 in the above integral, which then becomes

α =
� 1

0
(1 − x1/3)3dx.

Now put 1 − x1/3 = y. Then dx = 3(1 − y)2dy. So we get

α = 3
� 1

0
y3(1 − y)2dy = 3

60 = 0.05.
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Thus m∗ = 1/3 and c∗ = (1/2)3 = 0.125 gives α = 0.05. This pair of (m∗, c∗) values is shown
in Table 1 along with other pairs of values for selected α values computed using MATLAB
function fsolve().

Table 1: m∗ and c∗ values for selected α for n = 2

α m∗ c∗

0.010 0.2336 0.0515
0.025 0.2812 0.0850
0.050 0.3333 0.1250
0.100 0.4113 0.1854

In the following theorem we give expressions for the c.d.f. of P̄2(m) for general m.
First let F2(x; m) = Pr{P̄2(m) ≤ x} denote the c.d.f. of P̄2(m). Also let Bp(a, b) denote the
incomplete beta function defined as

Bp(a, b) =
� p

0
xa−1(1 − x)b−1dx,

where p ≤ 1. When p = 1 we have the complete beta function denoted by B1(a, b) =
Γ(a)Γ(b)/Γ(a + b).

Theorem 1: The c.d.f. of P̄2(m) is given by

F2(x, m) =


(2xm − 1)1/m + 41/mx2

m

[
B1/2xm

(
1
m

, 1
m

+ 1
)

−B1−1/2xm

(
1
m

, 1
m

+ 1
)]

, when 0 ≤ x ≤ 1, m ≤ m∗, m ̸= 0
41/mx2

m
B1
(

1
m

, 1
m

+ 1
)

, when 0 ≤ x ≤ 2−1/m, m > m∗.

The case m = 0 is covered in Part 5 of Theorem 2 and hence is not included here.
We don’t need to compute the c.d.f. for x > 2−1/m when m > m∗ because the corresponding
α values are too large to be practically useful.

3. Exact null distribution of weighted Hölder mean for selected values of m
and n = 2

In this section we obtain the c.d.f. of the weighted Hölder mean, denoted by F2(x; m, w)
for selected m values. These results are given in the following theorem. The lower α critical
values in each case can be found by solving the equation F2(x; m, w) = α for x. Explicit
expressions for the critical values are given where available. We denote these critical values
by c2(m, α).

Theorem 2: This theorem has nine parts corresponding to the nine selected m values,
m = −∞, −2, −1, −0.5, 0, 0.5, 1, 2 and +∞.

Part 1 (m = −∞):
As m → −∞, P̄n(m, w) → Pmin for any choice of weights. Assuming Pmin is unique, its c.d.f.
and lower α critical value are given by

Fn(x; −∞) = 1 − (1 − x)n and cn(−∞, α) = 1 − (1 − α)1/n.
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Part 2 (m = −2):
For m = −2 the c.d.f. of

P̄2(−2, w) =
(

w1

P 2
1

+ w2

P 2
2

)−1/2

is given by
F2(x; −2, w) = x

[√
w1(1 − w2x2) +

√
w2(1 − w1x2)

]
. (4)

For equal weights this simplifies to F2(x; −2) = x
√

2 − x2. The lower α critical value for
equal weights is c2(−2, α) =

√
1 −

√
1 − α.

Part 3 (m = −1):
For m = −1 the c.d.f. of the weighted harmonic mean,

P̄2(−1, w) =
(

w1

P1
+ w2

P2

)−1
,

is given by
F2(x; −1, w) = x + w1w2x

2 ln
[
1 + 1 − x

w1w2x2

]
.

For equal weights this simplifies to

F2(x; −1) = x + x2

4 ln
[
1 + 4(1 − x)

x2

]
. (5)

There is no closed form solution to the equation F2(x; −1) = α.

Part 4 (m = −0.5):
For m = −0.5, for equal weights the c.d.f. of

P̄2(−0.5) =
[

1
2

(
1√
P1

+ 1√
P2

)]−2

is given by

F2(x, −0.5)

= x

(2 −
√

x)2 + x

8

(
6
√

x − x − x(4 +
√

x)
2 −

√
x

+ 3x ln
(

(2 −
√

x)2

x

)
+ 2 − 2x

(2 −
√

x)2

)
. (6)

There is no closed form solution to the equation F2(x; −0.5) = α.

Part 5 (m = 0):
For m = 0 the c.d.f. of the weighted geometric mean

P̄2(0, w) = P w1
1 P w2

2

is given by
F2(x; 0, w) =

(
1 − w2

w1

)
x1/w1 +

(
1 − w1

w2

)
x1/w2 w1 ̸= w2.
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For equal weights the c.d.f. is given by

F2(x; 0) = Pr
{
χ2

4 > −4 ln x
}

= x2(1 − 2 ln x) (7)

and its lower α critical value equals

c2(0, α) = exp
(

−1
4χ2

4,α

)
, (8)

where χ2
4,α is the upper α critical point of the χ2

4 distribution.

Part 6 (m = 0.5):
For m = −0.5, the c.d.f. of

P̄2(0.5, w) =
(

w1

√
P1 + w2

√
P2

)2
.

for equal weights is given by
F2(x, −0.5) = 8x2

3 , (9)

The lower α critical value equals

c2(0.5, α) =
√

3α

8 for α ≤ 1
6 .

Part 7 (m = 1):
For m = 1 the c.d.f. of the weighted arithmetic mean, assuming w1 ≤ w2, is given by

F2(x; 1, w) =


x2

2w1w2
, 0 ≤ x ≤ w1,

2x−w1
2w2

, w1 ≤ x ≤ w2,

1 − (1−x)2

2w1w2
, w2 < x ≤ 1.

For equal weights this simplifies to

F2(x, 1) =
{

2x2, 0 ≤ x ≤ 1/2,

1 − 2(1 − x)2, 1/2 < x ≤ 1.
(10)

The lower α critical value for equal weights is given by c2(1, α) =
√

α/2 if α ≤ 1/2.

Part 8 (m = 2):
For m = 2, assuming that w1 ≤ w2, the c.d.f. of

P̄2(2, w) = (w1P
2
1 + w2P

2
2 )1/2

is given by

F2(x; 2, w) =



πx2

4√
w1w2

, x ≤ √
w1,

√
w1(x2−w1)+x2 tan−1

(√
w1

x2−w1

)
2√

w1w2
,

√
w1 < x ≤ √

w2,
1
2

(√
x2−w2

w1
+
√

x2−w1
w2

)
+ x2

2√
w1w2

(
tan−1

(√
w1

x2−w2

)
− tan−1

(√
x2−w1

w1

))
, x >

√
w2.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO
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For equal weights this simplifies to

F2(x; 2) =


πx2

2 x ≤
√

1/2,
√

2x2 − 1 + x2 tan−1
(

1−x2
√

2x2−1

)
x >

√
1/2.

(11)

For α > π/4, there is no closed form solution to the equation F2(x; 2) = α. For α ≤ π/4, we
have

c2(2, α) =
√

2α

π
.

Part 9 (m = ∞):
As m → +∞, P̄n(m, w) → Pmax for any choice of weights. Assuming Pmax is unique, its
c.d.f. and lower α critical value are given by

Fn(x; ∞) = xn and cn(∞, α) = α1/n.

Table 2 summarizes the formulae for finding the critical values c2(m, α) for the nine
selected values of m and α = 0.05. From this table we see that the critical value increases
with m. This is true in general for any n ≥ 2 as stated in Theorem 3.

Table 2: Critical values c2(m, α) for selected m, n = 2 and α = 0.05

m Formula for c2(m, α) c2(m, α) m Formula for c2(m, α) c2(m, α)
−∞ c2(−∞, α) = 1 −

√
1 − α 0.0253 0.5 c2(0.5, α) =

√
3α
8 if α ≤ 1/6 0.1369

−2 c2(−2, α) =
√

1 −
√

1 − α 0.0354 1 c2(1, α) =
√

α
2 if α ≤ 1/2 0.1581

−1 Solve x + x2

2 ln
[
1 + 4(1−x)

x2

]
= α 0.0460 2 c2(2, α) =

√
2α
π

if α ≤ π/4 0.1784
−0.5 Solve Eqn. (6) = α 0.0616 ∞ c2(∞, α) =

√
α 0.2236

0 Solve x2(1 − 2 ln x) = α 0.0933

Theorem 3: For any fixed α ∈ (0, 1) and n ≥ 2 the critical value cn(m, α) is an increasing
function of m.

4. Exact critical values for n = 3

The rejection region for n = 3 is defined by(
P m

1 + P m
2 + P m

3
3

)1/m

≤ c,

where c ∈ (0, 1) is a critical constant depending on α and m. Just as the critical bound
for n = 2 passes through the points (1, 0) and (0, 1) in the (P1, P2) space, the critical
surface for n = 3 passes through the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). The corresponding
critical (m∗, c∗) thus satisfy c∗ = (1/3)1/m∗ . The type I error probability α for testing
H0 = H1 ∩ H2 ∩ H3 is given by

� 31/mc

0

� (3cm−pm
3 )1/m

0

� (3cm−pm
2 −pm

3 )1/m

0
dp1 dp2 dp3 = α.
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Table 3: Critical values c3(m, .05) for selected m values and α = 0.05

m c3(m, 0.05)
−∞ 0.0170
−2 0.0289
−1 0.0443

−0.5 0.0691
0 0.1226

0.5 0.1839
0.6848 0.2010

1 0.2231
2 0.2639

+∞ 0.3684

Setting 3cm = 1 for the critical surface, the above equation reduces to
� 1

0

� (1−pm
3 )1/m

0
(1 − pm

2 − pm
3 ) dp2 dp3 = α.

For α = 0.05 the above equation can be solved using the MATLAB function fsolve() for m
resulting in m∗ = 0.6848 and c∗ = (1/3)1/m∗ = 0.2010. Analogous to the n = 2 case, different
rejection regions and hence different integral expressions must be evaluated for m > m∗ and
m < m∗. Before we do that for m = 0 (geometric mean) we have −2n ln(P̄3(0)) ∼ χ2

2n and
hence cn(α) = exp(−(1/2n)χ2

2n,α). Therefore

c3(0, 0.05) = exp(−(1/6)χ2
6,.05) = 0.1226.

Omitting the analytical details we give in Table 3 the critical values c3(m, 0.05) for selected
m values. These are used in the type I error rate and power simulations in Section 8.

5. Asymptotic null distribution of the unweighted Hölder mean

The exact null distribution of the Hölder mean is difficult to derive in general for
n > 2. Hence we resort to asymptotics. The P m

i are i.i.d. with a beta distribution with
parameters a = 1/m and b = 1. The mean and variance of this distribution are

E (P m
i ) = 1

m + 1 and Var (P m
i ) = m2

(m + 1)(2m + 1) . (12)

Note that Var (P m
i ) exists (is finite) for m > −1/2 and does not exist (is either infinite

or negative) for m ≤ −1/2. So the standard Lindeberg-Lévy central limit theorem (CLT)
applies in the former case, but not in the latter in which case P̄n(m) is not asymptotically
normal. Hence we treat the two cases separately.

5.1. The case m > −1/2

The case m = 0 is covered in Part 5 of Theorem 2 since it does not require asymptotics.
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By the CLT, (
1
n

∑n
=1 P m

i − 1
m+1

)
√

m2

n(m+1)(2m+1)

−→ N(0, 1)

as n → ∞. The lower α critical value for 1
n

∑n
i=1 P m

i is then given by

1
m + 1 − zα

√√√√ m2

n(m + 1)(2m + 1) , (13)

where zα is the 100(1 − α) percentile of the N(0, 1) distribution. However, we require the
asymptotic critical values of P̄n(m) =

(
1
n

∑n
i=1 P m

i

)1/m
. One method (Method 1) is to take

the (1/m)th power of (13). Another method (Method 2) is to use the delta method to find
the mean and variance of P̄n(m) and apply the CLT approximation to it.

The delta method gives

E(P̄n(m)) = E

(
1
n

n∑
i=1

P m
i

)1/m

≈
( 1

m + 1

)1/m

(14)

and

Var(P̄n(m)) = Var
(

1
n

n∑
i=1

P m
i

)1/m

≈ (m + 1)1−2/m

n(2m + 1) . (15)

The derivation of these two formulae is given in the Appendix. The lower α critical value
for P̄n(m) using Method 2 is given by

( 1
m + 1

)1/m

− zα

√√√√(m + 1)1−2/m

n(2m + 1) . (16)

The critical values obtained by both these methods are given in Table 4 for selected values
of m and n. Which method gives more accurate results depends on m and n.

Table 4: Asymptotic lower α = 0.05 critical values of P̄n(m) for m > −1/2

m Method n
10 20 50 100 1000

−0.25 Method 1 0.1752 0.2065 9.2403 0.2600 0.2970
Method 2 0.1148 0.1739 0.2263 0.2527 0.2963

0 Exact 0.2079 0.2481 0.2884 0.3104 0.3490
0.5 Method 1 0.2668 0.3142 0.3594 0.3834 0.4247

Method 2 0.2442 0.3029 0.3549 0.3811 0.4244
1.0 Method 1 0.2877 0.3499 0.4050 0.4329 0.4788

Method 2 0.2877 0.3499 0.4050 0.4329 0.4788
2.0 Method 1 0.2544 0.3787 0.4618 0.4984 0.5536

Method 2 0.3447 0.4129 0.4733 0.5038 0.5541

The accuracy of these critical values is evaluated by simulating their associated type
I errors in Section 8.3.
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5.2. The case −1 < m ≤ −1/2

Here Xi = P m
i follows a beta distribution with a = −1/m and b = 1. Its p.d.f. and

c.d.f. are given by

fXi
(x) =

(
− 1

m

)
x

1
m

−1 and FXi
(x) = 1 − x

1
m for x ≥ 1. (17)

The variance of this distribution is ∞, so the standard Lindeberg-Lévy CLT does not ap-
ply and (1/n)∑n

i=1 P m
i is not asymptotically normal. So we apply the generalized CLT

(Gnedenko and Kolmogorov, 1954; Ibragimov and Linnik, 1971; Petrov, 1975) stated below.

Theorem 4: Let X1, . . . , Xn be i.i.d. random variables with the distribution function FX(x)
satisfying the conditions

FX(x) ∼ k1|x|−a∗ as x −→ −∞

and
1 − FX(x) ∼ k2|x|−a∗ as x −→ +∞

with a∗ > 0. Then there exist sequences {µn} and {σn} where σn > 0 such that the
distribution of the centered and normalized sum

Zn =
∑n

i=1 Xi − µn

σn

weakly converges to a stable distribution (denoted by S(a, b)) with parameters a = min{a∗, 2}
and b = (k2 − k1)/(k2 + k1) as n → +∞. The centering and normalizing values µn and σn

depend on the parameters a and b.

Let c∗(α) denote the upper α critical value of the stable distribution S(1, 1). Then
the critical value of the S(a, b) distribution is

c(α) = a + bc∗(α).

A discussion of the stable distribution and methods of approximating the critical value c∗(α)
is given in the Appendix.

The asymptotic critical value of ∑n
i=1 Xi = ∑n

i=1 P m
i is µn + c(α)σn. Then the critical

value of P̄n(m) = [(1/n)∑n
i=1 P m

i ]1/m can be approximated by making the corresponding
transformation as

cn(m, α) = [(1/n)(µn + c(α)σn)]1/m . (18)

Table 6 gives the critical values computed using this method, which we refer to as Method 0.
The results regarding the values of µn and σn used in the three cases discussed below are due
to Mijnheer (1975), Samorodnitsky and Taqqu (1994) and Uchaikin and Zolotarev (1999).
Some selected values of c∗(α) are given in Table 5.

We now apply Theorem 4 to different cases for values of m ≤ −1/2.
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Table 5: Selected values of c∗(α)

α 0.01 0.025 0.05 0.10 0.20
c∗(α) 65.9760 27.1899 14.0048 7.1287 3.3843

Case 1 (m = −1/2)
From (17) we obtain the p.d.f. and c.d.f. of Xi = P

−1/2
i as

fXi
(x) = 2x−3 and FXi

(x) = 1 − x−2 for x ≥ 1.

Therefore k1 = 0, k2 = 1 and a∗ = 2. So a = 2 and b = 1. For these values of a and b it has
been shown that (see the previously mentioned references)

µn = nE (Xi) = nE
(
P

−1/2
i

)
= 2n and σn =

√
n ln n.

Furthermore, the stable law S(2, 1) is simply the N(0, (
√

2)2) distribution, so
∑n

i=1 P
−1/2
i − 2n√

2n ln n
−→ N(0, 12).

Thus the lower α critical value of ∑n
i=1 P

−1/2
i is 2n − zα

√
2n ln n from which the lower α

critical value of P̄n(−1/2) can be approximated as

cn (−1/2, α) =
[ 1
n

{
2n − zα

√
2n ln n

}]−2
.

Case 2 (−1 < m < −1/2)
From (17) we get k1 = 0, k2 = 1 and a∗ = 1/m. Thus we have a = −1/m (1 < a < 2) and
b = 1. For these values of a and b it has been shown that (see the previously mentioned
references)

µn = nE(Xi) = nE (P m
i ) = na

a − 1 and σn =
(

nπ

2Γ(a) sin(aπ/2)

)1/a

.

Therefore ∑n
i=1 P m

i − na
a−1(

nπ
2Γ(a) sin(aπ/2)

)1/a
−→ S(a, b).

The asymptotic lower α critical value of S(a, b) is

c(α) = − 1
m

+ c∗(α).

Hence the approximate lower α critical value of P̄n(m) is

cn(m, α) =
 1

n

 na

a − 1 − c(α)
(

nπ

2Γ(a) sin(aπ/2)

)1/a

1/m

.



622
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

JIANGTAO GOU AND AJIT C. TAMHANE [Vol. 22, No. 3

Case 3 (m ≤ −1) The case m = −1 corresponds to the harmonic mean and is discussed in
detail in Gou and Tamhane (2024). So we consider only the case m < −1. From (17) we get
k1 = 0, k2 = 1 and a∗ = 1/m. Thus we have a = − 1

m
and b = 1 where 0 < a < 1. For these

values of a and b it has been shown that (see the previously mentioned references)

µn = 0 and σn =
(

nπ

2Γ(a) sin(aπ/2)

)1/a

.

Therefore ∑n
i=1 P m

i(
nπ

2Γ(a) sin(aπ/2)

)1/a
−→ S(a, b).

Since a and b are the same as in Case 2, c(α) is also the same. Hence the approximate lower
α critical value of P̄n(m) is 1

n

−c(α)
(

nπ

2Γ(a) sin(aπ/2)

)1/a

1/m

.

Table 6: Asymptomatic lower α = 0.05 critical values of P̄n(m) for m ≤ −1/2 using
Method 0

m n
10 20 50 100 1000

−0.5 0.1030 0.1189 0.1423 0.1601 0.2079
−1.0 0.0412 0.0400 0.0386 0.0376 0.0346
−2.0 0.0159 0.0112 0.0071 0.0050 0.0016
−3.0 0.0110 0.0069 0.0037 0.0024 0.0005

The accuracy of these critical values is evaluated by simulating their associated type
I errors in Section 8.3.

6. A closed multiple testing procedure (MTP)

Our testing strategy will be to use the closure method (Marcus et al., 1976) based on
P̄n(m) with a preselected m as the test statistic. The closure method begins by testing the
overall null hypothesis H0 = ∩n

i=1Hi at level α. If H0 is rejected then it tests all subset null
hypotheses of size n − 1 each at level α. If any subset null hypothesis is not rejected then
all its subsets are accepted by implication. This ensures coherence (Gabriel, 1969). On the
other hand, if any subset null hypothesis of size n′ ≤ n is rejected then all its subsets of size
n′ − 1 that are not already accepted by implication are tested each at level α.

This procedure does not have a simple stepwise shortcut like the Holm and the
Hochberg procedures have. However, these computations can be substantially reduced as
follows. When testing all subsets of size n′ ≤ n, first test the subset with the largest P -
values. If it is significant then all other subsets of size n′ will also be significant and need not
be tested. Otherwise test the subset with the smallest P -values. If it is nonsignificant then
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all other subsets of size n′ will also be nonsignificant and need not be tested. This method is
illustrated in the numerical example in Section 7. A simple R code can be used to compute
the Hölder means.

Dobriban (2020) has given an alternative shortcut which he called fast closed testing
(FACT) algorithm. It is particularly efficient when n is large. He showed that when the
hypotheses are exchangeable, we don’t need to test all 2n − 1 intersection hypotheses, but
only n(n+1)/2 of them. For example, if n = 5 then instead of testing all 25 −1 = 31 subsets,
we only need to test 5(5 + 1)/2 = 15 of them, a saving of 50%. As n grows larger, obviously
saving increases. Here we don’t use this algorithm as it would require much explanation.

7. Numerical example

Consider a dose response study in which n = 5 doses are tested for efficacy, labeled
from the highest to the lowest as 1 through 5. Suppose that the P -values for the comparisons
with placebo (zero dose) are as follows:

P1 = 0.01, P2 = 0.02, P3 = 0.03, P4 = 0.04, P5 = 0.30.

Denote the corresponding hypotheses by H1, . . . , H5. Because of space constraints we will
only briefly illustrate three MTPs: harmonic mean MTP (denoted by HMP), geometric
mean MTP (denoted by GMP) and arithmetic mean MTP (denoted by AMP). We will use
α = 0.05.

Harmonic Mean Procedure (HMP): The critical values for HMP are

c1 = 0.0500, c2 = 0.0460, c3 = 0.0443, c4 = 0.0433, c5 = 0.0425.

Step 1: Test the whole set {1, 2, 3, 4, 5}. The harmonic mean for this set is 0.0236 < c5 =
0.0425, so we reject it.

Step 2: Test the subset {2, 3, 4, 5} of size 4 with the largest P -values. The harmonic mean
for this subset is 0.0358 < c4 = 0.0433, so we reject it.

Step 3: Test the subset {3, 4, 5} of size 3 with the largest P -values. The harmonic mean
for this subset is 0.0486 > c3 = 0.0443. Therefore we accept intersection hypotheses
associated with all subsets of {3, 4, 5}. The next largest harmonic mean is associated
with the subset {2, 4, 5} and is 0.0383 < c3 = 0.0443, which is thus rejected and hence
all other subsets of size 3 are rejected.

Step 4: Test only those subsets of size 2 that include 1 or 2 or both. The subset {2, 5} has
the largest harmonic mean 0.0375 < c2 = 0.0460 and hence the subsets {1, 5} is also
rejected.

Step 5: Test only {1} and {2} . Since P1 and P2 are < c1 = 0.05, both H1 and H2 are
rejected.

Thus HMP rejects two hypotheses, H1 and H2.
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Having explained how HMP operates, we will present the application of GMP and
AMP rather briefly, since they operate similarly.

Geometric Mean Procedure (GMP): The critical values for GMP are

c1 = 0.0500, c2 = 0.0933, c3 = 0.1226, c4 = 0.1439, c5 = 0.1603.

At the first step we get P̄5(0, {1, 2, 3, 4, 5}) = 0.0373 < c5 = 0.1603, so reject {1, 2, 3, 4, 5}.
Next P̄4(0, {2, 3, 4, 5}) = 0.0518 < c4 = 0.1439, so reject {2, 3, 4, 5}. Next P̄3(0, {3, 4, 5}) =
0.0711 < c3 = 0.1226, so reject {3, 4, 5}. Next P̄2(0, {4, 5}) = 0.1095 > c2 = 0.0933 and
P̄2(0, {3, 5}) = 0.0949 > c2 = 0.0933, so these subsets are accepted while the subset {1, 2} is
rejected since P̄2(0, {1, 2}) = 0.0141 < c2 = 0.0933. Finally since P1 and P2 are < c1 = 0.05,
both H1 and H2 are rejected.

Arithmetic Mean Procedure (AMP): The critical values for AMP are

c1 = 0.0500, c2 = 0.1581, c3 = 0.2231, c4 = 0.2617, c5 = 0.2869.

At the first step we get P̄5(1, {1, 2, 3, 4, 5}) = 0.0800 < c5 = 0.2869, so reject {1, 2, 3, 4, 5}.
Next P̄4(1, {2, 3, 4, 5}) = 0.0975 < c4 = 0.2617, so reject {2, 3, 4, 5}. Next P̄3(1, {3, 4, 5}) =
0.1233 < c3 = 0.2231, so reject {3, 4, 5}. Next P̄2(1, {2, 5}) = 0.1600, P̄2(1, {3, 5}) =
0.1605, P̄2(1, {4, 5}) = 0.1700 are all > c2 = 0.1581 and so are not rejected while all other
pairs of hypotheses are rejected including {1, 5} for which P̄2(1, {1, 5}) = 0.1550. So only
H1 remains to be tested and since P1 = 0.01 < c1 = 0.05, it is rejected. Thus AMP only
rejects H1.

8. Type I error and power simulations

8.1. Power simulations for n = 2

To save space, we report only the power of the test of H0 = H1 ∩ H2 for n = 2. Note
that if the closed test procedure is consonant (Gabriel, 1969)), i.e., if it rejects H0 then it
also rejects at least one of H1 or H2. Therefore the power of the test of H0 is also the power
of the corresponding closed MTP. It is easy to show that the closed MTP given above is
not consonant for n = 2 if c2(m, α) > α. In that case it is possible to have P1, P2 > α but
P̄2(m) < c2(m, α). So H0 is rejected but neither H1 nor H2. For example, consider m = 1
(arithmetic mean). Let P1 = P2 = 0.15. Then P̄2(1) = 0.15 < c2(1, 0.05) = 0.1581, but
P1 = P2 = 0.15 > c1(1, 0.05) = 0.05. From Table 2 we see that MTPs are consonant if
m ≤ −1 for α = 0.05.

The power comparison setup is as follows. Let X1 ∼ N(µ1, 1) and X2 ∼ N(µ2, 1)
with Corr(X1, X2) = ρ ≥ 0. Further let P1 = 1 − Φ(X1) and P2 = 1 − Φ(X2). Under the
alternative hypothesis (µ1 ̸= 0 or µ2 ̸= 0) the power can be expressed as a bivariate normal
integral for all m. So it can be evaluated using numerical integration and does not need
to be simulated. The integral expressions for power are omitted for brevity. The power is
evaluated for m = −∞, −2, −1, −1/2, 0, 1/2, 1, 2, +∞ and for six configurations of (µ1, µ2)
either µ1 = 0 and µ2 = 1, 2, 3 or µ1 = µ2 = 1, 2, 3. The power results for ρ = 0 are given in
Table 7.

We also conducted power comparisons for ρ = −0.5 and ρ = +0.5, but we don’t show
them in Table 7. Furthermore, we also evaluated the Pr(Type I Error) under the overall null
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hypothesis µ1 = µ2 = 0 for ρ = 0, −0.5 and +0.5. This probability is 0.05 under ρ = 0 by
design and is confirmed by simulation and hence is not shown in Table 7. We see that for
ρ = −0.5 the Pr(Type I Error) is slightly liberal for m = −2 and −∞ while it is conserva-
tive for other values pf m. On the other hand, for ρ = +0.5 the Pr(Type I Error) is slightly
conservative for m = −2 and −∞ while it is quite liberal for other values of m.

Table 7: Power for rejecting H0 = H1 ∩ H2 for selected values of m, (µ1, µ2) and
α = 0.05

P (Type I Error) Power
m (µ1, µ2)

(0, 0) (0, 0) (0, 1) (0, 2) (0, 3) (1, 1) (2, 2) (3, 3)
ρ = −0.5 ρ = +0.5 ρ = 0

−∞ 0.0506 0.0459 0.1909 0.5303 0.8559 0.3110 0.7678 0.9781
−2 0.0508 0.0478 0.1915 0.5311 0.8562 0.3159 0.7783 0.9809
−1 0.0478 0.0507 0.1928 0.5320 0.8561 0.3283 0.7982 0.9849

−0.5 0.0424 0.0572 0.1945 0.5309 0.8538 0.3487 0.8245 0.9890
0 0.0260 0.0736 0.1925 0.5086 0.8307 0.3886 0.8646 0.9937

0.5 0.0094 0.0957 0.1601 0.3182 0.4502 0.4024 0.8729 0.9939
1 0.0102 0.1005 0.1464 0.2481 0.3000 0.3838 0.8425 0.9867
2 0.0111 0.1021 0.1389 0.2175 0.2471 0.3679 0.8167 0.9800
∞ 0.0124 0.1024 0.1996 0.2208 0.8559 0.3538 0.7966 0.9751

Figure 2 shows the plots of power with left panel showing the plots when H1 is true
and H2 is false (µ1 = 0, µ2 = 1, 2 or 3) and right panel showing the plots when both H1 and
H2 are equally false (µ1 = µ2 = 1, 2 or 3).

Figure 2: Plots of power for rejecting H0 = H1 ∩ H2 using different m (left panel:
µ1 = 0, µ2 = 1, 2, 3, right panel: µ1 = µ2 = 1, 2, 3)

The Pr(Type I Error) is fairly well controlled when ρ = −0.5, but not when ρ = +0.5.
The power results show that the maximum (or nearly maximum) power is achieved close to
m = −1 (harmonic mean) when one hypothesis is true and the other is false. When both
hypotheses are equally false, m = 0.5 yields the maximum power. The plots are fairly flat
in the vicinity of the maximum, so any value of m close to the true optimum would work
nearly equally well.
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8.2. Type I error and power simulations for n = 3

Using the critical values obtained in Section 4 we evaluated the type I error of re-
jecting H0 = H1 ∩ H2 ∩ H3 (which is also the FWER of any consonant closed MTP) under
independence and positive and negative dependence. The P -values are generated in the same
manner as for n = 2 by simulating equicorrelated trivariate normal random variables with
zero means and common correlation ρ = 0 for independence, ρ = 0.5 for positive dependence
and ρ = −0.25 for negative dependence and transforming them to P -values. The number
of replications were 106. The simulation results for type I error are presented in Table 8.
Notice that the type I error rate is controlled accurately under independence for all m and
conservatively for ρ = −0.25 when m ≥ −1.0; however, it is not controlled for ρ = 0.5 when
m ≥ −1.0.

Table 8: Simulated type I error for rejecting H0 = H1∩H2∩H3 under independence
(ρ = 0), positive dependence (ρ = 0.5) and negative dependence (ρ = −0.25)

m ρ = 0 ρ = 0.5 ρ = −0.25
−∞ 0.0501 0.0435 0.0506
−2.0 0.0501 0.0454 0.0500
−1.0 0.0500 0.0512 0.0477
−0.5 0.0499 0.0636 0.0416
0.0 0.0495 0.0941 0.0231
0.5 0.0497 0.1270 0.0102
1.0 0.0496 0.1401 0.0106
2.0 0.0497 0.1447 0.0126
+∞ 0.0496 0.1438 0.0152

Next we consider power for rejecting H0 = H1∩H2∩H3. We considered three different
configurations: (µ1, µ2, µ3) = (0, 0, δ), (0, δ, δ) and (δ, δ, δ) where δ = 2. The simulated powers
for different m are summarized in Table 9.

Table 9: Simulated powers for rejecting H0 = H1 ∩ H2 ∩ H3 under independence
for different m (ρ = −0.25)

m (µ1, µ2, µ3)
(0,0,2) (0,2,2) (2,2,2)

−∞ 0.4709 0.7043 0.8354
−2.0 0.4720 0.7146 0.8507
−1.0 0.4734 0.7362 0.8798
−0.5 0.4717 0.7656 0.9147
0.0 0.4324 0.8008 0.9537
0.5 0.2529 0.7307 0.9626
1.0 0.1829 0.5161 0.9414
2.0 0.1496 0.3994 0.9023

+∞. 0.1291 0.3342 0.8633

First we note that as in the case of n = 2, maximum power is achieved at m = −1
(harmonic mean) when only one Hi is false, with optimum m increasing as more hypotheses
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Table 10: Simulated type I error for rejecting H0 = ∩n

i=1Hi for n ≥ 10 using
asymptotic approximations to critical values Using Method 1 and Method 2
When α = 0.05

m Method∗ n
10 20 50 100 1000

−2 Method 0 0.0498 0.0500 0.0502 0.0501 0.0499
−0.5 Method 0 0.0543 0.0499 0.0455 0.0430 0.0362
−0.25 Method 1 0.0784 0.0803 0.0819 0.0818 0.0797

Method 2 0.0208 0.0365 0.0515 0.0591 0.0719
0.25 Method 1 0.0414 0.0389 0.0370 0.0354 0.0334

Method 2 0.0168 0.0219 0.0260 0.0280 0.0311
0.5 Method 1 0.0261 0.0248 0.0239 0.0233 0.0222

Method 2 0.0132 0.0161 0.0184 0.0194 0.0210
1 Method 1 0.0092 0.0095 0.0098 0.0098 0.0100

Method 2 0.0092 0.0095 0.0098 0.0098 0.0100
2 Method 1 0.0003 0.0009 0.0016 0.0016 0.0021

Method 2 0.0059 0.0043 0.0034 0.0030 0.0025
∗ Method 0 uses the generalized central limit theorem (GCLT); see Section 5.2. Methods 1

and 2 use the central limit theorem (CLT); see Section 5.1.

become false: optimum m = −0.5 when two hypotheses are false and optimum m = 0
(geometric mean) when all three hypotheses are false. The power first increases with m and
then decreases rapidly as m approaches +∞.

8.3. Type I error simulations for n ≥ 10

To check the accuracy of the asymptotic approximations to the critical values com-
puted using Method 1 and Method 2 in Tables 4 and 6 we performed simulations of type
I error for rejecting the overall null hypothesis H0 = ∩n

i=1Hi. The results are reported in
Table 10. These results show that the asymptotic approximations are not very accurate and
better approximations need to be found. Method 2 gives generally conservative approxi-
mations (estimated type I error rate is < α = 0.05) except for m = −0.25 and n ≥ 50,
while Method 1 gives anti-conservative approximations for all values of n when m = −0.25;
otherwise it is conservative. Generally, Method 2 is more conservative than Method 1.

9. Concluding remarks and practical recommendations

In this paper we have exhaustively studied the null distribution of the Hölder mean
with the exact distribution for n = 2 and the asymptotic distribution for large n. We have
also obtained the exact critical values for n = 3. The exact null distribution in closed form
is also available for all n > 2 in special cases, e.g., minimum, maximum and geometric mean
and can be obtained using the convolution method in other cases, in particular, the harmonic
mean and arithmetic mean. The asymptotic approximations to critical values are generally
too conservative and better approximations need to be found.

These null distributions and their critical values are employed in a closed MTP. The
power of the test of H0 = ∩n

i=1 for n = 2 and 3 for different values of m is evaluated for
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six different configurations of (µ1, µ2) and three different configurations of (µ1, µ2, µ3) and
optimum chpoces of m are found. The power comparisons show that for n = 2 if only one
null hypothesis is false (µ1 = 0, µ2 > 0) then the test based on the harmonic mean (m = −1)
gives the maximum power and if both null hypotheses are equally false (µ1 = µ2 > 0) then
the test based on the Hölder mean with m = −0.5 gives the maximum power. Similarly, for
n = 3, if only one null hypothesis is false. Similarly, maximum power is achieved at m = −1
(harmonic mean) when only one Hi is false, with optimum m increasing as more hypotheses
become false: optimum m = −0.5 when two hypotheses are false and optimum m = 0
(geometric mean) when all three hypotheses are false. Since the power plots in the vicinity
of the maximum power are fairly flat, our practical recommendation is to use m = −0.5
orm = −1.

In this paper the power comparisons are limited to the test of H0 for n = 2 and 3.
Power comparisons are not made for n ≥ 10 because the asymptotic critical values are too
conservative.

Acknowledgements

We are grateful to Professor Nairanjana Dasgupta, a guest editor of this issue, for
inviting us to submit an article. It is indeed a great honor to publish our work in honor
and memory of Professor C. R. Rao, one of the greatest statisticians. Professor Rao made
fundamental contributions to distribution theory and this is our small contribution to the
area. We dedicate this article to his memory as a token of our appreciation of him.

References

Dobriban, E. (2020). Fast closed testing for exchangeable local tests. Biometrika, 107,
761–768.

Gabriel, K. R. (1969). Simultaneous test procedures–some theory of multiple comparisons.
The Annals of Mathematical Statistics, 40, 224–250.

Gnedenko, B. V. and Kolmogorov, A. N. (1954). Limit Distributions for Sum of Independent
Random Variables. Addison-Wesley, Cambridge, Massachusetts.

Gou, J. and Tamhane, A. C. (2024). A closed multiple test procedure based on the harmonic
means of p-values. submitted.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance.
Biometrika, 75, 800–802.

Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures. John Wiley and
Sons, New York, New York.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6, 65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified
Bonferroni test. Biometrika, 75, 383–386.

Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationarily Sequences of Random
Variables. Wolters-Noordnoff, Groningen.

Marcus, R., Peritz, E., and Gabriel, K. R. (1976). On closed testing procedures with special
reference to ordered analysis of variance. Biometrika, 63, 655–660.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

DISTRIBUTION OF THE HÖLDER MEANS OF THE P -VALUES 629

Mijnheer, J. (1975). Sample Path Properties of Stable Processes. Mathematical Centre tracts.
Mathematisch Centrum.

Petrov, V. V. (1975). Sums of Independent Random Variables. Springer-Verlag, Berlin,
Heidelberg.

Rektorys, K. (1969). Survey of Applicable Mathematics. The M.I.T. Press, Cambridge,
Massachusetts.

Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance. Chapman and Hall, New York, New York.

Tian, J., Chen, X., Katsevich, E., Goeman, J., and Ramdas, A. (2023). Large-scale simulta-
neous inference under dependence. Scandinavian Journal of Statistics, 50, 750–796.

Uchaikin, V. V. and Zolotarev, V. M. (1999). Chance and Stability: Stable Distributions and
their Applications. VSP International Science Publishers, Utercht, Netherlands.

Vovk, V. and Wang, R. (2020). Combining p-values via averaging. Biometrika, 107, 791–808.

ANNEXURE

Appendix: Proofs and Derivations

Proof of Theorem 1 As seen from Figure 3, for m < m∗, the rejection boundary is convex
while for m > m∗, the rejection boundary is concave. The corresponding rejection regions
are below the rejection boundaries. Therefore the regions of integration are different for
evaluating the integral below:

F2(x; m) = Pr
{

P m
1 + P m

2
2 ≤ xm

}
=

�
(2xm − ym)dy. (19)

The two regions are

R1 = {0 ≤ P1 ≤ (2xm − P m
2 )1/m, 0 ≤ P2 ≤ 1} (m ≤ m∗).

and
R2 = {0 ≤ P1 ≤ 21/mx, 0 ≤ P2 ≤ (2xm − P m

1 )1/m (m > m∗)

The Case (m ≤ m∗): By integrating (19) over the region R1, we get

F2(x; m)

=
� (2xm−1)1/m

0
(2xm − ym)1/mdy

=
� (2xm−1)1/m

0
dy +

� 1

(2xm−1)1/m

(2xm − ym)1/mdy

= (2xm − 1)1/m + (21/mx)2
� 1/21/mx

(1−1/2xm)1/m

(1 − um)1/mdu (by putting u = y/(21/mx)).
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Figure 3: Rejection regions R1 for m ≤ m∗ and R2 for m > m∗ which are below
the respective boundaries

Hence

F2(x; m) = (2xm − 1)1/m + 41/mx2

� 1/21/mx

0
(1 − um)1/mdu −

� 1−1/21/mx

0
(1 − um)1/mdu

 .

Now put um = v. Hence du = (1/m)v1/m−1dv. Thus we get

F2(x; m) = (2xm − 1) 1
m + 4 1

m x2

m

[� 1/2xm

0
v1/m−1(1 − v)1/mdv −

� 1−1/2xm

0
v1/m−1(1 − v)1/mdv

]

= (2xm − 1)1/m + 41/mx2

m

[
B1/2xm

( 1
m

,
1
m

+ 1
)

− B1−1/2xm

( 1
m

,
1
m

+ 1
)]

.

The Case m > m∗: By integrating (19) over the region R2, we get

F2(x; m) =
� 21/mx

0
(2xm − ym)1/mdy

= 41/mx2
� 1

0
(1 − um)1/mdu (by putting u = y

21/mx
).

Now put um = v. Hence du = (1/m)v1/m−1dv. Thus we get

F2(x; m) = 41/mx2

m

� 1

0
v1/m−1(1 − v)1/mdv

= 41/mx2

m
B1

( 1
m

,
1
m

+ 1
)

= 41/mx2

m

Γ
(

1
m

)
Γ
(

1
m

+ 1
)

Γ
(

2
m

+ 1
) .
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assuming 2 1
m x ≤ 1 that is equivalent to x ≤ 2−1/m.

Proof of Theorem 2:

Part 1 (m = −∞):

Assume that P1 = Pmin is unique. Then(
n∑

i=1
wiP

m
i

)1/m

= P1

(
w1 +

n∑
i=2

wi

(
Pi

P1

)m
)1/m

→ P1 as m → −∞ since w
1/m
1 → 1 and

(
Pi

P1

)m

→ 0 ∀i > 2.

The c.d.f. of P1 = Pmin is

Fn(x; −∞, w) = Pr{Pmin ≤ x} = 1 −
n∏

i=1
Pr{Pi > x} = 1 − (1 − x)n.

Equating this to α and solving for x, we get

cn(−∞, α) = 1 − (1 − α)1/n

Part 2 (m = −2):

We have

F2(x; −2, w) = Pr


(

w1

P 2
1

+ w2

P 2
2

)−1/2

≤ x


= Pr

P2 ≤

√√√√ w2x2P 2
1

P 2
1 − w1x2

 .

Now note that if P1 ≤
√

w1x2

1−w2x2 then P2 ≤ 1. Hence the above probability equals

F2(x; −2, w) = Pr

P1 ≤
√

w1x2

1 − w2x2 , P2 ≤ 1

+ Pr

P1 >

√
w1x2

1 − w2x2 , P2 ≤

√√√√ w2x2P 2
1

P 2
1 − w1x2


=
√

w1x2

1 − w2x2 +
� 1√

w1x2
1−w2x2

√
w2x2y2

y2 − w1x2 dy

=
√

w1x2

1 − w2x2 +

√
w2x2y2(y2 − w1x2)

y

∣∣∣∣∣∣
1

√
w1x2

1−w2x2

=
√

w1x2

1 − w2x2 + x
√

w2(1 − w1x2) −
√

w1x2

1 − w2x2 + x
√

w1(1 − w2x2)

= x
(√

w1(1 − w2x2) +
√

w2(1 − w1x2)
)

.
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Part 3 (m = −1):

This case corresponds to weighted harmonic mean. Its c.d.f. is derived in the following.

F2(x; −1, w) = Pr
((

w1

P1
+ w2

P2

)−1
≤ x

)

= Pr
{

P2 ≤ w2xP1

P1 − w1x

}
= Pr

{
P1 ≤ w1x

1 − w2x
, P2 ≤ 1

}
+ Pr

{
P1 >

w1x

1 − w2x
, P2 ≤ w2xP1

P1 − w1x

}

= w1x

1 − w2x
+
� 1

w1x

1−w2x

w2xy

y − w1x
dy

= w1x

1 − w2x
+
{

w2xy + w1w2x
2 ln

∣∣∣∣ y

w2x
− w1

w2

∣∣∣∣}∣∣∣∣1
w1x

1−w2x

= w1x

1 − w2x
+ w2x(1 − x)

1 − w2x
+ w1w2x

2 ln
[

(1 − w1x)(1 − w2x)
w1w2x2

]

= x + w1w2x
2 ln

[
(1 − w1x)(1 − w2x)

w1w2x2

]

= x + w1w2x
2 ln

[
1 + 1 − x

w1w2x2

]
.

In Step 5 above we have used the standard formula from Rektorys (1969): For a ̸= b ̸= 0,
�

ydy

ay + b
= y

a
− b

a2 ln |ay + b|.

Part 4 (m = −0.5):

F2(x; −0.5)

= 1(
2√
x

− 1
)2 +

� 1

1(
2√
x

−1
)2

1(
2√
x

− 1√
y

)2 dy

= 1(
2√
x

− 1
)2 + x

8 ·
(
x3/2/(

√
x − 2√

y) + 4√
xy + 3x ln(2√

y −
√

x) + 2y
)∣∣∣∣1 1(

2√
x

−1
)2

= x

(2 −
√

x)2 + x

8

(
− x3/2

2 −
√

x
+ 4

√
x + 3x ln(2 −

√
x) + 2

−x + 2
√

x − 4x

2 −
√

x
− 3x ln

(
x

2 −
√

x

)
− 2x

(2 −
√

x)2

)

= x

(2 −
√

x)2 + x

8

(
6
√

x − x − x(4 +
√

x)
2 −

√
x

+ 3x ln
(

(2 −
√

x)2

x

)
+ 2 − 2x

(2 −
√

x)2

)
.
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The lower α critical value is obtained by solving the equation obtained by setting the above
expression equal to α.

Part 5 (m = 0):

We have
F2(x; 0, w) = Pr (P w1

1 P w2
2 ≤ x) .

Now note that if P1 ≤ x1/w1 then P2 ≤ 1. Therefore

F2(x; 0, w) = Pr{P1 ≤ x1/w1 , P2 ≤ 1} + Pr
{

P1 > x1/w1 , P2 ≤ x1/w2

P
w1/w2
1

.

}

= x1/w1 +
� 1

x1/w1

x1/w2

yw1/w2
dy

= x1/w1 + x1/w2
w1

w2 − w1

[
y

w2−w1
w2

]1

x1/w1

= x1/w1 + x1/w2
w1

w2 − w1

[
1 − x

w2−w1
w1w2

]

=

x2(1 − 2 ln x), w1 = w2 = 1/2
1

1− w2
w1

x
1

w1 + 1
1− w1

w2
x

1
w2 w1 ̸= w2.

For an alternative proof of the case w1 = w2 = 1/2, note that for any n ≥ 2,

F2(x; 0, w) = Pr


(

n∏
i=1

Pi

)1/n

≤ x


= Pr

{
− 2

n

n∑
i=1

ln Pi > −2 ln x

}

= Pr
{

−2
n∑

i=1
ln Pi > −2n ln x

}
= Pr

{
χ2

2n > −2n ln x
}

.

Now consider n = 2. Then by putting u = t/2 in the integral below we get

Fn(x; 0, w) =
� ∞

−4 ln x

1
22Γ(2)te−t/2dt =

� ∞

−2 ln x

ue−udu = x2(1 − 2 ln x).

Part 6 (m = 0.5):

We have

F2(x, 0.5) =
� 22x

0
(2

√
x − √

y)2dy

= −8
3

√
xy3 + 4xy + y2/2

∣∣∣∣4x

0

= 8x2

3 .
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Equating 8x2/3 = α we get the lower α critical value as c2(0.5, α) =
√

3α/8. These expres-
sions for the c.d.f. and the α critical value are valid for all α less than or equal to

� 1

0
(1 − x1/2)2dx = x2

2 − 4x3/2

3 + x

∣∣∣∣∣
1

0
= 1

6 .

Part 7 (m = 1):

Assuming w1 ≤ w2, the c.d.f. F2(x; 1, w) is given by the areas of the regions in the (P1, P2)
space as follows.

1. (0 ≤ x ≤ w1): In this case the region of interest is the triangle shown in Figure 4 (a).
Its area equals

F2(x; 1, w) = 1
2

(
x

w1
× x

w2

)
= x2

2w1w2
.

2. (w1 < x ≤ w2): In this case the region of interest is the quadrilateral shown in
Figure 4 (b). Its area equals

F2(x; 1, w) = 1
2

(
x

w2
+ x − w1

w2

)
= 2x − w1

2w2
.

3. (w2 < x ≤ 1): In this case the region of interest is the trapezoid shown in Figure 4 (c).
Its area equals

F2(x; 1, w) = 1 − 1
2

(
1 − x − w1

w2

)(
1 − x − w2

w1

)
= 1 − 1

2

(
w2 − x + w1

w2

)(
w1 − x + w2

w1

)
= 1 − (1 − x)2

2w1w2
.

Part 8 (m = 2):

Assume w1 ≤ w2. We consider three cases.

Case 1 (x ≤ √
w1) Then

F2(x; 2, w) = Pr{
√

w1P 2
1 + w2P 2

2 ≤ x}
= Pr{w1P

2
1 + w2P

2
2 ≤ x2}

= Pr
{

P 2
1

(x2/w1)
+ P 2

2
(x2/w2)

≤ 1
}

= πx2

4√
w1w2

.

using the formula for the area of an ellipse.
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DISTRIBUTION OF THE HÖLDER MEANS OF THE P -VALUES 635

x
w2

x
w1

0 1

1

(a) Triangle

P2

P1

x
w2

x
w1 x−w1

w2

0 1

1

(b) Quadrilateral

P2

P1

x
w2

x
w1

x−w1

w2

x−w2

w1

0 1

1

(c) Pentagon

P2

P1

Figure 4: Rejection regions for weighted arithmetic mean

Case 2 (√w1 < x ≤ √
w2)

F2(x; 2, w) = Pr{
√

w1P 2
1 + w2P 2

2 ≤ x}

=
� 1

0

√
x2 − w1y2

w2
dy

=

(
y
√

w1(x2 − w1y2) + x2 tan−1
( √

w1y√
x2−w1y2

))
2√

w1w2

∣∣∣∣∣∣∣∣
1

0

=

√
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( √
w1y√
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)
2√

w1w2
.

Case 3 (x >
√

w2)

F2(x; 2, w) = Pr
(√

w1P 2
1 + w2P 2

2 ≤ x
)

=
√
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+
� 1√
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w1

√
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dy
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√
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(√
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√
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( √
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2√

w1w2

∣∣∣∣∣∣∣∣
1

√
p2−w2

w1

=
√

x2 − w2

w1
+

√
w1(x2 − w1) + x2 tan−1

( √
w1√
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)
2√

w1w2
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−
√

w1w2
√

x2−w2
w1

+ x2 tan−1
(√

x2−w2
w2

)
2√

w1w2

= 1
2

√x2 − w2

w1
+
√

x2 − w1

w2

+ x2

2√
w1w2

(
tan−1

(√
w1

x2 − w2

)
− tan−1

√x2 − w2

w2



Part 9 (m = ∞)

Assume that Pn = Pmax is unique. Then(
n∑

i=1
wiP

m
i

)1/m

= Pn

(
n∑

i=1
wi

(
Pi

Pn

)m
)1/m

= Pn

(
wn +

n−1∑
i=1

wi

(
Pi

Pn

)m
)1/m

→ Pn as m → ∞ since w1/m
n → 1 and

(
Pi

Pn

)m

→ 0

The c.d.f. of Pn = Pmax is

Fn(x; ∞, w) = Pr{Pmax ≤ x} =
n∏

i=1
Pr{Pi ≤ x} = xn.

Equating this to α and solving for x, we get cn(∞, α) = α)1/n.

Proof of Theorem 3:
Consider two values of m, m′ < m′′.Then we have

Pr{P̄n(m′) ≤ cn(m′, α)} = Pr{P̄n(m′′) ≤ cn(m′′, α)} = α.

From the power mean inequality we have P̄n(m′) ≤ P̄n(m′′). Therefore

Pr{P̄n(m′) ≤ cn(m′′, α)} = Pr{P̄n(m′) ≤ P̄n(m′′) ≤ cn(m′′, α)}
+ Pr{P̄n(m′) ≤ cn(m′′, α) ≤ P̄n(m′′)}

≥ Pr{P̄n(m′) ≤ P̄n(m′′) ≤ cn(m′′, α)}
= Pr{P̄n(m′′) ≤ cn(m′′, α)}
= α.

Since Pr{P̄n(m′) ≤ cn(m′′, α)} ≥ α and Pr{P̄n(m′) ≤ cn(m′, α)} = α, it follows that
cn(m′, α) ≤ cn(m′′, α).

Derivation of the Mean and Variance of 1
n

(∑n
i=1 P m

i )1/m Using the Delta Method
Denote 1

n
(∑n

i=1 P m
i ) = X. From (12) it follows that

E(X) = 1
m + 1 and Var(X) = m2

n(m + 1)(2m + 1) .
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Now let g(X) = X1/m. By the delta method we have E[g(X)] ≈
(

1
m+1

)1/m
and

Var[g(X)] ≈ Var(X)[g′(m)]2

= m2

n(m + 1)(2m + 1)

[
−(m + 1)−(1+1/m)

m

]2

= m2

n(m + 1)(2m + 1)
(m + 1)2(1−1/m)

m2 = (m + 1)1−2/m)

n(2m + 1) .

Distribution of S(1, 1)
There is no explicit closed formula for the distribution of S(1, 1). However, we can calculate
it numerically from its characteristic function given by

φ(t | a, b, µ, σ) = exp {itµ − |tσ|a(1 − ib · sgn(t) · Ψ)} (20)

where i =
√

−1, a ∈ (0, 2] is a stability parameter, b ∈ [−1, 1] is a skewness parameter,
µ ∈ (−∞, ∞) is a shift parameter, σ > 0 is a scale parameter and

Ψ =
{

tan
(

πa
2

)
(a ̸= 1),

− 2
π

ln |t| (a = 1).

The p.d.f. of S(1, 1) can be found by applying the inverse Fourier transform to its charac-
teristic function:

f ∗(x) = 1
2n

� ∞

−∞
φ(t)e−ixtdt. (21)

The c.d.f. can be found from F ∗(x) =
� x

−∞ f ∗(t)dt. These operations can be done numer-
ically using the MATLAB function makedist(). Figure 5 shows the plots of the p.d.f. of
S(0.5, 1), S(1, 1) and S(1.5, 1)computed using the above numerical method.
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1. Introduction

The study of climatic changes through important climatic variables is fundamental to
a proper understanding of the prevailing climatic conditions as well as the conditions we can
expect in the years ahead. Such an understanding will enable humans to adapt to changing
conditions and plan for taking timely actions to prevent the onslaught of extreme climatic
conditions. Among all climatic variables, temperature and precipitation are by far the most
important variables for purposes of observation, analysis and understanding.

In this paper, our main goal is to study changes in temperature and precipitation at
91 stations spread throughout the contiguous United States. Changes in temperature and
precipitation can be studied separately for the two variables or could also be studied together
in a combined way. Also, changes could be studied in averages, extremes, thresholds and
each of such studies brings its own understanding of the variables under study. In this article
we consider seven variables, all representing one of precipitation or temperature from each
of the cities considered in this analysis. Specifically, we have considered two precipitation
and five temperature variables:

PRCP1 Frequency of days with precipitation exceeding one inch
PRCP Total annual precipitation
TMAX32 Instances of maximum temperature dropping below 32°F
TMAX90 Occurrences of maximum temperature surpassing 90°F
TAVG Average annual temperature
TMAX Average annual maximum temperature
TMIN Average annual minimum temperature

There is a large body of literature on climatic studies including those on tempera-
ture and precipitation. Among them, most of the existing studies on temperature focus on
extremes only. For example, heat waves in 1995 and 1999 resulted in 739 and 110 excess
deaths, respectively, in the city of Chicago alone. Based on regional climate model simula-
tions (RCMs), Kunkel et al. (2010) predicted that there is a high probability of heat waves
of unprecedented severity by the end of twenty first century if the high emissions path is
followed. Oswald (2018) studied spatially continuous homogenized climate data to examine
changes in regularity of heat waves including nighttime and daytime temperatures across the
continental United States. The analysis showed prevalence of heatwaves between mid-70s
and 2015. This was preceded by a decrease since 1948, the beginning of the dataset. Earlier
Oswald and Rood (2014) studied extreme heat event days (EHEs) in the continental US
based on daily maximum, minimum temperatures. The study period was 1930-2010 and
results showed negative trends in the interior while positive trends showed in coastal and
southern areas. While decreases occurred between 1930-1970, these decreases were offset
by increases between 1970-2010. Gaffen and Ross (1998) examined trends in the frequency
of days with anomalously high apparent temperatures (ATs) across the United States from
1949 to 1995 and observed that the annual frequency of extreme minimum ATs increased
at the greatest number of stations, particularly in the eastern and western United States.
Extending the data for the years 1949-2010, Grundstein and Dowd (2011) found that an
increase in occurrence of 1-day extreme minimum ATs was particularly notable, especially in
the eastern and western United States. Lee et al. (2014) examined monthly maximum and
minimum temperatures from 932 stations located across the contigouous US for the years
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1897-2010 and found estimated trend for monthly maximum had a mean of 0.47◦C/Century
while the estimated trend for monthly minimum had a mean of 1.65◦ C/Century.

Studies that focus on precipitation changes are equally important. Events of extreme
precipitation are among the costliest of natural disasters. They are associated with flooding,
damage to infrastructure, and loss of life. In the United States alone, extreme precipitation
events have caused more than $200 billion damages during 1988-2017, with an increasing
trend in costs as these events have become more frequent. In a recent study, Martinez-
Villalobos and Neelin (2023) used a probability distribution for precipitation and predicted
that about 13% of the globe and 25% of the tropics have displayed increases in extreme
precipitation. While studying changes in extreme precipitation in the northeastern united
states, Nazarian et al. (2022) found that extreme precipitation increased throughout the
region with the largest changes seen in the summer. Implementing dynamically downscaled
simulation, most recently Nazarian et al. (2024) predicted that both mean and extreme
precipitation will increase to the east of the Sierra Madre highland and that extreme precip-
itation events can be expected to double throughout the region. Earlier, under a predicted
2◦C of global warming, Rupp et al. (2022) found large variability in the magnitude of ex-
treme precipitation across the western United States. Specifically, they found that majority
of the region showed heavier tails for extreme precipitation under warming, while plateaus
of eastern Oregon and Washington, and the crest of the Sierra Nevada, showed a lightening
of tails. Armal et al. (2018) developed a Bayesian multilevel model using data from 1244
rainfall stations throughout the contiguous united states and found statistically significant
trends in extreme rainfall frequency in 742 of the 1244 stations. These stations were pre-
dominantly in US Southeast and Northeast regions. Also, the trends in 274 out of the 742
stations can be attributed to El Nino Southern Oscillation, the North Atlantic Oscillation,
the Pacific decadal oscillation, and the Atlantic multidecadal oscillation along with changes
in global surface temperature anomalies. These 274 stations are mainly found in the U.S.
northwest, west, and southwest climate regions.

There are several articles in the literature that study changes in both temperature
and precipitation. It is important to review some of such studies as well to obtain a better
understanding of changes in these two climatic factors that are interdependent. Robinson
(2021) reviews the observational evidence for climate-driven increases in extremes most rel-
evant to the continental United States. Wang et al. (2015) applied dynamical-statistical
downscaling approach for studying climate change impacts at local scales. They applied
the methodology for projecting future climate over the province of Ontario, Canada and
found that there would be a significant warming trend throughout this century for the entire
province while less precipitation is projected for most of the selected weather stations. Later,
Zhou et al. (2018) predicted that there will be an increasing pattern of temperature and pre-
cipitation extremes over Canada over two time- slices (i.e., 2046-2065 and 2076-2095). The
effects of climate change and global warming on Alaska are unequivocal. From 1949 to 2012,
the annual mean temperature increased 1.78◦C and annual precipitation increased 3.1mm;
winter changes were most dramatic, with temperatures climbing 3.78◦C and precipitation
increasing by 7.2mm (Bieniek et al. (2014)). Isaac and Van Wijngaarden (2012) analyzed
hourly values of temperatures and relative humidity observed at 309 stations located across
North America for the period 1948-2010. Trends were determined based on straight line fits
and results showed significant warming trends in the mid western US, Canadian prairies,
and western arctic. Lai and Dzombak (2019) analyzed time series of historical annual aver-
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age temperature, total precipitation, and extreme weather indices for 103 (for temperature
indices) and 115 (for precipitation indices) U.S. cities with climate records starting from as
early as 1870. Applying linear regression modelling, Lai and Dzombak (2019) constructed
95% confidence intervals for the mean rate of change. The results showed increases in annual
average temperature and precipitation although there were spatial and temporal variations.
Cities in the Northeast and Midwest showed significant increases in precipitation while no
increases in temperature in Southeast regions were found. Earlier, Griffiths and Bradley
(2007) examined changes in five temperature and five precipitation extreme indicators from
the northeast US for the period 1926-2000. Their empirical orthogonal function (EOF) anal-
ysis showed increases in both temperature and precipitation extremes. High correlation was
found between number of frost days and warm nights and Atlantic Oscillation (AO).

The above short review of studies regarding temperature and precipitation changes
within the contiguous United States makes it clear that such climatic studies must continue.
Then only the scientific community will be able to have a proper understanding of the
dynamic behavior of various climatic variables including temperature and precipitation. It is
also clear from the above review that change point methodology ((Zhao and Chu, 2010; Wang
et al., 2010; Villarini et al., 2013; Lee et al., 2014)) is a powerful way for modeling changes
in climatic variables. In this article, we shall adapt this frequently implemented method for
capturing changes in temperature and precipitation variables within the contiguous United
States over the period 1948-2023.

The change point methodology has long been a tool for climatologists for estimation
of unknown time points at which abrupt changes might have occurred in one or more climatic
variables. See, e.g., Jandhyala et al. (2013); Beaulieu et al. (2012); Reeves et al. (2007), and
the many references therein. Change point models for climatic data can be implemented
individually in a univariate way for each city, or can also be implemented simultaneously for
all cities in a multivariate way. Clearly, simultaneous modelling accounts for dependencies
among cities that would otherwise have been ignored. Moreover, changes detected from a
univariate analysis are with respect to the corresponding variance in the one the dimensional
series. Whereas, a change recovered from a multivariate series measures the total change (in
ℓ2 magnitude) across all components with respect to the total variance across all components.
This distinction highlights the main advantage of multivariate change point estimation, i.e.,
it brings out systemic macro-level (in this case country-wide) temporal changes providing
a more robust perspective on large scale climatic changes. In contrast changes that are
recovered componentwise may be localized at a city or other regional level that may instead
be indicative of localized weather variations instead of the large scale climate.

In recent years, change point methods have been developed for modeling and analyz-
ing high dimensional data where parameter size is much larger than the sample size. These
high dimensional change point methods enable the implementation of models that were pre-
viously considered intractable. While high dimensional change point methods have been
applied for the analysis of financial data (Cai and Wang (2023)), socio-economic data (Kaul
et al. (2019)), and mortality data (Chen et al. (2023)), there has not yet been application
of this methodology for modeling and analyzing climatological data. In this paper, our goal
is to carry out a comprehensive high dimensional modeling and analysis of temperature and
precipitation data from cities across the contiguous United States. We shall first present a
brief review of recent advances in high dimensional change point methods.
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Fixed dimensional mean shift models and other variants have existed for several
decades with well-known monographs being available, e.g.,Csorgo and Horváth (1997). The
multivariate and high dimensional versions of these non-stationary models have seen signifi-
cant recent research with an overwhelming proportion devoted to estimation methodologies
for change points. A common thread of available methods is the use of general purpose
algorithm’s such as binary segmentation Venkatraman (1992), wild binary segmentation Fry-
zlewicz (2014) and minimal partitioning via dynamic programming Jackson et al. (2005).
The first two work as extensions of single change point methods to multiple changes. From a
methods perspective, the literature on estimation of change points under high dimensions can
be forked into two general approaches, (a). Regularized cumulative sum (CUSUM) based
recovery that is typically built on ℓ1, ℓ2 or ℓ∞ aggregations of a cumulative sum metric.
(b). Regularized M-estimation type recovery that is typically built upon a squared loss or a
likelihood function. The former considered in (Enikeeva and Harchaoui, 2019; Jirak, 2015)
which are based on an ℓ2, ℓ∞ aggregation, respectively. Other CUSUM based estimators
include (Cho and Fryzlewicz, 2015; Cho, 2016; Wang and Samworth, 2018) amongst others,
with the last allowing for sparsity of parameters and thus allowing for high dimensional
means. Approach (b) is taken in (Wang et al., 2020; Kaul et al., 2021). Algorithmic ad-
vancements pertaining to minimal partitioning that is particularly critical for M-estimation
type change point recovery is developed in Killick et al. (2012). Several other types of high
dimensional change point models have also been studied in the recent literature, e.g., lin-
ear regression, Bernoulli networks, graphical models, see, e.g., (Kaul et al., 2019, 2023; Lee
et al., 2016; Bhattacharjee et al., 2020; Wang et al., 2021) and several others. The problem of
post-estimation inference on change points is a much lesser studied aspect in comparison to
estimation alone, however some recent works have developed significant results under large
data designs. Fundamental results under univariate p = 1 designs are available in e.g., (Bai,
1994; Eichinger and Kirch, 2018; Cho and Kirch, 2022; Fotopoulos et al., 2010). The case of
diverging p is considered in Bhattacharjee et al. (2017). The article Kaul et al. (2021) which
considers the high dimensional case, in a single change point setting (N = 1).

The article is organized as follows. Section 2 describes data analyzed in the article.
Section 3 discusses published results on high dimensional change point methods that are
utilized for the analysis in the paper, and Section 4 presents the implementation of high di-
mensional change point methods and their results. Section 5 is dedicated to a comprehensive
discussion of the results and Section 6 ends the paper with some concluding remarks.

2. Temperature and precipitation data from contiguous United States

The data on temperature and precipitation variables is spread across the contiguous
United States. It originates from the Global Summary of the Year (GSOY), provided by
the National Center for Environmental Information (NCEI) under the National Oceanic and
Atmospheric Administration (NOAA). It is available publicly and can be accessed from the
NOAA GSOY Database. While the complete NCEI dataset is more comprehensive, we have
meticulously collected data only on temperature and precipitation variables from 91 cities
for the period 1948-2023 spread across the 48 contiguous states of the US. The dataset col-
lected and analyzed in this article includes two precipitation and five temperature variables.
Amongst these variables, three are discrete and the remaining are continuous. These include:
PRCP1: # of days in a year with precipitation exceeding one inch, and PRCP: total annual
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precipitation measured in mm; and five temperature variables - TMAX32: # of instances
in days of maximum temperature dropping below 32◦F, TMAX90: # of occurrences in days
of maximum temperature surpassing 90◦F, TAVG: average annual temperature in ◦C com-
puted by adding the unrounded monthly average temperatures and dividing by 12, TMAX:
average annual maximum temperature in ◦C obtained as average of the mean monthly max-
imum temperatures, and TMIN: average annual minimum temperature in ◦C obtained as
average of the mean monthly minimum temperatures. It may be noted that among the seven
climatic variables, the variables PRCP1, TMAX32, TMAX90, TMAX, and TMIN represent
extremes with PRCP1 being the only extreme variable for precipitation.

The collected data spanning years 1948-2023 demonstrates substantial diversity in
temporal scope and geography. Thus, the selected cities ensure comprehensive coverage of
various geographical regions and climatic conditions of the US. The dataset includes not
only big metropolitan cities, but also rural areas surrounding these urban centers, offering a
comprehensive representation of climatic conditions beyond the city limits. Along the East
Coast, cities such as New York, Boston, and Philadelphia offer insights into the climatic
nuances of the Northeast. Moving southward, vibrant urban centers like Atlanta, Miami,
and New Orleans provide a glimpse into the subtropical climates of the Southeast. Across
the Midwest, cities like Chicago, Minneapolis, and Kansas City showcase the variability
of continental climates. In the Great Lakes region, cities such as Buffalo, Cleveland, and
Milwaukee experience the moderating effects of the large bodies of water, influencing their
climate patterns. On the West Coast, cities such as Los Angeles, San Francisco, and Seattle
offer perspectives on the mild coastal climates of the Pacific. In the Southwest, cities like
Phoenix, Las Vegas, and Albuquerque experience arid desert climates, while Denver and
Salt Lake City experience the high-altitude conditions of the Rocky Mountains. Our dataset
also includes cities in the Mountain West, Great Plains, and Pacific Northwest, providing a
comprehensive understanding of climatic variations across the United States.

3. High dimensional methods for identifying change points in time series

We adopt a high dimensional multiple mean shift framework to model the considered
climate data, specifically,

yt =
N+1∑
j=1

θ0
(j)1[τ 0

j−1 < t ≤ τ 0
j ] + εt, for t = 1, ..., T, (1)

wherein yt = (yt1, yt2, ..., ytp)T ∈ Rp denotes the underlying temperature (5 variables for each
city) and precipitation (2 variables for each city) variable across all considered cities.

There are 91 cities in the data set, resulting in p = 628 variables. The Model 1 assumes
there are an unknown number N ∈ N+ = {1, 2, ...} of change points in the underlying mean
vectors θ0

(j) ∈ Rp, j = 1, ..., (N +1). , where their locations in the sampling period are denoted
by τ 0 = (τ 0

1 , τ 0
2 , ..., τ 0

N)T ⊆ {1, ..., T}N . Our analysis to follow allows for spatial dependence
across variables ytj, j = 1, ..., p, i.e., it allows for a dependence between temperature and
precipitation variables as well as across cities. However, we assume temporal independence.

Remark 1: While the modelling structure adopted induces a large number of parameters,
our chosen methodology is capable of allowing such high dimensionality as explained below.
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A potential alternative for reduced modelling dimensions is to perform a coarser aggrega-
tion of cities into regional blocks (e.g., North, Northeast, East, Midwest, South, Southeast,
Southwest, West, and Northwest), however such an approach may lead to compromise on the
post-hoc identification of the natural homogeneity of climatic changes amongst considered
cities and instead force these to be on the chosen coarser grid.

We utilize the method and results of Kaul et al. (2021) for inference on change points.
They proposed an iterative estimation procedure between squared loss based change point
recovery and a ℓ1-regularized squared loss recovery of mean estimates. While this article is
developed under the assumption of a single change point N = 1, we utilize its natural exten-
sions to multiple change points via the extensively chosen principle of binary segmentation.

The following provides a brief description of the methods and main results of Kaul
et al. (2021) utilized here. Let ȳ =

( ∑T
t=1 yt/T

)
and xt = (yt − ȳ), be the globally centered

observations. Then under a single change point (N = 1), define a squared loss,

Q
(
τ, θ

)
=

τ∑
t=1

∥xt − θ(1)∥2
2 +

T∑
t=τ+1

∥xt − θ(2)∥2
2. (2)

Additionally define ℓ1 regularized mean estimated at any given τ as,

θ̂(j)(τ) = kλj

(
x(j)(τ)

)
, j = 1, 2 (3)

with kλ(x) = sign(x)(|x| − λ)+, λ > 0, x ∈ Rp, is the soft-thresholding operator, where
sign(· ), |· |, and (· )+

1 are applied component-wise. Then Algorithm 1 provides a twice-
iterative method for recovery of the change point, where γ > 0 is a tuning parameter.

Next we briefly discuss properties of the estimator τ̂ that are relevant for our anal-
ysis. These properties assume suitable regularity conditions. Among the two most relevant
ones, first we allow for spatial dependence with the underlying distribution being of a sub-
exponential type (see e.g., Vershynin (2019)). Next, given the high dimensional nature of the
considered problem, an underlying sparsity of the mean parameters is also assumed. Further
details are omitted here in view of simplicity of exposition.

The change point estimate from Algorithm 1 possesses desirable statistical properties
in context of both estimation and inference, despite the underlying high dimensionality of
mean parameters. To characterize the limiting distribution of the estimate τ̃ , we require the
following negative drift two-sided random walk initializing at the origin,

C∞(ζ) =


∑ζ

t=1 zt, ζ ∈ N+

0, ζ = 0∑−ζ
t=1 z∗

t , ζ ∈ N−,

(4)

Here zt, z∗
t are independent copies of a normal distribution N (−ξ2

∞, 4ξ2
∞σ2

∞), which are also
independent over all t. Here the parameters ξ∞ = limT →∞ ξ > 0 and σ2

∞ = limT →∞ σ2, where
both ξ and σ2 are as defined as follows,

η0 =
(
θ0

(1) − θ0
(2)

)
, ξ = ∥η0∥2, and σ2 = η0T Ση0/ξ2

1For x ∈ R, (x)+ = x, if x ≥ 0, and x = 0 if x < 0.
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Algorithm 1 (KFJS 2021): Estimation of τ 0 with boundary selection (under N = 1)
(Initialize): Select a preliminary evenly spaced coarse grid D ⊂ {1, ..., T} of cardinality
log T. Select an initializer τ̌ ∈ D as the best fitting value to the data

{
xt

}T

t=1
.

Step 1: Obtain estimates θ̌(j) = θ̂(j)(τ̌), j = 1, 2, and update change point estimates as

τ̂ = arg min
τ∈{1,...,(T −1)}

Q(τ, θ̌),

and perform an ℓ0 regularization as

τ̂ ∗ =
{

T (no change) if {Q(T, θ̌) − Q(τ̂ , θ̌)} < γ

τ̂ else.

Step 2: If τ̂ ∗ = T the set τ̃ = T, else if τ̂ ∗ > 0, obtain estimates θ̂(j) = θ̂(j)(τ̂), j = 1, 2, and
refit change point as,

τ̃ = arg min
τ∈{1,...,(T −1)}

Q(τ, θ̂),

(Output): τ̃

where, Σ = E(εtε
T
t ) is the underlying covariance structure of Model 1. Finally, normality of

the increments zt in (4) is also a consequence of the normality assumption on the distribution
underlying Model 1. Then, we have,

(τ̃ − τ 0) ⇒ arg max
ζ∈Z

C∞(ζ), (5)

We utilize (5) to construct asymptotically valid confidence intervals for the change
point parameters. Specifically, these are obtained as [τ̃ − q(1−α/2), τ̃ + q(1−α/2)] where q(1−α/2)
is the (1 − α/2)th quantile of the considered arg max of a two sided random walk with a
negative drift. Since no analytical form of this distribution is available, we obtain these
quantiles via a monte-carlo simulation, i.e., simulating the two-sided random walk process
and in turn obtaining realizations from the distribution under consideration.

The above results are under a single change point assumption, whereas the model
and data under consideration have multiple change points. For this extension, we adopt
the fairly standard practice of implementing binary segmentation, i.e., recursively split data
into binary partitions until no further change points are observed. This process utilizes
Algorithm 1 in each recursive step, however, this algorithm is implemented only upto the ℓ0
regularization of Step 1 (stated as Algorithm 2). The entire process of estimating multiple
change points is then stated as Algorithm 3 (KFJS+BS) below.

As suggested in Kaul et al. (2021) a further local refitting is carried out of the change
point estimates (analog of Step 2 of Algorithm 1). Specifically, Let τ̂ and N̂ represent the
location and number of change point estimates obtained from Algorithm 2 and θ̂(τ̂) represent
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Algorithm 2 (KFJS 2021): Estimation of τ 0 with boundary selection (under N = 1)
(Initialize): Select a preliminary evenly spaced coarse grid D ⊂ {1, ..., T} of cardinality
log T. Select an initializer τ̌ ∈ D as the best fitting value to the data

{
xt

}T

t=1
.

Step 1: Obtain estimates θ̌(j) = θ̂(j)(τ̌), j = 1, 2, and update change point estimates as

τ̂ = arg min
τ∈{1,...,(T −1)}

Q(τ, θ̌),

and perform an ℓ0 regularization as

τ̂ ∗ =
{

T (no change) if {Q(T, θ̌) − Q(τ̂ , θ̌)} < γ

τ̂ else.

(Output): τ̂ ∗

Algorithm 3 (KJFS+BS): Extension of KJFS to multiple changes via binary
segmentation

(Initialize): τ̂st = ϕ collecting all change points to be estimated.
Implement τ̂= Algorithm 2

(
{1, ..., T}

)
.

If τ̂ = T (no change) then Stop
Else τ̂up = (τst, τ̂) (updated vector of estimated change points)

While length(τ̂up) > length(τ̂st) do
τ̂st = τ̂up

for m ∈ 1 : (length(τst) + 1) do
partitionm = {τst(m−1), ..., τst(m)}
τ̂ = Algorithm 2(partitionm)
If τ̂ is away from boundary of sampling period of partition then
τ̂up = (τ̂st, τ̂)

(Output): all estimated change points of vector τ̂up sorted in ascending order.

the mean estimates obtained from the associated partitioning via 3. Further, let,

Qj

(
τj, τ−j, θ

)
=

τj∑
t=τj−1+1

∥xt − θ(j)∥2
2 +

τj+1∑
t=τj+1

∥xt − θ(j+1)∥2
2. (6)

Then define the locally refitted estimates as,

τ̃j := τ̃j

(
τ̂−j, θ̂

)
= arg min

τ̂j−1<τj<τ̂j+1

Qj

(
τj, τ̂−j, θ̂

)
, j = 1, ..., N̂ (7)

Then confidence intervals for the parameters τ 0
j ’s are obtained by utilizing the change

point estimates τ̃j and by a piecewise application of (5).
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4. Results of the high dimensional change point analysis

As described in Section 2, the data consists of two precipitation and five temperature
variables collected from stations at 91 cities spread across the contiguous United States over
the period 1948-2023. We implement the analysis with all the seven climatic variables in
the model (p = 628). Here, it should be noted that the value of p is lower than what one
would expect. This happened because some of the variables had no variability in their values
throughout the sampling period, and hence such variables were removed from the analysis.
All computations are carried out in the statistical software R.

Before we begin the presentation of results, we would like to bring to the attention
of the reader the inadequacy of identifying merely the point estimates of unknown change
points. The first step of the high dimensional change point analysis is the implementation
of Algorithm 3, mainly for point estimation of change points in the climatic data. For each
change point identified in the mean vector, one may only conclude that there is a change in
at least one of the component climatic variables.

This leaves still the question of identifying further the actual climatic variables in
which changes have occurred in their means. For this purpose we perform component-wise
t-tests for a comparison of pre and post means across estimated change points. A further
Bonferroni correction is made based on the number of tests performed in order to control
the family wise error rate of the procedure. Based on this inferential procedure, we draw
conclusions about changes in the climatic variables comprehensively.

Table 1: Estimated change points in years via the implementation of algorithm-3

Climatic variables (#) Number of
parameters (p)

Estimated
change points

Temperature and precipitation (7) 628 1957, 1989, 2010

Table 2: Confidence interval for each of the three change points detected via
Algorithm 3 together with estimated jump sizes (ξ) and estimated variances(σ2

∞)

Estimated
change point

95% confidence
interval

Estimated
jump size (ξ)

Estimated
variance (σ2

∞)
1957 (1955, 1959) 16.02 36.82
1989 (1986, 1992) 14.2 44.59
2010 (2009, 2011) 18.09 43.34

As for presentation of results, we begin with presenting in Table 1 the change points
identified by Algorithm 3. The fitted model with all the seven temperature and precipitation
variables consisted of three change points estimated in years as 1957, 1989, 2010. Confidence
intervals for the true change points along with estimated jump size, and estimated variance
are presented in Table 2. As described above, confidence intervals for change point in each
of the component climatic variables enabled us to determine whether a change has occurred
in that component variable or not. Upon applying this method at each of the three change
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points, we were able to determine the number of changes identified at each city and for each
climatic variable. Results from this analysis are presented in Tables 3-5, and Tables 6-7.
Specifically, Table 3 consists of list of cities that have undergone a change in their mean at
the change year 1957 and the listing is made for each of the seven climatic variables PRCP1,
PRCP, TMAX32, TMAX90, TAVG, TMAX, TMIN. Table 4 and Table 5 consist of similar
listings of cities for change years 1989 and 2010, respectively. Tables 6 and 7 consist of the
listing of all 91 cities together with the number of change points in each climatic variable for
any given city.

Upon identifying changes, it is important to compute the magnitudes of change in each
climatic variable at each city. The magnitudes of change enable us to clearly understand
the nature and severity of changes in the climatic variables under consideration. Moving
further, based upon the magnitudes of change, we can also identify clusters of cities so that
different clusters may identify groups of cities with different magnitudes while maintaining
similarity in changes within each cluster. Often such clusters of cities can be associated with
a particular region, and such information is extremely important for interpreting changes in
climatic studies. Among the plethora of clustering methods, K-means clustering stands out
as a widely adopted technique for segmenting datasets into a predefined number of groups,
denoted as ’k clusters’. Its primary objective is to categorize objects into clusters, maximizing
intra-class similarity while minimizing inter-class dissimilarity. In the K-means approach,
each cluster is characterized by a centroid, computed as the mean of points within the
cluster. The process begins with specifying the desired number of clusters (k), followed by
the random selection of k objects from the dataset to serve as initial centroids. Subsequently,
each remaining object is assigned to the nearest centroid based on Euclidean distance, a
step known as the ’cluster assignment’ step. The algorithm then updates the mean value
of each cluster, termed the ’centroid update’ step, iteratively repeating these steps until
convergence is attained. Convergence indicates stability, signifying that cluster assignments
remain unchanged between successive iterations.

In this study, the K-means clustering method was implemented using the ‘kmeans‘
function from the ‘cluster‘ (Maechler et al. (2013)) and ‘factoextra‘ (Kassambara and Mundt
(2021)) packages in R. The clusters resulting from the K-means cluster analysis for each of
the three change points together with a comment on the nature of each cluster are presented
in Tables 8-10 The actual magnitudes of change in each cluster for each climatic variable are
presented in Table 11.

5. Discussion of results

We shall begin our discussion with Tables 1-2 that identify the change points in years
through the application of Algorithm 3 to data on temperature and precipitation variables.
The change years for the model with all seven temperature and precipitation variables are
1957, 1989, and 2010. The 95% confidence intervals presented in Table 2 for each of the three
true change years are very tight (at most +/-3 years), thus indicating the high precision with
which the change years have been estimated. Further, we look at Tables 3-5 lists cities that
have undergone a change, respectively, in the years 1957, 1989, and 2010, for each of the
seven climatic variables. Focusing on the two precipitation variables PRCP1 and PRCP we
notice that changes in PRCP1 occurred at 9 cities in 1957, at 6 cities in 1989, and at only 3
cities in 2010, whereas similar numbers for PRCP are 5, 8, and 1, respectively. Similar city
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Table 3: List of cities that have undergone a change in the year 1957 for each
of the seven climatic variables, namely, PRCP1, PRCP, TMAX32, TMAX90,
TAVG, TMAX, TMIN

Variable Cities

PRCP1 Baton Rouge, Brownsville, Columbia, Eugene, Milwaukee,
New York City, Oklahoma City, Tallahassee, Wichita

PRCP Albuquerque, Baton Rouge, New York City, Tallahassee, Wichita

TMAX32
Atlanta, Birmingham, Buffalo, Charleston, Charlotte, Chattanooga,
Cincinnati, Cleveland, Columbus, Knoxville, Lexington, Louisville, Nashville,
New Orleans, Philadelphia, Pittsburgh, Richmond, Saint Louis, Wichita

TMAX90
Atlanta, Austin, Boise, Charlotte, Chattanooga, Cleveland,
Columbia, Columbus, Jacksonville, Knoxville, Lexington, Macon,
Montgomery, Portland OR, Raleigh, Sacramento, San Francisco, Seattle,
Tucson, Wichita

TAVG

Albuquerque, Atlanta, Augusta, Bakersfield, Baton Rouge,
Birmingham, Brownsville, Buffalo, Burlington, Charlotte, Chattanooga,
Cincinnati, Cleveland, Columbia, Columbus, Detroit, El Paso, Fresno,
Greensboro, Jacksonville, Knoxville, Lexington, Little Rock, Los Angeles,
Louisville, Macon, Montgomery, Nashville, New Orleans, Philadelphia,
Phoenix, Pittsburgh, Portland OR, Raleigh, Reno, Richmond, Sacramento,
San Antonio, San Diego, San Francisco, Seattle, Tallahassee,
Virginia Beach, Wichita

TMAX

Atlanta, Augusta, Austin, Baton Rouge, Birmingham, Buffalo, Burlington,
Charlotte, Chattanooga, Cleveland, Columbia, Columbus, Detroit,
Greensboro, Houston, Jacksonville, Knoxville, Lexington, Los Angeles,
Louisville, Macon, Miami, Mobile, Montgomery, Nashville, New Orleans,
Philadelphia, Pittsburgh, Portland OR, Raleigh, Sacramento, San Antonio,
San Francisco, Seattle, Virginia Beach, Wichita

TMIN

Albuquerque, Atlanta, Augusta, Bakersfield, Baton Rouge, Birmingham,
Brownsville, Burlington, Charlotte, Chattanooga, Cincinnati, Cleveland,
Columbia, Dayton, Detroit, El Paso, Eugene, Fresno, Jacksonville, Knoxville,
Las Vegas, Little Rock, Los Angeles, Macon, Madison, Miami, Nashville,
New Orleans, Philadelphia, Phoenix, Pittsburgh, Portland, Raleigh, Reno,
Richmond, Sacramento, San Diego, San Francisco, Seattle, Tallahassee,
Virginia Beach, Wichita
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Table 4: List of cities that have undergone a change in the year 1989 for each
of the seven climatic variables, namely, PRCP1, PRCP, TMAX32, TMAX90,
TAVG, TMAX, TMIN

Variable Cities
PRCP1 Albany, Dayton, Fort Wayne, Knoxville, Macon, Tallahassee
PRCP Albany, Concord, Dayton, Fargo, Fort Wayne, Madison, Rochester, Tallahassee

TMAX32

Albany, Albuquerque, Allentown, Amarillo, Atlanta, Augusta, Birmingham,
Burlington, Charleston, Charlotte, Chattanooga, Cleveland, Colorado Springs,
Columbia, Columbus, Dallas, Greensboro, Harrisburg, Indianapolis, Little Rock,
Louisville, Macon, Memphis, Milwaukee, Mobile, Nashville, New York City,
New Orleans, Oklahoma, Philadelphia, Pittsburgh, Providence, Raleigh,
Richmond, Saint Louis, Tulsa, Virginia Beach, Wichita

TMAX90 Austin, Boise, Brownsville, Fargo, Miami, New Orleans, Raleigh, San Diego,
Sioux Falls, Tallahassee, Tucson

TAVG

Albany, Albuquerque, Allentown, Amarillo, Atlanta, Augusta, Austin, Baton Rouge,
Birmingham, Boise, Boston, Brownsville, Buffalo, Burlington, Charleston, Charlotte,
Chattanooga, Cheyenne, Chicago, Cincinnati, Cleveland, Columbia, Columbus,
Concord, Dallas, Denver, Des Moines, Detroit, El Paso, Fargo, Fort Wayne, Fresno,
Greensboro, Harrisburg, Hartford, Houston, Indianapolis, Knoxville, Las Vegas,
Lexington, Little Rock, Louisville, Madison, Memphis, Miami, Milwaukee,
Minneapolis, Montgomery, Nashville, New York City, New Orleans, Oklahoma City,
Orlando, Philadelphia, Phoenix, Pittsburgh, Portland OR, Portland ME, Providence,
Raleigh, Reno, Richmond, Saint Louis, Salt Lake, San Antonio, Springfield, Tallahassee,
Tampa, Tucson, Tulsa, Virginia Beach, Washington DC, Wichita

TMAX

Allentown, Amarillo, Atlanta, Augusta, Austin, Baton Rouge, Birmingham, Boise,
Brownsville, Buffalo, Burlington, Charleston, Charlotte, Chattanooga, Cleveland,
Columbus, Concord, Dallas, Denver, Detroit, El Paso, Fort Wayne, Greensboro,
Harrisburg, Indianapolis, Little Rock, Louisville, Memphis, Miami, Milwaukee,
Montgomery, New Orleans, Oklahoma, Orlando, Philadelphia, Phoenix, Pittsburgh,
Portland ME, Providence, Raleigh, Saint Louis, San Antonio, San Diego,
San Francisco, Tallahassee, Tucson, Virginia Beach

TMIN

Albany, Albuquerque, Atlanta, Austin, Billings, Birmingham, Boise, Boston, Brownsville,
Buffalo, Burlington, Charleston, Charlotte, Chattanooga, Cheyenne, Chicago,
Cincinnati, Cleveland, Columbia, Columbus, Concord, Dallas, Dayton, Des Moines,
Detroit, El Paso, Fargo, Fort Wayne, Fresno, Greensboro, Harrisburg, Hartford, Houston,
Indianapolis, Knoxville, Las Vegas, Lexington, Little Rock, Louisville, Madison, Memphis,
Miami, Milwaukee, Minneapolis, Nashville, New York City, New Orleans, Oklahoma,
Omaha, Philadelphia, Phoenix, Pittsburgh, Portland OR, Portland ME, Providence,
Raleigh, Reno, Richmond, Rochester, Saint Louis, Salt Lake, San Antonio, Seattle,
Sioux Falls, Springfield, Tallahassee, Tampa, Tucson, Tulsa, Virginia Beach,
Washington DC, Wichita
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Table 5: List of cities that have undergone a change in the year 2010 for each
of the seven climatic variables, namely, PRCP1, PRCP, TMAX32, TMAX90,
TAVG, TMAX, TMIN

Variable Cities
PRCP1 Baton Rouge, Cincinnati, Raleigh
PRCP Eugene
TMAX32 None

TMAX90
Albuquerque, Amarillo, Austin, Bakersfield, Boise, Brownsville, Colorado Springs, Dallas,
Denver, Des Moines, El Paso, Eugene, Houston, Miami, Nashville, Orlando, Reno,
Saint Louis, Seattle, Wichita

TAVG

Albany, Albuquerque, Allentown, Amarillo, Atlanta, Augusta, Austin, Bakersfield,
Baton Rouge, Birmingham, Boise, Boston, Brownsville, Burlington, Charleston, Charlotte,
Chattanooga, Cincinnati, Cleveland, Colorado Springs, Columbia, Concord, Dallas,
Dayton, El Paso, Fresno, Greensboro, Harrisburg, Hartford, Houston, Jacksonville,
Knoxville, Las Vegas, Lexington, Louisville, Miami, Montgomery, Nashville, New York City,
New Orleans, Omaha, Orlando, Philadelphia, Phoenix, Portland ME, Providence, Raleigh,
Reno, Richmond, Rochester, Sacramento, Salt Lake, San Antonio, San Diego, Seattle,
Spokane, Tallahassee, Tampa, Tucson, Virginia Beach, Washington DC, Wichita

TMAX

Albany, Albuquerque, Allentown, Amarillo, Atlanta, Augusta, Austin, Bakersfield, Boston,
Brownsville, Burlington, Charleston, Charlotte, Cheyenne, Cleveland, Colorado Springs,
Columbia, Dallas, Dayton, El Paso, Eugene, Fresno, Hartford, Houston, Jacksonville,
Las Vegas, Lexington, Louisville, Macon, Miami, Montgomery, Nashville, New Orleans,
Orlando, Phoenix, Portland ME, Reno, Rochester, Sacramento, Saint Louis, Salt Lake,
San Diego, Seattle, Tallahassee, Tampa, Tucson, Virginia Beach, Washington DC, Wichita

TMIN

Albany, Albuquerque, Allentown, Amarillo, Atlanta, Augusta, Austin, Bakersfield,
Baton Rouge, Birmingham, Boise, Boston, Brownsville, Buffalo, Burlington, Charleston,
Chattanooga, Cincinnati, Cleveland, Colorado Springs, Columbia, Columbus, Concord,
Dallas, Dayton, El Paso, Fresno, Greensboro, Harrisburg, Hartford, Houston, Jacksonville,
Knoxville, Las Vegas, Louisville, Miami, Montgomery, Nashville, New York City,
New Orleans, Omaha, Orlando, Philadelphia, Phoenix, Pittsburgh, Portland OR,
Portland ME, Raleigh, Reno, Richmond, Rochester, Salt Lake, San Antonio, Seattle,
Spokane, Tallahassee, Tampa, Tucson, Virginia Beach, Washington DC

count for temperature variables are: TMAX 32 – 19, 38, 0; TMAX90 – 20, 11, 20; TAVG –
44, 79, 63; TMAX – 36, 48, 49; and TMIN – 42, 72, 60, respectively. It is also informative
to see the same numbers for each of the three change years. Thus the number of cities
in which changes have occurred at each of the change years in climatic variables PRCP1,
PRCP, TMAX32, TMAX90, TAVG, TMAX, and TMIN, respectively are: in 1957 – 9, 5,
19, 20, 44, 36, 42; in 1989 – 6, 8, 38, 11, 79, 48, 72; and in 2010 – 3, 1, 0, 20, 63, 49, 60.

Clearly, changes in temperature variables dominate the changes in precipitation vari-
ables. Also, changes in continuous variables (PRCP, TAVG, TMAX, TMIN) are significantly
higher compared to changes in the three discrete variables (PRCP1, TMAX32, TMAX90).
Perhaps this can be anticipated ahead because the information content in continuous vari-
ables is much more than that available in discrete variables and hence changes in continuous
variables can be detected with higher precision. Among continuous temperature variables,
changes in TAVG (44, 79, 63) and TMIN (42, 72, 60) are significantly higher compared to
changes in TMAX (36, 48, 49). While the three variables had similar number of changes in
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Table 6: List of cities along with corresponding number of change points for data
on PRCP1, PRCP, TMAX32, TMAX90, TAVG, TMAX, and TMIN during the
years 1948-2023

City State PRCP1 PRCP TMAX32 TMAX90 TAVG TMAX TMIN
Albany New York 1 1 1 0 2 1 2
Albuquerque New Mexico 0 1 1 1 3 1 3
Allentown Pennsylvania 0 0 1 0 2 2 1
Amarillo Texas 0 0 1 1 2 2 1
Atlanta Georgia 0 0 2 1 3 3 3
Augusta Georgia 0 0 1 0 3 3 2
Austin Texas 0 0 0 3 2 3 2
Bakersfield California 0 0 0 1 2 1 2
Baton Rouge Louisiana 2 1 0 0 3 2 2
Billings Montana 0 0 0 0 0 0 1
Birmingham Alabama 0 0 2 0 3 2 3
Boise Idaho 0 0 0 3 2 1 2
Boston Massachusetts 0 0 0 0 2 1 2
Brownsville Texas 1 0 0 2 3 2 3
Buffalo New York 0 0 1 0 2 2 2
Burlington Vermont 0 0 1 0 3 3 3
Charleston South Carolina 0 0 2 0 2 2 2
Charlotte North Carolina 0 0 2 1 3 3 2
Chattanooga Tennessee 0 0 2 1 3 2 3
Cheyenne Wyoming 0 0 0 0 1 1 1
Chicago Illinois 0 0 0 0 1 0 1
Cincinnati Ohio 1 0 1 0 3 0 3
Cleveland Ohio 0 0 2 1 3 3 3
Color. Spring Colorado 0 0 1 1 1 1 1
Columbia South Carolina 1 0 1 1 3 2 3
Columbus Ohio 0 0 2 1 2 2 2
Concord New Hampshire 0 1 0 0 2 1 2
Dallas Texas 0 0 1 1 2 2 2
Dayton Ohio 1 1 0 0 1 1 3
Denver Colorado 0 0 0 1 1 1 0
Des Moines Iowa 0 0 0 1 1 0 1
Detroit Michigan 0 0 0 0 2 2 2
El Paso Texas 0 0 0 1 3 2 3
Eugene Oregon 1 1 0 1 0 1 1
Fargo North Dakota 0 1 0 1 1 0 1
Fort Wayne Indiana 1 1 0 0 1 1 1
Fresno California 0 0 0 0 3 1 3
Greensboro North Carolina 0 0 2 0 3 2 2
Harrisburg Pennsylvania 0 0 2 0 2 1 2
Hartford Connecticut 0 0 0 0 2 1 2
Houston Texas 0 0 0 1 2 2 2
Indianapolis Indiana 0 0 1 0 1 1 1
Jacksonville Florida 0 0 0 1 2 2 2
Kansas City Kansas 0 0 0 0 0 0 0
Knoxville Tennessee 1 0 1 1 3 1 3
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Table 7: List of cities along with corresponding number of change points for data
on PRCP1, PRCP, TMAX32, TMAX90, TAVG, TMAX, and TMIN during the
years 1948-2023. (Continued).

City State PRCP1 PRCP TMAX32 TMAX90 TAVG TMAX TMIN
Las Vegas Nevada 0 0 0 0 2 1 3
Lexington Kentucky 0 0 1 1 3 2 1
Little Rock Arkansas 0 0 1 0 2 1 2
Los Angeles California 0 0 0 0 1 1 1
Louisville Kentucky 0 0 2 0 3 3 2
Macon Georgia 1 0 1 1 1 2 1
Madison Wisconsin 0 1 0 0 1 0 2
Memphis Tennessee 0 0 1 0 1 1 1
Miami Florida 0 0 0 2 2 3 3
Milwaukee Wisconsin 1 0 1 0 1 1 1
Minneapolis Minnesota 0 0 0 0 1 0 1
Mobile Alabama 0 0 1 0 0 1 0
Montgomery Alabama 0 0 0 1 3 3 1
Nashville Tennessee 0 0 2 1 3 2 3
New York City New York 1 1 1 0 2 0 2
New Orleans Louisiana 0 0 2 2 3 3 3
Oklahoma City Oklahoma 1 0 1 0 1 1 1
Omaha Nebraska 0 0 0 0 1 0 2
Orlando Florida 0 0 0 1 2 2 1
Philadelphia Pennsylvania 0 0 2 0 3 2 3
Phoenix Arizona 0 0 0 0 3 2 3
Pittsburgh Pennsylvania 0 0 2 0 2 2 3
Portland Oregon 0 0 0 1 2 1 3
Portland Maine 0 0 0 0 2 2 2
Providence Rhode Island 0 0 1 0 2 1 1
Raleigh North Carolina 1 0 1 2 3 2 3
Reno Nevada 0 0 0 1 3 1 3
Richmond Virginia 0 0 2 0 3 0 3
Rochester New York 0 1 0 0 1 1 2
Sacramento California 0 0 0 1 2 2 1
Saint Louis Missouri 0 0 2 1 1 2 1
Salt Lake City Utah 0 0 0 0 2 1 2
San Antonio Texas 0 0 0 0 3 2 2
San Diego California 0 0 0 1 2 2 1
San Francisco California 0 0 0 1 1 2 1
Seattle Washington 0 0 0 2 2 2 3
Sioux Falls South Dakota 0 0 0 1 0 0 1
Spokane Washington 0 0 0 0 1 0 1
Springfield Missouri 0 0 0 0 1 0 1
Tallahassee Florida 2 2 0 1 3 2 3
Tampa Florida 0 0 0 0 2 1 2
Tucson Arizona 0 0 0 2 2 2 2
Tulsa Oklahoma 0 0 1 0 1 0 1
Virginia Beach Virginia 0 0 1 0 3 3 3
Washington DC 0 0 0 0 2 1 2
Wichita Kansas 1 1 2 2 3 2 2
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Table 8: Clusters based on KMEANS clustering algorithm implemented upon
actual differences in averages of the climatic variables before and after the change
point in the year 1957.

Cluster Cities Cluster characteristic

1

Albany, Allentown, Amarillo, Billings, Boise, Boston, Charleston, Cheyenne,
Chicago, Colorado Springs, Concord, Dallas, Dayton, Denver, Des Moines,
Eugene, Fargo, Fort Wayne, Hartford, Houston, Indianapolis, Kansas City,
Las Vegas, Madison, Memphis, Miami, Milwaukee, Minneapolis, Mobile,
Oklahoma City, Omaha, Orlando, Portland ME, Providence, Rochester,
Salt Lake City, Sioux Falls, Spokane, Springfield, Tampa, Tucson, Tulsa,
Washington DC

No big changes
in climatic variables

2 Bakersfield, Fresno, Los Angeles, Phoenix, Portland OR, Reno,
Sacramento, San Diego, San Francisco, Seattle

High increases in TMAX90,
TAVG, TMAX, and TMIN

3 Atlanta, Austin, Charlotte, Chattanooga, Columbia, Jacksonville, Knoxville,
Lexington, Macon, Montgomery, Raleigh

Decrease in
TMAX90, TAVG, TMAX,
TMIN and increase in
TMAX32, PRCP1

4
Albuquerque, Augusta, Birmingham, Brownsville, Burlington, Detroit,
El Paso, Greensboro, Little Rock, Nashville, New Orleans, Richmond,
San Antonio, Virginia Beach

Small increases in TMAX32,
PRCP and small decreases
in TAVG, TMAX, TMIN

5 Baton Rouge, New York City, Tallahassee, Wichita High increases in
PRCP1 and PRCP

6 Buffalo, Cincinnati, Cleveland, Columbus, Harrisburg, Louisville,
Philadelphia, Pittsburgh, Saint Louis

Big increases in TMAX32,
and Cecreases in
TMAX90, TAVG, TMAX, TMIN

Table 9: Clusters based on KMEANS clustering algorithm implemented upon
actual differences in averages of the climatic variables before and after the change
point in the year 1989.

Cluster Cities Cluster characteristic

1 Tallahassee High decrease in
PRCP1 and PRCP

2

Albuquerque, Atlanta, Birmingham, Boise, Buffalo, Charleston, Charlotte, Chicago,
Columbia, Dallas, Detroit, El Paso, Fresno, Greensboro, Hartford, Houston, Las Vegas,
Little Rock, Memphis, Minneapolis, Nashville, Oklahoma City, Phoenix, Portland OR,
Portland ME, Reno, Richmond, Salt Lake City, San Antonio, Tampa, Virginia Beach,
Wichita

High increase in
TMIN

3 Albany, Concord, Dayton, Fargo, Fort Wayne, Knoxville, Madison High increases in
PRCP1 and PRCP

4

Amarillo, Augusta, Bakersfield, Baton Rouge, Billings, Boston, Cheyenne, Cincinnati,
Colorado Springs, Denver, Des Moines, Eugene, Jacksonville, Kansas City, Lexington,
Los Angeles, Macon, Mobile, Montgomery, New York City, Omaha, Orlando,
Rochester, Sacramento, San Diego, San Francisco, Seattle, Sioux Falls, Spokane,
Springfield, Tulsa, Washington DC

No big changes in
any of the variables

5 Allentown, Burlington, Chattanooga, Cleveland, Columbus, Harrisburg, Indianapolis,
Louisville, Milwaukee, Philadelphia, Pittsburgh, Providence, Saint Louis

Decrease in TMAX32, and an
increase in TAVG and TMIN

6 Austin, Brownsville, Miami, New Orleans, Raleigh, Tucson Increase in TMAX90,
TAVG, TMAX, TMIN
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Table 10: Clusters based on KMEANS clustering algorithm implemented upon
actual differences in averages of the climatic variables before and after the change
point in the year 2010.

Cluster Cities Cluster characteristic

1

Albany, Allentown, Atlanta, Augusta, Boston, Burlington, Charleston, Charlotte,
Cleveland, Columbia, Dayton, Fresno, Hartford, Jacksonville, Las Vegas,
Lexington, Louisville, Montgomery, New Orleans, Phoenix, Portland ME,
Rochester, Sacramento, Salt Lake City, San Diego, Seattle, Tallahassee, Tampa,
Tucson, Virginia Beach, Washington DC

Increase in
TAVG, TMAX, TMIN

2
Billings, Buffalo, Cheyenne, Chicago, Columbus, Denver, Des Moines, Detroit,
Fargo, Fort Wayne, Indianapolis, Kansas City, Little Rock, Los Angeles, Macon,
Madison, Memphis, Milwaukee, Minneapolis, Mobile, Oklahoma City, Pittsburgh,
Portland OR, Providence, San Francisco, Sioux Falls, Springfield, Tulsa

No significant changes

3 Albuquerque, Amarillo, Austin, Bakersfield, Brownsville, Colorado Springs,
Dallas, El Paso, Houston, Miami, Nashville, Orlando, Reno, Saint Louis, Wichita

High increases in
TMAX90 and TMAX

4 Birmingham, Boise, Chattanooga, Concord, Greensboro, Harrisburg, Knoxville,
New York City, Omaha, Philadelphia, Richmond, San Antonio, Spokane

Increases in
TMAX90, TAVG, TMIN

5 Baton Rouge, Cincinnati, Raleigh Increase in PRCP1

6 Eugene
High increase in
TMAX90 and
high decrease in PRCP

Table 11: Magnitudes of change for clusters in each change year and for each of
the climatic variables representing temperature and precipitation.

Change Year Cluster PRCP1 PRCP TMAX32 TMAX90 TAVG TMAX TMIN

1957

1 (days)
0.210

(mm)
0.000

(days)
0.011

(days)
-0.135

◦C
0.000

◦C
-0.034

◦C
0.013

2 0 0 0 2.323 0.849 0.403 1.132
3 0.406 0 1.758 -18.384 -0.749 -0.954 -0.568
4 0.18 4.653 0.991 0 -0.669 -0.487 -0.692
5 4.639 254.368 1.366 -5.02 -0.556 -0.459 -0.613
6 0 0 11.221 -3.03 -0.646 -0.676 -0.402

1989

1 -4.403 -198.544 0.000 14.092 0.597 0.652 0.542
2 0 0 -1.319 0.226 0.839 0.324 1.177
3 1.579 111.116 -1.084 -0.654 0.622 0.173 0.912
4 0.066 2.569 -0.705 -0.398 0.219 0.119 0.266
5 0 0 -8.491 0 0.967 0.799 1.117
6 0 0 -0.438 20.025 0.894 0.866 0.921

2010

1 0 0 0 0.108 0.87 0.817 0.86
2 0 0 0 0.879 0.019 0.054 0.095
3 0 0 0 16.226 0.824 0.954 0.735
4 0 0 0 0.656 0.728 0 0.861
5 3.117 0 0 0 0.716 0 0.82
6 0 -226.546 0 8.399 0 0.728 0
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Table 12: Summary of observations made about changes in climatic variables
that occurred in 1957.

Climatic Variable Cluster Region Increase/Decrease

PRCP1 3
5

Southeastern (3)
Eastern half (5)

Increase (3)
High increase (5)

PRCP 4
5

South-southeastern (4)
Eastern half (5)

Small increase (4)
High increase (5)

TMAX32
3
4
6

Southeastern (3)
South-southeastern (4)
Northeastern (6)

Increase (3)
Small increase (4)
Big increase

TMAX90
2
3
6

West coast (2)
Southeastern (3)
Northeastern (6)

High increase (2)
Decrease (3)
Decrease (6)

TAVG
2
3
4
6

West coast (2)
Southeastern (3)
South-southeastern (4)
Northeastern (6)

High increase (2)
Decrease (3)
small decrease (4)
Decrease (6)

TMAX
2
3
4
6

West coast (2)
Southeastern (3)
South-southeastern (4)
Northeastern (6)

High increase (2)
Decrease (3)
Small decrease (4)
Decrease (6)

TMIN
2
3
6

West coast (2)
Southeastern (3)
Northeastern (6)

High increase (2)
Decrease (3)
Decrease (6)

Table 13: Summary of observations made about changes in climatic variables
that occurred in 1989.

Climatic Variable Cluster Region Increase/Decrease

PRCP1 1
3

Tallahassee (1)
Eastern (3)

High decrease (1)
High increase (3)

PRCP 1
3

Tallahassee (1)
Eastern (3)

High decrease (1)
High increase (3)

TMAX32 5 Northeastern (5) Decrease (5)
TMAX90 6 Southern (6) Increase (6)

TAVG 5
6

Northeastern (5)
Southern (6)

Increase (5)
Increase (6)

TMAX 6 Southern (6) Increase (6)

TMIN
2
5
6

Throughout (2)
Northeastern (5)
Southern (6)

High increase (2)
Increase (5)
Increase (6)
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Table 14: Summary of observations made about changes in climatic variables
that occurred in 2010.

Climatic Variable Cluster Region Increase/Decrease

PRCP1 5 Baton Rouge, Cincinnati,
Raleigh (5) Increase (5)

PRCP 6 Eugene (6) High decrease (6)
TMAX32 – —— ——

TMAX90
3
4
6

Central (3)
Eastern (4)
Eugene (6)

High increase (3)
Increase (4)
High increase (6)

TAVG 1
4

Eastern or Western (1)
Eastern (4)

Increase (1)
Increase (4)

TMAX 1
3

Eastern or Western (1)
Central (3)

Increase (1)
High increase (3)

TMIN 1
4

Eastern or Western (1)
Eastern (4)

Increase (1)
Increase (4)

Table 15: Region wise representation of changes in temperature and precipita-
tion variables

Region Temperature variables Year of change Increase/decrease

Northeastern
TMAX32
TMAX, TAVG, TMAX, TMIN, TMAX32
TAVG, TMIN, TAVG

1957
1957, 1989
1989, 2010

High increase
Decrease
Increase

Eastern
PRCP1, PRCP
PRCP
TMAX90, TAVG, TMAX, TMIN

1957, 1989
1957
2010

High increase
Small increase
Increase

Southeastern PRCP1, PRCP, TMAX32
TMAX90, TAVG, TMAX, TMIN

1957
1957

Increase
Decrease

Southern
PRCP
TAVG, TMAX
TMAX90, TAVG, TMAX, TMIN

1957
1957
1989

Small increase
Small decrease
Increase

Central TMAX90
TMAX

2010
2010

High increase
Increase

West Coast TMAX90, TAVG, TMAX, TMIN
TAVG, TMAX, TMIN

1957
2010

High increase
Increase

Throughout TMIN 1989 High increase
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1957, TAVG and TMIN had much higher number of cities that changed in 1989 and 2010
compared to number of cities that TMAX has changed in the same two change years. The
same can be observed from the number of change points in each of the climatic variables
at each of the 91 cities. This phenomenon should be understood with a deeper understand-
ing of how higher extreme temperatures change compared to average and lower extreme
temperature changes.

We shall now discuss results from cluster analysis based on magnitudes of change pre-
sented in Tables 8-10 and Table 11. There are six clusters in the change year 1957 (Table 8),
and the magnitudes of change for these six clusters are presented in Table 11. Clearly, there
are identifiable differences between the clusters. Cities in Cluster 2 (Bakersfield, Fresno,
Los Angeles, Phoenix, Portland OR, Reno, Sacramento, San Diego, San Francisco, Seat-
tle; darker orange) belonging to the west coastal region of the US have shown high in-
creases in TMAX90 (2.323 days), TAVG (0.849◦C), TMAX (0.403◦C), and TMIN (1.132◦C).
All cities in Cluster 3 (Atlanta, Austin, Charlotte, Chattanooga, Columbia, Jacksonville,
Knoxville, Lexington, Macon, Montgomery, Raleigh) belong to the southeastern region, and
these cities have shown increased average change in PRCP1 (0.406 mm), TMAX32 (1.758
days), and significantly decreased changes in TMAX90 (-18.384 days), TAVG ( 0.749◦C),
TMAX (0.954◦C), and TMIN (0.568◦C). Cities in Cluster 6 (Buffalo, Cincinnati, Cleve-
land, Columbus, Harrisburg, Louisville, Philadelphia, Pittsburgh, Saint Louis) are all in the
northeastern region, and cities in this cluster have very high average increase in TMAX32
(11.221 days) and decreases in TAVG ( 0.646◦C), TMAX (0.676◦C), and TMIN (0.402◦C).
Cities in Cluster 4 (Albuquerque, Augusta, Birmingham, Brownsville, Burlington, Detroit,
El Paso, Greensboro, Little Rock, Nashville, New Orleans, Richmond, San Antonio, Virginia
Beach) are mostly seen in south-southeastern parts of the US and these cities have experi-
enced small increases in TMAX32 (0.991 days), PRCP (4.653 mm), and small decreases in
TAVG (0.669◦C), TMAX ( 0.487◦C), and TMIN (0.692◦C). Cluster 5 (Baton Rouge, New
York City, Tallahassee, Wichita) has only four cities in it and these cities are located only
in the eastern half of the US map and these cluster of cities may be characterized to show
high increases in PRCP1 (4.639 days) and PRCP (254.368 mm). Finally, Cluster 1 (rest of
the cities), which as most number of cities these cities have no significant changes, and are
all spread evenly throughout the US. Overall, it is clear from Table 8 that there have been
more decreasing tends in the temperature variables, and thus the change year 1957 can be
viewed as indicative of the beginning of a cooling period. It is also worth noting the very
large increase of 254.368 mm of precipitation in PRCP at cluster 5 cities.

Moving on to change year 1989, there are again six clusters in this change year as
well (Table 9, Table 11). Among these, cities in Cluster 3 (Albany, Concord, Dayton, Fargo,
Fort Wayne, Knoxville, Madison) are spread in the eastern part of the US, cities in Cluster
5 (Allentown, Burlington, Chattanooga, Cleveland, Columbus, Harrisburg, Indianapolis,
Louisville, Milwaukee, Philadelphia, Pittsburgh, Providence, Saint Louis) are all clustered
in northeastern part of the US, and cities in Cluster 6 (Austin, Brownsville, Miami, New
Orleans, Raleigh, Tucson) are all lined up in the southern part of the US. Among the
remaining two clusters, Cluster 1 has only one city (Tallahassee) with high decrease in
PRCP1(-4.403 days) and PRCP (-198.544 mm), and cluster 2 consisting of large number
of cities can be characterized as having large increase in TMIN (1.177◦C). Cluster 4 has
the largest number of cities and the cities in this cluster show no significant change in
their averages. Cities in Cluster 3 have high increases in PRCP1 ( 1.579 days) and PRCP
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(111.116 days); Custer 5 cities show a decrease in TMAX32 (-8.491◦C), and an increase in
TAVG (0.967) and TMIN (1.117), and cluster 6 cities showed increase in TMAX90 (20.025
days), TAVG (0.894◦C), TMAX (0.866◦C), and TMIN (0.921◦C). Overall, Table 11 makes
it clear that the magnitudes of change in this cluster are mostly positive, particularly for
temperature variables and thus the change year 1989 can be seen as ending the cooling period
that began in 1957 and that there is a transition into the beginning of warmer periods.

Among clusters in change year 2010 (Table 10), Eugene , OR identifies itself as Clus-
ter 6. This city on the west coast can be identified with large drop in PRCP (-226.546
mm) and a large increase in TMAX90 (8.399 days). A large drop in average precipitation
together with a large increase in the number of extremely hot days implies that Eugene
might have begun undergoing impactful climatic change in 1989, moving towards drought
like conditions. Next Cluster 5 (Baton Rouge, Cincinnati, Raleigh) stands out as a cluster
with strong increase in PRCP1 (3.117 days). Cities in Cluster 3 (Albuquerque, Amar-
illo, Austin, Bakersfield, Brownsville, Colorado Springs, Dallas, El Paso, Houston, Miami,
Nashville, Orlando, Reno, Saint Louis, Wichita), located mostly in the central region of the
US have undergone large increases in TMAX90 (16.226 days) and TMAX (0.954◦C), essen-
tially showing increases in extremely hot conditions, both in duration and intensity. Cluster 4
(Birmingham, Boise, Chattanooga, Concord, Greensboro, Harrisburg, Knoxville, New York
City, Omaha, Philadelphia, Richmond, San Antonio, Spokane) with cities located mostly
on the eastern region began undergoing moderately large increases in temperature vari-
ables TMAX90, TAV, and TMIN. Cluster 1 (Albany, Allentown, Atlanta, Augusta, Boston,
Burlington, Charleston, Charlotte, Cleveland, Columbia, Dayton, Fresno, Hartford, Jack-
sonville, Las Vegas, Lexington, Louisville, Montgomery, New Orleans, Phoenix, Portland
ME, Rochester, Sacramento, Salt Lake City, San Diego, Seattle, Tallahassee, Tampa, Tuc-
son, Virginia Beach, Washington DC) with cities located mostly in either east coast or west
coast has also undergone increasing trends in TAVG, TMAX and TMIN variables. Cluster
2 with large number of cities located throughout US showed no significant changes in any
of the variables. With the exception of Eugene that showed large drop in PRCP, a striking
feature of this change year is that there are no negative changes in any of the averages across
all clusters and all variables. The increases are all in temperature variables only, and thus,
the change year 2010 can be seen as a shift towards even warmer conditions that began in
1989.

The discussion of results will be enriched much more through a proper compilation of
various observations made about changes that occurred in the years 1957, 1989, and 2010.
We have done such a compilation of observations for each of 1957, 1989, and 2010, and these
compilations are presented in Tables 12-14, respectively. There is much to learn from a proper
understanding of the information contained in each of these tables. We begin with a careful
look at Table 12 where observations are summarized about changes that occurred in 1957.
The Precipitation variables PRCP1 and PRCP had moderate increases in the southeastern
region, and high increases in the eastern half of the US. As for temperature variables, there
is much similarity in the changes that occurred in TMAX90, TAVG, TMAX and TMIN
variables. All of these four temperature variables have undergone high increase in the west
coast and a decrease in southeastern as well as northeastern parts of the US. Only TMAX32
variable has undergone an increase in southeastern and northeastern regions. The summary
from Table 13 for the change year 1989 reveals that there was a high decrease in the two
precipitation variables PRCP1 and PRCP at Tallahassee, and high increase in PRCP1 and
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PRCP in the eastern region. Among temperature variables even though TMAX32 decreased
in the northeastern region, other variables TMAX90, TAVG, TMAX and TMIN have all
increased in the southern region, and the temperature has increased in the northeastern for
TAVG and TMIN also. As for changes in the year 2010, Table 14 shows the precipitation
variable PRCP1 increased at Baton Rouge, Cincinnati, and Raleigh whereas there was sharp
decrease PRCP at Eugene. Among temperature variables no changes were observed in
TMAX32. Similar changes occurred in the three variables TAVG, TMAX, and TMIN with
increasing temperatures seen in western and eastern regions. The TMAX90 temperature
variable has undergone high increases in central region while significant increases occurred
in the eastern region.

Region wise representation of changes presented in Table 15 also allow us to further
understand the nature of the changes that occurred in both temperature and precipitation
variables. Changes in Precipitation variables, PRCP1 and PRCP, occurred in eastern, south-
eastern, and southern areas of the US. All the changes in both the precipitation variables
occurred in either 1957 or 1989, and moreover, all changes have led to varying levels (small
to high) of increases only. In particular, increases in PRCP occurred in all three regions,
whereas increases in PRCP1 occurred only in eastern and southeastern regions, that too
in 1957. As for temperature changes, there were both decreases and increases in the tem-
perature variables. The decreases were limited to northeastern, southeastern, and southern
regions and the decreases in temperature variables occurred mostly in 1957 only. All changes
that occurred in temperature variables in 2010 have been increases only, and these increases
have occurred in northeastern, eastern and central regions. The year 1989 saw decreases
in the northeastern region and otherwise increases in southern region while high increases
occurred throughout in TMIN only.

Finally, we have computed overall magnitudes of change for each climatic variable
over the 75-year long sampling period 1948-2023. The computed overall average changes
are: PRCP1: 0.193 days; PRCP: 5.559 mm; TMAX32: -0.166 days; TMAX90: 0.660 days;
TAVG: 0.333◦C; TMAX: 0.186◦C; TMIN: 0.429◦C. Clearly, at an overall level, there were no
significant changes in the averages of the two precipitation variables PRCP1 and PRCP as
well as the two discrete temperature variables TMAX32 and TMAX90. The overall changes
in TAVG, TMAX and TMIN are of much interest. These changes observed over the 75-year
period can be better compared with previous works in the literature if we convert these
average changes into ◦C/100 years. Upon doing so we find the changes in averages as –
TAVG: 0.444◦C /100 yr; TMAX: 0.248◦C /100 yr; TMIN: 0.572◦C /100 yr.

The above average changes per century are highly influenced by the cooling period
that began in 1957 and continued till 1989. Hence, in order to understand more recent
trends in temperature changes, it is better to compute the overall magnitudes of changes
in TAVG, TMAX and TMIN for the period 1990-2023, a 33 year period. We found these
33-year period changes in averages as – TAVG: 0.595◦C; TMAX: 0.404◦C; TMIN: 0.699◦C.
Assuming present temperature trends would continue till the end of the century, the same
changes when projected as ◦C/100 yr are – TAVG: 1.803◦C /100 yr; TMAX: 1.224◦C /100
yr; TMIN: 2.118◦C /100 yr. Of course, the assumption that current temperature trends
would continue till the end of the century can be seen to be unrealistic and in this sense the
above ◦C/100 yr increases should be viewed as being conservative.
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Comparing the changes in temperature variables with existing literature, even if global
in scope, Hawkins and Jones (2013) remarked that more recent analyses support average
temperature increases at the rate of 0.500◦C/100 yr, first projected by Callendar (1938).
In comparison, our current study projects change in average temperature for the US as
0.444◦C /100 yr. Based upon a change point modeling, Lee et al. (2014) concluded that
monthly maximum had a mean change of 0.47◦C/Century while the mean change for the
monthly minimum was 1.65◦C/Century. Results for our monthly maximum TMAX and
monthly minimum TMIN showed increases in both extremes. For the whole data period
1948-2023, the increase in TMAX is 0.248◦C /100 yr and the same for TMIN is 0.572◦C
/100 yr. However, if we consider increases for the data period 1990-2023, then the increases
in the two extremes are much higher with the increase in TMAX at 1.224◦C /100 yr and the
increase in TMIN at 2.118◦C /100 yr.

6. Concluding remarks

In this study, we have applied recently developed method of high dimensional change
point analysis for identifying changes in temperature and precipitation variables based upon
data from 91 stations from contiguous United States for the period 1948-2023. A total of
seven climatic variables have been considered for studying changes and among these, one
precipitation variable and four temperature variables represent extremes. The analysis has
identified changes occurring in the years 1957, 1989, and 2010. The magnitudes of changes
in the variables and relevant areas where changes have occurred has all been discussed in
sufficient detail in the previous section. Here, we shall focus briefly on reasons behind the
changes identified by the methodology. First, it is important to note that the change point
methodology applied in this study only enables to identify changes but doesn’t dwell into
reasons behind any of the changes identified by the method. Thus, we need to collect
such information from published literature. Changes in climatic variables can occur due
to anthropogenic factors or due to various natural phenomena including volcanic eruptions,
solar radiation fluctuations, ocean fluctuations such as Pacific Decadal Oscillations (PDO)
etc. Abrupt changes in climatic variables can also occur due to undocumented causes such as
changes in measuring instrumentations that do not get recorded, unrecorded shifts in station
locations, etc. Anthropogenic causes are those human activities such as industrialization
pollution, deforestation, urbanization, etc., that lead to emitting harmful greenhouse gases
into the atmosphere.

Wild et al. (2005) discuss about evidence of solar dimming caused by air pollution
between the period 1958-1985 and the reversal of solar dimming to solar brightening subse-
quent to 1985. It is possible that the solar dimming between 1958-1985 may have induced
the temperature declines that our analysis has identified between the years 1959-1989, a time
period that closely matches with solar dimming period. Since solar dimming is a global phe-
nomenon, it is possible that the temperature declines during the identified period may not
be limited to the United States alone. Also, the solar dimming apparently does not impact
uniformly throughout the United States since the temperature declines have been noticed
predominantly in the northeastern, southeastern and southern regions of the US. Conversely,
the solar brightening that began after 1985 might explain the observed increases uniformly
in all temperature variables subsequent to the year 1989. Greater increases in temperature
variables observed since 2010 require further investigation.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

CHANGE POINTS IN US CLIMATE 663

Acknowledgements:

The authors thank the reviewer(s) and the Editors for constructive comments and
suggestions that have led to improved discussions in the paper.

References

Armal, S., Devineni, N., and Khanbilvardi, R. (2018). Trends in extreme rainfall frequency
in the contiguous united states: Attribution to climate change and climate variability
modes. Journal of Climate, 31, 369–385.

Bai, J. (1994). Least squares estimation of a shift in linear processes. Journal of Time Series
Analysis, 15, 453–472.

Beaulieu, C., Chen, J., and Sarmiento, J. L. (2012). Change-point analysis as a tool to
detect abrupt climate variations. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 370, 1228–1249.

Bhattacharjee, M., Banerjee, M., and Michailidis, G. (2017). Common change point estima-
tion in panel data from the least squares and maximum likelihood viewpoints. arXiv
preprint arXiv:1708.05836.

Bhattacharjee, M., Banerjee, M., and Michailidis, G. (2020). Change point estimation in
a dynamic stochastic block model. The Journal of Machine Learning Research, 21,
4330–4388.

Bieniek, P. A., Walsh, J. E., Thoman, R. L., and Bhatt, U. S. (2014). Using climate divisions
to analyze variations and trends in alaska temperature and precipitation. Journal of
Climate, 27, 2800–2818.

Cai, H. and Wang, T. (2023). Estimation of high-dimensional change-points under a group
sparsity structure. Electronic Journal of Statistics, 17, 858–894.

Callendar, G. S. (1938). The artificial production of carbon dioxide and its influence on
temperature. Quarterly Journal of the Royal Meteorological Society, 64, 223–240.

Chen, Y., Wang, T., and Samworth, R. J. (2023). Inference in high-dimensional online
changepoint detection. Journal of the American Statistical Association, 119, 1461–
1472.

Cho, H. (2016). Change-point detection in panel data via double cusum statistic. Electronic
Journal of Statistics, 10, 2000–2038.

Cho, H. and Fryzlewicz, P. (2015). Multiple-change-point detection for high dimensional
time series via sparsified binary segmentation. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 77, 475–507.

Cho, H. and Kirch, C. (2022). Bootstrap confidence intervals for multiple change points
based on moving sum procedures. Computational Statistics & Data Analysis, 175,
107552.
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Abstract
A highly cited and inspiring article by Bates et al. (2024) demonstrates that the

prediction errors estimated through cross-validation, Bootstrap or Mallow’s CP can all be
independent of the actual prediction errors. This essay hypothesizes that these occurrences
signify a broader, Heisenberg-like uncertainty principle for learning: optimizing learning and
assessing actual errors using the same data are fundamentally at odds. Only suboptimal
learning preserves untapped information for actual error assessments, and vice versa, rein-
forcing the ‘no free lunch’ principle. To substantiate this intuition, a Cramér-Rao-style lower
bound is established under the squared loss, which shows that the relative regret in learning
is bounded below by the square of the correlation between any unbiased error assessor and
the actual learning error. Readers are invited to explore generalizations, develop variations,
or even uncover genuine ‘free lunches.’ The connection with the Heisenberg uncertainty
principle is more than metaphorical, because both share an essence of the Cramér-Rao in-
equality: marginal variations cannot manifest individually to arbitrary degrees when their
underlying co-variation is constrained, whether the co-variation is about individual states
or their generating mechanisms, as in the quantum realm. A practical takeaway of such a
learning principle is that it may be prudent to reserve some information specifically for error
assessment rather than pursue full optimization in learning, particularly when intentional
randomness is introduced to mitigate overfitting.

Key words: C. R. Rao; Cramér-Rao bound; Cross validation; Epistemology; Heisenberg
uncertainty principle; Machine learning; Quantum mechanics; Uniformly minimum variance
unbiased estimator.
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1. A Rao-esque apology and a quantum-leap excuse

Many of the advances in statistics and machine learning are about using data as
efficiently and reliably as possible to achieve a host of learning objectives, such as inference,
prediction, classification, etc. Being statistically efficient typically means to optimize over
some criterion that amounts to minimizing learning errors based on the data at hand, whether
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in a brute-force fashion, such as minimizing a χ2 distance or adopting the L2-loss directly on
the target of learning, or through deeper principles, e.g., by maximizing a likelihood function
or a posterior density. Since the actual learning errors themselves cannot be known without
an external benchmark, we seek clever and reliable ways to assess them, whether for training
machine learning algorithms, constructing confidence intervals, or checking Bayesian models.

Naturally, we wish to be able to optimally use our data for both purposes: to most
efficiently learn whatever we can learn, and to most reliably assess the errors in whatever
we cannot learn. However, since any information on the actual learning error can be used
to improve the learning itself, we should be mindful that optimizing one endeavor comes at
the expense of the other. To emphasize this no-free lunch principle, this essay first revisits
seemingly quaint examples and classical results to remind ourselves that this principle has
been in action for as long as statistical inference exists. However, such an issue has not
received much emphasis apparently because principled statistical methods, such as likelihood
or Bayesian methods, automatically prioritize optimal learning over error assessment.

Yet time has changed. Machine learning and other pattern-seeking methods require
much intuition and judgment to tune well, when their theoretical guiding principles are not
well developed or digested. Substituting—not merely supplementing—virtual trials and er-
rors for sapient contemplation and introspection is becoming increasingly habitual, making us
more vulnerable to wishful thinking, misinformed intuitions, and misguided common sense.
To better prepare students and newcomers to our progressively empiricism-slanted culture of
learning, this essay then recasts a classical result regarding UMVUE to the broader class of
problems of unbiased learning, and establishes a mathematical inequality that captures the
aforementioned Heisenberg-esque uncertainty principle for simultaneous learning and error
assessment under the squared loss.

This inequality is a low-hanging fruit in establishing a general theory for understand-
ing the competing nature between optimal learning and actual error assessing. Nevertheless,
it can help us anticipate and better appreciate further results such as those obtained in Bates
et al. (2024), which show that the error estimates from cross validation and other popular
methods can be independent of actual learning error. The uncertainty principle tells us
that this should not come as a surprise. Rather, the independence is an indication that the
corresponding learning is optimal in some sense.

Since this essay was prepared for this special issue in memory of Professor C. R. Rao,
it seems fitting to quote Rao (1962), a discussion article presented1 to the Royal Statistical
Society in England (RSS):

“While thanking the Royal Statistical Society for giving me an opportunity to
read a paper at one of its meetings, I must apologize for choosing a subject which
may appear somewhat classical. But I hope this small attempt intended to state
in precise terms what can be claimed about m.l. estimates, in large samples, will
at least throw some light on current controversies.”

Rao (1962) was a paper on “Efficient estimates and optimum inference procedures in
1As a reminder of C. R. Rao’s remarkable personal and professional longevity, this presentation took

place before my parents had decided to conceive me.
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large samples” (and his “m.l.” referred to maximum likelihood, not machine learning), one
of a series of fundamental articles that he authored during what is now considered an era
of classical mathematical statistics. Therefore, initially I was somewhat surprised by Rao’s
apologetic sentiment—one that I ought to adopt myself for bringing up UMVUE in an era
where few statistics students would recognize the acronym without Googling it. However,
upon reflection, and considering his training under R. A. Fisher and the characteristically
wry culture of RSS discussion at that time, I suspect Rao’s apology was more of a gentle
reminder to not ignore established literature or wisdom when facing new problems. I am
therefore grateful to the editors of this special issue, especially Bhramar Mukherjee, for
the opportunity to honor Professor C. R. Rao with one more example of the value of such a
reminder: how classical statistical results can offer insights and contextualization for modern
work in data science like Bates et al. (2024).

I am also deeply grateful to Bhramar for her extraordinary patience in allowing me
two extra months to complete this essay, without which I would have embarrassed myself sig-
nificantly more by writing about the Heisenberg Uncertainty Principle (HUP) while knowing
almost surely nothing even about classical mechanics2. The connection between Cramér-Rao
inequality and HUP has long been suspected, but I was unaware of any statistical literature
on the connection between the two (however, during this work, I was made aware of such
results in information theory—see Section 7).

Unfortunately, I had found neither the time nor the courage to explore quantum
physics. Bhramar’s invitation gave me a great excuse to delve into it, though clearly it has
been a quantum leap (or dive). I am therefore deeply grateful to the physicists, philosophers,
and statisticians (see acknowledgment) who generously took the time to educate and inspire
me, introducing me to numerous articles that, no doubt, will require another quantum-leap
excuse to digest fully. These include physics literature on quantum Cramér-Rao bounds and
quantum Fisher information (e.g., Tóth and Petz, 2013; Tóth and Fröwis, 2022), as well as
statistical writings on the relevance of quantum uncertainty to statistics (e.g., Gelman and
Betancourt, 2013), to name just a few.

Nevertheless, to set readers’ expectations realistically, this essay offers nothing about
HUP that isn’t already in Wikipedia. I wrote much of it as reading notes to educate myself,
so, paraphrasing a most memorable chiasmus from an RSS discussion: “The parts of the
paper that are true are not new, and parts that are new are not true” (McCullagh, 1999).
My hope, however, is that these notes may still be of use to those who share my curiosity
(and innocence). I also hope that my attempt to extend the notion of covariance to quantum
operators might encourage us to step out of our comfort zones without stepping out of our
minds.

Intellectually, quantum indeterminacy is a captivating and challenging topic, espe-
cially for those of us who have been probability-law abiding citizens. To my knowledge,
currently only a few statisticians—most notably Richard Gill3—have studied it systemati-
cally. Therefore, even if everything “new” in this essay ends up merely demonstrating that
humans can out-hallucinate ChatGPT, I’d still be content dedicating it to the legendary C.

2Majoring in pure math in 1980s China means that I had taken no courses outside of mathematics, with
the exception of mandatory ones for regulating students’ bodies or minds.

3See https://www.math.leidenuniv.nl/ gillrd/
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R. Rao. Throughout his extraordinary career, Professor Rao applied his statistical insight
and mathematical skills to establish and solidify the foundations of statistics. As quantum
computing looms on the horizon, some statisticians should be leading the way in building the
foundations of quantum data science, as articulated in the discussion article “When Quan-
tum Computation Meets Data Science: Making Data Science Quantum” by Wang (2022),
a prominent statistician exploring quantum computing’s role in data science. Thus, even
if this essay inspires only one future C. R. Rao of quantum data science, it won’t take a
quantum leap to believe that Professor Rao would embrace my dedication.

More broadly, I would find great professional satisfaction (and justification for my
insomnia) if this essay serves as a reminder that time-honored statistical theory and wisdom
have much to offer as we statisticians are increasingly called to step outside our comfort
zones—from embracing machine learning to anticipating quantum computing. By learning
from and contributing to other fields, especially time-tested ones such as philosophy and
physics, we can enhance the intellectual impact of our discipline.

2. A paradox of error assessment?

Let us start with an excursion to the classical statistical sanctuary most frequently
adopted in statistical research and pedagogy: we have an independently and identically dis-
tributed (i.i.d) normal sample, X1, · · · , Xn

iid∼ N(µ, σ2), and we are interested in making
inferences about µ. It is well-known that the maximum likelihood estimator (MLE) for µ
is the sample mean X̄n. The actual error of the MLE then is δ = X̄n − µ. It is textbook
knowledge that the sample mean X̄n and the sample variance S2

n are independent under the
normal model N(µ, σ2). This fact is critical for establishing perhaps the most celebrated
pivotal quantity in statistics, t =

√
n(X̄ − µ)/Sn, i.e., the t statistic, because of the exis-

tence of the parameter-free distribution of t for any n ≥ 2, thanks to the aforementioned
independence.

But this independence also implies a seemingly paradoxical fact that has received
no mention in any textbook (that I am aware of): that δ̂2 ≡ S2

n/n apparently is the worst
estimate of the square of the actual error δ2 = (X̄n −µ)2, because δ̂2 and δ2 are independent
of each other for any choice of θ = {µ, σ2}. In what other context would a statistician
(knowingly) suggest estimating an unknown with an independent quantity?

The article by Bates et al. (2024) reminds us that this seemingly paradoxical phe-
nomenon is far more prevalent than we may have realized. To recast their findings in a
broader setting but with a scalar estimand for notational simplicity, consider the possibly
heteroscedastic linear regression setting,

Yi = θXi + ϵi, where E[ϵi|X] = 0,V(ϵi|X) = σ2
i , i = 1, . . . , n. (1)

and conditioning on X = {X1, . . . , Xn}, {ϵ1, . . . , ϵn} are mutually independent. As Bates
et al. (2024) reminds us, when {ϵ1, . . . , ϵn} are i.i.d N(0, σ2), the least-squares estimator for
θ, θ̂LS = ∑n

i=1 YiXi/
∑n

i=1 X
2
i is independent of the residual R = {r̂i = Yi − θ̂Xi, i = 1, . . . , n},

for any given {θ, σ2}. Consequently, since the true predictive error depends on the data only
through θ̂LS, and cross-validation error estimators are functions only of the residuals, the
true and estimated errors are independent of each other. The results obviously apply to any
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error estimates that depend on data only through R, which is the case virtually for all the
common estimators in practice, as demonstrated in Bates et al. (2024).

It is well-known (e.g., Casella and Berger, 2024) that under the i.i.d normal setting,
θ̂LS is the MLE and indeed UMVUE (uniformly minimum variance unbiased estimator)
because its variance reaches the Cramér-Rao bound. Even without the normality, we know
that θ̂LS is BLUE (best linear unbiased estimator) and it is linearly uncorrelated with the
residual R under the squared loss, because it is the orthogonal projection of Y onto the space
expanded by X when σi is invariant of i.

Although rarely mentioned in textbooks, this optimality-orthogonality duality ap-
pears in essentially all inferential paradigms. Geometrically speaking, the equivalence is due
to the fact that the linear correlation between two variables is the cosine of the angle between
them in the L2 space, and optimal projection is the orthogonal projection. Probabilistically,
the ubiquity of this duality is manifested by the so-called “Eve’s law” (Blitzstein and Hwang,
2014), an instance of the Pythagorean theorem in the L2 space.

That is, under any joint distribution, p(H,G), as long as it generates finite second
moments, Cov[H − E(H|G),E(H|G)] = 0, because E(H|G) is the orthogonal projection of
H to the space of L2 functions that are measurable with respect to the σ-field generated by
G. Consequently, the Pythagorean theorem is in force:

V(H) = E [H − E(H)]2 = E[H − E(H|G)]2 + E[E(H|G) − E(H)]2

= E[V(H|G)] + V[E(H|G)], (2)

which is Eve’s law. The ubiquity of the duality is due to the fact that the expectation
operator in (2) can be taken with any kind of distribution: posterior (predictive) distributions
for Bayesian inferences, super-population distributions as typical for likelihood inference (as
in the N(µ, σ2) example), or randomization distributions as in finite-population calculations
(as adopted in Meng, 2018).

Nevertheless, this duality is a qualitative statement, as it does not quantify what
happens for non-optimal estimation or learning. As demonstrated below, this duality can be
extended quantitatively by tethering the deficiency in learning with the relevancy in assess-
ing the actual learning errors. This quantification crystallizes the reason for the apparent
paradox, and it can help reduce wasted efforts in pursuit of the impossible. It also makes
it clearer that there is no real paradox, much like how Simpson’s paradox is not a paradox
once its workings are revealed and understood (e.g. Liu and Meng, 2014; Gong and Meng,
2021).

The title of the next section says it all: there is no free lunch. If there is any
data information left—after learning—for assessing the actual error, then we can reduce the
actual error by removing the part that can be predicted by the untapped data information.
This implies our learning is not optimal, and vice versa. Section 3 illustrates this fact in
the context of heteroscedastic regression, followed by a broad reflection in Section 4 on its
implications in the context of error assessment without external benchmarks, a statistical
magic. Sections 5 and 6 then establish respectively the exact and asymptotic inequalities
that capture the learning uncertainty principle under the squared loss.

To facilitate a formal comparison with HUP using the notion of co-variation, Sec-
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tion 7 discusses the generalization of the measure of co-variance from real-valued variables
to complex-valued variables and functions. Section 8 then applies the generalization to the
case of HUP by defining co-variances between mechanisms (e.g., the position and momen-
tum operators) rather than between the states they generate (e.g., the actual position and
momentum states). With these preparations, Section 9 compares the learning-error inequal-
ity, Cramér-Rao inequality, and HUP inequality, highlighting their shared essence from a
statistical perspective.

Section 10 reflects on various philosophical issues surrounding uncertainty principles
in general, and HUP in particular, with insights from the encyclopedic essay by Hilgevoord
and Uffink (2024). Section 11 briefly touches on the trade-off between quantitative and
qualitative studies, prompted by a discussion in Hilgevoord and Uffink (2024), and how
intellectual inquires can benefit from their happy marriage. This leads to a piece of advice
from Professor Rao on living a happy life, which serves as a fitting conclusion to this essay in
his memory. However, to encourage students to engage with this essay to the fullest extent
of their attention spans, Section 12 provides a prologue, especially for those who may not
enjoy technical appendices but wish the essay were even longer.

3. Once again, there is no free lunch

Consider the heteroscedastic setting (1), where we know that BLUE is given by the
weighted LS, in the form of

θ̂w =
∑n

i=1 wiYiXi∑n
i=1 wiX2

i

, (3)

when the weights wi ∝ σ−2
i , i = 1, . . . , n. Now consider an arbitrarily weighted θ̂w, and its

correlation—denoted by ρ—with the corresponding residual Rw = {r̂w,i = Yi − θ̂wXi; i =
1, . . . , n}. For conveying the main idea, the case of n = 2 is sufficient. As a special case of
the general expression given in Appendix A, we have, conditioning on X (but we suppress
this conditioning notation-wise unless necessary),

ρ2(θ̂w, r̂w,i) = X2
1X

2
2 (w1σ1σ

−1
2 − w2σ2σ

−1
1 )2

(w2
1X

2
1σ

2
1 + w2

2X
2
2σ

2
2)(X2

1σ
−2
1 +X2

2σ
−2
2 )

, i = 1, 2, (4)

which is zero if and only if wi ∝ σ−2
i , i = 1, 2 (as long as Xi ̸= 0, i = 1, 2). That is, θ̂w is

BLUE (or the MLE if we assume normality) if and only if θ̂w is uncorrelated with r̂w,i. More
importantly, expression (4) tells us exactly how the statistical efficiency of θ̂w is directly
linked to this correlation.

Specifically, let θ̂BLUE be the optimally weighted LS estimator with weight wi ∝
σ−2

i , i = 1, 2, and RRw be the relative regret of an arbitrarily weighted θ̂w under the squared
loss, that is,

RRw = V(θ̂w) − V(θ̂BLUE)
V(θ̂w)

= 1 − (w1X
2
1 + w2X

2
2 )2

(w2
1X

2
1σ

2
1 + w2

2X
2
2σ

2
2)(X2

1σ
−2
1 +X2

2σ
−2
2 )

. (5)

Whereas it may not be immediate from (4) and (5), one can verify directly that

ρ2(θ̂w, r̂w,i) = RRw, i = 1, 2, (6)
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for any choice of weights w or values of {σ2
i , i = 1, 2}. This means that if we want to increase

the magnitude of the correlation between θ̂w and r̂w,i, we must sacrifice the efficiency of θ̂w,
and vice versa.

However, why might we want to increase |ρ(θ̂w, r̂w,i)|? Consider the case where our
learning target is cθ, with c being a constant. For example, we take c = 1 when the regression
coefficient θ is the target, or c = X∗ when the learning target is the mean of Y when X = X∗.
In such cases, the actual error is given by δw = c(θ̂w − θ). We can assess δw via δ̂w = c̃r̂w,1
for some choice of c̃ (recall r̂w,1 + r̂w,2 = 0 and hence a single residual suffices). Because

ρ2(δw, δ̂w) = ρ2(cθ̂w, c̃r̂w,1) = ρ2(θ̂w, r̂w,1), (7)

we see that by moving ρ2(θ̂w, r̂w,1) away from zero, we will have an assessment δ̂w of the
actual error δw that has a degree of conditional relevancy, that is, δ̂w is at least correlated
with δw conditioning on the setting (1). But this gain of relevancy is achieved necessarily by
increasing the relative regret (recall the relative regret for cθ̂w is invariant to the value of c),
that is, by sacrificing the efficiency of θ̂w, because

ρ2(δw, δ̂w) = RRw, (8)

thanks to (6)-(7).

If our learning target is to predict (a new) Y ∗ when X = X∗, then the actual pre-
diction error is δ∗

w = Y ∗ − θ̂wX
∗. In such cases, the prediction risk under the squared loss

is

E(Y ∗ − θ̂wX
∗)2 = V(Y ∗) + (X∗)2V(θ̂w).

Because V(Y ∗) and (X∗)2 are invariant to the weights, we obtain the relative regret for
prediction RR∗

w = γRRw, where RRw is from (5) and the adjustment factor γ is given by

γ = (X∗)2V(θ̂w)
V(Y ∗) + (X∗)2V(θ̂w)

. (9)

Furthermore, because δ̂w = c̃r̂w,1 is independent of Y ∗, Cov(δ∗
w, δ̂w) = −X∗Cov(θ̂w, δ̂w).

Hence,

ρ2(δ∗
w, δ̂w) = (X∗)2Cov2(θ̂w, δ̂w)[

V(Y ∗) + (X∗)2V(θ̂w)
]

V(δ̂w)
= γρ2(θ̂w, δ̂w). (10)

Consequently, the identity (8) holds for both estimation and prediction, implying the same
trade-off between optimal learning and relevant error assessment.

Section 5 below will provide a general inequality that captures this trade-off under
squared loss, for which identity (8) is a special case. But before presenting that result, we
must ask: if we cannot relevantly assess the actual error δ, then what kind of errors have
we been assessing? And that is exactly one of the two questions raised in the title of Bates
et al. (2024): Cross-validation: what does it estimate and how well does it do it? The
following section supplements Bates et al. (2024) to answer this question more broadly and
more pedagogically.
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4. Jay Leno’s irony and a statistical magic

During one of the years the United States census took place (likely 2000-2001), co-
median Jay Leno brought up the issue of under-counting on his Tonight Show. He began by
informing the audience that the U.S. Census Bureau had just reported that approximately
p percentage of the population had not been counted. With an arch smile, he then quipped,
“But I don’t understand—if they knew they missed p percentage of people, why didn’t they
just add it back?” (The actual value p he used now lies deep in my memory.)

The audience was amused, as was I, though perhaps for different reasons—what
amused me was the very appearance of such a nerdy joke on a mainstream comedy show.
Humor is often rooted in life’s ironies, and whoever crafted this joke clearly understood the
irony in announcing both an estimate and its error. In the case of the U.S. Census, the
irony—or more accurately, the magic—is not as profound as it may seem. The estimation of
undercount relies on external data, such as demographic analysis, post-enumeration surveys,
administrative records, and other sources. The term magic is used here because statistical
inference can appear magical to uninitiated yet inquisitive minds. How can one estimate
an unknown quantity, and then estimate the error of that estimation, without any external
knowledge of the true value?

The magic begins with a sleight of hand—in this case, the word error does not refer to
the actual error, as a layperson might assume. Instead, we aim to understand the statistical
properties of the actual error by imagining its variations across hypothetical replications. The
construction of these replications depends on the philosophical framework one subscribes to,
with the two main schools being frequentist and Bayesian (but see Lin (2024b) for a spectrum
between them). Perhaps surprisingly, the key to resolving the apparent paradox in Section 2
lies in adopting insights from both perspectives.

To see this, consider again the normal example where the true error is δ = X̄n − µ.
In the frequentist framework, the hypothetical replications consist of all possible copies of
D = X = {X1, . . . , Xn} generated from N(µ, σ2) with the same but unknown parameter
values θ = {µ, σ2}. In this replication setting, the expected value of δ2, which is the sampling
variance of X̄n, equals σ2/n. It is well-known that under the same replication framework,
the expectation of δ̂2 = S2

n/n is also σ2/n.

Thus, while δ2 and δ̂2 are independent of each other for any given θ = {µ, σ2},
they share the same expectation within the frequentist framework. By invoking the same
leap of faith that underpins the frequentist approach—trusting and transferring average
behaviors to assess individual cases—we justify δ̂2 as an estimate of δ2. Such a leap of faith
exists regardless of the goal of our data exercise, be it prediction, estimation, or attribution
(significance testing), albeit with increased levels of intolerance to the inaccuracy in error
assessing, as revealed by the insightful article of Efron (2020).

For Bayesians, such a leap of faith is unconvincing or even “irrelevant” in the sense
of Dempster (1963), as the actual error can differ significantly from its expectation. The
independence between δ̂2 and δ2 suggests that accepting this leap would require a religious
level of faith. In the Bayesian framework, the relevant hypothetical replications include all
possible values of θ = {µ, σ2} (and their associated probabilities) that could have generated
the same data set D, and therefore the same {X̄n, S

2
n}.
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However, for such a replication setting to be realized—for instance, via a simula-
tion—a prior distribution for θ = {µ, σ2} must be assumed. This postulation represents the
Bayesian leap of faith in actual implementations, since it is virtually certain that a part of
the assumption is faith-based instead of knowledge-driven; for a broader discussion on the
necessity of such leaps across all major schools of statistical inference—Bayesian, Fiducial,
and Frequentist (BFF)—see Craiu et al. (2023) and more comprehensively the Handbook on
BFF Inference edited by Berger et al. (2024).

Although we shall not take a Bayesian excursion here, we can borrow the Bayesian
concept of allowing θ = {µ, σ2} to have a distribution in order to establish a joint replication
setting, where both D and θ = {µ, σ2} vary. This framework is relevant (for frequentists)
when recommending the same statistical procedure across multiple studies with normal data,
where both D and θ = {µ, σ2} may differ from study to study. In the machine learning
world—or any domain reliant on training data—such a joint replication setting can be visu-
alized as potential training datasets drawn from related populations, which makes transfer
learning a meaningful endeavor (e.g., Abba et al., 2024).

For our normal example, given any proper prior on θ, it can be shown (see Appendix
B) that over any proper joint replication of {D, θ},

ρ(δ̂2, δ2) = γ2
σ2√

n+1
n−1γ

2
σ2 + 2

n−1

√
3γ2

σ2 + 2
, (11)

where γσ2 is the coefficient of variation of σ2 with respect to the (proper) prior distribution
of σ2. This correlation is non-negative, providing a plausible measure of how relevant δ̂2 is
for assessing δ2. It is zero if and only if V(σ2) = 0, meaning that we revert to the situation
of conditioning on a fixed σ2: since S2

n is invariant to µ, δ̂2 and δ2 remain independent when
conditioned on σ2 alone. The fact that (11) is a monotonic increasing function of γσ2 implies
that the relevance of δ̂2 for assessing δ2 increases as the heterogeneity among the studies—in
terms of the within-study variation indexed by σ2—grows. This monotonicity is intuitive,
given that S2

n is an unbiased and asymptotically efficient estimator of σ2, and δ̂2 is useful
for comparing the magnitudes of δ2 across studies with different σ2 values. However, the
fact that this correlation can never exceed 1/

√
3 ≈ 0.577 is unexpected. For those of us

who believe that mathematical results are never coincidental, contemplating the intricacies
of this bound might induce insomnia (while serving as a cure for many others).

This joint replication framework clarifies the role of δ̂2 as an adaptive benchmark for
assessing the statistical properties of δ2 over the hypothetical replications. That is statisti-
cal magic—the ability to establish cross-study comparisons based on a single study. More
broadly, the magic lies in creating hypothetical “control” replications {D̃, θ̃} from the actual
“treatment” {D, θ} at hand, as elaborated in Liu and Meng (2016), borrowing the metaphor
of individualized treatment.

Generally speaking, the magic relies on two tricks: (I) creating replications within
D, and (II) linking those replications to the imagined variations of D through the within-D
replications from (I). The first trick is applicable when the mechanism generating the data
D inherently includes (higher resolution) replications, either by design (e.g., simple random
sampling) or by declaration (e.g., imposing an i.i.d. structure as a working assumption).
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The second trick is enabled by theoretical understanding (e.g., the relationship between
the distribution of the sample mean and the distribution of the individual samples) or by
simulations and approximations that are enabled by (I), such as the Bootstrap (see Craiu
et al., 2023, for a discussion).

The magic metaphor also serves as a reminder that magic relies on illusions, and
interpreting average errors as actual ones is one such illusion. With that understanding, we
might wonder if it’s possible to assess the actual error with greater relevance. For example,
in the normal case, one might ask whether a different error estimate δ̌ could be more relevant
for δ = X̄n − µ, in the sense that ρ(δ̌, δ) > 0 given any value of θ = {µ, σ2}. The classical
statistical literature offers a fairly clear answer to this question, as discussed below.

5. From UMVUE to an uncertainty principle for unbiased learning

The celebrated Cramér–Rao bound, more broadly known as the information inequal-
ity (see Lehmann and Casella, 2006, Ch. 2), tells us that if θ̂ is an unbiased estimator for θ
under a parametric model f(D|θ), then under mild conditions, V(θ̂) ≥ I−1(θ), where I(θ) is
the expected Fisher information. For the normal example, when we take θ = µ (temporarily
assuming σ2 is known), we have V(X̄n) = σ2/n = I−1(µ), where I(µ) is the expected Fisher
information from f(X1, . . . , Xn|µ). Thus, we know X̄n is UMVUE for µ.

It is well-known that an estimator θ̂ is UMVUE if and only if it is uncorrelated with
any unbiased estimator U for zero for any θ (see Lehmann and Casella, 2006, Ch. 2), that
is, Eθ[(θ̂ − θ)U ] = 0, whenever Eθ(U) = 0. Since θ̂ − θ is simply the actual error δ, this
result implies that conditioning on θ, it is impossible to have an error assessment δ̂ for δ
that is both unbiased and relevant at the same time, i.e., Eθ(δ̂) = 0 and ρ2

θ(δ̂, δ) > 0 cannot
hold simultaneously for any θ, where we inject the subscript θ in ρθ to explicate that the
correlation is with respect to f(D|θ) for fixed θ.

Intuitively, if any unbiased error assessment δ̂ is correlated with δ, then some part of
the actual error δ is predictable by δ̂. This means that we could improve θ̂ without losing its
unbiasedness, which contradicts the fact that θ̂ is already an UMVUE. An astute reader may
quickly recognize that this insight has much broader implications than merely for UMVUEs.
The following result is a proof of this realization, using the same proof strategy as for
UMVUE, but establishes a broader quantitative result than the aforementioned qualitative
“if and only if” result for UMVUE. The result is presented in the scalar case for simplicity,
but its multivariate counterpart can be derived easily using corresponding matrix notation.

Specifically, let Q ∈ R be our target of learning, which could represent a future
outcome, a model parameter, a latent trait, etc. Suppose the state space of our data D is
Ω and Q̂ : Ω → R is our learning algorithm, or a learner for Q. For any learner Q̂, let
δ̂Q̂ : Ω → R be an assessment (e.g., an estimator) of the exact (additive) error of Q̂, namely,
δQ̂ = Q̂−Q. Let L(Q̂, Q) be the loss function, and P = {Ps(D;Q), s ∈ S} be the family of
distributions under which we calculate the learning risk: Rs(Q̂) = Es[L(Q̂, Q)]. Note that Q
may be a function of s (e.g., when estimating the model parameter s) or it may be a random
variable itself (e.g., a future realization), in which case the notation Ps(D;Q) represents the
joint distribution over D and Q.
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Theorem 1: Let L(Q̂, Q) = (Q̂−Q)2 be the squared loss, and let L2
P denote the collection

of all square-integrable functions with respect to P . Define

Q = {Q̂(D) ∈ L2
P : Es(Q̂−Q) = 0, ∀s ∈ S} (12)

as the collection of unbiased learners of Q with respect to P . For any Q̂ ∈ Q, define

E(Q̂) = {δ̂Q̂(D) ∈ L2
P : Es(δ̂Q̂) = 0,∀s ∈ S} (13)

as the collection of corresponding unbiased error assessors for δQ̂. Suppose there exists an
optimal learner Q̂opt ∈ Q, with risk Ropt

s < ∞ under fs, s ∈ S. Then:

(I) For any Q̂ ∈ Q and any corresponding δ̂Q̂ ∈ E(Q̂), we have

ρ2
s(δQ̂, δ̂Q̂) ≤ Rs(Q̂) −Ropt

s

Rs(Q̂)
≡ RRs(Q̂), ∀s ∈ S, (14)

where RRs(Q̂) is the relative regret of Q̂ under distribution Ps, and it is set to zero if
Rs(Q̂) = 0.

(II) Equality ρ2
s(δQ̂, δ̂Q̂) = RRs(Q̂) holds for any particular s if and only if Ropt

s is attainable
in the sub-class Q(Q̂, δ̂Q̂) = {Q̂− λδ̂Q̂ : ∀λ ∈ R} ⊂ Q.

Proof: For any given Q̂ ∈ Q (which is non-empty since Q̂opt ∈ Q) and any δ̂Q̂ ∈ E(Q̂)
(which is non-empty since δ̂Q̂ ≡ 0 is always included), we define Q̂λ = Q̂ − λδ̂Q̂ for any
constant λ ∈ R. Under our assumptions, Es(Q̂λ −Q) = 0, and Q̂λ ∈ L2

P , implying Q̂λ ∈ Q.
Since Q̂λ −Q = δQ̂ − λδ̂Q̂ and it has mean zero under fs(D;Q), we have

Ropt
s ≤ Rs(Q̂λ) = Vs(δQ̂ − λδ̂Q̂) = Vs(δQ̂) + λ2Vs(δ̂Q̂) − 2λCovs(δQ̂, δ̂Q̂), ∀s ∈ S. (15)

Since the left-hand side of this inequality is free of λ, the inequality holds when we minimize
the right-hand side over λ ∈ R, which is achieved at λ = λ∗ = Covs(δQ̂, δ̂Q̂)/Vs(δ̂Q̂), assuming
Vs(δ̂Q̂) > 0. (When Vs(δ̂Q̂) = 0, ρs(δQ̂, δ̂Q̂) = 0; hence (14) holds trivially, and we can set
λ∗ = 0.) Thus, we obtain

Ropt
s ≤ Vs(δQ̂)

[
1 − ρ2

s(δQ̂, δ̂Q̂)
]
, ∀s ∈ S,

which yields (14) since Rs(Q̂) = Vs(δQ̂) when Es(δQ̂) = 0. This proves part (I).

Part (II) follows from (15) as well, because the equality holds there if and only if Ropt
s

is attainable by Q̂λ∗ ∈ Q(Q̂, δ̂Q̂). This includes the case with Vs(δ̂Q̂) = 0, where the result
holds trivially, because then ρs(δQ̂, δ̂Q̂) = 0 and Rs(Q̂) = Ropt

s , i.e., Q̂ itself is optimal.

The immediate implication of inequality (14) is that there is no free lunch. If we want
to increase the relevance of our assessment δ̂Q̂ for the actual error δQ̂ by increasing their
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correlation, we must also increase the relative regret for Q̂, effectively sacrificing degrees
of freedom of learning for the error assessment. Conversely, the less regret in Q̂, the less
relevant its error assessment will be to the actual error. In the extreme case, when Q̂ = Q̂opt,
we arrive at the following result, where by a relevant error assessor we mean it is linearly
correlated with the actual error of the learner.

Corollary 1: Under the same setup as in Theorem 1, the following two assertions cannot
hold simultaneously:

(A) Q̂ ∈ Q is an optimal and unbiased learner for Q under Ps; and

(B) Q̂ has an unbiased and relevant error assessor δ̂Q̂ ∈ E(Q̂).

6. Beyond unbiased learning and error assessing

A key limitation of Theorem 1 is the requirement that both the learner and error
assessor must be unbiased. An immediate generalization is to consider cases where both
are asymptotically unbiased, under an asymptotic regime with respect to some information
index ι, such as the size of data. Mathematically, given a sequence of error order eι such
that lim supι→∞ |eι| = 0, we can modify the classes of the learners and error assessors in (12)
and (13) respectively by

Qι ={Q̂(D) ∈ L2
P : Es[Q̂(D) −Q] = O(eι),∀s ∈ S}, (16)

Eι(Q̂) ={δ̂Q̂(D) ∈ L2
P : Es(δ̂Q̂) = O(eι),∀s ∈ S}, (17)

where O(eι) is the standard notation for being of the same order as eι. That the error
assessor δ̂Q̂ must share the same order of expectation as the actual error δQ̂ is a necessary
requirement to render the term ‘error assessor’ meaningful, as otherwise anything could be
regarded as δ̂Q̂. With these modifications, we have the following asymptotic counterpart of
Theorem 1.

Theorem 2: Assume the same setup as Theorem 1, but with Q and E(Q̂) extended respec-
tively to Qι and Eι(Q̂). We then have

ρ2
s(δQ̂, δ̂Q̂) ≤ RRs(Q̂) +O(e2

ι ), ∀s ∈ S, (18)

where eι is a sequence of vanishing error rates that determines the asymptotic regime.

Proof: For Q̂ ∈ Qι and δ̂Q̂ ∈ Eι(Q̂ι), we can write Es(δQ̂) = aι and Es(δ̂Q̂) = bι where
aι = O(eι) and bι = O(eι) by our assumption. Hence for Q̂λ = Q̂ − λδ̂Q̂, Es(Q̂λ − Q) =
aι −λbι = Q(eι) for any λ, implying that Q̂λ ∈ Qι. Let λ∗ be the minimizer of Vs

[
δQ̂ − λδ̂Q̂

]
,

as defined in the proof of Theorem 1. The optimality of Ropt
s then implies that

Ropt
s ≤ Rs(Q̂λ∗) = Vs

[
δQ̂ − λ∗δ̂Q̂

]
+
[
Es(δQ̂ − λ∗δ̂Q̂)

]2
= Vs(δQ̂)

[
1 − ρ2

s(δQ̂, δ̂Q̂)
]

+ (aι − λ∗bι)2.

≤ Rs(δQ̂)
[
1 − ρ2

s(δQ̂, δ̂Q̂)
]

+ (aι − λ∗bι)2.
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But this proves the inequality (18) because (aι − λ∗bι)2 = O2(eι) = O(e2
ι ).

A major application of Theorem 2 is for the maximum likelihood estimator Q̂MLE,
which under regularity conditions is efficient and asymptotically normal (e.g., Lehmann and
Casella, 2006) and hence it is asymptotically optimal under the squared loss. Theorem 2
says that asymptotically, there cannot be any relevant error assessor δ̂MLE ∈ Eι(Q̂MLE) that
is asymptotically correlated with the actual error δMLE = Q̂MLE − Q. When {δ̂MLE, δMLE}
are jointly asymptotically normal, then Theorem 2 would imply that any such δ̂MLE will be
asymptotically independent of δMLE. It is worthy noting that the same would hold for any
estimator that is asymptotically normal and optimal (under quadratic loss), such as those
studied in the classic work by Wald (1943) and Le Cam (1956).

Because the asymptotic variance of the MLE can be well approximated by the inverse
of Fisher information, especially the observed Fisher information (Efron and Hinkley, 1978),
the preceding result might lead some readers to wonder if the MLE and the observed Fisher
information are asymptotically independent, or at least the MLE and the inverse of the
observed Fisher information I−1

obs(Q̂) are asymptotically uncorrelated. The normal example
given in Section 2 may be especially suggestive, since the MLE for µ, X̄n, is independent
of I−1

obs(µ̂) = n/σ̂2
MLE = n2/[(n − 1)S2

n]. However it will be a mistake to generalize from this
example.

Consider the same normal model N(µ, σ2), but our goal now is to estimate the vari-
ance σ2. The MLE for σ2 is σ̂2

MLE = (n − 1)S2
n/n, and the corresponding observed Fisher

information (pretending µ is known) is I−1(σ̂2
MLE) = 2σ̂4

MLE/n; hence they have a determin-
istic relationship. However, this is not a contradiction to Theorem 2 because I−1(σ̂2

MLE) is
not an unbiased assessment of the actual error, but rather its variance. Since the variance
is effectively an index of the problem difficulty for estimation (as termed in Meng, 2018), it
is entirely natural to expect that the variance can vary closely with the value of the esti-
mand. The normal mean problem is a special case because it is a location family, for which
shifting the mean only changes the value of the estimand, but does not alter the difficulty of
its estimation. This point is reinforced if we reparameterize σ2 via η = log σ2, which yields
η̂MLE = log σ̂2

MLE and I−1(η̂2
MLE) = 2/n, and they are now trivially independent of each other,

because η̂MLE − η ∼ logχ2
n−1 − log (n− 1) is a location family.

The consideration of the relationship between the MLE and the Fisher information
provides a natural segue to the following discussion involving the relationship between in-
equity (14) and the Cramér-Rao low bound. As is well documented4, the seminal work by
Rao (1945) was prompted by a question raised during a lecture Rao gave in 1943 on whether
there could be a small-sample counterpart of the asymptotic efficiency for MLE as captured
by the Fisher information. However, the significance of this work goes beyond accenting the
role of Fisher information, because the Cramér-Rao inequality can be viewed as a statistical
counterpart of the fundamental Heisenberg Uncertainty Principle (Griffiths and Schroeter,
2018) via the notion of co-variation, as explored in the next three sections.

4See the video on C.R. Rao: A Life in Statistics II at https://www.youtube.com/watch?v=eaxjUxoCx5w&t=324s
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7. Measuring co-variation without probabilistic joint-state specifications

In statistical and (ordinary) probabilistic literature, the most commonly adopted
measure of the co-variation of two real-valued random variables G and H is their covariance
Cov(G,H) (which includes correlation once G and H are standardized) defined via their
joint probabilistic distribution FG,H(g, h):

Cov(G,H) =
� �

(g − µG)(h− µh)FG,H(dg, dh) = ⟨(g − µG), (h− µh)⟩F , (19)

where µG and µH are respectively the means of G and H, which, without loss of generality,
we will assume to be zero for the subsequent discussions for notational simplicity. The
subscript F in the inner product notation highlights the critical dependence of Cov(G,H)
on their joint distribution F (g, h). The elegant Hoeffding identity (Hoeffding, 1940)

Cov(G,H) =
� �

[FG,H(g, h) − FG(g)FH(h)] dgdh, (20)

where FG and FH are the marginal (cumulative) distributions, further highlights how the
covariance measures the co-variation in G and H as captured by their joint distribution,
with respect to their benchmark distribution under the assumption of independence.

For HUP, it seems natural to take G = x, the position of a particle, and H = p, its
momentum, to follow the standard notation in quantum mechanics. It is textbook knowledge
(e.g. Landau and Lifshitz, 2013; Griffiths and Schroeter, 2018) that densities of the position
x and momentum p are given by |ψ(x)|2 and |φ(p)|2 respectively, where ψ(x) is a complex-
valued position wave function, and the momentum wave function φ(p) is a scaled Fourier
transform of ψ(x) in the form of

φ(p) = 1√
2πℏ

� ∞

−∞
ψ(x) e−ipx/ℏdx, (21)

where the scale factor ℏ = h/(2π), with h = 6.6260701 × 10−34, the Planck’s constant.
Clearly, ψ(x) is the inverse Fourier transform of φ(p), and together x and p form a pair of
the so-called conjugate variables (Stam, 1959).

As a statistician, once I understood how the marginal distributions for x and p were
constructed, I naturally asked for their joint distribution. This is where things become in-
triguing or puzzling to those of us who are trained to model non-deterministic relationships
via probability, because (quantum) physicists’ answer would be that there is no joint prob-
ability distribution for x and p—not that they are unknown, but that there cannot be one.
Unlike the mystery of deep learning to statisticians—and its winning of the Nobel Prize in
physics only makes it more intriguing or puzzling—I found good clues to the inadequacy of
ordinary probability for dealing the quantum world by the very fact that its mathematical
modeling involves non-commutative relationships, such as between operators or matrices.

Perhaps the easiest way to see potential complications with non-commutative rela-
tionship is to consider the problem of generalizing the notion of variance to co-variance
with complex-valued variables. With real-valued random variables G and H having a
joint distribution F , we know variance is the co-variance of a variable with itself, that
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is, V(G) = Cov(G,G). In other words, when we link variance with an inner product,
i.e., V(G) = ⟨G,G⟩F , there is a natural extension for covariance by defining Cov(G,H) =
⟨G,H⟩F . However, with the ordinary definition of the co-variance, this extension works only
if the inner product is symmetric, that is, ⟨G,H⟩F = ⟨H,G⟩F , since Cov(G,H) = Cov(H,G)
in the real world.

This is where the complex world is, literally, more complex than the real world. For
two complex-valued L2 functions u(y) and v(y) on y ∈ Ω, the inner product is not symmetric,
because it is defined by

⟨u|v⟩µ ≡
�

Ω
ū(y)v(y)µ(dy) ̸= ⟨v|u⟩µ ≡

�
Ω
v̄(y)u(y)µ(dy), (22)

where ū is the complex conjugate of u, and µ is a baseline measure, which does not need
to be a probabilistic measure. This non-commutative property is at the heart of quantum
mechanics, as reviewed in the next Section. It can also been seen with matrix mechanics,
since for any two matrices A and B or more broadly operators, in general AB ̸= BA. The
very fact that a regular joint probability specificity must render Cov(u, v) = Cov(v, u) should
remind us that whatever ‘joint specification’ of u and v we come up with, it will be more
nuanced than a direct probabilistic distribution for {u, v} whenever (22) rears its head. This
phenomenon is not unique to the quantum world, since a similar situation happens with the
notion of quasi-score functions, which can violate a symmetry requirement for genuine score
functions, as reviewed in Appendix C.

However, this complication does not imply that probabilistic thinking is out the win-
dow. Because ⟨v|u⟩µ = ⟨u|v⟩µ, we see that if we define Cov(u, v) = ⟨u|v⟩µ, then its magni-
tude, |Cov(u, v)| = |Cov(v, u)| is symmetric. Therefore, as long as |Cov(u, v)| is used as a
measure of the magnitude of the co-variation between u and v, we can treat it as if it were the
magnitude of a standard probabilistic co-variance. In other words, the concept, or at least
the essence of co-variance, can be extended to non-probabilistic settings, and this extension
perhaps can help our appreciation of HUP from a statistical perspective, as detailed in the
next Section.

8. A lower resolution co-variation: co-variance of generating mechanisms

In the quantum world, we have seen that a particle’s position and momentum have
their respectively well-defined probability distribution, and we can express V(x) = ⟨f |f⟩µ and
V(p) = ⟨g|g⟩µ, where f(x) = xψ(x) and g(p) = pϕ(p). It is then mathematically tempting
to define Cov(x, p) = ⟨f |g⟩µ and Cov(p, x) = ⟨g|f⟩µ, using the notation of the previous
section. This construction is problematic starting from the very notation Cov(x, p), since it
may suggest that we are measuring the co-variance between the position and momentum as
states, which creates an epistemic disconnect with the understanding that a joint statehood
of x and p does not exist or cannot be constructed in the quantum world.

However, x and p clearly have physical relationships. Indeed the so-called Stam’s
uncertainty principle (Stam, 1959) establishes that

C2V(x) − J(p) ≥ 0 and C2V(p) − J(x) ≥ 0, (23)

where C = 4π for standard Fourier transform, and C = 2/ℏ when we use the ℏ-scaled Fourier
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transform (21). Here J(p) is the Fisher information for the density of p, f(p), that is,

J(p) =
� ∞

−∞

[
d log f(p)

dp

]2

f(p)dp, (24)

and similarly for J(x). For readers who are unfamiliar with defining Fisher information for
a density itself instead of its parameter, J(p) is the same as the Fisher information for the
location family f(p − θ), where θ shares the same state space as p (in the current case, the
real line). In the same vein, the Cramér-Rao inequality can be applied to the density itself,
which leads to V(x) ≥ J−1(x) and V(p) ≥ J−1(p). Consequently, as shown in Dembo (1990)
and Dembo et al. (1991),

V(x)V(p) ≥ C−2 = ℏ2

4 , (25)

which is the same as the usual expression of HUP proved in Kennard (1927):

∆x∆p ≥ ℏ
2 , (26)

where ∆x and ∆p denote respectively the standard deviation of x and p. Dembo (1990) and
Dembo et al. (1991) also used (23) to prove that HUP implies the Cramér-Rao inequality.

The Stam’s uncertainty principle is elegant, and it reveals a kind of relationship
between two marginal distributions that is not commonly studied in statistical literature,
because it bypasses the specification of a joint distribution between x and p. However, this
does not rule out—and indeed it suggests—that we can consider quantifying the relationships
between the mechanisms that generate x and p. A mechanism can generate a single state,
many states, or no states at all—which is equivalent to presenting itself as a whole—at
any given circumstance, such as temporal instance. Hence quantifying relationships among
mechanisms is a broader construct than that for the states they generate.

For statistical readers, a reasonable analogy is to think about the notion of likelihood.
When we employ a likelihood, we can consider a single likelihood value (e.g., at the MLE),
several likelihood values (e.g., likelihood ratio tests), or not any particular value but the
likelihood function as a whole (e.g., for Bayesian inference). By considering co-variations at
the (resolution) level of mechanisms instead of states, we may find it less foreign to contem-
plate indeterminacy of relationship, such as between two sets—including empty ones—of the
states generated by related mechanisms.

Of course, one may wonder if any relationship between two mechanisms itself can
be indeterminable. The logical answer is yes, but fortunately for quantum mechanics we
do not need go that far. As any useful quantum mechanics textbook (Landau and Lifshitz,
2013; Griffiths and Schroeter, 2018) teaches us, the position mechanism and momentum
mechanism can be represented mathematically via the so-called position operator x̂ and
momentum operator p̂, to follow the notation in quantum mechanics, and they are tethered
together when being applied to the same wave function ψ(x) (in the position space5), that
is

x̂ ◦ ψ(x) = xψ(x), and p̂ ◦ ψ(x) = −iℏψ′(x). (27)
5One can define the operators equivalently in the conjugate momentum space via p̂ ◦ φ(p) = pφ(p) and

x̂ ◦φ(p) = iℏφ′(p), where the momentum wave function φ(p) is the Fourier transform of ψ(x) (Griffiths and
Schroeter, 2018).
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That is, the position operator acts on ψ by multiplying ψ with its argument, and the mo-
mentum operator acts on ψ by differentiating it, and multiplying it by −iℏ, where i =

√
−1.

With these representations of the mechanisms, we can measure their co-variations
induced by changing the state x in real line (as a univariate case) via the inner products,
with respect to a common measure µ, typically Lebesgue measure. That is, we can define

Cov(x̂, p̂) = ⟨x̂ ◦ ψ|p̂ ◦ ψ⟩µ = −iℏ
� ∞

−∞
xψ̄(x)ψ′(x) dx; (28)

Cov(p̂, x̂) = Cov(x̂, p̂) = iℏ
� ∞

−∞
xψ(x)ψ̄′(x) dx = −iℏ

(
1 +

� ∞

−∞
xψ̄(x)ψ′(x) dx

)
. (29)

Here the last equality is obtained by integration by parts and by using the fact that |ψ(x)|2
is a probability density and that x|ψ(x)|2 vanishes at x = ±∞ (because physicists assume
the mean position is finite). Together, expressions (28)-(29) imply that

Cov(x̂, p̂) − Cov(p̂, x̂) = iℏ, (30)

which is also the consequence of the so-called canonical commutation relation (Griffiths and
Schroeter, 2018),

x̂ ◦ p̂− p̂ ◦ x̂ = iℏ, (31)

which holds because x̂ ◦ (p̂ ◦ f(x)) − p̂ ◦ (x̂ ◦ f(x)) = iℏf(x) for any differentiable function f .

An immediate consequence of (30) is that the magnitude of the covariances between
x̂ and p̂ is bounded below regardless of the form of the wave function ψ(x). This is because
for any complex number z, |z|2 ≥ |Im(z)|2 = |(z − z̄)/2i|2. Hence the identity (30) implies
that

|Cov(x̂, p̂)|2 ≥
[

Cov(x̂, p̂) − Cov(p̂, x̂)
2i

]2

= ℏ2

4 . (32)

As reviewed in the next section, inequality (32) implies HUP in the form of (26), just as
Stam’s uncertainty principle does. For that purpose, it is worth pointing out that marginally,

V(x̂) = ⟨x̂ ◦ ψ|x̂ ◦ ψ⟩µ =
� ∞

−∞
x2ψ̄(x)ψ(x)dx =

� ∞

−∞
x2|ψ(x)|2dx; (33)

V(p̂) = ⟨p̂ ◦ ψ|p̂ ◦ ψ⟩µ = ℏ2
� ∞

−∞
ψ̄′(x)ψ′(x) dx =

� ∞

−∞
p2|φ(p)|2dp, (34)

where the last equation in (34) is due to the fact that φ(p) is the (ℏ-scaled) Fourier transfor-
mation of ψ(x), as given in (21). These two equalities tell us that when we consider either
the position or the momentum by itself, its mechanism-level variance, V(x̂) or V(p̂), and
the state-level variance, V(x) or V(p), are the same. This renders the unity between the
mechanism-level representation (as a distribution or operator) and the state-level represen-
tation (as a observable or latent variable), a distinction seldom made conceptually under the
ordinary probability framework. However, this distinction can be crucial once we go out-
side the regular probability framework, as in the current context of measuring co-variations
between the position and momentum.
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9. Bounding co-variations: A commonality of uncertainty principles

With co-variances constructed broadly, we can study the similarities and differences
between inequality (14) and the Cramér-Rao inequality, as well as their intrinsic connections
with HUP. Specifically, both inequalities are based on bounding joint variations of two ran-
dom objects, say, G and H, by their marginal variations. For (14), under the unbiasedness
assumptions and using the notation given in Section 5, if we write G = δQ̂ and H = δ̂Q̂, then
inequality (14) is the consequence of (omitting subscript s):

Cov2(G,H) ≤ V(H)
[
V(G) −Ropt

]
. (35)

For the Cramér-Rao inequality, we can take the same G = δQ̂ = Q̂ − Q, where Q̂ is an
unbiased estimator for Q. We then let H = S(θ|D), the score function from a sampling
model of our data D, f(D|θ), with Q = Q(θ). It is known that the Cramér-Rao inequality
is the same as (e.g., Lehmann and Casella, 2006)

[Q′(θ)]2 = Cov2(G,H) ≤ V(H)V(G), (36)

where Q′(θ) is the derivative for Q(θ). (When Q(θ) is not differentiable, we can apply the
bound given by Chapman and Robbins (1951)) in terms of likelihood ratio or elasticity.)

Evidently, inequality (36) is an application of the Cauchy-Schwartz inequality. In
contrast, inequality (35) delivers a more precise bound because of the subtraction of the
term Ropt. Indeed, inequality (35) is often an equality because the condition in (II) of
Theorem 1 frequently holds in practice. Given the two inequalities share the same type
of G, the difference must be attributable to something distinctive between the two H’s.
Whereas both H’s have zero expectation, the first H = δ̂Q̂ is a statistic, required to be
a function of data D only. In contrast, the second H = S(θ|D) is a random function,
depending on both data D and the unknown θ. Since the actual error δQ̂ = Q̂−Q(θ) is also
a random function, the second H can co-variate with G to a greater extent than the first
H can. Consequently, Cov2(G,H) can reach a looser upper bound in (36) than in (35). As
an illustrative example, for estimating the normal mean under N(µ, σ2), Q = X̄n − µ and
H = S(µ|X) = n(X̄n − µ)/σ2 = nG/σ2, and hence (36) becomes equality, whereas such an
H is clearly not permissible for (35).

Nevertheless, both inequalities reveal the tension between individual variations—
features of their respective marginal distributions—and their co-variation, which reflects
their relationships, probabilistic or not. For (36), in order to keep Cov2(G,H) at the value
of [Q′(θ)]2 > 0, the two variances V(H) and V(G) cannot be simultaneously small to an
arbitrary degree, just as a rectangle cannot have arbitrarily small sides simultaneously when
its area is bounded away from zero. This restriction leads to the Cramér-Rao lower bound.
In (36), we purposefully write the Fisher information as the variance of the score function
instead of the expectation of its negative derivative. The variance expression makes it clearer
the co-variation essence of Cramér-Rao inequality, and draws a direct parallel with the
inequality underlying HUP.

Specifically, using the notation and the inequality (32) of Section 8 and taking G = x̂
and H = p̂, we have

ℏ2

4 ≤ |Cov(G,H)|2 ≤ V(H)V(G), (37)



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO
AN UNCERTAINTY PRINCIPLE FOR LEARNING 685

Comparing (37) with (36), we see that the Cramér-Rao bound and the Heisenberg uncer-
tainty principle are consequences of essentially the same statistical phenomenon, that is,
two marginal variances necessarily compete with each for being arbitrarily small, when the
corresponding covariance is constrained in magnitude from below.

In contrast, for (35), the trade-off is between the covariance and one of the marginal
variances. To see this clearly, we can assume V(H) = 1, which does not offend the assumption
that E(H) = 0. Inequality (35) then becomes

Cov2(G,H) ≤ V(G) −Ropt = RG, (38)

where RG is the regret of G. On the surface, the changes of covariance and V(G) appear to
be coordinated instead of in competition, because the larger Cov2(G,H), the larger V(G).
The reverse holds when the inequality is equality (which often is the case), and more broadly
larger V(G)—and hence larger regret—at least allows more room for Cov2(G,H) to grow.
But this is exactly where the tension lies when we want to improve both the learning and
error assessment; improving learning means to reduce RG and hence have a smaller V(G),
but improving error assessment requires a larger Cov2(G,H).

10. Elementary mathematics, advanced statistics, and inspiring philosophy

Mathematically, the proof of either (36) or (37) is elementary, yet the implications
of either inequality, as we know, are profound. Similarly, the inequality (35) is built upon
equally elementary mathematics, and the work of Bates et al. (2024) has already suggested
its potential impact. However, many more studies remain, particularly regarding alternative
loss functions, where the relevance of error assessment may not align with covariance. From
a probabilistic standpoint, a thorough theoretical exploration of the relevance of an error
assessor, δ̂, for the true error δ should involve investigating the joint distribution of δ̂ and δ.
In this context, irrelevance can be characterized by the independence between δ̂ and δ.

On a broader level, formulating a general trade-off between learning and error assess-
ment remains a complex task. This challenge stems from the need to define and measure the
actual information utilized during learning and to identify relevant replications when assess-
ing errors. Both ‘information’ and ‘learning’ are elusive notions, having taken on numerous
interpretations throughout history, many of which require a refined understanding. For in-
stance, even in the case of classical likelihood inference within parametric models, the role
of conditioning in error assessment continues to provoke theoretical and practical debates.

I was reminded of this reality by an astrostatistics project involving correcting con-
ceptual and methodological errors in astrophysics for conducting model fitting and goodness-
of-fit assessment via the popular C-statistics, which is the likelihood ratio statistic under a
Poisson regression model (Cash, 1979). When the project started, I naively believed that
it would be merely an exercise of applying classical likelihood theory and methods, perhaps
with some clever computational tricks or approximations to render them practically efficient
and hence appealing to astrophysicists.

As reported in Chen et al. (2024), however, the issue about whether one should
condition on the MLE itself or not in the context of goodness-of-fit testing, is a rather
nuanced one. The issue is closely related to the issue of conditioning on ancillary statistics,
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since for testing distributional shape, the parametric parameters are nuisance objects (as
termed in Meng, 2024) and their MLE can be intuitively perceived as locally ancillary (Cox,
1980; Severini, 1993) because the distribution shape of the MLE will be normal to the
first order (under regularity conditions) despite the shape of the distribution being tested.
However, it is not exactly ancillary, and to decide when conditioning is beneficial (e.g.,
leading to a more powerful test) in any sample settling is not a straightforward matter.
Higher order asymptotics can help provide insight, but communicating them intuitively is
a tall order even for statisticians, let alone for astrophysicists or any scientists (including
data scientists). However, regardless of whether low-level mathematics or high/tall order of
statistics are involved, the ultimate challenge of contemplating and formulating uncertainty
principles is epistemological, or even metaphysical. For readers interested in philosophical
contemplation—and I’d expect that statisticians should be in that group because statistics
is essentially applied epistemology6, I highly recommend the over 50 pages entry titled “The
Uncertainty Principle” by Hilgevoord and Uffink (2024) in The Stanford Encyclopedia of
Philosophy.7 It is an erudite and thought-provoking essay about the intellectual journey
of Heisenberg’s uncertainty principle. Even or perhaps especially the name “uncertainty
principle” has an interesting story behind it, because initially the name did not contain
either ‘uncertainty’ or ‘principle’.

As Hilgevoord and Uffink (2024) discussed, the term uncertainty has multiple mean-
ings, and it is not obvious in which sense the phenomena revealed by Heisenberg (1927)
qualifies as ‘uncertainty’; indeed, historically terms such as “inaccuracy, spread, imprecision,
indefiniteness, indeterminateness, indeterminacy, latitude” were used by various writers for
what is now known as HUP. More intriguingly, Heisenberg did not postulate the finding
as any kind of principle, but rather as relations, such as “inaccuracy relations” or “inde-
terminacy relations”. The discussions in Section 8 certainly reflect the relational nature of
HUP, because it is fundamentally about the co-variation of position and momentum at the
mechanism level.

The entry by Hilgevoord and Uffink (2024) invites readers to consider a fundamental
question that underpins these onomasiological reflections: Is the HUP a mere epistemic con-
straint, or a metaphysical limitation in nature? Unsurprisingly, this question is a source of
ongoing dispute among philosophers of physics and even among physicists themselves. The
most well-known historical debates are Heisenberg and Bohr’s Copenhagen interpretation
emphasizing the metaphysical indeterminacy, and the contrasting deterministic interpreta-
tion developed by de Broglie and Bohm, known as Bohmian mechanics (Hilgevoord and
Uffink, 2024).

Given I have already greatly exceeded the deadline to submit this essay, I will refrain
from revealing any further thrills provided in Hilgevoord and Uffink (2024), such as more
recent debates about HUP, leaving readers to enjoy their own treasure hunt. But I will

6This was a characterization given by philosopher Hanti Lin during the JSM 2024, where Hanti and I
co-organized a session where each philosopher presented for 20 minutes followed by a 15-min discussion by a
statistician, and there were three pairs in total. (I made a mistake that embodied the statisticians’ modesty:
the estimated room size I provided to the JSM meeting department had an unacceptably negative bias.)

7SEP is simply a fountain of afflatus and a Who’s Who in philosophy. Indeed SEP was
where I came across Hanti Lin’s 115-page entry on “Bayesian Epistemology” (Lin, 2024a), and led
to my invitation to Hanti to serve as a co-editor to establish the “Meta Data Science” column
(https://hdsr.mitpress.mit.edu/meta-data-science) for Harvard Data Science Review.
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mention that this question has prompted me to wonder whether inequality (14) also suggests
that any effort to assess the actual error is antithetical to probabilistic learning.

This is because the crux of probabilistic learning—unlike deterministic approaches,
such as solving algebraic equations—lies in using distributions as our fundamental mathe-
matical vehicles for carrying our states of knowledge (or lack thereof) and for transporting
data into information that furthers learning. From this distributional perspective, assessing
the actual error means to assess the distribution of the actual error, which is all we need
to, for example, provide the usual confidence regions. It does suffer from the leap of faith
problem as discussed in Section 4, but then that is a universal predicament to any form of
empirical learning, as far as I can imagine.

11. From uncertainty principles to happy marriages...

A further inspiration from Hilgevoord and Uffink (2024) is its discussion on the re-
lationship between the original semi-quantitative argument made by Heisenberg (1927) and
the mathematical formalism established by Kennard (1927). Kennard’s inequality (26) is
precise, but can be perceived as narrow, for instance, in its reliance on standard deviation
to describe “uncertainty.” A similar limitation applies to inequality (14), which assesses rel-
evance through linear correlation, a measure that surely is not universally appropriate for
capturing the notion of relevance.

More broadly, much remains to be examined regarding the trade-offs between the
flexibility of qualitative frameworks, which embrace the nuances and ambiguities of natural
language, and the rigor of quantitative formulations, which offer the precision of mathemati-
cal language but often at the risk of being overly restrictive or idealized. Reflecting on these
trade-offs is essential to learning. Statisticians and data scientists, in particular, can draw
from centuries of philosophical inquiry into epistemology, as exemplified by the discussions
surrounding the HUP and the like. In truth, when thoughtfully practiced, data science em-
bodies—or ought to embody—a harmonious blend of quantitative and qualitative thinking
and reasoning. This was the central theme of my Harvard Data Science Review editorial,
“Data Science: A Happy Marriage of Quantitative and Qualitative Thinking?” (Meng, 2021),
inspired by Tanweer et al. (2021)’s compelling article, “Why the Data Revolution Needs
Qualitative Thinking.” Maintaining this harmony, akin to sustaining a functioning marriage,
requires commitment from all parties and a willingness to compromise. Ultimately, it calls
for the wisdom to recognize that individual fulfillment and happiness—whether in marriage,
mentorship, or mind melding or mating—depends profoundly on collective well-being. Pro-
fessor Rao certainly embodied this wisdom.

I vividly recall my first visit to Pennsylvania State University as a seminar speaker,
shortly after Professor Rao’s 72nd birthday on September 10, 1992. During the seminar
lunch, Professor Rao graciously joined us. We—students and early-career researchers (myself
included, back when my hair was dense almost surely everywhere)—felt honored by his
presence. All questions naturally revolved around statistics, except for one that made us all
chuckle: “Professor Rao, how does one live a long and happy life?”

Without missing a beat, and with his characteristic paced, confident cadence, Rao
replied, “Keep your wife happy.”
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12. A prologue or an invitation

For those who would like this article to conclude with a statistical Q&A: During the
elevator ride following my seminar, which carried the seemingly oxymoronic title “A Bayesian
p-value” (a deliberate contrast to the title of Meng (1994)), Professor Rao turned to me and
asked, “Do people still use p-values?” To which I responded. . .

Well, I’ll leave that as a missing data point, inviting you to impute your own favorite
answer. Alternatively, if you prefer, find a deliberately embedded mathematical (but petty)
error in this article and exchange it for the answer by emailing meng@stat.harvard.edu (as
long as God permits me to respond).
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Heisenberg, W. (1927). Über den anschaulichen inhalt der quantentheoretischen kinematik
und mechanik. Zeitschrift für Physik, 43, 172–198.

Hilgevoord, J. and Uffink, J. (2024). The uncertainty principle. In Zalta, E. N. and
Nodelman, U., editors, The Stanford Encyclopedia of Philosophy. Stanford Univer-
sity. Spring 2024 edition.

Hillery, M., O’Connell, R. F., Scully, M. O., and Wigner, E. P. (1984). Distribution functions
in physics: Fundamentals. Physics Reports, 106, 121–167.

Hoeffding, W. (1940). Maßtabinvariante Korrelatiostheorie. Schriften des Mathematischen
Instituts und des Instituts für Angewandte Mathematik der Universität Berlin, 5,
179–233.

Kennard, E. H. (1927). Zur quantenmechanik einfacher bewegungstypen. Zeitschrift für
Physik, 44, 326–352.

Landau, L. D. and Lifshitz, E. M. (2013). Quantum Mechanics: Non-relativistic Theory,
volume 3. Elsevier.

Le Cam, L. (1956). On the asymptotic theory of estimation and testing hypotheses. In
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Contributions to the Theory of Statistics, volume 3, pages 129–157.
University of California Press.

Lehmann, E. L. and Casella, G. (2006). Theory of Point Estimation. Springer Science &
Business Media.



690
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

XIAO-LI MENG [Vol. 22, No. 3

Lin, H. (2024a). Bayesian epistemology. In Zalta, E. N. and Nodelman, U., editors, The
Stanford Encyclopedia of Philosophy. 2024 Edition, originally published 2022.

Lin, H. (2024b). To be a Frequentist or Bayesian? Five positions in a spectrum. Harvard
Data Science Review, 6. https://hdsr.mitpress.mit.edu/pub/axvcupj4.

Liu, K. and Meng, X. L. (2014). Comment: A fruitful resolution to simpson’s paradox via
multiresolution inference. The American Statistician, 68, 17–29.

Liu, K. and Meng, X. L. (2016). There is individualized treatment. Why not individualized
inference? Annual Review of Statistics and Its Application, 3, 79–111.

Lorce, C. and Pasquini, B. (2011). Quark wigner distributions and orbital angular momen-
tum. Physical Review D—Particles, Fields, Gravitation, and Cosmology, 84, 014015.

McCullagh, P. (1999). Discussion on some statistical heresies. Journal of the Royal Statistical
Society: Series D (The Statistician), 48, 34–35.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, volume 37 of Monographs
on Statistics and Applied Probability. Chapman & Hall/CRC, London, 2nd edition.

Meng, X. L. (1994). Posterior predictive p-values. The Annals of Statistics, 22, 1142–1160.
Meng, X. L. (2018). Statistical paradises and paradoxes in big data (I): law of large popula-

tions, big data paradox, and the 2016 us presidential election. The Annals of Applied
Statistics, 12, 685–726.

Meng, X. L. (2021). Data science: A happy marriage of quantitative and qualitative thinking?
Harvard Data Science Review, 3. https://hdsr.mitpress.mit.edu/pub/pger71uh.

Meng, X. L. (2024). A BFFer’s exploration with nuisance constructs: Bayesian p-value,
H-likelihood, and Cauchyanity. In Handbook of Bayesian, Fiducial, and Frequentist
Inference, Eds J. Berger, XL. Meng, N. Reid and M. Xie, pages 161–187. Chapman
and Hall/CRC.

Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical
parameters. Bulletin of the Calcutta Mathematical Society, 37, 81–91.

Rao, C. R. (1962). Efficient estimates and optimum inference procedures in large samples.
Journal of the Royal Statistical Society: Series B (Methodological), 24, 46–63.

Severini, T. A. (1993). Local ancillarity in the presence of a nuisance parameter. Biometrika,
80, 305–320.

Stam, A. J. (1959). Some inequalities satisfied by the quantities of information of fisher and
shannon. Information and Control, 2, 101–112.

Tanweer, A., Gade, E. K., Krafft, P., and Dreier, S. (2021). Why the data
revolution needs qualitative thinking. Harvard Data Science Review, 3.
https://hdsr.mitpress.mit.edu/pub/u9s6f22y.
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Tóth, G. and Petz, D. (2013). Extremal properties of the variance and the quantum fisher in-
formation. Physical Review A—Atomic, Molecular, and Optical Physics, 87, 032324.

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the
number of observations is large. Transactions of the American Mathematical Society,
54, 426–482.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO
AN UNCERTAINTY PRINCIPLE FOR LEARNING 691

Wang, Y. (2022). When quantum computation meets data science: Mak-
ing data science quantum. Harvard Data Science Review, 4.
https://hdsr.mitpress.mit.edu/pub/kpn45eyx.

APPENDIX

Appendix A: Derivations for the regression example in section 3

In general, the weighted estimate of θ can be written as

θ̂w =
∑n

i=1 wiXiYi∑n
i=1 wiX2

i

,

with OLS corresponding to choosing wi = 1 and BLUE given by wi = σ−2
i , for all i. Con-

ditioning on X but for notational simplicity we suppress the conditioning notation in all
expectations below, we have

V(θ̂w) =
∑n

i=1 w
2
iX

2
i σ

2
i

[∑n
i=1 wiX2

i ]2 = Tw,σ

T 2
w

.

Let r̂w,j = Yj − θ̂wXj. Because E(r̂w,j) = 0, to calculate ρ, we only need to calculate

E[θ̂w(Yj − θ̂wXj)] =
∑n

i=1 wiXiE[YiYj]
Tw

− E[∑n
i=1 wiXiYi]2Xj

T 2
w

=
∑n

i=1 wiXi[Cov(Yi, Yj) + θ2XiXj]
Tw

− [∑n
i=1 w

2
iX

2
i σ

2
i + θ2T 2

w]Xj

T 2
w

=
(θ2Tw + wjσ

2
j )Xj

Tw

− [Tw,σ + θ2T 2
w]Xj

T 2
w

= Xj

Tw

[
wjσ

2
j − Tw,σ

Tw

]
;

and

V(r̂w,j) = V
[∑n

i=1 wiXi(XiYj −XjYi)
Tw

]
= T−2

w V
 n∑

i̸=j

wiXi(XiYj −XjYi)


= T−2
w E

V
 n∑

i̸=j

wiXi(XiYj −XjYi)|Yj

+ V

E
 n∑

i̸=j

wiXi(XiYj −XjYi)|Yj


= T−2

w


X2

j

n∑
i̸=j

w2
iX

2
i σ

2
i

+ V
 n∑

i̸=j

wiX
2
i Yj


= T−2

w

{[
X2

j (Tw,σ − w2
jX

2
j σ

2
j )
]

+ [Tw − wjX
2
j ]2σ2

j

}
= T−2

w

{
X2

j Tw,σ + σ2
j [T 2

w − 2TwwjX
2
j ]
}
.

Putting all the pieces together, we have

Corr(θ̂w, r̂w,j) =
Xj

(
wjσ

2
jTw − Tw,σ

)
√
Tw,σ

[
X2

j Tw,σ + σ2
j (T 2

w − 2TwwjX2
j )
] , j = 1, 2. (39)
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For n = 2, j = 1, expression (39) simplifies to the desired (4) because

Corr(θ̂w, rw,1) = X1X
2
2w2(w1σ

2
1 − w2σ

2
2)√

[X2
1w

2
2X

2
2σ

2
2 + w2

2X
4
2σ

2
1][w2

1X
2
1σ

2
1 + w2

2X
2
2σ

2
2]

=
X1|X2|(w1

σ1
σ2

− w2
σ2
σ1

)√
[X2

1σ
−2
1 +X2

2σ
−2
2 ][w2

1X
2
1σ

2
1 + w2

2X
2
2σ

2
2]
.

To calculate the relative regret (RR), we have

V(θ̂w) = V
[∑n

i=1 wiXiYj

Tw

]
= w2

1X
2
1σ

2
1 + w2

2X
2
2σ

2
2

[w1X2
1 + w2X2

2 ]2 , (40)

which also implies, by taking wi ∝ σ−2
i ,

V(θ̂BLUE) = 1
(X2

1σ
−2
1 +X2

2σ
−2
2 )

. (41)

Putting together (40) and (41) yields the desired (5).

Appendix B: Derivation of (11) in section 4

Because δ̂2 and δ2 are independent given θ = {µ, σ2} and hence Cov(δ̂2, δ2|µ, σ2) = 0,
we see over the joint replication,

Cov(δ̂2, δ2) = E
[
Cov(δ̂2, δ2|µ, σ2)

]
+ Cov

[
E(δ̂2|µ, σ2),E(δ2|µ, σ2)

]
= 1
n2 V(σ2),

as long as the prior distribution for θ = {µ, σ2} is proper. Furthermore, conditioning on
θ = {µ, σ2}, δ2 ∼ σ2χ2

1/n and δ̂2 ∼ σ2χ2
n−1/[n(n − 1)] (where the two chi-square variables

are independent of each other), we have

V(δ̂2) =E
[
V(δ̂2|µ, σ2)

]
+ V

[
E(δ̂2|µ, σ2)

]
= 2

(n− 1)n2 E
(
σ4
)

+ 1
n2 V(σ2);

V(δ2) =E
[
V(δ2|µ, σ2)

]
+ V

[
E(δ2|µ, σ2)

]
= 2
n2 E

(
σ4
)

+ 1
n2 V(σ2).

Consequently, we see over the joint replication,

Corr(δ̂2, δ2) = V(σ2)√
2(n− 1)−1E(σ4) + V(σ2)

√
2E(σ4) + V(σ2)

,

which yields (11) because E(σ4) = V(σ2) + [E(σ2)]2.

Appendix C: A quasi-score analogy for understanding the lack of joint probability

For statistically oriented readers, an instructive–though far from being perfect–analogy
to the issue of the non-existence of a probabilistic model due to violations of symmetry or
commutativity is the generalization from likelihood inference via the score function to esti-
mation based on quasi-score functions. The correct score function, when available, provides
the most efficient inference asymptotically (under regularity conditions). However, specify-
ing the correct data-generating model often requires more information and resources than
we typically possess.
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In contrast, a quasi-score function only requires the specification of the first two mo-
ments of the data-generating model. This makes it a more practical and robust alternative
to exact model-based inference, particularly in the presence of model misspecification. How-
ever, this robustness comes at the cost of reduced efficiency, reflecting the trade-off inherent
in this approach.

Broadly speaking there are three types of pseudo scores: (I) those that are equivalent
to the actual score; (II) those that are not equivalent to the actual score, but are equivalent to
the score from a misspecified data generating model, and (III) those that cannot be derived
from any probabilistic model.

Type (III) exists because any (differentiable) authentic score vector (S1(θ), . . . , Sd(θ))⊤

for a d-dimension parameter θ = (θ1, . . . , θd)⊤ must satisfy

∂Si(θ)
∂θj

= ∂Sj(θ)
∂θi

, ∀ i, j = 1, . . . , d, (42)

because the corresponding (observed) Fisher information matrix, −∂S(θ)
∂θ

, is symmetric. How-
ever, even some most innocent looking quasi-scores, such as for certain 2 × 2 contingency
tables, the symmetry requirement of (42) can be easily violated, as demonstrated in Chap-
ter 9 of McCullagh and Nelder (1989), which is an excellent source for understanding quasi
scores and estimation equations in general.

The fact that violating the symmetry condition (42) rules out the possibility of being
an actual score may help some of us imagine how the lack of symmetry or commutativity
might rule out the existence of a probability specification, at least from a mathematical
perspective. Furthermore, just as one can generalize from likelihood to quasi-likelihood of
many shapes and forms—again see McCullagh and Nelder (1989)—the non-existence of a
probabilistic distribution does not prevent us from forming quasi-distributions for various
purposes, such as the Wigner quasiprobability distribution, which permits negative values,
for position and momentum (x, p) (Hillery et al., 1984; Lorce and Pasquini, 2011). Whether
the mechanism-level covariances as given in (28)-(29) have the same magnitude as that from
the Wigner quasiprobability distribution will be left as a homework exercise.







Publisher

Society of Statistics, Computer and Applications
Registered Office: I-1703, Chittaranjan Park, New Delhi- 110019, INDIA

Mailing Address: B-133, Ground Floor, C.R. Park, New Delhi-110019, INDIA
Tele: 011-40517662
https://ssca.org.in/

statapp1999@gmail.com
2024

Printed by : Galaxy Studio & Graphics 
Mob: +91 9818 35 2203, +91 9582 94 1203

Email: galaxystudio08@gmail.com


	Cover Page
	Contents
	Photograph of Prof. C.R. Rao
	From Chair Editor’s Desk
	Guest Editors Panel
	Preface
	PART I : FACETS OF PROF. C.R. RAO
	Calyampudi Radhakrishna Rao – As a Family Man
	Calyampudi Radhakrishna Rao – As a Teacher in Calcutta School
	Calyampudi Radhakrishna Rao - A Collaborator and a

Statistician for the Ages
	The Importance of C. R. Rao to the Graduate Student
	Employing Rao Theorems in Mixed Effects Growth Curves
	Reflections on the Life of CR Rao
	CR Rao’s Shadows on Our Academic Journey
	List of 103 Selected Research Papers of C. R. Rao

	PART II : REGULAR RESEARCH PAPERS
	Some Novel Limiting Distributions Arising in Order 
Restricted Inference
	Cramer-Rao Posterior Bounds in the Spirit of van Trees
	Hierarchical Bayesian Probit Models for Sub-Areas and

Ordinal Data
	The Fundamental BLUE Equation in Linear Models

Revisited
	Confidence Ellipsoids of a Multivariate Normal Mean 
Vector Based on Noise Perturbed and Synthetic Data with Applications
	Survey of C.R. Rao’s Orthogonal Arrays, Balanced Arrays, and Their Applications
	Model-Free Data Cleaning for Raw Data: An

Eigen-Structure Approach
	Horseshoe Prior for Bayesian Linear Regression with

Hyperbolic Errors
	Testing with Cubic Smoothing Splines
	Some Combinatorial Structures and Their Applications in

Cryptography
	Split-plot Designs with Main Plot Treatments in

Incomplete Blocks
	Meta Analysis for Rare Events
	Mixtures of Linear Regressions with Measurement Error in

the Response, with an Application to Gamma-Ray Burst

Data
	Mixed Model Selection with Applications to Small Area

Estimation
	Gene-Gene and Gene-Environment Interactions in Case-Control Studies Based on Hierarchies of Dirichlet 
Processes
	Bayesian Predictive Inference for Nonprobability Samples

with Spatial Poststratification
	Three Score and 15 Years (1948-2023) of Rao’s Score Test: A Brief History
	r-Power for Multiple Hypotheses Testing under

Dependence
	Hierarchical Bayes Small Area Estimation from Aggregated Data using Various Spatial Models
	On Retrieving Multivariate Data Sets from Their Moments
	Bayesian Variable Selection for Ultrahigh-dimensional

Sparse Linear Models
	On High-Dimensional Modifications of the Nearest Neighbor Classifier
	Access Structure Hiding Verifiable Tensor Designs
	Analysis of Spatial and Temporal Patterns in Deaths of Despair in the Appalachian Region of the United States
	A New Unit Root Test for an Autoregressive Model Subject to Measurement Errors
	Tests of Contrasts for Mean Vectors with Large Dimensions
	Distribution of the H¨older Mean of P-Values with

Applications to Multiple Testing
	Identification of Changes in Temperature and  Precipitation in Cities Across the Contiguous United States 
	A Heisenberg-esque Uncertainty Principle for

Simultaneous (Machine) Learning and Error Assessment?

	Last Page

