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PREFACE 

 

The Society of Statistics, Computer and Applications (SSCA) was founded in 1998 to honour 
great legendary Professor M.N. Das. Since then, the SSCA has been organizing National / 
International Conferences every year along the length and breadth of the country. It has 
organized thus far 23 conferences. The SSCA, among other scientific activities, also brings 
out this journal called Statistics and Applications. This is an open access journal and readers 
can view full paper online, download it, save it and print it without any cost. The journal 
publishes research papers after a stringent review process. The journal is available at 
https://ssca.org.in/journal.html. 
 
This Issue (No. 1) of the Volume 19 of Statistics and Applications has been brought out as a 
tribute to Professor Aloke Dey, a world leader in the area of designs of experiments and 
combinatorics, who at the age of 74 years and 7 months, left for his heavenly abode after a 
brief illness, on 10 February 2020. Incidentally, Late Professor Dey happened to be a Ph.D. 
student of Late Professor Das.  
 
The Editorial Board of the journal decided to have this special issue in memory of Late 
Professor Aloke Dey and titled it as Contributions to Combinatorics, Design of 
Experiments, Linear Algebra and Related Areas. The Editorial Board also invited Vinod 
Kumar Gupta, Sudhir Gupta, Rajender Parsad and Ashish Das to act as the Guest Editors of 
this special issue. Vinod Gupta shared the key responsibility of coordinating with the authors, 
the reviewers and the other guest editors. The authors invited to contribute to this issue were 
essentially Professor Dey’s collaborators, his students, friends and colleagues around the 
globe. It gives us unbounded pleasure to mention here that the response obtained was 
overwhelming.  
 
Professor Dey was a legendary statistician and his contributions to the advancement of 
statistical sciences have been colossal. Although he was world renowned for his contributions 
in the area of design of experiments, Professor Dey had also researched in other diverse areas 
like survey sampling, combinatorial theory, linear algebra and cryptology. Spread over half a 
century, his fundamental research, reflecting an amazing versatility, depth and originality 
immensely enriched the theory and applications of statistics. He also authored 5 books on 
block designs, fractional factorial designs and cross over designs. Professor Dey not only had 
been a great researcher, he had also been a brilliant teacher and mentor for many young 
upcoming researchers.  With his strong desire to conduct quality basic research, he influenced 
the thoughts of many young researchers and inspired them along the journey of their 
research. With his immense love, affection and willingness to always help, he made an 
unforgettable mark on the lives of many of his colleagues, students and young researchers. It 
is a matter of great pride for all the guest editors of this issue to add here that they were also 
mentored by Late Professor Dey. The research journey of all the four guest editors was also 
influenced by the guidance of Late Professor Dey.  In his demise the statisticians’ fraternity 
has lost a brilliant, celebrated and globally recognized statistician.  Professor Dey was a pious 
soul and a true humane - a gem.   
 
Professor Aloke Dey was fellow of the Indian National Science Academy (INSA), the 
National Academy of Sciences, India (NASI), and an Elected Member of the International 
Statistical Institute. He served as an editor of Sankhya, the Indian Journal of Statistics, during 
2002–2005, and was also the chair editor of Statistics and Applications, during 2009–2020. 
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Every year, on June 29th, India celebrates the birth anniversary of Late Professor Prasanta 
Chandra Mahalanobis, a recognized global leader in the discipline of statistics, as National 
Statistics Day. On the National Statistics Day in 2010, for his lifetime contributions in the 
field of Statistics, Late Professor Dey was conferred the Government of India’s prestigious 
National Award in Statistics that had been instituted in honour of Professor P.V. Sukhatme. 
 
This memorial issue has the tributes to this stalwart Professor Dey in the form of 31 research 
papers from authors across the globe. These papers cover a broad spectrum of the research 
interests of Professor Dey. Additionally, there is an article on Professor Aloke Dey - A tribute 
by Vinod Kumar Gupta, Rahul Mukerjee, Mausumi Bose and Arun Nigam. The guest editors 
feel honoured to have been able to produce an issue that is a befitting homage to their GURU, 
a tall statistician with immense contributions.  
 
We would like to sincerely express our gratefulness to all the authors for their contribution to 
this memorial issue. The reviewers, an unobservable layer without whom the process of 
journal publication cannot function at all, have also been prompt and thorough. Their 
suggestions helped in improving the quality and presentation of the contents. We are indebted 
to all the reviewers and thank them sincerely for their support. We would like to place on 
record our highest admiration for the Executive Council of SSCA and the Editorial Board of 
Statistics and Applications for their support and for entrusting their faith on the Guest Editors 
for bringing out this special issue as a tribute to Professor Dey. The Guest Editors, in turn, are 
greatly honoured by this responsibility. The help received from Dr. B.N. Mandal, Managing 
Editor for bringing the papers in the format of the journal is highly appreciated.   
 
This issue contains papers of high academic standards covering a wide spectrum of statistical 
research. We are confident that the readers would find these papers enjoyable and a resource 
for generating newer ideas for advancing research in statistical sciences. This issue is our 
endeavour to pay rich tributes to this giant of statistical sciences with a towering stature, 
filled with traits of humanity like gentleness, kindness, humbleness and gratitude.  
 

Vinod Kumar Gupta 
Sudhir Gupta 

Rajender Parsad 
Ashish Das 

May 2021 
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A Hebrew Proverb (Translation by Rabindranath Tagore)  
 
A death is not the extinguishing of a light, 
but the putting out of the lamp 
because the dawn has come. 
 
Life is given to us, 
we earn it by giving it. 
Let the dead have the immortality of fame, 
but the living the immortality of love. 
 
Life's errors cry for the merciful beauty 
that can modulate their isolation into a 
harmony with the whole. 
 
Life, like a child, laughs, 
shaking its rattle of death as it runs. 
 
 
 
1. An Eulogy 

 
We are all united not only in our desire to pay our homage to Aloke Dey but rather in our 

need to do so. For such was his extraordinary appeal in the community of statisticians across 
the globe that all of us feel that we have lost a soul mate of ours. 

  
Aloke Dey was the very essence of wisdom, of dedication, of duty, of style, of sincerity, 

of academic honesty, of humbleness, of compassion, of friendship, of care. His associates had 
always been charmed by not only his knowledge but also his rectitude and integrity. And 
talking of his dedication, even with problems in his eyes, he used to spend hours and hours of 
his time working on computers and writing manuscripts. 

 
Aloke Dey has left for his heavenly abode, and in the entire academic world, there is a feeling 

of having been left desolate and forlorn. All of us sense that feeling, and we do not know when we 
shall be able to overcome it. And, at the same time, there is a proud thankfulness to God  for allowing 
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us of this generation to be associated with this towering personality who not only made monumental 
contributions towards the advancement of statistical sciences, but also remained, at the same time, 
so down to earth and so compassionate. While his jovial nature endeared him to everyone, he carried 
an aura reflecting the deepest respect that he earned from people around him for his unbounded 
talent, his perfect intuition and his sharp memory. Indeed, even an apparently simple problem posed 
by him often had deep underpinnings, leading to the excitement of discovery. He was truly a friend, 
philosopher and guide whose very presence filled the minds of his associates with joy of learning, 
confidence and happiness.   

 
Today is our chance to say thank you, Aloke Dey, for the way you brightened science 

and our lives, even though God granted you but a short life and took you away so early. Only 
now that you are gone do we truly appreciate what we are now without and we want you to 
know that life without you is very, very difficult. It is only through the strength of the message 
that you gave us over the years that we are slowly gaining the strength to move forward. The 
days that we spent together and what we had learned from you will remain in our hearts as our 
most cherished treasure.  

 
2. A Birds Eye View of the Accolades 
 

Professor Dey’s attainments are so towering and encompass such a multitude of 
directions that we find it really hard to present them here in adequate detail. Yet, we make a 
valiant  effort to highlight just a few of these. 
 
Professor Aloke Dey…   
 
[A brilliant scholar] 
• Master’s degree (1964) in mathematics, then master’s degree (1966) from the Indian 

Agricultural Statistics Research Institute (IASRI) with a first rank, followed by a Ph.D. 
degree (1969), from IASRI.  

 
[Official positions] 
• Joined IASRI in 1970 as a faculty; became a senior professor in 1977 at the early age of 

32 years.  
• Joined the Indian Statistical Institute (ISI) in 1989 as a professor and continued there till 

his formal retirement in 2007.  
• Senior Scientist of the Indian National Science Academy (2007-12) and the National 

Academy of Sciences, India (2012-17), both hosted by ISI. 
• Held senior academic positions at many institutions abroad, including those in USA, 

Canada and Taiwan.  
 
[A researcher par excellence] 
• A world leader in statistics for fundamental research in diverse areas, for excellent 

dissemination of ideas through elegantly written books, and for influential editorial work.  
• Research, spread over five decades, encompassing multiple areas pertaining to not only 

statistics but also mathematics, and reflecting an amazing depth and versatility.  
• Extensive publications, with numerous citations, in the very best journals – no wonder 

though, given the profound depth of his findings. 
• Areas particularly enriched through his work include design of experiments, survey 

sampling, combinatorial theory, linear algebra and cryptology. 
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• [Research in design of experiments]  
Here alone, path-breaking contributions to such diverse areas as factorial designs, varietal 
block and row-column designs, weighing designs, response surface designs, crossover 
designs, designs for biological assays and diallel crosses, and so on.  
Specifically: 
(A)  Research on orthogonal fractional factorial plans and related orthogonal arrays, 

with emphasis on the practically important but mathematically difficult asymmetric 
case, blending theoretical elegance with immediate applicability, notably in 
industrial experimentation and quality control.  This includes, in particular: 
(i)  Work on the hard problem of obtaining fractional factorial plans when certain 

interactions are important, coming up with an ingenious solution via the use 
of tools from finite projective geometry.  

(ii)  Deep results on optimal main effect plans under nonorthogonal blocking, 
opening up a whole new area.  

(B)  High impact results, in both statistics and combinatorics, on other topics of 
experimental design, such as 
(i)  a new class of incomplete block designs with nested structure,  
(ii)  universal optimality and nonoptimality of certain row-column designs (well-

known for counterintuitive findings),  
(iii)  optimal designs for biological assays and diallel crosses, as well as optimal 

weighing designs (now classics in the respective fields), 
(iv)  crossover designs (including a recent authoritative review). 

• [Research in other areas]  
Very remarkable contributions to many other areas such as  

(i)  unequal probability sampling plans,  
(ii)  characterization problems via conditional expectations,  
(iii)  tactical configurations,  
(iv)  diagonally range dominant matrices,  
(v)  efficient key pre-distribution schemes for distributed sensor networks, 

and so on. 
These include elegant statistical proofs of several results in matrix algebra.  

• [Books] 
All real gems that received many accolades from the statistical community; all from 
major international publishers.  

 
[Honours and awards] 
• Fellow of the Indian National Science Academy (INSA) and the National Academy of 

Sciences, India (NASI). 
• Honoured with the prestigious Professor P.V. Sukhatme National Award in Statistics 

(2010), by the Ministry of Statistics and Programme Implementation, Government of 
India, for lifetime contributions to the field of statistics.  

• Elected Member of the International Statistical Institute.  
 
 [An editor of eminence] 
• Editor, Sankhya, the Indian Journal of Statistics (2002-05); under his eminent leadership 

and through his painstaking efforts, the journal attained new heights.  
• Chair Editor, Statistics and Applications (2009-2020); under his research administrative 

capability, the journal witnessed a boost in its stature and started becoming visible 
globally.  
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[A great teacher] 
• While being a researcher par excellence, always mindful of his responsibilities as a 

teacher; successive generations of students benefited themselves under the tutelage of the 
great teacher in him.  

• Co-author of an INSA sponsored book Understanding Mathematics that aimed at the 
promotion of mathematics among senior school students and first year college students.  

 
[A great mentor]   
• Supervised more than 15 Ph.D. students and inspired them to reach their full potential. 
• Over the years, also acted generously as a mentor to many other statisticians apart from 

his direct PhD students; they all benefited academically from his counsel at various stages 
of their careers. 

 
[A great friend]  
• While being a celebrated teacher and an inspiring mentor, was also an extremely caring 

human being and a wonderful friend.  
• A scintillating conversationalist who took an active interest in many areas beyond 

academics; many statisticians can vouch for the fact that, besides being interested in their 
academic affairs, he was also concerned about their overall well-being. 

• Often, the professional association developed into a much closer bond where he became 
like a family member whom it was a joy to spend time with.  

 
 
3. Research Publications  

The arrangement is chronological so as to reflect the research interests of Professor Dey 
over the years. Within each year, the arrangement is alphabetical according to the 
authors’ surnames. 
 

3.1. Books Published 
 

1. A. Dey (1985). Orthogonal Fractional Factorial Designs. John Wiley.  
2. A. Dey (1986). Theory of Block Designs. John Wiley/ Halsted Press.  
3. A. Dey and R. Mukerjee (1999). Fractional Factorial Plans. John Wiley.    
4. M. Bose and A. Dey (2009). Optimal Crossover Designs. World Scientific. 
5. A. Dey (2010). Incomplete Block Designs. Hindustan Book Agency/ World Scientific.    
 
3.2. Research Papers Published  
 
1. M. N. Das and A. Dey (1967). Group divisible rotatable designs. Annals of the Institute 

of  Statistical Mathematics 19, 337–347; corrections ibid (1968), 20, 337. 
2. A. Dey (1968). On response surface designs with equispaced doses. Calcutta Statistical 

Association Bulletin, 19, 135–143.   
3. A. Dey and A. K. Nigam (1968). Group divisible rotatable designs. Some further 

considerations. Annals of the Institute of Statistical Mathematics, 20, 477–481. 
4. A. Dey (1970). On construction of balanced n-ary block designs. Annals of the Institute 

of Statistical Mathematics, 22, 389–393.  
5. A. Dey and M. N. Das (1970). On blocking second order rotatable designs. Calcutta 

Statistical Association Bulletin, 17, 75–85. 
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6. A. Dey and G. M. Saha  (1970). Main effect plans for nk factorials with blocks. Annals 
of the Institute of Statistical Mathematics, 22, 381–388.  

7. A. C. Kulshreshtha and A. Dey (1970). A new weighing design. Australian Journal of 
Statistics, 12, 166–168.  

8. A. K. Nigam and A. Dey (1970). Four and six level second order rotatable designs. 
Calcutta Statistical Association Bulletin, 19,155–167. 

9. A. C. Kulshreshtha, G. M. Saha and A. Dey (1971). On circular designs. Annals of the 
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Abstract

Two-symbol supersaturated designs (SSDs) are two-symbol arrays in which the number of
rows is no larger than the number of columns. In this paper, a lower bound for the E(B2) value of
SSDs that are not necessarily balanced is derived. The sharpness of the newly derived lower bound is
analyzed theoretically by using constructions of E(B2)-optimal SSDs and computationally by using
the NOA4 algorithm in Ryan and Bulutoglu (2007). Applications of the newly derived E(B2) lower
bound to searching for �-optimal designs and equiangular lines are discussed.

Key words: Two-symbol unbalanced SSD; E(B2)-optimal designs; �-optimal designs; Lower bound.
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1. Introduction

Two-symbol supersaturated designs (SSDs) are two symbol arrays with the following prop-
erties. The number of rows # does not exceed the number of columns < and no pair of columns
are fully aliased, i.e., there exists no pair of identical columns up to permuting the symbols within
a column. A two-symbol array is balanced if each of the two symbols in a column appears the
same number of times when the number of rows # is even or the absolute difference between the
frequencies of the occurrences of the two symbols in each column is 1 when # is odd. A two
symbol array that is not balanced is called unbalanced. Two-symbol SSDs are commonly coded
with symbol set {0, 1} or {±1} and are particularly useful in screening experimentation due to their
row-size economy (Georgiou, 2014). It has long been assumed in the literature that SSDs should be
balanced. However, unbalanced SSDs are of interest to practitioners who are willing to compromise
on the balance property due to high costs. In particular, unbalanced SSDs are useful when restrictions
embedded in the problem at hand makes it infeasible to use a balanced SSD. Such SSDs are also
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preferable in cases where certain symbols of some columns need to be examined but are expensive
to set.

WLOG, assume that each column of the #-row array (SSD) with < columns each with
symbols from {0, 1} has 0 at most b#/2c times, where b.c is the floor function. Define : ; to be the
number of columns in which 0 appears ; times for ; = 0, . . . , b#/2c. Clearly,

∑
; : ; = <. Denote

this class of arrays by D(#, 2<, (:0, :1, . . . , : b#/2c)). Let D±(#, 2<, (:0, :1, . . . , : b#/2c)) denote
the corresponding class of arrays when −1 is used instead of 0. For even # , if we choose : ; = 0 for
0 ≤ ; < b#/2c and : b#/2c = <, we get a balanced array (SSD), and we get an unbalanced array if
: ; ≠ 0 for at least one ; with ; < b#/2c. We call the vector (:0, :1, . . . , : b#/2c) the balancedness
structure of each D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)) or each D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)).

Example 1: Consider the 4-row SSD

D =

©«
1 1 1 1
0 1 0 1
1 0 0 1
0 0 1 0

ª®®®¬ ∈ D(4, 2
4, (0, 1, 3)).

This SSD is unbalanced with :1 = 1, :2 = 3 and
∑
; : ; = < = 4.

For < ≥ # , an # row, < column, two-symbol array X = [x1, x2, . . . , x<] with entries from
{±1} is a supersaturated design if it has no two columns x8 and x 9 such that 8 ≠ 9 and x>

8
x 9 ∈ {−#, #}.

The E(B2) value of X is defined as

E(B2) =
∑
8≠ 9 B

2
8 9

<(< − 1) ,

where B8 9 = x>
8

x 9 for 1 ≤ 8 ≠ 9 ≤ <. A two-symbol SSD is mapped to a {±1} SSD by assigning
+1 to one symbol and −1 to the other symbol in each column. We call a resulting {±1} SSD
a corresponding {±1} SSD. Then each of the concepts defined for a {±1} SSD is defined for a
two-symbol SSD via one of its corresponding {±1} SSDs. The E(B2) value is used to compare
two-symbol SSDs with the same number of rows and columns (Georgiou, 2014). An SSD with a
smaller E(B2) value is more desirable (Georgiou, 2014), and an SSD with the smallest possible E(B2)
value is called E(B2)-optimal. For a detailed review of the E(B2) optimality criteria for two-symbol
SSDs, the reader is referred to (Georgiou, 2014).

Ryan and Bulutoglu (2007) and Das et. al. (2008) gave the sharpest known lower bound
for balanced SSDs with even # . Bulutoglu and Ryan (2008) and Suen and Das (2010) derived an
improved E(B2) lower bound for two-symbol SSDs with odd # . For unbalanced SSDs, the best
known E(B2) lower bounds are not applicable. We generalize the results in Bulutoglu and Ryan
(2008) and Suen and Das (2010) to unbalanced SSDs. We derive a lower bound for the E(B2) value
of unbalanced two-symbol SSDs and present some families of E(B2)-optimal unbalanced SSDs. Part
of our derivation is based on an adaptation of the derivation in Bulutoglu and Ryan (2008).

For an SSD X ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) let Bmax = max8< 9 |B8 9 | and 5Bmax be the
frequency of Bmax in {B8 9 }8< 9 . Then X is called minimax-optimal if no other SSD in D±(#, 2<, (:0,
:1, . . . , : b#/2c)) has a smaller Bmax or smaller 5Bmax at the smallest possible Bmax. For balanced SSDs,
Ryan and Bulutoglu (2007) and Bulutoglu and Ryan (2008) used minimax optimality as a secondary
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criterion for picking an SSD among E(B2)-optimal SSDs. Finding a minimax-optimal and balanced
SSD among E(B2)-optimal and balanced SSDs is a very difficult problem as mentioned in Morales
and Bulutoglu (2018). Some of the unbalanced infinite families of E(B2)-optimal SSDs in Section 3
are also minimax-optimal.

There are no known theories or construction methods of SSDs for any choice of : ; , 0 ≤ ; ≤
b#/2c, because an achievable lower bound for E(B2) is not known for the general case and it is not
possible to prove E(B2)-optimality without resorting to full enumeration. Therefore, there is a need to
develop a general sharp lower bound that also covers unbalanced arrays. In this paper, we generalize
the best known E(B2) lower bound for balanced two-symbol SSDs to all two-symbol SSDs with a
given balancedness structure. Additionally, we describe how our newly derived E(B2) lower bound
can be used to speed up search algorithms for finding two-symbol �-optimal designs in general.

An SSD can be thought as a frame, i.e., a spanning set for its column space. Moreover,
certain E(B2)-optimal SSDs are tight frames (Morales and Bulutoglu, 2018). Another motivation for
generalizing the best known E(B2) lower bound for balanced two-symbol SSDs to all two-symbol
SSDs with a given balancedness structure is that there is no balancedness requirement for frames.
Furthermore, certain E(B2)-optimal and minimax-optimal SSDs are equiangular tight frames and
imply the existence of certain strongly regular graphs (Morales and Bulutoglu, 2018; Waldron, 2009).

This paper is organized as follows. In Section 2, we derive a previously unknown lower
bound for the E(B2) value of an unbalanced two-symbol SSD with symbols from {±1} given its
column sums. After providing a naive E(B2) lower bound, Section 3 theoretically analyzes the
Section 2 bound in terms of its achievability and provides families of unbalanced E(B2)-optimal
SSDs achieving the Section 2 bound. Some of these SSDs are optimal with respect to the minimax
criterion as well. Section 4 provides computational test results obtained by using the NOA4 algorithm
in Ryan and Bulutoglu, (2007) for the achievability of the Section 2 bound. Finally, in Section 5,
we discuss two possible applications of our newly derived E(B2) lower bound. In particular, in
Section 5.1, we provide an application to searching for �-optimal designs. Moreover, in Section 5.2,
for a given C such that 0 < C, we discuss an application to finding upper bounds on the maximum
number of columns for a two-symbol {±1} SSD with # rows whose each pairwise column angle is
in [arccos(C/#), arccos(−C/#)].

2. A General Lower Bound

In this section, we derive a previously unknown lower bound for the E(B2) value of unbalanced
SSDs. We first provide some definitions and lemmas that will be useful in proving the desired lower
bound.

For a 2-symbol array let 28182 be the number of coincidences in the 81’th and 82’th rows for
1 ≤ 81 ≠ 82 ≤ # . The following lemma provides the number of coincidences in all the different pairs
of rows in a given SSD.

Lemma 1: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)) or D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)),

2
∑
81≠82

28182 =
∑
;

(# − 2;)2: ; + <# (# − 2).
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Proof: For given : ; , 0 ≤ ; ≤ b#/2c and D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)), we have

X0X>0 =
©«

< 2212 − < · · · 221# − <
2212 − < < · · · 222# − <

...
...

...
...

221# − < 222# − < · · · <

ª®®®®¬
.

Therefore,

1>#X0X>0 1# = 2
∑
81≠82

28182 − <# (# − 2)

=
∑
;

(# − 2;)2: ; .

Let D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)). For 1 ≤ 9 ≤ <, let = 9U be the number of times
U ∈ {0, 1} appears in the 9’th column of D. Also, for 1 ≤ 91 ≠ 92 ≤ <, U, V ∈ {0, 1}, let = 91 92UV

be
the number of times the symbol combination (U, V) appears as rows of the # × 2 array obtained by
concatenating 91’th and 92’th columns of D. Then

B291 92 = 4
∑
U,V

(= 91 92
UV
)2 − 2

∑
U

(= 91U )2 − 2
∑
V

(= 92
V
)2 + #2. (1)

Based on (1), we can express the E(B2) value in a convenient form so as to obtain another lower
bound.

Lemma 2: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)),

E(B2) =
4
∑
91≠ 92,U,V (=

91 92
UV
)2 − 4(< − 1)∑; [;2 + (# − ;)2]: ; + <(< − 1)#2

<(< − 1) .

Proof: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)), we have

<(< − 1)E(B2) =
∑
91≠ 92

B291 92

=
∑
91≠ 92

[
4
∑
U,V

(= 91 92
UV
)2 − 2

∑
U

(= 91U )2 − 2
∑
V

(= 92
V
)2 + #2

]
= 4

∑
91≠ 92,U,V

(= 91 92
U,V
)2 − 2(< − 1)

[∑
91,U

(= 91U )2 +
∑
92,V

(= 92
V
)2

]
+ <(< − 1)#2

= 4
∑

91≠ 92,U,V

(= 91 92
UV
)2 − 4(< − 1)

∑
;

[;2 + (# − ;)2]: ; + <(< − 1)#2.

For a given D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)), let ; 98 be the number of zeros in the 98’th
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column of D. Then we have

=
91 92
00 = ; 92 − =

91 92
10

=
91 92
01 = ; 91 − ; 92 + =

91 92
10 (2)

=
91 92
11 = # − ; 91 − =

91 92
10 .

Let
∑
U,V (=

91 92
UV
)2 = 5 (; 91 , ; 92 , =

91 92
10 ). Then by equations (2),

5 (; 91 , ; 92 , =
91 92
10 ) = 4(=

91 92
10 )

2 + (4; 91 − 4; 92 − 2#)=
91 92
10 + ;

2
92
+ (; 91 − ; 92)2 + (# − ; 91)2.

For fixed ; 91 , ; 92 , 5 (; 91 , ; 92 , =
91 92
10 ) is a convex function of (= 91 9210 ). By differentiating 5 (; 91 , ; 92 , =

91 92
10 )

with respect to = 91 9210 we see that 5 (; 91 , ; 92 , =
91 92
10 ) is minimized at

=̂
91 92
10 (; 91 , ; 92) =

[
# + 2; 92 − 2; 91

4

]
,

where [G] is the integer closest to G. Define

=̂10(8, 9) =
[
# + 2 9 − 28

4

]
.

Then we have∑
91≠ 92,U,V

(= 91 92
U,V
)2 ≥

∑
8

:8 (:8 − 1) 5 (8, 8, =̂10(8, 8)) +
∑
8≠ 9

:8: 9 5 (8, 9 , =̂10(8, 9))

= \∗1 =
∑
8

:8 (:8 − 1) 5
(
8, 8,

[
#

4

] )
+

∑
8≠ 9

:8: 9 5

(
8, 9 ,

[
# + 2 9 − 28

4

] )
.

(3)

The following lemma, whose proof follows from Lemma 2 and inequality (3), provides a lower bound
for the E(B2) value of D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)).

Lemma 3: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)),

E(B2) ≥ LB1,

where

LB1 =
4\∗1 − 4(< − 1)

∑
; [;2 + (# − ;)2]: ; + <(< − 1)#2

<(< − 1) .

By routine algebra we get the following result.

Lemma 4: For balanced and two-symbol arrays (SSDs)

LB1 = LB1(#, (0, . . . , 0, <)) =


1, if # is odd,
0, if # = 0 (mod 4),
4, if # = 2 (mod 4).
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When # = 2 (mod 4), the bound in Lemma 4 for < = # + 1 is achievable if a skew-symmetric
Hadamard matrix of order # +2 exists (Morales et al. 2019). Such a Hadamard matrix is conjectured
to exist for each # divisible by 4 (Koukouvinos and Stylianou, 2008). It is plain to verify the following
remark.

Remark 1: For balanced SSDs, < ≥ # + 3 or # = 0 (mod 4), LB1(#, (0, . . . , 0, <)) is strictly
smaller than the E(B2) lower bound in Das et al. (2008) and Ryan and Bulutoglu (2007). For
balanced SSDs, # = 2 (mod 4) and < ≤ # + 2, LB1(#, (0, . . . , 0, <)) is the same as the E(B2)
lower bound in Das et al. (2008) and Ryan and Bulutoglu (2007). For balanced SSDs and odd # ,
LB1(#, (0, . . . , 0, <)) cannot be sharper than the E(B2) lower bound in Bulutoglu and Ryan (2008).
In particular, when # = 3 (mod 4) and < = # , LB1(#, (0, . . . , 0, <)) equals to the E(B2) lower
bound in Bulutoglu and Ryan (2008). A numerical check suggests that these are the only odd #
cases for which equality is satisfied.

For D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)), let Δ =
∑
; (# − 2;)2: ; and

� (?) := 8?2 + 4#2 − 8#? − 4# + 4max{| − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2#, 0}.

Then

� (?) =
{
�1(?) if | − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2# ≤ 0,
�2(?) otherwise,

where

�1(?) = 8?2 + 4#2 − 8#? − 4#
�2(?) = −8?2 − 4#2 + 8#? + 4# + 4| − <# + Δ + @# (# − 1) |.

The following theorem provides another E(B2) lower bound for D.

Theorem1: There is a unique @ such that−2# ≤ (#<−Δ)/(#−1)−@# < 2# and<+@ ≡ 2 (<>34).
Let

?∗− =
# −

√
2# − #2 + | − <# + Δ + @# (# − 1) |

2
,

?∗+ =
# +

√
2# − #2 + | − <# + Δ + @# (# − 1) |

2
,

6(@) := (< + @)2# − @2#2 − <#2 − 2@Δ, and  = ∑
8 :28+1. For odd # , let

LB2 =


16

⌈
6 (@)+�1(b #2 c)−<(<−1)

16

⌉+
+<(<−1)

<(<−1) , if
��#<−Δ
#−1 − @#

�� < # ,
16

⌈
6 (@)+min{�1 ( b?∗−c) ,�2 ( d?∗−e) }−<(<−1)

16

⌉+
+<(<−1)

<(<−1) , otherwise,



2021] UNBALANCED TWO-LEVEL � (B2)-OPTIMAL DESIGNS 17

where d.e is the ceiling function. For # ≡ 0 (mod 4), let

LB2 =


32

⌈
6 (@)+�1(b #2 c)−8 (<− )

32

⌉+
+8 (<− )

<(<−1) , if
��#<−Δ
#−1 − @#

�� < # ,
32

⌈
6 (@)+min{�1 ( b?∗−c) ,�2 ( d?∗−e) }−8 (<− )

32

⌉+
+8 (<− )

<(<−1) , otherwise.

For # ≡ 2 (mod 4), let

LB2 =


\

⌈
6 (@)+�1(b #2 c)−4 ( −1)−4(<− ) (<− −1)

\

⌉+
+4 ( −1)+4(<− ) (<− −1)

<(<−1) , if
��#<−Δ
#−1 − @#

�� < # ,
\

⌈
6 (@)+min{�1 ( b?∗−c) ,�2 ( d?∗−e) }−4 ( −1)−4(<− ) (<− −1)

\

⌉+
+4 ( −1)+4(<− ) (<− −1)

<(<−1) , otherwise,

where

\ =

{
64 if  = 0,
32 otherwise,

and dGe+ = max{0, dGe}. Then
E(B2) ≥ LB2 .

Proof: The proof is an adaptation of the proof of Theorem 1 in Bulutoglu and Ryan (2008). For
general D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)), the � (?) in Bulutoglu and Ryan (2008) becomes

� (?) := 8?2 + 4#2 − 8#? − 4# + 4max{| − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2#, 0},

so that � (?) is continuous. Moreover,

�′(?) =
{
16? − 8#, if | − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2# < 0,
−16? + 8#, if | − <# + Δ + @# (# − 1) | − 4?2 − 2#2 + 4#? + 2# > 0.

Hence, � (?) has all of its local minima at ? such that

−4?2 − 2#2 + 4#? + 2# + | − <# + Δ + @# (# − 1) | = 0,

and these ?’s are ?∗− and ?∗+. By the reflection symmetry of �1(?) and �2(?) along the axis H =
�1(?∗−), both of these local minima are in fact global minima, and � (?) for ? ∈ {0, 1, . . . , (# +1)/2}
is minimized at ? = b?∗−c or ? = d?∗−e. The result now follows from

B8 9 ≡


# (mod 4), if the 8’th and 9’th columns of D have both even

or odd number of −1’s,
(# + 2) (mod 4), otherwise.
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Remark 2: LB2 is cheaper to compute compared to the corresponding lower bound in Bulutoglu
and Ryan (2008). This is because computing LB2 requires computing only �1(b?∗−c) and �2(d?∗−e)
instead of computing � (?) for ? = 1, 2, . . . , (# + 1)/2.

By Lemma 3, we obtain the following theorem.

Theorem 2: For D ∈ D(#, 2<, (:0, :1, . . . , : b#/2c)),

E(B2) ≥ LB = LB(#, (:0, :1, . . . , : b #2 c)) = max{LB1,LB2}. (4)

For balanced SSDs with an odd number of rows, it is easy to show that LB2 reduces to the E(B2)
lower bound provided in Bulutoglu and Ryan (2008). (We numerically verified this for 7 ≤ # ≤ 41
and # ≤ < ≤ 4# .) For balanced SSDs with an even number of rows, LB is still a valid lower bound;
however, it cannot be sharper than the E(B2) lower bound of Ryan and Bulutoglu (2007) or of Das et
al. (2008). This is because the assumed set of constraints for the hypothetical SSD in the derivation
of LB2 are satisfied by the hypothetical SSD in the derivation of the lower bound Ryan and Bulutoglu
(2007) and that in Das et al. (2008). In fact, we observed in 700 of the 1, 314 even # cases with
8 ≤ # ≤ 40 and # ≤ < ≤ 4# that the E(B2) lower bound of Ryan and Bulutoglu (2007) or of Das
et al. (2008) is sharper than the lower bound in Bulutoglu and Ryan (2008). Hence, for balanced
and even # SSDs, LB should not be used. Numerically comparing LB2 to the bound in Ryan and
Bulutoglu (2007) and that in Das et al. (2008) provided us with a check for the correctness of LB2.
We implemented a similar check for the correctness of LB1. We observed that LB1 is most useful
when < is close to # and is dominated by LB2 as < increases.

3. Theoretical Achievability

In this section, we first derive a naive E(B2) lower bound for an # row, < column, two-symbol
SSD. This bound does not depend on the column sums of the SSD. Then we show that if this naive
E(B2) lower bound is achievable then LB2 is also achievable.

Let X be an # row, < column SSD whose column symbols are from {±1}. Then the off-
diagonal entries of XX> are odd if and only if < is odd. When < is divisible by 4, it is possible for
X to have mutually orthogonal rows. When < = 2 (mod 4), X can have at most b#/2c d#/2e pairs
of orthogonal rows. From these facts, we immediately get the following naive E(B2) lower bound

E(B2) ≥


# (#−1)−<#2+#<2

<(<−1) , if < is odd,
−<#2+#<2
<(<−1) , if < = 0 (mod 4),
4(b #2 c (b #2 c−1)+d #2 e (d #2 e−1))−<#2+#<2

<(<−1) , if < = 2 (mod 4).

(5)

The lower bound LB2(#, (:0, :1, . . . , : b#/2c)) is based on a derivation where XX> has
off-diagonals from the set {−4,−2, 0, 2} or the set {−2, 0, 2, 4} for even ∑

8 :8 and from the set
{−3,−1, 1, 3} for odd ∑

8 :8, where the off-diagonal entries sum to
∑=
;=0(# − 2;)2: ; − #<. For an

SSD X achieving the naive E(B2) lower bound (5), XX> has off-diagonals from the set {−2, 0, 2} for
even

∑
8 :8 and from the set {±1} for odd∑

8 :8. Moreover, the entries of such anXX> sum to
∑=
;=0(#−

2;)2: ; . Since {±1} ⊆ {−3,−1, 1, 3} and {−2, 0, 2} ⊆ {−2, 0, 2, 4} ∩ {−4,−2, 0, 2}, we conclude that
LB2(#, (:0, :1, . . . , : b#/2c)) is always at least as sharp as the naive E(B2) lower bound (5). Hence,
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an SSD X achieving the naive E(B2) lower bound (5) also achieves LB2(#, (:0, :1, . . . , : b#/2c)),
i.e., if the naive E(B2) lower bound (5) is achievable, then LB2(#, (:0, :1, . . . , : b#/2c)) is equal to
the naive E(B2) lower bound (5).

There are cases in which LB2 is strictly larger than the naive E(B2) lower bound (5). In
particular, for balanced SSDs when # is odd LB2 reduces to the E(B2) lower bound derived in
Bulutoglu and Ryan (2008), and there are SSDs (X’s) achieving this lower bound such that the
off-diagonal entries of XX> are not all from the set {±1}.

For each #, < combination, an E(B2)-optimal SSD achieving the naive bound (5) can be
constructed by using Hadamard matrices. A C × C matrix HC of ±1’s is called a Hadamard matrix
if H>C HC = CIC , where IC is the C × C identity matrix. It is well-known that C must be divisible by 4
for a C × C Hadamard matrix to exist. It is conjectured that C × C Hadamard matrix exists whenever C
is divisible by 4. Let 1A be the column of all 1B of length A. It is easy to show that any Hadamard
matrix can be put in the form

HC =

©«
1 1 1>C

2−1
1>C
2−1

1 −1 1>C
2−1

−1>C
2−1

1 C
2−1 1 C

2−1
1 C
2−1 −1 C

2−1
A

ª®®®®®¬
(6)

by applying signed column and/or rowpermutations (by right and/or leftmultiplyingwith permutation
matrices that are right or left multiplied by ±1 diagonal matrices).

Let X be an # row, < column E(B2)-optimal SSD achieving the naive E(B2) lower bound (5).
In what follows, we describe how X can be constructed provided that the Hadamard conjecture is
true. If < is divisible by 4, then X can be taken to be any # rows of a Hadamard matrix H<. If
< = 1 (mod 4) (< = 3 (mod 4)), then X can be constructed by first adding (deleting) any column
with entries in {−1, 1} to (from) a Hadamard matrix H<−1 (H<+1) followed by picking any # rows
from the resulting matrix. If < = 2 (mod 4), let H<+2 be a Hadamard matrix. Let A be obtained
from H<+2 after putting H<+2 in form (6). Then any # rows of A can be taken to be X.

Two arrays D1 and D2 are equivalent if Π1D1Π2 = D2 for some signed permutation matrices
Π1 and Π2 (i.e., permutation matrices that are right or left multiplied by ±1 diagonal matrices). If
X1 and X2 are equivalent SSDs, then SS(X1X>1 ) = SS(X2X

>
2 ), where SS(M) is the sum squares of

the entries of a matrix M. Hence, if X1 is an E(B2)-optimal SSD achieving the naive E(B2) lower
bound (5), then any other SSD equivalent to X1 is also E(B2)-optimal and achieves the naive E(B2)
lower bound (5).

Not every #, <, :0, :1, . . . , : b#/2c combination allows a D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c))
that achieves the naive E(B2) lower bound (5). If D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) achieves the
naive E(B2) lower bound (5), then the fact that

∑=
;=0(# − 2;)2: ; must be equal to the sum of the

entries of DD> implies the constraint
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=∑
;=0
(# − 2;)2: ; =


#< + 2U1 − 2V1, if < is odd,
#<, if < = 0 (mod 4),
#< + 4U2 − 4V2, if < = 2 (mod 4)

(7)

on #, <, :0, :1, . . . , : b#/2c for some non-negative integers U1, V1, U2, V2. The next theorem follows
from the derivation of LB2(#, (:0, :1, . . . , : b#/2c)).

Theorem 3: The naive E(B2) lower bound (5) is equal to LB2(#, (:0, :1, . . . , : b#/2c)) if and only if
the constraint in equation (7) is satisfied.

Circulantmatrices can be used to construct unbalanced, E(B2)-optimal, minimax-optimal SSDs
and �-optimal designs. A matrix is called circulant if each row vector is shifted one element to the
right relative to the preceding row vector. A circulant matrix A = 28A2(a) is determined by its first
row a. Each row of A is a cyclic shift of the vector a to the right.

The dual Gram matrix and the Gram matrix of a matrix A are defined to be AA> and A>A. If
x = (G0, G1, . . . , GC−1) is a vector of length C, the periodic autocorrelation function %x(B) (abbreviated
as PAF) is defined, reducing 8 + B modulo C, as

%x(B) =
∑
8

G8G8+B for B = 0, 1, . . . , C − 1.

The (dual) Gram matrix of a circulant matrix is also circulant and can be calculated by using the
periodic autocorrelation function of its first row.

Let C be odd andA,B be C× C circulant matrices with entries in {±1}. Let a = (00, 01, . . . , 0C−1)
and b = (10, 11, . . . , 1C−1) be the first rows of A and B. Also, let

%a(B) + %b(B) = WB for B = 1, 2, . . . , C − 1, (8)

where |WB | = W is a constant positive real number. Then

AA> + BB> = (2C − W)IC + WJC ,

where IC is the C × C identity matrix and JC is a C × C matrix of ±1’s whose diagonal entries are all 1’s.
If W = 2 and JC is the C × C matrix of 1’s, then the 2C × 2C matrix

C2 =
(

A B
−B> A>

)
(9)

has themaximumdeterminant (see, Ehlich 1964) among all the 2C×2C {±1}-matrices, i.e., �-optimal.

Theorem 4: Let # = 2C, C odd and a, b two vectors of length C with entries from {±1} satisfying
equation (8) for WB ∈ {−2, 2}. Let 0 =

∑
8 08 and 1 =

∑
8 18. Then an unbalanced, two-symbol, E(B2)-

optimal and minimax-optimal SSD with # rows and < = # columns achieving the lower bound
LB(#, (0, . . . , 0, :C−(0+1)/2 = C, 0, . . . , 0, :C−(0−1)/2 = C, 0, . . . , 0) can be constructed. If WB = 2 for
B = 1, 2, . . . , C − 1, then the constructed design is also �-optimal.

Proof: Let JC be a C × C matrix of ±1’s. Use circulant matrices A and B given in (9). Then C2 in (9)
satisfies
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C2C>2 = C>2C2 =
(
(2C − 2)IC + 2JC 0C×C

0C×C (2C − 2)IC + 2JC

)
.

Thus, max8< 9 |B8 9 | = 2, and C2 achieves the naive E(B2) lower bound (5). Moreover, if JC is the C × C
matrix of 1’s, then C2 is �-optimal.

Since a = (00, 01, . . . , 0C−1) and b = (10, 11, . . . , 1C−1) satisfy equation (8), C should be odd
with 2(2C − 1) = 02 + 12. WLOG, we may assume that 0 ≥ 1 > 0. Also, 1 and −1 appear (C + 0)/2
and (C + 1)/2 times in a and (C − 0)/2 and (C − 1)/2 times in b. Each of the first C columns of
the generated SSD by construction (9) has a column sum of (0 − 1). So, the number of −1’s in
each of the first C columns is ;2 = C − (0 − 1)/2. Similarly, each of the last C columns has a column
sum of (0 + 1). So, the number of −1’s in each of the last C columns is ;1 = C − (0 + 1)/2. Thus,
: ;2 = :C−(0−1)/2 = C, : ;1 = :C−(0+1)/2 = C.

In the examples below, we denote 1 by + and −1 by −.

Example 2: Let

a = (+, +, +, +, +, +, +, +,−, +, +,−,−)
b = (+, +, +,−,−,−, +,−, +, +,−, +,−).

Vectors a and b satisfy %a(B) + %b(B) = 2, B = 1, 2, . . . , C − 1. Moreover, 0 =
∑
8 08 = 7 and

1 =
∑
8 18 = 1. Let A = 28A2(a) and B = 28A2(b). Using construction (9) we obtain D such that

D ∈ D±(26, 226, (:9 = 13, :10 = 13)) and E(B2) = LB = LB2 = 1.92. Hence, D is an unbalanced,
E(B2)-optimal, minimax-optimal SSD and a �-optimal design.

Example 3. Let

a = (+, +, +, +, +,−, +,−,−, +, +, +,−)
b = (+, +, +, +, +,−, +,−,−, +, +, +,−).

Vectors a and b satisfy %a(B)+%b(B) = 2 for B = 1, 2, . . . , C−1. Moreover, 0 =
∑
8 08 =

∑
8 18 = 5. Let

A = 28A2(a) and B = 28A2(b). Using construction (9), we obtain D such that D ∈ D±(26, 226, (:8 =
13, :13 = 13)) and E(B2) = LB = LB2 = 1.92. Hence, D is an unbalanced, E(B2)-optimal,
minimax-optimal SSD and a �-optimal design.

4. Testing Achievability Computationally

We implemented a computational study to test the achievability of LB(#, (:0, . . . , : b#/2c)). In
searching for an SSD D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) achieving LB(#, (:0, :1, . . . , : b#/2c)),
we assumed that :0 = 1. First we show that this assumption can be made without losing generality.
To do this, we need the following two lemmas.

Lemma5: LetD ∈ D±(#, 2<, (0, :1, . . . , : b#/2c)). Then [1# D] ∈ D±(#, 2(<+1) , (1, :1, . . . , : b#/2c)),
and D is E(B2)-optimal if and only if [1# D] is E(B2)-optimal.

Proof: Observe that

#2 + SS(D>D) + 2
∑
;

: ; (# − 2;)2 = SS( [1# D]> [1# D]).
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Hence, SS(D>D) is minimized if and only if SS( [1# D]> [1# D]) is minimized. The result follows
because for any SSD X ∈ D±(#′, 2<′, (:′0, . . . , :

′
b# ′/2c)) we have

E(B2) = (X
)X) − #′2<′
<′(<′ − 1) .

Hence, X is E(B2)-optimal if and only if SS(X>X) is minimized.

Lemma 6: Let :0 = 0 and
∑
; : ; = <. Then

(< + 1)< LB(#, (1, :1, . . . , : b #2 c)) = <(< − 1) LB(#, (0, :1, . . . , : b #2 c)) + 2
∑
;

: ; (# − 2;)2.

Proof: Each LB8 (#, (:0, :1, . . . , : b#/2c)) for 8 = 1, 2 is derived based on a hypothetical D∗
8
∈

D±(#, 2<, (0, :1, . . . , : b#/2c)), where

LB8 (#, (:0, :1, . . . , : b #2 c)) =
SS(D∗>

8
D∗
8
) − #2<

<(< − 1) .

If D∗
8
∈ D±(#, 2<, (0, :1, . . . , : b#/2c)) then [1# D∗

8
] ∈ D±(#, 2(<+1) , (1, :1, . . . , : b#/2c)). Now,

LB8 (#, (0, :1 . . . , : b #2 c)) =
SS(D∗>

8
D∗
8
) − #2<

<(< − 1) ,

LB8 (#, (1, :1, . . . , : b #2 c)) =
SS( [1# D∗

8
]> [1# D∗

8
]) − #2(< + 1)

(< + 1)< .

Hence, by Lemma 5

(< + 1)< LB8 (#, (1, :1, . . . , : b #2 c)) = <(< − 1) LB8 (#, (0, :1, . . . , : b #2 c)) + 2
∑
;

: ; (# − 2;)2.

Now, the result follows from

LB(#, (:0, :1, . . . , : b #2 c)) = max8∈{1,2}
{LB8 (#, (:0, :1, . . . , : b #2 c))}

and

(< + 1)< max
8∈{1,2}

LB8 (#, (1, :1, . . . , : b #2 c)) =

<(< − 1) max
8∈{1,2}

LB8 (#, (0, :1, . . . , : b #2 c)) + 2
∑
;

: ; (# − 2;)2.

The definition of an SSD D ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) requires that it has no pair of
aliased columns, i.e., columns d8 and d 9 such that d>

8
d 9 ∈ {−#, #}. Hence, we must have :0 ≤ 1

for each SSD D.

Theorem 5: An SSD D achieving LB(#, (0, :1, . . . , : b#/2c)) exists if and only if an SSD [1# D]
achieving LB(#, (1, :1, . . . , : b#/2c)) exists.
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Proof: The result follows immediately from Lemmas 5 and 6.

ByTheorem5,WLOG,we can restrict our search for SSDs achievingLB(#, (:0, :1, . . . , : b#/2c))
to SSDs with :0 = 1. Accordingly, we wrote a C program for the NOA? for ? = 2, 4, 8 algorithms
together with the derived E(B2) lower bound LB(#, (1, :1, . . . , : b#/2c)) to search for SSDs in
D±(#, 2<, (1, :1, . . . , : b#/2c)) achieving this bound.

There is a one-to-one correspondence between all SSDs achieving LB(#, (1, 0, . . . , 0, < − 1))
and all balanced SSDs achieving LB(#, (0, . . . , 0, < − 1)) obtained by deleting the all ones column.
The NOA? for ? = 2, 4, 8 algorithms could find a balanced E(B2)-optimal SSD for # = 14, 16 in all
cases except the # = 14, < = 16 case (Bulutoglu and Ryan, 2008). For the cases with # ∈ {14, 16}
and 15 ≤ < ≤ 70 for which LB(#, (0, . . . , 0, < − 1)) is (not) equal to E(B2)-lower bound in
Bulutoglu and Ryan (2008), we were (not) able to find an SSD in D±(#, 2<, (1, 0, . . . , 0, <))
achieving LB(#, (1, 0, . . . , 0, <)) except for the # = 14, < = 17 case (this case with the all 1’s
column corresponds to the # = 14, < = 16 case in Ryan and Bulutoglu (2007). These observations
confirm the correctness of our C program.

For each of the number of rows # and number of columns < combinations in Table 1 we
randomly generated 100 vectors (1, :1, . . . , : b#/2c) such that :0 = 1 and

∑
; : ; = <. Then for

each of these 100 vectors (1, :1, . . . , : b#/2c), we used the NOA4 exchange algorithm (Bulutoglu and
Ryan, 2008; Ryan and Bulutoglu, 2007) to search for an SSD D ∈ D±(#, 2<, (1, :1, . . . , : b#/2c))
achievingLB(#, (1, :1, . . . , : b#/2c)). The complexity of running theNOA? algorithm increaseswith
?. However, for each random starting design, increased ? increases the probability of converging
to an SSD which has no aliased columns by definition. After experimenting with NOA2, NOA4,
and NOA8 we decided to use NOA4 as a compromise between speed and avoidance of converging
to a design with aliased columns. In Table 1, the column # reports # , the column < reports a
range of < for which this experiment was conducted, and the column =D<8C4A reports the number
of random starting designs that were used each time the NOA4 algorithm was run. (We changed
=D<8C4A only with # .) For each # , < combination such that < is within the reported range of
<, the numbers of successes column of Table 1 reports the number of times out of 100 sampled
vectors (1, :1, . . . , : b#/2c) an SSD achieving LB(#, (1, :1, . . . , : b#/2c)) was found. The number of
successes in Table 1, which are in fact each a percent out of 100 sampled vectors (1, :1, . . . , : b#/2c),
can only underestimate the true percentage of the sampled vectors (1, :1, . . . , : b#/2c) where our
bound is achievable. Hence, for each vector (1, :1, . . . , : b#/2c), we needed a sufficient number of
random starting designs to avoid significantly underestimated true percentages. We observed that for
the balanced cases of # = 10 and # = 14, =D<8C4A = 106 and =D<8C4A = 107 were sufficient. (We
were able to determine this, as for the balanced cases we know exactly when LB(#, (0, . . . , 0, <))
is achievable.) Hence, we set =D<8C4A = 107 for 11 ≤ # ≤ 14 and =D<8C4A = 106 for # ≤ 10.
However, just because these values of =D<8C4A are sufficient in the balanced cases does not guarantee
that they will be sufficient for the corresponding unbalanced cases.

Our Table 1 estimates do decrease with increased # . The output of our computational
experiments also provided us with the iteration number at which an E(B2)-optimal SSD achieving
LB(#, (1, :1, . . . , : b#/2c))was found. Weused this information to perform a statistical analysis to de-
termine the significance of underestimation. Our statistical analysis suggests that the true percentage
of the sampled vectors (1, :1, . . . , : b#/2c) where our bound is achievable LB(#, (1, :1, . . . , : b#/2c))
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Table 1: Numbers of times an SSD achieving LB(N, (1, k1, . . . , kbN/2c)) found for a randomly
generated set of 100 vectors (1, :1, . . . , : b#/2c) such that 1 +∑

; : ; = <

# < =D<8C4A numbers of successes each out of 100
7 7-20 106 17 52 34 36 68 68 55 41 67 72 55 51 45 69
8 8-35 106 12 18 10 44 57 45 50 63 76 65 58 59 69 83 64 68 67 75 69 46 45

56 55 45 45 53 40 30
9 9-69 106 4 4 15 37 45 33 31 47 54 76 61 68 74 75 70 63 63 66 82 72 56 60

69 65 52 45 52 50 37 37 40 44 34 30 33 23 28 18 18 22 15 14 7 12
17 7 3 5 9 4 2 3 5 1 1 2 2 5 0 0 2

10 10-63 106 2 4 25 33 18 11 45 64 57 52 54 61 66 58 53 68 59 63 60 67 61 62
59 54 58 59 61 59 59 47 55 55 52 49 45 50 46 38 34 34 36 34 27
30 24 16 26 28 21 26 18 11 13 13

11 11-50 107 2 8 20 8 2 13 29 56 52 41 36 42 46 54 43 54 58 58 53 53 53 56 53
49 55 46 50 50 46 41 40 38 39 39 36 29 30 34 36 33

12 12-43 107 0 0 0 0 12 36 56 32 18 21 28 57 28 27 35 48 39 32 26 32 32 31 32
32 33 29 34 30 25 33 30 22

13 13-35 107 0 0 0 3 14 27 20 2 4 12 31 25 21 17 18 29 27 27 28 18 36 28 20
14 14-35 107 0 0 3 12 2 1 0 4 7 9 6 1 4 4 7 5 1 3 6 4 3 3

is underestimated significantly only in the # ≥ 13 rows of Table 1.

5. Application

In this section we discuss two possible applications of our newly derived E(B2) lower bound.

5.1. Application to searching for �-optimal designs

Let D be an # × < (< ≤ #) matrix with entries from {±1} representing an # row, two-
symbol and < column array. Let _1, _2, . . . , _< be all the non-zero eigenvalues of D>D, where
rank(D>D) = <. By the spectral decomposition theorem,

∑
8

_8 = Tr(D>D) = #<,∑
8

_28 = Tr((D>D)2) = Tr((DD>)2) = SS(D>D) = SS(DD>),

Det(D>D) =
∏
8

_8 .

If
∑
8 _
2
8
= \, then

∏
8 _8 ≤ 3 (\) for some 3 (\) ≥ 0, where \ is some positive integer. This is

equivalent to − log(∏8 _8) ≥ − log(3 (\)) by the monotonicity of the − log(·) function. To find
such 3 (\) that is as small as possible we consider the following smooth, non-convex nonlinear
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programming (NLP) problem

min
∑
8

− log(_8)

subject to:
∑
8

_8 = #<, (10)∑
8

_28 = \, _8 ≥ 0.

NLP (10) was solved analytically in Cheng (1978). Cheng (1978) showed that the minimum is
attained at a point which has constant coordinates _∗ = # when \ = #2< or has two distinct
coordinates _∗1 > _

∗
2 > 0 when \ > #

2<, where _∗1 has multiplicity =, _∗2 has multiplicity < − =, and

_∗1 = # +
√
(< − =) (\ − #2<)

<=
,

_∗2 = # −

√
=(\ − #2<)
(< − =)< .

Let

3 (\, #, <, =) =
(
# +

√
(< − =) (\ − #2<)

<=

)= ©«# −
√
=(\ − #2<)
(< − =)<

ª®¬
<−=

.

Cheng (1978) also showed that 3 (\, #, <, =) is a strictly decreasing function of =. For \ > #2<, this
result implies that

3 (\) = 3 (\, #, <, 1) =
(
# +

√
(< − 1) (\ − #2<)

<

) ©«# −
√
(\ − #2<)
(< − 1)<

ª®¬
<−1

is a valid upper bound for Det(D>D) = ∏
8 _8. Then for fixed # and <, by differentiating log(3 (\)),

we see that 3 (\) is a strictly decreasing function of \ for \ > 0. Hence, we get the following theorem.

Theorem 6: Let \ ∈ Z be such that \ > #2<. Then

SS(D>D) = SS(DD>) =
∑
8

_28 ≥ \,

implies
Det(D>D) =

∏
8

_8 ≤ 3 (\).

The following example shows how Theorem 6 can be used to derive upper bounds for the
SS(D∗(D∗)>), where D∗ is a two-symbol, �-optimal design.

Example 4: For # = 22 and < = 22, the largest possible Det(D>D) of 2012 × (6400000)2 for a
two-symbol design with entries from {±1} is given by Chasiotis et al. (2018). Then by Theorem 6,
for a �-optimal design D∗ with 22 rows and 22 columns, we must have

SS((D∗)>D∗) = SS(D∗(D∗)>) ≤ 11, 920.
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This proves that a �-optimal design in this case cannot be balanced. Since for a balanced 22 row
and 22 column design D, SS(D>D) ≥ 12, 496.

Next, we provide a connection between �-optimal designs and the E(B2) lower bound that we
derived in Section 2. Let D = (38 9 ) be a sought after �-optimal design with # rows and < columns
and d>1 be the first row of D. Let

D̂ = Ddiag(d1),
where diag(d1) is the < × < diagonal matrix whose ( 9 , 9)’th entry is the 9’th entry of d1. Now, D̂>
can be viewed as a not necessarily balanced SSD. Let E(B2) be the E(B2) value of D̂>. Then the
E(B2) values of D̂> satisfies

SS(D̂>D̂) = SS(D̂D̂>) = E(B2)# (# − 1) + #<2.

Hence we get the following corollary to Theorem 6.

Corollary 1: Let \ ∈ Z be such that \ > #2<. Then

E(B2) ≥ \ − #<2
# (# − 1)

implies
Det(D>D) = Det(D̂>D̂) ≤ 3 (\).

Now for a given value of 3 (\), when searching for a D with

Det(D>D) > 3 (\),

the search can be restricted to D̂> with balancedness structure (1, :1, . . . , : b</2c) such that D̂> ∈
D±(<, 2# , (1, :1, . . . , : b</2c)) and

LB(<, (1, :1, . . . , : b<2 c)) ≤
\ − #<2
# (# − 1) . (11)

The \ in (11) can be decreased by using themethods of Chasiotis et al. (2018). This restriction should
decrease the search space significantly and improve algorithm performance for finding �-optimal
designs in Brent et al. (2011).

Requiring an SSD to be minimax optimal has the benefit of reducing the search space and can
be useful in the search for a �-optimal design. In fact, there is a 22 row, 22 column, �-optimal
design that can be viewed as an unbalanced, E(B2)-optimal, minimax-optimal SSD achieving the
naive E(B2) lower bound (5), (see Chasiotis et al. 2018). However, finding even a balanced E(B2)-
optimal and minimax-optimal SSD in general is a very difficult problem (Morales and Bulutoglu,
2018).

5.2. Application to finding upper bounds on the maximum number of columns

The following is an important theoretical problem in the SSD literature (Cheng and Tang,
2001).
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Problem 1: For a given 0 ≤ C ≤ # find the maximum number of columns �(#, C, (0, . . . , 0, <))
such that an SSD D ∈ D±(#, 2<, (0, . . . , 0, <)) with Bmax ≤ C exists. The generalization of this
problem to unbalanced SSDs is determining �(#, C, (:0, :1, . . . , : b#/2c)). Multiplying a subset of
rows of an SSD D does not change the Bmax of D. Hence, by Lemma 1 in (Cheng and Tang, 2001),
WLOG it suffices to find �(#, C, (1, :′1, . . . , :

′
b#/2c)), where :

′
8
= 0 for 1 ≤ 8 < (# − C)/2.

By using E(B2) lower bounds on balanced SSDs, Cheng and Tang (2001) found an up-
per bound on �(#, C, (0, . . . , 0, <)). Our newly derived E(B2) lower bounds for unbalanced
SSDs can be used to generalize the upper bound on �(#, C, (0, . . . , 0, <)) to an upper bound on
�(#, C, (1, :′1, . . . , :

′
b#/2c)) with :

′
8
= 0 for 1 ≤ 8 < (# − C)/2.

The following is an important theoretical problem in the frame theory literature (Szöllösi and
Östergård, 2018).

Problem 2: For given 0 ∈ (0, 1) and 3 ∈ Z≥0, find the maximum number of equiangular lines in R3
with pairwise angle arccos(0).

For an SSD X ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)), let Bmin = min8< 9 |B8 9 |. Let � (#, C, 3) be
the maximum < such that an SSD X ∈ D±(#, 2<, (:0, :1, . . . , : b#/2c)) with C = Bmax = Bmin and
rank(X) = 3 ≤ # exists. Sincemultiplying a subset of rows of an SSDD does not change the Bmax and
Bmin of D, WLOG we can assume X ∈ D±(#, 2<, (1, :′1, . . . , :

′
b#/2c)), where :

′
(#−C)/2 = < − 1 and

:′
8
= 0 for 8 ∉ {0, (# − C)/2}. Hence, it is plain to see that � (#, C, 3) ≤ �(#, C, (1, :′1, . . . , :

′
b#/2c)).

The number� (#, C, 3) is a lower bound on the number of equiangular lines inR3 with pairwise
angle arccos(C/#). Hence, determining� (#, C, 3) provides information on the solution of Problem 2
for 0 = C/# and �(#, C, (1, :′1, . . . , :

′
b#/2c)), where :

′
(#−C)/2 = <−1 and :

′
8
= 0 for 8 ∉ {0, (# − C)/2}

bounds � (#, C, 3). We propose determining � (#, C, 3) for many #, C, 3 combinations by using the
upper bound �(#, C, (1, :′1, . . . , :

′
b#/2c)) as needed as a future research project.
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Abstract
The research work undertaken in this paper is motivated by a real life scenario in the

context of agricultural experiments. It is believed that the neighboring ‘plots’ in a Block
Design or in a Latin Square Design [LSD] tend to influence each other in terms of the mean
yield through the ‘neighboring effects of the treatments’ applied in these plots. Further to
this, there are quantifiable and controllable covariates acting linearly in the mean model.
We contemplate a linear ANCOVA model and study its analysis - with special emphasis on
the question of estimability of the regression coefficient(s) involving the covariates. We focus
on RBDs with b = v = 4, on an SBIBD(7, 7, 4, 4, 2) and also on an LSD of order 4.

Key words: Randomized block designs; Balanced incomplete block designs; Latin square de-
signs; Direct treatment effects; Neighbor treatment effects; Left neighbors; Right neighbors;
Top neighbors; Bottom neighbors; Linear ANCOVA model; Covariates; Optimal covariate
matrices.

1. Introduction

The key reference to this article is Springer Publication by Das et al. (2015) titled
“Optimal Covariate Designs”. Generally speaking, in the context of an experimental design
with covariates, each experimental unit is supposed to have attached to it a number of
quantifiable and measurable covariates. Assuming that there is a large pool of units, we have
a choice for selection of the units with assigned covariate-values. Optimal covariate designs
are the designs which provide optimal or most efficient estimation of the covariates’ effects
in terms of the parameters in an assumed linear model. The experimental set-up is quite
general - starting with CRDs, RBDs, BIBDs, LSDs etc. The number of covariates need not
be just one or two. Optimality problems center around characterization and constructions
of designs i.e., choice of experimental units with ‘optimally assigned’ covariate values in a
given experimental set-up. The reader is referred to Das et al.(2015) for details. This area
of research grew over the last 40 years or so.

Correponding Author: Bikas K. Sinha
Email: bikassinha1946@gmail.com
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Covariate Models or ANCOVA Models are seen as a ‘blend’ of ‘design model’ and ‘re-
gression model’. In a block design set-up, writing yij for the observation in the experimental
unit corresponding to i-th block and j-th treatment, we may write the model as

yij = µ+ βi + τj + β1x1;(i,j) + β2x2;(i,j) + . . .+ eij,

where it is assumed that x1;(i,j), x2;(i,j), . . . are the covariate values attached to the unit
labelled (i, j) with associated linear effects parameters β1, β2, . . .. Our purpose is to identify
and select those experimental units which collectively provide optimal estimation of the
covariate parameters i.e., of the β’s. Note that the design set- up could be very much
general in nature. However, unless there is a nice combinatorial structure of the underlying
design [without the covariate effects], the problem, in its most general form, is untraceable.
That is why only CRDs, RBDs, BIBDs, LSDs etc have been studied in the literature. The
complexity of the problem cannot be undermined if there are a number of covariates. In
general terms, for any number of covariates and any experimental design set- up, it transpires
that V ar(β̂) ≥ σ2/

∑
x2

(i,j). It can be argued that, without any loss of generality, we may
assume −1 ≤ x(i,j) ≤ 1. This takes the variance bound to σ2/n where n is the total number
of observations. We need to examine the case of ‘equality’ and that too, for each of the
covariates and there again, we need to attain ‘equality’ simultaneously for all the covariates
parameters’ estimates. Note that we are examining the status of a design only wrt the
β-parameters, ignoring other fixed-effects parameters in the model. Anyway, there are too
many issues involved and, without any further digression, we refer to Das et al. (2015).

Specifically, if we are dealing with an RBD involving b blocks and v treatments and if
there are k covariates (X(1), X(2), . . . , X(k)), we will attain ’equality’ in the variance bound
simultaneously for all the covariates if and only if the following conditions are met :

(i)
∑

j

x(u;(i,j)) = 0, 1 ≤ i ≤ b; (ii)
∑

i

x(u;(i,j)) = 0, 1 ≤ j ≤ v;

(iii)
∑

1≤i≤b

∑
1≤j≤v

xu;(i,j)xu∗;(i,j) = nI(u, u∗); 1 ≤ u, u∗ ≤ k.

where, in the above, I(..) is the usual indicator function and n = bv.

In this paper we will deal with an RBD(b = 4, v = 4), a BIBD(7, 7, 4, 4, 2) and an LSD
of order 4. Moreover, we will adopt a model where, besides the block effects/row- column
effects and treatment effects, we also have neighbor effects - designated as Left-Neighbor
(LN)-Effects, Right-Neighbor (RN)-Effects etc. Naturally, we will require more conditions
to be satisfied by the collection of the x(u;i,j)’s. Note that (iii) requires that x(u;(i,j)) = +1/−1
for all choices of (u;(i,j))’s. With this background, we will proceed to derive/present the results
on optimal covariates designs in a model with N-Effects. In doing so, our target will be to
cover maximum number of such covariates with most efficient estimation for each one. Once
for all, we refer to systematic study of four- sided RN- and CN- effects as proposed and
discussed in Varghese et al. (2014) for an explanation of neighbor effects. There are two
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follow- up papers in this direction as well. [Sapam et al. (2019a, 2019b)]. We may mention
another related paper by Jaggi et al. (2018).

2. RBD with b=v=4

We start with the following RBD in Table 1 wherein we also display the Left-sided and
Right-sided Neighbor Effects, assuming a circular model. [Vide Kunert (1984)].

Table 1: RBD with b=v=4: First Choice

LN 4 1 2 3 4 RN 1
LN 1 2 3 4 1 RN 2
LN 2 3 4 1 2 RN 3
LN 3 4 1 2 3 RN 4

We assume the existence of a controllable and quantifiable covariate (X) attached to
every plot in the block design. We denote by xij the value of the covariate attached to the
plot labelled (i, j) which corresponds to plot number i in block number j; i, j = 1, 2, 3, 4.

Without any loss of generality, we further assume that −1 ≤ xij ≤ 1 for each of the
covariate values.

Under the assumed linear model, it follows that I(β) ≤ ∑ ∑
x2

ij ≤ bv = 16, dropping
the error variance σ2 in the model. The case of ’equality’ has been studied earlier in our
papers in easier settings. We refer to Das et al. (2015) for details. However, the present
setting is a bit complicated since there are block effects, (direct) treatment effects and both
LN- and RN- Effects of the treatments. Consider the following X(1)-matrix in Table 2 for
one choice of the covariate values.

Table 2: Covariate matrix for RBD with v=b=4 in Table 1

X(1) =

1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

It can be verified that this choice of the X-matrix provides equality in the above wrt
information on β. As a matter of fact, the column vector of order 16 × 1 consisting of the
covariate values is seen to be orthogonal to each of the 4+4+4+4 = 16 vectors corresponding
to 4 block effects parameters, 4 treatment effects parameters, 4 LN-Effects parameters and
4 RN-Effects parameters. It would be an interesting exercise to figure out how many such
X-matrices can be made available which are (i) orthogonal to those listed in the above and
(ii) themselves mutually orthogonal. Here are two others i.e., X(2) and X(3) displayed in
Table 3.

We now refer to Das et al. (2015) Monograph on ‘Optimal Covariate Designs’. Specif-
ically, subsection 3.2 lists 9 matrices, denoted as W (1),W (2), . . . ,W (9), in the context of an
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Table 3: Covariate matrices for RBD with v=b=4 in Table 1

X(2) =

1 −1 −1 1
1 1 −1 −1
1 −1 −1 1
1 1 −1 −1

X(3)=

1 1 −1 −1
1 −1 −1 1
1 1 −1 −1
1 −1 −1 1

RBD with parameters b = v = 4. It turns out that all these 9 matrices serve our purpose in
the present context. As a matter of fact, we have already listed 3 of them [W 1, W 2, W 3]
in the above - suitably rewritten to fit in our framework as X(1), X(2), X(3) in Table 2 and
Table 3. The rest are shown in the Appendix - A.

Remark 1: It must be noted that not all block design structures are amenable to this kind
of allocation of covariate values with desirable orthogonality properties. Take, for example,
the following RBD in Table 4 with associated LN- and RN-Effects shown along the margins.
We may try to convert W into X-matrix, hoping that it would serve the purpose ! We show
it below in Table 5.

Table 4: RBD with b=v=4: Second Choice

LN 4 1 2 3 4 RN 1
LN 3 1 2 4 3 RN 1
LN 4 2 1 3 4 RN 2
LN 3 2 1 4 3 RN 2

Table 5: Non-conformative Covariate Matrix for RBD with b=v=4: Second
Choice

1 −1 1 −1
−1 1 1 −1
−1 1 1 −1

1 −1 1 −1

It turns out that (i) block total of x-values is zero for each block;
(ii) treatment total of x-values is zero for each treatment.
However, orthogonality fails wrt LN- and RN-Effects. The message is clear. We have to
study the structure of allocation of the treatments in the RBD and proceed accordingly.
For the RBD in Table 4, we are able to establish that there are at the most 4 X-matrices -
satisfying the desirable properties. We provide a proof of this statement as also display all
the available X-matrices in the Appendix - B.

Remark 2: Every layout of an RBD(b = v = 4) is special and has to be dealt with due
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attention to its structure. Here we have one more in the ’affirmative’ sense displayed in
Table 6. It has at least one underlying X-matrix and we display one X-matrix in Table 7.

Table 6: Covariate Matrix for RBD with b=v=4: Third Choice

LN 4 1 2 3 4 RN 1
LN 3 2 1 4 3 RN 2
LN 2 3 4 1 2 RN 3
LN 1 4 3 2 1 RN 4

Table 7: RBD with b=v=4: Third Choice

−1 1 −1 1
−1 1 −1 1
−1 1 −1 1
−1 1 −1 1

Remark 3: It is tempting to conjecture that for any given layout of an RBD, there is at
least one X-matrix available satisfying all the properties stipulated.

3. BIBD with b=v=7, r=k=4, λ=2

We borrow necessary results from Das et al. (2015), Chapter 4, Subsection 4.2. We
take up the SBIBD(7, 7, 4, 4, 2) and display the incidence matrix in a slightly modified form
below in Table 8. We also show the LN- and RN-Effects in the same table, assuming a
circular model. We now display the X-matrix of ((+1,−1)) ’s in Table 9.

Table 8: SBIBD (7, 7, 4, 4, 2)

LN 7 1 4 6 7 RN 1
LN 7 1 2 5 7 RN 1
LN 2 1 6 3 2 RN 1
LN 7 2 3 4 7 RN 2
LN 3 1 5 4 3 RN 1
LN 6 2 4 5 6 RN 2
LN 7 3 5 6 7 RN 3

It is readily verified that this X-matrix is one desired solution to provide most efficient
estimation of the β-coefficient even in the presence of LN- and RN-effects of the treatments.
As a ready reckoner, we display below in Table 10, the LN-and RN-effects of the treat-
ments, assuming a circular model. Note that the positions of the treatments within the
blocks are important for assessing the properties of the X-matrix. It would be interesting to
investigate if there are other such X-matrices and mutually orthogonal to the one just found.
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Table 9: X-matrix for SBIBD (7,7,4,4,2)

1 0 0 −1 0 1 −1
−1 1 0 0 −1 0 1

1 −1 1 0 0 −1 0
0 1 −1 1 0 0 −1
−1 0 1 −1 1 0 0

0 −1 0 1 −1 1 0
0 0 −1 0 1 −1 1

Table 10: LN- and RN-Effects under a circular model

LN Tr 1 Coeff RN Tr 1 Coeff.
4 −1 7 −1
2 1 7 1
6 −1 2 −1
5 1 3 1
* * * *

LN Tr 2 Coeff RN Tr 2 Coeff.
5 −1 1 −1
1 1 3 1
3 −1 7 −1
4 1 6 1
* * * *

LN Tr 3 Coeff RN Tr 3 Coeff.
2 −1 6 −1
4 1 2 1
1 −1 4 −1
5 1 7 1
* * * *

LN Tr 4 Coeff RN Tr 4 Coeff.
6 1 1 1
7 −1 3 −1
3 1 5 1
5 −1 2 −1
* * * *

LN Tr 5 Coeff RN Tr 5 Coeff.
7 1 2 1
4 −1 1 −1
6 1 4 1
6 −1 3 −1
* * * *

LN Tr 6 Coeff RN Tr 6 Coeff.
7 −1 4 −1
3 1 3 1
2 −1 5 −1
7 1 5 1
* * * *

LN Tr 7 Coeff RN Tr 7 Coeff.
6 1 6 1
5 −1 5 −1
2 1 4 1
3 −1 6 −1
* * * *

4. Latin Square Design of Order 4

So far we have developed study of RBDs and BIBDs with covariates and in the presence
of neighbor- effects. Now we focus on an LSD of order 4. We refer to Das et al. (2015), pages
155 - 159. In Example 8.2.3 (page 155), an LSD of order 4 has been laid out. We reproduce
it here in Table 11 along with all the four-sided neighbor-effects : Left-sided Neighbor Effects
(LN), Right-sided Neighbor Effects (RN), Top-sided Neighbor Effects (TN) and Down-sided
Neighbor Effects (DN). We assume a circular model - covering all sides.

Since in an LSD of order 4, there are six (6) orthogonal linear error functions (i.e., 6
error df), in the Example 8.2.3, six (6) orthogonal X-matrices have been shown. Vide the
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Table 11: LSD of order 4 with 4-sided NEs

TN 4 3 2 1 Effects
LN-Effects RN-Effects

4 1 2 3 4 1
3 2 1 4 3 2
2 3 4 1 2 3
1 4 3 2 1 4

DN 1 2 3 4 Effects

bottom part of the matrix shown in the expression for ELSD. These represent optimal choices
of six orthogonal covariate matrices for estimation of the same number of beta-coefficients.
This, however, holds without the presence of any sort of neighbor effects. While we introduce
the N-Effects on all sides (i.e., in all directions), it follows that only four (4) of them are valid
X-matrices. These are the 2nd, 4th, 5th and 6th X-matrices in the bottom part of the table
for ELSD. These are reproduced below for the sake of completeness in Table 12. Moreover,
as in the case of the RBD in Table 4, we prove that for the LSD under consideration, there
exist only 4 distinct and mutually orthogonal X-matrices as are found out and displayed in
Table 12. This is taken up in Appendix - C.

Table 12: Optimal X-matrices

X(1) 1 −1 −1 1; −1 1 1 −1; 1 −1 −1 1; −1 1 1 −1
X(2) 1 −1 1 −1; −1 1 −1 1; −1 1 −1 1; 1 −1 1 −1
X(3) 1 −1 −1 1; 1 −1 −1 1; −1 1 1 −1; −1 1 1 −1
X(4) 1 1 −1 −1; −1 −1 1 1; 1 1 −1 −1; −1 −1 1 1

Remark 4: We must note that the choice of the specific form of the LSD is very crucial
for existence of such X-matrices. For example, if we adopt the LSD shown in Table 13 [re-
produced as L2 on Page 29 of Das et al. (2015)], then we can find one X-matrix comfortably
and it is shown in Table 14. However, our attempt to find one more did not succeed.

Remark 5: Even though we are discussing about LSDs of order 4, very general treatments
of row-column designs are available in the literature. Vide, for example, Shah and Sinha
(1996). The reader might like to study such general patterns in the light of Neighbor- Effects
and covariates.

Table 13: LSD of order 4 from Das et al. (2015) Page 29 L2

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3
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Table 14: X-matrix for LSD in Table 13

1 −1 −1 1
1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

5. Conclusion

In this paper we have examined the existence of ‘optimal covariates designs’ in the
presence of neighbor-effects. The designs considered are (i) RBD(b = v = 4), (ii) BIBD(b =
v = 7, r = k = 4, λ = 2) and (iii) LSD of Order 4. The model adopted is linear in the
general mean, block - effects / row-column effects, treatment effects and circularly located
neighbor- efffects. The presence of covariates makes the analysis complicated unless their
effects are optimally and orthogonally estimated. This study shows that at times we are in
a position to achieve this by suitably allocating the covariates values in the experimental
units. Even though the experimental set-ups are simple, the results are non-trivial and worth
noting.
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APPENDIX

A.I : Choice of Six Additional and Mutually Orthogonal Optimal Covariate Ma-
trices for the RBD(b=v=4) in Table 1

Table 15: Covariate matrices for RBD with v=b=4 in Table 1

X(4)=

1 −1 1 −1
−1 1 −1 1
−1 1 −1 1
1 −1 1 −1

X(5)=

1 −1 −1 1
1 1 −1 −1
−1 1 1 −1
−1 −1 1 1

X(6)=

1 1 −1 −1
−1 1 1 −1
1 1 −1 −1
−1 1 1 −1

X(7)=

1 −1 1 −1
1 −1 1 −1
−1 1 −1 1
−1 1 −1 1

X(8)=

1 −1 −1 1
−1 −1 1 1
1 −1 −1 1
−1 −1 1 1

X(9)=

1 1 −1 −1
−1 1 1 −1
−1 −1 1 1
1 −1 −1 1

A.II : Verification of Orthogonality wrt LN- and RN-effects of each of the treat-
ments
We take up the verification wrt X(1) below in Table 16.
The nature of incidence of the treatments as LN- and RN-Effects is very special. That is
clearly visible in Table 16. The conditions relating to orthogonality wrt these N-Effects are
the same as orthogonality wrt (direct) treatment effects which is true. Therefore, all the
X-matrices satisfy the stipulated conditions of orthogonality.
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Table 16: Coefficients of LN- and RN- Effects for RBD in Table 1 corresponding
to the covariate matrix X(1)

Blocks Tr. 1 as LNE as LNE coeff Tr. 1 as RNE as RNE coeff
1 2 −1 4 −1
2 2 1 4 1
3 2 −1 4 −1
4 2 1 4 1

Total 0 0
Blocks Tr. 2 as LNE as LNE coeff Tr. 2 RNE as RNE coeff

1 3 1 1 1
2 3 −1 1 −1
3 3 1 1 1
4 3 −1 1 −1

Total 0 0
Blocks Tr. 3 as LNE as LNE coeff Tr. 3 RNE as RNE coeff

1 4 −1 2 −1
2 4 1 2 1
3 4 −1 2 −1
4 4 1 2 1

Total 0 0
Blocks Tr. 4 as LNE as LNE coeff Tr. 4 RNE as RNE coeff

1 1 1 3 1
2 1 −1 3 −1
3 1 1 3 1
4 1 −1 3 −1

Total 0 0

B. X- matrices for RBD : Second Choice
We have displayed four mutually orthogonal covariate matrices for the RBD(b = v = 4) :
Second Choice in the Table 17. We now establish that no further X-matrices exist in this
context. Let us start with a general form of an X-matrix given in Table 18.

Table 17: Four covariate matrices for RBD v=b=4: Second Choice

X(1)=

1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

X(2)=

1 −1 1 −1
−1 1 −1 1
−1 1 −1 1
1 −1 1 −1

X(3)=

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

X(4)=

1 1 −1 −1
−1 −1 1 1
−1 −1 1 1
1 1 −1 −1

We realize that there are too many restrictions on the elements of X. It may be noted that
WOLG, we may assume a = 1. The restrictions are listed below in Table 19. By examining
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Table 18: General form of a covariate matrix X for RBD (v=b=4): Sec-
ond Choice

a b c d
e f g h
i j k l

m n o p

the triplet (b, e, f) and all the 23 = 8 combinations along with a = 1, we can argue that the
following are the only feasible combinations in this context.
(a, b, e, f) = (1, 1,−1,−1), X(4)Matrix;
(a, b, e, f) = (1,−1, 1,−1), X(1)Matrix;
(a, b, e, f) = (1,−1,−1, 1), X(2) and X(3) Matrices.
Hence the stated claim is established.

Table 19: Restrictions on the elements of X

Sl. No. Restriction
Tr1 a+e+j+n = 0
Tr2 b+f+i+m = 0
Tr3 c+h+k+p = 0
Tr4 d+g+l+o = 0
Bl1 a+b+c+d = 0
Bl2 e+f+g+h = 0
Bl3 i+j+k+l = 0
Bl4 m+n+o+p = 0

LN1 b+f+k+o = 0
LN2 c+g+j+h = 0
LN3 d+e+l+m = 0
LN4 a+h+i+p = 0
RN1 d+h+i+m = 0
RN2 a+e+l+p = 0
RN3 b+g+j+o=0
RN4 c+f+k+n=0

C : Existence of four mutually orthogonal X-matrices for the LSD in Table 11
We refer to Table 11 for the particular LSD of order 4 and also to Table 18 for a general
structure of an X-matrix. We now incorporate the conditions for optimality.

(a) Consideration of Treatment Effects :

a+ f + k + p = 0 (1); b+ e+ l + o = 0 (2);
c+ h+ i+ n = 0 (3); d+ g + j +m = 0 (4).

(b) Consideration of Row Effects :

a+ b+ c+ d = 0 (5); e+ f + g + h = 0 (6);
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i+ j + k + l = 0 (7); m+ n+ o+ p = 0 (8).

(c) Consideration of Column Effects :

a+ e+ i+m = 0 (9); b+ f + j + n = 0 (10);

c+ g + k + o = 0 (11); d+ h+ l + p = 0 (12).

(d) Consideration of Left-Neighbor Effects :

b+ g + l +m = 0 (13); c+ f + i+ p = 0 (14);

d+ e+ j + o = 0 (15); a+ h+ k + n = 0 (16).

(e) Consideration of Right-Neighbor Effects :

b+ g + l +m = 0 (17); c+ f + i+ p = 0 (18);

e+ j + o+ d = 0 (19); a+ h+ k + n = 0 (20).

(f) Consideration of Top-Neighbor Effects

b+ g + l +m = 0 (21); a+ h+ k + n = 0 (22);

e+ j + o+ d = 0 (23); c+ f + i+ p = 0 (24).

(g) Consideration on Down-Neighbor Effects

e+ j + o+ d = 0 (25); c+ f + i+ p = 0 (26);

b+ g + l +m = 0 (27); a+ h+ k + n = 0 (28).

From the above, we find that the 4 equation sets, viz., those arising out of LN-sum, RN-sum,
TN-sum and DN-sum, each of 4 equations, are the same. So, we consider only the 4 equation
sets, viz., those arising from Treatment- sum, Row- sum, Column- sum and LN-sum. If there
exists a solution of these equations with solution space [1,−1], an X-matrix exists. As in the
case of RBD set-up, WOLG, we set a = 1 and examine all the 8 combinations corresponding
to choices of (b, e, f). The results are stated below.
Case 1. b = e = f = 1 : no solution;
Case 2. b = −1, e = f = 1 : no solution;
Case 3. b = f = −1, e = 1 : one solution viz., X(1);
Case 4. e = −1, b = f = 1 : no solution;
Case 5. f = −1, b = e = 1 : no solution;
Case 6. b = e = −1, f = 1 : X(3) and X(2) are the two solutions;
Case 7. e = f = −1, b = 1 : one solution viz., X(4);
Case 8. b = e = f = −1 : no solution.

Hence the claim is justified.
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1. Introduction

Suppose An is an n × n matrix with eigenvalues λ1, . . . , λn. The empirical spectral
measure µn of An is the random measure

µn = 1
n

n∑
i=1

δλi , (1)

where δx is the Dirac delta measure at x. The corresponding random probability distribution
(on R or R2, depending on whether the eigenvalues are real or complex) is known as the
Empirical Spectral Distribution (ESD) and is denoted by FAn .

The sequence {FAn} is said to converge (weakly) almost surely to a non-random dis-
tribution function F if, outside a null set, as n→∞, FAn(·)→ F (·) at all continuity points
of F . F is known as the Limiting Spectral Distribution (LSD).

There has been a lot of recent work on obtaining the LSDs of large dimensional pat-
terned random matrices. These matrices may be defined as follows (Bose and Sen (2008)).
Let (ai)i≥1 be a sequence of random variables, called an input sequence. Let Z be the set of
all integers and Z+ be the set of all positive integers. Let

Ln : {1, 2, . . . n}2 → Z (or Z2), n ≥ 1, (2)

be a sequence of functions. We shall write Ln = L and call it the link function. By a slight
abuse of notation, we shall write Z2

+ as the common domain of {Ln}n≥1. Matrices of the
form

An = n−1/2((aL(i,j)))1≤i,j≤n (3)
are called patterned matrices. If L(i, j) = L(j, i) for all i, j, then the matrix is symmetric.
We shall denote the LSD of {n−1/2An}, if it exists, by LA.

The real symmetric patterned matrices that have received particular attention in the
literature are the Wigner, Toeplitz, Hankel, Reverse Circulant and the Symmetric Circulant
matrices. Their link functions are given in Table 1.

Table 1: Some common symmetric patterned matrices and their link functions.

Matrix Notation Link function
Wigner Wn LW (i, j) = (min{i, j},max{i, j})
Toeplitz Tn LT (i, j) = |i− j|
Hankel Hn LH(i, j) = i+ j

Symmetric Circulant SCn LSC(i, j) = n
2 − |

n
2 − |i− j||

Reverse Circulant RCn LRC(i, j) = (i+ j)(mod n)

While the LSDs of the Wigner, Reverse Circulant and the Symmetric Circulant are
known explicitly, very little is known about the LSDs of the Hankel and the Toeplitz (see,
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Table 2: Skew-symmetric patterned matrices and their LSDs.

Matrix Notation (M) LSD of iM
Skew-symmetric Wigner W̃n Same as Wn

Skew-symmetric Toeplitz T̃n Same as Tn
Skew-symmetric Hankel H̃n New LSD

Skew-symmetric Circulant S̃Cn Same as SCn
Skew-symmetric Reverse Circulant R̃Cn New LSD

e.g., Bose (2018)). Existence of LSD is also known for the upper triangular versions of these
matrices, though the nature of these limits is not known.

In this article, we study the existence of the LSDs of skew-symmetric/anti-symmetric
patterned matrices. Recall that a matrix S is called skew-symmetric if S = −S>. In the
Physics literature, the term “anti-symmetric” is more common. Technically, if S is a skew-
symmetric matrix, then iS is called an anti-symmetric matrix, where i is the imaginary unit.
Note that iS is Hermitian. Anti-symmetric Gaussian matrices appeared in the classic work
of Mehta (2004) who, among other things, gave an expression for the joint distribution of
their eigenvalues. Singular values of skew-symmetric Gaussian Wigner matrices are useful
in Statistics too, e.g., in the paired comparisons model (see Kuriki (1993, 2010)). Recently,
Dumitriu and Forrester (2010) obtained tridiagonal realizations of anti-symmetric Gaussian
β-ensembles.

We first establish the existence of the LSDs of several real skew-symmetric patterned
random matrices and identify the limits in some cases. For the skew-symmetric Wigner,
skew-symmetric Toeplitz and the skew-symmetric Circulant, the LSDs (on the imaginary
axis) are the same as those in the symmetric cases. However, for the skew-symmetric Hankel
and the skew-symmetric Reverse Circulant, we obtain new LSDs (see Figure 1). See Table 2
for a summary. We also show the existence of the LSDs for the triangular versions of
these matrices that were introduced in Basu et al. (2012). While the LSDs are known for the
Hermitian versions of some of these matrices, we show that the limits for the skew-symmetric
versions may be derived from the proofs for symmetric matrices using simple arguments.

We also introduce a related modification of the symmetric matrices by changing the
sign of the lower triangle part below the main anti-diagonal. In this case, the modified
Wigner, the modified Hankel and the modified Reverse Circulant have the same LSDs as
their symmetric counterparts whereas new LSDs are obtained for the modified Toeplitz and
the modified Symmetric Circulant (see Figure 2). See Table 3 for a summary.

2. Preliminaries

We shall use the method of moments to establish the existence of LSDs. For any matrix
A, let βh(A) denote the h-th moment of the ESD of A. We quote the following lemma from
Bose (2018) which is easy to prove.
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Table 3: Modified patterned matrices and their LSDs.

Matrix Notation LSD
Modified Wigner Ŵn Same as Wn

Modified Toeplitz T̂n New LSD
Modified Hankel Ĥn Same as Hn

Modified Symmetric Circulant ŜCn New LSD
Modified Reverse Circulant R̂Cn Same as RCn
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Figure 1: Histograms and kernel density estimates of the spectra of n−1/2Hn,
n−1/2iH̃n, n−1/2RCn and n−1/2iR̃Cn with n = 1000 and N (0, 1) entries.

Lemma 1: Let {An} be a sequence of random matrices with all real eigenvalues. Suppose
there exists a sequence {βh} such that

(i) for every h ≥ 1, E(βh(An))→ βh,

(ii) ∑∞n=1 E[βh(An)− E(βh(An))]4 <∞ for every h ≥ 1 and

(iii) the sequence {βh} satisfies Carleman’s condition, ∑ β
−1/2h
2h =∞.

Then the LSD of FAn exists and equals F with moments {βh}.
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Figure 2: Histograms and kernel density estimates of the spectra of n−1/2Tn,
n−1/2T̂n, n−1/2SCn and n−1/2ŜCn with n = 1000 and N (0, 1) entries.

To prove the existence of any LSD, we shall make use of the general notation and
theory developed in Bose and Sen (2008) for patterned matrices (see also Bose (2018)).
First observe that all the link functions in Table 1 satisfy the so called Property B: the total
number of times any particular variable appears in any row is uniformly bounded. Moreover,
the product of the total number of different variables in the matrix and the maximum number
of times any variable appears in the matrix is O(n2). These two facts imply that the general
theory applies to the link functions in Table 1.

We shall consider the following sets of assumptions on the input sequence.

(A1). (ai)i≥1 are independent and uniformly bounded with mean 0, and variance 1.

(A2). (ai)i≥1 are i.i.d. with mean 0 and variance 1.

(A3). (ai)i≥1 are independent with mean 0, variance 1, and uniformly bounded moments of
all orders.

Note that Assumption (A1) implies Assumption (A3). Traditionally, LSD results are
stated under Assumption (A1) while Assumption (A3) is appropriate for studying the joint
convergence of more than one sequence of matrices. It turns out that, for the matrices under
our consideration, if LSDs exist under Assumption (A1), then the same LSDs continue to
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hold under Assumptions (A2) or (A3). Thus in our proofs, without loss of any generality,
Assumption (A1) is assumed to hold. Below we give a brief outline of the reasoning. The
reader may consult Bose (2018) for detailed justifications in the similar context of symmetric
patterned matrices.

(i) When the entries satisfy Assumption (A1), the main idea is to show that the expected
moments of the ESD of An converge and these limit moments determine a unique distribu-
tion. Moreover, these limit moments depend only on the pattern and not on the specific
distribution of the entries. We thus call this limit universal.

(ii) If the entries of the matrix under consideration satisfy Assumption (A2), then one con-
siders the same matrix but where the entries are truncated suitably and standardized to
have mean 0 and variance 1. This matrix satisfies Assumption (A1) and hence has the same
(universal) limit. Then one shows that the original matrix and the modified matrix are close
in a suitable metric as n → ∞. This leads us to conclude that the same universal limit
persists under Assumption (A2).

(iii) Finally, suppose that the entries satisfy Assumption (A3). Then we compute the mo-
ments of the ESD again. Using the “uniformly bounded moments” assumption and Property
B of the link function, it can be shown that the third or higher order moments of the vari-
ables do not influence the LSD (somewhat like the central limit theorem, for example), and
we have the same limit as obtained under Assumption (A1).

The Moment-Trace Formula plays a key role in this approach. A function

π : {0, 1, · · · , h} → {1, 2, · · · , n}

with π(0) = π(h) is called a circuit of length h. The dependence of a circuit on h and n is
suppressed. Then, for any n× n square matrix A = ((aL(i,j))), we have

βh(A) = 1
n

tr(Ah) = 1
n

∑
π circuit of length h

aπ,

where
aπ := aL(π(0),π(1))aL(π(1),π(2)) . . . aL(π(h−1),π(h)).

If L(π(i − 1), π(i)) = L(π(j − 1), π(j)), with i < j, we shall use the notation (i, j) to
denote such a match of the L-values. From the general theory, it follows that circuits where
there are only pair-matches are relevant when computing limits of moments.

Two circuits π1 and π2 are equivalent if and only if their L-values respectively match
at the same locations, i.e. if, for all i, j,

L(π1(i− 1), π1(i)) = L(π1(j − 1), π1(j))⇔ L(π2(i− 1), π2(i)) = L(π2(j − 1), π2(j)).

Any equivalence class can be indexed by a partition of {1, 2, · · · , h}. We label these
partitions by words w of length h of letters where the first occurrence of each letter is in
alphabetical order. For example, if h = 4, then the partition {{1, 3}, {2, 4}} is represented
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by the word abab. This identifies all circuits π for which L(π(0), π(1)) = L(π(2), π(3)) and
L(π(1), π(2)) = L(π(3), π(1)). Let w[i] denote the i-th entry of w. The equivalence class
corresponding to w is

Π(w) := {π | w[i] = w[j]⇔ L(π(i− 1), π(i)) = L(π(j − 1), π(j))}.

By varying w, we obtain all the equivalence classes. It is important to note that, for any
fixed h, even as n → ∞, the number of words (equivalence classes) remains finite but the
number of circuits in any given Π(w) may grow indefinitely. Henceforth we shall denote the
set of all words of length h by Ah.

Notions of matches carry over to words. A word is pair-matched if every letter appears
exactly twice in that word. The set of all pair-matched words of length 2k is denoted by
W2k. For technical reasons, it is often easier to deal with a class larger than Π(w):

Π∗(w) := {π | w[i] = w[j]⇒ L(π(i− 1), π(i)) = L(π(j − 1), π(j))}.

Any i (or π(i) by abuse of notation) is a vertex. It is generating if either i = 0 or
w[i] is the first occurrence of a letter. Otherwise, it is called non-generating. For example, if
w = abbcab, then π(0), π(1), π(2), π(4) are generating and π(3), π(5), π(6) are non-generating.
The set of generating vertices (indices) is denoted by S. By Property B, a circuit is completely
determined, up to finitely many choices, by its generating vertices.

From the general theory for symmetric random matrices it follows that the LSD exists
if, for each w ∈ W2k, the following limit exists:

p(w) = lim
n
n−(k+1)#Π∗(w).

3. A Unified Framework for Real Skew-symmetric Matrices

If A is an n×n skew-symmetric matrix, then all its eigenvalues {λj} are purely imagi-
nary (and has one zero eigenvalue when n is odd), and every eigenvalue occurs in conjugate
pairs. As discussed in the introduction, the Hermitian matrix iA will then have real spec-
trum. Consider the ESD of iA on R:

F iA(x) = 1
n

n∑
j=1

1{iλj≤x}.

Note that F iA is a symmetric (about zero) distribution. Therefore, in order to apply the
moment method, it suffices to deal with only the even moments. Note that

β2k(iA) =
∫
x2k dF iA(x)

= 1
n

n∑
j=1

(iλj)2k = (−1)k 1
n

n∑
j=1

λ2k
j = (−1)k 1

n
tr(A2k).

Let {An} be a sequence of n×n patterned random matrices with the symmetric link function
L. Let

sij = (1− δij)(−1)1{i>j} ,
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where δij is the Kronecker-delta. Let Sn = ((sij)) be the n× n matrix

Sn =



0 1 . . . 1
−1 0 . . . 1
... ... . . . ...
−1 −1 . . . 0


n×n

.

Then we can construct Ãn, the skew-symmetric version of An by

Ãn = Sn � An,

where � denotes the Schur-Hadamard/entrywise product.

We shall assume without loss of generality that (A1) holds. The moment-trace formula
for iÃn may be written as

β2k(n−1/2iÃn) = (−1)k 1
n1+k

∑
π circuit of length 2k

sπaπ.

Therefore
Eβ2k(n−1/2iÃn) = (−1)k 1

n1+k

∑
π circuit of length 2k

sπEaπ.

Using the concept of words, we may rewrite the above equality as

Eβ2k(n−1/2iÃn) = (−1)k 1
n1+k

∑
w∈A2k

∑
π∈Π(w)

sπEaπ.

Suppose L satisfies Property B. Let CL
h,3+ denote the set of L-matched h-circuits on {1, · · · , n}

with at least one edge of order ≥ 3. Then Lemma 1(a) of Bose and Sen (2008) says that
there is a constant C depending on L and h such that

#CL
h,3+ ≤ Cnb(h+1)/2c.

Combining this with the observation that |sπ| ≤ 1 it is easy to see that

lim
n

1
n1+k

∑
π∈CL2k,3+

sπEaπ = 0.

Therefore
lim
n

Eβ2k(n−1/2iÃn) = (−1)k lim
n

1
n1+k

∑
w∈W2k

∑
π∈Π(w)

sπEaπ.

Since, by our assumptions, Eaπ = 1 for any pair-matched circuit π, the above expression
reduces to

lim
n

Eβ2k(n−1/2iÃn) = (−1)k
∑

w∈W2k

lim
n

1
n1+k

∑
π∈Π(w)

sπ, (4)
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provided the limits on the right-hand side exist. In fact, since Π∗(w) \ Π(w) ⊆ CL
2k,3+, one

has
lim
n

1
n1+k

∑
π∈Π(w)

sπ = lim
n

1
n1+k

∑
π∈Π∗(w)

sπ,

and thus one can write

lim
n

Eβ2k(n−1/2iÃn) = (−1)k
∑

w∈W2k

lim
n

1
n1+k

∑
π∈Π∗(w)

sπ, (5)

provided the limits exist for each w. If we define

p
Ã

(w) := (−1)k lim
n

1
n1+k

∑
π∈Π(w)

sπ,

then (5) becomes
lim
n

Eβ2k(n−1/2iÃn) =
∑

w∈W2k

p
Ã

(w). (6)

In this context, we recall the analogous expression for symmetric matrices An from Bose and
Sen (2008):

lim
n

Eβ2k(n−1/2An) =
∑

w∈W2k

pA(w),

where
pA(w) := lim

n

1
n1+k#Π(w) = lim

n

1
n1+k#Π∗(w)

is assumed to exist for each w ∈ W2k.

It is not difficult to show that if the limits exist in (5), then Condition (iii) of Lemma 1
follows (see Theorem 3 of Bose and Sen (2008) for the argument in the symmetric case; in
the skew-symmetric case too, one can use their argument verbatim because |sπ| ≤ 1). In
fact, the limiting moments are sub-Gaussian, i.e. the even moments are dominated by the
even moments of some Gaussian distribution. The verification of Condition (ii) is also easy
since

4∏
j=1

E(sπjaπj − Esπjaπj) = sπ1sπ2sπ3sπ4

4∏
j=1

E(aπj − Eaπj)

and the arguments given in the proof of Lemma 2 of Bose and Sen (2008) apply with minor
modifications.

In the next section, we shall consider several skew-symmetric patterned matrices and
show that Condition (i) of Lemma 1 holds by arguing that the limits on the right-hand side
of (4) holds in each case.

4. Some Specific Matrices

First note that

sπ = (−1)
∑2k

j=1 1{π(j−1)>π(j)}
2k∏
j=1

(1− δπ(j−1),π(j)).
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It is convenient to use some graph theoretic terminology to deal with the above expression.
Consider the complete directed graph DKn on V = {1, · · · n}. Note that π defines a directed
circuit of length 2k on this graph. Call the numerical value of each vertex its level. Associate
with each π a marking-vector (ε1, · · · , ε2k), where

εj = (−1)1{π(j−1)>π(j)}(1− δπ(j−1),π(j)).

Note that if a traveler moves along the circuit π, starting from π(0), and marks each move
π(j − 1)  π(j) by εj, then moving to a higher (respectively lower) level corresponds to a
mark of 1 (respectively −1) and remaining at the same level corresponds to marking with 0.
Then

sπ =
2k∏
j=1

εj.

Note that a circuit π contains a loop if and only if sπ = 0.

We first tackle the skew-symmetric Wigner matrix n−1/2W̃n. To do so recall the concept
of Catalan words from Bose (2018). A Catalan word of length 2 is just a double letter aa.
In general, a Catalan word of length 2k, k > 1, is a word w ∈ W2k containing a double
letter such that if one deletes the double letter the reduced word becomes a Catalan word of
length 2k− 2. For example, abba, aabbcc, abccbdda are Catalan words whereas abab, abccab,
abcddcab are not. The set of all Catalan words of length 2k will be denoted by C2k. It is
known that

#C2k = 1
k + 1

(
2k
k

)
,

the ubiquitous Catalan number from Combinatorics. It is known that #C2k also equals the
2k-th moment of the semi-circular law, the LSD of the Wigner matrix.

Theorem 1: If the input sequence satisfies (A1) or (A2) or (A3), then the LSD of n−1/2iW̃n

is the semi-circular law.

Proof: It is well known (see, e.g., Bose (2018)) that, for the symmetric Wigner matrix, only
Catalan words contribute in the limit. In fact, one has

pW (w) = lim
n

1
n1+k#Π∗(w) =

0 if w /∈ C2k,

1 if w ∈ C2k.

From this and the fact that |sπ| ≤ 1 it follows that

|p
W̃

(w)|

= 0 if w ∈ W2k \ C2k,

≤ 1 if w ∈ C2k.

We shall prove that if w is a Catalan word, then p
W̃

(w) exists and equals 1. Then (5) would
imply that

lim
n

Eβ2k(n−1/2iW̃n) = #C2k,

establishing the semi-circular limit for the ESD of {n−1/2W̃n}.
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We first observe that if we replace the diagonal entries by 0, then the LSD does not
change. It follows from this observation that circuits with loops do not have any contribution
to p

W̃
(w). It now suffices for our purpose to prove that if w ∈ C2k and π ∈ Π∗(w), then

sπ =

(−1)k if π is loopless,
0 otherwise.

(7)

To prove this, suppose that a double letter appears at the i-th and the (i+ 1)-th positions.
Consider a loopless π ∈ Π∗(w). Since, w[i] = w[i+ 1], we must have

LW (π(i− 1), π(i)) = LW (π(i), π(i+ 1)).

Since π is loopless, it follows that we must have π(i − 1) = π(i + 1) 6= π(i). There are two
possibilities: either π(i−1) < π(i) or π(i−1) > π(i). In the first case, εi = 1 and εi+1 = −1,
while, in the second case, εi = −1 and εi+1 = −1. In either case, we have

εiεi+1 = −1.

Now delete the double letter and think of π as a circuit of length 2k − 2 by identifying the
vertices (i − 1) and (i + 1) as identical and deleting the vertex i. The resulting word w′

is still Catalan and the resulting circuit π′ is loopless and lies in Π∗(w′). Apply the above
procedure again. Clearly, we will need k iterations of this procedure to empty the word w
and each such iteration contributes one −1, which proves (7) and hence the theorem.

Remark 1: Basu et al. (2012) considered upper/lower triangular versions of the Wigner,
W∆
n . Its LSD LW∆ is different from the semi-circular law, but its free convolution with

itself is the semi-circular law. It follows from the proof of Theorem 1 and their moment
calculations that the LSD of iW̃∆ is again LW∆ .

The existence of the LSD of the symmetric Toeplitz matrix Tn was first established by
Hammond and Miller (2005) and Bryc et al. (2006). The properties of the limit law LT are
not well understood. We now consider the skew-symmetric Toeplitz T̃n.

Theorem 2: If the input sequence satisfies (A1) or (A2) or (A3), then the LSD of n−1/2iT̃n
is LT , the LSD of the symmetric Toeplitz.

Proof: Let w ∈ W2k and s(i) := π(i)− π(i− 1). Define

Π∗∗(w) := {π | w[i] = w[j]⇒ s(i) + s(j) = 0}.

Then Bose and Sen (2008) show that

pT (w) = lim
n

1
n1+k#Π∗(w) = lim

n

1
n1+k#Π∗∗(w). (8)

As in the Wigner case, circuits with loops do not contribute and to establish our goal it
suffices to prove that if w ∈ W2k and π ∈ Π∗∗(w), then

sπ =

(−1)k if π is loopless,
0 otherwise.

(9)
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The proof of this is much easier than the Wigner case as all the difficulty is relegated to the
proof of (8). Consider a loopless circuit π ∈ Π∗∗(w). Note that w[i] = w[j] implies that
s(i) + s(j) = 0 and since π is loopless, we have

s(i)s(j) = −s(j)2 < 0.

This immediately implies that

εiεj = (−1)1{s(i)<0}+1{s(j)<0} = −1.

Since w is pair-matched, there are exactly k matches from each of which comes one −1. This
establishes (9) and completes the proof.

Remark 2: Basu et al. (2012) considered upper/lower triangular versions of the Toeplitz,
T∆
n . They proved the existence of the LSD but it could not be identified. It follows from

the proof of Theorem 2 and their moment calculations that the LSD of iT̃∆ is again LT∆ ,
exactly paralleling the Wigner case.

The Symmetric Circulant matrix SCn and the Palindromic Toeplitz matrix PTn have
the standard Gaussian distribution N (0, 1) as their LSD (see Bose (2018)). We now consider
the skew-symmetric versions S̃Cn and P̃ T n.

Theorem 3: If the input sequence satisfies (A1) or (A2) or (A3), then the LSDs of n−1/2iS̃Cn

and n−1/2iP̃ T n are the same as the LSDs of their symmetric counterparts, i.e. the standard
Gaussian distribution.

Proof: We first tackle S̃Cn. From Bose and Sen (2008), it is known that, for any w ∈ W2k,
if one defines

Π′(w) := {π | w[i] = w[j]⇒ s(i) + s(j) = 0,±n},

then one actually has

pSC(w) = lim
n

1
n1+k#Π∗(w) = lim

n

1
n1+k#Π′(w) = 1.

Once again, circuits with loops have no role to play and to prove the desired result it suffices
to prove that if w ∈ W2k and π ∈ Π′(w), then

sπ =

(−1)k if π is loopless,
0 otherwise.

(10)

Due to the similarity with the Toeplitz link function, the proof of the above is similar to
that in the Toeplitz case. Let π be a loopless circuit from Π′(w). Suppose that w[i] = w[j].
Then we have s(i) + s(j) = 0,±n. We treat each of these three cases separately:

1. s(i) + s(j) = 0. This is the same as the Toeplitz case and we conclude that εiεj = −1.
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2. s(i) + s(j) = n. Note that s(i) = n− s(j) and since π is loopless,

|s(j)| = |π(j)− π(j − 1)| ≤ n− 1.

Therefore s(i) = n−s(j) > 0. By symmetry, s(j) > 0. Therefore, in this case, εiεj = 1.

3. s(i) + s(j) = −n. Note that s(i) = −(n + s(j)), and therefore s(i), and by symmetry
s(j), are both negative ceding εiεj = 1.

Therefore, combining the above cases,

sπ = (−1)k−eπ ,

where eπ is the number of matches (i, j) where s(i) + s(j) = ±n. It suffices to show that eπ
is even. But note that

2k∑
i=1

s(i) = π(2k)− π(0) = 0,

which cannot occur unless eπ is even. This establishes (10) and completes the proof for S̃Cn.

To prove the same for P̃ T n we take the approach of Bose and Sen (2008). We need the
following version of the well known interlacing inequality. We omit its proof.

Suppose A is a real skew-symmetric matrix with eigenvalues iλj with λ1 ≥ λ2 ≥ · · · ≥
λn. Let B be the (n − 1) × (n − 1) principal submatrix of A with eigenvalues iµk with
µ1 ≥ µ2 ≥ · · · ≥ µn−1. Then one has

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn,

i.e. the imaginary parts of the eigenvalues of B are interlaced between the imaginary parts
of the eigenvalues of A.

As a consequence
||FA − FB||∞ ≤

1
n
. (11)

Now note that the n×n principal submatrix of S̃Cn+1 is P̃ T n. Therefore, from (11), we can
conclude that n−1/2iP̃ T n also has the standard Gaussian law as its LSD.

Remark 3: Basu et al. (2012) considered the upper/lower triangular versions of the sym-
metric Circulant, SC∆

n . They proved the existence of the LSD but it could not be identified.
It follows from the proof of Theorem 3 and their moment calculations that the LSD of iS̃C∆

is again LSC∆ .

The skew-symmetric matrices considered so far have the same LSD (on the imaginary
axis) as their corresponding symmetric versions. However, simulations suggest that the LSDs
of n−1/2iH̃n and n−1/2iR̃Cn exist and are different from those of n−1/2Hn and n−1/2RCn
respectively. See Figure 1. We now establish this rigorously.
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In this context, symmetric words play the key role. A word w ∈ W2k is called symmetric
if each letter in w occurs once each in an odd and an even position. For example, the word
aabb is symmetric and the word abab is not. We shall denote the set of symmetric words of
length 2k by S2k. All Catalan words are symmetric. An example of a non-Catalan symmetric
word is abcabc. It is easy to prove that

#S2k = k!.

Theorem 4: If the input sequence satisfies (A1) or (A2) or (A3), then the LSDs of n−1/2iH̃n

and n−1/2iR̃Cn exist and are different from the LSDs of n−1/2Hn and n−1/2RCn respectively.

Proof: We first consider the skew-symmetric Hankel. First suppose w ∈ C2k. It is known
that then pH(w) = 1. By an argument similar to that given in the proof of Theorem 1 one
can show that p

H̃
(w) = 1.

Now suppose that w is not symmetric. It is known that then pH(w) = 0. Since,
|sπ| ≤ 1, it follows that p

H̃
(w) also vanishes.

More generally, for any pair-matched word w, the limit p
H̃

(w) can be shown to exist
using the same Riemann approximation technique that is used in the Hankel case (see, for
example, Bose and Sen (2008)). We omit the details.

We now show that this LSD is not the same as in the symmetric Hankel case. Since
|sπ| ≤ 1, it is clear that the limit is sub-Hankel, i.e. limn β2k(n−1/2iH̃n) ≤ limn β2k(n−1/2Hn)
for all k ≥ 1. It is thus enough to show that limn β2k(n−1/2iH̃n) < limn β2k(n−1/2Hn) for
some k ≥ 1. Since Catalan words contribute 1 to both of these and non-symmetric words
do not contribute at all, we need to look at non-Catalan symmetric words. The first such
word is w = abcabc. We shall show that p

H̃
(abcabc) < 1

2 = pH(abcabc).

So let us consider the word w = abcabc and its four generating vertices, viz., π(0), π(1),
π(2), π(3). Writing νi = π(i)/n and expressing the 1

n4 #Π∗(w) as a Riemann sum, we know
from Bose and Sen (2008) that, for the Hankel matrix,

pH(w) =
∫
I4

1{0<ν0+ν1−ν3<1, 0<ν2+ν3−ν0<1}dν3dν2dν1dν0,

where I4 is the unit 4-cube. Let P be the subset of I4 where the integrand above is positive.
For the skew-symmetric case, however, there are many π ∈ Π∗(w) such that sπ = −1, which
means that there are lots of cancellations. More formally, for any π ∈ Π∗(w), we have

ν4 = ν0 + ν1 − ν3,

ν5 = ν2 + ν3 − ν0.

If we define
g(ν) = sπ = (−1)

∑2k
j=1 1{νj−1<νj} ,

then by resorting to the Riemann approximation technique it is easy to see that

p
H̃

(w) = (−1)3
∫
I4
g(ν)1{0<ν0+ν1−ν3<1, 0<ν2+ν3−ν0<1}dν3dν2dν1dν0.
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We shall show that on a subset of P of positive Lebesgue measure, g(ν) = 1. Consider the
set U = P ∩ {(ν0, ν1, ν2, ν3) | 0 < ν0 < ν1 < ν2 < ν3 < 1} ⊆ I4. We claim that on U , one
has g(ν) = 1. To see this, note that we automatically have νj − νj−1 > 0 for j = 1, 2, 3.
Moreover,

ν4 − ν3 = ν1 + ν0 − 2ν3 < 0,
ν5 − ν4 = (ν2 − ν1) + 2(ν3 − ν0) > 0,

ν6 − ν5 = 2ν0 − ν2 − ν3 < 0.

Therefore, on U , we have g(ν) = (−1)1+1+1+(−1)+1+(−1) = 1. It now suffices to show that∫
U

1{0<ν0+ν1−ν3<1, 0<ν2+ν3−ν0<1}dν3dν2dν1dν0 > 0.

With some easy manipulations with the constraints it is easy to show that

∫
U

1{0<ν0+ν1−ν3<1, 0<ν2+ν3−ν0<1}dν ≥
∫ 1

2

1
3

∫ 1
2

ν0

∫ 1+ν0
2

1−ν1

∫ 1+ν0−ν2

ν2
dν3dν2dν1dν0

= 19
62208 > 0.

This completes the proof for the skew-symmetric Hankel.

Now consider the skew-symmetric Reverse Circulant. By following the arguments in
the Hankel case, it is easy to see that each word limit exists, thereby proving the existence
of the LSD. Moreover, it is known that, for the Reverse Circulant, pRC(w) = 1 if w is
symmetric and 0 otherwise. In the present case, p

R̃C
(w) ≤ 1 for all symmetric words and

the non-symmetric words continue to contribute zero. It is also easy to show that if w ∈ C2k,
then p

R̃C
(w) = pRC(w) = 1. Thus, as before, it remains to seek out a symmetric non-Catalan

word w such that p(w) < 1. Once again, we may look at w = abcabc and prove this. Due to
the similarity with the Hankel case, we skip the details.

5. A Related Class of Symmetric Matrices

We have seen that skew-symmetry does not change the LSDs of the Wigner, Toeplitz
and the Symmetric Circulant, whereas it changes the LSDs of the Hankel and the Reverse
Circulant. We now investigate this issue a little more.

Let Mn be the n × n symmetric matrix whose upper and lower triangle entries are
respectively +1 and −1, the anti-diagonal consisting of 0’s. Then Mn = ((mij)) where

mij =


1 if i+ j < n+ 1,
0 if i+ j = n+ 1,
−1 if i+ j > n+ 1.

We show that an LSD exists for the Schur-Hadamard product of Mn with each of the above
five matrices. For a patterned matrix An, we denote by Ân its modified version Mn � An.
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Note that, for the Wigner and the Hankel cases, the Schur-Hadamard product is also
of the same type (with a modified input sequence where the signs have changed for some
elements of the sequence)–the fact that the anti-diagonal is zero does not affect the LSDs.
Hence their LSDs remain unchanged due to the universality of LSDs with respect to the
input variables as long as they satisfy Assumptions (A1) or (A2) or (A3). As we shall see,
the LSD remains unchanged for the modified Reverse Circulant matrix too.

Note that n−1/2T̂n and n−1/2ŜCn are not Toeplitz and Symmetric Circulant matrices.
We show that LSDs exist for both and are different from LT and N (0, 1) respectively. See
Figure 2 for simulations.

Similar to the skew-symmetric case, define

εi = (1− 1{π(i−1)+π(i)=n+1})(−1)1{π(i−1)+π(i)>n+1} ,

and
mπ =

n∏
i=1

εi.

Then we have the following analogue of (6):

limEβ2k(n−1/2Ân) =
∑

w∈W2k

p
Â

(w), (12)

where
p
Â

(w) := lim
n

1
n1+k

∑
π∈Π(w)

mπ = lim
n

1
n1+k

∑
π∈Π∗(w)

mπ

is assumed to exist for each w ∈ W2k. First we consider the LSD of n−1/2R̂Cn.

Theorem 5: If the input sequence satisfies (A1) or (A2) or (A3), then the LSD of n−1/2R̂Cn

is the same as the LSD of n−1/2RCn, i.e. LRC .

Proof: To prove this theorem, note that, by (12), it is enough to prove that mπ = 1 for
each π ∈ Π∗(w), where w ∈ W2k. Define

t(i) = π(i− 1) + π(i) and u(i) = t(i)− (n+ 1).

Call a circuit π good if mπ 6= 0. It is enough to consider only such circuits.

If w[i] = w[j], then we have

t(i) ≡ t(j) (mod n),

which implies that u(i) ≡ u(j) (mod n). Now note that

−(n− 1) = 2− (n+ 1) ≤ u(i) ≤ n+ n− (n+ 1) = n− 1,

and hence
|u(i)− u(j)| ≤ 2(n− 1).

So, we must have
u(i)− u(j) = 0,±n.

Observe that
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1. If u(i)− u(j) = 0, then εi = εj, which yields εiεj = 1.

2. If u(i)− u(j) = n, then u(i) = n+ u(j) > 0, and u(j) = u(i)− n < 0, as |u(l)| ≤ n− 1
for any l. So, in this case, εiεj = −1.

3. If u(i)− u(j) = −n, then, again, εiεj = −1 by interchanging the roles of i and j in the
previous argument.

As a consequence
mπ = (−1)eπ ,

where eπ is the number of matches (i, j) in π for which u(i)− u(j) = t(i)− t(j) = ±n. Let
further e+

π be the number of matches (i, j) in π for which t(i)− t(j) = n and e−π = eπ − e+
π .

First notice that
2k∑
i=1

t(i) = 2
2k∑
i=1

π(i).

The same sum can be written as ∑
(i,j) match

(t(i) + t(j)).

Notice then that ∑
(i,j) match

(t(i) + t(j)) =
∑

(i,j) match
(t(i)− t(j)) + 2

∑
(i,j) match

t(j)

= (e+
π − e−π )n+ 2

∑
(i,j) match

t(j)

= neπ − 2ne−π + 2
∑

(i,j) match
t(i).

It follows from the above considerations that neπ is always even. Now suppose that n is odd.
It then follows that eπ is even and therefore mπ = 1. The case with n even seems to be more
complicated. It is not clear why eπ has to be even. We shall use a little trick to bypass the
need to pinpoint the parity of eπ in this case. Define, for w ∈ W2k,

qn(w) := 1
n1+k

∑
π∈Π∗(w)

mπ,

pn(w) := 1
n1+k#Π∗(w).

Then it is known from Bose and Sen (2008) that

pn(w) = pRC(w) + o(1),

which implies, since |qn(w)| ≤ |pn(w)|, that

|qn(w)| = O(1). (13)
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We have already proved that (as we have proved that mπ = 1 for n odd)

q2n+1(w) = pRC(w) + o(1). (14)

In the following lemma, we shall write Π∗n(w) instead of Π∗(w) to explicitly denote the
dependence on n.

Lemma 2: We have
#Π∗n+1(w)−#Π∗n(w) = o(n1+k).

Proof: We have
pn(w) = 1

n1+k#Π∗n(w) = p(w) + o(1),

which can be rewritten as

#Π∗n(w) = p(w)n1+k + o(n1+k).

As a consequence

#Π∗n+1(w)−#Π∗n(w) = p(w)((n+ 1)1+k − n1+k) + o(n1+k),

from which the lemma follows since the first term is O(nk). We need another lemma.

Lemma 3: We have
qn+1(w)− qn(w) = o(1).

Proof: We have, using the triangle inequality,

|qn+1(w)− qn(w)|

=
∣∣∣∣∣ 1
(n+ 1)1+k

∑
π∈Π∗n+1(w)

mπ −
1

n1+k

∑
π∈Π∗n(w)

mπ

∣∣∣∣∣
=
∣∣∣∣∣ 1
(n+ 1)1+k

∑
π∈Π∗n(w)

mπ + 1
(n+ 1)1+k

∑
π∈Π∗n+1(w)\Π∗n(w)

mπ −
1

n1+k

∑
π∈Π∗n(w)

mπ

∣∣∣∣∣
≤
∣∣∣∣∣ 1
(n+ 1)1+k

∑
π∈Π∗n(w)

mπ −
1

n1+k

∑
π∈Π∗n(w)

mπ

∣∣∣∣∣+
∣∣∣∣∣ 1
(n+ 1)1+k

∑
π∈Π∗n+1(w)\Π∗n(w)

mπ

∣∣∣∣∣
=: (I) + (II).

Using (13), we get

(I) ≤
∣∣∣∣∣
(

n

n+ 1

)1+k
− 1

∣∣∣∣∣× |qn(w)| = o(1)×O(1) = o(1).

On the other hand, by Lemma 2, we have

(II) ≤ 1
n1+k#(Π∗n+1(w) \ Π∗n(w)) = o(1).
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Together, the above two estimates imply the lemma. Coming back to the original
problem, because of Lemma 3 and (14), we can write

q2n+2(w) = q2n+1(w) + o(1)
= pRC(w) + o(1).

This establishes, irrespective of the parity of n, that

qn(w) = pRC(w) + o(1),

which completes the proof of the theorem. Finally, we give the result on the LSDs of
n−1/2T̂n and n−1/2ŜCn.

Theorem 6: If the input sequence satisfies (A1) or (A2) or (A3), then the LSDs of n−1/2T̂n
and n−1/2ŜCn exist and are different from the LSDs of n−1/2Tn and n−1/2SCn respectively.

Proof: We shall outline the proof only for n−1/2T̂n. The proof for n−1/2ŜCn is similar and
is omitted.

Once again, the existence of the LSD, say L
T̂

, may be proven using the Riemann
approximation technique. We show that L

T̂
does not equal LT . As in the proof of Theorem 1

we can show that, for each Catalan word w, p
T̂

(w) = 1 = pT (w). Thus we need to look at
a non-Catalan pair-matched word. The first such word is w = abab. We shall show that
p
T̂

(abab) 6= pT (abab) = 2/3, which would conclude proof. Using the Riemann approximation
argument, it is easy to show that

p
T̂

(w) =
∫
I3

(−1)
∑4

i=1 1{νi+νi−1>1}1{0≤ν0−ν1+ν2≤1}dν2dν1dν0,

where ν3 = ν0 − ν1 + ν2 and ν4 = ν0. Now, similar to the skew-symmetric Hankel case, one
can show that on a subset of positive Lebesgue measure the integrand above is negative. In
fact, a calculation in Mathematica reveals that p

T̂
(abab) = 2/9. This proves the theorem

completely.
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Abstract

This paper considers the '-optimal design problem for a linear Haar-wavelet regression
model. It is proved that the proposed designs are '-optimal by means of the equivalence theorem.
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1. Introduction

An extensive literature review reveals that the wavelet models are gradually becoming popular
from theoretical and application point of view. Mention may be made in this regard to Herzberg
and Traves (1994), Oyet and Wiens (2000), Oh, Naveau and Lee (2001), Oyet (2002), Xie (2002),
Tian and Herzberg (2006, 2007) and Maronge et al. (2017) for the novel study of various linear
and approximately linear wavelet models and their optimal designs.

Tian and Herzberg (2007) rightly pointed out that wavelets can be considered as a basis
for representing square integrable functions in different scales in the same way as polynomials,
trigonometric functions, rational functions can be. Haar (1910) pioneered the notion of wavelet
system on the real line R. The system is an orthogonal basis in !2(R) generated by the Haar scaling
function q(G) and the Haar primary wavelet k(G), where

q(G) =
{
1, 0 ≤ G < 1,
0, otherwise, k(G) =


1, 0 ≤ G < 1

2 ,
−1, 1

2 ≤ G < 1,
0, otherwise.

It is to be noted that Haar-wavelets are piecewise constant functions on the real line R and can
take only three values. Moreover, Haar-wavelets, like the well-known Wash functions (Rao 1983),
form an orthogonal and complete set of functions representing discretized functions and piecewise
constant functions. Tian and Herzberg (2007) investigated the linear Haar-wavelet models and
obtained the �-, �- and �-optimal designs.

The '-optimality criterion was introduced by Dette (1997) and it minimizes the volume of
the rectangular confidence region for the regression parameters based on the Bonferroni C-intervals.
The '-optimal design problem has been investigated in linear models [see He and Yue (2019) for

Correponding Author: Kashinath Chatterjee
Email: kashinathchatterjee@gmail.com
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recent reference]. Our aim here is to consider the '-optimal designs for the linear Haar-wavelet
regression model.

The rest of this paper is organized as follows. In Section 2, we introduce the notation and
preliminaries. Section 3 provides the main result of this paper with an example.

2. Model and Preliminaries

Consider the linear Haar-wavelet model of order <

� [H(G)] = V0 +
<∑
9=0

2 9−1∑
:=0

V 9 :k 9 : (G), G ∈ X = [0, 1], (1)

with unknown parameters V0, V00, · · · , V<,2<−1, where

k 9 : (G) = 2 9/2k(2 9G − :) =

2 9/2, :

2 9 ≤ G <
:
2 9 +

1
2 9+1 ,

−2 9/2, :
2 9 +

1
2 9+1 ≤ G <

:
2 9 +

1
2 9

0, otherwise.
(2)

for 9 ∈ {0, 1, · · · , <}, : ∈ {0, 1, · · · , 2 9 − 1}.

Throughout the paper we consider approximate designs of the form

b =

{
G1 · · · G=
F1 · · · F=

}
, G8 ∈ X, 0 < F8 < 1,

=∑
8=1

F8 = 1.

Denote the set of all approximate designs with non-singular information matrix on X by Ξ. For the
model (1) the information matrix of b ∈ Ξ is

" (b) =
∫
X
f (G) f) (G)3b (G), (3)

where f (G) = (1, k00(G), · · · , k<,2<−1(G))) .

The following definition, due to Dette (1997), provides the '-optimality criterion for a design
belonging to Ξ.

Definition 1: A design b∗ ∈ Ξ is called '-optimal for the model (1) if it minimizes

Ψ(b) =
?∏
8=1

(
"−1(b)

)
88
=

?∏
8=1

4)8 "
−1(b)48 (4)

over Ξ, where ? is the dimension of the regression vector f (G) and 48 denotes the 8th unit vector in
R?.

The following equivalence theorem provides an important tool for the determination of '-
optimal designs which has been proved by Dette (1997).
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Theorem 1: For the model (1) let

q(x, b) = f) (x)"−1(b)
(
?∑
8=1

e8e
)
8

e)
8
"−1(b)e8

)
"−1(b) f (x). (5)

Then a design b∗ ∈ Ξ is '-optimal if and only if

sup
x∈X

q(x, b∗) = ?. (6)

Moreover, the supremum is achieved at the support points of b∗.

3. '-optimal Designs

The following theorem provides '-optimal designs for the linear Haar-wavelet regression
model (1).

Theorem 2: For the model (1), let G8 be arbitrary point in

X8 =
[
8 − 1
2<+1

,
8

2<+1

)
, 8 = 1, · · · , 2<+1.

Then the design b∗ of the form

b∗ =

(
G1 · · · G2<+1
1
2<+1 · · ·

1
2<+1

)
(7)

is '-optimal.

Proof: It is to be noted that k 9 : (G)’s are step functions and for any G ∈ X8, (8 = 1, · · · , 2<+1)

k 9 : (G) = k 9 : (`8)

and

f (G) = f (`8),

where `8 = (8 − 1)2−(<+1) . For any design b∗ ∈ Ξ of the form (7), we have

" (b∗) =
1
2<+1

2<+1∑
8=1

f (`8) f) (`8) =
1
2<2+1

(
"B1,B2

)
1≤B1,B2≤2<+1 ,

where "00 = 2<+1 and for BA = 2 9A + :A with 9A ∈ {0, 1, · · · , <}, :A ∈ {0, 1, · · · , 2 9A − 1} and
A = 1, 2,

"0B2 =

2<+1∑
8=1

k 92:2 (`8), "B10 =

2<+1∑
8=1

k 91:1 (`8), "B1B2 =

2<+1∑
8=1

k 91:1 (`8)k 92:2 (`8).
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Now, we can get

"B10 =

2<+1∑
8=1

k 91:1 (`8) = 2 91/2
2<+1∑
8=1

k(2 91`8 − :1) = 2 91/2
2<+1∑
8=1

k((8 − 1)/2<− 91+1 − :1)

= 2 91/2
2<− 91+1 (:1+1)∑
8=2<− 91+1:1+1

k((8 − 1)/2<− 91+1 − :1) = 0,

and similarly, "0B2 = 0. Moreover,

"B1B1 =

2<+1∑
8=1
(k 91:1 (`8))2 = 2 91

2<+1∑
8=1
(k(2 91`8 − :1))2 = 2 91

2<+1∑
8=1
(k((8 − 1)/2<− 91+1 − :1))2

= 2 91
2<− 91+1 (:1+1)∑
8=2<− 91+1:1+1

(k((8 − 1)/2<− 91+1 − :1))2 = 2<+1,

and

"B1B2 =

2<+1∑
8=1

k 91:1 (`8)k 92:2 (`8) = 2( 91+ 92)/2
2<+1∑
8=1

k(2 91`8 − :1)k(2 92`8 − :2)

= 2( 91+ 92)/2
2<+1∑
8=1

k((8 − 1)/2<− 91+1 − :1)k((8 − 1)/2<− 92+1 − :2) = 0.

Therefore, it is clear that " (b∗) = �2<+1 , where �= is the = × = identity matrix. It follows that, for
any G ∈ [0, 1],

q(G, b∗) = f) (G)"−1(b∗)
(
?∑
8=1

e8e
)
8

e)
8
"−1(b∗)e8

)
"−1(b∗) f (G)

= f) (G) f (G) = 1 +
<∑
9=0

2 9−1∑
:=0

k29 : (G) = 1 +
<1∑
9=0
2 9 = 2<+1, (8)

and then b∗ is '-optimal from Theorem 1.

Example: Consider the '-optimal design for the Haar-wavelet model (1) of order < = 2, i.e.,

� [H(G)] = V0 + V00k00(G) + V10k10(G) + V11k11(G) + V20k20(G)
+V21k21(G) + V22k22(G) + V23k23(G),

(9)

In this case, the design region X = [0, 1] is divided into 2<+1 = 8 sub-intervals

X8 =
[
8 − 1
8
,
8

8

)
, 8 = 1, · · · , 8.

From Theorem 2, a '-optimal design for the model (9) is as follows:

b∗ =

(
0/8 1/8 · · · 7/8
1/8 1/8 · · · 1/8

)
. (10)
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Abstract
We study the problem of nonparametric estimation of linear multiplier function θ(t)

for processes satisfying stochastic differential equations of the type

dXt = θ(t)Xtdt+ ε dW̃H
t , X0 = x0, 0 ≤ t ≤ T

where {W̃H
t , t ≥ 0} is a mixed fractional Brownian motion with known Hurst index H and

study the asymptotic behaviour of the estimator as ε→ 0.

Key words: Nonparametric estimation; Linear multiplier; Mixed Fractional Brownian mo-
tion.

AMS Subject Classifications: 62K05

1. Introduction

Professor Aloke Dey and I were colleagues for several years at the Indian Statistical
Institute, Delhi Centre until I left due to my superannuation in the year 2004. Prof. Dey’s
expertise was in the area of optimal designs and my area of interest is in inference for stochas-
tic processes. Even though our areas of research are completely different, we appreciated
each others works and had a high regard for each other. I missed his association after I
moved to Hyderabad. We did meet once or twice during the last sixteen years after I left
New Delhi. I would like to thank Professor Vinod Gupta for inviting me to submit an article
for the special issue of this journal dedicated to the memory of Professor Aloke Dey and pay
my homage to a great statistician.

Statistical inference for fractional diffusion type processes satisfying stochastic differ-
ential equations driven by fractional Brownian motion have been studied earlier and a com-
prehensive survey of various methods is given in Mishura (2008) and Prakasa Rao (2010).
There has been a recent interest to study similar problems for stochastic processes driven
by a mixed fractional Brownian motion (mfBm). Existence and uniqueness for solutions of
stochastic differential equations driven by a mfBm are investigated in Mishura and Shevch-
henko (2012) and Shevchenko (2014) among others. Maximum likelihood estimation for
estimation of drift parameter in a linear stochastic differential equations driven by a mfBm

Corresponding Author: B. L. S. Prakasa Rao
Email: blsprao@gmail.com
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is investigated in Prakasa Rao (2018). The method of instrumental variable estimation for
such parametric models is investigated in Prakasa Rao (2017). Some applications of such
models in finance are presented in Prakasa Rao (2015 a,b). For related work on paramet-
ric inference for processes driven by mfBm, see Marushkevych (2016), Rudomino-Dusyatska
(2003), Song and Liu (2014), Mishra and Prakasa Rao (2017), Prakasa Rao (2009) and
Miao (2010) among others. Nonparametric estimation of the trend coefficient in models
governed by stochastic differential equations driven by a mixed fractional Brownian motion
is investigated in Prakasa Rao (2019).

We now discuss the problem of estimating the function θ(t), 0 ≤ t ≤ T (linear mul-
tiplier) based on the observations of a process {Xt, 0 ≤ t ≤ T} satisfying the stochastic
differential equation

dXt = θ(t)Xtdt+ ε dW̃H
t , X0 = x0, 0 ≤ t ≤ T

where {W̃H
t , t ≥ 0} is a mixed fractional Brownian motion (mfBm) and study the properties

of the estimator as ε→ 0.

2. Mixed Fractional Brownian Motion

We will now summarize some properties of stochastic processes which are solutions of
stochastic differential equations driven by a mixed fractional Brownian motion for complete-
ness.

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions. The natural
filtration of a stochastic process is understood as the P -completion of the filtration generated
by this process. Let {Wt, t ≥ 0} be a standard Wiener process and WH = {WH

t , t ≥ 0} be
an independent normalized fractional Brownian motion with Hurst parameter H ∈ (0, 1),
that is, a Gaussian process with continuous sample paths such that WH

0 = 0, E(WH
t ) = 0

and
E(WH

s W
H
t ) = 1

2[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0. (1)

Let
W̃H
t = Wt +WH

t , t ≥ 0.
The process {W̃H

t , t ≥ 0} is called the mixed fractional Brownian motion with Hurst index
H. We assume here after that Hurst index H is known. Following the results in Cheridito
(2001), it is known that the process W̃H is a semimartingale in its own filtration if and only
if either H = 1/2 or H ∈ (3

4 , 1].

Let us consider a stochastic process X = {Xt, t ≥ 0} defined by the stochastic integral
equation

Xt =
� t

0
C(s)ds+ W̃H

t , t ≥ 0 (2)

where the process C = {C(t), t ≥ 0} is an (Ft)-adapted process. For convenience, we write
the above integral equation in the form of a stochastic differential equation

dXt = C(t)dt+ dW̃H
t , t ≥ 0 (3)
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driven by the mixed fractional Brownian motion W̃H . Following the recent works by Cai et al.
(2016) and Chigansky and Kleptsyna (2015), one can construct an integral transformation
that transforms the mixed fractional Brownian motion W̃H into a martingale MH . Let
gH(s, t) be the solution of the integro-differential equation

gH(s, t) +H
d

ds

� t

0
gH(r, t)|s− r|2H−1sign(s− r)dr = 1, 0 < s < t. (4)

Cai et al. (2016) proved that the process

MH
t =

� t

0
gH(s, t)dW̃H

s , t ≥ 0 (5)

is a Gaussian martingale with quadratic variation

< MH >t=
� t

0
gH(s, t)ds, t ≥ 0 (6)

Furthermore the natural filtration of the martingale MH coincides with that of the mixed
fractional Brownian motion W̃H . It is clear that the quadratic variation < MH >t is dif-
ferentiable with respect to t. Let β(t) denote the derivative of the function < MH >t with
respect to t. Suppose that, for the martingale MH defined by the equation (6), the sample
paths of the process {C(t), t ≥ 0} are smooth enough in the sense that the process

QH(t) = d

d < MH >t

� t

0
gH(s, t)C(s)ds, t ≥ 0 (7)

is well defined. Define the process

Zt =
� t

0
gH(s, t)dXs, t ≥ 0. (8)

As a consequence of the results in Cai et al. (2016), it follows that the process Z is a
fundamental semimartingale associated with the process X in the following sense.

Theorem 1: Let gH(s, t) be the solution of the equation (4). Define the process Z as given
in the equation (8). Then the following relations hold.

(i) The process Z is a semimartingale with the decomposition

Zt =
� t

0
QH(s)d < MH >s +MH

t , t ≥ 0 (9)

where MH is the martingale defined by the equation (5). (ii) The process X admits the
representation

Xt =
� t

0
ĝH(s, t)dZs, t ≥ 0 (10)
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where
ĝH(s, t) = 1− d

d < MH >s

� t

0
gH(r, s)dr. (11)

(iii) The natural filtrations (Xt) and (Zt) of the processes X and Z respectively coincide.

Applying the Corollary 2.9 in Cai et al. (2016), it follows that the probability measures
µX and µW̃H generated by the processes X and W̃H on an interval [0, T ] are absolutely
continuous with respect to each other and the Radon-Nikodym derivative is given by

dµX
dµW̃H

= exp[
� T

0
QH(s)dZs −

1
2

� T

0
[QH(s)]2d < MH >s] (12)

which is also the likelihood function based on the observation {Xs, 0 ≤ s ≤ T.} Since the
filtrations generated by the processes Xand Z are the same, the information contained in
the families of σ-algebras (Xt) and (Zt) is the same and hence the problem of the estimation
of the parameters involved based on the observation {Xs, 0 ≤ s ≤ T} and {Zs, 0 ≤ s ≤ T}
are equivalent.

3. Preliminaries

Let W̃H = {WH
t , t ≥ o} be a mixed fractional Brownian motion with known Hurst

parameter H ∈ (1/2, 1). Consider the problem of estimating the function θ(t), 0 ≤ t ≤ T
(linear multiplier) from the observations {Xt, 0 ≤ t ≤ T} of process satisfying the stochastic
differential equation

dXt = θ(t)Xtdt+ ε dW̃H
t , X0 = x0, 0 ≤ t ≤ T (13)

and study the properties of the estimator as ε→ 0. Consider the differential equation in the
limiting system of (13), that is , for ε = 0, given by

dxt = θ(t)xtdt, x0, 0 ≤ t ≤ T. (14)

Observe that
xt = x0 exp{

� t

0
θ(s)ds).

We assume that the following condition holds:

(A1): The trend coefficient θ(t) over the interval [0, T ] is bounded by a constant L.

The condition (A1) will ensure the existence and uniqueness of the solution of the
equation (13).

Lemma 1: Let the condition (A1) hold and {Xt, 0 ≤ t ≤ T} and {xt, 0 ≤ t ≤ T} be the
solutions of the equations (13) and (14) respectively. Then, with probability one,

(a)|Xt − xt| < eLtε sup
0≤s≤t

|W̃H
s | (15)
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and
(b) sup

0≤t≤T
E(Xt − xt)2 ≤ 4e2LT ε2(T 2H + T ). (16)

Proof of (a): Let ut = |Xt − xt|. Then by (A1); we have,

ut ≤
� t

0
|θ(v)(Xv − xv)|dv + ε|W̃H

t | (17)

≤ L

� t

0
uvdv + ε sup

0≤s≤t
|W̃H

s |.

Applying the Gronwall’s lemma (cf. Lemma 1.12, Kutoyants (1994), p.26), it follows that

ut ≤ ε sup
0≤s≤t

|W̃H
s |eLt. (18)

Proof of (b): From the equation (15), we have

E(Xt − xt)2 ≤ e2Ltε2E[(sup |W̃H
s |)2] (19)

≤ 4e2Ltε2(t2H + t)

from the fact that the mixed fractional Brownian motion WH is a sum of a Wiener process
and fractional Brownian motion and from the maximal inequalities for a Wiener process and
a fractional Brownian motion (cf. Muneya and Shieh (2009), Prakasa Rao (2014)). Hence

sup
0≤t≤T

E(Xt − xt)2 ≤ 4e2LT ε2(T 2H + T ). (20)

This completes the proof of the lemma.

Define

Q∗H,θ(t) = d

d < MH >t

� t

0
gH(t, s)θ(s)x(s)ds (21)

= d

d < MH >t

� t

0
gH(t, s)θ(s)[x0 exp(

� s

0
θ(u)du)]ds

by using the equation (14). Here after, we consider the problem of nonparametric estimation
of the function Q∗H,θ(t) instead of the function θ(t). We assume that the function θ(.) belongs
to a class of functions Θ uniformly bounded by a constant L and the following condition
holds:
(A2): Differentiation under the integral sign is valid in the equation (21) and the function
β(t)Q∗H,θ(t)is Lipschitz of order γ in the sense that

|β(t)Q∗H,θ(t)− β(s)Q∗H,θ(s)| ≤ C|t− s|γ

for some constant C > 0 and γ > 0 uniformly for θ(.) ∈ Θ.
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Instead of estimating the function θ(.), we consider the problem of estimating the
function Q∗H,θ(.) defined via the equation (21). This is justified by the observation that the
processes {Xt, 0 ≤ t ≤ T} governed by the stochastic differential equation (13) and the
corresponding related process {Zt, 0 ≤ t ≤ T} as defined by (8) have the same filtrations by
the results in Cai et al. (2016).

Consider the kernel type estimator defined by

Q̂H,θ(t) = 1
hε

� T

0
G
(
s− t
hε

)
dZs (22)

= 1
hε

� T

0
G
(
s− t
hε

) (
QH,θ(s)d < MH >s +ε dMH

s

)
= 1

hε

� T

0
G
(
s− t
hε

) (
QH,θ(s)β(s)ds+ ε dMH

s

)
by using the equation (9) where G(u) is a bounded function with finite support [A,B]
satisfying the condition

(A3):G(u) = 0 for u < A, u > B,
� B
A
|G(u)|du <∞ and

� B
A
G(u)du = 1;

Consider a normalizing function hε → 0 as ε→ 0. In addition, suppose that ε2h−3/2
ε → 0

as ε→ 0.

4. Main Results

Theorem 2 : Suppose the conditions (A1), (A2) and (A3) are satisfied. Then the estimator
Q̂H,θ(t) is uniformly consistent, that is,

lim
ε→0

sup
θ(.)∈Θ

sup
0≤t≤T

Eθ(|Q̂H,θ(t)− β(t)Q∗H,θ(t)|2) = 0. (23)

Proof: From (9), we have,
(24)

Eθ|Q̂H,θ(t)− β(t)Q∗H,θ(t)|2

= E

∣∣∣∣∣ 1
hε

� T

0
G
(
s− t
hε

)
(QH,θ(s)β(s)ds+ εdMH

s )− β(t)Q∗H,θ(t)
∣∣∣∣∣
2

= Eθ|
1
hε

� T

0
G
(
s− t
hε

)
(QH,θ(s)−Q∗H,θ(s))β(s)ds

+ 1
hε

� T

0
G
(
s− t
hε

)
(Q∗H,θ(s)β(s)−Q∗H,θ(t)β(t))ds

+ ε

hε

� T

0
G
(
s− t
hε

)
dMH

s |2
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= Eθ[I1 + I2 + I3]2 (denoting the three integrals as I1, I2 and I3 respectively)
≤ 3 E(I2

1 ) + 3 E(I2
2 ) + 3 E(I2

3 ).

Now

3 Eθ[I2
1 ] = 3 Eθ

∣∣∣∣∣ 1
hε

� T

0
G
(
s− t
hε

)
(QH,θ(t)−Q∗H,θ(s))β(s)ds

∣∣∣∣∣
2

(25)

≤ 3
h2
ε

[
� T

0
G2

(
s− t
hε

)
ds][E

� T

0
β2(s)(QH,θ(s)−Q∗H,θ(s))2ds].

Note that
Eθ

� T

0
β2(s)(QH,θ(s)−Q∗H,θ(s))2d < MH >s (26)

=
� T

0
β2(s)Eθ

[
d

d < MH >s

� s

0
gH(s, v)θ(v)(X(v)− x(v))dv

]2

d < MH >s

≤ C1

� T

0
Eθ

[� s

0

∂gH(s, v)
∂s

θ(v)(X(v)− x(v))dv
]2

ds

≤ C2

� T

0
{
� s

0

(
∂gH(s, v)

∂s

)2

θ2(v)dv
� s

0
E(X(v)− x(v))2dv}ds

for some positive constant C2 depending on T and H. Furthermore
Eθ(Xv − xv)2 ≤ 4e2Lvε2(v2H + v) (by Lemma 1).

Hence, from the equation (26) and the condition (A3), we get that

3Eθ[I2
1 ] ≤ C

1
h2
ε

{� ∞
−∞

G2(s− t
hε

)β(s)ds
}
ε2hε (27)

×
� T

0
β2(s)

{� s

0
e2Lv(v2H + v)dv

}
� s

0

(
∂gH(s, v)

∂s

)2

dv

 ds
≤ C3ε

2h−1
ε

for some positive constant C3 depending on T and H and the last term tends to zero as
ε→ 0.

In addition,

I2
2 = 3

{
1
hε

� T

0
G
(
s− t
hε

)
(Q∗H,θ(s)ds−Q∗H,θ(t))d < MH >s

}2

(28)

=
{

1
hε

� T

0
G
(
s− t
hε

)
(Q∗H,θ(s)β(s)−Q∗H,θ(t)β(t))ds

}2

= 3
{� ∞
−∞

G(u)(Q∗H,θ(t+ hεu)β(t+ hεu)−Q∗H,θ(t)β(t))du
}2

(by(A2))
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≤ C4

{� ∞
−∞

G(u)|hεu|γdu
}2

(by(A2))

≤ C4h
2γ
ε

(� ∞
−∞

G(u)|u|γdu
)2

≤ C5h
2γ
ε by(A3))

for some positive constant C5 depending on T and Hand the last term tends to zero as
ε→ 0. Furthermore

I2
3 = 3ε2

h2
ε

E

(� T

0
G
(
s− t
hε

)
dMH

s

)2

(29)

= 3ε2
h2
ε

� T

0
G2

(
s− t
hε

)
β(s)ds

≤ 3ε2
h2
ε

{� T

0
G2

(
s− t
hε

)
ds

� T

0
β2(s)ds

} 1
2

≤ C6
3ε2
h2
ε

{
hε(

� ∞
−∞

G2(u) du)
} 1

2

≤ C7ε
2h−3/2

ε .

for some positive constants C7 depending on T and H. The result follows from the equations
(27), (28) and (29).

Corollary 1: Under the conditions (A1), (A2) and (A3),
lim
ε→0

sup
θ(.)∈Θ

E
{
Q̂H,θ(t)− β(t)Q∗H,θ(t)

}2
ε

8γ
4γ+3 <∞.

Proof: From the inequalities derived in (27), (28) and (29), we get that there exist positive
constants D1, D2 and D3 depending on T and H such that

sup
θ(.)∈Θ

E
{
Q̂H,θ(t)− β(t)Q∗H,θ(t)

}2
≤ D1ε

2h−1
ε +D2h

2γ
ε +D3ε

2h
− 3

2
ε . (30)

Let hε = εβ, 0 < β < 4
3 . Then the condition h2γ

ε = ε2h−3/2
ε leads to the choice β = 4

4γ+3 and
we get an optimum bound in (30) and hence

lim
ε→0

sup
θ(.)∈Θ

E
[
Q̂H,θ(t)− β(t)Q∗H,θ(t)

]2
ε−

8γ
4γ+3 ≤ C (31)

for some positive constant C which implies the result.
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Abstract
In this paper, we propose two tests for testing equality of hazard quantile functions of

two populations. The test statistics are based on estimators of the quantile density function.
Limiting distribution of both these test statistics has been derived. The power of the new
tests is computed through simulations for uncensored and censored observations. The new
tests are compared with two existing tests available in literature. Procedures have been
illustrated on real data.

Key words: Quantile function; Quantile density function; Kernel density estimator; Hazard
rate; Hazard quantile function.
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regulations. Three of us have fond memories of our association with Prof. Aloke Dey - a
gentle person - went too soon.

1. Introduction

In survival analysis, the hazard rate is a basic reliability measure. It is studied as
failure rate in reliability, force of mortality in demography or actuarial science, intensity
function in stochastic processes and age specific failure rate in epidemiology. Sometimes,
interest may be in comparing the hazard rates of two populations. Chikkagoudar and Shuster
(1974) proposed the locally most powerful test for testing equality of hazard rates of two
populations. Kochar (1979) provided distribution free test based on U-statistics and Kochar
(1981) proposed a test based on linear function of order statistics for testing equality of
hazard rates. For the same problem, Cheng (1985) proposed a test based on ranks.

Quantile based approach is popular now a days. The reliability analysis based on quan-
tiles provides an alternate methodology for statistical analysis when cumulative distribution
function (cdf) or probability density function (pdf) is not available in a closed form. Exam-
ples of such distributions are Generalised Lambda distribution (GLD) (Karian and Dudewicz

Correponding Author: Isha Dewan
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(2000)), Skew logistic distribution (Gilchrist (2000)) and Davies distribution (Hankin and
Lee (2006)). Maladan and Sankaran (2020) proposed a new family of distributions by using
transformation in context of quantiles.

Let X1, . . . , Xn and Y1, . . . , Yn be two independent random samples from two popu-
lations with distribution functions F (x) and G(x), survival functions F̄ (x) and Ḡ(x), pdfs

f(x) and g(x), hazard rate functions h1(x) = f(x)
F̄ (x)

and h2(x) = g(x)
Ḡ(x)

, respectively. The

quantile function for the first population is denoted by Q1(u) and defined as

Q1(u) = F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1. (1)

From (1), it is seen that
F (Q1(u)) = u. (2)

Differentiating (2), we get the quantile density function for the first population as

q1(u) = d

du
Q1(u) = 1

f(Q1(u)) . (3)

Note that the quantile density function as defined in (3) is not a density function in
the usual sense but is reciprocal of density function at corresponding quantile function. Nair
and Sankaran (2009a) presented various reliability measures viz, hazard rate, mean residual
life function, variance residual life function and percentile residual life function in terms of
quantiles. The hazard quantile function for the first population is given by

H1(u) = h1(Q1(u)) = f(Q1(u))
F̄ (Q1(u))

= ((1− u)q1(u))−1. (4)

Hazard quantile function is the hazard function at the corresponding quantile function.
The quantile function, quantile density function and hazard quantile function for second
population are denoted by Q2(u), q2(u) and H2(u), respectively.

Many ageing concepts viz increasing failure rate, increasing failure rate average, new
better than used and new better than used in expectation have been defined in terms of
quantiles by Kumar and Nair (2011). Nair and Sankaran (2009b) studied estimation of the
hazard quantile function based on right censored data. Peng and Fine (2007) provided tests
for equality of cause specific hazard rates for competing risk data based on quantiles. Fan
et al. (2020) proposed smooth kernel type estimator of quantile function for right-censored
competing risks data.

We wish to test the null hypothesis of equality of hazard rate functions of two inde-
pendent populations, that is

H0 : h1(x) = h2(x) for all x
against the alternative
HA : h1(x) ≤ h2(x) for all x (5)
with strict inequality in (5) with a positive probability.



2021] TESTS FOR HAZARD QUANTILE FUNCTIONS 79

Kochar (1979) showed that for increasing failure rate distributions, location-scale or-
dering of distribution functions leads to ordering of their corresponding hazard rates.

Above testing problem can be equivalently written in terms of hazard quantile functions
as follows

H0 : H1(u) = H2(u) for all 0 < u < 1
against the alternative
HA : H1(u) ≤ H2(u) for all 0 < u < 1 (6)
with strict inequality in (6) with a positive probability.

From (4), it is noted that for all 0 < u < 1

H1(u) = H2(u) iff q1(u) = q2(u),
H1(u) ≤ H2(u) iff q1(u) ≥ q2(u). (7)

Hence, from (6) and (7), it is clear that testing for equality of hazard rates is equivalent
to testing for equality of quantile density functions. Hence, we will propose tests for testing

H0 : q1(u) = q2(u) for all 0 < u < 1
against the alternative
HA : q1(u) ≥ q2(u) for all 0 < u < 1 (8)
with strict inequality in (8) with a positive probability.

In Section 2, we discuss few preliminaries that are needed to define and study the
properties of test statistics. Two examples are given where distribution functions can not
be expressed in closed forms but quantile functions have nice forms. We also discuss the
estimator of quantile density function proposed by Soni et al. (2012). In Section 3, two test
statistics - a supremum type and an integral type have been proposed for testing the equality
of hazard quantile functions against the alternative that they are ordered. The statistics are
based on estimators of quantile density functions due to Soni et al. (2012). Asymptotic
distribution of two test statistics is discussed. The tests can be used when observations are
uncensored or censored. Simulations are carried out in Section 4 for comparing power of the
proposed tests with those suggested by Kochar (1979) and Cheng (1985). In Section 5, a
real data set is considered to illustrate the utility of the tests proposed by us. The proofs of
the Theorems and three Tables showing power comparisons are given in the Appendix.

2. Preliminaries

Two examples for which distribution function can not be written in a closed form but
quantile function has a closed form, are discussed in Section 2.1. Estimator of quantile den-
sity function proposed by Soni et al. (2012) is discussed in Section 2.2.
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2.1. Examples

(i) Davies Distribution (Davies(C, λ1, λ2)) with C > 0, λ1 > 0, λ2 > 0 was given by
Hankin and Lee (2006). The quantile function, the quantile density function and the
hazard quantile function for 0 < u < 1 are

QD(u,C, λ1, λ2) = Cuλ1

(1− u)λ2
, (9)

qD(u,C, λ1, λ2) = Cuλ1−1(λ1(1− u) + λ2u)
(1− u)λ2+1 , (10)

HD(u,C, λ1, λ2) = (1− u)λ2

Cuλ1−1(λ1(1− u) + λ2u) . (11)

(ii) The Generalized Lambda Distribution (GLD(λ1, λ2, λ3, λ4)) was introduced by
Ramberg and Schmeiser (1974) and further discussed by Karian and Dudewicz (2000).
The quantile function, the quantile density function and the hazard quantile function
for 0 < u < 1 are given below:

QGL(u, λ1, λ2, λ3, λ4) = λ1 + (uλ3 − (1− u)λ4)
λ2

, (12)

qGL(u, λ1, λ2, λ3, λ4) = λ3u
λ3−1 + λ4(1− u)λ4−1

λ2
, (13)

HGL(u, λ1, λ2, λ3, λ4) =
(

(1− u)(λ3u
λ3−1 + λ4(1− u)λ4−1)

λ2

)−1
. (14)

The parameters λ1, λ2, λ3, and λ4 can assume real values, but some restrictions on
these parameters have been imposed for defining a valid distribution. The possible
eight regions of parameter values for which GLD is a valid distribution have been listed
in Karian and Dudewicz (2000). Table 1 gives two sets of choices of parameters λ2, λ3
and λ4 of GLD with λ1 taking any real value. These choices ensure that observations
always have support on the positive real line.

Table 1: Considered regions and corresponding supports of GLD

Regions Supports

1. λ2 > 0, λ3 > 1, λ4 > 0
(
λ1 −

1
λ2
, λ1 + 1

λ2

)
2. λ2 < 0, λ3 > 1, λ4 < −1

(
λ1 − 1

λ2
,∞
)
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Here λ1 controls the left tail, λ2 controls the right tail and C is the scale parameter.

These distributions will be used for simulation studies in Section 4.

2.2. Quantile density estimator

Estimators of the quantile density function were proposed by Parzen (1979), Csörgo
(1981), Falk (1986), Jones (1992), Cheng and Parzen (1997) and Soni et al. (2012). The
wavelet based estimator of quantile density function was proposed by Chesneau et al. (2016).
This estimator behaved well in tails.

The estimator of q1(u) given by Soni et al. (2012), based on random sampleX1, X2, . . . , Xn

from F (x) is

q̂1(u) = 1
h(n)

� 1

0

K( t−u
h(n))

fn(Q̂1(t))
dt (15)

where fn(x) is a kernel density estimator of f(x) with h(n) as bandwidth.

Q̂1(u) = inf{x : Fn(x) ≥ u}, 0 < u < 1 is the empirical estimator of the quantile
function Q(u) based on empirical distribution function Fn(x). The kernel K(.) is a density
function satisfying regularity conditions (Prakasa Rao (1983))

Estimator proposed by Soni et al. (2012) performs better than those given by Jones
(1992) in terms of mean square error. Soni et al. (2012) proved the following results for
fixed u, where 0 < u < 1:

(R1) q̂1(u) is a consistent estimator of q1(u),

(R2) as n→∞,
√
nh(n)(q̂1(u)− q1(u))

σ1n(u) is asymptotically normal with mean zero and vari-
ance 1, where

σ2
1n(u) = E(

� 1
0 dK

∗
n(u, t)Fn(Q̂1(t)))2 with K∗n(u, t) = K( t−u

h(n))q1(t).

Let q̂2(u) denote the corresponding estimator of q2(u) based on a random sample
Y1, Y2, . . . , Yn from G(x).

3. Test Statistics and Asymptotic Distribution

We propose two test statistics for testing H0 against HA. Let q̂1(u) and q̂2(u) be con-
sistent estimators of q1(u) and q2(u) as discussed in Section 2.2. The difference q̂1(u)− q̂2(u)
is an empirical measure of departure from the null hypothesis. This difference is expected
to be zero under the null hypothesis and non-negative under the alternative hypothesis.

First proposed test statistic T1 is Kolmogorov-Smirnov type distance between q̂1(u)
and q̂2(u) and is given as

T1 = sup
0<u<1

(q̂1(u)− q̂2(u)). (16)



82 POOJA SONI, ISHA DEWAN AND KANCHAN JAIN [Vol. 19, No. 1

Second proposed test statistic T2 is Cramer-von Mises type difference, as given below

T2 =
� 1

0
(q̂1(u)− q̂2(u))d

(
Q̂1(u) + Q̂2(u)

2

)
. (17)

Test based on T1, T2 will reject H0 in favour of HA for large values of normalised ver-
sions of the statistics T1 and T2, respectively.

Next we consider a lemma needed to derive the asymptotic distributions of T1 and T2
under the null hypothesis.

D and D[0, 1] are equipped with the uniform norm ||.|| and the product norm respec-
tively. In the following lemma, weak convergence of the process Sn(u) is established on D,
where

Sn(u) = {
√
nh(n)(q̂1(u)− q1(u)),

√
nh(n)(q̂2(u)− q2(u))}.

Lemma 1: Let B1(q1(u)) and B2(q1(u)) be Brownian bridge processes with zero means.
Then Sn(u) converges in D to a 2-dimensional Gaussian Process {B1(q1(u)), B2(q2(u))} as
n→∞.

Proof: See the Appendix.

The above lemma helps us in determining the asymptotic distribution of T1 as estab-
lished in Theorem 1 given below.

Theorem 1: Under H0, as n→∞,
√
nh(n)T1 converges in distribution to

sup
0<u<1

(B1(q1(u))−B2(q2(u))).

Proof: See the Appendix.

Remark 1: A slight modification can be made to the test statistic T1 as discussed below.

Suppose under H0, B1(q1(u)) − B2(q2(u)) = g(u), where g(u) is difference of two
Brownian process. Then variance of random variable g(u) is given by

V ar(g(u)) = V ar(B1(q1(u))) + V ar(B2(q2(u))) = σ2
g(u) · · · (say).

If {W (t) : t ≥ 0} is a standard Brownian motion (Wiener process), then

g(u)→ W (σ2
g(u)).

Under H0, this gives for 0 < u < 1 and n→∞,
√
nh(n)(q̂1(u)− q̂2(u))→ W (σ2

g(u))
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⇒
√
nh(n)(q̂1(u)− q̂2(u))

σg(T ) → W (
σ2
g(u)
σ2
g(T ))

where σ2
g(T ) = max

t
[σ2
g(t)] for T ∈ (0, 1). Note that σ2

g(u)
σ2
g(T ) ∈ (0, 1).

Let σ̂g(T ) be a consistent estimator of σg(T ) and define

T ∗1n =
√
nh(n)(sup0<u<1(q̂1(u)− q̂2(u)))

σ̂g(T ) =
√
nh(n)T1

σ̂g(T ) . (18)

Theorem 2: Under H0 ,

lim
n→∞

P [T ∗1n > b] = P [ sup
0<u<1

W (u) > b] = 2(1− Φ(b)) (19)

where Φ(b) is the cdf of Standard Normal distribution at b.

Proof: The proof follows from Section 7.4 of Durrett (2019).

In the next theorem, we find the null asymptotic distribution of

T ∗2n =
√
nh(n)

� 1

0
(q̂1(u)− q̂2(u))d(Q̂1(u) + Q̂2(u)

2 ) =
√
nh(n)T2. (20)

Theorem 3: Under H0, T ∗2n converges in distribution to a normal random variable with
mean zero and variance σ2 as n→∞ where

σ2 = V ar(
�

(B1(q1(u))−B2(q2(u)))d[Q1(u) +Q2(u)
2 ]).

Proof: The proof follows using Hadamard differentiability and functional delta method
(Ref. van der Vaart and Wellner (1996); Theorem 3.9.4). For details, see the Appendix.

In the sequel, T ∗1n will be referred to as the supremum statistic and T ∗2n as the integral
statistic.

4. Simulations

A simulation study has been carried out to verify the asymptotic distribution of test
statistics under H0 and to compute size and power of the standardized versions of statistics
T ∗1n and T ∗2n. The data are generated from GLD, Davies and exponential distributions with
sample size n = 25, 50, 100. For censored data, censoring distribution is chosen so as to
ensure 20% censoring. The chosen bandwidths are 0.15, 0.19, 0.25 (Soni et al. (2012)) for
GLD and exponential distributions and 0.85 for Davies distribution. Variances of T ∗1n and
T ∗2n, are estimated by taking 5000 bootstrap samples from the underlying distribution and
then T ∗1n and T ∗2n are calculated for each sample. The kernels used for estimation of quantile
density functions are
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(i) Triangular: K(u) = (1− |u|)I(|u| ≤ 1) and

(ii) Epanechnikov: K(u) = .75(1−u2)I(|u| ≤ 1) (the optimal kernel (Prakasa Rao (1983))).

4.1. Asymptotic distribution

Simulations are used to verify asymptotic distribution of the proposed statistics under
H0. Test Statistics have been calculated by considering GLD(1,1,2,1) distribution. Both
graphical and testing procedures have been employed to test the normality. Figures 1 and 2
show Q-Q plots of standardized versions of T ∗1n and T ∗2n for n = 25 and these plots indicate
normality of the statistics.
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Figure 1: Q-Q plot of Integral statistic for n = 25, h(n) = 0.15, 0.19, 0.25
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Figure 2: Q-Q plot of Supremum statistic for n = 25, h(n) = 0.15, 0.19, 0.25

Kolmogorov-Smirnov goodness of fit statistic is used to test the hypothesis that the
simulated distributions of two test statistics are asymptotically normal. Table 2 shows p -
values of Kolmogorov-Smirnov test statistic for n = 25 and bandwidth h(n) = 0.15, 0.19, 0.25.

Table 2: p - values of Kolmogorov-Smirnov Test

h(n) Int Statistic Sup Statistic
0.15 0.257 0.559
0.19 0.612 0.978
0.25 0.934 0.257

Hence from Q-Q plots (Figures 1 and 2) and Kolmogorov-Smirnov goodness of fit
test, we conclude that standardized versions of both T ∗1n and T ∗2n follow Standard Normal
distribution for n ≥ 25. In the following subsection, we compute size and power of supremum
and integral statistics when observations are uncensored and censored.
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4.2. Calculation of estimates of size and power of tests

Power of the tests based on supremum and integral statistics and those given by Kochar
(1979) and Cheng (1985) have been computed for GLD distribution with parameters in the
regions listed in Table 1.

Table 3 depicts size of all tests for a sample of size 25, for uncensored data. For
calculating size of the tests, considered distribution is GLD (1,1,2,1).

Table 3: Size of all tests

h(n)
n Statistics 0.15 0.19 0.25
25 Sup 0.030 0.050 0.049

Int 0.048 0.050 0.051
Kochar 0.044 0.044 0.044
Cheng 0.050 0.050 0.050

For the calculation of power of the tests, we first consider Davies distribution with
quantile, quantile density and hazard quantile function as mentioned in (9), (10), and (11)
respectively. The selection of parameters, which will lead to the ordering of hazard quantile
functions is explained below through Figure 3(a)-3(c).

Figure 3 (a) shows the hazard quantile functions for Davies (10,1,1), Davies (10,2,1),
Davies (10,3,1), Davies (10,4,1) and Davies (10,5,1), that is, λ1 is changing. Figure 3(b)
plots the hazard quantile functions for Davies (10,1,1), Davies (10,1,2), Davies (10,1,3),
Davies (10,1,4) and Davies (10,1,5), that is, λ2 varies. Figure 3(c) displays the hazard
quantile functions for Davies (10,1,1), Davies (12,1,1), Davies (14,1,1), Davies (16,1,1) and
Davies(18,1,1), that is, scale parameter C is varied.
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Figure 3: Hazard quantile functions for Davies distribution

Figures 3(a)-3(c) lead to the conclusions that

(i) for C ≤ C∗, that is, when scale parameters are ordered,
HD(u,C∗, λ1, λ2) ≤ HD(u,C, λ1, λ2);
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(ii) if λ1 ≤ λ∗1, that is, shape parameters are ordered, then
HD(u,C, λ1, λ2) ≤ HD(u,C, λ∗1, λ2);

(iii) when λ2 ≤ λ∗2,
HD(u,C, λ1, λ

∗
2) ≤ HD(u,C, λ1, λ2).

Tables 4 and 5 give the power of four statistics for comparing the hazard quantile
functions of two Davies distributions for h(n) = 0.85. In these tables, shape parameter λ2
of Davies distribution is varied and in Table 5, departure in shape parameter λ2 is reduced.
In body of Tables 4 and 5, the first (second) value corresponds to power when Triangular
(Epanechnikov) kernel is used for the estimation of quantile density function.

Table 4: Power comparison - Davies(10,1,1) vs Davies(10,1,2)(Uncensored case)
n

h(n) Statistics 25 50 100
.85 Sup 0.186(0.260) 0.476(0.594) 0.886(0.902)

Int 0.676(0.636) 0.838(0.848) 0.980(0.978)
Kochar 0.508 0.786 0.972
Cheng 0.566 0.754 0.938

Table 5: Power comparison - Davies(10,1,1) vs Davies(10,1,1.5)(Uncensored case)
n

h(n) Statistics 25 50 100
.85 Sup 0.154(0.157) 0.212(0.238) 0.574(0.596)

Int 0.286(0.490) 0.466(0.492) 0.646(0.696)
Kochar 0.276 0.354 0.672
Cheng 0.364 0.422 0.634

The next distribution of interest is GLD, with quantile, quantile density and hazard
quantile function as mentioned in (12), (13), and (14) respectively. Selection of parameters
of GLD, required for ordering of hazard quantile functions is explained through Figures 4(a)
and 4(b). Figure 4(a) plots the hazard quantile functions of GLD (1,1,2,1), GLD (1,2,2,1),
GLD (1,3,2,1), GLD (1,4,2,1) and GLD (1,5,2,1) and Figure 4(b) displays the hazard quantile
functions of GLD (1,-1,2,-2), GLD (1,-2,2,-2), GLD (1,-3,2,-2), GLD (1,-4,2,-2) and GLD (1,-
5,2,-2). Note that in both the figures, only scale parameter has been changed and all other
parameters are same.
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Figure 4: Hazard quantile functions for GLD in regions 1 and 2

For 0 < u < 1, Figures 4(a) and 4(b) depict the following:

(i) In Region 1, for λ2 ≤ λ∗2, it is observed that

HGL(u, λ1, λ2, λ3, λ4) ≤ HGL(u, λ1, λ
∗
2, λ3, λ4);

(ii) In Region 2, for λ2 ≤ λ∗2, it is seen that

HGL(u, λ1, λ
∗
2, λ3, λ4) ≤ HGL(u, λ1, λ2, λ3, λ4).

Tables 6 and 7 (given in Appendix A.2) give the power for GLD in the Region 1
(Table 1) for Triangular and Epanechnikov kernels in censored as well uncensored case.

We consider GLD(1,1,2,1), GLD(1,2,2,1) in Table 6 and GLD(1,1,2,1), GLD(1,1.2,2,1)
in Table 7 wherein departure in scale parameter λ2 is reduced. The censoring variables have
been generated from uniform distribution such that percentage of censoring in both cases is
20 and values in bold font are for censored case.

Table 8 (Appendix A.2) gives the power of our proposed test statistics for testing the
equality of hazard quantile functions of EXP(1) and EXP(2) in censored as well as uncen-
sored case. The censoring variables are distributed as EXP(.25) and EXP(0.5) respectively
which ensure 20 percentage of censoring. In Tables 6-8, values in parentheses correspond to
Epanechnikov kernel.

On the basis of values in Tables 3-5 and 6-8 (given in Appendix A.2), it can be concluded
that

(i) for all test statistics and n ≥ 25, size of tests ≤ 0.05 (level of significance);

(ii) power is not affected by choice of kernel considered;

(iii) power increases with an increase in sample size in uncensored as well as censored cases;

(iv) when observations are from GLD, both the proposed test statistics give higher power
than Cheng’s and Kochar’s test statistics;
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(v) when the parameters of GLD are in Region 1 (Table 1), integral statistic has more power
than supremum statistic in uncensored case. Integral statistic is able to discriminate
small departure in scale parameter λ2;

(vi) when observations are from GLD, integral statistic is performing better than the supre-
mum statistic in censored case;

(vii) when observations follow Davies distribution, the integral statistic has more power
than all other test statistics;

(viii) when observations follow exponential distribution, supremum statistic performs better
than integral statistic in censored case;

(ix) Cheng’s and Kochar’s statistics have more power than newly proposed test statistics
when the underlying distribution is exponential.

5. Real Data

Data set of 101 patients with advanced acute myelogenous leukemia reported to Inter-
national Bone Marrow Transplant Registry is considered (Source: Klein and Moeschberger
(1997)). Fifty one of these patients had received an autologous bone marrow transplant in
which high doses of chemotherapy and their own bone marrow were reinfused to replace their
destroyed immune system. Fifty patients had an allogoneic bone marrow transplant where
marrow from an HLA (Histocompatibility Leukocyte Antigen) matched sibling was used to
replenish their immune systems. An important issue in bone marrow transplantation is the
comparison of hazard quantile functions for these two methods. We compare hazard quan-
tile functions of two techniques through their quantile density functions. Since test statistics
proposed by us are for equal sample sizes, we randomly remove one observation from first
sample.

Plots of quantile density functions are given in Figure 5. Solid line indicates estimate
of quantile density function for auto transplant data and dotted one shows an estimate
of quantile density function for allo transplant data. This figure shows that two quantile
density functions are ordered. For supremum and integral statistics, p-values are 0.01 and
0.03 respectively. This leads to rejection of null hypothesis at 5 percent level of significance.
Hence, it can be concluded that auto transplant technique is more effective than allogenic
transplant technique.
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Figure 5: Graph of quantile density functions of autologous(auto) transplant and
allogenic(allo) transplant

6. Conclusion

In this paper, we propose two tests based on consistent estimators of quantile density
functions for testing equality of two hazard functions or equivalently, the hazard quantile
functions, against the alternative that they are ordered. The tests have limiting normal
distributions. Numerical studies show that all the tests attain their size. The supremum
and the integral tests have better power than the tests proposed by Kochar and Cheng for
some alternatives. However, it should be noted that tests by Kochar, Cheng and others can
not be used when the observations are censored. But both the tests proposed in this paper
can be used for censored data as well. Our tests perform well for families of distributions
when closed form of distribution function is not available but explicit form of the quantile
function is known.
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Appendix

A.1: Proofs

Proof:[Lemma 1] For arbitrary real numbers λ1 and λ2, we consider
Tn(u) =

√
nh(n)(λ1(q̂1(u)− q1(u)) + λ2(q̂2(u)− q2(u))).

On using central limit theorem, Tn(u) converges in distribution to N(0, σ2
n(u)) as n→

∞ where σ2
n(u) = λ2

1σ
2
1n(u) + λ2

2σ
2
2n(u).

Using Cramer Wold device, as n→∞, we get

Sn(u) = {
√
nh(n)(q̂1(u)− q1(u), q̂2(u)− q2(u))} → Gaussian process N(0,Σn) where

Σn =
[
σ2

1n(u) 0
0 σ2

2n(u)

]
.

For a finite set of numbers u1, ..., un and arbitrary λ1i, λ2i,
∑n
i=1(λ1iq̂1(ui) + λ2iq̂2(ui))

is sum of independent random variables. Using central limit theorem for the univariate
independent random variables and Cramer Wold device, we conclude that the finite
dimensional distribution of process {Sn(u)} converges weakly to that of a 2-dimensional
Gaussian process.

It is well known that the sequences
√
nh(n)(q̂1(u)− q1(u)) and

√
nh(n)(q̂2(u)− q2(u))

converge weakly in (D[0, 1], .) to B(q1(u)) and B(q2(u)) respectively, where B(q1(u)) and
B(q2(u)) are Brownian Bridge processes with zero means. Thus, two sequences√
nh(n)(q̂1(u)−q1(u)) and

√
nh(n)(q̂2(u)−q2(u)) are asymptotically tight which implies that

the process {Sn(u)} is also asymptotically tight using (Lemma 1.4.3 and Theorem 1.5.4, van
der Vaart and Wellner (1996)).

Distribution of Sn(u) is established using Theorem 1.5.4 of van der Vaart and Wellner
(1996). Hence, we conclude that the finite dimensional distribution of the process {Sn(u)}
converges weakly to that of a 2-dimensional Gaussian process {B1(q1(u)), B2(q2(u))}.

Proof: [Theorem 1] From Lemma 1, we have

√
nh(n){(q̂1(u)− q1(u)), (q̂2(u)− q2(u))} L−→ {B1(q1(u)), B2(q2(u))}

where Bi are Brownian bridge processes with zero means. Using continuous mapping
theorem,

sup
0<u<1

√
nh(n)(q̂1(u)− q̂2(u)) converges to sup

0<u<1
(B1(q1(u))−B2(q2(u))) as n→∞.

Proof: [Theorem 3] The proof follows using Hadamard differentiability and functional
delta method (Theorem 3.9.4, Van der Vaart and Wellner (1996)). Let BV1[0, 1] denote the
set of cadlag functions of total variation bounded by M (finite). The map

φ(A,B) =
� 1

0 AdB from D[0, 1]× BV1[0, 1] to the real line is Hadamard differentiable
(using Lemma 3.9.17 of van der Vaart and Wellner (1996)). The Hadamard derivative of
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φ(A,B) is

φ(A,B)(α, β) =
� 1

0
Adβ +

� 1

0
αdB (21)

where
�
Adβ is defined via integration by parts if β is not of bounded variation.

Let A = q1(u)− q2(u) , B = Q1(u)+Q2(u)
2 , α = B1(q1(u))−B2(q2(u)) and

β = B3(Q1(u)+Q2(u)
2 ) where B3 is a Brownian bridge process with mean zero.

Using Lemma 1 and delta method, we get for large n and under H0

√
nh(n)T2 → φ

(q1(u)−q2(u), Q̂1(u)+Q̂2(u)
2 )

(B1(q1(u))−B2(q2(u)), B3(Q1(u) +Q2(u)
2 )) (22)

=
�

(B1(q1(u))−B2(q2(u)))d
((Q1(u) +Q2(u)

2
)
,

since the first term in (22) is zero under H0 for large n.

Hence, the limiting random variable is normally distributed with mean zero and
variance

σ2 = V ar(
�

(B1(q1(u))−B2(q2(u)))d((Q1(u) +Q2(u)
2 )). (23)

A.2: Tables
Table 6: Power comparison for GLD(1,1,2,1) vs GLD(1,2,2,1)

h(n)
n Statistics 0.15 0.19 0.25
25 Sup uncensored 0.390(0.636) 0.288(0.614) 0.310(0.824)

Sup censored 0.15(0.168) 0.18(0.153) 0.250(0.266)
Int uncensored 0.984(1.000) 0.966(1.000) 0.978(1.000)
Int censored 0.262(0.247) 0.347(0.365) 0.457(0.428)
Kochar 0.356 0.356 0.356
Cheng 0.146 0.146 0.146

50 Sup uncensored 0.422(0.806) 0.712(0.948) 0.836(0.948)
Sup censored 0.305(0.585) 0.389(0.444) 0.491(0.584)
Int uncensored 1.000(1.000) 1.000(1.000) 1.000(1.000)
Int censored 0.565(0.283) 0.767(0.793) 0.862(0.923)
Kochar 0.524 0.524 0.524
Cheng 0.146 0.146 0.146

100 Sup uncensored 1.000(1.000) 1.000(1.000) 1.000(1.000)
Sup censored 0.496(0.638) 0.773(0.82) 0.951(0.963)
Int uncensored 1.000(1.000) 1.000(1.000) 1.000(1.000)
Int censored 0.972(0.981) 0.992(0.987) 0.997(0.998)
Kochar 0.798 0.798 0.798
Cheng 0.160 0.160 0.160
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Table 7: Power comparison for GLD(1,1,2,1) vs GLD(1,1.2,2,1)

h(n)
n Statistics 0.15 0.19 0.25
25 Sup uncensored 0.086(0.102) 0.076 (0.080) 0.122 (0.084)

Sup censored 0.061(0.078) 0.095(0.100) 0.086(0.100)
Int uncensored 0.196(0.182) 0.260(0.214) 0.304(0.308)
Int censored 0.111(0.133) 0.127(0.194) 0.170(0.193)
Kochar 0.102 0.102 0.102
Cheng 0.109 0.109 0.109

50 Sup uncensored 0.086(0.104) 0.130(0.16) 0.182(0.142)
Sup censored 0.122(0.122) 0.142(0.165) 0.157(0.205)
Int uncensored 0.636(0.58) 0.688(0.588) 0.804(0.804)
Int censored 0.266(0.343) 0.361(0.401) 0.539(0.548)
Kochar 0.200 0.200 0.200
Cheng 0.110 0.110 0.110

100 Sup uncensored 0.146(0.118) 0.188(0.222 ) 0.322(0.358)
Sup censored 0.232(0.241) 0.283(0.316) 0.369(0.405)
Int uncensored 0.974(0.968) 0.982(0.986) 0.992(0.996)
Int censored 0.712(0.756) 0.805(0.819) 0.915(0.941)
Kochar 0.301 0.301 0.301
Cheng 0.119 0.119 0.119

Table 8: Power comparison for EXP(1) vs EXP(2)

h(n)
n Statistics 0.15 0.19 0.25
25 Sup uncensored 0.270(0.310) 0.400(0.230) 0.350(0.290)

Sup censored 0.126(0.106) 0.106(0.170) 0.186(0.242)
Int uncensored 0.570(0.510) 0.620(0.600) 0.600(0.650)
Int censored 0.086(0.118) 0.122(0.198) 0.108(0.144)
Kochar 0.694 0.694 0.694
Cheng 0.740 0.740 0.740

50 Sup uncensored 0.540(0.360) 0.590(0.360) 0.550(0.570)
Sup censored 0.240(0.244) 0.238(0.192) 0.386(0.356)
Int uncensored 0.700(0.690) 0.700(0.730) 0.780(0.810)
Int censored 0.216(0.154) 0.246(0.240) 0.254 (0.222)
Kochar 0.926 0.926 0.926
Cheng 0.939 0.939 0.939

100 Sup uncensored 0.380(0.670) 0.490(0.320) 0.620(0.710)
Sup censored 0.370(0.250) 0.476(0.366) 0.538(0.386)
Int uncensored 0.810(0.780) 0.900(0.830) 0.830(0.910)
Int censored 0.304(0.296) 0.172(0.240) 0.284(0.338)
Kochar 0.998 0.998 0.998
Cheng 0.999 0.999 0.999
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Abstract
In this communication it is shown that employing statistical methods which account

for constraints, inherent in some scientific problems, will often lead to a substantial reduction
in the sample size required while simultaneously maintaining the power of the study and its
scientific validity. In fact a 40%, or even higher, reduction in the required sample size is
possible. These savings have the potential to impact individual labs and researchers and
will translate to saving of millions of dollars annually for granting authorities and federal
agencies such as the NIH.
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1. Introduction

Scientific research often requires testing of hypotheses comparing two or more exper-
imental groups. The successful conduct of such investigations requires a study design ap-
propriate for the scientific question at hand, a valid testing procedure for the hypothesis of
interest, and an adequate sample size which guarantees suitable power. Sample size deter-
mination, or equivalently power calculations, are usually based on two sample and two–sided
alternative hypotheses designed to test whether the mean response of the treatment group
is different from that of the control group, cf., Ryan (2013). Such calculations are simple
and very widely used and numerous software packages, such as SAS and SPSS, have built–in
routines for such tasks.

In many applications, such as dose–response studies or multi–drug trials, researchers
may have a priori beliefs about the experimental groups. Such prior beliefs are usually
based on earlier studies or an understanding of the underlying scientific phenomenon and
are often formulated as mathematical inequalities or constraints, known as order restrictions.
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For example, in a dose–response studies toxicologists may expect that the mean response
increases (or decreases) with the dose of a chemical. This constraint is known as the simple
order. Observational data are also often of this form. For example, in Spiegelhalter et al.
(1999) the length of the ramus bone of 20 boys was measured at three equally spaced time
points from ages 8 to 9. The question of interest was to know whether there was a significant
growth spurt during the observed time period. In a time–course gene expression study, the
mean expression of a gene may increase up to a certain point, reflecting its biological activity
[Peddada et al. (2003)] and then decrease. This constraint is known as the umbrella order. In
clinical trials, a researcher may be interested in demonstrating that the standard treatment
is inferior to one of the new treatments, or, that a new treatment is at least as efficacious as
the existing ones. This constraint is called the tree order. For example, Igari et al. (2014)
compared the effect of various doses of cytisine on a dysporic–like state in rats. In some
cases, the study design may include multiple control and multiple treatment groups. For
example, the US National Toxicology Program (NTP) evaluates toxicity and carcinogenicity
of chemicals using the concurrent control group as well as historical controls (which are
controls collected from similar studies conducted by the NTP). This set up leads naturally
to a bipartite order restriction [Kanno et al. (2003) and Peddada et al. (2007)].

The above mentioned order relations are represented graphically in Figure 1 by their
corresponding order graphs. In each of the Figures, a circle represents a group mean, or
more generally any other statistical parameter, and a pointed arrows implies an inequality
among the two means or parameters. The roots of the order graph are the nodes with
the largest means, whereas the leaves are the nodes with the smallest means. A variety of
other constraints, or order restrictions, arise in applications. There exists over six decades of
literature on this subject starting with the pioneering papers of Ayer et al. (1955), van Eden
(1956) and Bartholomew (1959). Several books summarizing the work done in this field have
also been published, e.g., Barlow et al. (1972), Robertson et al. (1988) and Silvapulle and
Sen (2005).

In this article we highlight some important consequences of incorporating order restric-
tions in both the design and the analysis of experiments. Doing so addresses the scientific
questions motivating the study in a principled manner. For if, for example, a standard
two–sided test is applied in Figure 1(c), then a significant result tells us that there are dif-
ferences among the treatments, it does not tell us that one of the treatments is superior to
the control. Such inferences, however, are built–in into the procedures of constrained infer-
ence. Thus incorporating constraints in the analysis provides more meaningful inferences
about the existence of an ordering among the experimental groups. In addition, using the
constraints substantially improves efficiency. This means that we can expect considerable
improvement in power and therefore the required sample sizes are reduced. In other words,
failing to properly incorporate the order restrictions may lead to inflated costs of conducting
studies, loss of power and inadequate scientific conclusions.
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(a) Simple order (b) Umbrella order

Control

Trt A
Trt B

Trt C

(c) Tree order

Ctr 1

Trt A
Trt B

Ctr 2

Trt C

(d) Bipartite order

Figure 1: Order graphs for some common order restrictions. Circles represent
group means and a pointed arrow indicates an inequality among the means.
Green circles correspond to leaves of the order graph and red circles to their
roots. We refer to the leaves and roots as the extreme groups. The intermediate
groups are designated by a black circle.

2. Power, Order and Scientific Discovery

It is well known that tests tailored to accommodate order restrictions, called restricted
or constrained tests [Silvapulle and Sen (2005)], are typically more powerful than their un-
constrained counterparts. For example, consider the one–way analysis of variance (ANOVA)
model

Yij = µi + εij,

where Yij is the response of jth observation in ith treatment group, i = 1, . . . , K and j =
1, . . . , ni and the errors εij are independent N (0, σ2) random variables (RVs). For simplicity,
and without any loss of generality, see Remark 2.2 in Singh and Davidov (2020), one may
assume that σ2 = 1 in which case the unconstrained likelihood ratio test (LRT) is of the
form

Tn =
K∑

i=1
ni(Ȳi − µ̂i)2

where Ȳi = n−1
i

∑ni
j=1 Yij for i = 1, . . . , K and µ̂i = Ȳ = N−1 ∑K

i=1 niȲi are the unrestricted
estimators. Similarly the constrained LRT is given by

Tn =
K∑

i=1
ni(µ̃i − µ̂i)2

where µ̃i is the ith component of µ̃ = argmax{∑K
i=1 ni(Ȳi − µi)2 : Rµ ≥ 0}, the restricted

maximum likelihood estimator of µ which is assumed to satisfy a collection of linear in-
equalities Rµ ≥ 0. It is well known that under the null the unconstrained LRT follows a
chi–square distribution whereas the restricted LRT follows, what is known as, a chi–bar–
square distribution [Silvapulle and Sen (2005)].
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Figure 2 plots the power function of the standard (unconstrained) ANOVA test versus
its constrained counterpart as a function of the per–group sample size under a balanced
design. Clearly, the constrained test has higher power. Consequently the sample size required
to guarantee a prespecified power is smaller when using a constrained test. At the 5%
significance level and 80% power the unconstrained test requires 136 observations whereas
the constrained test requires only 88 observations. It is evident that the reduction in sample
sizes is a substantial 35%.

Figure 2: The power of the constrained and unconstrained tests in the ANOVA
setting. Data were simulated from normal populations with means 0, 0.25, 0.5
and 0.75, and unit standard deviation

Even more dramatic examples are reported in the literature both in the context of
ANOVA [Farnan et al. (2014)] as well as a variety of other settings [e.g., Davidov and
Herman (2012) and Rosen and Davidov (2017)]. A theoretical proof of the superiority of
the restricted LRT is provided by Praestgaard (2012) and Davidov and Iliopoulos (2020). In
the following we provide two examples from our own research which demonstrate that using
methods which incorporate constraints helps to uncover clinically important features in the
data which were missed by standard methods.

Example 1: Uterine fibroids, also known as uterine leiomyomata, are benign smooth muscle
hormonally mediated tumors commonly found in pre–menopausal women. Nearly 70% of all
women have these tumors. They cause pain, bleeding, urinary incontinence and pregnancy
complications. The total annual cost of treating these tumors in US is estimated to be
between 4 to 9 billion US dollars. The NIH, [cf. Peddada et al. (2008)], conducted a large
prospective study of 72 pre–menopausal women (38 black and 34 white). Fibroid volumes
were measured by MRI taken at baseline and at 3, 6, and 12 months, with at least two
measurements per woman. African American women are known to have greater tumor
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burden so a standard ANOVA–based analysis with an interaction between race and was
performed. The interaction was found to be barely significant at p = 0.05. Since these
tumors are known to be estrogen dependent, it is reasonable to hypothesize that tumor
growth rates would decrease with age. This hypothesis was investigated in a recent re–
analysis of these data [Peddada and Jelsema (2016)] using methods which account for order
restrictions. A statistically significant decreasing trend in mean growth rates among whites
(p = 0.015) but not among blacks (p = 0.1880) (Figure 3) was formally discovered. Thus,
testing for order restrictions allows us to make a clinically important discovery that was not
discovered by the standard ANOVA based methodology.

Figure 3: Mammary gland fibroadenoma incidence in female rats

Example 2: The Fish industry uses Malachite Green Chloride as an antifungal agent. The
US National Toxicology Program (NTP) conducted a two year cancer bioassay with 48 female
rats assigned to each of four dose groups of Malachite Green Chloride, namely, 0, 100, 300
or 600 parts per million. The incidence of mammary gland adenomas and pituitary gland
adenoma–carcinomas are reported in Table 1. It is well–known that pituitary gland tumors
may be associated with mammary gland tumors via the prolactin pathway [cf. McComb
et al. (1984) and TR-527 (2005)]. Although these tumors are biologically dependent, the
NTP analyzed them separately. The p–values for the corresponding trend tests were not
significant, 0.113 for mammary gland adenoma and 0.162 for the pituitary gland adenoma–
carcinomas. Davidov and Peddada (2011) developed a nonparametric multivariate ordered
test that exploited the underlying dependence among the binary variables to test for trends in
multivariate data. Using this constrained trend test Davidov and Peddada (2011) reanalyzed
the NTP’s Malachite Green Chloride data and discovered a significant increasing trend in
both mammary gland adenomas as well as pituitary gland adeno–carcinomas, with a joint p–
value of 0.025, suggesting a carcinogenic effect of Malachite Green Chloride on both tumors
in a dose–related fashion. This finding reinforce the fact that the methods of constrained
inference may discover finding not detected by standard methods.

Another advantage of using the methods of order restricted inference is that it relaxes
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Table 1: Tumor incidence rates of control and Malachite Green Chloride treated
animals in the NTP study

Tumor type Estimator Control 100 ppm 300 ppm 600 ppm

Mammary Gland Unconstrained 0.050 0.052 0.023 0.130
Constrained 0.042 0.042 0.042 0.130

Pituitary Gland Unconstrained 0.607 0.822 0.696 0.756
Constrained 0.609 0.758 0.758 0.758

parametric assumptions. For example, suppose one is interested in the effect of an allele
on a phenotype Y . It is very common to test for ”trend” over the alleles aa,Aa,AA by
assigning scores X = 0, 1 and 2, respectively and performing a linear regression of Y on
X. The basic assumption, when using such a modelling framework, is that the change in
the mean response from aa to aA is same as from Aa to AA. Such assumptions may not
be supported by the data and preclude the possibility of some non–linear but monotonic
response such as in Figure 1(a). Such non–parametric curves are easily accommodated by
constrained methods. In toxicology, it is also very common to perform linear regression–
based tests such as the Cochran–Armitage trend test [Cochran (1954) and Armitage (1955)].
Some investigators use the exact dose as the explanatory variable and others use scores such
as 1, 2, 3 and 4. When linearity is not justifiable considerable loss of power is to be expected
[Peddada et al. (2005a)].

To summarize, incorporating the constraints in the analysis does not only lead to
a beautiful and less restrictive statistical theory with improved operating characteristics,
it may, much more importantly, help uncover biologically and clinically important results
which standard methods fail to detect.

3. Optimal Design: Sample Size and Cost Efficiency

Smucker et al. (2018) emphasized that one should customize the experiment for the
setting instead of adjusting the setting to fit a classical design, a comment that underscores
the importance of carefully planned experiments. Recently, Singh and Davidov (2019) devel-
oped a rigorous framework for constructing optimal experimental designs which incorporate
order restrictions. Their designs, known as Max–Min (MM) designs, maximize power un-
der the worst possible (allowable) configuration in the alternative. They showed that the
MM–design is of the form

ξMM = |V|−1 ∑
(i,j)∈V

ξij, (1)

where ξij = (ei + ej)/2, el is the lth standard basis of RK and V is the set of all maximal
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pairs. A pair (i, j) where i ∈ R, the set of roots, and j ∈ L, the set of leaves, is called a
maximal pair if there is a path from i to j. For more details see Singh and Davidov (2019).

The formula (1) is simple and easy to use. MM–designs for some common order re-
strictions such as the simple, tree, umbrella, and bipartite order (cf., Figure 1) are given
in Table 2 along with some other commonly used designs. It turns out that MM–designs
allocate observations only to the leaves and roots of the order graph. In fact, if there are
N observations, then N/2 will be distributed among the leaves and N/2 among the roots.
When there is more than one root the allocation among the roots is proportional to the
degree of the root, i.e., the number of paths to distinct leaves; and similarly for the leaves.
Thus, the MM–design for the simple order will allocate N/2 observations to the two extreme
groups. No observations are allocated to any of the intermediate groups. In the case of
the umbrella order, the MM–design assigns N/2 observations to the peak of the umbrella
and the remaining N/2 observations are equally divided among the extreme groups (first
and last). Similar logic applies to the tree and bipartite order. We note that MM–designs
do not allocate any observations to intermediate treatment groups, and thus do not allow
any comparisons among them. This potential practical deficiency can be be addressed and
rectified by using Singh and Davidov (2019)’s so called IUT–designs, which, for lack of space,
we will not further discuss here.

Table 2: The proportion of the observations allocated by the MM, Balanced,
and Dunnetts’ design are reported for the order relations depicted in Figure 1.
The notation “-” indicates that there is no design to consider

Order

Design Simple Umbrella Tree Bipartite

MM (1/2, 0, 0, 1/2) (1/4, 0, 1/2, 0, 1/4) (1/2, 1/8, 1/8, 1/8, 1/8) (3/10, 2/10, 1/10, 2/10, 2/10)

Balanced (1/4, 1/4, 1/4, 1/4) (1/5, 1/5, 1/5, 1/5, 1/5) (1/5, 1/5, 1/5, 1/5, 1/5) (1/5, 1/5, 1/5, 1/5, 1/5)

Dunnett - - (1/3, 1/6, 1/6, 1/6, 1/6) -

4. Results

The benefits associated with MM–designs were assessed by simulations using data from
the published scientific literature. Simulations under the simple order were based on the data
of Spiegelhalter et al. (1999), whereas the simulations for the tree and bipartite orders were
based on data from Igari et al. (2014) and Kanno et al. (2003), respectively. The substantive
scientific problems investigated in these papers were already briefly described. For simplicity,
the simulated data is normally distributed with mean values and standard deviations as
reported in Table 3. For each ordered alternative, we performed an unconstrained and
restricted likelihood ratio test. The results of the simulation study, based on 105 simulation
runs, are summarized in Figures 4 and 5 which display powers and sample sizes, respectively.
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Table 3: A brief summary of the results of Spiegelhalter et al. (1999), Igari et al.
(2014) and Kanno et al. (2003). We report on the group size, sample mean and
standard deviation as well as the pooled standard deviation (PSD). For the
tree order, treatment 1, serves as the control and is compared to the remaining
treatments. In the bipartite case, treatments 1 and 2 are the controls. Treatment
1 is compared to treatments 3, 4, and 5, whereas treatment 2 is compared to the
4 and 5

Treatment Group

Order 1 2 3 4 5 PSD

Simple 48.66± 2.52 49.62± 2.54 50.57± 2.63 2.56
20 20 20

Tree 97.6± 10.39 101.6± 8.66 102.2± 4.50 103.4± 10.04 105.9± 14.90 10.26
12 12 12 12 12

Bipartite 29.5± 2.95 30.0± 2.30 32.2± 3.13 34.8± 3.48 31.8± 4.34 3.31
6 6 6 6 6
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Figure 4: Power comparisons between the Maxi-Min (MM), Balanced (B) and
Dunnett’s (D) designs when applied with both the unrestricted and restricted
test. For example MM+R is the power of the MM design with a restricted test
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Figure 5: Sample sizes required for 80% power under the Maxi-Min (MM),
Balanced (B) and Dunnett’s (D) designs when applied with both the unrestricted
and restricted test. For example MM+R is the sample size required by the MM
design with a restricted test

Our simulation study shows, as previously noted, that using the restricted test is always
better than using the unrestricted test. It is clear that the MM–design results in improved
power relative to the balanced and other designs irrespective of the test being used. For
example, Figure 5(b) shows that the MM design analyzed by a restricted test requires a
sample of approximately 100 subjects whereas the balanced design with and standard test
requires 170 subjects.

5. Summary

This communication shows that accounting for constraints, which occur naturally in a
wide variety of scientific investigations, has a huge dividend. In particular it is shown, using
examples from the literature, that a substantial reduction in the sample size is achieved
when both designing and analyzing data using methods that account for constraints. It
is emphasized that the largest benefits are achieved when an experiment is both designed
and analyzed using order based methods. The reduction in the required sample sizes, or
equivalently the increase in power [Singh and Davidov (2019)], is nothing but phenomenal
suggesting that the routine use of order based methods, when appropriate, will result in
much more economical and efficient designs. In fact, since in many experimental sciences
a substantial portion of the budget is devoted to acquiring a large as possible sample, re-
searchers, pharmaceuticals, granting agencies and others may save millions of dollars on data
collection and do much more with a fixed budget. In addition, if the study involves biological
samples from animal or human subjects, then these methods would require the participation
of fewer animals or human subjects.

It is surprising that although the methodology we describe here traces its roots to the
late 1950’s it has not had a major impact on data collection and analysis in the sciences.
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There are several reasons for that. The first is that the focus of statisticians working in
this area had been largely theoretical with little concern for practical issues such as cost
reductions. Secondly, appropriate software for analyzing data using these constrained infer-
ence based methods were not available until recently. Software such as ORIOGEN [Peddada
et al. (2005b)] and CLME [Peddada and Jelsema (2016)] have taken the important first
steps in this direction and are gaining popularity among users. Finally, the development of
experimental designs [Singh and Davidov (2019)] which capitalize on scientific constraints is
a recent development with potential far reaching consequences.
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Abstract and Prologue
In the later part of my professional life in the Indian Statistical Institute (I.S.I.), when

I left Delhi to take up the position of the Director of I.S.I. in Kolkata, Aloke was my pillar
of support, my person-to-go-to in any crisis; his was the shoulder to cry on. Those were,
in many ways, difficult times for me and often I reflect and wonder how those times would
have been without Aloke. In fact, from the mid-nineties, Aloke, in his extremely pleasant,
shy and humble way, slowly but surely entered into a very close friendship in my life, which I
will cherish forever. My frequent travels to Delhi, well after my retirement from I.S.I., would
bring me to I.S.I., Delhi and to me that meant spending time with Aloke, long discussions
inevitably ending with a very pleasant lunch with him in the chinese restaurant, opposite the
gate of I.S.I. All these will remain only memories now and my next visit to Delhi (delayed
by Covid-19) will be empty, “Aloke-heen” (in Bengali), and will make me miss him all the
more. The following article, a brief introduction (by a non-expert) to the decision theory
in a non-commutative (quantum-) background, is my humble tribute to Aloke and to his
friendship for me.

Key words: Decision theory; Quantum theory; Bayes decision rule.

AMS Subject Classifications: 62K05

1. Introduction

The statistical decision-theory or the idea of founding Statistics on a theory of decisions
is due to Abraham Wald, enunciated in its originality, in his famous book, “Statistical De-
cision Functions” (Wald (1950), for a more recent account see the book of Ferguson (1967).
There have been attempts, mainly by Holevo (see for example the books of Holevo (2011)
and Hayashi (2017)), to recast these ideas in the context of non-commutative probabilis-
tic background. As is well-known (see the first half of the book of Parthasarathy (1992)
for an elegant account), the mathematical Quantum Theory represents a model of a non-
Kolmogoroffian (or non-commutative) probability theory and hence there should be good
reason to explore the possibility of studying an extension of the (classical) decision-theory
to this domain. To give a brief account of this is the aim here.
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2. The Mathematical Description of The (Classical) Decision-Theory

As Ferguson (1967) observes in his book, the theory of games, as introduced by von
Neumann in the 1940’s, has a great deal of similarity with many aspects of decision theory.
Both of these two theories start with three basic objects:
(i) a non-empty set of parameter, Θ, parametrizing the possible states of the system;
(ii) a non-empty set, Ω, of decisions (or actions) available to the statistician;
(iii) a function L : Θ× Ω→ R, called the loss function (the negative values of L needs to
be interpreted as gain).

This triplet (Θ,Ω, L) defines a statistical decision problem or a game with the following
interpretation. The nature (or providence!) chooses a point θ in Θ and the statistician, with
no knowledge of the choice nature has made, makes a decision (or chooses an action) ω in
Ω. As a consequence of these decisions, the statistician loses an amount L(θ, ω). While in
game-theoretic context, the players are trying simultaneously to minimize their losses, since
the nature chooses the state without any such bias (hopefully!), this presents a dilemma for
the decision-statistician and she tries to resolve this dilemma by gathering more information
on the state by “sampling or by performing many experiments”.

Thus for the decision-statistician, there is also a sample space X (here taken to be a
Borel subset of Rd, the d-dimensional Euclidean space) with a family of probability measures
{µθ}θ∈Θ on F(X ), the Borel σ-algebra of X . The statistical decision problem, given by the
triple (Θ,Ω, L) along with the sample space X of experiments, next chooses a (behavourial)
decision map D : X × F(Ω) → R+ such that D(x, ·) is a probability measure on the Borel
σ-algebra F(Ω). Next one writes down the risk function R : Θ× {D} → R by

R(θ,D) =
�

Ω

L(θ, ω)
�

X

µθ(dx)D(x, dω). (1)

An instructive way to rewrite (1) is to define the measure µθ ◦ D : F(Ω) 7→ R+ for every
θ ∈ Θ and ∆ ∈ F(Ω) by

(µθ ◦D)(∆) =
�

X

µθ(dx)D(x,∆) (2)

and replacing (1) by

R(θ,D) =
�

Ω

L(θ, ω)(µθ ·D)(dω), (3)

whenever the integral exists. Here we have noted that if X 3 x 7→ D(x,∆) is measurable,
then ∀ θ, µθ ◦D is a probability measure on Ω and one can give a meaning to the integral
in (3). The risk function R represents the average loss to the statistician when the nature
has chosen the state parametrized by θ and the decision made is represented by the decision
map D.

At this stage, one is still left with the problem of the “choice of parametrization”
θ ∈ Θ of the state and of the several avenues adopted by a statistician, we shall restrict our
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discussions here to the use of the “Bayes Principle”. This involves putting a structure of a
measure space on Θ and assigning a “prior probability measure”π on the σ-algebra F (Θ).
This leads naturally to the definition of the Bayes risk of a (behavourial-)decision rule
D with respect to the prior π as

R(π,D) =
�

Θ

π(dθ)R(θ,D)

=
�

Θ

π(dθ)
�

Ω

L(θ, ω)(µθ ◦D)(dω). (4)

With regard to the definition (4), there are a few technical issues, e.g. the sense of
measurability of the map θ 7→ µθ ◦D etc., but these can be easily treated; for example in the
above mentioned case one can have the assumption that θ 7→ µθ(·) is measurable and refer to
[Dunford and Schwarz (1988), pages 156-162]. It is also worth mentioning that often authors
(e.g. in Wald (1950)) consider the parameter space Θ to be finite or countably infinite. Also
note, since all the 3 set-functions are non-negative, one can define a conditional probability
measure of the random variable θ̂ on Θ, given the random variable X on X (called the
posterior probability measure of θ̂ given the observation of X) on the product σ-algebra
F (Θ)×F(X ) by

(π · µ)(δ ×∆) =
�

δ

π(dθ)µθ(∆) (5)

for δ ∈ F (Θ) ,∆ ∈ F(X ). In fact, in Ferguson (1967) the possibility of these two defini-
tions (4) and (5) are pre-conditions for speaking about the “Bayes decision principle”. This
definition (5) sets up a linear ordering on the set D(·, ·) of decision functions and a Bayes
decision rule is one that has the smallest Bayes risk, R.

A decision function D0 is said to be Bayes with respect to the prior measure π if

R(π,D0) = inf
D
R(π,D). (6)

It may happen that even if the right hand side of (6) exists, that value may not be attained
for any D0 and in such a case, one has to be satisfied with a decision D0; which is “close” to
the infimum. Let ε > 0. A decision function D0 = D0(ε) is said to be ε-Bayes if

R(π,D0) ≤ inf
D
R(π,D) + ε. (7)

There are many other questions that arise naturally in the context of the above discussions;
however, we shall take a break with the (classical) decision-theory and the rest of this article
will be devoted to an attempt to “transport” the theory to the non-commutative (quantum)
domain.

The definition (3) sets up a linear ordering (inherited from that of the real line) and
the rule that is most preferred by that ordering is called the minimax decision rule: a
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decision map D0 ∈ D ≡ the set {D : X ×F(Ω)→ R+ | D(x, ·) is a probability measure with
variation norm uniformly bounded w.r.t. x ∈ X} is said to be minimax if

sup
θ∈Θ

R(θ,D0) = inf
D∈D

sup
θ∈Θ

R(θ,D). (8)

If one assumes that (i) Θ and Ω are topological spaces such that Θ is compact, and
L : Θ×Ω→ R+ is continuous, (ii) Θ 3 θ 7→ µθ(·) is continuous in w∗-topology of probability
measures, then it can be seen that Θ×D 3 (θ,D) 7→ R(θ,D) is continuous w.r.t the natural
w∗-topology of D, uniformly in θ. Therefore sup

θ
R(θ,D) exists and D 7→ sup

θ
R(θ,D) is

continuous w.r.t the w∗-topology of D in which D is compact. Thus the infimum exists and
is attained since D is compact, i.e., there exists a decision map D0 with the property that

inf
D∈D

sup
θ∈Θ

R(θ,D) = sup
θ∈Θ

R(θ,D0).

A very similar proof for the partial quantum statistical decision rules can be constructed
with (µθ ◦D)(·) replaced by TrS(ρθD(·)) and very similar results can be obtained with same
set of assumptions, as explained below.

3. Quantum Theory of Bayes’ Decision-rules

If one thinks of the Quantum Theory as one possible model for non-Kolmogoroffian
probability (see Partasarthy (1992) for an elaboration of this point of view), then the pair
(sample space X , real-valued random variable X) goes over to the relevant pair (Hilbert
space hS, a self-adjoint operator X̂ on it). Furthermore, the probability measure on F(X),
associated with the random variable X is replaced by a density matrix ρ, a positive trace-
class operator (B1+(hS)) of trace 1, on hS. In the present context of theory of decisions,
there are two distinct possibilities:
(i) following Holevo’s work (see Partasarthy (1992) and Holevo (1974)), one may have a kind
of partial quantum (or non-commutative) statistical decision theory in which the sample
space metamorphoses into its corresponding quantum structure, leaving the parameter-set
Θ, a classical measure space with a prior probability measure π on it or (ii) a further or fully
quantum statistical decision theory, in which the Bayesian part also undergoes a quantum
metamorphosis. What turns out to be a remarkable coincidence (at least to the present
author) that this second route has all the aspects of “quantum entanglement” (see. e.g.
Petz (2008) and Parthasarthy (2013)) built in the mathematical structure.

For implementing the route (i), we first note that the sample space X is replaced
by a (separable) Hilbert space hS, the corresponding real-valued random variable X by a
(possibly unbounded) self-adjoint operator X̂ in hS and the family of probability measures
{µθ(·)}θ∈Θ by a family of density matrices ρ ≡ {ρθ}θ∈Θ ∈ B1+(hS) with TrS(ρθ) = 1 for
every θ, where TrS stands for the trace taken in the Hilbert space hS. Furthermore, the
triple (Θ,Ω, L) are given as before with Θ and Ω as two measure spaces and L : Θ × Ω →
R+ measurable loss function. The most important change that takes place here is the
replacement of the (behavourial) decision-function D(x,∆) (for x ∈ X ,∆ ∈ F(Ω)) by a map
D : F(Ω) → B+(hS), the set of non-negative bounded operators on hS such that it is
countably additive: {∆j}∞j=1 of disjoint subsets in F(Ω) such that ∆ = ⋃

j=1
∆j implies that
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D(∆) =
∞∑
j=1

D(∆j) (the infinite sum converging in strong operator topology), and D(Ω) =

I ∈ B(hS). This kind of family is called a POVM (positive operator-valued measures) on Ω
(see Holevo (2011) and Davies (1976) for some applications of POVM). We can now define
the partial quantum risk function (p.q.r.f) as:

R(θ,D) =
�
L(θ, ω)TrS(ρθD(dω)). (9)

The right hand side makes sense since the map ρ ◦D : Θ×F(Ω) 7→ R+ given by

(ρ ◦D)(θ,∆) = TrS(ρθD(∆)) = TrS(ρ1/2
θ D(∆)ρ1/2

θ ), (10)

is a non-negative countably additive set-function with (ρ ◦D)(θ,Ω) = 1 and hence defines a
probability measure on Ω for every θ ∈ Θ. Thus (9) makes sense as a Lebesgue integral and
(9) can be rewritten as

R(θ,D) =
�
L(θ, ω)(ρ ·D)(θ, dω). (11)

Finally, with the prior probability measure π on F (Θ), one has as in (4), the partial quantum
Bayes’ risk (p.q.B.r) of a (behaviourial) decision rule D:

R(π,D) =
�

Θ

π(dθ)R(θ,D)

=
�

Θ

π(dθ)
�

Ω

L(θ, ω)(ρ ·D)(θ, dω). (12)

As in the classical case, one can define a (partially quantum) conditional density matrix of
the random variable θ̂ on Θ, given the (quantum) observation of the operator X̂ in hS (we
shall call it as posterior density matrix of θ̂ given X̂ in hS):

(π · ρ)(δ) =
�

δ

π(dθ)ρθ, ∀ δ ∈ F (Θ) , (13)

where the integral on the right hand side is the strong Bochner integral in the Banach space
B1(hS). It is easy to see that this B1+(hS)-valued set function on F (Θ) is countably additive
and TrS(π · ρ) (Θ) = 1. In fact, the Bayes risk p.q.B.r can be rewritten in terms of the
posterior density matrix (π ◦ ρ)(·) as

R(π,D) =
�

Θ×Ω

L(θ, ω)TrS((π · ρ)(dθ)D(dω)). (14)

In analogy, given a prior π, the partially quantum Bayes decision rule is the D which gives
the smallest p.q.B.r and a decision D0 (in B+(hS)-valued POVM’s on F(Ω)) is said to be
Bayes with respect to prior π if

R(π,D0) = inf
D∈hS−povm(Ω)

R(π,D). (15)
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In the rest of this article, we consider fully quantum decision theory in which the
sample space X as well as parameter space Θ metamorphoses into two (separable) Hilbert
space hS and hB, respectively, and π · µ(·) or π · ρ are replaced by one density matrix Φ on
h̃ = hS ⊗ hB. This structure, in conjunction with the following assumptions constitute the
present new proposal.

A1. Ω is a compact Borel space and the loss operator L : Ω → B+(hB) is continuous
w.r.t the ω∗-topology of B(hB);

A2. D : F(Ω) 7→ B+(hS) is a POVM, as mentioned earlier and as in Holevo’s theory.

Then we lift these two operator-families to the Hilbert space h̃ by setting

L̃(ω) = IS ⊗ L(ω) for ω ∈ Ω and
D̃(∆) = D(∆)⊗ IB for ∆ ∈ F(Ω). (16)

Note that L̃(ω) commutes with D̃(∆) in h̃ and we define the fully quantum risk function

R(Φ, D) =
�

Ω

Trh̃(ΦL̃(ω)D̃(dω)), (17)

which is

=
�

Ω

Trh̃{(L̃(ω)1/2ΦL̃(ω)1/2)D̃(dω)},

showing that R(Φ, D) ≥ 0, if it exists. The issue of the sense in which the integral in (17)
can be defined is not a simple one and it is left unresolved in this article, to be dealt with
later. However, it should be mentioned that Holevo (see e.g. Holevo (1974)) gave a theory
to study such integrals. Here we shall restrict ourselves to the simpler case when the density
matrix Φ on h̃ is a finite linear combination of tensors of density matrices on hS and hB:

Φ =
n∑
j=1

ρj ⊗ πj; ρj ∈ B1+(hS), πj ∈ B1+(hB). (18)

In such a case,

ΦL̃(ω)D̃(dω) =
n∑
j=1

(ρjD(dω)⊗ (πjL(ω))

and thus we shall be looking at the “integral”
�

Ω

TrB(πjL(ω)) · TrS(ρjD(dω)), (19)

which exists as a Lebesgue-type integral since the function TrS(πjL(·)) is bounded continuous
on compact Ω and since the second factor in (19) is clearly a (non-negative) finite measure
with total variation = TrS(ρj). For the rest of the discussion, viz. the one on a kind of
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minimax theorem, we shall assume that the integral in (17) exists for all density matrices Φ
on hS ⊗ hB.

As we have observed before, by virtue of the assumption A1,
the map: density matrices on h̃ 3 Φ 7→ R(Φ, D) ∈ R+ is continuous w.r.t. the w∗-topology
on density matrices induced by B(h̃) after applications of Mazur’s theorem. Also note that
Alaoglu’s theorem implies that in the same topology, the set of density matrices is a (convex)
compact set and therefore, there exists a density matrix Φ0 such that

sup
Φ
R(Φ, D) = R(Φ0, D). (20)

On the other hand, it is easy to see that

sup
Φ

inf
D
R(Φ, D) ≤ inf

D
sup

Φ
R(Φ, D)

= inf
D
R(Φ0, D)

≤ sup
Φ

inf
D
R(Φ, D)

and therefore one has

sup
Φ

inf
D
R(Φ, D) = inf

D
sup

Φ
R(Φ, D). (21)

The left hand side is called the lower value and the right hand side the upper value and
equality of these two constitutes the minimax decision rule.

The procedure and results, indicated above can be strengthened more, in line with the
classical case, if instead we ask the following:

Given σ ∈ B1+(hB), let Sσ = {Φ ∈ B1+(hS ⊗ hB) | TrSΦ = σ}.

Then does there exist a POVM D0 such that sup
Φ∈Sσ

inf
D
R(Φ, D) = sup

Φ∈Sσ
R(Φ, D0) ?
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Abstract
This article considers the analysis of data using a nonlinear regression model in which

the covariate has a distribution, i.e., the error-in-variables case. Moreover, some of the same
data consisting of left- and right-censored data are used to estimate the covariate distribu-
tion. We show how to simultaneously fit the nonlinear error-in-variables regression model
and estimate the covariate distribution using Bayesian inference. The proposed method is
illustrated with a simulated data set. We also show the impact of knowing the covariate
distribution and the actual covariate values. Furthermore, we show the impact of taking
additional data on inference and prediction.

Key words: Bayesian inference; Left-censored; Markov chain Monte Carlo; Prediction; Right-
censored.

AMS Subject Classifications: 62F15, 62J02, 62N01, 62P30

1. Introduction

It is our privilege to to contribute this article to the special issue of Statistics and Ap-
plications in honor of Professor Dey. The first author met Professor Dey when he visited the
University of Waterloo in the late 1980’s. At the time, research in the design of experiments
for improving quality and productivity in industry had been reinvigorated by the appearance
of Taguchi Methods. Professor Dey’s 1985 book was timely for its mixed-level orthogonal
arrays that were being promoted by the Taguchi Methods. The Wu and Hamada (2009) Ex-
periments book refers to Professor Dey’s 1985 book as well as his 1999 book with Professor
Mukerjee a number of times for theoretical details and presents tables of his OA(24, 61, 214),
OA(54, 21, 325), and OA(54, 61, 324) designs for use by practitioners. The first author fondly
remembers Professor Dey as a formal gentleman and seasoned scholar who kindly spent time
talking to a young assistant professor about research. In this article, we present a problem
that we faced on a project at work. Here we focus on data analysis although there is a design
aspect that could be explored.

Suppose that we sample a population each year for I years, i = 1, . . . , I. At year i,
we sample a unit and record whether a feature of interest can be observed in the unit. For

Corresponding Author: Michael Hamada
Email: hamada@lanl.gov
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example, cracks occur on containers based upon stresses on the container. The initiation
crack area or subsequent cracks occur at some time point. If a crack is observed we know that
the crack started sometime before that year. Otherwise, we know the crack will start after
the recorded time. In terms of chemical reactions, we can think about a reaction occurring
at a recorded time. If observed, all that we know is that the mechanism started in the unit
before year i; if it is not observed, all that we know is that the mechanism will start in the
unit after year i. That is, we assume that the mechanism will start at some time in all units so
that there is a start time distribution. The data in which the mechanism has not started are
right-censored data. The data in which the mechanism has started are left-censored data.
An example of a model that displays similar characteristics is convex degradation where
the degradation rate increases with the level of degradation (Meeker and Escobar, 1998).
Suppose that the start time distribution is Lognormal(µ, σ2), say Lognormal(3, 0.12) with
median 20.1 years and 0.95 probability interval (14.4, 27.0) years. Recall that the log start
time distribution is Normal(µ, σ2). The proportion of the population that the mechanism
has started at time t is displayed in Figure 1.
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Figure 1: Proportion of population that mechanism has started versus time
(years).

Suppose that for those units in which the mechanism has started we observe a quantity
Yt at time t, which is modeled as Yt = β0(1− exp(−β1et)) + εt. This is a nonlinear regression
model with mean β0(1−exp(−β1et)), where et is the elapsed time between the time when the
mechanism started s (i.e., the start time) and time t (i.e., et = t − s). εt is the population
error assumed to be distributed as Normal(0, σ2

ε ) and is assumed independent of the start
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time s. Suppose that β0 = 1000, β1 = 0.025 and σε = 1. The mean β0(1 − exp(−β1et))
versus elapsed time et is displayed in Figure 2.
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Figure 2: Quantity Y nonlinear regression mean versus elapsed time (years).

2. Data Model and Analysis

In our scenario, we will use example data shown in Table 1, where one unit is sampled
per year for 30 years at times 1-30. The StartStar column is 1 if the mechanism is not
observed to have started; otherwise, 0 if the mechanism is observed to have started. The
Y column is the quantity Y if the mechanism is observed to have started; e.g., if a crack is
observed, Y might be the the length of the crack. The elapsed time is not known; we only
know that at time t with StartStar equal to 0, the start time s is less than t, i.e., the elapsed
time et is a random variable, t− s, where s ∼ Lognormal(3, 0.12)I(0, t) and I(0, t) indicates
that the lognormal distribution is restricted to the interval (0, t). Because et is not known
exactly, but has a distribution, the nonlinear regression model of Y is an error-in-variables
model where the covariate et has a distribution and not an exactly known value.

Further, we use the Time-StartStar data to estimate µ and σ for the Lognormal(µ, σ2)
start time distribution. For a StartStar of 1, say, for Time 2, the likelihood contribution is
1−Φ( ln(2)−µ

σ
), the probability of observing a right-censored datum, where Φ() is the normal

cumulative distribution function. For a StartStar of 0, say, for Time 19, the likelihood
contribution is Φ( ln(19)−µ

σ
), the probability of observing a left-censored datum.
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Table 1: Example Data (ordered so that right-censored data appear first; Elapsed
Time is unknown to the analyst)

Time StartStar Elapsed Y
(year) Time (year)

1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
6 1 0 0
7 1 0 0
8 1 0 0
9 1 0 0

10 1 0 0
11 1 0 0
12 1 0 0
13 1 0 0
14 1 0 0
15 1 0 0
16 1 0 0
17 1 0 0
18 1 0 0
21 1 0 0
19 0 0.47 12.36
20 0 1.15 27.18
22 0 0.51 13.70
23 0 3.66 85.82
24 0 6.62 151.98
25 0 5.41 125.38
26 0 4.68 110.55
27 0 3.66 88.28
28 0 5.92 138.13
29 0 9.97 219.96
30 0 6.99 160.38

We use a Bayesian analysis with the following relatively diffuse prior distributions
(Gelman et al., 2013):

• β0 ∼ Lognormal(7, 0.52) with a 0.95 probability central interval of (411.6, 2921.9)

• β1 ∼ Lognormal(−4, 12) with a 0.95 probability central interval of (0.003, 0.130)

• σt ∼ HalfNormal(0,
√

102) with a 0.95 probability central interval of (0.099, 7.088)
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• µ ∼ HalfNormal(0,
√

102) with a 0.95 probability central interval of (0.099, 7.088)

• σ ∼ HalfNormal(0,
√

102) with a 0.95 probability central interval of (0.099, 7.088)

These prior distributions are thought to be relatively diffuse, i.e., they are chosen to be
quite wide so that the true values of the parameters are thought to fall within these high
probability central intervals.

We obtain the following results using a Markov chain Monte Carlo (MCMC) algorithm
(Gelman et al., 2013) implemented in JAGS (Plummer, 2003) using the R (R Core Team,
2020) package rjags to call JAGS. The JAGS code for the proposed analysis is given in the
Appendix that produces 400,000 draws from the posterior distribution. In the examples, we
use 10,000 burnin draws (which are discarded) and 40,000,000 subsequent draws, which we
thin by taking every 100th draw. Plots of the posterior draws not shown here display good
mixing. Moreover, diagnostics (Gelman and Rubin’s convergence diagnostic; Gelman and
Rubin, 1992) also suggest convergence, i.e., these draws are from the appropriate posterior
distribution.

Table 2 displays the posterior summaries for the model parameters µ and σ for the
start time distribution and β0, β1 and σt for the quantity Y nonlinear regression model.
Note that there is substantial uncertainty associated with σt.

Table 2: Posterior Summaries of Model Parameters (50, 2.5, 97.5 percentiles)
from Table 1 Data

Parameter True 50% 2.5% 97.5%
µ 3.000 2.975 2.853 3.073
σ 0.100 0.127 0.077 0.269
β0 1000.000 1106.450 502.993 2583.997
β1 0.025 0.018 0.007 0.046
σt 1.000 2.134 0.100 6.999

2.1. Impact of unknown starting times

There are two impacts of not knowing the starting times. First, the start time distri-
bution parameters are estimated from the left- and right-censored start times. Second, the
elapsed times are unknown because of the unknown start times; that is, the covariate in the
nonlinear regression model is not known exactly and is referred to as an error-in-variables
case. Table 3 shows the impact of using the true error-in-variables (E-I-V) distribution
(Lognormal(3, 0.12)) as well as that of using the actual elapsed times (see Table 1 for the
actual elapsed times). We see that using the true EIV distribution provides no improvement,
at least for this one data set, but the nonlinear regression model parameters are substan-
tially better estimated (with reduced uncertainty) when the actual elapsed times are used
as compared with Table 2.
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Table 3: Posterior Summaries of Model Parameters (50, 2.5, 97.5 percentiles)
for Some Hypothetical Situations

Parameter True 50% 2.5% 97.5%
use true E-I-V distribution

β0 1000.000 1121.012 509.559 2652.956
β1 0.025 0.019 0.008 0.049
σt 1.000 2.132 0.101 7.023

use actual elapsed times
β0 1000.000 1012.378 851.154 1268.457
β1 0.025 0.025 0.019 0.030
σt 1.000 1.016 0.662 1.821

3. Prediction

Suppose that we want to predict a percentile of the Y distribution, say the 90th per-
centile, at a given time, say 30 years. Suppose that the population size is 1,000. We can
draw from the start time distribution to obtain start times and predict Y using the elapsed
times (30 minus start times) and the nonlinear regression model, i.e. draw 1,000 Y ’s from
the Y distribution. The 90th percentile is the 900th ordered prediction. We do this 10,000
times and take the 95th percentile of the 10,000 90th percentiles to obtain 165.43; for brevity
we refer to this as the 90th percentile of the population Y distribution or even shorter as
the 90th percentile. For times of 45 and 60 years, the 90th percentiles of the population
Y distribution are 426.42 and 605.78, respectively. Based on the proposed analysis, we can
obtain a posterior predictive distribution and a 0.95 probability upper bound on the the
90th percentile of the population Y distribution. Table 4 shows the Table 1 data posterior
90th percentile at times 30, 45, and 60 years. The posterior 90th percentiles are somewhat
higher that the true 90th percentiles especially at times past the data, i.e., 45 and 60 years.

Table 4: True and Table 1 Data 90th Percentiles at 30, 45, and 60 Years

Time True Table 1 Data
(year) Percentile Percentile

30 165.43 165.56
45 426.42 440.09
60 605.78 669.36

4. Impact of Taking More Samples

We can also consider the impact of taking more samples per year and taking samples
for more than 30 years, e.g., 60 years, using the proposed analysis. Table 5 shows the results
when 60 total samples are taken. We use the notation 1@1(1)30 for the Table 1 sampling
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scheme, i.e., 1 sample each year from years 1 to 30. Table 5 shows results for 2@1(1)30,
1@1(1)60, and 2@2(2)60; 2@2(2)60 denotes 2 samples in every even year from year 2 to year
60. Note that the first two schemes add to the Table 1 data. The 2@2(2)60 scheme uses
data from the even years of the 2@1(1)30 scheme. Table 6 shows the results when 120 total
samples are taken; 60 additional samples are added to the data analyzed that produced the
Table 5 results. Table 6 shows results for 4@1(1)30, 2@1(1)60, and 4@2(2)60.

Increasing the sample from 1 to 2 to 4 per year (1@1(1)30, 2@1(1)30, 4@1(1)30) helps
to estimate σ better; estimation for β0 seems somewhat worse but recall these results are
for one realization of the data. Spreading out the inspections across more years helps much
more, e.g., (1@1(1)60, 2@2(2)60) and (2@1(1)60, 4@2(2)60). Inspections on even years and
more samples at each inspection helps more than inspecting every year with less samples at
each inspection. It is noteworthy that none of sampling schemes had an impact on estimating
σt so that the posterior distributions are similar to the prior distribution.

Table 5: Posterior Summaries of Model Parameters (50, 2.5, 97.5 percentiles)
Using More Samples and More Years (60 total samples)

Parameter True 50% 2.5% 97.5%
2@1(1)30

µ 3.000 3.013 2.938 3.077
σ 0.100 0.113 0.079 0.182
β0 1000.000 1242.127 574.067 2762.086
β1 0.025 0.020 0.008 0.049
σt 1.000 2.163 0.103 7.061

1@1(1)60
µ 3.000 2.998 2.907 3.079
σ 0.100 0.125 0.099 0.165
β0 1000.000 1058.932 859.737 1523.670
β1 0.025 0.023 0.013 0.033
σt 1.000 2.154 0.098 7.036

2@2(2)60)
µ 3.000 2.996 2.915 3.069
σ 0.100 0.108 0.086 0.141
β0 1000.000 1117.917 916.186 1561.584
β1 0.025 0.021 0.013 0.029
σt 1.000 2.168 0.096 7.199

Like Table 4 for the 1@1(1)30 sampling scheme, Tables 7 and 8 show the posterior
90th percentiles at 30, 45, and 60 years for the various sampling schemes with 60 and 120
total samples, respectively. Overall, the posterior 90th percentiles are quite close to the
true 90th percentiles. The results for 2@1(1)30 and 4@1(1)30) are worse caused by the
worse estimation for β0 as noted previously. For some of the schemes, the posterior 90th
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Table 6: Posterior Summaries of Model Parameters (50, 2.5, 97.5 percentiles)
Using More Samples and More Years (120 total samples)

Parameter True 50% 2.5% 97.5%
4@1(1)30

µ 3.000 3.026 2.983 3.065
σ 0.100 0.091 0.072 0.123
β0 1000.000 1237.483 580.953 2966.605
β1 0.025 0.021 0.008 0.053
σt 1.000 2.069 0.095 6.726

2@1(1)60
µ 3.000 3.004 2.943 3.061
σ 0.100 0.121 0.103 0.146
β0 1000.000 986.211 866.839 1171.483
β1 0.025 0.025 0.019 0.032
σt 1.000 2.214 0.102 7.207

4@2(2)60
µ 3.000 3.019 2.964 3.071
σ 0.100 0.103 0.088 0.124
β0 1000.000 978.467 881.563 1144.787
β1 0.025 0.026 0.020 0.032
σt 1.000 2.085 0.097 6.875

percentiles are slightly less the true 90th percentiles; again these results are for one realization
of the data.

Table 7: 60 Sample Data 90th Percentiles at 30, 45, and 60 Years

Time True 1@1(1)30 2@1(1)30 1@1(1)60 2@2(2)60
(year) Percentile Percentile Percentile Percentile Percentile

30 165.43 165.56 179.38 163.44 166.44
45 426.42 440.09 502.20 424.13 421.92
60 605.78 669.36 767.29 611.60 611.29

5. Discussion

In this article, we considered a nonlinear regression model with elapsed time as a
covariate for a quantity Y . The elapsed time is the difference between the inspection time and
the time when a mechanism started. At inspection, we only know that the mechanism has
started or not so that the elapsed time is unknown, the error-in-variables case. Our proposed
method analyzes the right- and left-censored elapsed time data to estimate the elapsed time
distribution. This analysis is achieved simultaneously with analyzing the error-in-variables
(E-I-V) nonlinear regression model for the Y data, where the elapsed time distribution is the
E-I-V distribution. Besides the original 30 sample scheme, we showed results for various 60
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Table 8: 120 Sample Data 90th Percentiles at 30, 45, and 60 Years

Time True 4@1(1)30 2@1(1)60 4@2(2)60
(year) Percentile Percentile Percentile Percentile

30 165.43 187.22 161.56 167.15
45 426.42 520.54 422.68 430.83
60 605.78 803.17 603.25 610.77

sample and 120 schemes. Note that the results are based on one data set for each of these
schemes where the smaller schemes data or parts of the smaller schemes data are included in
the larger schemes data. Generally, the results improve for more samples per year over more
years. A more extensive study using more data sets, say 500 or more, would solidify the
results but would require access to a large computer cluster. Future research might consider
an optimal sampling scheme that specifies how may samples and what inspection times to
takes the samples. It would be natural to use a Bayesian design criterion because of the
proposed Bayesian analysis method.
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APPENDIX

This appendix presents JAGS code for the proposed analysis. In the code:
• startStar is 1 if right-censored and 0 if left-censored, i.e., the mechanism has not started

or has started, respectively
• right-censored data are ordered first
• N1=19, number of right-censored data for the Table 1 data
• N2=11, number of left-censored data
• inspect is the time of the inspection (sampling)
• start is the unobserved start time
• et is the unobserved elapsed time
• resp is the response or quantity Y
• ra is β0

• rb is β1

• sigmaResp is σt
• mu is µ
• sigma is σ

model
{
for( i in 1 : N1 ) {
startStar[i] ˜ dinterval(start[i],inspect[i])
start[i] ˜ dlnorm(mu,tau) # second parameter is a precision, \textit{i.e.}, reciprocal variance
}
for( i in (N1+1) : (N1+N2) ) {
startStar[i] ˜ dinterval(start[i],inspect[i])
start[i] ˜ dlnorm(mu,tau)
}
for( i in (N1+1) : (N1+N2) ) {
resp[i] ˜ dnorm(muResp[i],tauResp) # second parameter is a precision
muResp[i]<- ra*(1-exp(-rb*et[i]))
et[i]<-inspect[i]-start[i]
}

#priors
ra˜dlnorm(7,(1/(.5*,5)))
rb˜dlnorm(-4,1)
tauResp <- 1/(sigmaResp*sigmaResp)
sigmaResp ˜ dnorm(0,1.0E-1)I(0,)
mu ˜ dnorm(0.0,1.0E-1)I(0,)
tau <- 1/(sigma*sigma)
sigma ˜ dnorm(0,1.0E-1)I(0,)
}
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Abstract 

The purpose of this paper is to unify constructions of group divisible designs by making 
use of certain balanced incomplete block designs, skew-Hadamard matrices, regular Hadamard 
matrices, balanced generalized Weighing matrices, Conference matrices and generalized 
Conference matrices. The constructions unify the results of Dey (1977), Dey and Nigam 
(1985), Parihar and Shrivastava (1988), De and Roy (1990) and generalize some results of 
Bhagwandas et al. (1985), Sinha (1991b) and Kadowaki and Kageyama (2009). In the process 
of investigations, some group divisible designs in the range of r, k ≤ 10 are found and 
catalogued. These designs are obtained from the works of other authors but are not reported in 
Clatworthy (1973) and Sinha (1991a). 

 
Keywords: Balanced incomplete block designs; Group divisible designs; Generalized 
Hadamard matrices; Generalized Conference matrices; Generalized Weighing matrices. 
 

0. Prologue 

Dr. Kishore Sinha had the opportunity of working with Professor Aloke Dey, at IASRI, 
New Delhi as a Post- doctoral research fellow of CSIR, New Delhi during 1977- 1979. It was 
during this period that he got fascinated with the research work of Professor Aloke Dey 
especially in the area of Partially Balanced Incomplete Block (PBIB) Designs. His association 
with Professor Aloke Dey continued growing in strength even after he left IASRI in 1979. His 
untimely demise has been a personal loss to Kishore in particular and to statistician’s fraternity 
in general.  

Various methods of constructions and trial and error solutions of group divisible designs 
are available and scattered over the literature. To the best of our knowledge, Dey (1977) for 
the first-time used matrix approach for the constructions of group divisible designs. His works 
motivated us to take up unification and generalization of constructions of group divisible 
designs.  It is my proud privilege to pay my most respectful homage by dedicating this research 
paper to his memory.  
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1.  Introduction 

Some relevant definitions in the context of the paper are as follows: 

1.1. Group divisible designs 

A Group divisible (GD) design is an arrangement of v (= mn; m, n ≥ 2) treatments into b 
blocks such that each block contains k (<v) distinct treatments, each treatment occurs r times 
and any pair of distinct treatments which are first associates occur together in λ1 blocks and in 
λ2 blocks if they are second associates. Furthermore, if r–λ1 = 0 then the GD design is singular; 
if r–λ1 > 0 and rk–vλ2 = 0 then it is semi-regular (SR); and if r–λ1 > 0 and rk–vλ2 > 0, the design 
is regular (R). Semi- regular and regular GD designs are denoted by SRGD and RGD 
respectively. Following Cheng (1995), GD designs with parameters satisfying b = 4(r–λ2) are 
called family (A) GD designs. 

1.2. α- Resolvable design 

A block design D (v, b, r, k) whose b blocks can be divided into 𝑡 = 𝑟 𝛼⁄  classes, each of 
size 𝛽 = 𝑣𝛼 𝑘⁄  and such that in each class of 𝛽 blocks every treatment of D is replicated α 
times, is called an α- resolvable design. When α=1 the design is said to be resolvable. 

1.3. Hadamard matrices 

An n×n matrix H = (Hij) with entries Hij as ±1 is called a Hadamard matrix if 
H𝐇!=𝐇!H=nIn, where 𝐇! is the transpose of H and In is the identity matrix of order n. A 
Hadamard matrix is in normalized form if its first row and first column contain only +1’s. A 
Hadamard matrix H is said to be of skew type or skew- Hadamard if its main diagonal entries 
are +1 and H–In is skew- symmetric. In other words, a Hadamard matrix is called skew-
symmetric if Hij = –Hji	∀i≠ 𝑗 and Hii = 1 ∀i. 
 

Example 1: 𝐇 = 11 1
1 −13 and 𝐇 = 4

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

5 are Hadamard matrices of order 2 

and 4 respectively. 

Example 2: 𝐇 = 11 −1
1 1 3 and 𝐇 = 4

1 1 1 1
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1

5 are skew- Hadamard matrices of 

order 2 and 4 respectively. 
 
1.4.  Conference matrices 

 
A Conference matrix of order n is an n×n matrix C with diagonal entries 0 and off- 

diagonal entries ±1 such that 𝐂𝐂! = (𝑛 − 1)𝐈". A Conference matrix C is symmetric if 𝐂 = 𝐂! 
and skew- symmetric if 𝐂 = −𝐂!. A Conference matrix of order n is denoted as CM (n). 
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Example 3: 𝐂 = 	

⎝

⎜⎜
⎛

0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0 ⎠

⎟⎟
⎞

 is a symmetric Conference matrix and           

                

                     𝐂 = 4

0 1 1 1
−1 0 −1 1
−1 1 0 −1
−1 −1 1 0

5 is a skew – symmetric Conference matrix.  

 
1.5. Regular Hadamard matrices 
 

A Hadamard matrix is regular if sum of the elements in any row of the matrix is constant. 
It is known that the order of a regular Hadamard matrix is a perfect square 4t2, t a positive 
integer. The number of entries +1 in any row is a constant, either 2t2–t or 2t2+t. In the first case, 
any two rows will have t2 –t positions wherein both have entry +1; the second case has t2 + t 
positions wherein both have entry +1. For methods of construction, see Crnkovic (2006).  

 

Example 4: 𝐇 = 4

−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1
1 −1 −1 −1

5 is a regular Hadamard matarix of order 4. 

 

1.6. Generalized weighing matrix 

Let n ≥ w ≥ 1. A Weighing matrix W(n, w) of order n and weight w is an n×n (0, ±1) – 
matrix such that 𝐖𝐖! = 𝑤In. 
 

A generalized Weighing matrix is a v×b matrix M= (mij) with entries 0 and elements of 
a multiplicative group G of order g such that the inner product of any pair of distinct rows 
contains every element of G same number of times.  

 
A generalized Weighing matrix v×b with the additional property that every row contains 

precisely r nonzero entries, each column contains exactly k nonzero entries and the inner 
product of any pair of distinct rows contains every group element exactly 𝜆 𝑔⁄  times, is known 
as a generalized Bhaskar Rao design GBRD (v, b, r, k, λ; G). By replacing its nonzero entries 
by unity, produces the incidence matrix of a BIB design (v, b, r, k, λ).  

A Bhaskar Rao design BRD (v, b, r, k, λ) is a v×b (0, ±1) – matrix such that the inner 
product of any pair of distinct rows is zero and replacing –1 by unity, produces the incidence 
matrix of a BIB design (v, b, r, k, λ). 

 
A GBRD (v, b, r, k, λ; G) with r = k and v = b is also known as a balanced generalized 

Weighing matrix BGWM (v, k, λ; G). 

If the diagonal entries of BGWM (v, k, λ; G) are zero and the inner product of any pair 
of distinct rows contains each element of G exactly λ times, then it is known as generalized 
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Conference matrix, GCM (G; λ). The order of GCM (G; λ) is λg+2. If G = {±1}, then GCM 
(G; λ) is a Conference matrix of order 2(λ+1). For details, see Colbourn and Dinitz (2007) and 
Tonchev (2009). 
 

Example 5: A GBRD (4, 12, 9, 3, 6; C6) over a cyclic group 𝐶# = {1, 𝛼, 𝛼$, 𝛼%, 𝛼&, 𝛼'} is 

                      4

1 1 1 1 1 1 1 1 1 0 0 0
1 𝛼& 𝛼$ 𝛼% 𝛼 𝛼' 0 0 0 1 1 1
1 𝛼$ 𝛼& 0 0 0 𝛼% 𝛼 𝛼' 𝛼% 𝛼 𝛼'
0 0 0 1 𝛼$ 𝛼& 𝛼% 𝛼' 𝛼 1 𝛼$ 𝛼&

5. 

 

Example 6: BRD (6, 6, 5, 5, 4) = 

⎝

⎜⎜
⎛

0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0 ⎠

⎟⎟
⎞

. 

 
Example 7: A 5 x 5 BGWM (5, 4, 3; C3) over a cyclic group 𝐶% = {1, 𝛼, 𝛼$} is     

  

⎝

⎜
⎛
0 𝛼$ 𝛼 𝛼$ 𝛼$
1 0 𝛼$ 𝛼 𝛼$
1 1 0 𝛼$ 𝛼
𝛼$ 1 1 0 𝛼$
1 𝛼$ 1 1 0 ⎠

⎟
⎞

. 

 

Example 8: A GCM (C3; 2) of order 8 over a cyclic group 𝐶% = {1, 𝛼, 𝛼$} is 

                         

⎝

⎜
⎜
⎜
⎜
⎛

0 1 1 1 1 1 1 1
1 0 1 𝛼$ 𝛼 𝛼 𝛼$ 1
1 1 0 1 𝛼$ 𝛼 𝛼 𝛼$
1 𝛼$ 1 0 1 𝛼$ 𝛼 𝛼
1 𝛼 𝛼$ 1 0 1 𝛼$ 𝛼
1 𝛼 𝛼 𝛼$ 1 0 1 𝛼$
1 𝛼$ 𝛼 𝛼 𝛼$ 1 0 1
1 1 𝛼$ 𝛼 𝛼 𝛼$ 1 0 ⎠

⎟
⎟
⎟
⎟
⎞

. 

1.7. Generalized Hadamard matrix and Difference matrix 

A generalized Hadamard matrix GHM (λ, g) over a group G of order g is a balanced 
generalized weighing matrix with v = b = k = λ. For GHM we require that the matrix should be 
square, but if we relax this condition and allow v×b (v ≤ b) matrices, along with the conditions 
imposed on GHM, we obtain difference matrices. For details see Lampio (2015). 
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Example 9: GHM	(6,3) =

⎝

⎜⎜
⎛

1 𝛼 𝛼 1 𝛼$ 𝛼$
𝛼$ 𝛼$ 𝛼 1 1 𝛼
𝛼$ 𝛼 𝛼$ 1 𝛼 1
1 1 1 1 1 1
𝛼 𝛼$ 1 1 𝛼 𝛼$
𝛼 1 𝛼$ 1 𝛼$ 𝛼 ⎠

⎟⎟
⎞

 is a generalized Hadamard  

 
 matrix with elements from the cyclic group C3 = {1, α, α2}. 
 

Example 10: A 3×8 difference matrix over a cyclic group C4 = {1, α, α2, α4} is          

                                             O
1 1 1 1 1 1 1 1
1 1 𝛼 𝛼 𝛼$ 𝛼$ 𝛼% 𝛼%
1 1 𝛼$ 𝛼% 𝛼 𝛼% 𝛼 𝛼$

P. 

 

1.8. Kronecker sum of two matrices 
 

Let A= (aij) and B= (bij) be two matrices of orders m×n and p×q respectively over a field. 
Then the Kronecker sum	𝐀 ⊕ 𝐁 is an mp×nq matrix given by 

 

𝐀⊕𝐁 = 𝐀⊗ 𝐉(,* + 𝐉+," ⊗𝐁 =

⎝

⎛

𝑎,,𝐉(,* + 𝐁 𝑎,$𝐉(,* + 𝐁 ⋯ 𝑎,"𝐉(,* + 𝐁
𝑎$,𝐉(,* + 𝐁 𝑎$$𝐉(,* + 𝐁 ⋯ 𝑎$"𝐉(,* + 𝐁

⋮ ⋮ ⋮ ⋮
𝑎+,𝐉(,* + 𝐁 𝑎+$𝐉(,* + 𝐁 ⋯ 𝑎+"𝐉(,* + 𝐁⎠

⎞. 

where 𝐉-×/ is the 𝑣 × 𝑏 matrix all of whose entries are 1, A⊗B is the Kronecker (or tensor) 

product of two matrices A and B. 

 
Here, several methods of constructions of series of GD designs from certain BIB designs, 

skew Hadamard matrices, regular Hadamard matrices, balanced generalized Weighing 
matrices, Conference matrices and generalized Conference matrices are described. The 
constructions unify the results of Dey (1977), Dey and Nigam (1985), Parihar and Shrivastava 
(1988), De and Roy (1990) and generalize several results of Bhagwandas et al. (1985), Sinha 
(1991b) and Kadowaki and Kageyama (2009). A comprehensive coverage of constructions of 
GD designs may also be found in Arasu et al. (1991), Dey and Balasubramanian (1991), Dey 
(1986, 2010), Raghavarao (1971), Raghavarao and Padgett (2005). In the process of 
investigations, some group divisible designs in the range of r, k ≤ 10 are found and catalogued. 
These designs are obtained from the works of other authors but are not reported in Clatworthy 
(1973) and Sinha (1991a). 
 

The following notations are used: 𝐈" is the identity matrix of order n, 𝐉-×/ is the 𝑣 × 𝑏 
matrix all of whose entries are 1 and 𝐉-×- = 𝐉-, A⊗B is the Kronecker product of two matrices 
A and B,	𝐀! is the transpose of matrix A and On is null matrix of order n. SRX and RX numbers 
are from Clatworthy (1973). The design numbers SRXa and RXa, b, c, d are not found in 
Clatworthy (1973); and these designs are supposed to be located between SRX and SR(X+1) 
and RX and R(X+1) respectively. 
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2.  The Constructions 
 
2.1. From BIB designs  

Theorem 1: There exists a GD design with parameters  

𝑣∗ = 𝑣𝑠, 𝑏∗ = 𝑠𝑡𝑣, 𝑟∗ = 𝑡(𝑘 + 𝑠 − 1), 𝑘∗ = 𝑘 + 𝑠 − 1, 𝜆, = (𝑠 − 2)𝑡, 𝜆$ = 𝜆,𝑚 = 𝑣, 

	𝑛 = 𝑠;𝑚, 𝑠 ≥ 2; 𝑡 = 𝑟 𝛼⁄                      (1) 

where v, k, λ are the parameters of an α- resolvable BIB design with 𝜆 =
	𝑡[(𝑘 + 𝑠 − 1)(𝑘 + 𝑠 − 2) − (𝑠 − 1)(𝑠 − 2)] 𝑠(𝑣 − 1).⁄  

Proof: Let Ni (1 ≤ i ≤ t) represent the incidence matrices corresponding to resolution classes 
of an α- resolvable balanced incomplete block (BIB) design with parameters v, b = tv, r, k and 
𝜆 = 	 𝑡[(𝑘 + 𝑠 − 1)(𝑘 + 𝑠 − 2) − (𝑠 − 1)(𝑠 − 2)] 𝑠(𝑣 − 1)⁄  and also satisfying the condition 
∑ (𝐍𝒊 + 𝐍𝒊!) = 𝜆(𝐉 − 𝐈)𝒗3
45, . 

Then the incidence pattern  

𝐌 = 𝐈𝒔⊗𝐍𝒗	×𝒕𝒗 + (𝐉𝒔 − 𝐈𝒔) ⊗ (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) 

                                          = g

(𝐍𝟏|𝐍𝟐|⋯ |𝐍𝒕) (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) ⋯ (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗)
(𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) (𝐍𝟏|𝐍𝟐|⋯ |𝐍𝒕) ⋯ (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗)

⋮ ⋮ ⋱ ⋮
(𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) (𝐈𝒗|𝐈𝒗|⋯ |𝐈𝒗) ⋯ (𝐍𝟏|𝐍𝟐|⋯ |𝐍𝒕)

i 

represents a GD design with parameters (1). 

For t = s = 2 in Theorem 1 we obtain: 

Corollary 1: There exists a GD design with parameters 

𝑣∗ = 2𝑣, 𝑏∗ = 4𝑣, 𝑟∗ = 2(𝑘 + 1), 𝑘∗ = 𝑘 + 1, 𝜆, = 0, 𝜆$ = 𝜆 = 𝑘(𝑘 + 1) (𝑣 − 1)⁄ ,	 

      𝑚 = 𝑣, 𝑛 = 2. 

For t = 2, s = 3 in Theorem 1 we obtain: 

Corollary 2: There exists a GD design with parameters 

𝑣∗ = 3𝑣, 𝑏∗ = 6𝑣, 𝑟∗ = 2(𝑘 + 2), 𝑘∗ = 𝑘 + 2, 𝜆, = 2, 𝜆$ = 𝜆 = 2𝑘(𝑘 + 3) 3(𝑣 − 1)⁄ ,	  

𝑚 = 𝑣, 𝑛 = 3. 

Table 1 lists GD designs constructed using Corollaries 1 and 2: 

 

‘ 
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Table 1: RGD from BIB designs 
 

No. GD: (v, r, k, b, λ1, λ2, m, n) Source: 3- resolvable BIB design  
(v, r, k, b, λ) 

1  R106: (10, 8, 4, 20, 0, 3, 5, 2) (5, 6, 3, 10, 3), Corollary 1 

2  R128: (26, 8, 4, 52, 0, 1, 13, 2) (13, 6, 3, 26, 1), Corollary 1 

3  R150: (15, 10, 5, 30, 2, 3, 5, 3) (5, 6, 3, 10, 3), Corollary 2 

4 R160: (39, 10, 5, 78, 2, 1, 13, 3) (13, 6, 3, 26, 1), Corollary 2 

The incidence matrix of a 3- resolvable BIB design with parameters (5, 6, 3, 10, 3) used 
for constructions of R106 and R150 in Table 1 can be partitioned as: 

𝐍𝟓×𝟏𝟎 = (𝐍𝟏|𝐍𝟐) =

⎝

⎜
⎛
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1
1 0 1 1 0

k
k

0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0⎠

⎟
⎞

 

i. e. N1= circ (0 1 0 1 1) and N2= circ (0 1 1 1 0). 

Example 11: The blocks of R106 using Corollary 1 are given as:  
[(2, 3, 5, 6), (1, 3, 4, 7), (2, 4, 5, 8), (1, 3, 5, 9), (1, 2, 4, 10), (3, 4, 5, 6), (1, 4, 5, 7),  
(1, 2, 5, 8), (1, 2, 3, 9), (2, 3, 4, 10), (1, 7, 8, 10), (2, 6, 8, 9), (3, 7, 9, 10), (4, 6, 8, 10),  
(5, 6, 7, 9), (1, 8, 9, 10), (2, 6, 9, 10), (3, 6, 7, 10), (4, 6, 7, 8), (5, 7, 8, 9)]. 

The GD scheme is given as the 5 x 2 array:  l1 2 3 4 5
6 7 8 9 10q

!
. 

Example 12: The blocks of R150 using Corollary 2 are given as:  
[(2, 3, 5, 6, 11), (1, 3, 4, 7, 12), (2, 4, 5, 8, 13), (1, 3, 5, 9, 14), (1, 2, 4, 10, 15), (3, 4, 5, 6, 11),  
(1, 4, 5, 7, 12), (1, 2, 5, 8, 13), (1, 2, 3, 9, 14), (2, 3, 4, 10, 15), (1, 7, 8, 10, 11),  
(2, 6, 8, 9, 12), (3, 7, 9, 10, 13), (4, 6, 8, 10, 14), (5, 6, 7, 9, 15), (1, 8, 9, 10, 11),  
(2, 6, 9, 10, 12), (3, 6, 7, 10, 13), (4, 6, 7, 8, 14), (5, 7, 8, 9, 15), (1, 6, 12, 13, 15), 
(2, 7, 11, 13, 14), (3, 8, 12, 14, 15), (4, 9, 11, 13, 15), (5, 10, 11, 12, 14), (1, 6, 13, 14, 15),  
(2, 7, 11, 14, 15), (3, 8, 11, 12, 15), (4, 9, 11, 12, 13), (5, 10, 12, 13, 14)]. 

The GD scheme is given as the 5 x 3 array:  r
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

s
!

. 

A 3- resolvable solution of BIB design with parameters (13, 6, 3, 26, 1) may be found in 
Kageyama and Mohan (1983). This solution for the construction of R128 and R160 in Table 1 
can be partitioned as: 

𝐍𝟏𝟑×𝟐𝟔 = (𝐍𝟏|𝐍𝟐) where N1= circ (0 0 0 0 1 0 0 0 0 0 1 0 1) and 

 N2 = circ (0 0 0 0 0 0 0 1 1 0 0 1 0). 
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Remark 1: The Corollary 1 gives patterned construction for R106 whereas an individual 
solution is given in Dey (1977). 
 

2.2. From skew- Hadamard matrices 

Skew- Hadamard matrices are known to exist for the order 2n, where n>0 is an integer; 
order 4t, where 4t-1 is a prime or prime power. For details on existence of skew- Hadamard 
matrices see Koukouvinos and Stylianou (2008). 

Lemma 1: Let N be the incidence matrix of a BIB design obtained from the core of a 
normalized skew- Hadamard matrix of order 4t. Then 

(i) 𝐍 + 𝐍! = (𝐉 − 𝐈)𝟒𝒕@𝟏 (ii) 𝐍𝟐 + 𝐍 = 𝑡(𝐉 − 𝐈)𝟒𝒕@𝟏. 

Proof: Let C be the core of a normalized skew- Hadamard matrix of order 4t obtained by 
deleting first row and first column. Then the diagonal entries of C are -1 and  

(a) C+I4t-1 is a skew- symmetric matrix i.e. 𝐂 +	𝐈𝟒𝒕@𝟏 = −(𝐂 +	𝐈𝟒𝒕@𝟏)! 

⟹ 𝐂+ 𝐂! = −2𝐈𝟒𝒕@𝟏. 

(b) 𝐂𝐂! = 4𝑡𝐈𝟒𝒕@𝟏 − 𝐉𝟒𝒕@𝟏. 

Clearly 𝐍 = (𝐂 + 𝐉𝟒𝒕@𝟏) 2⁄  represents a symmetric (4t–1, 2t–1, t–1) – design and N, 𝐍! have 
zeros in diagonals. Then 

𝐍 + 𝐍! = (𝐂 + 𝐂! + 2𝐉𝟒𝒕@𝟏) 2⁄ = (𝐉 − 𝐈)𝟒𝒕@𝟏 

𝐍𝟐 + 𝐍 = (𝐂𝟐 + 2𝐂𝐉𝟒𝒕@𝟏 + 𝐉𝟒𝒕@𝟏𝟐 + 2𝐂 + 2𝐉𝟒𝒕@𝟏) 4⁄
= [𝐂(𝐂 + 2𝐈𝟒𝒕@𝟏) − 2𝐉𝟒𝒕@𝟏 + (4𝑡 − 1)𝐉𝟒𝒕@𝟏 + 2𝐉𝟒𝒕@𝟏] 4⁄
= (−𝐂𝐂! + (4𝑡 − 1)𝐉𝟒𝒕@𝟏) 4⁄ 	= (−(4𝑡𝐈𝟒𝒕@𝟏 − 𝐉𝟒𝒕@𝟏) + (4𝑡 − 1)𝐉𝟒𝒕@𝟏) 4⁄
= 𝑡(𝐉 − 𝐈)𝟒𝒕@𝟏. 

Theorem 2: The existence of a skew- Hadamard matrix of order 4t implies the existence of a 
GD design with parameters  

v=b=6(4t–1), r=k=2(5t–2), λ1=5(t–1), λ2=2(2t–1), m=6, n=4t–1.          (2)  

Proof: Let N be the incidence matrix of a BIB design obtained from the core of a normalized 
skew-Hadamard matrix of order 4t and C be a conference matrix of order 6. Then replacing 0 
by 𝐈𝟒𝒕@𝟏, 1 by N and –1 by 𝐍! in C we obtain a (0, 1) - matrix 

𝐌 =

⎝

⎜
⎜
⎛

𝐈𝟒𝒕@𝟏 𝐍 𝐍 𝐍 𝐍 𝐍
𝐍! 𝐈𝟒𝒕@𝟏 𝐍! 𝐍! 𝐍 𝐍
𝐍! 𝐍! 𝐈𝟒𝒕@𝟏 𝐍 𝐍 𝐍!
𝐍! 𝐍! 𝐍 𝐈𝟒𝒕@𝟏 𝐍! 𝐍
𝐍! 𝐍 𝐍 𝐍! 𝐈𝟒𝒕@𝟏 𝐍!
𝐍! 𝐍 𝐍! 𝐍 𝐍! 𝐈𝟒𝒕@𝟏⎠

⎟
⎟
⎞

. 
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Using the relations 𝐍𝐍! = 𝐍!𝐍 = t𝐈𝟒𝒕@𝟏 + (𝑡 − 1)𝐉𝟒𝒕@𝟏and 𝐍𝟐 + 𝐍 = (𝐍!)$ + 𝐍! = 𝑡(𝐉 −
𝐈)𝟒𝒕@𝟏 one can see that M represents the incidence matrix of a GD design with the parameters 
(2).  

Remark 2: For t=3 in Theorem 2 we obtain a BIB design with parameters v=b=66, r=k=26, 
λ=10, reported in Hall (1998) as design number 214. 

Remark 3: For 𝐍 =	O
0 1 0
0 0 1
1 0 0

P and t=1 in the incidence matrix M of the Theorem 2 we 

obtain SR72. 

Following Dey and Balasubramanian (1991), series 25 (rephrased), p. no. 288:  

If there exists a symmetric BIB design with parameters 𝑣! = 4𝑡 − 1, 𝑘! = 2𝑡 − 1, 𝜆! = 𝑡 −
1(𝑡 ≥ 1) such that the incidence matrix N of the BIB design satisfies 𝐍 + 𝐍! = (𝐉 − 𝐈)𝒗!, then 
there exists a GD design with parameters: 𝑣 = 𝑏 = 𝑝𝑣!, 𝑟 = 𝑘 = 𝑝𝑘! + 1, 𝜆, = 𝑝𝑘!, 𝜆$ =
𝑝𝜆! + 1,𝑚 = 𝑣!, 𝑛 = 𝑝(≥ 2). 

It is known that the incidence matrix N of a BIB design obtained from the core of a normalized 
skew- Hadamard matrix of order 4t satisfies 𝐍 + 𝐍! = (𝐉 − 𝐈)𝟒𝒕@𝟏, see Lemma 4 above.  

Theorem 3: The existence of a skew- Hadamard matrix of order 4t implies the existence of a 
2- parameter GD design with parameters  

 𝑣 = 𝑏 = 𝑝(4𝑡 − 1), 𝑟 = 𝑘 = 𝑝(2𝑡 − 1) + 1, 𝜆, = 𝑝(2𝑡 − 1), 𝜆$ = 𝑝(𝑡 − 1) + 1, 

	𝑚 = 4𝑡 − 1, 𝑛 = 𝑝, 𝑡 ≥ 1.          (3) 

Proof: Let N be the incidence matrix of a BIB design obtained from the core of a normalized 
skew-Hadamard matrix of order 4t. Then using the relations 𝐍𝐍! = 𝐍!𝐍 = 𝑡𝐈𝟒𝒕@𝟏 + (𝑡 −
1)𝐉𝟒𝒕@𝟏and 𝐍 + 𝐍! = (𝐉 − 𝐈)𝟒𝒕@𝟏 it can be verified that 	𝐌 = 	 𝐈𝒑⊗ (𝐈𝟒𝒕@𝟏 + 𝐍) +	(𝐉 −
𝐈)𝒑⊗N is the incidence matrix of a GD design with parameters (3). 

The following Table lists regular GD designs constructed using Theorem 3: 

Table 2: RGD from skew- Hadamard matrices 
 

No.  GD: (v, r, k, b, λ1, λ2, m, n) p, t Reference 

1  R177: (14, 7, 7, 14, 6, 3,7, 2) p = t = 2 Clatworthy (1973) 
2  R206a: (21, 10, 10, 21, 9, 4, 7, 3) p = 3, t = 2 Freeman (1976) 

Remark 4: Following Theorem 7 of Bush (1979) and Corollary 4.1.1 of Kageyama and Tanaka 
(1981) we get: 
  
A GD design with parameters  
 

v=b=3(4t–1), r=k=2t+1, λ1=t–1, λ2=1, m=3, n=4t–1.                (4)               

is obtained from the core of a normalized skew- Hadamard matrix.  



 S. SAURABH, K. SINHA AND M.K. SINGH    [Vol. 19, No. 1 
 
134 

 

2.3. From Conference matrices 

Symmetric conference matrices are known to exist for orders 2, 4, 6, 10, … and skew- 
symmetric conference matrices are known to exist for 2, 4, 8, 12,….  

Theorem 4: The existence of a conference matrix of order t (≥4) implies the existence of family 
(A) regular GD designs with parameters  

(i) v =b=2t, r=k=t–1, λ1=0, λ2 = (t–2)/2, m=t, n=2.              (5) 

            (ii) v =b=2t, r=k=t+1, λ1=2, λ2 = (t+2)/2, m=t, n=2.     (6) 

Proof: Let C be a conference matric of order t (≥4) and 𝐍𝟏 = (𝐉𝒕 − 𝐈𝒕 + 𝐂) 2⁄ , 𝐍𝟐 =

(𝐉𝒕 − 𝐈𝒕 − 𝐂) 2⁄  then we claim that 𝐍 = w𝐍𝟏 𝐍𝟐
𝐍𝟐 𝐍𝟏

x is the incidence matrix of the GD design 

with parameters (5). We have 

 𝐍𝟏𝐍𝟏! + 𝐍𝟐𝐍𝟐! = [(𝐉𝒕 − 𝐈𝒕 + 𝐂) 2⁄ ] [(𝐉𝒕 − 𝐈𝒕 + 𝐂) 2⁄ ]! + [(𝐉𝒕 − 𝐈𝒕 − 𝐂) 2⁄ ] [(𝐉𝒕 − 𝐈𝒕 − 𝐂) 2⁄ ]! 

                         = (𝑡 − 1)𝐈𝒕 + [(𝑡 − 2) 2⁄ ](𝐉𝒕 − 𝐈𝒕). 

𝐍𝟏 + 𝐍𝟐 = 𝐉𝒕 − 𝐈𝒕 ⟹ (𝐍𝟏 + 𝐍𝟐)(𝐍𝟏 + 𝐍𝟐)! = (𝐉𝒕 − 𝐈𝒕)$ = (t − 1)	𝐈𝒕 + (t − 2)	(𝐉𝒕 − 𝐈3) 

                                 ⟹𝐍𝟏𝐍𝟐! + 𝐍𝟐𝐍𝟏! = [(t − 1)𝐈𝒕 + (t − 2)(𝐉𝒕 − 𝐈𝒕)] − [𝐍𝟏𝐍𝟏! + 𝐍𝟐𝐍𝟐! ] 

                     ⟹𝐍𝟏𝐍𝟐! + 𝐍𝟐𝐍𝟏! = [(𝑡 − 2) 2⁄ ](𝐉𝒕 − 𝐈𝒕) . 

Thus N1 and N2 satisfy the conditions given in Dey (1977). Hence N is the incidence matrix of 
the GD design with parameters (5). The GD design with parameters (6) is complementary of 
the design with parameters (5). 

 The following Table lists GD designs obtained using Theorem 4: 

                Table 3: RGD from Conference Matrices 
 

No. GD: (v, r, k, b, λ1, λ2, m, n) Source Reference 

1 R54: (8, 3, 3, 8, 0, 1, 4, 2) CM (4)   Clatworthy (1973) 

2 R144: (12, 5, 5, 12, 0, 2, 6, 2) CM (6) Dey (1977) 

3 R117a: (16, 7, 7, 16, 0, 3, 8, 2) CM (8) Dey (1977) 

4 R197a: (20, 9, 9, 20, 0, 4, 10, 2) CM (10) Dey (1977) 

Theorem 5: The existence of a Conference matrix of order t (≥4) and a BIB design with  

 𝑣= 2k, b, r, k, λ implies the existence of a GD design with parameters  

 𝑣∗ = 𝑡𝑣, 𝑏∗ = 𝑡𝑏, 𝑟∗ = 𝑟(𝑡 − 1), 𝑘∗ = 𝑘(𝑡 − 1), 𝜆,∗ = (𝑡 − 1)𝜆, 𝜆$∗ = 𝑟(𝑡 − 2) 2⁄ ,	 
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𝑚 = 𝑡, 𝑛 = 𝑣.           (7) 

Proof: Let N be the incidence matrix of a BIB design with v = 2k, b, r, k, λ. Then replacing 0 
by Ot, 1 by N and –1 by 𝐍y = 𝐉𝒗×𝒃 − 𝐍  in a Conference matrix of order t we obtain a GD 
design with parameters (7). 

For (𝑡 − 1)𝜆 = 𝑟(𝑡 − 2) 2⁄  in Theorem 5, we obtain: 

Corollary 3: The existence of a conference matrix of order 𝑡 = 2(𝑟 − 𝜆) (𝑟 − 2𝜆)⁄ ;	(t ≥4) and 
a BIB design with v=2k, b, r, k, λ implies the existence of a BIB design with parameters 

𝑣∗ = 𝑡𝑣, 𝑏∗ = 𝑡𝑏, 𝑟∗ = 𝑟(𝑡 − 1), 𝑘∗ = 𝑘(𝑡 − 1), 𝜆∗ = (𝑡 − 1)𝜆.     

Using BIB design (4, 6, 3, 2, 1) and t = 4 in Corollary 3 produces MR35; and a BIB 
design (6, 10, 5, 3, 2) and t = 6 produces MR427. MRX denotes design number X in Mathon 
and Rosa (2007). It is not known if these solutions are isomorphic to theirs. 

Remark 5: For N = I2 in Theorem 5 we obtain Theorem 4 (i). 
 

2.4.  From balanced generalized Weighing matrices and generalized Conference      
matrices 

Let 𝐶" = {1, 𝛼, 𝛼$, ⋯ , 𝛼"@,}	denote a cyclic group of order n and β = circ (0 1 0…0) 
denote a circulant matrix of order n. 

Replacing 1 by In and αi by βi (1 ≤ i ≤ n–1) in BGWM (v, k, λ; Cn) we obtain: 

Theorem 6: The existence of a BGWM (v, k, λ; Cn) implies the existence of a GD with 
parameters 

𝑣∗ = 𝑏∗ = 𝑣𝑛, 𝑟∗ =	𝑘∗ = 𝑘, 𝜆, = 0, 𝜆$ = 𝜆 𝑛⁄ ,𝑚 = 𝑣, 𝑛.    (8) 

Further replacing 0 by On, 1 by In and αi by βi (1 ≤ i ≤ n–1) in GCM (Cn; λ) of order v we 
obtain: 

Theorem 7: The existence of a GCM (Cn; λ) of order v = nλ+2 implies the existence of a GD 
design with parameters 

𝑣∗ = 𝑏∗ = 𝑣𝑛, 𝑟∗ =	𝑘∗ = 𝑘, 𝜆, = 0, 𝜆$ = 𝜆,𝑚 = 𝑣, 𝑛        (9) 

where k is the number of nonzero entries in each column of GCM (Cn; λ). 

The following Table lists GD designs obtained using Theorems 6 and 7: 
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Table 4: RGD from balanced generalized Weighing matrices and generalized 
Conference matrices 

 

No. GD: (v, r, k, b, λ1, λ2, m, n) Source Reference 

1 R112: (14, 4, 4, 14, 0, 1, 7, 2) BGWM (7, 4, 2; C2) Clatworthy (1973) 
2 R114: (15, 4, 4, 15, 0, 1, 5, 3) BGWM (5, 4, 3; C3) Clatworthy (1973) 

3 R180b: (24, 7, 7, 24, 0, 2, 8, 3) GCM (C3; 2), Order = 8 F (1976) 
4 R182b: (45, 7, 7, 45, 0, 1, 15, 3) BGWM (15, 7, 3; C3) DR (1990) 

5 R191: (63, 8, 8, 63, 0, 1, 9, 7) GCM (C7; 1), Order = 9 Clatworthy (1973) 
6 R200a: (38, 9, 9, 38, 0, 2, 19, 2) BGWM (19, 9, 4; C2) DR (1990) 

7 R200c: (40, 9, 9, 40, 0, 2, 10, 4) BGWM (10, 9, 8; C4) DN (1985) 

F (1976), DN (1985) and DR (1990) stand for Freeman (1976), Dey and Nigam (1985) and De 
and Roy (1990) respectively. The balanced generalized Weighing matrices and generalized 
Conference matrices used in Table 3 may be found in Colbourn and Dinitz (2007). 
 
2.5. From Kronecker Sum of Hadamard matrices and incidence matrices of BIB designs 

Theorem 8 given below gives an algebraic representation of Theorem 1.6 of Parihar and 
Shrivastava (1988). 

Theorem 8: The existence of a Hadamard matrix of order 4t and a BIB design with 𝑣 = 2k, b, 
r, k, λ implies the existence of a SRGD design with parameters 

𝑣∗ = (4𝑡 − 1)𝑣, 𝑏∗ = 4𝑡𝑏, 𝑟∗ = 4𝑡𝑟, 𝑘∗ = (4𝑡 − 1)𝑘, 𝜆,∗ = 4𝑡𝜆, 𝜆$∗ = 2𝑡𝑟,𝑚 = 4𝑡 − 1,	 

 𝑛 = 𝑣.                   (10) 

Proof: Let H* be a (4t–1) x 4t matrix obtained by deleting the first row of a normalized 
Hadamard matrix and N be the incidence matrix of a BIB design with v = 2k, b, r, k, λ. 
Considering Kronecker sum	𝐌 = 𝐇∗⊕𝐍 of H* and N. Then under the transformation: –1 → 
1 in −𝐍y = −(𝐉𝒗×𝒃 − 𝐍) and 1→ 0, 2 → 1 in 𝐉𝒗×𝒃 + 𝐍, it is easy to see that M represents 
incidence matrix of a SRGD with parameters (10). 

Removing α (1≤ α≤ 4t–3) rows of blocks of the incidence matrix of the design with parameters 
(10) we obtain: 

Corollary 4: There exists a SRGD design with parameters  

𝑣∗ = (4𝑡 − 𝛼 − 1)𝑣, 𝑏∗ = 4𝑡𝑏, 𝑟∗ = 4𝑡𝑟, 𝑘∗ = (4𝑡 − 𝛼 − 1)𝑘, 𝜆,∗ = 4𝑡𝜆, 𝜆$∗ = 2𝑡𝑟,	 

       𝑚 = 4𝑡 − 𝛼 − 1, 𝑛 = 𝑣.                   (11) 

Remark 6: The Corollary 4 unifies the Theorems 1.2, 1.3, 1.4 and 1.5 of Parihar and 
Shrivastava (1988). 
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Theorem 9: The existence of a regular Hadamard matrix of order 4t2 and a BIB design with 
v=2k, b, r, k, λ implies the existence of a SRGD design with parameters  

𝑣∗ = 4𝑡$𝑣, 𝑏∗ = 4𝑡$𝑏, 𝑟∗ = 4𝑡$𝑟, 𝑘∗ = 4𝑡$𝑘, 𝜆,∗ = 4𝑡$𝜆, 𝜆$∗ = 2𝑡$𝑟,𝑚 = 4𝑡$, 𝑛 = 𝑣. 
           (12) 

Proof: Let H be a regular Hadamard matrix of order 4𝑡$ and N be the incidence matrix of a 
BIB design with v = 2k, b, r, k, λ. Considering Kronecker sum	𝐌 = 𝐇⊕𝐍 of H and N. Then 
under the transformation: –1 → 1 in −𝐍y = (𝐉𝒗×𝒃 − 𝐍) and 1→ 0, 2 → 1 in  𝐉C×/ + 𝐍 , it is 
easy to see that M represents incidence matrix of a SRGD with parameters (12). 

For N = I2 in Theorem 9 we obtain: 

Corollary 5: There exists a resolvable SRGD design with parameters  

𝑣∗ =	𝑏∗ = 8𝑡$, 𝑟∗ =	𝑘∗ = 4𝑡$, 𝜆,∗ = 0, 𝜆$∗ = 2𝑡$, 𝑚 = 4𝑡$, 𝑛 = 2. (13) 

Removing α (1≤ α≤ 4t2-2) rows of blocks of the incidence matrix of design with parameters 
(12) we obtain: 

Corollary 6: There exists a SRGD design with parameters  

𝑣∗ = (4𝑡$ − 𝛼)𝑣, 𝑏∗ = 4𝑡$𝑏, 𝑟∗ = 4𝑡$𝑟, 𝑘∗ = (4𝑡$ − 𝛼)𝑘, 𝜆,∗ = 4𝑡$𝜆, 𝜆$∗ = 2𝑡$𝑟,	 

𝑚 = 4𝑡$ − 𝛼, 𝑛 = 𝑣.            (14) 

Remark 7: This theorem is generalization and algebraic representation of the Theorem 2.2 of 
Bhagwandas et al. (1985). For t = 1 in Theorem 9 we obtain Theorem 2.2 of Bhagwandas et 
al. (1985). 

Theorem 10: The existence of a Hadamard matrix of order 2t implies the existence of a 
resolvable SRGD design with parameters  

𝐷D:	𝑣∗ = 𝑏∗ = 2DE$𝑡, 𝑟 = 𝑘 = 	2DE,𝑡, 𝜆, = 0, 𝜆$ = 2D𝑡,𝑚 = 2DE,𝑡, 𝑛 = 2	(𝑖 ≥ 0).      (15) 

Proof: Kadowaki and Kageyama (2009, Theorem 3.3.4) constructed a resolvable SRGD design 
with parameters  

D0: v = b = 4t, r = k = 2t, λ1 = 0, λ2 = t, m = 2t, n = 2.         (16)  

Let N0 be incidence matrix of a SRGD design D0 with parameters (16). Considering Kronecker 
sum 𝐍𝒊 = 𝐇𝟐⊕𝐍𝒊@,(𝑖 ≥ 1) of H2 and 𝐍𝒊@,, where 𝐇𝟐 is a Hadamard matrix of order 2 and 
𝐍𝒊@, represents the incidence matrix of a SRGD design with parameters 

 				𝑣! = 𝑏! = 2DE,𝑡, 𝑟! = 𝑘! =	2D𝑡, 𝜆, = 0, 𝜆$ = 2D@,𝑡,𝑚 = 2D𝑡, 𝑛 = 2	(𝑖 ≥ 1).  

Then under the transformation: –1 → 1 in −(𝐉𝒗!×𝒃! − 𝐍D@,) and 1→ 0, 2 → 1 in 𝐉𝒗!×𝒃! + 𝐍𝒊@,, 
it is easy to see that 𝐍𝒊	represents incidence matrix of a SRGD with parameters (15). 

Remark 8: This Theorem generalizes the Theorem 3.3.4 of Kadowaki and Kageyama (2009) 
and Theorem 2.1 of Sinha (1991b). For i = 0 we obtain Theorem 3.3.4 of Kadowaki and 
Kageyama (2009) and for i = 1 and 2 we obtain series 2.1 and 2.2 respectively of Sinha (1991b). 



 S. SAURABH, K. SINHA AND M.K. SINGH    [Vol. 19, No. 1 
 
138 

3.  A Catalogue of Group Divisible Designs 

In the process of present investigation, some GD designs scattered in literature are found; 
and those not found in Clatworthy (1973) and Sinha (1991a) are catalogued below, to make 
them available at one place for the convenience of researchers, looking for GD designs in the 
practical range of 𝑟, 𝑘	 ≤ 10.  

Table 5: A Catalogue of GD designs 

 

 

 
 
 
 
 
 
 
 
 
 

S (1991), DK (1993), MD (1995), GD (1995) and SS (2021) stand for Sastry (1991), Duan and 
Kageyama (1993), Midha and Dey (1995), Ghosh and Divecha (1995) and Saurabh and Sinha 
(2020) respectively. The design numbers 1, 7, 8 and 9 were later on also reported by Kadowaki 
and Kageyama (2009). 

*Design No. 7 of Table 5 is obtained by deleting the set of treatments 46, 47, 48, 49, 50 from 
design No. 1; design No. 8 is obtained by deleting the set of treatments 41, 42, 43, 44, 45 from 
design No. 7; and design No. 9 is obtained by deleting the set of treatments 36, 37, 38, 39, 40 
from design No. 8.  

As a special case having t=4, in Remark 4, we get a regular group divisible design with 
parameters: 𝑣 = 𝑏 = 45, 𝑟 = 𝑘 = 9, 𝜆, = 3, 𝜆$ = 1,𝑚 = 3, 𝑛 = 15 and the average 
efficiency E = 0.90. The solution given below is not found elsewhere: 

(4 6 7 9 12 14 15 16 31), (1 5 7 9 10 13 15 17 32), (1 2 6 9 10 11 14 18 33), 
(2 3 7 10 11 12 15 19 34), (1 3 4 9 11 12 13 20 35), (2 4 5 10 12 13 14 21 36), 
(3 5 6 11 13 14 15 22 37), (4 6 7 8 10 11 13 24 39), (1 5 7 8 11 12 14 25 40), 
(1 2 6 8 12 13 15 26 41), (1 2 3 4 5 6 7 23 38), (2 3 7 8 9 13 14 27 42), 
(1 3 4 8 10 14 15 28 43), (2 4 5 8 9 11 15 29 44), (3 5 6 8 9 10 12 30 45), 
(1 19 21 22 24 27 29 30 31), (2 16 20 22 24 25 28 30 32), (3 16 17 21 24 25 26 29 33),  
(4 17 18 22 25 26 27 30 34), (5 16 18 19 24 26 27 28 35), (6 17 19 20 25 27 28 29 36),  
(7 18 20 21 26 28 29 30 37), (8 16 17 18 19 20 21 22 38), (9 19 21 22 23 25 26 28 39),  
(10 16 20 22 23 26 27 29 40), (11 16 17 21 23 27 28 30 41), (12 17 18 22 23 24 28 29 42),  
(13 16 18 19 23 25 29 30 43), (14 17 19 20 23 24 26 30 44), (15 18 20 21 23 24 25 27 45), 
(1 16 34 36 37 39 42 44 45), (2 17 31 35 37 39 40 43 45), (3 18 31 32 36 39 40 41 44),  
(4 19 32 33 37 40 41 42 45), (5 20 31 33 34 39 41 42 43), (6 21 32 34 35 40 42 43 44), 

No.  GD: (v, r, k, b, λ1, λ2, m, n)   Reference 

1 SR109a: (50, 10, 10, 50, 0, 2, 10, 5)   GD (1995) 
2 R208b: (49, 10, 10, 49, 1, 2, 7, 7)   S (1991) 

3 R206b: (21, 10, 10, 21, 8, 3, 3, 7)   MD (1995) 
4 R200b: (39, 9, 9, 39, 0, 2, 13, 3)   SS (2021) 

5 R198a: (24, 9, 9, 24, 6, 3, 12, 2)   DK (1993) 
6 R200d: (45, 9, 9, 45, 3, 1, 3, 15)   t = 4 in (4), Bush (1979) 

7* SR103a: (45, 10, 9, 50, 0, 2, 9, 5)   GD (1995) 
8* SR95a: (40, 10, 8, 50, 0, 2, 8, 5)   GD (1995) 
9* SR86a: (35, 10, 7, 50, 0, 2, 7, 5)   GD (1995) 



2021] UNIFYING CONSTRUCTIONS OF GROUP DIVISIBLE DESIGNS  

 
 

139 

 (7 22 33 35 36 41 43 44 45), (8 23 31 32 33 34 35 36 37), (9 24 34 36 37 38 40 41 43),  
(10 25 31 35 37 38 41 42 44), (11 26 31 32 36 38 42 43 45), (12 27 32 33 37 38 39 43 44),  
(13 28 31 33 34 38 40 44 45), (14 29 32 34 35 38 39 41 45), (15 30 33 35 36 38 39 40 42). 
 
 
The GD scheme is defined by the array: 1   2   3   4  … 15 
          16 17 18 19… 30 
          31 32 33 34 …45. 
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Abstract
It is shown that classes of semi-regular and regular group divisible designs do not lead

to constant block-sum designs. Construction of constant block-sum designs using singular
group divisible designs is discussed in general. For a given singular group divisible design,
the construction method is shown to provide a large number of distinct constant block-sum
designs. Construction of constant block-sum designs for equispaced treatment levels is also
discussed.

Key words: Balanced incomplete block design; Eigenvalue; Eigenvector; Partially balanced.

1. Introduction

Recently Khattree (2018a,b) discussed the concept of constant block-sum designs for
quantitative treatment levels. In these designs, the sum of the treatment levels in each
block is constant. Non-existence of constant block-sum balanced incomplete designs was
established by Khattree (2018a, 2020). Several methods of construction have been presented
by Khattree (2019). A general approach to determine whether or not a design can be
transformed into a constant block-sum design and its construction if it exists has been
developed in Khattree (2020). Bansal and Garg (2020) derived some conditions for existence
of partially balanced constant block-sum designs and gave further combinatorial methods of
construction. Khattree (2020) discussed some individual examples, including two-associate
class group divisible (GD) designs. The purpose of this note is to present results with respect
to the property of constant block-sum that apply to the whole class of GD designs. Non-
existence of constant block-sum designs is established for classes of semi-regular and regular
GD designs. Construction of constant block-sum singular GD designs is discussed in general.
Existence of a large number of distinct constant block-sum solutions for a given singular GD
design is illustrated with the help of an example. Singular GD constant block-sum designs
for equispaced treatment levels are discussed in Section 3.

2. Group Divisible Designs

In two-associate class GD designs, v = m1m2 treatments are arranged in m1 groups of
m2 treatments each. Let the treatments be coded as 1, 2, · · · ,m1m2. Then it is convenient
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142 SUDHIR GUPTA [Vol. 19, No. 1

to form the groups as:

Table 1

1 2 . . . m2
m1 + 1 m1 + 2 . . . 2m2

.

.

.
m2(m1 − 1) + 1 m2(m1 − 1) + 2 . . . m1m2

The treatments are first associates if they belong to the same group and second asso-
ciates otherwise. The parameters of a GD design are v = m1m2, b, r, k, λ1, λ2, m1, m2,
where the symbols have their standard meaning, see Raghavarao (1971) or Dey (1986) for
details. Let

A = NN ′ − rk

v
Jv

where N is the v × b incidence matrix and J t denotes a square matrix of one’s of size t.
Note that 1v, a vector of ones of size v × 1, is an eigenvector of A corresponding to a zero
eigenvalue.

For an equireplicate partially balanced design, Khattree (2020) showed that a necessary
condition for existence of a constant block-sum design is that

Aw = 0

where w 6= 1v is an eigenvector of A corresponding to a zero eigenvalue. Note that this is
not a sufficient condition, as it is possible that a vector w satisfying the necessary condition
does not have all of its elements different from each other. If the v elements of w are all
different from each other, they are taken as v treatment levels to yield a constant block-sum
design.

As A and NN ′ are symmetric matrices, they both admit their spectral decompositions.
Also, NN ′1v = rk1v, so it can be easily seen that if w 6= 1v is an eigenvector of A
corresponding to a zero eigenvalue then it is also an eigenvector of NN ′ corresponding to a
zero eigenvalue and vice versa. Thus, equivalently, we have the following theorem.

Theorem 1: A necessary condition for the existence of a constant block-sum design is that
NN ′ is singular.

Remark 1: Singularity of NN ′ in turn implies that the rows of N are not linearly inde-
pendent.

Remark 2: Statement of Remark 1 is automatically satisfied if v > b, since Rank(N ) ≤
min(v, b) < v.

The structure of NN ′ for GD designs as given below and its eigenvectors and eigen-
values given in Lemma 1 are well known, see e.g. Nigam, Puri and Gupta (1988).
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NN ′ =



(r − λ1)Im2 + λ1Jm2 λ2Jm2 λ2Jm2 · · · λ2Jm2

λ2Jm2 (r − λ1)Im2 + λ1Jm2 λ2Jm2 · · · λ2Jm2
... ... ... ...
... ... ... ...

λ2Jm2 λ2Jm2 λ2Jm2 · · · (r − λ1)Im2 + λ1Jm2



= (r − λ1)Im1 ⊗ Im2 + (λ1 − λ2)Im1 ⊗ Jm2 + λ2Jm1 ⊗ Jm2

where Iq and J q denote respectively an identity matrix and a square matrix of one’s, both
of order q, and ⊗ is the (right) kronecker product. Let u1i, i = 1, 2, · · · , (m1 − 1) be
orthonormal column vectors of size m1 each, such that u′1i1m1 = 0, u′1iu1i = 1, and u′1iu1i1 =
0, i 6= i1 = 1, 2, · · · , (m1 − 1). Similarly, let u2j, j = 1, 2, · · · , (m2 − 1) be orthonormal
column vectors of size m2 each, such that u′2j1m2 = 0, u′2ju2j = 1, and u′2ju2j1 = 0,
j 6= j1 = 1, 2, · · · , (m2 − 1). Without loss of generality, we take normalized orthogonal
polynomial contrasts as u1i and u2j, i = 1, 2, · · · , (m1 − 1),j = 1, 2, · · · , (m2 − 1).

Lemma 1:

(a) w1i = u1i ⊗ 1m2 , i = 1, 2, · · · , (m1 − 1) constitute a set of (m1 − 1) eigenvectors of
NN ′ corresponding to the constant eigenvalue of θ1 = (rk − vλ2),

(b) w2j = 1m1 ⊗ u2j, w12ij = u1i ⊗ u2j, i = 1, 2, · · · , (m1 − 1); j = 1, 2, · · · , (m2 − 1)
constitute a set of m1(m2 − 1) eigenvectors of NN ′ corresponding to the constant
eigenvalue of θ2 = (r − λ1),

(c) 1m1 ⊗ 1m2 is an eigenvector of NN ′ corresponding to the eigenvalue of θ0 = rk, and
(d) the m1m2 eigenvectors of NN ′ in (a), (b), and (c) are mutually orthogonal.

GD designs are called singular if r = λ1, semi-regular if r > λ1 and rk = vλ2, and
regular if r > λ1 and rk > vλ2. Let us first consider the class of semi-regular GD (SRGD)
designs. It can be seen that θ1 = 0 and θ2 > 0 for SRGD designs. From Lemma 1, the
following (m1 − 1) eigenvectors of NN ′ correspond to an eigenvalue of zero as required in
Theorem 1.

w1i = u1i ⊗ 1m2 , i = 1, 2, · · · ,m1 − 1 .

However, it is easily seen that none of these eigenvectors on its own satisfies the require-
ment that all of its v elements be different from each other. Note that a linear combination of
these m1−1 eigenvectors is also an eigenvector of NN ′ corresponding to zero eigenvalue. So,
let us consider the following general linear combination t1w, where ci, i = 1, 2, · · · , (m1− 1)
are some constants.

t′1w =
m1−1∑
i=1

ci

(
u′1i ⊗ 1′m2

)

=
[(

m1−1∑
i=1

ciu1i1

)
1′m2

(
m1−1∑
i=1

ciu1i2

)
1′m2 · · ·

(
m1−1∑
i=1

ciu1im1

)
1′m2

]
(1)
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where u′1i = (u1i1 u1i2 · · · u1im1) , i = 1, 2, · · · , (m1−1). It is clear from equation (1) that
there does not exist a linear combination t1w such that all of its v = m1m2 elements are
different from each other. Thus we can state the following result.

Theorem 2: There does not exist a constant block-sum semi-regular GD design.

Next, turning attention to the class of regular GD designs, note that both of the
eigenvalues θ1 and θ2 of NN ′ for these designs are greater than zero. So, an eigenvector w
per the necessary condition of Theorem 1 does not exist for the class of regular GD designs.
Thus we have the following.

Theorem 3: There does not exist a regular GD constant block-sum design.

Finally, we now consider singular GD (SGD) designs for which the eigenvalue θ2 =
r − λ1 = 0. From Lemma 1, the following m1(m2 − 1) eigenvectors satisfy the necessary
condition of Theorem 1 for existence of constant block-sum designs.

w2j = 1m1 ⊗ u2j, j = 1, 2, · · · (m2 − 1) ,
w12ij = u1i ⊗ u2j, i = 1, 2, · · · , (m1 − 1) ; j = 1, 2, · · · , (m2 − 1)

None of these m1(m2 − 1) eigenvectors on its own satisfies the requirement that all of
its m1m2 elements be different from each other. So, we explore a linear combination t2w of
the m1(m2 − 1) eigenvectors, that is also an eigenvector of NN ′ with zero eigenvalue, such
that its m1m2 elements are different from each other.

t2w =
m2−1∑
j=1

c2jw2j +
m1−1∑
i=1

m2−1∑
j=1

c12ijw12ij (2)

where c1j, c12ij, i = 1, 2, · · · , (m1 − 1) ; j = 1, 2, · · · , (m2 − 1) are some constants. For
illustration, we consider the following example.

Example 1: Consider the SGD design S21 in Clatworthy (1973) tables with parameters
v = 9, b = 3, r = 2, k = 6, λ1 = 2, λ2 = 1, m1 = m2 = 3 :

Block No. Block contents
1 1 2 3 4 5 6
2 1 2 3 7 8 9
3 4 5 6 7 8 9

Here, m1(m2 − 1) = 6 orthonormal eigenvectors of NN ′ corresponding to zero eigenvalue
are as follows.

w′21
w′22
w′1211
w′1212
w′1221
w′1222

 =



(−1 0 +1 −1 0 +1 −1 0 +1) /
√

6
(+1 −2 +1 +1 −2 +1 +1 −2 +1) /3

√
2

(+1 0 −1 0 0 0 −1 0 +1) /2
(−1 +2 −1 0 0 0 +1 −2 +1) /2

√
3

(−1 0 +1 +2 0 −2 −1 0 +1) /2
√

3
(+1 −2 +1 −2 +4 −2 +1 −2 +1) /6


(3)
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By taking c21 = −0.03, c22 = 0.50, c1211 = −0.42, c1212 = 0.61, c1221 = −0.90, and
c1222 = −0.43, in equation (2) and using (3) we get:

t′2w = (−0.0679 0.2598 − 0.1920 − 0.2462 − 0.5224 0.7686 0.7043 − 0.4446 − 0.2598 )

Adding a same constant value to all the elements of t2w does not break the constant block-
sum property. The elements of t∗2w given below, obtained by adding c0 = 0.70 to the elements
of t2w, can be taken as treatment levels for constant block-sum property.

t∗′2w = ( 0.6321 0.9598 0.5080 0.4538 0.1776 1.4686 1.4043 0.2554 0.4402 ) .

As a matter of fact, a very large number of solutions for t∗2w can be found by varying the
values of the six coefficients c21, c22, c1211, c1212, c1221, c1222 of the linear combination t2w. Any
set of six values of these coefficients that results in all the elements of t2w to be different from
each other would satisfy the constant block-sum property. Table 2 lists 5 other solutions for
the treatment levels vector t∗2w obtained by trial and error. The corresponding values of the
six coefficients are listed in Table 3, where c0 is the constant value added to the elements of
t2w to obtain t∗2w. Many more solutions can be found simply by taking other values for the
coefficients such that all the elements of t2w are different from each other.

Table 2: Further solutions for Example 1

t∗′2w No. t∗′2w

1 0.7980 0.3685 1.8336 0.8232 1.1953 0.9815 0.8612 0.0221 2.1168
2 0.7480 0.4685 1.7836 0.9232 0.9953 1.0815 0.8112 0.1221 2.0668
3 0.6980 0.5685 1.7336 1.0232 0.7953 1.1815 0.7612 0.2221 2.0168
4 0.8771 0.6185 1.5044 1.2773 0.6953 1.0274 0.9403 0.2721 1.7876
5 1.5412 1.1447 0.9140 1.5833 1.9138 0.1029 0.7722 0.6829 2.1450

Table 3: Coefficient values for t∗′2w listed in Table 2

t∗′2w No. c21 c22 c1211 c1212 c1221 c1222 c0
1 1.00 1.00 0.11 0.30 0.57 1.00 1.00
2 1.00 1.00 0.11 0.30 0.57 0.70 1.00
3 1.00 1.00 0.11 0.30 0.57 0.40 1.00
4 0.50 1.00 0.11 0.30 0.57 0.25 1.00
5 -0.30 -0.10 1.00 0.40 1.07 1.00 1.20

Remark 3: For comparing treatments with respect to their effects, it is natural that treat-
ment levels will be determined by subject matter specialists based on the objectives of their
study. Example 1 illustrates the conundrum the experimenter is confronted with. What if
none of the solutions illustrated in the example is a good choice of treatment levels for the
study objectives? Note that for a t∗2w of Table 2, f1t

∗
2w + f219 also satisfies the property

of constant block-sum, where f1 > 0 is a constant and f2 is another constant such that all
the treatment levels are greater than zero. Of course, we can also include more solutions
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in Table 2 and hope that one of the solutions meets the study objectives. However, a sys-
tematic, perhaps algebraic, method of deriving possible solutions for unequally spaced and
equispaced treatment levels in general deserves further research. Khattree (2019) has pro-
vided a detailed discussion on optimizing constant block-sum and nearly constant block-sum
designs.

Sometimes a choice of u1i’s and u2i’s other than the orthogonal polynomial contrasts
may yield a analytical solution directly without the need of forming linear combinations of
eigenvectors. For instance, suppose in Example 1 we take u′11 = (1, 2, −3)/

√
14,

u′12 = (1, −1.25, −0.5)/
√

2.8125, u′21 = (−5, 4, 1)/
√

42, u′22 = (1, 2, −3)/
√

14. Then,
using Lemma 1,

w′1211 = u11 ⊗ u21 = (−5 4 1 − 10 8 2 15 − 12 − 3) /
√

588 (4)

is an eigenvector of NN ′ with zero eigenvalue having all of its elements different from each
other. Thus,

t∗′2w = f1 (−5 4 1 − 10 8 2 15 − 12 − 3) + c01′9 ,

where f1 > 0 and c0 > 12 are some constants, satisfies the property of constant block-sum.
The constants f1 and c0 can be chosen appropriately to suit experimenter’s requirements
with respect to the magnitude of treatment levels.

3. Equispaced Treatment Levels

The general approach illustrated in the previous section shows many possibilities for
constant block-sum designs with unequally spaced treatment levels. However, if equispaced
treatment levels are desired, SGD designs based on BIB designs in particular afford a solution
directly without making use of the eigenvectors of NN ′. Consider a BIB design D with
parameters v0 = m1, b0, r0, k0, λ0, with treatments coded as 1, 2, · · · , m1. Let DSGD denote
the design obtained by replacing treatment i in the BIB design by m2 treatments (i−1)m2 +
1, (i−1)m2 +1, · · · , im2, i = 1, 2, · · · , m1. Then DSGD is a SGD design (Bose and Connor,
(1952)) with parameters v = m1m2, b = b0, r = r0, k = m2k0, λ1 = r, λ2 = λ0, m1, m2, with
m1 groups of treatments as given in Table 1. Let T be the vector of treatments given by,

T = (1, 2, · · · , m2, m2 + 1, m2 + 2, · · · , 2m2, · · · , m1m2)′ . (5)

Now suppose it is desired to transform SGD design DSGD into a constant block-sum
design for m1m2 equispaced treatment levels `i, i = 1, 2, · · · , m1m2, where `i = `1 +(i−1)d,
d = `i−`i−1, i = 2, 3, · · · , m1m2., `1 being the lowest dose or treatment level. Let the vector
of equispaced treatment levels can be written as,

T ` = `11v + d {0, 1, 2, · · · , (m1m2 − 1)}′ . (6)

In fact we only need to work with T `0 as defined below, since T ` = `11v + dT `0,

T `0 = {0, 1, 2, · · · , (m1m2 − 1)}′ . (7)
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The sum of the m1m2 elements of T `0, say `SUM , is then given by

`SUM = T ′`01v = {m1m2 (m1m2 − 1)} /2 .

Further suppose that it is possible to partition the v = m1m2 elements of T `0 into m1 groups
of size m2 each such that the sum of the m2 elements within all the m1 groups is equal to
each other. Clearly, then the sum of m2 elements in each group is equal to `SUM/m1. Let
the ith group, say Gi be denoted by,

Gi =
{
`∗{(i−1)m2+1}, `

∗
{(i−1)m2+2}, · · · , `∗im2

}
,

m2∑
j=1

`∗{(i−1)m2+j} = `SUM

m1
= m2 (m1m2 − 1)

2 , i = 1, 2, · · · , m1 ,

{
`∗{(i−1)m2+1}, `

∗
{(i−1)m2+2}, · · · , `∗im2

}
∈ {0, 1, 2, · · · , (m1m2 − 1)} ,

G1 ∪G2 · · · ∪Gm1 ≡ T `0 = {0, 1, 2, · · · , (m1m2 − 1)} .

Then a constant block-sum design equispaced treatment levels vector t∗2w is given by,

t∗2w = `11v + d
(
`∗1, `

∗
2, · · · , `∗m2 , `

∗
m2+1, `

∗
m2+2, · · · , `∗m1m2

)′
. (8)

An equispaced constant block-sum design D∗SGD is obtained by replacing the ith element of
T of (5) in design DSGD by the ithe element of t∗2w of (8). The block size being m2k0, the
treatment levels (8) imply that the constant block-sum equals k0`SUM/m1. Alternatively,
D∗SGD can be obtained by replacing treatment i in the BIB design D by the m2 elements of
`11m2 + dGi, i = 1, 2, · · · , m1. For illustration let us consider Example 1 again.

Example 1 continued: Let D be the BIB design with parameters v0 = b0 = 3, r0 = k0 = 2,
λ0 = 1, with blocks given by [1 2], [1 3], [2 3]. Then the SGD design S21 of Clatworthy
(1973) is obtain by replacing treatment i in D by m2 = 3 treatments as described above.
Thus, replace treatments 1, 2, 3 in D by the treatment groups (1, 2, 3), (4, 5, 6) and (7, 8,
9) respectively to obtain the SGD design S21 or DSGD. From (3.3) we have

T `0 = (0, 1, 2, 3, 4, 5, 6, 7, 8)′ ,

with `SUM = 36. Taking G1 = (0, 4, 8), G2 = (1, 5, 6) and G3 = (2, 3, 7), gives the sum of
elements in each group to be `SUM/m1 = 12. Suppose ` = 1.5 and d = 0.3. Then the requisite
equispaced constant block-sum design DSGD is obtained by replacing treatment i in the BIB
design D by m2 = 3 elements of 1.513 + dGi, i = 1, 2, 3. The designs S22, S23, S24, and
S25 in Clatworthy (1973) are obtained by taking replications of design S21. Corresponding
constant block-sum designs can then be obtained by taking replications of DSGD

Most of the SGD designs listed in Clatworthy (1973) are constructed using irreducible
BIB designs. Let Dm1

k0 denote the irreducible BIB design for v0 = m1 treatments in blocks
of size k0. Then, the groups Gi for m2 = 2 are as below, where the subscript 2 indicates the
value of m2,

G2i = {(i− 1) , (2m1 − i)} , i = 1, 2, · · · , m1 .
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TheDSGD designs corresponding to S1 to S20 can thus be obtained using G2i, i = 1, 2, · · · , m1 .
Constant block-sum designs for some other values of m2 can also be similarly developed. The
reader is also referred to Khattree (2019) for constructions of some equispaced SGD constant
block-sum designs.
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Abstract 
 

The purpose of this article is to use small area estimation (SAE) method to produce 
district level estimates for some of the important indicators such as living condition, poverty 
incidence and working population ratio. For this purpose, data from 68th round (2011-12) of 
National Sample Survey Office (NSSO) pertaining to Household Consumer Expenditure 
Survey (HCES) and Employment and Unemployment Survey (EUS) for Uttar Pradesh has been 
used along with the 2011 Population Census data. The empirical results, evaluated through set 
of internal and external diagnostics measures, show that the district-level estimates generated 
through SAE approach are precise than the direct estimates. Spatial maps showing district level 
inequality in distribution of living condition, poverty incidence and working population ratio 
in Uttar Pradesh are also produced. These maps and districts level estimates are important for 
target oriented effective policy planning, monitoring and decision-making. In this article we 
deliberately consider two types of estimates viz. averages and proportions and use two different 
survey data of NSSO for producing district level estimates. We then illustrate how the existing 
survey data can be linked with Census data to produce reliable, timely and cost-effective 
district-level estimates of averages and proportions. The SAE methodology, illustration and 
guidelines set out in this paper can be adopted in other existing surveys for generating the 
disaggregate level estimates.  

 
Key words: NSSO survey; Small area estimation; Precision; Living condition; Working 
population ratio. 

0. Prologue 

This paper is a tribute in honour and loving memory of Dr. Aloke Dey who had been a 
close friend to me all along for more than five and a half decades. Right from our student days 
to the entire professional career, he had been a source of strength and inspiration to all of us. 
His intense concern for maintaining high standards and values in research and teaching had 
a deep influence on his friends, colleagues, and students. Improvement in statistical system of 
the country was also remarkably close to his heart. This paper is an effort towards bringing in 
Small Area Estimation Techniques closer to application into some of the NSSO surveys – a 
hearty tribute from our side. - A K Srivastava. 
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1. Introduction 
 

The NSSO surveys are generally conducted to generate a huge range of invaluable and 
crucial data, separately for the rural and urban sectors of the country, for States and Union 
Territories, and for different socio-economic groups. However, there is a rapidly growing 
demand for disaggregate level estimates (e.g. district or further disaggregate level) in India as 
the country is moving towards more decentralized system of governance. The disaggregate 
level estimates are also inevitable for several sustainable development goals (SDGs) related 
indicators. Just to mention some early attempts in India, an expert committee on small area 
statistics (SAS) was set up by (then) Ministry of Planning and Programme Implementation, 
Government of India (Government of India, 1997) under the chairmanship of Professor J. Roy. 
The committee deliberated upon the implications of 73rd and 74th amendments in the 
Constitution in view of data needs and its availability and highlighted the need for 
methodological studies for generating small area statistics appropriate to Indian conditions. 
This paper particularly concentrates on providing district level estimates for NSSO surveys 
where estimates are mostly generated at state-level. The SAE techniques provide a viable 
approach for producing estimates at smaller levels (Rao and Molina, 2015). The models used 
in SAE are commonly grouped as area level or unit level model. Area-level modelling is 
typically used when unit-level data are unavailable, or, as is often the case, where model 
covariates or auxiliary variables are only available in aggregate form. In this article, we 
motivate the SAE method based on area level small area modeling because in India the 
auxiliary variables are often accessible and available at aggregate (e.g. district) level. In this 
context, Fay–Herriot model (Fay and Herriot, 1979) is a widely used area level model in SAE. 
But this model is suited for continuous data. If the variable of interest is binary and the aim is 
to estimate small area proportions, then the area level generalized linear mixed model with 
logit link function, also referred to as the logistic linear mixed model (LLMM) is generally 
used (Johnson et al., 2010; Chandra et al., 2011 and Chandra et al., 2019). Srivastava (2007) 
used Fay–Herriot method of SAE to generate district level estimates for monthly per capita 
consumer expenditure (MPCE) using the 2004-05 Household Consumer Expenditure Survey 
(HCES) data of NSSO for the state of Uttar Pradesh. Srivastava (2009) further used the same 
data for estimating several poverty indicators at district level. Singh. et. al. (2005) used NSSO 
data for application of spatio-temporal models in SAE. More recently, Anjoy et al. (2020) used 
All India Debt and Investment Survey 2012-13 of NSSO for estimating the district-wise 
proportions of indebted households in rural areas of Karnataka. Chandra (2020) applied SAE 
method to estimate the incidence of food insecurity in different districts of rural areas of the 
state of Uttar Pradesh using the 2011-12 HCES of NSSO.  

 
In this article, we consider SAE methods to produce district level estimates of the average 

household MPCE, the proportion of poor households and the employment rate for both rural 
and urban sectors for the state of Uttar Pradesh. Throughout this article, the proportion of poor 
households (i.e. proportion of households below poverty line) is also referred by poverty 
incidence and poverty rate (PR). The employment rate (UR) is referred as the proportion of 
persons employed to total persons. Alternatively, the worker-population ratio (WPR), also 
referred as work-force participation rate (WFPR) is defined as the number of persons employed 
per 1000 persons (i.e. WPR=1000´UR). The work force in the usual status includes the persons 
who worked for a relatively long part of the 365 days preceding the date of survey and the 
persons from among the remaining population who had worked at least for 30 days during the 
reference period of 365 days preceding the date of survey. The estimates of average household 
MPCE and poverty rate from the HCES of NSSO and the estimates of employment rate from 
the employment and unemployment survey (EUS) are common statistics generated by all the 
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states and used by different departments and ministries. This article deliberates these 
parameters and illustrates how the existing HCES and EUS data can be used to generate precise 
district level estimates. We elaborate two types of estimates viz. average and proportion (rate) 
and use two different survey data (HCES and EUS) of NSSO linking with Census data for 
producing district level estimates. This example can also be used as guidelines for generating 
the district level estimates of other commonly required parameters from the other existing 
surveys.  

 
The paper is organized as follows. Besides introductory part in section 1, we describe 

data sources, different indicator variables of interest, and choice of auxiliary variables for SAE 
modelling in Section 2. Section 3 briefly delineates methodology used in the applications 
considered in this paper. Some aspects of the methodological framework have been discussed 
in Srivastava (2007, 2009) and Chandra (2020). In fact, Chandra (2020) applied the approach 
to estimate district-wise proportion of food insecure households in rural areas of Uttar Pradesh. 
However, for the sake of clarity and completeness, approach is described briefly in Section 3. 
The empirical results including essential diagnostic measures and discussions are deliberated 
in Section 4. Finally, Section 5 concludes the paper with some final remarks and 
recommendations. 

 
2. Data Sources and Model Selection 

 
The small area applications reported in this paper are based on the HCES and the EUS 

data from 68th round (2011-12) of NSSO for both rural and urban sectors of Uttar Pradesh and 
the 2011 Population Census. The 2011-12 HCES data is used to estimate the average household 
MPCE and the proportion of poor households (i.e. poverty ratio or PR) at district level for both 
rural and urban sectors in Uttar Pradesh. On the other hand, the estimation of UR (or WPR) is 
based on the 2011-12 EUS data. The household MPCE and the binary variable indicating 
whether a household is poor or not are the target variables of interest in 2011-12 HCES data. 
In this application a household having MPCE below the state poverty line is defined as poor. 
The poverty line used in this study (Rs. 768 for rural and Rs. 941 for urban) is the same as that 
set by the then Planning Commission, Govt. of India, for 2011-12. The parameters of interest 
are the average household MPCE and the PR within each district. In 2011-12 EUS data, the 
parameter of interest is the UR or WPR. In 2011-12 HCES, a total of 5916 rural and 3102 urban 
households from the 71 districts of Uttar Pradesh were surveyed. The district sample sizes for 
rural areas ranged from 32 to 128 with average of 83. Similarly, the district sample sizes for 
urban areas varied from 30 to 128 with average of 44. On the other hand, the 2011-12 EUS 
enumerated 49513 persons (33738 in rural areas and 15775 in urban areas). The district level 
sample sizes are relatively small for generating precise district level estimates.  
 

The 2011 Population Census has a range of auxiliary variables (covariates) which can be 
explored for SAE modelling. However, we identified few relevant auxiliary variables for this 
study. We also used Principal Component Analysis (PCA) to derive composite scores for 
selected groups of auxiliary variables, separately for both rural and urban areas. Using district 
aggregates of rural data, we did PCA for two groups of auxiliary variables, denoted as R1and 
R2. The first group (R1) consisted of the proportions of main worker by gender, proportions of 
main cultivator by gender and proportions of main agricultural labourer by gender. The second 
group (R2) consisted of proportions of marginal cultivator by gender and proportions of 
marginal agriculture labourers by gender. The first principal component (R11) for the first 
group explained 44% of the variability in the R1, while adding the second component (R12) 
increased explained variability to 69%. The first principal component (R21) for the second 
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group explained 52% of the variability in the R2 group, while addition of second component 
(R22) increased explained variability to 90%. For urban areas, we further applied PCA, 
separately for two groups of variables, as defined in rural data, but using district aggregates of 
urban data. These are denoted as U1 and U2. Here, the first principal component (U11) 
explained 53% of the variability and addition of the second component (U12) explained 83% 
variability to in the U1. The first principal component (U21) for the U2 explained 63% of the 
variability, while adding the second component (U22) enhanced explained variability to 87%.  

 
For both rural and urban data, we separately fitted a linear model using district-wise direct 

estimates of MPCE as the response variable and the PCA scores and other auxiliary variables 
as covariates. The final model with selected covariates was used to produce district-wise 
estimates of average household MPCE. The model was fitted using the lm() function in R using 
the district specific sample sizes as the weight. We also fitted a generalized linear model (GLM) 
using direct estimates of proportions of poor households versus the PCA scores and other 
auxiliary variables for each group of data. The model was fitted using the glm() function in R 
and specifying the family as “binomial” and the district wise sample sizes as the weight. We 
also fitted a GLM using direct estimates of employment rates versus a set of auxiliary variables. 
In each case, model fitting was used for selection of final model for SAE analysis. Table 1 
provides list of selected covariates which were used in SAE of average household MPCE, 
poverty incidence and employment rate. 

 
Table 1: Selected auxiliary variables for SAE of the average MPCE, the proportion of 

poor households (poverty incidence) and the working population ratio 
 
Parameter  Rural Urban 
MPCE SC (Proportion of scheduled caste 

to total population), Literacy rate, 
R11, R21and R22 

Literacy rate and TWPR 
(Proportion of worker to total 
population) 
 

Poverty 
incidence 

SC, Literacy rate, R11, R21and 
R22 

Literacy rate and TWPR  

Employment rate  SC, TWPR, Number of households 
and Total population 

SC, Literacy rate and TWPR  
 

 
3. Methodological Framework 

 
This Section briefly introduces the SAE methods applied for producing the district level 

estimates of average household MPCE, poverty incidence and employment rate (or WPR) and 
their measure of precision for rural and urban areas of the state of Uttar Pradesh. Let  denote 
the value of the variable of interest for unit  in district , where  
and D denote the population size of district i and total number of districts in the population 
respectively. The quantity of interest in district i is the population mean (or proportion, in case 
of binary variable)  defined as . Let  denotes the sample size in district 

i, then the direct estimator of  is , where  is inverse of 

the inclusion probability for unit j in district i. The estimate of variance of direct estimator 

 is  Let  be the observed 
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direct estimate of average MPCE for district . Let  be the k-vector of known district level 
auxiliary variables, related to the population parameter . Then district specific Fay and 
Herriot (1979) model is described as  and . Alternatively, this 
model can be expressed as  

 
; .          (1) 

 
Here  is a k-vector of unknown fixed effect parameters, are independently and 
identically distributed normal random errors with  and , and ’s are 
independent sampling errors normally distributed with , . The 
two errors are independent of each other within and across districts. Let  denote the estimator 

of   and  the empirical best linear unbiased estimator of . The empirical best linear 
unbiased predictor (EBLUP) estimate of  is then  
 

; .       (2) 
 

Here, , where  defines the shrinkage effect for district 
i. The mean squared error (MSE) estimation of EBLUP (2) follows from Rao and Molina 
(2015). Readers can also refer to Chandra (2013) for the expression of MSE estimate of EBLUP 
(2).   

 
It is worth noting that the direct estimate of proportions (e.g. PR and ER) can also be 

modelled by Fay-Herriot model (1) and the EBLUP estimate of district level proportions can 
be obtained. However, the estimate of district level proportions derived from the EBLUP (2) 
might be inconsistent in the sense that they might not be within the [0,1] interval. We describe 
approach to model district-specific proportions under a LLMM to produce precise district level 
estimates of PR and ER. For example, for estimating PR, the binary variable  takes value 1 
when household j in district i is poor and 0 otherwise. Similarly, in case of ER, it assumes value 
1 when person j in district i is employed and 0 otherwise. In this case, population parameter of 
interest in district i is the district level proportion. Let  denotes the sample count 

in district i, which follows a Binomial distribution with parameters  and , i.e. 
, where  is a success probability. The model linking  with the 

covariates  is the LLMM of form 
 

,     (3) 
 

with , where  is the k-vector of regression 

coefficients and  is the district-specific random effect with . Here, the sampling 
information has been incorporated by replacing the “actual sample size” and the “actual sample 
count” with the “effective sample size” and the “effective sample count” respectively, see for 
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example, Chandra et al. (2019).  Assuming , a plug-in empirical predictor (EPP) of 
proportion (e.g., PR or ER)  in district i is  

.     (4) 
 

The expression for the estimate of MSE of EPP (4) is given in Chandra et al. (2019).  

4. Results and Discussions  
 
This Section illustrates and discusses the district-wise estimates of average household 

MPCE, incidence of poverty and UR generated by direct and SAE methods for both rural and 
urban areas of Uttar Pradesh. The EBLUP (2) under FH model is used to produce the district-
wise estimates of average household MPCE and the EPP (4) is applied for generating the 
district-wise estimates of incidence of poverty (or PR) and employment rate for rural and urban 
areas. The corresponding estimates of MSE are also computed to assess the reliability of 
estimates and also to construct the confidence interval for the estimates. The district-specific 
estimates of average household MPCE, PR and WPR along with their SEs and CVs generated 
by the Direct and SAE methods for Uttar Pradesh are provided in the Appendices (Tables A1-
A6).  

 
A set of diagnostics measures are implemented before making inferences about small 

area estimates. Such diagnostics measures are (i) the model diagnostics, and (ii) the small area 
estimates diagnostics. The model diagnostics are tested to verify the assumptions of the 
underlying model. For example, the small area models (1) and (3) assume that the random 
district specific effects have a normal distribution with mean zero and fixed variance. The 
district specific residuals are expected to be randomly distributed around zero if the model 
assumptions are satisfied. Histogram and q-q plot are also checked to inspect the normality 
assumption. For this study, the district level residuals are randomly distributed around zero and 
the histograms as well as the q-q plots also provide evidence in support of the normality 
assumption. In addition, we use the Shapiro-Wilk (SW) test to examine the normality of the 
district random effects. The other diagnostics are demonstrated to examine the level of validity 
and accuracy of the small area estimates. Three commonly used diagnostics measures for 
evaluating the validity and the reliability of the small area estimates: the bias diagnostic, the 
percent coefficient of variation (CV) diagnostic and the 95% confidence interval (CI) 
diagnostic. The first diagnostics assesses the validity and last two review the improved 
precision of the small area estimates level (Chandra et al., 2011). For bias diagnostic we plot 
direct estimates (Y-axis) vs. small area estimates (X-axis) and we looked for divergence of the 
fitted least squares regression line from the line of equality. Although results not reported here, 
the bias diagnostic plots revealed that the district level estimates of MPCE, poverty incidence 
and WPR for both rural and urban are less extreme when compared to the corresponding direct 
estimates. We also use a Goodness of Fit (GoF) diagnostic, which is equivalent to a Wald test, 
for whether the differences  between direct estimates  and small area  
estimates  of a population parameter ( ) are statistically different. The null hypothesis is 
that the direct and small area estimates are statistically equivalent. The alternative is that the 
direct and small area estimates are statistically different. This Wald test statistic is computed 
as . Assuming  and  are independently 

distributed, which is not unreasonable for large sample sizes, the value of W can be compared 
with an appropriate critical value from a chi square distribution with degrees of freedom D 
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equal to the number of districts. For our analysis, D = 71, with a critical value of 91.67 at a 5% 
level of significance calculated using qchisq function in R. A small value (<91.67 here) of W 
indicates no statistically significant difference between small area and direct estimates. The 
results from GoF diagnostic are given in Table 2. The values of W are smaller than the 91.67, 
which indicates that small area estimates are consistent with the direct estimates. In general, 
the bias diagnostics reflect that the small area estimates are consistent with the direct survey 
estimates.  
 
Table 2: Goodness of fit diagnostic 
 
Estimate  Rural Urban 
MPCE 11.87 7.70 
Poverty  28.39 13.04 
WPR 26.20 44.17 

 
We computed the CV to compare the extent to which the small area estimates of MPCE, 

poverty incidence and WPR improve in precision compared to the corresponding direct 
estimates. There is no standard, universally accepted definition of what constitutes large or 
small CV values. However, different organizations have different cut-offs: for instance, the UK 
Office for National Statistics has a cut-off CV value of 20% for acceptable estimates, while in 
the US the National Center for Health Statistics has a cut-off of 30% for county-level health 
statistics (Baffour et al., 2019). Figure 1 displays the district-wise values of CV for small area 
estimates and direct estimates in increasing order of sample sizes. The distribution of CV in 
Figure 1 shows that in most of the districts, the CVs of the small area estimates are significantly 
smaller than those of the direct survey estimates, implying that the small area estimates are less 
variable, and hence relatively more precise than the direct survey estimates. The improvement 
CV is higher for the districts with smaller sample sizes as compared to the larger sample sizes. 
A set of summary statistics for the direct and small area estimates along with associated 
standard errors and CV of the MPCE, poverty incidence and WPR over 71 districts for rural 
and urban area are reported in Table 3. As expected, the average values of MPCE, poverty 
incidence and WPR estimates generated by SAE are almost identical to those of the direct 
estimates but with lower variability (i.e. smaller values of standard deviation). For example, 
the standard deviations of MPCE estimates for rural area generated by the direct and the SAE 
methods are 50 and 24, respectively. From Table 3, it is obvious that the small area estimates 
of MPCE, poverty incidence and WPR are more precise and representative than the direct 
estimates for both rural and urban areas. We now examine the 95 % confidence interval for the 
direct estimates compared to the small area estimates. For more precise estimates, we expect 
the width of the confidence interval to be narrower. The district-wise plots of the 95% 
confidence intervals (CIs) for the average household MPCE, poverty incidence and WPR 
generated by direct and SAE methods (EBLUP for average household MPCE and EPP for both 
poverty incidence and WPR) are displayed in Figure 2. These plots show that the 95% CIs for 
the direct estimates are wider than the 95% CIs for the small area estimates for the average 
household MPCE, poverty incidence and WPR. We further note that in many districts the 95% 
CI for direct estimates are invalid (for example, negative values for poverty incidence) due to 
large standard errors.  Finally, we examine the aggregation property of the small area district-
level estimates generated by SAE methods at higher (e.g. State) level. Let  and  denote 
the estimate of an average or proportion   and population size for district i. The divisional 

and state-level estimates an average or proportion is then calculated as . 

ˆ im iN

iy

1 1
ˆ ˆD D

i i ii i
m N m N

= =
=å å



 A.K. SRIVASTAVA AND HUKUM CHANDRA [Vol. 19, No. 1 156 
 

Table 4 reports the state level estimates of the average household MPCE, poverty indicator and 
WPR generated by direct and SAE methods. Comparing these estimates, we see that the small 
area estimates are close to the direct survey estimates at state level.  

 
Table 3: Summary distribution of direct and model-based small area estimates along 

with their standard error (SE) and percent CV of MPCE, poverty incidence 
and WPR  

 
Rural 

Parameter 
  

Statistics 
  

Direct estimate Small area estimate 
Estimate SE CV Estimate SE CV 

Average  
household  

MPCE 

Minimum 774 38 3.73 791 37 3.67 
Maximum 1958 309 25.35 1558 139 14.43 
Average 1083 83 7.44 1059 68 6.40 
Std. deviation 224 50 3.61 165 24 1.96 

Poverty  
incidence    

Minimum 0.002 0.011 12.91 0.060 0.024 12.75 
Maximum 0.578 0.169 99.38 0.506 0.083 42.32 
Average 0.249 0.071 35.08 0.251 0.055 24.37 
Std. deviation 0.137 0.025 17.44 0.107 0.014 6.72 

WPR   

Minimum 224 22 6.80 280 20 5.86 
Maximum 507 79 21.68 430 36 10.16 
Average 338 37 11.03 337 26 7.65 
Std. deviation 57 10 3.25 33 3 0.99 

Urban 

Average  
household  

MPCE 

Minimum 791 61 6.08 796 60 6.02 
Maximum 6453 609 22.42 4762 482 19.39 
Average 1623 185 10.97 1569 172 10.61 
Std. deviation 835 123 3.83 637 99 3.34 

Poverty  
incidence     

Minimum 0.003 0.003 11.98 0.023 0.010 11.54 
Maximum 0.736 0.136 105.41 0.667 0.122 56.94 
Average 0.281 0.077 36.73 0.278 0.061 26.57 
Std. deviation 0.183 0.032 18.47 0.161 0.024 10.89 

WPR   

Minimum 222 28 7.51 260 18 5.75 
Maximum 487 57 21.51 393 27 7.72 
Average 313 41 13.39 312 20 6.51 
Std. deviation 51 7 2.73 25 2 0.49 
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Figure 1: District-wise coefficient of variation (%) for the small area estimates (solid line) 

and the direct estimates (dash line). Districts are arranged in increasing order 
of sample sizes. 
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Figure 2: District-wise 95 percentage nominal confidence interval (95% CI) for the direct 

(solid line) and small area (thin line) estimates. Direct (dotted point) and model-
based estimates (dash point) are shown in the 95% CI.  
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The district-specific estimates of average household MPCE, poverty incidence and 
WPR along with their CVs and and 95% CIs generated by the direct and SAE methods are 
provided in the Appendices (Table A1-A6). The diagnostics measures clearly demonstrate that 
the small area estimates are more efficient, precise, and representative than the direct estimates. 
Consequently, statistical inferences and conclusions based on the small area estimates of 
MPCE, poverty incidence and WPR are expected to offer better and effective policy decisions. 
Therefore, hereafter in discussion we focus on the estimates of MPCE, poverty incidence and 
WPR generated by SAE methods. Figures 3-5 provides maps showing spatial distribution of 
MPCE, poverty incidence and WPR estimates respectively at district level for rural and urban 
areas of Uttar Pradesh produced from the SAE methods. Darker areas of the maps correspond 
to the areas with high values of estimates. These maps supplement the district-wise estimates 
along with CVs and 95% CIs set out in Appendices (Table A1-A6). 
 
Table 3: Aggregated level estimates generated by direct and SAE methods 
 

Parameters  
Rural Urban  

Direct SAE Direct SAE 
MPCE (Rs) 1073 1050 1942 1934 
Poverty rate (%)   25.8 25.7 19.2 19.4 
WPR 338 336 317 310 
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Figure 3: District-wise mapping of MPCE for rural (left) and urban (right) areas in the 

state of Uttar Pradesh generated by small area estimation method, 2011-12 
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Figure 4: District-wise mapping of poverty incidence for rural (left) and urban (right) 
areas in the state of Uttar Pradesh generated by small area estimation method, 
2011-12 
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Figure 5: District-wise mapping of worker population ratio for rural (left) and urban 
(right) areas in the state of Uttar Pradesh generated by small area estimation 
method, 2011-12 

 
5. Concluding Remarks and Recommendations  

 
In India, Censuses are usually limited as they tend to focus mainly on the basic socio-

demographic and economic data and are not available for every time - period. On the other 
hand, country is fortunate to have regular NSSO surveys for generating number of socio-
economic indicators. The NSSO surveys are aimed to generate estimates at national and state 
level. They do not provide sub-state level statistics. There is no regular flow of estimates at 
districts and further disaggregate levels. It is known that state and national estimates usually 
mask variations (heterogeneity) at the sub-state or district level and render little information 
for micro level planning and allocation of resources. Recently, there has been a pressing 
demand for disaggregate level sustainable development goals (SDGs) related indicators in 
various departments in central and state governments and United Nations agencies in the 
country. Therefore, need for SAE has again achieved momentum. Despite the importance and 
urgent requirements, there are several virtual reasons for this topic not being implemented in 
the system. To the best of our knowledge and understanding, one such reason is technicality 
involved in SAE method. For example, SAE is combination of statistical modelling and survey 
estimation and there is no unique solution for all type of problems encountered. In order to 
develop a team of personnel with technical knowledge and experience in the field, adequate 
stability of the staff needs to be ensured.  

 
This article demonstrated application of SAE approach to generate district level reliable 

and representative of the average household MPCE, poverty incidence and working population 
ratio for rural and urban areas of Uttar Pradesh by linking the latest round of 2011-12 HCES 
and 2011-12 EUS data of NSSO with the 2011 Population Census. The diagnostic measures 
clearly confirm that the estimates generated by SAE have reasonably good precision. The SAE 
method has also generated reliable estimates for the districts with smaller sample sizes. The 
district level estimates, and spatial mapping can provide useful information for the purpose of 
better strategic decision and policy planning. For example, many programmes are launched by 
Government of India with an objective to uplift the socio-economic condition of masses. NITI 
Aayog requires values of some socio-economic parameters for the backward districts, which 
they have identified, to see the impact of policy interventions and for future planning in these 
backward districts. NITI Aayog has identified 114 backward districts in rural India and 112 
backward districts in urban India. They are monitoring some indicators related to socio-
economic parameter on a continuous basis and thus providing district level estimates is very 
much apt for these districts. Further, the district level estimates are likely to be advantageous 
for allocating budget to target welfare interventions through recognizing the districts or regions 
with low average MPCE (or high poverty rate) and working population ratio. The indicators 
chosen here are based on HCES and EUS Surveys. In fact, NSSO conducts several other 
important Household Surveys such as Health Surveys, Education Surveys, Situation Analysis 
Surveys, AIDIS Surveys besides Establishment Surveys. There are several well identified 
indicators of interest for each of these surveys. The methodology and application presented in 
this paper can be used as guideline for producing reliable, timely and cost-effective estimates 
using survey data from different sectors. 
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Appendix 
 

Table A1: District-wise sample size, direct estimates (Direct) and small area estimates 
(SAE) along with their standard error (SE) and percentage coefficient of 
variations (CV) of MPCE for rural areas of Uttar Pradesh in 2011-12 

 

 R
eg

io
n   District    Sample 

size 
Direct SAE  

MPCE SE CV MPCE SE CV 

 
W

es
te

rn
 

                      

Saharanpur 96 1419 89 6.30 1361 78 5.76 
Muzaffarnagar 128 1366 73 5.31 1345 66 4.91 
Bijnor 96 1068 59 5.55 1087 56 5.12 
Moradabad 128 1081 51 4.71 1083 49 4.49 
Rampur 64 1092 80 7.31 1081 71 6.61 
Jyotiba Phule Nr 64 1012 74 7.28 1032 67 6.47 
Meerut 64 1958 191 9.75 1558 123 7.87 
Baghpat 32 1885 218 11.56 1542 130 8.44 
Ghaziabad 64 1454 147 10.14 1430 110 7.71 
Gautam B Nr 32 1547 123 7.93 1465 98 6.68 
Bulandshahar 96 1247 53 4.29 1247 51 4.07 
Aligarh 95 1135 87 7.66 1151 76 6.61 
Hathras 64 1546 133 8.58 1360 102 7.50 
Mathura 64 1109 84 7.59 1116 74 6.63 
Agra 96 1063 58 5.50 1080 55 5.07 
Firozabad 64 1014 83 8.14 1075 73 6.82 
Etah 64 1436 111 7.71 1338 91 6.79 
Mainpuri 64 836 39 4.68 853 38 4.46 
Budaun 96 1016 65 6.42 1018 61 5.98 
Bareilly 95 1168 55 4.67 1168 52 4.43 
Pilibhit 64 1021 65 6.33 1024 60 5.84 
Shahjahanpur 96 921 51 5.52 939 49 5.18 
Farrukhabad 64 1149 107 9.28 1146 89 7.74 
Kannauj 64 973 84 8.63 1023 75 7.33 
Etawah 64 1045 55 5.28 1045 52 5.00 
Auraiya 64 1087 65 5.97 1076 60 5.59 
Kashiramnagar 32 1230 88 7.19 1161 79 6.79 

 
Ce

nt
ra

l 
      

Kheri 128 936 76 8.11 947 69 7.25 
Sitapur 128 1002 59 5.86 993 55 5.58 
Hardoi 128 967 46 4.80 965 45 4.63 
Unnao 96 861 48 5.59 867 46 5.32 
Lucknow 64 1130 110 9.69 1083 92 8.51 
Rae Bareli 128 930 43 4.60 930 41 4.44 
Kanpur Dehat 64 1104 101 9.15 1090 85 7.80 
Kanpur Nagar 64 1139 83 7.27 1126 74 6.53 
Fatehpur 96 777 38 4.91 791 37 4.69 
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So

ut
he

rn
 

     

Jalaun 64 993 67 6.74 987 62 6.25 
Jhansi 64 1070 58 5.39 1056 54 5.14 
Lalitpur 32 1061 40 3.73 1052 39 3.67 
Hamirpur 32 1079 67 6.25 1069 62 5.81 
Banda 64 774 52 6.71 793 49 6.22 
Chitrakoot 32 839 170 20.23 879 114 12.99 
Mahoba 32 975 114 11.68 976 92 9.40 

 
Ea

ste
rn

 
                         

Mahrajganj 96 1012 81 7.99 984 73 7.38 
Pratapgarh 128 870 40 4.54 880 38 4.35 
Kaushambi 63 809 59 7.29 819 56 6.83 
Allahabad 128 991 43 4.32 999 41 4.14 
Barabanki 96 900 56 6.26 906 53 5.86 
Faizabad 64 1378 278 20.18 1080 132 12.22 
Ambedkar 
Nagar 

96 1047 59 5.67 1041 55 5.32 

Sultanpur 128 1313 115 8.78 1197 92 7.71 
Bahraich 96 828 40 4.85 833 39 4.69 
Shrawasti 64 888 61 6.88 887 57 6.47 
Balrampur 63 892 65 7.29 895 61 6.77 
Gonda 128 1063 131 12.31 1034 100 9.68 
Siddharthnagar 96 1220 309 25.35 962 139 14.43 
Basti 96 861 78 9.02 885 70 7.86 
Sant K Nagar 64 1006 74 7.36 991 67 6.77 
Gorakhpur 128 993 42 4.25 996 41 4.10 
Kushinagar 128 1108 65 5.89 1087 61 5.59 
Deoria 96 988 70 7.11 999 64 6.45 
Azamgarh 128 1020 54 5.28 1020 51 5.00 
Mau 64 1000 55 5.51 1007 52 5.16 
Ballia 96 955 52 5.44 976 49 5.07 
Jaunpur 128 1115 65 5.86 1098 61 5.53 
Ghazipur 128 1051 50 4.71 1050 47 4.50 
Chandauli 64 1092 76 6.98 1087 69 6.31 
Varanasi 96 1136 61 5.41 1152 57 4.99 
Sant Ravidas Nr 64 873 69 7.91 929 63 6.83 
Mirzapur 96 1023 84 8.18 1024 74 7.21 
Sonbhadra 64 946 73 7.74 928 67 7.21 
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Table A2: District-wise sample size, direct estimates (Direct) and small area estimates 
(SAE) along with their standard error (SE) and percentage coefficient of 
variations (CV) of poverty incidence for rural areas of Uttar Pradesh in 2011-
12 

 
Region District   Sample 

Size 
Direct SAE 

Poverty 
Incidence 

SE CV Poverty 
Incidenc

e 

SE CV 

 
W

es
te

rn
 

 

Saharanpur 96 0.068 0.0362 53.23 0.089 0.0297 33.33 
Muzaffarnagar 128 0.052 0.0272 52.31 0.083 0.0257 30.95 
Bijnor 96 0.165 0.0524 31.78 0.160 0.0417 26.07 
Moradabad 128 0.131 0.0371 28.36 0.149 0.0365 24.48 
Rampur 64 0.240 0.0825 34.36 0.232 0.0574 24.76 
Jyotiba Phule Nr 64 0.268 0.0850 31.71 0.253 0.0589 23.28 
Meerut 64 0.002 0.00 0.00 0.060 0.0237 39.44 
Baghpat 32 0.138 0.0909 65.86 0.092 0.0374 40.67 
Ghaziabad 64 0.054 0.0367 68.04 0.063 0.0251 39.84 
Gautam B. Nr 32 0.018 0.0179 99.38 0.066 0.0279 42.32 
Bulandshahar 96 0.103 0.0377 36.59 0.110 0.0308 28.02 
Aligarh 95 0.181 0.0861 47.56 0.160 0.0452 28.23 
Hathras 64 0.013 0.0110 84.27 0.084 0.0311 37.08 
Mathura 64 0.179 0.0684 38.22 0.192 0.0504 26.25 
Agra 96 0.192 0.0628 32.73 0.179 0.0443 24.73 
Firozabad 64 0.252 0.0824 32.70 0.187 0.0496 26.52 
Etah 64 0.126 0.0716 56.79 0.139 0.0437 31.44 
Mainpuri 64 0.451 0.1198 26.57 0.343 0.0772 22.51 
Budaun 96 0.233 0.0829 35.57 0.245 0.0591 24.11 
Bareilly 95 0.047 0.0272 57.88 0.099 0.0329 33.20 
Pilibhit 64 0.177 0.0844 47.71 0.192 0.0546 28.43 
Shahjahanpur 96 0.270 0.0820 30.38 0.229 0.0549 23.96 
Farrukhabad 64 0.184 0.0907 49.27 0.190 0.0553 29.11 
Kannauj 64 0.308 0.1089 35.37 0.221 0.0601 27.19 
Etawah 64 0.093 0.0582 62.61 0.160 0.0516 32.23 
Auraiya 64 0.148 0.0540 36.51 0.205 0.0555 27.07 
Kashiramnagar 32 0.161 0.0744 46.19 0.257 0.0740 28.80 

 
Ce

nt
ra

l 
 

Kheri 128 0.295 0.0717 24.30 0.288 0.0588 20.42 
Sitapur 128 0.324 0.0634 19.57 0.321 0.0570 17.76 
Hardoi 128 0.260 0.0579 22.26 0.287 0.0550 19.18 
Unnao 96 0.566 0.0756 13.36 0.499 0.0669 13.41 
Lucknow 64 0.347 0.0903 26.02 0.326 0.0670 20.55 
Rae Bareli 128 0.367 0.0604 16.46 0.360 0.0548 15.21 
Kanpur Dehat 64 0.152 0.0971 63.89 0.183 0.0543 29.68 
Kanpur Nagar 64 0.115 0.0473 41.16 0.161 0.0488 30.30 
Fatehpur 96 0.520 0.0722 13.88 0.453 0.0618 13.64 

 
So

ut
he

rn
 

               

Jalaun 64 0.213 0.0760 35.69 0.236 0.0578 24.49 
Jhansi 64 0.117 0.0573 48.95 0.187 0.0506 27.06 
Lalitpur 32 0.144 0.0751 52.15 0.260 0.0752 28.91 
Hamirpur 32 0.169 0.0939 55.54 0.201 0.0659 32.78 
Banda 64 0.486 0.1038 21.35 0.434 0.0773 17.82 
Chitrakoot 32 0.204 0.1213 59.47 0.290 0.0780 26.89 
Mahoba 32 0.349 0.1693 48.51 0.295 0.0828 28.08 
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Ea

ste
rn

 
 

Mahrajganj 96 0.354 0.0757 21.38 0.354 0.0652 18.42 
Pratapgarh 128 0.451 0.0711 15.77 0.403 0.0604 14.99 
Kaushambi 63 0.450 0.0863 19.17 0.430 0.0734 17.07 
Allahabad 128 0.244 0.0664 27.22 0.242 0.0517 21.35 
Barabanki 96 0.501 0.0895 17.86 0.437 0.0711 16.28 
Faizabad 64 0.287 0.0884 30.81 0.295 0.0677 22.97 
Ambedkar 
Nagar 

96 0.310 0.0639 20.60 0.303 0.0535 17.65 

Sultanpur 128 0.210 0.0512 24.37 0.221 0.0449 20.34 
Bahraich 96 0.488 0.0873 17.90 0.437 0.0716 16.39 
Shrawasti 64 0.359 0.1008 28.09 0.364 0.0797 21.89 
Balrampur 63 0.196 0.0773 39.42 0.257 0.0678 26.39 
Gonda 128 0.274 0.0625 22.82 0.277 0.0544 19.64 
Siddharthnagar 96 0.263 0.0616 23.44 0.295 0.0583 19.77 
Basti 96 0.578 0.0746 12.91 0.506 0.0645 12.75 
Sant Kabir 
Nagar 

64 0.325 0.0765 23.53 0.320 0.0634 19.81 

Gorakhpur 128 0.283 0.0563 19.89 0.275 0.0504 18.33 
Kushinagar 128 0.214 0.0567 26.52 0.238 0.0511 21.47 
Deoria 96 0.347 0.0746 21.49 0.322 0.0597 18.56 
Azamgarh 128 0.322 0.0585 18.16 0.315 0.0517 16.40 
Mau 64 0.146 0.0582 39.88 0.198 0.0539 27.24 
Ballia 96 0.267 0.0738 27.62 0.232 0.0564 24.31 
Jaunpur 128 0.177 0.0443 25.01 0.216 0.0473 21.91 
Ghazipur 128 0.236 0.0509 21.56 0.248 0.0477 19.25 
Chandauli 64 0.190 0.0663 34.87 0.205 0.0530 25.86 
Varanasi 96 0.192 0.0546 28.43 0.170 0.0415 24.40 
Sant Ravidas Nr 64 0.506 0.0880 17.40 0.380 0.0673 17.71 
Mirzapur 96 0.237 0.0522 22.05 0.247 0.0509 20.60 
Sonbhadra 64 0.375 0.0854 22.77 0.382 0.0698 18.27 

 
Table A3: District-wise sample size, direct estimates (Direct) and small area estimates 

(SAE) along with their standard error (SE) and percentage coefficient of 
variations (CV) of MPCE for urban areas of Uttar Pradesh in 2011-12 

 

Region District  Sample size 
Direct SAE 

MPCE SE CV MPCE SE CV 

 
W

es
te

rn
 

 

Saharanpur 64 2118 262 12.39 2047 247 12.06 
Muzaffarnagar 64 2057 184 8.95 2012 179 8.87 
Bijnor 64 1405 127 9.02 1397 125 8.94 
Moradabad 64 1363 94 6.89 1360 93 6.85 
Rampur 32 988 69 6.99 988 69 6.96 
Jyotiba Phule Nr 32 2108 328 15.58 1945 300 15.44 
Meerut 96 2401 225 9.35 2334 215 9.2 
Baghpat 32 2290 205 8.97 2219 198 8.91 
Ghaziabad 96 4180 504 12.06 3439 416 12.1 
Gautam Buddha Nr 32 6453 609 9.44 4762 482 10.12 
Bulandshahar 64 1803 229 12.68 1756 218 12.43 
Aligarh 64 2009 173 8.61 1968 168 8.55 
Hathras 32 1335 116 8.67 1336 114 8.57 
Mathura 64 1445 103 7.14 1446 102 7.06 
Agra 96 1714 373 21.77 1715 333 19.39 
Firozabad 64 1229 87 7.07 1236 86 6.99 
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Etah 32 2354 320 13.6 2191 294 13.4 
Mainpuri 32 1026 78 7.61 1030 78 7.54 
Budaun 32 1234 80 6.49 1229 80 6.48 
Bareilly 64 1311 80 6.12 1313 80 6.08 
Pilibhit 32 1419 164 11.58 1410 161 11.39 
Shahjahanpur 32 1175 100 8.49 1175 99 8.42 
Farrukhabad 32 1150 92 8.04 1157 92 7.92 
Kannauj 32 1027 80 7.82 1035 80 7.72 
Etawah 32 1118 102 9.13 1130 101 8.96 
Auraiya 32 1401 122 8.7 1412 120 8.53 
Kashiramnagar 32 1158 90 7.77 1158 89 7.72 

 
Ce

nt
ra

l 
 

Kheri 32 894 87 9.72 902 86 9.56 
Sitapur 32 1400 261 18.64 1410 246 17.43 
Hardoi 32 1046 78 7.45 1051 77 7.37 
Unnao 32 1273 126 9.88 1285 124 9.65 
Lucknow 128 2318 296 12.79 2296 276 12.02 
Rae Bareli 32 1742 350 20.11 1756 316 18 
Kanpur Dehat 32 1499 129 8.62 1509 127 8.43 
Kanpur Nagar 128 1956 162 8.29 1966 159 8.07 
Fatehpur 32 1214 127 10.45 1229 125 10.17 

 
So

ut
he

rn
 

 

Jalaun 32 1659 174 10.47 1659 169 10.18 
Jhansi 64 2507 562 22.42 2407 451 18.74 
Lalitpur 32 1620 108 6.66 1629 107 6.55 
Hamirpur 32 1437 155 10.78 1457 152 10.41 
Banda 32 1120 68 6.08 1127 68 6.02 
Chitrakoot 32 791 65 8.18 796 64 8.1 
Mahoba 32 1179 87 7.39 1184 87 7.31 

Ea
ste

rn
 

Mahrajganj 32 1328 167 12.58 1335 163 12.21 
Pratapgarh 32 1458 186 12.78 1477 181 12.23 
Kaushambi 32 867 79 9.11 878 79 8.95 
Allahabad 63 3436 564 16.41 2940 450 15.3 
Barabanki 32 911 99 10.83 923 98 10.59 
Faizabad 32 1632 310 19.01 1668 286 17.13 
Ambedkar Nagar 32 868 70 8.03 875 69 7.92 
Sultanpur 31 1847 277 15 1832 260 14.17 
Bahraich 32 1313 183 13.93 1313 178 13.52 
Shrawasti 30 1224 196 16 1190 190 15.97 
Balrampur 32 1076 90 8.36 1077 89 8.29 
Gonda 32 2488 207 8.32 2414 199 8.25 
Siddharthnagar 32 1178 145 12.33 1186 143 12.02 
Basti 32 1371 159 11.62 1375 156 11.34 
Sant Kabir Nagar 32 1153 165 14.34 1173 161 13.74 
Gorakhpur 64 1820 172 9.45 1820 168 9.21 
Kushinagar 32 1376 180 13.09 1368 175 12.79 
Deoria 32 1306 163 12.5 1306 160 12.23 
Azamgarh 32 1734 320 18.44 1719 293 17.03 
Mau 32 1210 132 10.93 1235 130 10.54 
Ballia 32 1348 151 11.23 1361 148 10.89 
Jaunpur 32 1522 231 15.15 1513 220 14.56 
Ghazipur 32 1280 143 11.13 1288 140 10.87 
Chandauli 32 2875 377 13.13 2552 336 13.15 
Varanasi 96 1572 127 8.11 1585 126 7.93 
Sant Ravidas Nr. 32 902 61 6.72 905 60 6.67 
Mirzapur 32 1169 157 13.41 1201 153 12.77 
Sonbhadra 31 2039 169 8.3 2021 165 8.17 
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Table A4: District-wise sample size, direct estimates (Direct) and small area estimates 

(SAE) along with their standard error (SE) and percentage coefficient of 
variations (CV) of poverty incidence for urban areas of Uttar Pradesh in 2011-
12 

 

 Region   District  Sample 
size 

Direct SAE 

  Poverty 
Incidence   SE  CV  Poverty 

Incidence  SE  CV 

  
W

es
te

rn
 

                                            Saharanpur 64 0.153 0.0603 39.43 0.165 0.0407 24.69 
Muzaffarnagar 64 0.166 0.0621 37.43 0.179 0.0407 22.76 
Bijnor 64 0.199 0.0614 30.85 0.206 0.0490 23.78 
Moradabad 64 0.231 0.0698 30.21 0.235 0.0473 20.14 
Rampur 32 0.576 0.1144 19.86 0.547 0.0918 16.78 
Jyotiba Phule Nr 32 0.148 0.0678 45.83 0.175 0.0595 34.00 
Meerut 96 0.035 0.0184 52.68 0.050 0.0187 37.42 
Baghpat 32 0.068 0.0395 58.08 0.110 0.0492 44.72 
Ghaziabad 96 0.010 0.0063 63.25 0.023 0.0100 43.48 
Gautam B Nr 32 0.010 0.0055 54.77 0.026 0.0138 53.02 
Bulandshahar 64 0.104 0.0493 47.40 0.116 0.0339 29.23 
Aligarh 64 0.113 0.0381 33.70 0.129 0.0392 30.42 
Hathras 32 0.226 0.0938 41.51 0.244 0.0683 28.01 
Mathura 64 0.201 0.0587 29.18 0.208 0.0382 18.37 
Agra 96 0.222 0.0555 25.00 0.224 0.0373 16.64 
Firozabad 64 0.314 0.0696 22.18 0.305 0.0424 13.91 
Etah 32 0.103 0.0507 49.22 0.124 0.0508 40.96 
Mainpuri 32 0.417 0.1053 25.24 0.401 0.0896 22.35 
Budaun 32 0.219 0.0764 34.89 0.256 0.0828 32.35 
Bareilly 64 0.114 0.0498 43.68 0.127 0.0316 24.90 
Pilibhit 32 0.156 0.0796 51.00 0.180 0.0663 36.81 
Shahjahanpur 32 0.296 0.1018 34.39 0.314 0.0841 26.78 
Farrukhabad 32 0.333 0.1003 30.13 0.322 0.0707 21.96 
Kannauj 32 0.433 0.0970 22.40 0.415 0.0625 15.07 
Etawah 32 0.474 0.1001 21.12 0.433 0.0756 17.47 
Auraiya 32 0.132 0.0570 43.19 0.134 0.0487 36.33 
Kashiramnagar 32 0.399 0.1081 27.10 0.399 0.0815 20.44 

  
Ce

nt
ra

l 
            Kheri 32 0.630 0.1039 16.50 0.579 0.0822 14.19 

Sitapur 32 0.385 0.1321 34.30 0.344 0.0923 26.83 
Hardoi 32 0.486 0.0999 20.57 0.466 0.0727 15.61 
Unnao 32 0.293 0.0948 32.36 0.294 0.0713 24.24 
Lucknow 128 0.160 0.0437 27.31 0.161 0.0253 15.71 
Rae Bareli 32 0.329 0.1356 41.22 0.302 0.0904 29.95 
Kanpur Dehat 32 0.158 0.0802 50.75 0.160 0.0575 35.96 
Kanpur Nagar 128 0.102 0.0430 42.17 0.106 0.0212 20.01 
Fatehpur 32 0.365 0.1012 27.74 0.359 0.0663 18.48 

  
So

ut
he

rn
 

          

Jalaun 32 0.092 0.0775 84.20 0.105 0.0438 41.73 
Jhansi 64 0.149 0.0497 33.36 0.146 0.0295 20.20 
Lalitpur 32 0.021 0.0155 73.77 0.043 0.0221 51.48 
Hamirpur 32 0.243 0.0834 34.33 0.231 0.0541 23.43 
Banda 32 0.414 0.1063 25.67 0.396 0.0736 18.59 
Chitrakoot 32 0.600 0.1041 17.34 0.551 0.0957 17.36 
Mahoba 32 0.291 0.1002 34.43 0.284 0.0752 26.47 



2021]  DISTRICT LEVEL ESTIMATION OF LIVING CONDITIONS  

 

169 

  
Ea

st
er

n 
                                                  

Mahrajganj 32 0.386 0.1033 26.77 0.373 0.0852 22.84 
Pratapgarh 32 0.395 0.1098 27.80 0.377 0.0804 21.34 
Kaushambi 32 0.609 0.1071 17.59 0.579 0.0692 11.95 
Allahabad 63 0.121 0.0370 30.59 0.127 0.0341 26.82 
Barabanki 32 0.736 0.0882 11.98 0.667 0.0802 12.03 
Faizabad 32 0.188 0.0801 42.62 0.192 0.0643 33.51 
Ambedkar Nr 32 0.654 0.0932 14.25 0.604 0.0697 11.54 
Sultanpur 31 0.212 0.0834 39.32 0.201 0.0667 33.19 
Bahraich 32 0.137 0.0845 61.68 0.177 0.0656 37.05 
Shrawasti 30 0.460 0.0991 21.54 0.463 0.0887 19.16 
Balrampur 32 0.388 0.1064 27.43 0.387 0.0859 22.20 
Gonda 32 0.015 0.0110 73.03 0.073 0.0367 50.33 
Siddharthnagar 32 0.340 0.0982 28.88 0.337 0.0856 25.39 
Basti 32 0.395 0.1015 25.69 0.372 0.0856 23.00 
Sant Kabir Nr 32 0.477 0.1067 22.36 0.445 0.0785 17.64 
Gorakhpur 64 0.113 0.0475 42.07 0.122 0.0387 31.75 
Kushinagar 32 0.504 0.1044 20.71 0.473 0.0884 18.70 
Deoria 32 0.390 0.1317 33.76 0.382 0.1217 31.87 
Azamgarh 32 0.249 0.0796 31.95 0.252 0.0559 22.17 
Mau 32 0.301 0.0975 32.40 0.276 0.0660 23.92 
Ballia 32 0.341 0.0922 27.04 0.335 0.0685 20.44 
Jaunpur 32 0.271 0.0917 33.84 0.264 0.0901 34.11 
Ghazipur 32 0.318 0.1020 32.07 0.295 0.0868 29.42 
Chandauli 32 0.003 0.0032 105.4 0.065 0.0370 56.94 
Varanasi 96 0.131 0.0407 31.10 0.132 0.0239 18.09 
Sant Ravidas Nr 32 0.640 0.0964 15.06 0.602 0.0745 12.38 
Mirzapur 32 0.571 0.1061 18.58 0.537 0.0699 13.01 
Sonbhadra 31 0.018 0.0184 102.4 0.073 0.0382 52.34 

 
Table A5: District-wise sample size, direct estimates (Direct) and small area estimates 

(SAE) along with their standard error (SE) and percentage coefficient of 
variations (CV) of worker population ratio for rural areas of Uttar Pradesh in 
2011-12 

 
Region District   Sample size Direct  SAE  

WPR SE CV WPR SE CV 

W
es

te
rn

 

Saharanpur 557 287 29.65 10.33 307 23.02 7.50 
Muzaffarnagar 785 291 25.08 8.62 303 20.49 6.76 
Bijnor 557 321 30.99 9.66 327 23.66 7.24 
Moradabad 768 343 24.19 7.05 335 20.49 6.12 
Rampur 407 321 34.27 10.68 317 24.70 7.79 
Jyotiba Phule Nr. 365 260 34.02 13.09 296 24.49 8.28 
Meerut 354 349 37.80 10.83 333 25.69 7.71 
Baghpat 184 224 48.55 21.68 280 28.46 10.16 
Ghaziabad 392 272 34.56 12.71 298 24.49 8.22 
Gautam Buddha Nr. 171 360 50.61 14.06 323 28.98 8.97 
Bulandshahar 500 272 26.15 9.61 303 21.21 7.00 
Aligarh 536 399 38.81 9.73 363 26.65 7.34 
Hathras 348 413 42.74 10.35 357 28.28 7.92 
Mathura 412 249 31.07 12.48 291 23.24 7.99 
Agra 582 297 29.04 9.78 307 22.14 7.21 
Firozabad 379 286 34.30 11.99 299 24.49 8.19 
Etah 346 366 42.11 11.51 328 27.02 8.24 
Mainpuri 387 274 43.95 16.04 301 27.20 9.04 
Budaun 539 323 35.71 11.06 322 25.30 7.86 
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Bareilly 515 341 33.11 9.71 328 24.90 7.59 
Pilibhit 349 432 44.95 10.41 358 28.64 8.00 
Shahjahanpur 541 355 39.04 11.00 335 26.65 7.95 
Farrukhabad 400 252 36.51 14.49 290 25.69 8.86 
Kannauj 379 328 43.88 13.38 320 27.57 8.62 
Etawah 334 294 43.13 14.67 320 27.57 8.62 
Auraiya 315 294 39.09 13.30 323 27.57 8.54 
Kashiramnagar 205 282 44.25 15.69 306 27.39 8.95 

Ce
nt

ra
l 

Kheri 686 363 34.33 9.46 364 26.83 7.37 
Sitapur 701 359 28.38 7.90 366 24.08 6.58 
Hardoi 727 343 27.67 8.07 355 23.24 6.55 
Unnao 470 475 36.25 7.63 430 27.57 6.41 
Lucknow 350 373 36.53 9.79 369 28.11 7.62 
Rae Bareli 700 377 26.45 7.01 377 22.58 5.99 
Kanpur Dehat 283 350 51.15 14.61 347 29.66 8.55 
Kanpur Nr 299 396 46.09 11.64 369 29.15 7.90 
Fatehpur 445 340 33.62 9.89 362 26.27 7.26 

So
ut

he
rn

 

Jalaun 349 277 34.91 12.60 325 26.08 8.02 
Jhansi 286 409 42.21 10.32 402 30.66 7.63 
Lalitpur 134 324 63.01 19.45 353 34.21 9.69 
Hamirpur 160 308 63.02 20.46 350 33.47 9.56 
Banda 390 378 44.12 11.67 367 28.98 7.90 
Chitrakoot 145 507 66.83 13.18 398 34.35 8.63 
Mahoba 145 423 79.24 18.73 378 36.06 9.54 

Ea
ste

rn
 

Mahrajganj 549 360 32.45 9.01 355 24.90 7.01 
Pratapgarh 765 369 30.08 8.15 356 23.02 6.47 
Kaushambi 308 373 40.06 10.74 380 29.33 7.72 
Allahabad 745 351 30.60 8.72 359 24.70 6.88 
Barabanki 595 395 37.95 9.61 383 27.20 7.10 
Faizabad 345 386 41.20 10.67 357 27.39 7.67 
Ambedkar Nr. 546 381 28.85 7.57 362 22.80 6.30 
Sultanpur 708 371 26.19 7.06 361 21.68 6.01 
Bahraich 488 281 36.15 12.86 310 26.65 8.60 
Shrawasti 317 270 42.64 15.79 308 27.75 9.01 
Balrampur 310 300 43.37 14.46 314 27.93 8.89 
Gonda 705 255 27.93 10.95 289 22.36 7.74 
Siddharthnagar 541 350 30.69 8.77 337 23.87 7.08 
Basti 534 410 32.60 7.95 371 24.29 6.55 
Sant Kabir Nr. 394 265 30.10 11.36 291 22.80 7.84 
Gorakhpur 777 286 23.12 8.08 301 20.25 6.73 
Kushinagar 727 314 27.07 8.62 317 22.14 6.98 
Deoria 584 328 30.45 9.28 316 22.80 7.22 
Azamgarh 896 290 22.18 7.65 304 20.49 6.74 
Mau 374 261 31.35 12.01 294 24.90 8.47 
Ballia 630 333 33.79 10.15 324 24.70 7.62 
Jaunpur 796 376 26.43 7.03 361 22.14 6.13 
Ghazipur 816 364 24.76 6.80 354 20.74 5.86 
Chandauli 395 420 37.56 8.94 373 26.65 7.14 
Varanasi 636 410 28.27 6.89 372 22.58 6.07 
Sant Ravidas Nr. 467 265 29.50 11.13 288 23.45 8.14 
Mirzapur 566 360 27.94 7.76 358 22.80 6.37 
Sonbhadra 347 400 36.46 9.11 383 27.02 7.05 
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Table A6: District-wise sample size, direct estimates (Direct) and small area estimates 
(SAE) along with their standard error (SE) and percentage coefficient of 
variations (CV) of worker population ratio for urban areas of Uttar Pradesh 
in 2011-12 

 
Region District   Sample 

size 
Direct  SAE  

WPR SE CV WPR SE CV 

W
es

te
rn

 

Saharanpur 298 332 34.90 10.51 313 18.71 5.98 
Muzaffarnagar 322 294 30.04 10.22 315 18.97 6.02 
Bijnor 354 281 31.08 11.06 313 19.49 6.23 
Moradabad 349 302 29.97 9.92 330 20.25 6.14 
Rampur 171 473 54.68 11.56 393 26.83 6.83 
Jyotiba Phule Nr. 163 336 44.27 13.18 337 20.98 6.22 
Meerut 470 296 30.56 10.32 305 18.44 6.05 
Baghpat 126 268 47.82 17.84 311 19.75 6.35 
Ghaziabad 402 321 30.59 9.53 312 18.97 6.08 
Gautam Buddha Nr. 117 309 52.71 17.06 350 27.02 7.72 
Bulandshahar 289 322 32.38 10.06 314 19.24 6.13 
Aligarh 339 247 31.45 12.73 296 19.24 6.50 
Hathras 194 315 39.27 12.47 287 20.74 7.23 
Mathura 336 294 28.56 9.71 302 18.17 6.02 
Agra 509 298 30.20 10.13 295 20.98 7.11 
Firozabad 390 303 28.53 9.42 317 19.49 6.15 
Etah 159 321 43.45 13.54 294 19.24 6.54 
Mainpuri 151 306 44.39 14.51 270 20.25 7.50 
Budaun 194 247 38.66 15.65 316 22.36 7.08 
Bareilly 315 390 35.20 9.03 377 23.02 6.11 
Pilibhit 183 368 46.58 12.66 346 21.45 6.20 
Shahjahanpur 170 334 45.43 13.60 334 20.98 6.28 
Farrukhabad 199 261 35.81 13.72 305 18.71 6.13 
Kannauj 191 386 39.50 10.23 346 20.49 5.92 
Etawah 161 261 38.46 14.74 274 18.97 6.92 
Auraiya 148 226 38.16 16.88 260 19.49 7.50 
Kashiramnagar 186 391 42.69 10.92 338 20.98 6.21 

Ce
nt

ra
l 

Kheri 190 302 40.70 13.48 323 19.75 6.11 
Sitapur 160 367 56.16 15.30 329 20.00 6.08 
Hardoi 151 394 44.86 11.39 329 19.75 6.00 
Unnao 158 313 46.56 14.88 312 19.24 6.17 
Lucknow 656 367 30.46 8.30 340 20.49 6.03 
Rae Bareli 152 304 56.98 18.74 303 19.24 6.35 
Kanpur Dehat 159 339 50.02 14.75 299 19.24 6.43 
Kanpur Nr. 548 308 30.54 9.92 320 20.00 6.25 
Fatehpur 174 247 35.13 14.22 297 18.44 6.21 

So
ut

he
rn

 

Jalaun 157 275 44.29 16.10 276 20.25 7.34 
Jhansi 272 311 35.65 11.46 302 21.45 7.10 
Lalitpur 163 262 39.92 15.24 305 19.75 6.47 
Hamirpur 134 270 42.39 15.70 294 20.25 6.89 
Banda 125 288 49.17 17.07 297 19.24 6.48 
Chitrakoot 153 286 46.58 16.29 274 20.49 7.48 
Mahoba 143 264 45.44 17.21 294 19.24 6.54 

Ea
ste

rn
 

Mahrajganj 162 298 44.59 14.96 290 19.24 6.63 
Pratapgarh 187 330 46.89 14.21 315 19.75 6.27 
Kaushambi 154 311 47.11 15.15 322 21.91 6.80 
Allahabad 267 259 35.20 13.59 309 20.49 6.63 
Barabanki 154 344 51.86 15.08 342 20.98 6.13 
Faizabad 166 335 51.88 15.49 319 20.25 6.35 
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Ambedkar Nr. 201 328 36.72 11.19 318 19.24 6.05 
Sultanpur 176 269 40.93 15.22 294 20.00 6.80 
Bahraich 161 338 48.61 14.38 340 21.45 6.31 
Shrawasti 155 270 37.74 13.98 316 22.58 7.15 
Balrampur 168 328 44.89 13.69 335 21.45 6.40 
Gonda 125 280 47.65 17.02 315 20.49 6.51 
Siddharthnagar 152 392 50.02 12.76 326 19.75 6.06 
Basti 162 304 43.75 14.39 272 20.49 7.53 
Sant Kabir Nr. 158 285 41.50 14.56 305 18.97 6.22 
Gorakhpur 344 242 33.07 13.66 293 19.24 6.56 
Kushinagar 179 359 41.52 11.57 315 20.98 6.66 
Deoria 177 222 47.75 21.51 276 21.21 7.69 
Azamgarh 202 293 34.59 11.80 305 18.71 6.13 
Mau 168 402 51.15 12.72 342 21.45 6.27 
Ballia 192 293 36.41 12.43 310 19.49 6.29 
Jaunpur 205 311 45.03 14.48 294 20.74 7.05 
Ghazipur 192 266 39.16 14.72 287 19.75 6.88 
Chandauli 166 300 46.43 15.48 290 19.24 6.63 
Varanasi 541 372 27.93 7.51 352 20.25 5.75 
Sant Ravidas Nr. 179 487 42.23 8.67 338 20.00 5.92 
Mirzapur 157 299 44.96 15.04 320 20.00 6.25 
Sonbhadra 144 319 44.26 13.88 290 20.25 6.98 
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Abstract
Two variants of an orthogonal array, orthogonal arrays of type I and of type II, were

introduced by Rao in 1961. Furthermore, as generalizations of an orthogonal array and an
orthogonal array of type II, an orthogonal multi-array and a perpendicular multi-array have
been introduced by Brickell in 1984 and by Li et al. in 2018, respectively. In this paper, as a
generalization of the orthogonal array of type I, an ordered multi-design is newly introduced
from a combinatorial viewpoint. Necessary conditions for the existence of an ordered multi-
design are discussed and several constructions of the ordered multi-design are provided by use
of group divisible designs and self-orthogonal latin squares, through a difference technique.
As main results, the existence of a family of ordered multi-designs is provided and also the
sufficiency of necessary conditions for existence is shown for a class of ordered multi-designs
with one possible exception.

Key words: Ordered multi-design; Perpendicular multi-array; Self-orthogonal Latin square;
Group divisible design.

AMS Subject Classifications: 05B15, 05B05

1. Introduction

An ordered multi-design of size N × k, denoted by OMDλ(k× c, v), is an N × k multi-
array, A = (Aij), on a set V of v points, which satisfies the following conditions:

(C1) each entry Aij (|Aij| = c) is a c-subset of V and kc distinct points occur in k entries
of each row of A, and

(C2) for any ordered pair (j1, j2) of integers with 1 ≤ j1 < j2 ≤ k and for any ordered pair
(x1, x2) of distinct points in V , there are exactly λ rows of A such that the points x1
and x2 appear in the j1th and the j2th entries, i.e., in the j1th and the j2th columns,
of each of the λ rows, respectively.

Note that the conditions (C1) and (C2) lead to N = λv(v − 1)/(c2). Moreover, k ≥ 2 is
assumed at least to validate the condition (C2).

Let us illustrate the definition of the OMDλ(k × c, v) by the following example.
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Example 1: An OMD2(3× 2, 6) on V = Z5 ∪ {∞} is given by

∞, 0 1, 4 2, 3
∞, 1 2, 0 3, 4
∞, 2 3, 1 4, 0
∞, 3 4, 2 0, 1
∞, 4 0, 3 1, 2
2, 3 ∞, 0 1, 4
3, 4 ∞, 1 2, 0
4, 0 ∞, 2 3, 1
0, 1 ∞, 3 4, 2
1, 2 ∞, 4 0, 3
1, 4 2, 3 ∞, 0
2, 0 3, 4 ∞, 1
3, 1 4, 0 ∞, 2
4, 2 0, 1 ∞, 3
0, 3 1, 2 ∞, 4


with k = 3 (three columns), c = 2, N = 15 (fifteen rows), entries of the first row A11 =
{∞, 0}, A12 = {1, 4}, A13 = {2, 3}, entries of the second row A21 = {∞, 1}, A22 = {2, 0},
A23 = {3, 4}, . . . , entries of the sixth row A61 = {2, 3}, A62 = {∞, 0}, A63 = {1, 4}, etc. The
condition (C2) with λ = 2 can be checked, e.g., 0 and 1 occur in the first and the second
columns, respectively, of the first and the last rows.

From now on, each row of an OMDλ(k × c, v) is separately displayed in the form of
(a11, a12, . . . , a1c | a21, a22, . . . , a2c | . . . | ak1, ak2, . . . , akc)

by use of kc points on V or (Ai1 | Ai2 | . . . | Aik) by use of k entries Aij (1 ≤ i ≤ N).

It is clear that the OMDλ(k × 1, v) coincides with the ordered design, denoted by
ODλ(k, v), defined in Rao (1961), who call the ordered design by the other name “an or-
thogonal array of Type I”. An orthogonal array and a perpendicular array (called by the
other name “an orthogonal array of Type II” in Rao, 1961) have been generalized to an
orthogonal multi-array (OMA) in Brickell (1984) and a perpendicular multi-array (PMA) in
Li et al. (2018), respectively. Furthermore, applications of the OMA and the PMA to design
of experiments and coding theory are discussed in Brickell (1984), Li et al. (2015), Li et al.
(2018), Mukerjee (1998) and Sitter (1993). On the other hand, as far as the authors know,
the ordered multi-design has never been discussed in literature.

In this paper, the existence on an OMDλ(k × 2, v), i.e., c = 2, is mainly discussed
from a viewpoint of combinatorics. In Section 2, a construction and a fundamental property
of the OMD, and combinatorial structures used in later sections are presented. In Section
3, necessary conditions for the existence of an OMDλ(k × c, v) are discussed. In Section
4, constructions of a cyclic OMDλ(3 × 2, v) are provided by use of difference techniques.
In Sections 5 and 6, methods of constructing an OMD are presented by use of a group
divisible design (GDD) and self-orthogonal latin squares (SOLS), respectively. In Section 7,
the existence of an OMDλ(k × 2, q) for any prime power q is provided. Furthermore, it is
shown that the necessary conditions discussed in Section 3 are also sufficient for the existence
of an OMDλ(3× 2, v) with one possible exception, as in the following main results.



2021] SOME EXISTENCE ON ORDERED MULTI-DESIGNS 175

Theorem 1: There exists an OMDλ(k × 2, q) for any prime power q, any λ ≡ 0 (mod 2)
and any k with 2 ≤ k ≤ d(q − 1)/2e.

Theorem 2: Let v be a positive integer with v ≥ 6. Then there exists an OMDλ(3× 2, v)
if and only if v ≡ 1 (mod 4) or λ ≡ 0 (mod 2) with a possible exception of (v, λ) = (9, 1).

As the appendix, some individual examples, which cannot be obtained by methods in
this paper, will be presented to be utilized in the proof of Theorem 2 in Section 7.

2. Preliminaries

At first, the perpendicular multi-array discussed in Li et al. (2018) and Matsubara
and Kageyama (2021) is reviewed. The perpendicular multi-array A = (Aij), denoted by
PMAλ(k × c, v), is defined by the condition (C1) and the following condition (C3):

(C3) for any two columns of A and for any unordered pair {x1, x2} of distinct points in V ,
there are exactly λ rows of A such that the points x1 and x2 separately appears in the
two entries of each of the λ rows.

Since the condition (C2) involves the condition (C3), it follows that any OMDλ(k×c, v)
can be regarded as a PMA2λ(k × c, v).

On the other hand, it is known (see Bierbrauer, 2007) that the existence of an OD1(k, v),
i.e., OMD1(k× 1, v), is equivalent to the existence of k− 2 idempotent mutually orthogonal
latin squares. The review of results on the existence and applications of the ODλ(k, v)
can be found in Bierbrauer (2007), Bierbrauer and Edel (1994), Kunert and Martin (2000)
and Majumdar and Martin (2004). Especially, the following result will be useful for the
construction of an OMDλ(k × c, v) described in Section 5.

Lemma 1 (Bierbrauer, 2007): There exists an OD1(k, k) for any prime power k.

A direct construction of an OMD2(k × 2, v) can be obtained as follows.

Lemma 2: Let q be an odd prime power. Then there exists an OMD2(k × 2, q) with
k = (q − 1)/2.

Proof: Let V = GF (q). Then a direct sum decomposition of GF (q) can be given by

GF (q) = {0} ∪B1 ∪B2 ∪ . . . ∪B q−1
2
,

where Bj = {aj,−aj} with aj ∈ GF (q) (1 ≤ j ≤ (q − 1)/2). Now consider (q − 1)/2 rows:

(α`B1 | α`B2 | . . . | α`B q−1
2

), 1 ≤ ` ≤ q − 1
2 ,

where α`Bj = {α`aj,−α`aj} and α is a primitive element of GF (q). Hence any two entries
{α`aj1 ,−α`aj1}, {α`aj2 ,−α`aj2} in the same row yield four pairs as

(α`aj1 , α`aj2), (−α`aj1 ,−α`aj2), (α`aj1 ,−α`aj2), (−α`aj1 , α`aj2)
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for the condition (C2). Furthermore, for any pair (x, y) it holds that
{(x+ t, y + t) | t ∈ GF (q)} = {(x′, y′) | x′, y′ ∈ GF (q), x′ − y′ = x− y}.

Since α(q−1)/2 = −1 and {α`,−α` | 1 ≤ ` ≤ (q − 1)/2} = GF (q)\{0}, both of

{(α`aj1 + t, α`aj2 + t), (−α`aj1 + t,−α`aj2 + t) | 1 ≤ ` ≤ q − 1
2 , t ∈ GF (q)}

and

{(α`aj1 + t,−α`aj2 + t), (−α`aj1 + t, α`aj2 + t) | 1 ≤ ` ≤ q − 1
2 , t ∈ GF (q)}

are equal to {(x, y) | x, y ∈ GF (q), x 6= y}. Therefore the required OMD2(k × 2, q) with
k = (q − 1)/2 can be obtained from the following (q − 1)q/2 rows:

(α`B1 + t | α`B2 + t | . . . | α`B q−1
2

+ t), 1 ≤ ` ≤ q − 1
2 , t ∈ GF (q),

where α`Bj + t = {α`aj + t,−α`aj + t}.

Next a fundamental property of the OMD, which is useful to construct OMDs for
various values of k, is provided as follows.

Lemma 3: Any subarray obtained by deleting any k′ (k′ < k) columns of an OMDλ(k×c, v)
is an OMDλ((k − k′)× c, v).

Proof: Since an OMDλ(k × c, v) satisfies the conditions (C1) and (C2), it is clear that any
two columns of the OMDλ((k − k′)× c, v) also satisfy (C1) and (C2).

Now, a combinatorial design used in later sections is introduced. Let v, k, λ be positive
integers. A group divisible design, denoted by (k, λ)-GDD, is a triplet (V,G,B), where V is a
set of v points, G is a partition of V into subsets (called groups) and B (|B| = b) is a family
of subsets (called blocks) of size k each of V such that

(G1) every pair of distinct points x, y ∈ V in different groups occurs in exactly λ blocks,
and

(G2) every pair of distinct points x, y ∈ V in the same group does not occur in any block.

The group type of a (k, λ)-GDD is a multi-set {|G| | G ∈ G}. The usual exponential
notation is used to describe group types. Thus the notation ht11 h

t2
2 · · ·htnn means that there

are ti groups of size hi for 1 ≤ i ≤ n (cf. Ge, 2007).

The following proposition on GDDs is known.

Lemma 4 (Ge, 2007): Let g, u and m be non-negative integers. Then there exists a (3, 1)-
GDD of type gum1 if and only if the following conditions are all satisfied:

(a) if g > 0, then u ≥ 3, or u = 2 and m = g, or u = 1 and m = 0, or u = 0;
(b) m ≤ g(u− 1) or gu = 0;
(c) g(u− 1) +m ≡ 0 (mod 2) or gu = 0;
(d) gu ≡ 0 (mod 2) or m = 0; and
(e) 1

2g
2u(u− 1) + gum ≡ 0 (mod 3).

The GDD will be utilized for a method of constructing OMDs discussed in Section 7.
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3. Necessary Conditions

Necessary conditions for the existence of an OMDλ(k×c, v) are considered. It is obvious
by the conditions (C1) and (C2) that for any OMDλ(k × c, v) of size N × k

v ≥ kc (1)
holds. Since N is a positive integer,

c2 | λv(v − 1) (2)
holds. Furthermore, every point must occur equally r (= cN/v) times in each column. Hence
it is seen that

c | λ(v − 1) (3)
holds.

The sufficiency of these necessary conditions (1), (2), (3) for the existence when (c, v) =
(2, q) with any prime power q and (k, c) = (3, 2), will be proved with some exceptions as in
Theorems 1 and 2, respectively, in Section 7.

Furthermore, another necessary condition for the existence of an OMDλ(k × c, v) of
size N × k can be presented by use of the following result.

Lemma 5 (Matsubara and Kageyama, 2021): In a PMAλ(k × c, v) of size N × k, it holds
that

N ≥ v − 1.
In particular, N = v − 1 implies v = 2c.

Theorem 3: In an OMDλ(k × c, v) of size N × k, it holds that
N ≥ v. (4)

Proof: Since any OMDλ(k× c, v) is a PMA2λ(k× c, v), N ≥ v− 1 holds. For the proof, it is
sufficient to show the non-existence of an OMDλ(2× c, v) with N = v− 1. When N = v− 1,
Lemma 5 implies v = 2c, that is, v is even and N is odd. On the other hand, v = 2c and
(1) imply that k = 2 holds and each point appears in all of N rows of the OMDλ(2× c, v).
Hence, each point cannot occur equally in each of the two columns.

The existence of an OMD1(2 × c, c2 + 1), which satisfies N = v = c2 + 1 and k = 2,
for any c ≥ 2 is known in Matsubara and Kageyama (2021) as a PMA2(2 × c, c2 + 1).
Hence the inequality (4) is best possible when k = 2. However, any existence result on an
OMDλ(k× c, v) with N = v, k ≥ 3 and c ≥ 2 is not known in literature as far as the authors
know.

The minimality of λ is also discussed here. An OMDλ(k × c, v) is said to be minimal
if there exists no OMDλ′(k × c, v) for any λ′ < λ. Especially, it is clear that any OMD with
N = v and any OMD with λ = 1 are minimal. On the other hand, by taking u copies of
each row of A, it is clear that the existence of an OMDλ(k × c, v) implies the existence of
an OMDλu(k× c, v). In fact, the existence of a minimal OMDλ(3× 2, v) plays an important
role in Section 7. Some minimal OMDλ(k × 2, v) are exhaustively listed within the scope of
4 ≤ v ≤ 20 in Table 1 of Appendix.
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4. OMD with a Cyclic Automorphism

Combinatorial multi-arrays (OMA, PMA, OMD) are regarded as a pair (V,R) of a
point set V and a set R of rows. When V = Zv (or V = Zv−1 ∪ {∞}) and R = {R + t |
R ∈ R} with R + t = (a11 + t, . . . , a1c + t | . . . | ak1 + t, . . . , akc + t) for any t ∈ Zv (or
any t ∈ Zv−1), the array is said to be cyclic (or 1-rotational, where ∞ is a fixed point with
∞ + t = ∞ for any t ∈ Zv−1). Then a row orbit of R ∈ R is defined by {R + t | t ∈ Zv}
(or {R + t | t ∈ Zv−1}). Note that the length of any row orbit on Zv is assumed to be v
in this paper. Choose an arbitrary row from each row orbit and call it a base row. Hence,
for a cyclic multi-array, the array can be represented simply by displaying base rows. For
example, the OMD2(3× 2, 6) given in Example 1 is presented by

(∞, 0 | 1, 4 | 2, 3), (2, 3 | ∞, 0 | 1, 4), (1, 4 | 2, 3 | ∞, 0) mod 5.

For two points x and y in the j1th and the j2th (1 ≤ j1 < j2 ≤ k) entries, respectively,
of each base row, x− y ≡ d (mod v) implies that in the orbit of the base row there exists a
row containing x′ and y′ in the j1th and the j2th entries, respectively, for any distinct points
x′, y′ in Zv with x′ − y′ ≡ d (mod v). Hence, it is seen that the multi-array obtained from
orbits on Zv of m base rows (A∗i1 | . . . | A∗ik), 1 ≤ i ≤ m, satisfies the condition (C2) of an
OMDλ(k × c, v) and the condition (C3) of a PMAλ(k × c, v) if⋃

1≤i≤m
{d− d′ | d ∈ A∗ij1 , d

′ ∈ A∗ij2} = λ (Zv\{0}) (5)

and ⋃
1≤i≤m

{±(d− d′) | d ∈ A∗ij1 , d
′ ∈ A∗ij2} = λ (Zv\{0}) (6)

holds, respectively, for any j1, j2 with 1 ≤ j1 < j2 ≤ k, where λS means a multi-set containing
each element of the set S exactly λ times. Furthermore, m base rows with a 1-rotational
automorphism on Zv−1 ∪ {∞} yield a multi-array satisfying the condition (C2) if⋃

1≤i≤m
{d− d′ | d ∈ A∗ij1 , d

′ ∈ A∗ij2} = λ ((Zv−1 ∪ {∞})\{0}) , (7)

where ∞− t = t−∞ =∞ for any t ∈ Zv−1.

In fact, it can be checked that the base rows given in Examples 7, 8 (for cyclic OMDs),
Examples 3 to 6 (for cyclic PMAs) and Examples 1 and 9 to 12 (for 1-rotational OMDs)
satisfy the conditions (5), (6) and (7), respectively.

At first, a direct construction of an OMD2(k × 2, v) is provided as follows.

Lemma 6: Let v be odd and p be the smallest prime factor of v. Then there exists a cyclic
OMD2(k × 2, v) with k = (p− 1)/2.

Proof: Let R∗ be a set of the following (v − 1)/2 rows:

R∗t = (t,−t | 2t,−2t | . . . | p− 1
2 t,−p− 1

2 t), 1 ≤ t ≤ v − 1
2 .
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Since p is the smallest prime factor of the odd v, R∗t contains p− 1 different elements in Zv
for each t. Moreovre, both gcd(j2 − j1, v) = 1 and gcd(j1 + j2, v) = 1 hold for each j1, j2
with 1 ≤ j1 < j2 ≤ (p− 1)/2. Hence it also holds that

{±(j1t− j2t) | 1 ≤ t ≤ v − 1
2 } = {±(j1t+ j2t) | 1 ≤ t ≤ v − 1

2 } = Zv\{0}.

Since two entries {j1t,−j1t} and {j2t,−j2t} yield four differences±(j1t−j2t) and±(j1t+j2t),
it is shown that R∗ yields the required cyclic OMD2(k × 2, v) with k = (p− 1)/2.

Next another method of constructing a cyclic OMDλ(k× c, v) from a cyclic PMDλ(k×
c, v) is presented as follows.

Lemma 7: The existence of a cyclic PMAλ(k × c, v) implies the existence of a cyclic
OMDλ(k × c, v).

Proof: Let a set of m base rows of the cyclic PMAλ(k × c, v) be

R∗ = {(A∗i1 | . . . | A∗ik) | 1 ≤ i ≤ m}.

Then take the set R∗ ∪R∗∗ of rows with

R∗∗ = {(−A∗i1 | . . . | −A∗ik) | 1 ≤ i ≤ m}.

Since R∗ satisfies (6), R∗ ∪ R∗∗ satisfies (5). Hence R∗ ∪ R∗∗ yields the required cyclic
OMDλ(k × c, v).

For an odd prime p, a cyclic OMD1(k × 2, p) can be constructed when there exists a
point set satisfying the following condition on Zp:

(L) for any distinct points x, y in the set,(
x+ y

p

)(
x− y
p

)
= −1,

where
(
a
p

)
is the Legendre symbol of a at p.

Lemma 8: Let p ≡ 1 (mod 4) be an odd prime and α be a primitive element of Zp. If there
exists a k-set S on Zp satisfying the condition (L), then a cyclic OMD1(k × 2, p) exists.

Proof: Let S = {a1, a2, . . . , ak} be a set satisfying (L) on Zp. Then, for any x, y satisfying
(L), it is seen that ±(x+ y)α2t (1 ≤ t ≤ (p− 1)/4) yield a set of quadratic residues or a set
of non-quadratic residues, according as x+ y is a quadratic residue or not. The same holds
for the case of ±(x− y)α2t.

Hence, for any j1, j2 with 1 ≤ j1 < j2 ≤ k, it holds that⋃
1≤t≤ p−1

4

{±(aj1 + aj2)α2t,±(aj1 − aj2)α2t} = Zp\{0}.
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On the other hand, two entries {aj1α2t,−aj1α2t} and {aj2α2t,−aj2α2t} yield four differences
±(aj1 + aj2)α2t and ±(aj1 − aj2)α2t for any t with 1 ≤ t ≤ (p − 1)/4 and 1 ≤ j2 < j2 ≤ k.
Therefore the base rows

(a1α
2t,−a1α

2t | · · · | akα2t,−akα2t)

with 1 ≤ t ≤ (p− 1)/4 can yield the required OMD1(k × 2, p).

Examples of such k-set S are presented as follows.

Example 2: The following sets on Zp satisfy the condition (L)

{1, 3, 4} on Z13, {1, 2, 7} on Z17, {1, 2, 4} on Z29, {1, 4, 17} on Z37, {1, 7, 8} on Z41.

In the case where λ = 2 and even v, the 1-rotational automorphism is useful to construct
an OMD2(k × c, v). Examples 9 to 12 (for 1-rotational OMDs) are used for the proof of
Theorem 2.

5. GDD Construction

For combinatorial multi-arrays with fixed k and c, the GDD construction in the liter-
ature (e.g., Li et al., 2018; Matsubara and Kageyama, 2021) is useful to show the complete
existence of multi-arrays for any v. Now, the GDD construction of an OMDλ(k × c, v) is
presented.

Lemma 9: The existence of a (k, λ)-GDD of type ht11 h
t2
2 · · ·htnn , an OD1(k, k) and an

OMDλ(k× c, hic+ 1) for each i (1 ≤ i ≤ n) implies the existence of an OMDλ(k× c, v∗) with
v∗ = c(h1t1 + · · ·+ hntn) + 1.

Proof: Let G` be a group of a (k, λ)-GDD of type ht11 ht22 · · ·htnn on Zv with 1 ≤ ` ≤ u,
v = ∑n

i=1 hiti and u = ∑n
i=1 ti. Then, we take the direct product Zv × Zc, and let V =

(Zv × Zc) ∪ {∞} be a point set of the required OMDλ(k × c, v∗).

Further let the ith block of the (k, λ)-GDD of type ht11 ht22 · · ·htnn be

{vi1, vi2, . . . , vik}, 1 ≤ i ≤ b,

where b is the number of blocks of the (k, λ)-GDD. Let the jth row of an OD1(k, k) on Zk
be

(aj1, aj2, . . . , ajk), 1 ≤ j ≤ k(k − 1).

Then replace each point vii′ ∈ Zv with a subset Bii′ = {(vii′ , e) | e ∈ Zc} for 1 ≤ i ≤ b and
1 ≤ i′ ≤ k. In this case the following row set:

R0 = {
(
Biaj1 | Biaj2 | . . . | Biajk

)
| 1 ≤ i ≤ b, 1 ≤ j ≤ k(k − 1)}

is at first considered.

Furthermore, let R` on (G` × Zc)∪{∞} with 1 ≤ ` ≤ u be the row sets obtained from
the OMDλ(k × c, hic + 1) with |G`| = hi for some i (1 ≤ i ≤ n). Then, any ordered pair of
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two points (x, c1) and (y, c2) with x, y ∈ G` and c1, c2 ∈ Zc for any ` appears in λ rows of
any ordered two columns of R`, and does not appear in different entries of any row of other
row sets. Moreover, any ordered pair of two points (x, c1) and (y, c2) with x ∈ G`, y ∈ G`′

and c1, c2 ∈ Zc for any `, `′ (` 6= `′) appears in λ rows of any ordered two columns of R0,
while it does not appear in different entries of any row of other row sets.

Hence, the union of these row sets R0∪R1∪· · ·∪Ru can yield the required OMDλ(k×
c, v∗).

Moreover, the following result can also be obtained.

Lemma 10: The existence of a (k, λ)-GDD of type ht11 h
t2
2 · · ·htnn , an OD1(k, k) and an

OMDλ(k × c, hic) for each i (1 ≤ i ≤ n) implies the existence of an OMDλ(k × c, v∗) with
v∗ = c(h1t1 + · · ·+ hntn).

Proof: Let G` (1 ≤ ` ≤ u) and R0 be the same as in the proof of Lemma 9. Moreover, let
R` on G` × Zc with 1 ≤ ` ≤ u be the row sets obtained from the OMDλ(k × c, hic) with
|G`| = hi for some i (1 ≤ i ≤ n).

By discussion similar to the proof of Lemma 9, the union of these row sets R0 ∪R1 ∪
· · · ∪ Ru can yield the required OMDλ(k × c, v∗).

The following existence results on GDDs are obtained by checking that the parameters
satisfy the conditions described in Lemma 4.

Lemma 11: There exist a (3, 1)-GDD of type 6u61, a (3, 1)-GDD of type 6u81 and a (3, 1)-
GDD of type 6u101 for any u ≥ 3.

Lemma 12: There exist a (3, 1)-GDD of type 33, a (3, 1)-GDD of type 43, a (3, 1)-GDD of
type 53 and a (3, 1)-GDD of type 3451.

Note that a (k, λ)-GDD with λ ≥ 1 can be obtained from a (k, 1)-GDD by taking λ
copies of each block.

6. Construction from k-SOLS(v)

Let L = (aij) and L′ = (a′ij) are two latin squares of order v. The latin squares L and
L′ are said to be orthogonal if all ordered pairs (aij, a′ij) are distinct. A set of latin squares
L1, . . . , Ls is called mutually orthogonal latin squares of order v, denoted by s-MOLS(v), if
they are orthogonal in each pair. A self-orthogonal latin square of order v is a latin square
that is orthogonal to its transpose. A set {L1, . . . , Ls} of self-orthogonal latin squares of
order v is denoted by s-SOLS(v), if {L1, L

T
2 , . . . , Ls, L

T
s } is a 2s-MOLS(v). Without loss of

generality, any latin square in an s-SOLS(v) can be replaced by a latin square with aii = i,
by renaming the symbols.

Lemma 13 (Abel and Bennet, 2012): There exists a 2-SOLS(v) for any positive integer v,
except for v ∈ {2, 3, 4, 5, 6} and possibly for v ∈ {10, 12, 14, 18, 21, 22, 24, 30, 34}.

Lemma 14 (Finizio and Zhu, 2007): There exists a (2n−1 − 1)-SOLS(2n) for any n ≥ 2.
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It is well known (see Bierbrauer, 2007) that the existence of a k-MOLS(v), all of
whose squares satisfy aii = i with 1 ≤ i ≤ v, is equivalent to the existence of an OD1(k +
2, v). Moreover, in Matsubara and Kageyama (2015) and Sawa et al. (2007), some type
of combinatorial designs, called pairwise additive BIB designs, are constructed by use of a
k-SOLS(v). In a manner similar to Matsubara and Kageyama (2015) and Sawa et al. (2007),
the following construction is presented.

Lemma 15: The existence of a k-SOLS(v) implies the existence of an OMD2((k+1)×2, v).

Proof: Let a set of 2k-MOLS(v) derived from the k-SOLS(v) be {Lh, LTh | 1 ≤ h ≤ k},
where Lh = (a(2h−1)

ij ), LTh = (a(2h)
ij ) = (a(2h−1)

ji ) and a
(2h−1)
ii = a

(2h)
ii = i (1 ≤ i ≤ v). Further

let R be a set of the following v(v − 1)/2 rows:

(i, j | a(1)
ij , a

(2)
ij | a

(3)
ij , a

(4)
ij | · · · | a

(2k−1)
ij , a

(2k)
ij )

with 1 ≤ i < j ≤ v.

Then (a(2h1−1)
ij , a

(2h2−1)
ij ) and (a(2h1)

ij , a
(2h2)
ij ), for 1 ≤ i < j ≤ v and each h1, h2 of

1 ≤ h1 < h2 ≤ k, yield all of pairs of distinct points in V , since Lh1 and Lh2 are orthogonal.
Moreover, (a(2h1)

ij , a
(2h2−1)
ij ) and (a(2h1−1)

ij , a
(2h2)
ij ) for 1 ≤ i < j ≤ v also yield all of pairs of

distinct points in V , since LTh1 and Lh2 are orthogonal. Hence it is seen that the above-
mentioned R yields an OMD2((k + 1)× 2, v).

Now, two families of an OMD2(k× 2, v) can be constructed by taking Lemma 15 with
Lemmas 13 and 14 as the following shows.

Lemma 16: There exists an OMD2(3× 2, v) for any v ≥ 7 except for v ∈ {10, 12, 14, 18, 21,
22, 24, 30, 34}.

Lemma 17: There exists an OMD2(2n−1 × 2, 2n) for any n ≥ 2.

7. Proof of Main Results

We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1: For an odd prime power q, the existence of the required OMDλ(k×
2, q) with 2 ≤ k ≤ (q−1)/2 is shown by taking Lemmas 2 and 3 with some copies of rows. On
the other hand, the existence of the required OMDλ(k× 2, 2n) with n ≥ 2 and 2 ≤ k ≤ 2n−1

is shown by use of Lemmas 3 and 17 and taking copies of rows.

Proof of Theorem 2: For the complete proof, it is enough to show the existence of the
following cases:

(I) v ≡ 1 (mod 4) and v 6= 9 when λ ≥ 1,
(II) v ≡ 0, 2, 3 (mod 4) when λ ≡ 0 (mod 2),

(III) v = 9 and λ ≥ 2.

In Cases (I) and (II), minimal OMDλ(3 × 2, v), i.e., λ = 1 and λ = 2, respectively,
are firstly constructed and then the existence for any λ is shown by taking copies of rows
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of the OMD. Since the existence of a minimal OMDλ(3× 2, 9), i.e., λ = 1, is unknown, the
existence of OMDλ(3 × 2, 9) for any λ ≥ 2 is shown in Case (III) by using examples with
λ = 2, 3.

Case (I): Lemma 7 with Examples 5 and 6 shows the existence of an OMD1(3 × 2, v) with
v = 25, 33. Lemma 8 with Example 2 shows the existence of an OMD1(3 × 2, v) with
v = 13, 17, 29, 37, 41. Moreover, Examples 7 and 8 show the existence of an OMD1(3× 2, v)
with v = 21, 45.

On the other hand, by Lemma 11, there exist a (3, 1)-GDD of type 6u61, a (3, 1)-GDD
of type 6u81 and a (3, 1)-GDD of type 6u101 for any u ≥ 3. Now consider the OD1(3, 3)
given in Lemma 1 and the OMD1(3× 2, v) with v = 6 · 2 + 1, 8 · 2 + 1, 10 · 2 + 1 = 13, 17, 21
given above. Then Lemma 9 yields (i) an OMD1(3× 2, v) with v ≥ 49 and v ≡ 1 (mod 12)
from the (3, 1)-GDD of type 6u61, (ii) an OMD1(3 × 2, v) with v ≥ 53 and v ≡ 5 (mod 12)
from the (3, 1)-GDD of type 6u81, and (iii) an OMD1(3× 2, v) with v ≥ 57 and v ≡ 9 (mod
12) from the (3, 1)-GDD of type 6u101.

Hence, for Case (I), the required multi-arrays are constructed by taking copies of rows
of the OMD1(3× 2, v).

Case (II): Lemma 16 gives an OMD2(3 × 2, v) with v ≡ 0, 2, 3 (mod 4) except for v ∈
{6, 10, 12, 14, 18, 22, 24, 30, 34}. Examples 1 and 9 to 12 yield an OMD2(3 × 2, v) with v ∈
{6, 10, 12, 14, 22}.

On the other hand, by Lemma 12 with use of two copies of rows, there exist a (3, 2)-
GDD of type 33, a (3, 2)-GDD of type 43, a (3, 2)-GDD of type 53 and a (3, 2)-GDD of type
3451. Now consider the OD1(3, 3) and the OMD2(3× 2, v) with v = 3 · 2, 4 · 2, 5 · 2 = 6, 8, 10
given above. Then Lemma 10 yields an OMD2(3 × 2, v) with v ∈ {18, 24, 30, 34}. Thus,
for Case (II), the required multi-arrays are constructed by taking copies of rows of the
OMD2(3× 2, v).

Case (III): Lemma 7 with Examples 3 and 4 shows the existence of an OMDλ(3× 2, 9) with
λ = 2, 3. Hence, for Case (III), the required multi-arrays are constructed by combining u
copies and u′ copies of rows of the OMD2(3 × 2, 9) and the OMD3(3 × 2, 9), respectively,
with λ = 2u+ 3u′ (u ≥ 0, u′ ≥ 0).

8. Concluding Remark

Theorem 1 shows the existence of an OMDλ(k × 2, q) for any prime power q except
possibly for q ≡ 1 (mod 4) and λ ≡ 1 (mod 2). Moreover, Theorem 2 shows that the
necessary conditions (1) (2) and (3) are also sufficient for the existence of an OMDλ(3×2, v)
except possibly for an OMD1(3× 2, 9). Unfortunately, the existence of the OMD1(k × 2, q)
with k ≥ 4, q ≡ 1 (mod 4) and the OMD1(3× 2, 9) cannot be proved by any method in this
paper.

Lemma 7 together with the asymptotic existence results on a cyclic PMA1(k × 2, v)
given in Li et al. (2018) and Matsubara and Kageyama (2021) can provide some asymptotic
existence of a cyclic OMD1(k × 2, v) which is minimal. However, it seems difficult to show
both of the exact and asymptotic existence of an OMDλ(k × c, v) with N = v, k ≥ 3 and
c ≥ 2.
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Finally, though we can find some applications of combinatorial structures (OMA, PMA,
OD) related to the OMD as stated in Sections 1 and 2, any application of the OMD is not
presented anywhere, including this paper. It will be discussed in a forthcoming paper.
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Appendix

Some individual examples which can be found by use of a computer are presented.
Note that each of such examples cannot be presented by use of the construction methods
provided in this paper.

Example 3: A cyclic PMA2(3× 2, 9) on Z9 is given by

(0, 1 | 2, 4 | 3, 6), (0, 7 | 1, 2 | 5, 8) mod 9.

Example 4: A cyclic PMA3(3× 2, 9) on Z9 is given by

(0, 8 | 2, 3 | 1, 5), (0, 7 | 1, 2 | 3, 6), (0, 6 | 5, 7 | 2, 8) mod 9.

Example 5: A cyclic PMA1(3× 2, 25) on Z25 is given by

(0, 12 | 3, 23 | 17, 18), (0, 22 | 12, 21 | 13, 24), (0, 24 | 5, 7 | 3, 14) mod 25.

Example 6: A cyclic PMA1(3× 2, 33) on Z33 is given by

(0, 16 | 17, 27 | 12, 13), (0, 1 | 14, 24 | 2, 16), (0, 1 | 8, 30 | 7, 24),
(0, 3 | 15, 31 | 22, 28) mod 33.

Example 7: A cyclic OMD1(3× 2, 21) on Z21 is given by

(10, 11 | 5, 16 | 9, 12), (9, 12 | 8, 13 | 2, 19), (10, 11 | 8, 13 | 5, 16),
(2, 19 | 9, 12 | 10, 11), (10, 11 | 2, 19 | 7, 14) mod 21.

Example 8: A cyclic OMD1(3× 2, 45) on Z45 is given by

(19, 26 | 17, 28 | 3, 42), (20, 25 | 21, 24 | 6, 39), (17, 28 | 6, 39 | 11, 34),
(11, 34 | 6, 39 | 10, 35), (9, 36 | 21, 24 | 11, 34), (21, 24 | 11, 34 | 13, 32),
(17, 28 | 9, 36 | 10, 35), (4, 41 | 10, 35 | 1, 44), (22, 23 | 2, 43 | 10, 35),
(17, 28 | 10, 35 | 13, 32), (13, 32 | 16, 29 | 22, 23) mod 45.

Example 9: A 1-rotational OMD2(3× 2, 10) on Z9 is given by

(0,∞ | 1, 5 | 6, 8), (2, 7 | 0,∞ | 1, 4), (2, 4 | 5, 7 | 0,∞), (0, 6 | 4, 8 | 1, 7),
(0, 7 | 4, 6 | 2, 3) mod 9.

Example 10: A 1-rotational OMD2(3× 2, 12) on Z11 is given by

(0,∞ | 4, 7 | 1, 10), (2, 9 | 0,∞ | 5, 6), (4, 7 | 1, 10 | 0,∞), (2, 9 | 3, 8 | 1, 10),
(4, 7 | 5, 6 | 2, 9), (2, 9 | 5, 6 | 4, 7) mod 11.

Example 11: A 1-rotational OMD2(3× 2, 14) on Z13 is given by

(0,∞ | 1, 12 | 6, 7), (5, 8 | 0,∞ | 3, 10), (4, 9 | 3, 10 | 0,∞), (4, 9 | 6, 7 | 5, 8),
(6, 7 | 2, 11 | 4, 9), (2, 11 | 4, 9 | 5, 8), (3, 10 | 6, 7 | 2, 11) mod 13.
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Example 12: A 1-rotational OMD2(3× 2, 22) on Z21 is given by

(0,∞ | 7, 14 | 5, 16), (7, 14 | 0,∞ | 10, 11), (5, 16 | 8, 13 | 0,∞), (9, 12 | 8, 13 | 1, 20),
(7, 14 | 9, 12 | 5, 16), (5, 16 | 1, 20 | 7, 14), (7, 14 | 4, 17 | 1, 20), (5, 16 | 4, 17 | 2, 19),
(9, 12 | 3, 18 | 8, 13), (7, 14 | 9, 12 | 8, 13), (9, 12 | 1, 20 | 2, 19) mod 21.

Finally, a table of the existence of a minimal OMDλ(k × 2, v) shown by our methods
is presented for 4 ≤ v ≤ 20. When c = 2 is fixed, N and λ are uniquely determined by v.
For v,N and λ, values of k are indicated about known or unknown existence of the OMD.
Note that values of bold k represent the upper bound of k obtained from (1) and “–” in
the column of unknown implies that the complete existence of an OMDλ(k × c, v) is shown.
Moreover, for two minimal OMDs of Nos. 2 and 6 which cannot be obtained by Theorems 1
and 2, base rows are newly given.

Table 1: Minimal OMDλ(k × c, v) with 4 ≤ v ≤ 20, c = 2

No v N λ known unknown Source
1 4 6 2 k = 2 – Theorem 1
2 5 5 1 k = 2 – (1, 4 | 2, 3) mod 5
3 6 15 2 2 ≤ k ≤ 3 – Theorem 2
4 7 21 2 2 ≤ k ≤ 3 – Theorem 1
5 8 28 2 2 ≤ k ≤ 4 – Theorem 1
6 9 18 1 k = 2 3 ≤ k ≤ 4 (0, 1 | 2, 4), (2, 4 | 0, 1) mod 9
7 10 45 2 2 ≤ k ≤ 3 4 ≤ k ≤ 5 Theorem 2
8 11 55 2 2 ≤ k ≤ 5 – Theorem 1
9 12 66 2 2 ≤ k ≤ 3 4 ≤ k ≤ 6 Theorem 2
10 13 39 1 2 ≤ k ≤ 3 4 ≤ k ≤ 6 Theorem 2
11 14 91 2 2 ≤ k ≤ 3 4 ≤ k ≤ 7 Theorem 2
12 15 105 2 2 ≤ k ≤ 3 4 ≤ k ≤ 7 Theorem 2
13 16 120 2 2 ≤ k ≤ 8 – Theorem 1
14 17 68 1 2 ≤ k ≤ 3 4 ≤ k ≤ 8 Theorem 2
15 18 153 2 2 ≤ k ≤ 3 4 ≤ k ≤ 9 Theorem 2
16 19 171 2 2 ≤ k ≤ 9 – Theorem 1
17 20 190 2 2 ≤ k ≤ 3 4 ≤ k ≤ 10 Theorem 2
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Abstract
It is shown that a Wishart matrix of standard complex normal random variables is

asymptotically freely independent of an independent random matrix, under minimal condi-
tions, in two different sense of asymptotic free independence.
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1. Introduction

Since the seminal discovery of [10], there have been several folklores regarding free in-
dependence. For example, one such folklore is that any two independent Wigner matrices are
asymptotically freely independent, and another is that any Wishart matrix is asymptotically
freely independent of a deterministic matrix. While such folklores are true, more often than
not, there are a few problems. The first and foremost problem is that the meaning of the
phrase “asymptotically freely independent” varies with context. A widely used definition is
in terms of the normalized expected trace (or without the expectation). Unfortunately, with
this definition, the claim of asymptotic free independence can easily fail, in the absence of
any other assumption. The counter example in [7] is noteworthy. This articulates the second
problem with the folklore, which is that the required assumptions are usually missing. Nev-
ertheless, in the literature, there are several rigorous proofs of various versions of Voiculescu’s
theorem; see, for example, the monographs [9], [2] and [8]. The reader will notice that the
versions in the above references are not monotonic in strength, that is, one version does not
necessarily imply another. In other words, there is no general theorem regarding asymptotic
free independence from which most results of interest follow.

This note is a modest attempt at settling some of the issues mentioned above in a spe-
cific example. Theorems 1 and 2 claim asymptotic free independence of a Wishart matrix
WN of standard complex normal random variables and an independent matrix YN , under two
different definitions of asymptotic free independence. The former is the usual definition, in
terms of normalized expected trace, while the latter is in terms of the limiting spectral dis-
tribution of random matrices, which is weaker than the former. In both the above mentioned

Corresponding Author: Arijit Chakrabarty
Email: arijit.isi@gmail.com



188 A. CHAKRABARTY, S. CHAKRABORTY AND R.S. HAZRA [Vol. 19, No. 1

theorems, the limiting spectral distribution of YN is assumed to be compactly supported,
at the least. This assumption is relaxed in Theorem 3, a consequence of which is that the
claim is also significantly weakened. The proofs of Theorems 2 and 3 are based on truncation
arguments.

We choose to work with the complex normal distribution because they yield the
strongest results in that the assumptions on YN become minimal. This is why, for example,
Theorem 22.35 of [9] assumes the distribution to be complex normal. It is worth noting that
Theorem 2 of [1] and the results in [6] are similar in spirit. Although the results are stated
for a Wishart matrix, they hold for a Wigner matrix as well.

2. The Results

Let (Zi,j : i, j ∈ N) be a family of i.i.d. standard complex Normal random variables.
That is, (<(Zi,j) : i, j ≥ 1) and (=(Zi,j) : i, j ≥ 1) are independent families of i.i.d. real
N(0, 1/2) random variables. Suppose that (MN : N ≥ 1) is a sequence of positive integers
such that

lim
N→∞

N

MN

= λ ∈ (0,∞) . (1)

For each N ≥ 1, let XN be the MN ×N random matrix defined by

XN(i, j) := Zi,j, 1 ≤ i ≤MN , 1 ≤ j ≤ N .

For N ≥ 1, define an N ×N random Hermitian matrix by

WN := 1
MN

X∗NXN .

Notice that for 1 ≤ i, j ≤ N ,

WN(i, j) = 1
MN

MN∑
k=1

Zk,iZk,j .

Hence WN is a Wishart matrix.

For a random Hermitian N × N matrix Z, its “empirical spectral distribution” and
“expected empirical spectral distribution”, denoted by ESD(Z) and EESD(Z), respectively,
are probability measures on R, defined as

ESD(Z) = 1
N

N∑
i=1

1(λi ∈ ·) ,

EESD(Z) = 1
N

N∑
i=1

P (λi ∈ ·) ,

where λ1, . . . , λN are the eigenvalues of Z, counted with multiplicity.

It is well known that as N →∞,

ESD(WN)→ νλ ,
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weakly in probability, where νλ, with λ as in (1), is the Marčenko-Pastur distribution, defined
by

νλ(dx) =


(
1− 1

λ

)
1(0 ∈ dx) + 1

2π

√
(λ+−x)(x−λ−)

λx
1[λ−,λ+](x) dx, λ > 1 ,

1
2π

√
(λ+−x)(x−λ−)

λx
1[λ−,λ+](x) dx, λ ≤ 1 ,

with λ± = (1±
√
λ)2.

For each N ≥ 1, YN is an N × N random complex Hermitian matrix, independent
of (Zi,j : i, j ∈ N). The exact assumption on the spectrum of YN will vary from result to
result, and hence will be mentioned in the statements of the respective results. However, at
the very least, there exists a (non-random) probability measure µ on R such that

ESD(YN)→ µ , (2)

weakly in probability, as N →∞.

The statements of the following results are based on the theory of C∗-probability spaces.
A reader unacquainted with this may look at [9]. It is known that given probability measures
µ1 and µ2 which are supported on a compact subset of R, there exist a C∗-probability space
(A, ϕ), and two freely independent self-adjoint elements a1, a2 ∈ A such that

ϕ (ani ) =
� ∞
−∞

xnµi(dx), n ∈ N, i = 1, 2 .

The probability measures µ1 and µ2 are called the distributions of a1 and a2, and denoted
by L(a1) and L(a2), respectively.

The first result shows asymptotic free independence between WN and YN in the sense
of normalized expected trace.

Theorem 1: Assume that µ is compactly supported, and that for each n ∈ N,

lim
N→∞

E
[ 1
N

Tr(Y n
N )
]

=
� ∞
−∞

xnµ(dx) , and (3)

lim
N→∞

Var
[ 1
N

Tr(Y n
N )
]

= 0 . (4)

Then, there exists a C∗-probability space (A, ϕ), in which there are two freely independent
self-adjoint elements w and y, having distributions νλ and µ, respectively, and satisfying the
following: For every polynomial p in two variables having complex coefficients,

lim
N→∞

1
N

ETr [p (WN , YN)] = ϕ
(
p(w, y)

)
. (5)

Consequently, if p (WN , YN) has real eigenvalues, a.s., for all N , then as N →∞,

EESD (p (WN , YN)) w−→ L (p (w, y)) . (6)

Remark 1: When YN is deterministic, the assumptions of Theorem 1 just mean that

lim
n→∞

1
N

Tr(Y n
N ) =

� ∞
−∞

xnµ(dx) ,
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which is stronger than (2). In general, (3) and (4) together imply (2) whenever µ is deter-
mined by its moments, which is necessarily the case if µ is compactly supported.

Remark 2: The claim (6) is an immediate consequence of (5), whenever p is such that the
eigenvalues of p(WN , YN) are a.s. real. For example, if WN is non-negative definite, then the
above holds for

p(x, y) = xy .

In the next result, both the hypotheses and the claim are weakened to (2) and (6),
respectively. In other words, this results proves asymptotic free independence in the sense
of (6) as opposed to (5).

Theorem 2: If µ, as in (2), is compactly supported, then for every polynomial p in two
variables having complex coefficients such that p (WN , YN) has real eigenvalues, a.s., for all
N , (6) holds.

The last result deals with the case when the support of µ is possibly unbounded.
For measures with possibly unbounded support, ‘�’ and ‘�’ denote their free additive and
multiplicative convolutions, respectively. For the latter, at least of one of the two measures
has to be supported on the non-negative half line. See [5] for the details.

Theorem 3: If (2) holds for a probability measure µ which is not necessarily compactly
supported, then

EESD(YN +WN) w−→ µ� νλ , and
EESD(YNWN) w−→ µ� νλ ,

as N →∞.

Remark 3: Theorems 1 - 3 hold true, if the Wishart matrix is replaced by a Wigner matrix
with standard complex normal entries, and the Marčenko-Pastur distribution is replaced by
the semicircle law.

3. Some Facts

For the proofs of the results mentioned in Section 2, a few facts will be needed, which
are stated here. The proofs are omitted because the results are either elementary or can be
found in a cited reference.

The first one is a comparison between ranks of deterministic matrices.

Fact 3.1: Let p be a polynomial in two variables, with complex coefficients. Then, there
exists a finite constant C, depending only on the polynomial p, such that

Rank (p(A,B)− p(A′, B)) ≤ CRank(A− A′) ,

for square matrices A,A′, B of the same order.

The next result, which is also based on rank, follows from Theorem A.43, page 503, of
[4].
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Fact 3.2: For probability measures µ1 and µ2 on R, let d(µ1, µ2) denote their Lévy distance,
defined by

d(µ1, µ2) := inf {ε > 0 : µ1 ((−∞, x− ε]) ≤ µ2 ((−∞, x]) ≤ µ1 ((−∞, x+ ε])} .

For N ×N random Hermitian matrices A and B, it holds that

d (EESD(A),EESD(B)) ≤ 1
N

E [Rank(A−B)] .

The following fact essentially follows from uniform integrability. Nonetheless, a proof
is given.

Fact 3.3: For each N ≥ 1, suppose that YN is an N×N random Hermitian matrix satisfying
(3) and (4). Then it holds that for any n ≥ 1 and k1, . . . , kn ≥ 0,

lim
N→∞

N−nE
(

n∏
i=1

Tr
(
Y ki
N

))
=

n∏
i=1

αki ,

where αn denotes the right hand side of (3).

Proof: Fix n ≥ 1 and k1, . . . , kn ≥ 0. A consequence of (3) and (4) is that for all fixed
k ≥ 1,

1
N

Tr
(
Y k
N

)
P−→ αk , N →∞ .

Therefore,
N−n

n∏
i=1

Tr
(
Y ki
N

)
P−→

n∏
i=1

αki , N →∞ . (7)

Let
k =

n∑
i=1

ki ,

which we assume without loss of generality to be at least 1, and observe that

N−n
∣∣∣∣∣
n∏
i=1

Tr
(
Y ki
N

)∣∣∣∣∣ =
n∏
i=1

∣∣∣∣∣
� ∞
−∞

xki (ESD(YN)) (dx)
∣∣∣∣∣

≤
n∏
i=1

� ∞
−∞
|x|ki (ESD(YN)) (dx)

≤
n∏
i=1

(� ∞
−∞

x2k (ESD(YN)) (dx)
)ki/2k

=
( 1
N

Tr
(
Y 2k
N

))1/2
,

the penultimate line following from the Lyapunov inequality. Thus,

lim sup
N→∞

E
(N−n n∏

i=1
Tr
(
Y ki
N

))2
 ≤ lim

N→∞
E
( 1
N

Tr
(
Y 2k
N

))
= α2k <∞ ,
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the equality being implied by (3). Hence,(
N−n

n∏
i=1

Tr
(
Y ki
N

)
: N ≥ 1

)

is an uniformly integrable family, which in conjunction with (7) completes the proof.

The next fact is elementary.

Fact 3.4: Let Z1, . . . , ZN be i.i.d. standard complex normal, that is for each i = 1, . . . , N ,
the real and imaginary parts of Zi are independent N(0, 1/

√
2). If Z denotes the column

vector whose i-th component is Zi, and U is an N × N deterministic unitary matrix, then
the components of UZ are also i.i.d. standard complex normal.

The next fact has essentially been proved in page 386 of [9]. As mentioned therein, an
N ×N Haar unitary matrix is a random matrix distributed according to the Haar measure
on the group of N ×N unitary matrices. Before stating the fact, we need to introduce a few
notations. Let Sn denote the group of permutations on {1, . . . , n} for n ≥ 1. A permutation is
identified with the partition of {1, . . . , n}, induced by the cyclic decomposition. For α ∈ Sn,
#α denotes the number of blocks in α, that is the number of cycles. For any block θ ∈ α,
#θ denotes the length of the cycle θ. For example, for

α ∈ S4,

defined by
α(1) = 2, α(2) = 4, α(3) = 3, α(4) = 1 ,

we write
α = {(1, 2, 4), (3)} ,

and hence #α = 2. If the elements of α, as listed above, are labelled as θ1 and θ2, respectively,
then

#θ1 = 3, #θ2 = 1 .

Fact 3.5: For a fixed N , let A and B be deterministic N ×N Hermitian matrices. If U is
an N ×N Haar unitary matrix, then for any 1 ≤ n ≤ N and k1, . . . , kn ≥ 0,

ETr
[
n∏
i=1

(
UAkiU∗B

)]

=
∑

α,β∈Sn
Wg(N,α−1β)

∏
θ∈α

Tr
(
A
∑

i∈θ ki
) ∏

θ∈β−1γ

Tr
(
B#θ

) ,

where Wg is the Weingarten function defined by

Wg(N,α) = E
[
U(1, 1) . . . U(n, n)U(1, α(1)) . . . U(n, α(n))

]
,

for α ∈ Sn, N ≥ n and
γ = {(1, . . . , n)} ∈ Sn .
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The following has essentially been proved in the course of the proof of Theorem 23.14
of [9].

Fact 3.6: For a fixed n ≥ 1 and α ∈ Sn,
φ(α) := lim

N→∞
N2n−#αWg(N,α) exists and is real.

Furthermore, if (A, ϕ), w and y are as in the statement of Theorem 1, then for n ≥ 1 and
k1, . . . , kn ≥ 0,

ϕ
(
wk1y . . . wkny

)
=

∑
α,β∈Sn:

#(α−1β)+#α+#(β−1γ)=2n+1

φ(α−1β)
∏
θ∈α

ϕ
(
w
∑

i∈θ ki
) ∏

θ∈β−1γ

ϕ
(
y#θ

) .

The following result is Corollary 2 of [3].

Fact 3.7: For a fixed N ∈ N, there exists a measurable map
ψ : CN×N → CN×N ,

where CN×N is the space of all N ×N matrices with complex entries, such that ψ(M) is an
unitary matrix for every M ∈ CN×N , and

ψ(M)∗Mψ(M)
is upper triangular for every M .

4. Proofs

Proof of Theorem 1: Let (A, ϕ), w and y be as in the statement. In order to prove the
claim, all that needs to be shown is that

lim
N→∞

N−1E
[
Tr
(
W k1
N YN . . .W

kn
N YN

)]
= ϕ

(
wk1y . . . wkny

)
, (8)

for fixed n ≥ 1 and k1, . . . , kn ≥ 0.

The foremost task is to show that the expectation on the left hand side of (8) exists.
To that end, it suffices to show that there exists N0 such that

E [|YN(i, j)|n] <∞ for all N ≥ N0, 1 ≤ i, j ≤ N . (9)
Fix N ≥ 1 and enumerate the eigenvalues of YN in ascending order by λ1, . . . , λN . Notice
that

N∑
i,j=1
|YN(i, j)|2n ≤

 N∑
i,j=1
|YN(i, j)|2

n

=
(

N∑
i=1

λ2
i

)n

≤ Nn−1
N∑
i=1

λ2n
i

= Nn−1Tr(Y 2n
N ) .
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Since (3) implies that the expectation of the right hand side is finite for N large, an N0
satisfying (9) exists.

Proceeding towards (8), fix N ≥ N0, and let

F := σ (XN , YN) ,

that is F is the smallest σ-field with respect to which the entries of XN and YN are measur-
able. Let UN be a Haar unitary matrix independent of F . Fact 3.4 implies that conditioned
on UN , the entries of UNXN are i.i.d. standard complex Normal. That is, the conditional
joint distribution of the entries of UNXN , given UN , is the same as that of XN . Therefore

(UNWNU
∗
N , YN) d= (WN , YN) .

As a result,

CN := E
[
Tr
(
W k1
N YN . . .W

kn
N YN

)]
= E

[
Tr
(
(UNWNU

∗
N)k1YN . . . (UNWNU

∗
N)knYN

)]
= E

[
Tr
(
UNW

k1
N U

∗
NYN . . . UNW

kn
N U∗NYN

)]
= E EF

[
Tr
(
UNW

k1
N U

∗
NYN . . . UNW

kn
N U∗NYN

)]
,

where EF is the conditional expectation given F . By an appeal to Fact 3.5,

EF
[
Tr
(
UNW

k1
N U

∗
NYN . . . UNW

kn
N U∗NYN

)]
=

∑
α,β∈Sn

Wg(N,α−1β)
∏
θ∈α

Tr
(
W

∑
i∈θ ki

N

) ∏
θ∈β−1γ

Tr
(
Y #θ
N

) .

Taking the unconditional expectation of both sides, and using the independence of WN and
YN , we get that

CN =
∑

α,β∈Sn
Wg(N,α−1β)E

∏
θ∈α

Tr
(
W

∑
i∈θ ki

N

)E
 ∏
θ∈β−1γ

Tr
(
Y #θ
N

) . (10)

It is well known that for all k ∈ N,

lim
N→∞

E
(
N−1Tr(W k

N)
)

= ϕ(wk) ,

lim
N→∞

Var
(
N−1Tr(W k

N)
)

= 0 .

Combining the above with Fact 3.3 yields that

lim
N→∞

E
∏
θ∈α

N−1Tr
(
W

∑
i∈θ ki

N

) =
∏
θ∈α

ϕ
(
w
∑

i∈θ ki
)
. (11)
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Similarly, (3), (4) and Fact 3.3 together imply that

lim
N→∞

E
 ∏
θ∈β−1γ

N−1Tr
(
Y #θ
N

) =
∏

θ∈β−1γ

ϕ
(
y#θ

)
. (12)

Rewrite (10) as

N−1CN∑
α,β∈Sn

N#α+#(β−1γ)−1Wg(N,α−1β)

E
∏
θ∈α

N−1Tr
(
W

∑
i∈θ ki

N

)E
 ∏
θ∈β−1γ

N−1Tr
(
Y #θ
N

) .

The first claim of Fact 3.6 implies that for fixed α, β ∈ Sn,

N#α+#(β−1γ)−1Wg(N,α−1β) = O
(
N#(α−1β)+#α+#(β−1γ)−2n−1

)
= O(1) ,

because

#α + #(α−1β) + #(β−1γ) ≤ 2n+ 1 ,

as shown in (23.4) and the following display on page 387 in [9]. Therefore, letting N → ∞
in (13) and using the first claim of Fact 3.6 along with (11) and (12), we get that

lim
N→∞

N−1CN

=
∑

α,β∈Sn:
#(α−1β)+#α+#(β−1γ)=2n+1

φ(α−1β)
∏
θ∈α

ϕ
(
w
∑

i∈θ ki
) ∏

θ∈β−1γ

ϕ
(
y#θ

) .
The second claim of Fact 3.6 shows that the right hand side of the above equation is the
same as that of (8). Thus the latter follows, which completes the proof.

Proof of Theorem 2: Since µ is compactly supported, let M > 1 be such that

µ ([−(M − 1),M − 1]) = 1 .

Letting ψ be as in Fact 3.7, define

PN = ψ(YN) ,

and
TN := P ∗NYNPN ,

which is an upper triangular matrix. Define an N ×N matrix T ′N by

T ′N(i, j) :=
{
TN(i, j), i 6= j ,

TN(i, i)1(|TN(i, i)| ≤M), i = j ,
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and let
Y ′N := PNT

′
NP

∗
N . (13)

In order to complete the proof, it suffices to show that for a fixed polynomial p satisfying
the hypothesis,

EESD (p(WN , Y
′
N)) w−→ L (p(w, y)) , (14)

and
lim
N→∞

d (EESD (p(WN , YN)) ,EESD (p(WN , Y
′
N))) = 0 , (15)

where d is the Lévy metric, convergence in which is equivalent to weak convergence.

We start by showing (15). To that end, note that

N−1Rank(YN − Y ′N) = N−1Rank(TN − T ′N)
= N−1#{1 ≤ i ≤ N : |TN(i, i)| > M}
= (ESD(YN)) ([−M,M ]c) ,

the inequality in the second line being based on the fact that TN − T ′N is a diagonal matrix,
and hence

N−1Rank(YN − Y ′N) P−→ 0 (16)
as N →∞. Fact 3.1 and the bounded convergence theorem show that

lim
N→∞

E
[ 1
N

Rank(p(WN , YN)− p(WN , Y
′
N))

]
= 0 .

An appeal to Fact 3.2 establishes (15).

Proceeding towards (14), in view of Theorem 1 and Remark 2, it suffices to show that
(3) and (4) hold with YN replaced by Y ′N . Equation (16) and the hypotheses imply that

ESD(Y ′N)→ µ ,

weakly in probability, as N →∞. Since

(ESD(Y ′N)) ([−M,M ]c) = (ESD(T ′N)) ([−M,M ]c) = 0, N ≥ 1 ,

and
µ ([−M + 1,M − 1]c) = 0 ,

it follows that for a fixed n ≥ 1, as N →∞,
� ∞
−∞

xn (ESD(Y ′N)) (dx) P−→
� ∞
−∞

xnµ(dx) .

The observations that
1
N

Tr [(Y ′N)n] =
� ∞
−∞

xn (ESD(Y ′N)) (dx) ,

and that the modulus of the above quantity is bounded by Mn, show, by bounded conver-
gence theorem, that (3) and (4) hold, with YN replaced by Y ′N . Theorem 1 now shows (14),
which, in turn, completes the proof.
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Proof of Theorem 3: As in the preceding proof, let

PN = ψ(YN), N ≥ 1 .

Fix M > 0 and let Y ′N be as in (13), M being suppressed in the notation. Theorem 2 implies
that

EESD(Y ′N +WN) w−→ µM � νλ ,

and
EESD(Y ′NWN) w−→ µM � νλ

as N →∞, where

µM(B) = µ(B ∩ [−M,M ]) + µ ([−M,M ]c) 1(0 ∈ B)

for every Borel set B ⊂ R. Proposition 4.13 and Corollary 6.7 of [5] imply, respectively, that
as M →∞,

µM � νλ
w−→ µ� νλ , and

µM � νλ
w−→ µ� νλ .

In view of Facts 3.1 and 3.2, and recalling that convergence in the Lévy metric defined in
the latter is equivalent to weak convergence, it suffices to show that

lim
M→∞

lim sup
N→∞

1
N

E [Rank(YN − Y ′N)] = 0 .

However, arguments as in the proof of Theorem 2 show that for M such that

µ({−M,M}) = 0 ,

it holds that
lim sup
N→∞

1
N

E [Rank(YN − Y ′N)] = µ ([−M,M ]c) .

Hence the proof follows.
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Abstract
Choice experiments are conducted when it is important to study the importance of

different factors based on the perceived utility of choice options. We study the optimality
of discrete choice experiments under a newly introduced inference problem of test-control
discrete choice experiments; it is akin to the test-control inference problem in factorial ex-
periments. For each factor, we have one control level and this control level is then compared
with all the test levels of the same factor. For three-level choice designs with multiple factors,
we first obtain a lower bound to the A-values for estimating the two test-control contrasts for
each factor. We then provide some A-optimal designs for a small number of factors obtained
through a complete search. For practical use with a somewhat large number of factors, we
then provide some highly efficient designs.

Key words: Choice set; Test-control contrast effects; Hadamard matrix; Multinomial logit
model; Linear paired comparison model.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Discrete choice experiments are used for quantifying the influence of the attributes
which characterize the choice options. They are useful in many applied sciences, for example,
psychology, marketing research, etc., where options (or, products) have to be judged with
respect to a subjective criterion like preference or taste. For a latest application, see Ong
et al. (2020). In choice experiments, respondents are shown a collection of choice sets and
each of these choice sets consists of several options. Respondents are then asked to select
one preferred option from each of the choice sets. We consider choice experiments with N
choice sets each having two options (referred to as choice pairs hereafter); so, N choice pairs
are shown to respondents and they are asked to pick one of the two options that they prefer
from each of the N pairs. Each option is described by the same k factors, with each factor
having two or more levels. We consider each factor at three levels. A choice design d then is
a collection of these N choice pairs. Excellent reviews of the choice designs are provided in
Street and Burgess (2012) and Großmann and Schwabe (2015), and a recent paper (Das and

Corresponding Author: Rakhi Singh
Email: r singh5@uncg.edu
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Singh, 2020) provides a unified theory on optimal choice experiments connecting different
approaches to choice experiments.

Discrete choice experiments (DCEs) have usually been studied under the multinomial
logit model (El-Helbawy and Bradley, 1978; Street and Burgess, 2007). Under the multino-
mial logit model, D-optimal designs have been studied for several situations, and orthogonal
contrasts of main effects and two-factor interactions for the k factors are usually of interest.
The multinomial logit model is non-linear, hence, the information matrix is a function of
unknown parameters. The locally optimal designs are therefore obtained, and under the
indifference assumption (that all treatment combinations have equal utility) of choice ex-
periments, these locally optimal designs have been just termed as optimal designs. DCEs
with only two options in each choice set can be equivalently studied under the traditional
linear paired comparison model (McFadden, 1974; Huber and Zwerina, 1996; Großmann and
Schwabe, 2015). The relationship between the two approaches (MNL models and linear
paired comparison models) for studying DCEs has been studied in Das and Singh (2020).
They also obtained the information matrices under different inference problems including
briefly introducing the test-control inference problem in DCEs. So far, the inference prob-
lems that have been studied in choice experiments focus on comparing all levels of each factor
with equal importance (Street and Burgess, 2007; Großmann and Schwabe, 2015; Chai et al.,
2017). We focus on the test-control inference problem for paired choice DCEs with each fac-
tor at three levels. The same setup with a traditional inference problem (of equal focus on all
pairwise comparisons) was studied in Chai et al. (2017). The difference between the current
paper and Chai et al. (2017) lies only in the studied inference problem, which ultimately
leads to obtaining different optimal designs. We defer most of the technical details until the
next section.

The primary goal in a test-control inference problem is to compare the test levels to a
(pre-specified) control level. Here, we are not interested in making all pairwise comparisons,
we are only interested in a subset of those comparisons. To the best of our knowledge, no
one has worked on finding optimal choice designs when the interest might lie in making test-
control comparisons. We are also not aware of any practical choice experiment which was
conducted with this intention, however, it is not too hard to imagine that such an inference
problem will find its use with practitioners. This is useful when manufacturers/service
providers or policymakers want to study the effect of new test levels as against the existing
control levels. Test-control inference problem has been studied by several authors; see, for
example, Hedayat et al. (1988) and Majumdar (1996) for block designs, and Gupta (1995)
and Gupta (1998) for multiple factors.

D-optimality is invariant to reparameterizations, and thus, D-optimal designs remain
optimal even when the inference problem is changed (Großmann and Schwabe, 2015). On
the other hand, A-optimal designs change with the inference problem which is one of the
reasons behind us studying the A-optimal designs under the inference problem of test-control
experiments. For linear models, it has been shown that when the inference problem is test-
control, one often benefits by using the A-optimal designs specially designed for catering to
this problem (see Banerjee and Mukerjee, 2008, for example). By studying optimal designs
for the test-control inference problem for DCEs, we intend to do the same for DCEs (results
in Table 2 and the final paragraph). A-optimal designs are the designs that minimize the sum
of variances of the treatment contrasts of interest. For example, if the information matrix
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for treatment contrasts of interest is Md, then the design d∗ which minimizes trace(M−1
d )

among all designs is called an A-optimal design. We provide constructions of A-optimal and
A-efficient designs for estimating the test-control contrasts under the indifference assumption
of the multinomial logit model. We also provide designs having high A-efficiencies.

2. Background

We only present here the details relevant to the current problem, and for more details,
Das and Singh (2020) is suggested to be consulted. With each of the k factors at three
levels, there are a total of 3k options. Let the systematic component of the utility for options
be denoted by a 3k-tuple vector τ . Without loss of generality, let the options be arranged
lexicographically. For example, for k = 2, the systematic component of the utility vector is
τ = (τ00, τ01, τ02, τ10, τ11, τ12, τ20, τ21, τ22). The coding that we use is more commonly known
as effects coding, see Großmann and Schwabe (2015), for example. In effects coding, for one
factor at three levels, level 0 is coded as (1 0), level 1 is coded as (0 1) and level 2 is coded
as (−1 − 1); here, level 2 is the control level, and levels 0 and 1 are test levels.

The nth choice pair is denoted by Tn = (t(n1), t(n2)), with t(nj) is the jth option in the
nth choice pair, n = 1, . . . , N , j = 1, 2. Corresponding to the jth option in N choice sets,
Aj = (tT(1j) t

T
(2j) · · · tT(Nj))T is a N × k matrix representing the levels of the k attributes. Let

a N × 2k matrix Xj denote the effects coded matrix corresponding to Aj implying that 0, 1
and 2 in Aj is replaced by the vectors (1, 0), (0, 1) and (−1,−1), respectively, in Xj. Then,
the effects coded difference matrix for the first and second option is

X = X1 −X2. (1)

Let B be a 2k × 3k matrix such that the ith column of B corresponds to the effects
coding for the ith option, i = 1, . . . , 3k. It is assumed that the 3k options are arranged
lexicographically. For example, if k = 3, the 3rd column in B would correspond to the
effects coding corresponding to the option (002) which is (1 0 1 0 − 1 − 1), or that, the
7th column would correspond to option (020), that is, (1 0 − 1 − 1 1 0). The matrix B
has been called BE in Das and Singh (2020). For simplicity, we drop the subscript E in the
current work. This should not be confused with B used in Street and Burgess (2007), since,
the matrix B has traditionally corresponded to the orthonormal coding.

The inference problem studied in the current paper is Bτ which corresponds to the
situations where the primary interest lies in making test-control comparisons which means
that some new levels (called test levels) of factors are compared with an existing control
level for the same factor. From Das and Singh (2020), the average information matrix for
the inference problem Bτ is I(Bτ) = 1

4N
Md where

Md = (BBT )−1XTX(BBT )−1. (2)

Note that the word average here comes from using N in the definition of the information
matrix implying that the information considered here is per choice pair. Given the structure
of B, it is easy to see that (BBT )−1 = ( 1

3k )diag(V −1
1 , . . . , V −1

k ) where V −1
i = (3I2 − J2) for

all i = 1, . . . , k. For three-level factors, a choice design d is connected if all the test-control
contrasts are estimable, and this happens if and only if Md has rank 2k. In what follows, the



202 RAKHI SINGH, ASHISH DAS AND FENG-SHUN CHAI [Vol. 19, No. 1

class of all connected paired choice designs with k three-level factors and N choice pairs is
denoted by Dk,N . As stated before, we use the standard A-optimality criteria. The A-value
of a design d in Dk,N is 4Ntrace(M−1

d ). A design that minimizes the A-value among all
designs in Dk,N is said to be A-optimal.

3. Lower Bounds to the A-value

To find the lower bound to the A-value under the inference problem Bτ , we adopt the
same strategy as in Chai et al. (2017). We first find the lower bound of the A-value for
designs with only one factor, and then use the same to find a näıve bound to the A-value
when k factors are taken into consideration. Let the matrix X in (1) be partitioned as
(X(1)|X(2)| · · · |X(k)), where X(p) is a N × 2 matrix corresponding to the pth factor. Notice
that rows in X(p) determine the corresponding options in a design for the pth factor. In
X(p), rows (+2, +1), (−2, −1), (+1, +2), (−1, −2), (+1, −1) and (−1, +1) correspond to
choice pairs (0, 2), (2, 0), (1, 2), (2, 1), (0, 1) and (1, 0) respectively. Similarly, row (0, 0)
in X(p) could correspond to any of the three choice pairs (0, 0), (1, 1) or (2, 2).

Similarly, the matrix Md = (Mdpq) for a design d can also be partitioned into 2 × 2
blocks such that the block corresponding to the pth and qth factor is Mdpq = 1

32k (3I2 −
J2)XT

(p)X(q)(3I2 − J2); p = 1, . . . , k; q = 1, . . . , k. It can be shown that we always benefit by
not considering the pairs corresponding to the type (0, 0) in X(p) (for an explanation, see
Chai et al. (2017)). Also, note that (0, 0) in X(p) implies that the corresponding value for a
factor in both the options are same. Let y be the number of rows of X(p) that are equal to
either (2, 1) or (−2,−1) and z be the number of rows of X(p) that are equal to either (1, 2)
or (−1,−2). Then the remaining N − y − z (= x, say) rows of X(p) are necessarily equal to
either (1, −1) or (−1, 1). It can then be shown that for the pth factor,

Mdpp = 1
32(k−1)

[
N − z y + z −N

y + z −N N − y

]
= 1

32(k−1)Cdpp, (3)

where
Cdpp =

[
N − z y + z −N

y + z −N N − y

]
.

We need to obtain a lower bound to trace(M−1
dpp) = 32(k−1)trace(C−1

dpp), which is equiv-
alent to obtaining a lower bound to trace(C−1

dpp). The

trace(C−1
dpp) = (2N − y − z)/hN(y, z) = gN(y, z),

where
hN(y, z) = det(Cdpp) = yz +N(y + z)− (y + z)2.

Note that both hN(y, z) and gN(y, z) are symmetric in y and z. We now find the
values y and z for which gN(y, z) is minimized for 1 ≤ y + z ≤ N , y 6= N , z 6= N . These
conditions are required for every p so that the design d is connected, that is, rank(Md) = 2k.
We need these conditions because our eventual goal is to find a lower bound to the A-
value for a design with k factors. Let bxc denote the greatest integer contained in x. Let
La = mind∈D1,N

trace(C−1
dpp) = min1≤y+z≤N,y 6=N,z 6=NgN(y, z) = gN(a∗, b∗).



2021] THREE-LEVEL A-OPTIMAL DESIGNS FOR TEST-CONTROL DCE 203

Lemma 1: For the pth (p = 1, . . . , k) factor in design d ∈ D1,N with N > 3,

trace(C−1
dpp) = gN(y, z) ≥ gN(a∗, b∗)

where gN(a∗, b∗) = min{gN(a1, b1), gN(a2, b2), gN(a3, b3)} with

(i) a1 = b1 = t,

(ii) a2 = b2 = t+ 1,

(iii) a3 = t, b3 = t+ 1

and t = bN(3−
√

3)/3c.

Proof: The proof follows on similar lines as the proof of corresponding lemma in Chai et al.
(2017). Treating y and z as continuous variables and adopting the usual derivative approach
to minimize gN(y, z), we get ∂gN(y, z)/∂y = (2N(y+ z−N)− yz+ y(2N − y− z))/h2

N(y, z).
Similarly, ∂gN(y, z)/∂z = (2N(y + z −N)− yz + z(2N − y − z))/h2

N(y, z).

Now, ∂gN(y, z)/∂y = ∂gN(y, z)/∂z = 0 implies that (y − z)(2N − y − z) = 0. In other
words, y=z, since 2N − y − z > 0.

Now, for y = z, it follows that ∂gN(y, z)/∂y = 0 implies that 3y2 − 6Ny + 2N2=0 or
y = N(3±

√
3)/3. However, since y < N , the only feasible solution of y is N(3−

√
3)/3 = t1.

Similarly, checking the matrix of second derivatives, we see that the minimum of
gN(y, z) is attained at y = z = t1. Since t1 is non-integer, gN(y, z) = La at one of the
integer points nearest to (t1, t1).

Using Lemma 1, we have computed the values of a∗ and b∗ for 4 ≤ N ≤ 64 and
summarize it in Table 1. Also, note that since gN(y, z) is symmetric in y and z, interchanging
the values of a∗ and b∗ yield the same values of gN(a∗, b∗) and therefore from Table 1, we
could either say that y = a∗ and z = b∗ or that z = a∗ and y = b∗. The optimal value for x
can then be computed as N − y − z. Recall that we consider choice designs with y number
of rows of X(p) equal to either (2, 1) or (−2,−1), z number of rows equal to either (1, 2) or
(−1,−2), and the remaining x rows equal to either (1, −1) or (−1, 1).

Results in Table 1 are not surprising since we know that for block designs or for facto-
rial experiments, when test-control inference problem is of interest then unequal replication
of levels, often with control treatment being repeated more number of times than other
treatments, is common. Let LA = mind∈Dk,N

trace(M−1
d ). We now give a lower bound of LA

for paired choice designs with k factors in N choice pairs.

Theorem 1: For a paired choice design d ∈ Dk,N , trace(M−1
d ) ≥ LA ≥ k32(k−1)La =

k32(k−1)gN(a∗, b∗) where a∗ and b∗ are as in Lemma 1.

Proof: Similar to the proof of Theorem 2.1 in Chai et al. (2017), first we apply the in-
equality trace(M−1

d ) ≥ ∑k
p=1 trace(M−1

dpp) which, using Schur complement and the inverse of
partitioned matrices, follows easily for k = 2. For example, for k = 2, let the 2×2 partitioned
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Table 1: Values of a∗ and b∗ for 4 ≤ N ≤ 64 for Lemma 1

N a∗ b∗ N a∗ b∗ N a∗ b∗ N a∗ b∗ N a∗ b∗ N a∗ b∗

4 2 2 14 6 6 24 10 10 34 14 15 44 18 19 54 23 23
5 2 2 15 6 6 25 10 11 35 15 15 45 19 19 55 23 23
6 2 3 16 7 7 26 11 11 36 15 15 46 19 20 56 24 24
7 3 3 17 7 7 27 11 12 37 15 16 47 20 20 57 24 24
8 3 4 18 7 8 28 12 12 38 16 16 48 20 20 58 24 25
9 4 4 19 8 8 29 12 12 39 16 17 49 21 21 59 25 25
10 4 4 20 8 9 30 13 13 40 17 17 50 21 21 60 25 26
11 4 5 21 9 9 31 13 13 41 17 17 51 21 22 61 26 26
12 5 5 22 9 9 32 13 14 42 18 18 52 22 22 62 26 26
13 5 6 23 10 10 33 14 14 43 18 18 53 22 23 63 26 27

64 27 27

matrix M be M =
[
M11 M12
M21 M22

]
. Then

M−1 =
[

(M11 −M12M
−1
22 M21)−1 −M−1

11 M12(M22 −M21M
−1
11 M12)−1

−M−1
22 M21(M11 −M12M

−1
22 M21)−1 (M22 −M21M

−1
11 M12)−1

]
.

Since M12M
−1
22 M21 is non-negative definite, (M11 − M12M

−1
22 M21) ≤ M11 and therefore

(M11 − M12M
−1
22 M21)−1 ≥ M−1

11 . Similarly, (M22 − M21M
−1
11 M12)−1 ≥ M−1

22 . Therefore,
trace(M−1) = trace(M11 −M12M

−1
22 M21)−1 + trace(M22 −M21M

−1
11 M12)−1 ≥ trace(M−1

11 ) +
trace(M−1

22 ). Now, using the method of induction, one can see that the inequality holds for
a general k, that is, the trace(M−1) ≥ ∑t

p=1 trace(M−1
pp ). Finally, using Lemma 1, the proof

follows.

In the next section, we provide some A-optimal designs attaining the lower bounds
of Theorem 1. In some situations, since we are not able to provide designs attaining the
A-lower bounds, A-efficiencies are given.

4. Design Constructions

A design d ∈ Dk,N would be A-optimal under the test-control inference problem if
trace(M−1

d ) attains the bound obtained in Theorem 1. To attain this bound, the design
should not only have the values of a∗ and b∗, for each factor, as in Table 1 (or, Lemma 1) but
should also satisfy the orthogonality property, that is, the blocks Mdpq for p 6= q = 1, . . . , k
should be block matrices with all values equal to 0s. The closer these block matrices are
to zero matrices, the higher is the efficiency expected to be. This is a somewhat hard
combinatorial problem, less studied, and it is more difficult to deal with the problem as
compared to finding designs for other inference problems. For finding optimal designs, an
algorithm such as the one recently studied in case of factorial experiments (Chai and Das,
2020) would be more helpful. The A-efficiency of a design d ∈ D(k,N) is given by

φA =
mind0∈D(k,N)trace(M−1

d0 )
trace(M−1

d )
.
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It then follows from Theorem 1 that for d ∈ Dk,N

φA ≥
k32(k−1)gN(a∗, b∗)
trace(M−1

d )
. (4)

As an example, consider N = 9 and k = 2. Here, the optimal values for a∗ and b∗

are both equal to 4, and, from the result of complete search, we see that no design with
a∗ = b∗ = 4 for N = 9 achieves the bound in Theorem 1. One of the designs d9 with the
smallest A-value (= 282.8769) among the designs having a∗ = b∗ = 4 is provided below.
In fact, it is surprising to note that designs for a∗ = 3 and b∗ = 4 (or vice versa) while
satisfying the orthogonality condition have A-value (= 274.1538) which is smaller than d9.
This design is provided below as d+

9 . The bound from Theorem 1 (= k32(k−1)gN(a∗, b∗)) is
7.5, and, therefore, the bound for A-value is then 4N(7.5) = 270. Thus, the design d9 has
an A-efficiency of at least 0.9545 whereas d+

9 has an A-efficiency of at least 0.9848.

Similarly for N = 7, k = 2, no design with a∗ = b∗ = 3 achieves the bound in Theorem
1. Design d7 with the smallest A-value (= 279.7321) among the designs having a∗ = b∗ = 3
is provided below. The designs having either a∗ = 2, b∗ = 3 or vice versa for one factor and
a∗ = b∗ = 3 for another factor and additionally satisfying the orthogonality condition have
A-value (276.1500) which is smaller than d7. This design is also given below as d+

7 . The
bound from Theorem 1 is 9.6, and, therefore the bound for A-value is then 4N(9.6) = 268.8.
Thus, the design d7 has an A-efficiency of at least 0.9609 whereas d+

7 has an A-efficiency of
at least 0.9734.

d9 =



00, 22
01, 22
02, 11
02, 20
02, 21
10, 22
11, 20
12, 20
12, 21


, d+

9 =



00, 22
01, 10
01, 22
02, 11
02, 21
10, 22
11, 20
12, 20
12, 21


and d7 =



00, 22
01, 22
02, 11
02, 20
10, 22
11, 20
12, 21


, d+

7 =



00, 22
01, 22
02, 11
02, 20
10, 21
11, 20
12, 21



The designs obtained for N = 7 and N = 9 suggest that the lower bound in Theorem
1 is not tight. In fact, it suggests that orthogonality is somewhat more important than the
designs satisfying the property in Lemma 1 for every factor. For k = 2 and N = 4, 5, 6
and 8, A-optimal designs have been obtained using complete search and reported below as
d4, d5, d6, and d8, respectively. These designs satisfy the orthogonality property and satisfy
the values of a∗ and b∗ in Lemma 1 thereby attaining the optimal bound in Theorem 1.
In fact, the complete search result also shows that d+

7 and d+
9 have the smallest A-value

and are, therefore, A-optimal. Note that there exists more than one design with the same
A-values and only one of them is reported here. Besides, these complete searches are carried
out within the class of designs having distinct choice pairs since that is more desirable in
practice (Chai et al., 2017).
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d4 =


01, 22
02, 21
10, 22
12, 20

, d5 =


00, 22
01, 10
02, 21
11, 22
12, 20

, d6 =



00, 12
01, 20
02, 21
10, 22
11, 22
12, 21

 and d8 =



00, 22
01, 22
02, 11
02, 20
10, 21
11, 22
12, 20
12, 21


.

A Hadamard matrix Hm is a m × m matrix with elements ±1 such that HT
mHm =

HmH
T
m = mIm. Using the construction in Chai et al. (2017) and designs reported above,

called base designs, we now find designs with larger numbers of factors k and N ≥ 8.
Consider a base design d0 ∈ Dk0,N0 with the trace (M−1

d0 ) = k032(k0−1)gN0(a0, b0). Using d0,
a paired choice design dH with parameters k = mk0, N = mN0 is constructed with the
corresponding design matrix XH = Hm ⊗ X, where X is the design matrix of d0. This
method of construction obtains a final design by performing Kronecker product of the small
design with a Hadamard matrix. To find the A-value of design dH , we first note that

XT
HXH = HT

mHm ⊗XTX = mIm ⊗XTX.

Then, from (2), we have

MdH
= 1

32k
diag(V −1

1 , . . . , V −1
k )(mIm ⊗XTX)diag(V −1

1 , . . . , V −1
k )

= 1
32mk0

diag(V −1
1 , . . . , V −1

k )(mIm ⊗XTX)diag(V −1
1 , . . . , V −1

k ) (5)

= m

32k0(m−1) Im ⊗Md0 .

Therefore, trace(M−1
dH

) = 32k0(m−1)trace(M−1
d0 ), and the A-efficiency of dH is given by

φA ≥
k32(k−1)gN(a∗, b∗)

32k0(m−1)trace(M−1
d0 )

= k32(k0−1)gN(a∗, b∗)
trace(M−1

d0 )
= φ∗A, (6)

where d0 is a base design in Dk0,N0 and a∗ and b∗ are as in Theorem 1 for a design with N runs
and k factors. In Table 2, for N ≥ 4 and k ≥ 2, we provide A-optimal and A-efficient designs
with efficiency bounds as in (6), and the corresponding methods of constructions. One of
the designs with k = 4 and N = 10 is A-optimal. We denote designs dH obtained using the
Hadamard matrix Hm and a base design dN0 by Hm⊗dN0 . A design with a smaller k retains
its optimality property for given N when factors are deleted from a design with larger k. As
is expected, designs that are obtained using d+

7 and d+
9 are better (higher efficiency) than the

designs obtained using d7 and d9. Note that the A-efficiencies of designs reported in Table 2
could actually be higher than the reported lower bounds.

We have obtained optimality bounds for the test-control inference problem for DCEs.
From Table 2, we see that the designs obtained for k ≥ 2 are highly efficient. It is worth
observing that corresponding designs obtained in Chai et al. (2017) are less efficient as
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Table 2: A-optimal/efficient designs with distinct choice pairs (N ≥ 4 and k ≥ 2)

k N φ∗A Method k N φ∗A Method k N φ∗A Method
2 4 1 d4 4 14 0.9609 H2 ⊗ d7 8 36 0.9502 H4 ⊗ d9
2 5 1 d5 4 14 0.9734 H2 ⊗ d+

7 8 36 0.9805 H4 ⊗ d+
9

2 6 1 d6 4 16 0.987 H2 ⊗ d8 16 32 0.9338 H8 ⊗ d4
2 7 0.9609 d7 4 18 0.9526 H2 ⊗ d9 16 40 0.9953 H8 ⊗ d5
2 7 0.9734 d+

7 4 18 0.9829 H2 ⊗ d+
9 16 48 0.9778 H8 ⊗ d6

2 8 1 d8 8 16 0.9351 H4 ⊗ d4 16 56 0.9609 H8 ⊗ d7
2 9 0.9545 d9 8 20 0.9973 H4 ⊗ d5 16 56 0.9734 H8 ⊗ d+

7
2 9 0.9848 d+

9 8 24 0.9778 H4 ⊗ d6 16 64 0.9849 H8 ⊗ d8
4 8 0.9474 H2 ⊗ d4 8 28 0.9609 H4 ⊗ d7 16 72 0.9501 H8 ⊗ d9
4 10 1 H2 ⊗ d5 8 28 0.9734 H4 ⊗ d+

7 16 72 0.9803 H8 ⊗ d+
9

4 12 0.9778 H2 ⊗ d6 8 32 0.9856 H4 ⊗ d8

compared to the designs reported in Table 2 under the current test-control inference problem.
For example, the design for k = 2, N = 4 reported in Chai et al. (2017) (given below for
convenience) is shown to be both A- and D-optimal under the traditional inference problem
of pairwise comparisons, but it is only 83% efficient under the current test-control inference
problem.

Design for k = 4 in Chai et al. (2017) is


20, 01
21, 10
12, 00
02, 11

. Note that this design has

with a = b = 1, whereas the optimal design for test-control inference problem should have
a∗ = b∗ = 2 from Table 1.
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Abstract 
 

Multiple testing, which refers to testing of more than one hypothesis in an experiment, is 
routinely performed in statistical analysis of genome-wide data, such as testing the association 
of single-nucleotide polymorphisms (SNPs) with a particular phenotype. A common practice 
is application of multiple-testing correction methods to exclude candidate SNPs that could 
otherwise be spuriously marked as statistically significant. However, in many cases such 
methods are overly conservative and often result in no significant SNPs at all. In this paper, we 
summarize commonly used multiple-testing correction procedures and Monte Carlo 
simulation-based methods. We propose a simple modification to subsampling-based simulation 
method to estimate empirical p-values by borrowing the principles of stratified sampling. Using 
real datasets from the cancer genome atlas (TCGA) data repository, we demonstrate that the 
traditional multiple testing correction methods yielded almost none or very few significant risks 
associated SNPs, whereas the proposed stratified subsampling successfully resulted in 
appropriate number of significant candidate SNPs. We also show that the proposed 
modification has provided meaningful p-values and made the test more powerful as compared 
to simple subsampling without stratification.  
 
Key words: Multiple comparison test; Subsampling; Stratified sampling; p-value. 

 
1. Introduction 

With the exponential growth of the omics data, computational analysis of large datasets 
has become commonplace in the study of human biology and disease. The sampled subjects, 
on which the data is collected, usually differ by sex, race, age and ethnicity, leading to 
heterogeneous data. The research presented here is motivated by statistical analyses of such 
genome-scale data, e.g., The Cancer Genome Consortium Data (Ding et. al., 2018), involving 
multiple comparisons of thousands of genomic features between heterogeneous populations. 
While human genome sequences are mostly identical between different individuals, a small 
number of genetic differences exist that result in the striking phenotypic variation observed 
among individuals. Studying the association between genetic and phenotypic variation and 
identification of disease associated genetic variants and their prevalence across different 
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populations have been the subjects of numerous genome projects since the publication of the 
human genome (Lander et. al., 2001; Landrum et. al., 2018).  

 
The most common genetic variation is single nucleotide polymorphism (SNP), which 

roughly occur every 1200 base pairs in comparisons of a pair of human chromosomes. For 
example, dbSNP database provides a general catalog of SNPs that are characterized according 
to frequency, distribution among populations and functional genomic regions, potential 
functional consequences, inferred mutation pattern, linkage, and organization within each 
chromosome in each individual (haplotype) (Sherry et. al., 2001; Neykov et. al., 2019).  These 
SNPs can help discern small differences both within a population and among different 
populations, leading to the identification of population based risk genetic variants for common 
and complex diseases. 

 
Motivating Example: Cancer is a complex genetic disease with significant 

heterogeneity across patients. Molecular understanding of tumor heterogeneity is key to 
effective cancer treatment and personalized medicine. High-grade serous ovarian carcinoma 
(HGSOC) accounts for 70 to 80 percent of ovarian cancer deaths, with little improvement in 
overall survival in recent years (Siegel et. al., 2016). The standard therapy for HGSOC includes 
maximal cytoreductive surgery followed by platinum and taxane chemotherapy. While the 
majority of HGSOC patients respond to initial treatment, most tumors recur and become 
increasingly resistant to chemotherapy, with an overall 5-year survival rate of approximately 
30 percent (Reid et. al., 2017).  As a heterogeneous disease, understanding how genetic 
differences in individuals contribute to their cancer susceptibility and response to therapy can 
help guide medical practitioners to give the best advice to achieve a favorable outcome for the 
patient. As genome technologies evolve, genotyping of individuals could be available to all 
patients using a simple saliva test. Large-scale genome-wide association studies and meta 
analyses have provided powerful insights into SNPs that may be predictive of disease and an 
individual's length of survival (or response to therapy). For example, The Cancer Genome Atlas 
(TCGA) data portal (https://portal.gdc.cancer.gov) provides multiple layers of -omics data (e.g. 
gene expression, methylation, SNPs) along with clinical/phenotypic information (e.g. cancer 
stage, survival information, drugs/treatment information) for more than 1500 ovarian cancer 
patients (Cancer Genome Atlas Research, 2011; GTExProject, 2017). These data provide an 
unprecedented opportunity for exploratory data analysis to identify SNPs that are associated 
with cancer, survival status and response therapy. It is expected that the catalogue of such SNPs 
will provide the foundation for tailored detection, prevention and treatment of diseases leading 
to the era of personalized cancer medicine (Dayem Ullah et. al., 2018). One common goal in 
large genome-wide experiments is to identify the genomic markers (e.g. genes or SNPs) that 
are significantly different between different populations or associated with a response or 
covariate of interest. The response could be censored survival time or other clinical outcomes, 
the covariates could be either categorical (e.g. treatment/control status, cancer subtype) or 
continuous (e.g. dose of a drug).  

 
In the above example of ovarian cancer data, our main goal is to identify the SNPs that 

are associated with patient survival. Log rank test is the most widely used test for testing the 
equality of survival distributions between different patient populations. However, a major 
challenge in the analysis and interpretation of such large-scale genome studies is the 
simultaneous handling of multiple comparisons, where a large number of genes or SNPs (or 
null hypotheses) are simultaneously tested. For example, let us suppose that an experiment 
involves 100 SNPs to be tested, each with a Type 1 error probability of 0.05, assuming the null 
hypothesis is true for each SNP the expected number of false significant SNPs is equal to 5. 
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Moreover, if all tests are mutually independent, then the probability that at least one true null 
hypothesis will be rejected is given by 1–0.95100 = 0.994. Therefore, in any large genome-wide 
study involving large number of SNPs (usually more than a million), any truly significant calls 
will be accompanied by correspondingly large number of false findings. 
 
2. Multiple-Testing Correction Methods 
 

Multiple-testing correction methods adjust the significance level for each test to a value 
𝛼 such that the overall type I error for the study (the probability of rejecting a correct null 
hypothesis in at least one of the tests) will not exceed a predetermined acceptable level, often 
set to 0.05. Widely accepted approaches to deal with the multiple-testing problem control either 
the family wise error rate (FWER), which is the probability of at least one false rejection 
(Hochberg and Tamhane, 1987), or the false discovery rate (FDR), which is the expected 
proportion of falsely rejected null hypotheses (Reiner et. al., 2003; Benjamini and Yekutieli, 
2005). 

 
For example, Bonferroni correction, which controls FWER, for testing the SNPs that are 

associated with survival, is performed as 
 
(i)   Compute p-values using log rank test. 
(ii) Reject the null hypothesis for 𝑝! ≤

"
#
. 

 
where m is the total number of comparisons/tests we are performing, or total number of 
hypotheses.  
 

Similarly, Benjamini-Hochberg (BH) correction, which controls FDR, is performed by 
following step-wise procedure.  

 
(i) Sort the p-values in increasing order. 
(ii) For a given α, find the largest l such that 𝑝! ≤

!
#
𝛼, where m is again the total 

number of hypotheses to be tested, and l is the rank of SNPs. 
(iii) Reject the null hypotheses for all H(m), m=1, 2, …, l. 

 
 

Resampling-based multiple-testing correction methods: Resampling-based multiple testing 
procedures are widely used in genome data analysis, especially when the sample size is small 
or the distribution of test statistic does not follow normality assumption or is unknown. 
Resampling-based multiple testing procedures can account for dependent structures among p-
values or test statistics, resulting in lower type II errors. The commonly used resampling 
techniques include permutation tests and bootstrap methods. 
 

In permutation tests, the distribution of the test statistics is constructed by calculating all 
possible values or a sufficiently large number of test statistics (usually 1000 or above) from 
permuted sampling observations under the null hypothesis. Permutation tests are distribution-
free, which can provide exact p-values even when sample size is small. Bootstrap method finds 
an approximate distribution of the test statistic by taking many repeated samples with 
replacement from one random sample (Efron and Tibshirani, 1994). The bootstrap method 
provides an asymptotically unbiased estimator for the variance of a sample median and for 
error rates in a linear discrimination problem outperforming cross-validation (Efron, 1979). 
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The p-values obtained by the bootstrap method are less exact than p-values computed from the 
permutation method, and the bootstrap estimated p-values are asymptotically convergent to the 
true p-values (Pollard and van der Laan, 2004). Please refer (Farcomeni, 2008) for a review of 
multiple hypothesis testing procedures and applications in the analysis of DNA microarray 
data.  

 
Subsampling-based multiple-testing correction methods: Subsampling procedure is 
different from resampling technique. While resampling scheme generates multiple samples (of 
size equal to the original sample size) by choosing the observations from the sample with 
replacement, subsampling scheme selects the observations from the sample without 
replacement. Statistical inference based on the samples of fixed size in resampling but in case 
of subsampling scheme, the inference is drawn on the samples of smaller size than fixed sample 
size. The samples are drawn in resampling technique by using simple random sampling with 
replacement (SRSWR), whereas in subsampling the samples are drawn by simple random 
sampling without replacement (SRSWOR). Subsampling (or Two stage sampling) at few 
places in the literature should not be confused with subsampling defined by (Politis and 
Romano, 1993). Technically, while two-stage sampling is a two-stage-sampling scheme, 
subsampling is resampling method without replacement by selecting a smaller size subsamples 
from the original sample. For example, (Nigam and Rao, 1996) constructed second order 
balanced designs when sample size (n) is a composite and prime number, and extended the 
results to stratified multistage samples and provided inferential procedures on balanced 
bootstrap for stratified multistage samples.  

 
The distribution of Studentized statistic was estimated by subsampling by (Politis and 

Romano, 1993). They constructed confidence regions by approximating the sampling 
distribution of a statistic based on the values of the statistic computed over small subsets of the 
data, and showed their method works well under weak assumptions (Politis and Romano, 
1994). In the subsequent publications, they approximated the sampling distribution of a statistic 
based on the values of the statistic computed over small subsets of the data, and illustrated its 
application on time series data (Politis and Romano, 1996). Their book provides some of the 
foundation for subsampling methodology and related methods (Politis et. al., 1999).  Further, 
the asymptotic theory of subsampling was discussed in (Politis et. al., 2001), and K-sample 
subsampling for iid observations and time series data were discussed by (Politis and Romano, 
2008). In a later publication, they constructed the confidence intervals and p-values for the tests 
based on subsampling by shortening the number of iterations (Berg et. al., 2010). They showed 
that the new p-values were asymptotically uniform under the null hypothesis and converged to 
zero under alternative hypothesis, leading to improved power of the test and meaningful p-
values. 

 
The application of subsampling methods for assessing the significance of observations 

in large-scale genome studies was discussed in (Bickel et. al., 2010). Recently, a subsampling 
without replacement-based normalization scheme was employed for identification of 
differentially expression that accounted for the hierarchy and amplitude of effect sizes within 
samples (Mohorianu et. al., 2017). Xavier et al. (Xavier et. al., 2017) proposed the use 
of subsampling bootstrap Markov chain in genomic prediction. The proposed method consists 
of fitting whole-genome regression models by subsampling observations in each round of a 
Markov Chain Monte Carlo. Further, the subsampling based approach was effectively used for 
determining appropriate sequencing depth trough efficient read subsampling of RNA-seq data 
(Robinson and Storey, 2014). 
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In this paper, we propose a modification to the subsampling scheme, by performing 
stratified sampling without replacement. Because of the complex and heterogeneous nature of 
disease population (cancer patients in the current study), there is a need to account for the 
heterogeneity; such as race, living status, cancer type etc. Using a real example of TCGA 
ovarian and brain cancer data, we demonstrate that dividing the heterogeneous data into strata 
and then applying subsampling approach leads to more meaningful empirical p-values for log 
rank test. We also show that traditional multiple testing correction methods seem to be too strict 
for studies on a genomics scale, whereas the proposed stratified subsampling approach can 
successfully result in appropriate number of significant observations. In the following section, 
we begin by introducing the basic principle of stratified subsampling. 
 
3. Stratified Subsampling 
 

In stratified subsampling, instead of drawing a subsample of size b<<n, we first partition 
the sample into non-overlapping groups, and then subsamples without replacement are drawn 
within each stratum as explained below. Strata are non-overlapping and homogeneous with 
respect to the characteristic under study. For example, in a survival analysis study based on 
genome sequencing data from cancer patients, the sample usually consists of both living 
patients and diseased, usually with varying proportions. If subsamples are drawn without 
accounting for this heterogeneity, the subsamples may disproportionately consist of one group 
versus the other, therefore, leading to spurious p-values. Here, we propose an approach to 
statistical significance in the analysis of genome-wide data sets, based on the concept of 
stratified sub-sampling p-values. 
 
Procedure of stratified subsampling: 
1. Divide the sample of N units into k strata. Let the ith stratum have ni, i=1,2, …,  k, number 

of units, such that 𝑁 = ∑ 𝑛$%
$&'  . 

2. Draw a subsample of size bi from sample of size ni from ith stratum using SRSWOR. 
3. All the subsampling units drawn from each stratum will constitute a stratified sample of 

size b. 
 
Let us define the following symbols as  
k:  Number of strata 
ni: Numbers of sampling units to be drawn from ith stratum  
bi: Number of subsampling units to be drawn from ith stratum  
𝑛 = ∑ 𝑛$%

$&' : Total sample size 
𝑏 = ∑ 𝑏$%

$&' : Total subsample size. 
 
Let xn = (X1, X2, …, Xn) be a sample of n independent and identically distributed (iid) random 
variables taking values in an arbitrary sample space S with unknown probability distribution P. 
P belongs to a class of distributions H which may be parametric, nonparametric or 
semiparametric. The idea is to approximate the sampling distribution of a statistic based on the 
values of the statistic computed over smaller subsets of the data.   
 
Let t(P) be the parameter and its estimator (or statistic) is given by  
 

𝑡( = 𝑓(𝑋',  𝑋),   . . . ,  𝑋(). 
 

Then the sampling distribution of the statistic is given by 
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𝐽((𝑥, 𝑃) = 𝑃{𝜏([(𝑡( − 𝑡(𝑝)) ≤ 𝑥]}, 
 

where 𝜏( is a normalizing sequence. 
 

The fundamental idea behind subsampling is that 𝐽((𝑥, 𝑃) can be accurately 
approximated by the normalized distribution of the same estimator calculated on appropriately 
data chosen subsets of data of size b (b<<n).   
 
Let the statistic calculated on the ith subset of size b is denoted by  
 

𝑡(,+,$ = 𝑡+(𝑋$', 𝑋$), . . . , 𝑋$+). 
 

Let 𝑁( = :𝑛𝑏; be the total number of available subsets of the data of size b. In this case, the ith 
subsample is constructed by sampling without replacement from iid data with purpose of 
forming a subsample of size b.  
 
The subsampling estimator of 𝐽((𝑥, 𝑃) is defined as follows 

𝐿(,+(𝑥) =
1
𝑁(

>𝐼[𝜏+(𝑡(,+,$ − 𝑡() ≤ 𝑥]
,!

$&'

 

where I is the indicator function. Under general conditions  

𝑁( → ∞, 𝑏 → ∞,   
𝑏%

𝑛 → 0 

and for the appropriate values of k and 𝜏( is such that -"
-!
	→ 0 whenever +

(
→ 0.  Politis and 

Romano (1994) showed that  
𝐿(,+(𝑥) − 𝐽((𝑥, 𝑃) →

.
0. 

 
Let the hypotheses for testing the parameter be  

𝐻/: 𝑡(𝑃) = 𝜃/,      𝑃 ∈ 𝑃/ 
𝐻': 𝑡(𝑃) > 𝜃/,      𝑃 ∈ 𝑃' 

The sampling distribution of the statistic under null hypothesis is given by   
 

𝐽((𝑥, 𝑃/) = 𝑃[𝜏((𝑡( − 𝜃/) ≤ 𝑥] 
 

and its subsampling estimator is given by  
 

𝐿(,+(𝑥, 𝑃/) =
'
,!
∑ 𝐼[𝜏+(𝑡(,+,$ − 𝜃/) ≤ 𝑥],!
$&' . 

 
Politis et al. (1999) gave the proof of the consistency of the test. The test rejects H0 when 

												
1
𝑁(

>𝐼[𝜏((𝑡( − 𝜃/) ≥ 𝜏+(𝑡(,+,$ − 𝜃/)]
,!

$&'

> 1 − 𝛼 

1
𝑁(

>𝐼[𝑇( ≥ 𝑇(,+,$]
,!

$&'

> 1 − 𝛼 

Under null hypothesis, the subsampled distribution of Tn,b,I approximates the sampling 
distribution of Tn . 
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Stratified subsampling and Log rank test: Log rank test is the most widely used test for 
testing the equality of survival distributions. Let 
 
Y: Time until an event occurs where event is death of person 
T: Failure time with distribution function F(x) and probability density function f(x) 
C: Censoring time with distribution function G(x) and probability density function 
 

∆= 𝑚𝑖𝑛( 𝑇, 𝐶) = N1,       𝑇 ≤ 𝐶
0,     	 𝑇 > 𝐶  

 
Survival function is defined as the probability that a person will survive beyond a time t. It is 
defined as  

𝑆(𝑡) = 𝑃(𝑌 > 𝑡) = Q 𝑓(𝑥)𝑑𝑥 = 1 − 𝐹(𝑡),
0

1
								0 < 𝑡 < ∞. 

 
Consider the following q×2 table classifying those with and without the event of interest  
 
Group Event Total 

Dead at time Ti Alive at time Ti 
0 D0i N0(Ti)– D0i N0(Ti) 
1 D1i N1(Ti) – D1i N1(Ti) 
2 D2i N2(Ti) – D2i N2(Ti) 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
q Dqi Nq(Ti) – Dqi Nq(Ti) 

Total  Di N(Ti) – Di N(Ti) 

 
where T1, …, Ti, …, Tk are distinct failure times 
Ng(Ti): Number of persons in group g at risk at Ti 
Dgi: Number of persons in group g who fail at Ti, g = 0,1, 2, …, q, i = 1, 2, …, k. 
 
Dgi follows hypergeometric distribution.  
 
The hypotheses for testing the survival functions of different groups are given as  
 

										𝐻/: 𝑆/(𝑡) = 𝑆'(𝑡) = ⋯ = 𝑆2(𝑡) 
 

										𝐻':		Two or more Survival functions are different from others. 
 
The log rank test statistic for testing the above hypotheses is defined as  
 

𝜒 =
∑ (𝑂$ − 𝐸$)%
$&'

Z∑ 𝑉$%
$&'

 

 
where Oi: Observed number of failures, Ei: Expected number of failures, Vi: Variance of 
observed number of failures. Under 𝐻/, 𝜒 (or 𝜒)) follows standard normal (or chi-square) 
distribution approximately. This approximation is generally used to obtain an approximate test 
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for 𝐻/ by comparing the observed value of 𝜒 (or 𝜒)) to the tail area of the standard normal (or 
chi-square) distribution.  
 
Empirical p-values based on Monte Carlo simulations: Monte Carlo simulations are 
routinely applied in permutation and resampling based methods to estimate the p-values.  
Suppose 𝜒3+4)  is the observed Chi-squared test-statistic value for a given random sample from 
log rank test. In Monte Carlo simulations, independent random datasets are generated using 
pseudo-random number either by resampling or subsampling methods.  Assuming m such data 
sets are simulated under the null hypothesis, each yielding a distinct test statistic 𝜒4$#) , the ideal 
p-value is	𝑝0 = 𝑃(𝜒4$#) > 	𝜒3+5) ). However, 	𝑝0 is unknown, because generating infinite 
number of datasets is not possible and only a finite number (m) of datasets are available.  Let 
B be the number of times out of m that 𝜒4$#) > 𝜒3+4) . It was previously shown that the unbiased 
estimator �̂�0 = 𝐵/𝑚 leads to an invalid test that does not correctly control the type I error rate 
at the required level (Phipson and Smyth, 2010), therefore, computing the tail probability 
directly for the Monte Carlo results was suggested as a valid approach. Therefore, in a 
randomization test, the test statistic is B rather than 𝜒3+4) , and the required tail probability is 
P(B ≤ b). It was shown by (Phipson and Smyth, 2010) that, under the null hypothesis, the 
marginal distribution of B over all possible data sets is discrete uniform on the integers from 0, 
…, m, and the exact Monte Carlo p-value is estimated as 

𝑃6 = 𝑃(𝐵 ≤ 𝑏) = 	 +7'
#7'

. 
 
While this is not an unbiased estimator, the amount of positive bias is just enough to allow for 
the uncertainty of estimation and to produce a test with the correct size. For further details 
about this p-value calculation, please refer (Edgington and Onghena, 2007; Phipson and Smyth, 
2010).  
 
4. Application on real-life datasets 

 
In order to compare our stratified subsampling scheme with other multiple testing correction 
methods, we have applied our method on two real-life datasets: SNP array data of TCGA 
ovarian cancer (OV, 570 patients, 580,886 SNPs) and low-grade glioma (LGG, 505 patients, 
251,258 SNPs). Each patient has three potential genotypes: AA (reference), Aa (heterozygous) 
and aa (alternative), for each SNP. We associated their survival functions with the genotypes 
and used log rank test to determine the statistical significance of the overall survival difference 
between 3 genotypes. For each genotype, we further stratified on the vital status of the patient, 
and drew random subsamples with different number of subsampling percentage (60%, 70%, 
80%) for n = 500 and 1,000 iterations. We then compared our stratified subsampling scheme 
with other methods for multiple testing correction, including Bonferroni and Benjamini-
Hochberg procedures, Bootstrapping method, as well as subsampling scheme without 
stratification, by plotting an empirical distribution of 𝜒)-statistic from log rank test. 
Specifically, we compared the χ12, …, χm2, …, χn2 with the χ02 obtained using the original un-
permuted sample, and computed the empirical p-value based on the Monte Carlo empirical p-
value formula below (and introduced in previous section): 

𝑃8#9 =	
:7'
;7'

, 

where r is the total number of iterations that χm2 > χ02.   
 
Table 1 shows the comparison of number of significant SNPs declared at different 

thresholds for OV and LGG respectively.  
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Table 1: Number of significant SNPs for different α 
 

Method Ovarian (OV) Brain (LGG) 
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 

Single Sample Logrank 
test 8,228 35,257 66,855 5,275 18,917 33,645 

Multiple comparison-
Bonferroni Correction 1 2 2 4 4 8 

Multiple comparison-
Benjamini Hochberg 
Correction 

2 2 12 4 67 234 

Bootstrapping 0 0 0 0 0 0 
Stratified Subsampling 
with size 60% (500 
iterations) 

2 542 5,943 44 2,164 11,872 

Stratified Subsampling 
with size 70% (500 
iterations) 

0 46 1,396 4 630 5,298 

Stratified Subsampling 
with size 80% (500 
iterations) 

0 1 107 0 71 1,022 

 
Table 1 shows that traditional multiple testing correction methods, including Bonferroni and 
Benjamini-Hochberg procedures, as well as resampling-based method (Bootstrapping), all did 
not control number of significant findings to an appropriate level as they appear to be too 
stringent on a genomics scale, where hundreds of thousands of tests are performed 
simultaneously. This fact is more apparent when we compare across ovarian cancer (total 
580,886 SNPs) and glioma (total 251,258 SNPs), where less SNPs results in more significant 
candidates after multiple testing correction due to the less total number of tests performed in 
LGG. Compare with the methods above, stratified subsampling provided more candidates at 
different levels, across the two datasets. Moreover, decrease of subsampling percentage seems 
to be able to provide additional relaxation, allowing number of candidates to be controlled by 
adjusting the subsampling parameters. 
 

It is also noteworthy that bootstrapping gives no significant candidates in our case no 
matter what cutoff we chose. To potentially elucidate why this happens, as well as why a larger 
subsample size results in smaller number of significant candidates, we plotted the estimated 
sampling distributions in these cases for the particular SNP with lowest p-value from single 
log rank test (rs10824799 for OV, rs7754576 for LGG), with increased number (10,000) of 
iterations (Figures 1 and 2).  
 

Table 2 shows that for both OV and LGG random subsampling tends to give less 
significant candidates as compared to stratified subsampling, indicating that it may again be 
too strict. Moreover, the random subsampling returns similar number of candidates as 
Benjamini-Hochberg approach in both cases. Since there is much more computation associated 
with subsampling approach compared to traditional multiple testing correction methods, 
applying simple random subsampling does not seem to offer any advantage. We can see from 
the examples and comparison that stratification can best capture the heterogeneity within the 
sample while not being too stringent. In this example, the number of strata is 2, with 
stratification based on living status – dead or living. However, the stratification and number of 
strata can be modified depending on other attributes, such as, race, ethnicity, sex, etc., provided 
such information is available and the sample size is large enough to yield desired power. 
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Table 2: Number of significant SNPs for different α 
 

Subsampling 
percentage 

Ovarian (OV) Brain (LGG) 
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 

60% (random) 0 19 666 0 28 438 
70% (random) 0 1 75 1 2 72 
80% (random) 0 0 2 0 1 2 
60% (stratified) 2 542 5,943 44 2,164 11,872 
70% (stratified) 0 46 1,396 4 630 5,298 
80% (stratified) 0 1 107 0 71 1,022 

 
 

 

 
Figure 1: Distribution of simulated test-statistic (𝝌𝒔𝒊𝒎𝟐 ) based on stratified subsampling 
with 60% (top left), 70% (top right), 80% (bottom left) and bootstrapping (bottom right) 
with 10,000 iterations for OV. Black line indicates the actual test statistic value on the 
overall sample (𝝌𝒐𝒃𝒔𝟐 ). 
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Figure 2: Distribution of simulated test-statistic (𝝌𝒔𝒊𝒎𝟐 ) based on stratified subsampling 
with 60% (top left), 70% (top right), 80% (bottom left) and bootstrapping (bottom right) 
with 10,000 iterations for LGG. Black line indicates the actual test statistic value on the 
overall sample (𝝌𝒐𝒃𝒔𝟐 ). 
 
5. Conclusions 
 

In this paper, we introduced the concept of stratified subsampling for constructing p-
values for hypothesis tests in genomics research and showed that it can effectively handle the 
problem of multiple testing while not being too conservative. While the stratified subsampling 
based empirical p-values are proposed for the log rank test, the method can be generalized for 
any other statistical test. The proposed modification can be applied in case of heterogeneous 
data and when subsampling is performed to construct the p-values.  

 
Based on the empirical evaluation, we found that the simple random subsampling 

returned much less significant SNPs than stratified subsampling, suggesting that the simple 
random subsampling is also too stringent, and considering the computational burden, 
subsampling based p-values (without stratification) do not have advantages over traditional 
multiple testing correction (e.g. BH, Bonferroni), as they similarly returned very few 
candidates. We are currently working on theoretical aspects of constructing the confidence 
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intervals and p-values based on the stratified subsampling procedure proposed here. In 
addition, further work is needed to derive and evaluate the asymptotic properties of the 
proposed test-statistic under the null and alternative hypotheses. 
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Abstract
Optimal two-treatment, p period crossover designs for binary responses are determined.

The optimal designs are obtained by minimizing the variance of the treatment contrast
estimator over all possible allocations of n subjects to 2p possible treatment sequences. An
appropriate logistic regression model is postulated and the within subject covariances are
modeled through a working correlation matrix. The marginal mean of the binary responses
are fitted using generalized estimating equations. The efficiencies of some crossover designs
for p = 2, 3, 4 periods are calculated. An equivalence theorem is provided to verify optimality
of numerically obtained locally optimal designs.

Key words: Binary response; Generalized estimating equations; Logistic regression; Effi-
ciency.
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1. Introduction

In crossover trials, every experimental unit receives a sequence of treatments over
different time periods. For the real life applications of crossover trials see e.g., Jones and
Kenward (2014) and Senn (2003). The problem of determining optimal designs for crossover
trials has been studied quite extensively in recent years and we refer to Bose and Dey (2009)
for a review of results on optimal crossover designs. However, most of the available results
on optimal crossover designs relate to situations where the response variable is continuous
(see Kershner and Federer (1981), Laska and Meisner (1985), Matthews (1987) and Carriere
and Huang (2000) and the references therein). In clinical or pharmaceutical research, the
outcome of interest is often binary in nature. While methods for analyzing binary data
arising from crossover trials are available in Jones and Kenward (2014) and Senn (2003),
the question of designing such studies in an optimal manner does not seem to have been
addressed much in the literature. Waterhouse et al. (2006) considered crossover designs for
binary response, where the treatments were taken to be continuous in nature and no period
effects were considered in the model. Singh and Mukhopadhyay (2016) proposed optimal
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crossover Bayesian designs for the generalized linear models (GLMs). One of their case
study was based on a four periods (p = 4) binary crossover design for four periods. Recently,
Singh et al. (2020) proposed min–max crossover designs for the GLMs. Following the
methodology proposed in Singh and Mukhopadhyay (2016), Jankar et al. (2020) proposed
locally D-optimal designs for the GLMs. In comparison aforementioned references, the
present article discusses the binary crossover design in greater details for p = 2, 3, 4 periods
and two treatments. We discuss optimal designs for binary responses in a logistic regression
framework.

Since the main interest lies in the estimation of the treatment effect, the designs pro-
posed, minimize the variance of the estimator associated with the treatment effect. For a
binary logistic model, the variance of the treatment effect estimator depends on the model pa-
rameters, to address the issue of parameter dependence, various intervals of model parameter
are assumed and a subset of parameter values are selected from these intervals. In crossover
studies the response at the current time period may have the effect of the treatment from
the previous time period. This effect is refer to as the ”carryover effect”. Often the interest
lies in estimating the carryover effect. Optimal crossover designs to estimate the carryover
effect for the normal response are discussed in Laska and Meisner (1985) and Gondaliya and
Divecha (2015). In our setting assuming that the carryover effect of a treatment lasts only
to the next succeeding period, optimal designs for estimating the carryover effect are also
discussed. A population average approach is utilized for the estimation of the model pa-
rameters. In this approach we treat the subject effects as a nuisance parameter and use the
generalized estimating equations of Liang and Zeger (1986) to estimate the marginal means.
The observations from each subject over different time points are assumed to be mutually
correlated while the observations from different subjects are uncorrelated. The correlation
between observations within subjects are modeled using a “working correlation structure”.
We study the effect of three working correlation structures, uncorrelated, equi-correlated and
autoregressive (AR) on the designs chosen. The rest of the article is organised as foloows. In
Section 2, we define the crossover logistic model for a binary response and discuss the estima-
tion of the crossover model using generalized estimating equations. In Section 3, results on
optimal two-treatment designs for 2, 3 and 4 periods are given. The optimally of numerically
obtained locally optimal designs is verified using an equivalence theorem given in Section 3.5.

2. The Model and Estimation

Consider a crossover trial involving t treatments, n subjects and p periods. Suppose
the response obtained from the jth subject is Yj = (Y1j, . . . , Ypj)′, where a prime denotes
transposition. Instead of specifying a joint distribution of the repeated measurements we
use a working GLM to describe the marginal distribution of Yij as (Liang and Zeger, 1986)

f(yij) = exp[{yijφij − b(φij) + c(yij)}ψ].

For a binary random variable Yij, φij = log µij
1− µij

, b(φij) = log[1 + exp{φij}], c(yij) = 0,

and the scale parameter ψ is 1 (Robinson and Khuri, 2003). The mean of Yij is µij and
variance µij(1− µij).
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In a crossover setup, we model the marginal mean µij using the population-average
model

logit(µij) = ηij = µ+ βi + τd(i,j) + ρd(i−1,j); i = 1 . . . , p, j = 1, . . . , n, (1)

where µ is the overall mean, βi represents the effect of the ith period, τs is the treatment
effect due to treatment s and ρs is the carryover effect due to treatment s, s = 1, . . . , t.
Throughout, 1u is a u × 1 vector of all ones, Iu is the identity matrix of order u and 0ab is
an a× b null matrix. Also, we write β = (β1, . . . , βp)′, τ = (τ1, . . . , τt)′ and ρ = (ρ1, . . . , ρt)′.
Since there is no carryover effect in the first period, we set ρd(0,j) = 0 for all j.

In matrix notation, the linear predictor corresponding to the jth subject, ηj = (η1j, . . . , ηpj)′,
can be written as

ηj = Xjθ, (2)

where θ = (µ,β′, τ ′,ρ′)′. The design matrix is Xj = [1p Pj Tj Fj], where Pj = Ip; Tj is a
p× t matrix with its (i, s)th entry equal to 1 if subject j receives the treatment effect of the
treatment s in the ith period and zero otherwise; Fj is a p× t matrix with its (i, s)th entry
equal to 1 if subject j receives the carryover effect of the treatment s in the ith period and
zero otherwise. Note that the first row of Fj consists of all zeros since ρd(0,j) = 0 for all j.

Since we are working with the population–average model, the estimation of the model
parameters can be done using the generalized estimating equation (GEE) approach proposed
by Liang and Zeger (1986) and Zeger et al. (1988). The GEEs are utilized to estimate the
parameters of GLM with a possible unknown correlation between outcomes. The resulting
estimators are referred to as the GEE estimators. The GEE estimators are consistent even
if the correlation structure is misspecified. It is assumed that measurements from the same
subject in the p periods are correlated while observations from different subjects are uncor-
related. The dependencies between repeated observations from a subject are modeled using
a “working correlation” matrix C(α) where α is a vector of length s. If C(α) is the true
correlation matrix of Yj, then

Cov[Yj] = D
1/2
j C(α)D1/2

j , (3)

where Dj = diag(µ1j(1− µ1j), . . . , µpj(1− µpj)). Let Wj = D
1/2
j C(α)D1/2

j .

For a repeated-measures model, Zeger et al. (1988, equation (3.1)) derived the gener-
alized estimating equations (GEE) to be

n∑
j=1

∂µ′j
∂θ

W−1
j (Yj − µj) = 0,

where µj = (µ1j, . . . , µpj)′. The asymptotic variance for the GEE estimator θ̂ (see Zeger et
al., 1988, equation (3.2)) is

V ar(θ̂) =
 n∑
j=1

∂µ′j
∂θ

W−1
j

∂µj
∂θ

−1

, (4)
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if Cov(Yj) = Wj, i.e. the working correlation is same as the true correlation. However, if
the true correlation structure varies from the “working correlation” structure, then V ar(θ̂)
is given by the sandwich formula (Zeger et al., 1988, equation (3.2))

V ar(θ̂) = A−1BA−1,

where
A =

n∑
j=1

∂µ′j
∂θ

W−1
j

∂µj
∂θ

, and B =
n∑
j=1

∂µ′j
∂θ

W−1
j Cov(Yj)W−1

j

∂µj
∂θ

.

For the crossover model (1), the ith element of ∂µj

∂θ
is x′ijµij(1−µij), where x′ij is the ith row

of Xj for i = 1, . . . , p.

Before introducing the design selection criterion, we list the main objectives of the
paper with the help of the following example. Consider a trial reported by Senn (2003,
page 127) wherein it was desired to study the effect of two drugs on 24 children aged 7 to
13 suffering from exercise-induced asthma. The two treatments were, a single dose of 12µg
formoterol solution aerosol (treatment A) and a single dose of 200µg of salbutamol solution
aerosol (treatment B). Each child was given both the treatments either in the order, AB
or BA. The response variable was binary, taking value 1 if the drug was effective and 0
otherwise. An equal number of children were allocated to each treatment sequence, AB or
BA. Several questions arise about the design used:

• Is the design with equal allocation to sequences {AB,BA} optimal for the binary
model? If not which is the optimal design?

• For continuous responses [Laska and Meisner (1985)], in a 2–periods 2–treatments
(2 × 2) crossover study, proved that the design with equal allocation to treatment
sequences {AB,BA} is optimal when there are no carryover effects in the model. If
the same design is used for binary model what is the efficiency loss, if any?

• In binary models design selection depends on the model parameters. What will be the
effect of these parameters when selecting a crossover design?

• Will the design change in a binary model if we include carryover effects in the model?

Finding an exact optimal design (optimal number of subjects to the treatment se-
quences) which is associated with the integer optimization problem of a non-linear function
is mathematically intractable. Instead to find optimal crossover designs for the binary model
we use the approximate theory as in Laska and Meisner (1985) and Kushner (1997, 1998).
For a review of results on optimal crossover designs using the approximate theory, we refer
to Bose and Dey (2009, Chapter 4). An approximate/continuous crossover design with k
treatment sequences can be expressed in the form of a probability measure as follows:

ζ =
{
ω1 ω2 . . . ωk
pω1 pω2 . . . pωk

}
,
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where ωi ∈ Ω (set of all permutations of t treatments of length p). Observe that Ω denotes
the set of all possible treatment sequences of length p. Here pωi

is the proportion of subjects
assigned to treatment sequence ωi. Fixing the number of subjects to n and periods to p,
we determine the proportion of subjects assigned to a particular treatment sequence. We
denote by nω the number of subjects assigned to sequence ω. Then, n = ∑

ω∈Ω nω, nω ≥ 0,
pωi

= nωi
/n ≥ 0 and ∑k

i=1 pωi
= 1, for i = 1, · · · , k. Once an approximate optimal design

is obtained, an exact design can be found by efficient rounding (Kiefer (1971), Pukelsheim
and Rieder (1992)).

It follows from Lemma 4.2.1 in Bose and Dey (2009) that Tω = Tj and Fω = Fj for
all j subjects assigned to a treatment sequence ω. This implies that Xj = Xω. Since npω
subjects are assigned to sequence ω, the variance of θ̂ in (4) can be expressed as

V arζ(θ̂) = U−1 =
∑
ω∈Ω

npω
∂µ′ω
∂θ

W−1
ω

∂µω
∂θ

−1

. (5)

For the estimation of the treatment effect, instead of working with the full variance-covariance
matrix of θ̂ we concentrate on V ar(τ̂ ) where,

V arζ(τ̂ ) = HV arζ(θ̂)H ′, (6)

where H is a t×m matrix given by [0t1, 0tp, It, 0tt] and m is the total number of parameters
in θ.

A locally optimal design (LOD) ζ∗ is one which minimizes the log(V arζ(τ̂ )) with
respect to pw, when ∑

w∈Ω pw = 1 and ω ∈ Ω. Similarly, an LOD associated with the
carryover effect can be obtained by minimizing log(V arζ(ρ̂)). As an example, consider the
case when p = 3 and Ω = {AAA,AAB,ABB,ABA,BAB BAA,BBA,BBB}. An optimal
design (approximate/continuous) is specified by the optimal proportions p∗ω for each ω ∈ Ω for
which V arζ(τ̂ ) is minimized with respect to these proportions. In other words, ζ∗ determines
the optimal proportion p∗ω of the total observations assigned to the treatment sequences ω.
Suppose,

ζ∗ =
{
AAA AAB ABB ABA BAB BAA BBA BBB
0.40 0 0 0.15 0.10 0.25 0 0.10

}
,

Then the optimal design allocates 40% of subjects to treatment AAA, 15% to treatment
ABA, 10% subjects to BAB and BBB, and 25% to BAA. No subjects are allocated to the
treament sequences {AAB,ABB,BBA}. In equation (8) we note that the variance of the
treatment effect estimator depends on the model parameters. Thus, the optimal design found
by minimizing the variance of the treatment effect is parameter dependent and actually an
LOD.

3. Two Treatment Crossover Trials: Results and Discussion

With two treatments of interest, the problem simplifies to minimizing the variance
of the treatment contrast τ1 − τ2 to obtain optimal crossover designs. Reparameterizing
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model (1) as in Singh and Mukhopadhyay (2016) and Laska and Meisner (1985), using
τ = (τ1 − τ2)/2 and ρ = (ρ1 − ρ2)/2 we get

logit(µij) = µ+ βP + τΦd(i,j) + ρΦd(i−1),j), (7)

where P takes value 0 for period 1 and 1 for period 2, ΦA = 1,ΦB = −1 and Φd(0,j) = 0.

For illustration we go back to the example in Section 2, where there are two treatments,
A and B applied in two periods to each child. The design used involved the treatment
sequences AB and BA, with equal allocation to each treatment sequence. Thus, the matrix
Xω depends on the treatment sequence ω ∈ Ω = {AB,BA}. If the treatment sequence, for
example is ω = AB, then

Xω =
(

1 0 1 0
1 1 −1 1

)
In the following, we look at the performance of the design, {AB,BA}. Senn (2003) fitted
a logistic model with no carryover effect to the data set and computed confidence intervals
for the various components of θ. Using these intervals we investigate if the above two-
period design is the best choice in the given situation. We also look at general situations for
determining optimal designs when p = 2, 3 or 4 for two treatment case.

3.1. Designs compared

An optimal design obtained by considering all possible treatment sequences associated
with a p period model is denoted by D(p). For example when p = 2, D(2) is consists of the
treatment sequences {AA,AB,BA,BB} = Ω, with optimal proportions p∗ω associated to the
treatment sequence ω ∈ Ω. The designs that we consider are similar to those discussed by
Laska and Meisner (1985) and Carriere and Huang (2000) and are listed below for p = 2, 3
and 4. The notation D

(p)
i denotes ith design considered for a model with p time periods.

(i) p = 2:

D
(2)
1 : AB and BA; D(2)

2 : AB, AA, BA and BB, with equal number of subjects assigned to
each sequence. For normal responses, when there is no carryover effect, D(2)

1 is an optimal
design [Grizzle (1965)]. Design D(2)

2 is shown to be universally optimal [Carriere and Reinsel
(1992)].

(ii) p = 3:

D
(3)
1 : ABB and BAA;

D
(3)
2 : ABB, AAB, BAA and BBA;

D
(3)
3 : ABB, ABA, BAA and BAB.

In designs D(3)
1 −D

(3)
3 , each treatment sequence is allocated equally. These designs are shown

to be optimal under different scenarios for normal responses. Under appropriate assumption
on the within-subject correlation, Kershner (1986) and Laska et al. (1983) shown that D(3)

1
is an universally optimal design. Optimality of designs D(3)

2 and D
(3)
3 was investigated by
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Laska et al. (1983), Ebbutt (1984), Matthews (1987), Carriere (1994), and Carriere and
Huang (2000) for normal responses.

(iii) p = 4:

D
(4)
1 : AABB, BBAA, ABBA and BAAB;

D
(4)
2 : AABB, BBAA;

D
(4)
3 : ABBA, BAAB;

D
(4)
4 : ABAB, BABA.

In designs D(4)
1 − D

(4)
4 , each treatment sequence is allocated equally. The performances of

these designs are investigated in Gondaliya and Divecha (2018).

For evaluating and comparing the above designs we define an efficiency measure as

Γ(ζ) =
(
V arζ∗(τ̂)
V arζ(τ̂)

)1/m

, (8)

where ζ∗ is the locally optimal crossover design and m is the number of unknown regression
parameters in the model. Note that the efficiency in (8) defined for designs associated with
the estimation of the treatment effect. Efficiency of designs associated with the estimation
of the carryover effect can be defined by replacing τ̂ with ρ̂ in (8).

3.2. Working correlation structures

We consider the uncorrelated, compound symmetric or, equi-correlated and the AR(1)
structures for the correlation matrix C(α). Under the equi-correlated covariance structure,
C(α) = (1− α)Ip + αJp, where α is a scalar.

Under the AR(1) assumption the (i, j)th element cij fo C(α) is,

cij = α|i−j|, i 6= j.

A Working Example: Here we present an example to illustrate the proposed methodol-
ogy for obtaining the optimal proportions and compute design efficiency. Consider the
case p = 3. We have used the reparametrized version of the model as described in Singh
and Mukhopadhyay (2016). Let the estimates of the parameters be θ̂ = [µ̂, β̂1, β̂2, τ̂ , ρ̂] =
[0.5, 1.0,−1.0,−2.0, 1] and α̂ = 0.1. A compound symmetric correlation structure is as-
sumed and Ω = {AAA,ABB,ABA,AAB,BAA,BAB,BBA,BBB}. Optimal design (pro-
portions) is obtained by minimizing the variance function given in equation (6) with respect
to ζ. For the given parameter estimates and treatment sequences, LOD is,

ζ∗ =
{
AAA ABB ABA AAB BAA BAB BBA BBB

0 0.1865 0 0.1317 0.2068 0.1105 0.3645 0

}
Observe that the above design uses treatment sequences {ABB,AAB,BAA,BAB,BBA}
with proportions of subjects {0.1865, 0.1317, 0.2068, 0.1105, 0.3645}, respectively. The effi-
cient conversion of approximate design to an exact design can be done using the methods
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given in Pukelsheim and Rieder (1992). Nearest integer approach is also one of the methods
used and works quite well in most of the cases.

Suppose we are interested in comparing ζ∗ with another design say

ζA =
{
ABB AAB BAA BBA
1/4 1/4 1/4 1/4

}

Design ζA distributes equal proportion of subjects to each treatment sequence considered.
The values of V arζ∗(τ̂ ) = 3.7263 and V arζA

(τ̂ ) = 3.9778. The design efficiency calculated
using the formula given in equation (8) for m = 6 is 0.987.

Remark 1: It is clear that the expression of V arζ(θ̂) given in (5) is a scalar multiple of n
and the design efficiency is independent of n, i.e., to compute the efficiency based on the
formula (8), total number of observations (n) is not required.

Remark 2: Here and later in this article, design optimization is done using numerical tech-
niques. In particular, we have used fmincon function of MATLAB R2014a. The function
fmincon is used for nonlinear optimization under a constraint. These programs are available
from authors upon request.

3.3. Parameter dependence

The variance of the treatment effect estimator depends on the model parameters and
the optimal design found by minimizing the variance of the treatment effect is actually locally
optimal. We have assumed that historical data from same study are available. Based on the
historical data, using GEE approach the point estimate θ̂ of θ is obtained. A parameter space
B for θ is set up by taking Cartesian product of the confidence intervals of the individual
parameters. For each period size p, the efficiencies of the designs listed in Section 3.1 are
calculated as follows:

(a) An LOD ζ∗ is obtained using θ̂. Suppose ζN denotes a competitive design listed in
Section 3.1.

(b) From the parameter space B, 5000 values of θ are randomly generated. For each value
of θ, the efficiency based on ζ∗ and ζN is computed using (8). Thus, we shall have
5000 efficiencies values corresponding to 5000 values of θ.

(c) The performances of ζ∗ and ζN are assessed through the box–plot of 5000 efficiencies
values calculated in (b).

This allows us to study the robustness of the designs selected to the changes in the parameter
values.
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3.4. Results

LODs are computed for the following scenarios:

Scenario ID1: LOD for the estimation of the treatment effect (minimize the variance of
the estimate of the parameter associated treatment effect) in the model with no carryover
effects (NC). The working correlation structure is assumed to be independent (ID).

Scenario ID2: LOD for the estimation of the treatment effect when the carryover effect is
included in the model (WC). The working correlation structure is assumed to be ID.

Scenario ID3: LOD for the estimation of the carry effect when the carryover effect is
included in the model (WC). The working correlation structure is assumed to be ID.

Scenarios CS1, CS2, and CS3 are same as scenarios ID1, ID2, and ID3 except
that the ID structure is replaced by CS correlation structure. Similarly, scenarios AR1,
AR2, and AR3 are same as scenarios CS1, CS2, and CS3 except that the CS structure
is replaced by an auto regressive (AR) correlation structure. In the subsequent sections,
optimal proportions are denoted by a vector p∗ = (p∗ω1 , . . . , p

∗
ωs

)′, where ωi ∈ Ω for i =
1, . . . , s, and s is the cardinality of Ω. A LOD ζ∗ can be identify by p∗ and the associated
treatment sequences.

3.4.1. Two periods two treatment (2× 2) crossover trials

For 2× 2 binary trial, we used the data from a study reported in Jones and Kenward
(2014) (Page 97, Table 2.36). The experiment was designed to assess the cerebrovascular
deficiency. Two drugs (placebo and an active drug) given to subjects based on the treatment
sequences {AB,BA}. The responses are recorded as abnormal (0) and normal (1) electro-
cardiogram readings. Based on the data, the point estimates of the model parameters and
the 95% estimated confidence intervals are reported in Table 1. The estimated value of α is
0.1.

Table 1: Estimated 95% confidence intervals of the model parameters in a 2×2 bi-
nary crossover trial. The point estimates are the middle points of the associated
confidence intervals

Model µ β τ ρ
NC [0.2997, 1.1253] [-0.5600, 0.2012] [-0.0572, 0.3238] ·
WC [0.2976, 1.1364] [-0.5652, 0.1952] [-0.1924, 0.6464] [-0.5441, 0.9141]

LODs for the binary 2 × 2 trial under scenarios ID1, ID2, ID3, CS1, CS2 and CS3
are computed based the point estimate θ̂ reported in Table 1. The parameter space to
compute the efficiencies is made up the Cartesian product of the interval estimates of the
model parameters (given in Table 1). The optimal proportions are reported for the following
sequence of treatments: {AB,AA,BA,BB}.



232 S. MUKHOPADHYAY, S.P. SINGH AND A. SINGH [Vol. 19, No. 1

Scenario ID1: The optimal proportions are obtained as p∗ = (0.2513, 0.2601, 0.2486, 0.2400)′.
Thus, LOD ζ∗ is close to D(2)

2 . From Figure 1(a), it can be observed that the performances
of ζ∗, D(2)

1 and D
(2)
2 are similar. For normal responses, D(2)

2 is an optimal design [see Laska
and Meisner (1985)].

Scenario ID2: LOD consists of the optimal proportions p∗ = (0.2436, 0.2633, 0.2514, 0.2418)′.
Design D

(2)
2 is as efficient as ζ∗ whereas D(2)

1 performs worst (see Figure 1(b)). Design D
(2)
2

is an optimal design for normal responses.

Scenario ID3: The vector of optimal proportions is p∗ = (0.5070, 0, 0, 0.4930)′. Observing
Figure 1(c), it can be concluded that LOD ζ∗ is slightly better than D

(2)
2 since the median

efficiency of D(2)
2 compared with ζ∗ is less than 1. The performance of D(2)

1 is worst.

(a) (b) (c)

Figure 1: Binary 2 × 2 crossover trials with independent correlation structure.
The efficiencies of design D(2) when compared to D

(2)
1 and D

(2)
2 are denoted by

”Γ1” and ”Γ2” respectively and given as box–plots. The red line indicates the
median and the red dots the outliers. (a) Scenario ID1 (b) Scenario ID2 (c)
Scenario ID3

Scenario CS1: Optimal proportions assigned by LOD ζ∗ are p∗ = (0.5011, 0, 0.4989, 0)′.
LOD is very close to D(2)

1 which is optimal for normal responses. From the efficiency box–
plots (see Figure 2 (a)) it is observed that ζ∗ and D(2)

1 are equally efficient. The performance
of D(2)

2 is not satisfactory.

Scenario CS2: LOD ζ∗ assigns the proportions p∗ = (0.2435, 0.2632, 0.2515, 0.2419)′. LOD
is very similar to D(2)

2 . The performance of ζ∗ is similar to D(2)
2 whereas D(2)

1 perform poorly
(see Figure 2 (b)).

Scenario CS3: Optimal proportions are p∗ = (0.4763, 0.0319, 0, 0.4919)′. Thus LOD assigns
approximately all the proportions to the sequences AB and BB. The efficiency plot (Figure
2 (c)) shows that design D

(2)
2 is as efficient as ζ∗.

In the above three scenarios (CS1, CS2 and CS3) the correlation parameter α is assumed
to take value 0.1. We have repeated the above exercise with α = 0.4 and computed the
efficiencies. The efficiency plots are depicted in Figure 2 (d), (e) and (f) for scenarios CS1,
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CS2 and CS3 respectively. From these plots it is observed that the ranking of designs based
on the efficiency remain unchanged for the higher correlation value.

(a) (b) (c)

(d) (e) (f)

Figure 2: Binary 2 × 2 crossover trials with CS correlation structure. The effi-
ciencies of design D(2) when compared to D

(2)
1 and D

(2)
2 are denoted by ”Γ1” and

”Γ2” respectively and given as boxplots. The red line indicates the median and
the red dots the outliers. (a) Scenario CS1 with α = 0.1 (b) Scenario CS2 with
α = 0.1 (c) Scenario CS3 with α = 0.1 (d) Scenario CS1 with α = 0.4 (e) Scenario
CS2 with α = 0.4 (f) Scenario CS3 with α = 0.4

3.4.2. Three periods two treatment (3× 2) crossover trials

The reparameterized version of model (1) for a 3× 2 crossover trial is written as

logit(µij) = µ+ β1P1 + β2P2 + τΦd(i,j) + ρΦd(i−1,j),

where where (P1, P2) takes values (0,0), (1,0), and (0,1) for the period 1, 2, and 3 respectively.

For the estimation of the confidence intervals we used the data set given in Example
3 of Morrey (1989). The estimated confidence intervals and the point estimates are pre-
sented in Table 2. The optimal proportions are reported in the following sequences of treat-
ments: {ABB,ABA,AAB,BAA,BAB,BBA,AAA,BBB}. LODs are calculated based on
the point estimates of the parameters reported in 2. In the computations of efficiency val-
ues, the parameter space is made up the Cartesian product of the confidence intervals of the
parameters given in Table 2.
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Table 2: Estimated 95% confidence intervals of the model parameters in a 3×2 bi-
nary crossover trial. The point estimates are the middle points of the associated
confidence intervals

Correlation Model ν β1 β2 τ

CS NC [-0.8185, 0.4045] [-0.6396, 1.0616] [-1.1237, 0.4717] [0.1021, 0.7959]
WC [-0.8210, 0.3978] [-0.5991, 1.0233] [-1.3311, 0.4557] [0.1178, 0.8488]

AR NC [-0.8231, 0.4019] [-0.6334, 1.0620] [-1.1162, 0.4764] [0.0722, 0.7814]
WC [-0.8216, 0.3976] [-0.5984, 1.0244] [-1.3308, 0.4568] [0.1175, 0.8505]

ρ

CS NC ·
WC [0.0976, 0.9564]

AR NC ·
WC [0.0988, 0.9652]

Scenario ID1: When there is no carryover effect, LOD ζ∗ assigns the optimal proportions
p∗ = (0.1288, 0.1154, 0.1289, 0.1203, 0.1356, 0.1202, 0.1155, 0.1354)′. Thus, ζ∗ utilizes all the
treatment sequences. Observing the box-plots depicted in Figure 3 (a), it is concluded that
ζ∗ is as efficient as D(3)

i , for i = 1, 2, 3.

Scenario ID2: The vector of the optimal proportions is p∗ = (0.3716, 0, 0.0428, 0.3398, 0.0791,
0, 0.0751, 0.0916)′. More than 70% observations are assigned the sequence ABB and its dual.
In terms of efficiency, design D

(3)
2 is as efficient as ζ∗ followed by D

(3)
1 (see Figure 3 (b)).

Design D
(3)
3 performs worst.

Scenario ID3: The optimal proportions are p∗ = (0, 0.2558, 0, 0.2458, 0, 0.2549, 0.2435, 0)′.
In this case, the conclusion is same as in scenario ID2 (see Figure 3 (c)).

(a) (b) (c)

Figure 3: Binary 3 × 2 crossover trials with independent correlation structure.
The efficiencies of design ζ∗ = D(3) when compared to D

(3)
1 , D(3)

2 and D
(3)
3 are

denoted by ”Γ1”, ”Γ2” and ”Γ3” respectively and given as boxplots. The red line
indicates the median and the red dots the outliers. (a) Scenario ID1 (b) Scenario
ID2 (c) Scenario ID3
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Scenario CS1: LOD ζ∗ chooses the treatment sequences with weights p∗ = (0.0319, 0.4553, 0,
0, 0.4980, 0.0145, 0, 0)′. Thus, more than 95% of subjects are assigned to the sequence ABA
and its dual BAB. In terms of efficiency, ζ∗ is as efficient as D(3)

3 (less wider spread of the
box–plot) followed by D(3)

1 and D
(3)
2 (see Figure 4 (a)).

Scenario CS2: The optimal proportions are p∗ = (0.3344, 0, 0.1891, 0.3588, 0, 0.1177, 0, 0)′.
Thus, LOD is positively supported only on the treatment sequences ABB, ABA and their
duals BAA and BAB with more than 68% proportion only to ABB and its dual. For normal
responses, optimal design equally assigns subjects to ABB and its dual. From Figure 4 (b),
it is observed that D(3)

2 is best in terms of the efficiency closely followed by D(3)
1 . Design D(3)

3
performs worst.

Scenario CS3: LOD ζ∗ is consist of the optimal proportions p∗ = (0.4219, 0.0845, 0, 0.4441, 0,
0.0223, 0, 0.0272)′. Thus ζ∗ assigns more than 85% subjects to the sequence ABB and its
dual. The efficiency plot (Figure 4 (c)) shows that only D(3)

1 has satisfactory performance.

(a) (b) (c)

(d) (e) (f)

Figure 4: Binary 3 × 2 crossover trials with CS correlation structure. The effi-
ciencies of design ζ∗ = D(3) when compared to D

(3)
1 , D(3)

2 and D
(3)
3 are denoted by

”Γ1”, ”Γ2” and ”Γ3” respectively and given as boxplots. The red line indicates
the median and the red dots the outliers. (a) Scenario CS1 with α = 0.1 (b)
Scenario CS2 with α = 0.1 (c) Scenario CS3 with α = 0.1 (d) Scenario CS1 with
α = 0.4 (e) Scenario CS2 with α = 0.4 (f) Scenario CS3 with α = 0.4

The above three scenarios (CS1, CS2 and CS3) are done based on the correlation
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parameter α = 0.1. We have repeated the above exercise with α = 0.4 and computed the
efficiencies. The efficiency plots are depicted in Figure 4 (d), (e) and (f) for scenarios CS1,
CS2 and CS3 respectively. From these plots it is observed that the ranking of designs based
on the efficiency remain unchanged for the higher correlation expect in scenario CS3. In
Scenario CS3 an increase in α worsen the the performance of D(3)

2 .

Scenario AR1: In this case LOD utilizes only two treatment sequences ABA and BAB with
approximately equal proportion of subjects. A design with equal proportions of subjects in
ABA and BAB is optimal for normal responses. The efficiencies of all designs D(3)

i , i = 1, 2, 3
compared with LOD are less than 1 (see Figure 5 (a)). Thus, the performances of any of
D

(3)
i ’s are not satisfactory.

Scenario AR2: Optimal proportions are obtained as p∗ = (0.3922, 0, 0.1012, 0.4153, 0.0229, 0,
0, 0.0684)′. LOD ζ∗ assigns more than 80% subjects to the sequence ABB and its dual. De-
sign D(3)

2 is comparably as efficient as ζ∗ followed by D(3)
1 (see Figure 5 (b)). The performance

of design D
(3)
3 is not satisfactory.

(a) (b) (c)

(d) (e) (f)

Figure 5: Binary 3 × 2 crossover trials with AR correlation structure. The
efficiencies of design ζ∗ = D(3) when compared to D

(3)
1 , D(3)

2 and D
(3)
3 are denoted

by ”Γ1”, ”Γ2” and ”Γ3” respectively and given as boxplots. The red line indicates
the median and the red dots the outliers. (a) Scenario AR1 with α = 0.1 (b)
Scenario AR2 with α = 0.1 (c) Scenario AR3 with α = 0.1 (d) Scenario AR1 with
α = 0.4 (e) Scenario AR2 with α = 0.4 (f) Scenario AR3 with α = 0.4

Scenario AR3: LOD ζ∗ is consist of the optimal proportions p∗ = (0.4663, 0.0370, 0, 0.4349, 0,
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0.0217, 0, 0.0401)′. LOD assigns more than 90% subjects to the sequence ABB and its dual
BAA. Efficiency plots (see Figure 5 (c)) shows that only D(3)

1 is as efficient as ζ∗.

When α = 0.4, the efficiency plots are depicted in Figure 5 (d), (e) and (f) for scenarios
AR1, AR2 and AR3 respectively. It is observed that the efficiency wise ranking of designs
remain unchanged.

3.4.3. Four periods two treatment (4× 2) crossover trials

We analyse the two treatment double blinded crossover data reported in McKnight and Van
Den Eeden (1993). The study was designed to examine whether aspartame causes headaches
in subjects who believe they experience aspartame-induced headaches. The run-in period
was 7 days followed by a wash-out day repeated for 4 periods. Three doses per day of Both
aspartame (A) 30 mg/kg/day, and placebo (B) were given to the subjects. There were four
possible ordering of the treatments (ABAB, ABBA, BABA, BAAB). The response y
takes values 0 if the number of days with headache is less than 2 and is equal to 1 if the
number of days with headache is greater than or equal to 2.After removing the dropouts,
the data for 21 subjects is given in Table 3.

The reparameterized version of model (1) for a 4× 2 crossover trial is written as

logit(µij) = µ+ β1P1 + β2P2 + β3P3 + τΦd(i,j) + ρΦd(i−1,j),

where where (P1, P2, P3) takes values (0,0,0), (1,0,0), (0,1,0) and (0,0,1) for the period 1, 2,
3 and 4 respectively.

The estimated confidence intervals and the point estimates based on the data from Table 3
are presented in Table 4. LODs are calculated based on the point estimates of the parameters
reported in 4. Optimal proportions (p∗) for all scenarios are reported in Table 5. In the
computation of the efficiency, the parameter space is made of the Cartesian products of the
confidence intervals of the parameters given in Table 4.
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Table 3: Treatment order and corresponding Response of each period

Treatment order period 1 period 2 period 3 period 4
ABAB 0 1 0 0
ABAB 1 1 1 1
ABAB 0 0 0 0
ABAB 1 1 1 1
ABAB 1 0 1 0

ABBA 0 1 0 0
ABBA 1 1 1 1
ABBA 0 0 1 0
ABBA 0 0 0 0
ABBA 1 1 1 1
ABBA 0 0 0 0

BABA 0 1 1 1
BABA 0 0 0 0
BABA 1 0 0 0
BABA 1 0 0 1
BABA 0 0 0 1
BABA 1 1 0 1

BAAB 0 0 0 0
BAAB 0 0 0 0
BAAB 0 1 0 0
BAAB 1 1 0 0
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Table 4: Estimated 95% confidence intervals of the model parameters in a 4×2 bi-
nary crossover trial. The point estimates are the middle points of the associated
confidence intervals

Correlation Model ν β1 β2 β3

CS NC [-1.160, 0.570] [-0.683, 1.453] [-1.381 , 0.615] [-1.050, 0.640]
WC [-1.129, 0.623] [-0.684, 1.492] [-1.518, 0.466] [-1.133, 0.603]

AR NC [-1.161, 0.563] [-0.685, 1.455] [-1.374, 0.618] [-1.057, 0.641]
WC [-1.141, 0.615] [-0.671, 1.493] [-1.498, 0.462] [-1.117, 0.615]

τ ρ

CS NC [-0.227, 0.447] ·
WC [-0.566, 0.280] [-1.012, 0.045]

AR NC [-0.242, 0.498] ·
WC [-0.638, 0.318] [-1.047, 0.109]

Scenario ID1: In this case LOD ζ∗ utilizes all the treatment sequences except AAAA and
its dual (see Table 5). Observing Figure 6 (a) it is concluded that all designs are equally
efficient.

Scenario ID2: LOD ζ∗ assigns more than 80% observations to the sequences AABB,
AABA and their duals. Design D

(4)
1 is as efficient as ζ∗ whereas D(4)

4 perform worst (see
Figure 6 (b)).

Scenario ID3: More than 85% observations are assigned to the sequences BAAB and
ABBB. Design D

(4)
1 is as efficient as LOD (see Figure 6 (c)). Performance of D(4)

4 is worst.

(a) (b) (c)

Figure 6: Binary 4 × 2 crossover trials with independent correlation structure.
The efficiencies of design ζ∗ = D(4) when compared to D

(4)
1 , D(4)

2 , D(4)
3 and D

(4)
4 are

denoted by ”Γ1”, ”Γ2”, ”Γ3” and ”Γ4” respectively and given as boxplots. The
red line indicates the median and the red dots the outliers. (a) Scenario ID1 (b)
Scenario ID2 (c) Scenario ID3
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Scenario CS1: LOD ζ∗ equally assigns more than 94% observations to the sequence ABBA
and its dual. When α = 0.4, then also, LOD utilizes ABBA and its dual with more 96%
observations assigned to them. Design D

(4)
3 is as efficient as ζ∗ (see Figures 7 (a) and (d)).

Scenario CS2: In this case LOD assigns more than 90% observations to the sequences
AABB, ABAB and their duals. LOD is not affected by change in α from 0.1 to 0.4. Design
D

(4)
1 is most efficient when compared to others with respect to LOD (see Figure 7 (b) and

(e)). Note that D(4)
1 is an optimal design for normal responses.

Scenario CS3: LOD ζ∗ utilizes only the following sequences {AABB,BAAB,ABBB,BAAA}.
SImilar to scenario CS2, in this case D(4)

1 is as efficient as ζ∗ (see Figure 7 (c) and (f)).

(a) (b) (c)

(d) (e) (f)

Figure 7: Binary 4 × 2 crossover trials with CS structure. The efficiencies of
design ζ∗ = D(4) when compared to D

(4)
1 , D(4)

2 , D(4)
3 and D

(4)
4 are denoted by ”Γ1”,

”Γ2”, ”Γ3” and ”Γ4” respectively and given as boxplots. The red line indicates
the median and the red dots the outliers. (a) Scenario CS1 with α = 0.1 (b)
Scenario CS2 with α = 0.1 (c) Scenario CS3 with α = 0.1 (d) Scenario CS1 with
α = 0.4 (e) Scenario CS2 with α = 0.4 (f) Scenario CS3 with α = 0.4

Scenario AR1: LOD assigns approximately equal observations only to the sequence ABAB
and its dual. LOD is as efficient as D(4)

4 (see Figure 8 (a) and (d)) which is an optimal design
for normal responses.

Scenario AR2: When α = 0.1, LOD assigns more than 80% observations to the sequences
AABB, BABB and their duals. However, when α = 0.4, ζ∗ utilizes AABB, ABBA and
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their duals with approximately all the observations assigned to them. Design D
(4)
1 is as

efficient as ζ∗ (see Figure 8 (b) and (e)).

Scenario AR3: Approximately all the observations assigned to AABB, BABB and their
duals. Design D

(4)
1 is as efficient as ζ∗ (see Figure 8 (c) and (f)).

(a) (b) (c)

(d) (e) (f)

Figure 8: Binary 4 × 2 crossover trials with AR structure. The efficiencies of
design ζ∗ = D(4) when compared to D

(4)
1 , D(4)

2 , D(4)
3 and D

(4)
4 are denoted by ”Γ1”,

”Γ2”, ”Γ3” and ”Γ4” respectively and given as boxplots. The red line indicates
the median and the red dots the outliers. (a) Scenario AR1 with α = 0.1 (b)
Scenario AR2 with α = 0.1 (c) Scenario AR3 with α = 0.1 (d) Scenario AR1 with
α = 0.4 (e) Scenario AR2 with α = 0.4 (f) Scenario AR3 with α = 0.4
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Table 5: Optimal proportion (p∗) for 4× 2 crossover trials

α = 0.1

Sequence ID1 ID2 ID3 CS1 CS2 CS3 AR1 AR2 AR3
AABB 0.0730 0.2251 0.0219 0.0081 0.3530 0.0614 0 0.2096 0.2015
BBAA 0.0698 0.1363 0 0 0.3415 0 0 0.2427 0.2007
ABBA 0.0710 0.0152 0 0.4771 0.0884 0 0 0.1235 0
BAAB 0.0717 0 0.4503 0.4786 0 0.4338 0 0 0
ABAB 0.0704 0.0168 0 0.0153 0.0930 0 0.4977 0 0
BABA 0.0723 0 0 0.0189 0.1240 0 0.5023 0.0021 0
ABBB 0.0739 0.0153 0.4153 0 0 0.4302 0 0 0
BABB 0.0754 0 0.0310 0 0 0 0 0.2427 0.2772
BBAB 0.0726 0.2490 0 0 0 0 0 0 0
BBBA 0.0732 0.1027 0.0139 0 0 0 0 0 0
BAAA 0.0690 0 0 0 0 0.0744 0 0 0.0290
ABAA 0.0679 0.0158 0 0 0 0 0 0.1771 0.2917
AABA 0.0702 0.2235 0 0 0 0 0 0.0021 0
AAAB 0.0696 0 0.0670 0 0 0 0 0 0
AAAA 0 0 0 0 0 0 0 0 0
BBBB 0 0 0 0 0 0 0 0 0

α = 0.4

CS1 CS2 CS3 AR1 AR2 AR3

AABB 0.0072 0.3538 0.0592 0 0.1253 0.1999
BBAA 0.0012 0.3423 0 0 0.1119 0.2240
ABBA 0.4842 0.0889 0 0 0.3732 0
BAAB 0.4857 0 0.3696 0 0.3644 0
ABAB 0.0091 0.0918 0 0.4973 0 0
BABA 0.0127 0.1232 0 0.5027 0 0
ABBB 0 0 0.4311 0 0 0
BABB 0 0 0 0 0 0.2838
BBAB 0 0 0 0 0.0251 0
BBBA 0 0 0 0 0 0
BAAA 0 0 0.1400 0 0 0
ABAA 0 0 0 0 0 0.2923
AABA 0 0 0 0 0 0
AAAB 0 0 0 0 0 0
AAAA 0 0 0 0 0 0
BBBB 0 0 0 0 0 0
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3.5. An equivalence theorem

For the linear regression models equivalence theorems were developed by Whittle (1973)
and Kiefer (1974). For the GLMs, equivalence theorem for the Bayesian setup was discussed
in Chaloner and Larntz (1989). Optimality of min–max crossover designs for the binary
response model was verified by an equivalence theorem discussed in Singh et al. (2020).
Singh and Mukhopadhyay (2016) provided an equivalence theorem to confirm the optimality
of numerically obtained crossover designs for the GLMs. In this section we provide an
equivalence theorem which can be utilized to verify the optimality of the LODs obtained in
this article.

Let the design space be defined as a unit simplex Ξ = {p′ = (pω1 , . . . , pωs) : ∑s
i=1 pωi

=
1, and 0 ≤ pωi

≤ 1}. Note that V arζ(θ̂) given in (5) depends on p via ζ. Therefore, V arζ(θ̂)
can be represented as V arζ(p)(τ̂ ). Suppose the interest is in estimating a estimable linear
function of the parameters say λ = L′θ, where L is a m × s matrix, m is the length of the
vector θ, and s ≤ m. The information matrix of λ is given by C = (L′V arζ(p)(θ̂)L)−1.

Theorem 1: A locally optimal design ζ∗ ≡ ζ(p∗) at θ = θ0 obtained as

ζ∗ = min
p∈Ξ

log(Det(L′V arζ(p)(θ̂)L))

satisfies the condition

trace{V arζ∗(θ̂)LCL′V arζ∗(θ̂)(V arζω(θ̂))−1} ≤ s, for all ω ∈ Ω, (9)

where V arζω(θ̂) is the variance with respect to the design ζω having unit mass at single
treatment sequence ω. Equality holds in (9) if the treatment sequence ω is included in ζ∗

with positive probability.

The proof of Theorem 1 follows from Theorem 1 of Pettersson, H. (2005) and Theorem
2.1 of Müller, C. H. and Pázman, A. (1998).

4. Summary

Crossover designs for two treatments and binary responses are determined for p =
2, 3, 4. Since these designs depend on the model parameters, various intervals estimated
from the data sets based on the historical studies are considered and LODs are found in each
case. Within subject correlation is modelled using working correlation matrix assuming:
independent, compound symmetric and auto–regressive structures. LODs are compared
with designs optimal for normal responses in each case.

In Table 6 we list designs optimal for normal responses which are as efficient as locally
optimal designs obtained in this article under various scenarios.
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Table 6: Efficient designs

Periods ID1 ID2 ID3 CS1 CS2 CS3 AR1 AR2 AR3

2 {D(2)
i : i = 1, 2} D

(2)
2 D

(2)
2 D

(2)
1 D

(2)
2 D

(2)
2

3 {D(3)
i : i = 1, 2, 3} D

(3)
2 D

(3)
2 {D(3)

i : i = 1, 2} D
(3)
2 D

(3)
1 D

(3)
3 D

(3)
2 D

(3)
1

4 {D(4)
i : i = 1, . . . , 4} D

(4)
1 D

(4)
1 {D(4)

i : i = 1, 2, 3, 4} D
(4)
1 D

(4)
1 D

(4)
4 D

(4)
4 D

(4)
1

In conclusion it clear from the numerical studies that the results in the logistic re-
gression case are quite similar to the available results in the continuous case in most of the
scenarios.
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Abstract
Fisher’s three R’s or three principles of designs of experiments are (i) Randomisation;

(ii) Replications; and (iii) Local control or blocking (also called noise reduction). Of the
three, blocking is the most difficult. Works on blocked 3-level designs are very limited. In
addition, there might be more than one extraneous variations or blocking factors. As such,
there is a need for a general method to do multiway blocking of experimental designs. This
paper extends the idea of orthogonal blocking of Box and Hunter (1957) from one blocking
factor to several blocking factors. It then presents a blocking algorithm which can impose
several blocking/noise factors on popular experimental designs. Particular attention will be
given to 2-level, 3-level and mixed-level screening designs such as those introduced by Jones
and Nachtsheim (2013) and Nguyen et al. (2020).

Key words: Box-Behnken designs; Central composite designs; Definitive screening designs;
Fractional factorial designs; Orthogonal blocking.

1. Introduction

An experiment is conducted to determine the relationship between input factors af-
fecting a process and the output of that process. There are controllable input factors to be
studied as well as nuisance (uncontrollable) ones to be eliminated. While the former can be
modified to optimise the output, this is not the case of the latter. Examples of uncontrollable
factors are: (i) different batches of raw material; (ii) different machine; (iii) different opera-
tors; (iv) different locations; (v) different times, etc. A well-designed experiment minimises
the effects of these uncontrollable factors by partitioning the set of experimental runs into
more homogeneous subsets. This noise reduction exercise is called local control or blocking.
It makes experiments more sensitive in detecting significant effects and hence less experimen-
tation may be required. Examples of the scenarios when designs of more than one blocking
factors can be used are given below.

Example 1: A 25 factorial experiment to identify interaction effects for different additives
in linear low-density polyethylene film (Hoang et al., 2004, Mee, 2009, p. 79). The factors
and levels are: (A) Antioxidant A (ppm), 0 and 400; (B) Antioxidant B (ppm), 0 and 400;
(C) Acid Scavenger (ppm), 0 and 1000; (D) Anti-block agent (ppm), 0 and 2000; (E) Slip

Corresponding Author: Nam-Ky Nguyen
Email: nknam@viasm.edu.vn
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additive (ppm), 0 and 800. As the full 25 factorial would take at least three days to complete,
it was divided into four blocks. Let’s assume the experimenter wishes to add to the model
an additional block factor, i.e. times of the day (8AM and 2PM) and find a suitable design
which can accommodate the new blocking factor.

Example 2: A 9-factor DSD in 21 runs was conducted to investigate the oxidation reactions
in homogeneous Co2+/PMS system (Zhang et al., 2018). The objective is to evaluate the
suitability of the DSD approach in optimising the operating parameters of Co2+/PMS system
and to identify the significant effects involved in the reaction system. See Jones and Nacht-
sheim (2011) for the use of DSD as a screening design. The nine factors in this experiment
are: (1) NaCl, (2) NaH2PO4, (3) NaHCO3, (4) NaNO3, (5) Na2SO4, (6) HA, (7) PMS, (8)
AO II, and (9) Co2+. The first five factors were set at 0, 10, and 20mM, HA at 0, 20, 40mg
dm−3, PMS at 2, 6, 10mM. AO II at 50, 75, 100 mg dm−3 and Co2+ at 0, 0.68, and 1.36mM.
Zhang et al. (2018) stated that they could not use response surface designs (RSDs), such as
the Box-Behnken designs (BBD), the Doehlert design and the central composite design, as
they could not afford the enormous number of runs required by these designs. At the same
time, the popular Plackett-Burman design is unable to capture the quadratic and interac-
tion effects. Let’s assume the experiment was performed in two different reactors and three
different days and the experimenters wish to add these two blocking factors to the model.

2. Conditions for Orthogonal Blocks

Consider the following model for an n-run design with m factors x1, . . . , xm, out of
which m3 factors are at 3-level and the rest are at 2-level, arranged in b blocks:

y = Zδ + Xβ + ε (1)

where y is an n × 1 column vector of response, Z an n × b matrix containing b dummy
variables, δ a b× 1 column vector representing block effects, X is an n× p expanded design
matrix, β a p×1 column vector of parameters to be estimated, and ε an n×1 column vector
of random errors assumed to have zero mean and variance σ2. X includes a column of 1’s,
representing the intercept; m columns representing the main-effects (MEs); and depending
on the model might also include (m

2 ) columns representing the 2-factor interactions (2FIs)
and m3 columns representing the second-order effects (SOEs).

Following Box and Hunter 1957, Section 8 and Khuri and Cornell, 1996, Chapter 8,
we scale the columns of Z by subtracting the value of each column from the column mean.
Equation (1) can then be written as:

y = Z̃δ + Xβ + ε (2)

The condition for orthogonal blocks can be written as:

Z̃′X = 0. (3)

As the row sum of Z̃ in (2) is zero, which is an example of perfect multicollinearity, to
avoid the singular data matrix, we drop the last column of Z̃ and the last element of δ in
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(2). The least square solution for the unknown parameters δ and β in (2) is the solution of
the following equation:

(
Z̃′

X′

)
y =

(
Z̃′Z̃ Z̃′X
X′Z̃ X′X

)(
δ̂

β̂

)
(4)

When the orthogonal block condition in Equation (3) is satisfied, it can be seen that
the solution for β from (4) will be the same as the one from the equation X′y = X′Xβ̂, i.e.
the equation for a model without blocking.

Remarks

1. When there are r blocking factors, the matrix Z̃ in (2) can be partitioned as
(Z̃1 . . . Z̃r), where Z̃l (l = 1, . . . , r) is matrix of size n × (bl − 1) and bl the settings of the
blocking factor l.

2. Let x′i and x′u be two rows of X. Let z̃′i and z̃′u be the corresponding row vectors of
Z̃. Swapping the ith and uth row of X is the same as adding the following matrix to Z̃′X:

−(z̃i − z̃u)(xi − xu)′. (5)

We use this matrix result to develop BLOCK, an algorithm for blocking various types
of experimental designs, including DSDs and DSD-based mixed-level designs.

3. Two Steps of The BLOCK Algorithm

Here are two steps of BLOCK with r blocking factors using the results in Equation
(5):

1. Allocate the n runs of the unblocked design to the blocking factors randomly.
Calculate f , the sum of squares of the elements of Z̃′X.

2. Repeat searching for a pair of runs in different blocks such that the swap of the
run positions results in the biggest reduction in f . If the search is successful, swap their
positions, update f and Z̃′X. This step is repeated until f=0 or until f cannot be reduced
further.

Each computer try has these two steps. Several tries are required for each design and
the one with the smallest f will be chosen. For designs with the same f , the one with the
smallest block factor (BF) will be chosen where BF is calculated as:

BF = (|X ′X|/(|Z̃′Z̃||X′X|))1/(p−v) (6)

Here X = (Z̃ X), p is the number of parameters to be estimated and v = ∑r
l=1(bl − 1) is

the degree of freedom associated with the r blocking factors or columns of Z̃. Clearly, BF
equals 1 means the design is orthogonally blocked.
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Remarks

1. For a factorial or fractional factorial design (FFD), the orthogonality between block
variables and MEs is considered more important than the one between the former and 2FIs.
For a 3-level or a mixed-level screening design, the orthogonality between block variables
and MEs is considered more important than the one between the former and SOEs. In these
situations, partition X as (X1 X2) where X1 is associated with the more important effects
and partition Z̃′X as (Z̃′X1 Z̃′X2). Let g be the sum of squares of the elements of Z̃′X1 and
f the sum of squares of the elements of Z̃′X as defined previously. g and f will then be used
as the primary and secondary objective functions respectively.

2. BLOCK can be implemented sequentially, i.e. at each step, a blocking factor is
added to the design. We use this sequential approach to block very large designs with
several blocking factors.

3. In a sense, our blocking algorithm is an extension of one of Nguyen (2001), which
only works with one blocking factors, to several blocking factors. Ours is more general than
the one of Gilmour and Trinca (2003), which only work with two blocking factors. Clearly,
ours does not require matrix inversions and therefore is considered faster (and less prone
to get trapped in the local optima) than the ones by other authors (See e.g. Cook and
Nachtsheim, 1989; Gilmour and Trinca, 2003 and Jones and Nachtsheim, 2016).

4. Discussion

In the followings, we will show the solutions for the two designs problems mentioned
in the Introduction.

Example 1: Table 1 shows how a 25 factorial can be blocked using two blocking factors
(day and time of the day) and the interaction model which includes the MEs and 2fi’s terms.
Our constructed design is an orthogonally blocked one, meaning the factors A, B, C, D and
E are orthogonal to both days and times of day (8AM and 2PM).

Example 2: Table 2 (a) shows the layout of a 9-factor DSD with two blocking factors,
i.e. reactor and day, using the pure quadratic model which includes the SOE terms and
MEs terms. Three centre runs have been added to the original 21-run DSD. For this design,
g = 0, f = 29 and BF = 0.807. Now let us assume that the unblocked design for the above
experiment is a 24-run mixed-level design with the first five factors at 3-level and the rest are
at 2-level constructed from a Hadamard matrix of order 12 (see Nguyen et al., 2020). Table
2 (b) shows the layout the blocked design. For this design, g = 0, f = 7.11 and BF = 0.928.

To visualise the confounding patterns of blocked designs we use the correlation cell plots
(CCPs). These CCPs, proposed by Jones and Nachtsheim (2011), display the magnitude
of the correlation between the blocking factors and the MEs, SOEs (of 3-level factors) and
2FIs of the designs under study. The colour of each cell in these plots ranges from white (no
correlation) to dark (correlation of 1 or close to 1).

The two CCPs in Figures 1 (a) and 1 (b) show the confounding patterns of the two
designs in Tables 2 (a) and 2 (b). It can be seen the first blocking factor (reactor) is
orthogonal to both MEs and SOEs in Figure 1 (b) but is only orthogonal to MEs in Figure
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Table 1: A 25 factorial with two blocking factors: day and time of the day. The
low and high levels are coded as −1 and 1

Day Time A B C D E Day Time A B C D E

1 1 1 1 -1 1 -1 3 1 1 -1 -1 -1 -1
1 1 -1 1 1 -1 -1 3 1 -1 -1 1 1 -1
1 1 -1 -1 -1 -1 1 3 1 1 1 1 -1 1
1 1 1 -1 1 1 1 3 1 -1 1 -1 1 1
1 2 1 -1 1 -1 -1 3 2 1 1 1 1 -1
1 2 -1 1 1 1 1 3 2 -1 1 -1 -1 -1
1 2 1 1 -1 -1 1 3 2 -1 -1 1 -1 1
1 2 -1 -1 -1 1 -1 3 2 1 -1 -1 1 1

2 1 -1 -1 -1 -1 -1 4 1 -1 1 1 -1 1
2 1 -1 1 1 1 -1 4 1 1 1 -1 -1 -1
2 1 1 1 -1 1 1 4 1 -1 -1 -1 1 1
2 1 1 -1 1 -1 1 4 1 1 -1 1 1 -1
2 2 1 1 1 -1 -1 4 2 -1 -1 1 -1 -1
2 2 1 -1 -1 1 -1 4 2 1 -1 -1 -1 1
2 2 -1 1 -1 -1 1 4 2 -1 1 -1 1 -1
2 2 -1 -1 1 1 1 4 2 1 1 1 1 1

1 (a). The second blocking factor (day) is orthogonal to MEs in both Figures 1 (a) and 1
(b) but is only near-orthogonal to the SOEs in these figures. We say that for both designs,
the MEs of both designs are clear of block effects but the SOEs are partially confounded
(slightly correlated) with block effects.
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Figure 1: CCPs showing the confounding patterns of: (a) a blocked 9-factor
DSD, (b) a blocked mixed-level screening designs in Table 2
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Table 2: Two blocked 24-run designs for Example 2: (a) a blocked 9-factor
DSD; (b) a blocked mixed-level screening designs with five 3-level factors and

four 2-level factors. The low, mid- and high levels are coded as −1, 0 and 1

Reactor Day (1) (2) (3) (4) (5) (6) (7) (8) (9)
1 1 1 1 1 -1 -1 1 -1 1 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 -1 -1 1 -1 1 -1 0 1 1
1 2 0 -1 -1 -1 -1 -1 -1 -1 -1
1 2 -1 1 0 1 -1 -1 1 1 -1
1 2 1 -1 -1 0 1 1 1 1 -1
1 2 0 0 0 0 0 0 0 0 0
1 3 1 1 -1 1 1 -1 -1 0 1
1 3 1 -1 1 1 -1 0 1 -1 1
1 3 -1 1 -1 -1 0 1 1 -1 1
1 3 -1 0 1 1 1 1 -1 -1 -1
2 1 -1 -1 -1 1 -1 1 -1 1 1
2 1 -1 -1 -1 1 1 -1 1 -1 0
2 1 1 1 -1 1 -1 1 0 -1 -1
2 1 1 1 1 -1 1 -1 1 -1 -1
2 2 0 0 0 0 0 0 0 0 0
2 2 -1 1 1 0 -1 -1 -1 -1 1
2 2 1 -1 0 -1 1 1 -1 -1 1
2 2 0 1 1 1 1 1 1 1 1
2 3 -1 -1 1 -1 -1 1 1 0 -1
2 3 1 -1 1 1 0 -1 -1 1 -1
2 3 -1 1 -1 -1 1 0 -1 1 -1
2 3 1 0 -1 -1 -1 -1 1 1 1

(a)

Reactor Day (1) (2) (3) (4) (5) (6) (7) (8) (9)
1 1 -1 1 -1 0 -1 -1 -1 1 1
1 1 1 -1 1 0 1 1 1 -1 -1
1 1 0 1 -1 1 1 -1 -1 -1 -1
1 1 0 -1 1 -1 -1 1 1 1 1
1 2 -1 -1 1 1 0 1 -1 1 -1
1 2 1 0 -1 1 1 -1 1 1 -1
1 2 -1 0 1 -1 -1 1 -1 -1 1
1 2 1 1 -1 -1 0 -1 1 -1 1
1 3 1 -1 0 1 -1 -1 -1 1 1
1 3 1 1 1 1 -1 1 -1 -1 -1
1 3 -1 1 0 -1 1 1 1 -1 -1
1 3 -1 -1 -1 -1 1 -1 1 1 1
2 1 -1 -1 0 1 -1 -1 1 -1 -1
2 1 -1 0 1 -1 1 -1 -1 1 -1
2 1 1 0 -1 1 -1 1 1 -1 1
2 1 1 1 0 -1 1 1 -1 1 1
2 2 0 1 1 1 1 1 1 1 1
2 2 0 -1 -1 -1 -1 -1 -1 -1 -1
2 2 -1 1 -1 0 -1 1 1 1 -1
2 2 1 -1 1 0 1 -1 -1 -1 1
2 3 1 1 1 -1 -1 -1 1 1 -1
2 3 -1 1 1 1 0 -1 1 -1 1
2 3 -1 -1 -1 1 1 1 -1 -1 1
2 3 1 -1 -1 -1 0 1 -1 1 -1

(b)
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Table 3: A resolution V 26−1 FFD arranged in eight blocks by using the
BLOCK algorithm

Block A B C D E F Block A B C D E F
1 -1 1 -1 -1 1 -1 5 -1 1 1 1 1 -1
1 1 1 1 1 -1 -1 5 -1 1 -1 -1 -1 1
1 1 -1 -1 -1 -1 1 5 1 -1 1 -1 1 1
1 -1 -1 1 1 1 1 5 1 -1 -1 1 -1 -1
2 1 1 -1 1 1 -1 6 -1 -1 1 -1 1 -1
2 -1 1 1 1 -1 1 6 -1 -1 -1 1 -1 1
2 -1 -1 -1 -1 1 1 6 1 1 1 1 1 1
2 1 -1 1 -1 -1 -1 6 1 1 -1 -1 -1 -1
3 1 -1 1 1 -1 1 7 1 -1 -1 1 1 1
3 -1 1 1 -1 -1 -1 7 -1 1 -1 1 -1 -1
3 -1 -1 -1 1 1 -1 7 1 1 1 -1 1 -1
3 1 1 -1 -1 1 1 7 -1 -1 1 -1 -1 1
4 1 1 1 -1 -1 1 8 1 -1 -1 -1 1 -1
4 -1 -1 -1 -1 -1 -1 8 -1 1 1 -1 1 1
4 1 -1 1 1 1 -1 8 1 1 -1 1 -1 1
4 -1 1 -1 1 1 1 8 -1 -1 1 1 -1 -1
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Figure 2: CCPs showing the confounding patterns of a resolution V 26−1 FFD

arranged in eight blocks by: (a) using the block generators ACE, BCE and
ADE, (b) using the BLOCK algorithm

It is reasonable to compare a block design available in a catalog and that constructed by
BLOCK. Let’s block a resolution V 26−1 FFD generated by the design generator F=ABCDE
in eight blocks. To construct this block design, we can use the block generators ACE, BCE
and ADE (See Table 5B.3 of Wu and Hamada, 2009). The resulting design has clear MEs
and 2FIs, except AB, BC and CD. In other words, these 2fi’s are fully confounded with
blocks and cannot be estimated. In contrast, our block design in Table 3 has clear MEs and
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some clear 2FIs. Most 2FIs are however, partially confounded with blocks but can still be
estimated.

Figures 2 (a) and 2 (b) show the confounding patterns of the blocked resolution V 26−1

FFDs in Tables 5B.3 of Wu and Hamada, 2009, and in Table 3, respectively. It can be seen
from the two CCPs that the main effects of both designs are clear of block effects. However,
for the CCP in Figure 2 (a), the 2fi’s AB, BC and CD are confounded with block effects. At
the same time, for the CCP in Figure 2 (b) the 2fi’s are either clear or partially confounded
with the block effects.

The runtime for BLOCK is minimal. BLOCK requires a couple of seconds to find
a design solution for each design problem in this paper on a Mac mini M1 (each design
parameter requires 1,000 tries).

5. Conclusion

Most block designs in the literature are cataloged designs and as such they are not
flexible enough. The 2-level factorials and FFDs are only available in 2q blocks, but not
available in five, six or seven blocks. The 4-factor BBD, for example is available in three
blocks but not in two blocks. Besides, catalogs do not offer designs having more than one
blocking factor. BLOCK was developed with the philosophy “Design for experiment, not
experiment for the design” in mind. We hope it could offer efficient alternatives to the
existing catalog of block designs. In the pre-computer age, the constructed block design
strived for simplicity in the analysis. Nowadays, it is not simplicity in the analysis but the
design efficiency and the saving of experimental resources that counts.

The link to the supplemental material contains the Java implementation of the BLOCK
algorithm in Section 3 is https://drive.google.com/drive/folders/1lju4hWxI0tY4zA_
sxT5qVtgtYCydH4LV. It also contains additional examples of blocked factorial and FFDs,
blocked RSDs, blocked mixture designs, and blocked DSDs and DSD-based mixed-level de-
signs (Jones and Nachtsheim, 2013) and Hadamard design-based mixed-level designs (Nguyen
et al., 2020).
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Abstract
E and MV optimality results are established for several series of 3-rowed row-column

designs. All of these designs are generalized binary in rows, and their column component
designs have completely symmetric information matrices. Included are optimal designs which
are nonbinary in columns, and which are superior to any competitor that is binary in columns.
The optimality of designs with BIBD column components is extended beyond that of regular
Youden designs.

Key words: Block design; Completely symmetric design; E optimality; MV optimality.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Block designs are useful for experiments where it is important to eliminate an iden-
tified source of heterogeneity in experimental units. In many experimental situations, the
position that a unit occupies within a block can also affect observed responses. In such
cases, row-column designs can often be used to additionally eliminate heterogeneity in this
second, orthogonal direction. Applications of row-column designs range from agriculture to
psychology to industry and beyond, and an abundance of examples can be found in design
textbooks, for example Bailey (2008) or Dean et al. (2017).

Consider then bk experimental units arranged in a k × b array to which v treatments
are to be assigned. Determining optimal row-column designs, aside from situations where
treatments can either be equally replicated in each row or equally replicated in each column
(which includes such well-known designs as Latin squares and regular Youden designs), has
proven to be a challenging task. The limited results up to about 1989 are summarized in the
monograph Shah and Sinha (1989), and from there to 2015 in Morgan (2015). There has
been little progress since.

We proceed with the standard, additive linear model with uncorrelated, equi-variable
errors, and in which the expected response arising from the unit in row l, column j is the
sum of the effect of row l, the effect of column j, and the effect of the treatment employed in
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that cell. With this model, the v×v treatment information matrix Cd for a k×b row-column
design d can be written (see, for instance, Shah and Sinha, 1989, p. 66) as

Cd = diag(rd1, . . . , rdv)−
1
k
NdN

′
d −

1
b
MdM

′
d + 1

bk
rdr
′
d (1)

where

• Nd denotes the v × b treatment-column incidence matrix whose entries ndij are non-
negative integers indicating the number of times treatment i occurs in column j,

• Md denotes the v×k treatment-row incidence matrix whose entries mdil are nonnegative
integers indicating the number of times treatment i occurs in row l,

• rd denotes the v × 1 vector with entries rdi, where rdi is the replication of treatment i
in design d (i.e. the number of experimental units to which treatment i is assigned).

The ith row sum of both Nd and Md is rdi. The matrices NdN
′
d and MdM

′
d are respectively

the column-concurrence and row-concurrence matrices for d, with entries denoted by λdii′
and µdii′ respectively. The individual entries of Cd can be displayed thusly:

cdii′ = rdiδii′ −
1
k
λdii′ −

1
b
µdii′ +

1
bk
rdirdi′ (2)

where δii′ is the Kronecker delta.

Cd is known to be symmetric and nonnegative definite with zero row and column
sums. Hence the rank of Cd satisfies r(Cd) ≤ v − 1. Here only designs with r(Cd) = v − 1
are considered. These are exactly the designs for which every contrast ∑i liτi (∑i li = 0) is
estimable, commonly termed the connected designs. For given v, b, and k, D(v, b, k) will
denote the class of all connected k × b row-column designs for v treatments.

For a given class D(v, b, k), define the replication target r by r = b bk
v
c, and so bk =

vr + p where p ∈ {0, 1, . . . , v − 1} is the plot excess, that is, the number of experimental
units available beyond that needed for equal replication. Also define λ = b r(k−1)

(v−1) c as the
concurrence target for the column component design. Then λ(v − 1) = r(k − 1) + q where
q ∈ {0, 1, . . . , v − 1} is the (column) concurrence excess for a treatment replicated r times.
In this paper we study settings D(v, b, k) for which q = 0, which is henceforth assumed,
allowing frequent use of the equality r(k − 1) = λ(v − 1).

Each row-column design d ∈ D(v, b, k) can be associated with two block designs: the
column component design dN and the row component design dM , having respective infor-
mation matrices CdN

= diag(rd1, . . . , rdv)− 1
k
NdN

′
d and CdM

= diag(rd1, . . . , rdv)− 1
b
MdM

′
d.

The assignment of treatment i in design d is said to be generalized binary in columns (rows)
if ndij ∈ {bkvc, b

k
v
c + 1} for all j = 1, . . . b (mdil ∈ {b bvc, b

b
v
c + 1} for all l = 1, . . . k).

The component block design dN (dM) is called generalized binary if the assignment of every
treatment to columns (rows) is generalized binary. A generalized binary assignment in which
the two counts are 0 and 1 is said to be binary.

Following Kiefer (1975), the treatment information matrix for a design is said to be
completely symmetric if its elements are constant on the diagonal and constant off the
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diagonal. The condition q = 0 allows the possibility that CdN
is completely symmetric,

which will play an important role in the optimality proofs in this article. When CdN
is

completely symmetric, dN will be termed a completely symmetric design, or CSD for short.

From (1), Cd can be written as

Cd = CdN
− 1
b
Md(Ik −

1
k
Jk)M ′

d (3)

≤ CdN
(4)

where “≤” in (4) is with respect to the Loewner ordering, by virtue of the fact that Md(Ik−
1
k
Jk)M ′

d is nonnegative definite. These relationships will be useful in what follows. It can
be immediately noted that for any optimality criterion respecting the Loewner ordering,
a design d whose column component design is optimal, and for which MdM

′
d − 1

k
rr′ =

Md(Ik − 1
k
Jk)M ′

d = 0, is optimal over D(v, b, k). Now Md(Ik − 1
k
Jk)M ′

d = 0 if, and only
if, mdil is constant in l for each i, so mdil = mdi (say) for i = 1 . . . , v; row-column designs
fulfilling this condition are said to be of Youden type (Das and Dey, 1990). If further mdi is
constant in i, the design is said to be row-regular. This is the basis for proving optimality of
regular Youden designs, which are row-regular row-column designs with optimal, completely
symmetric, column component designs (see pp. 66-7 of Shah and Sinha, 1989). The settings
explored in this article preclude row-regularity for designs that are equireplicate or nearly
so.

The determination of optimal row-column designs is pursued here in terms of two
distinct optimality criteria. Let zd0 = 0 < zd1 ≤ zd2 ≤ . . . ≤ zdv−1 denote the eigenvalues of
the information matrix Cd associated with d ∈ D(v, b, k). The E optimality criterion aims
to maximize the smallest positive eigenvalue zd1 of Cd. In terms of contrast variances, an
E-optimal design minimizes, over d ∈ D, the maximum of V ard(

∑̂v
i=1 liτi) over all possible

choices of normalized (∑i l
2
i = 1) contrast coefficients. The MV criterion requires minimizing,

over d ∈ D, the maximum variance over all elementary treatment contrasts τ̂i − τi′ . That is,
an MV-optimal design minimizes over d ∈ D the quantity

Υd = max
i 6=i′

V ard(τ̂i − τi′)
σ2 .

The E and MV criteria are both minimax criteria, and both criteria respect the Loewner
ordering.

This article examines row-column designs with k = 3 from the perspectives of the
E and MV optimality criteria. Section 2 develops a series of bounds that are useful in
constructing the optimality arguments. The main results are in Section 3. Concluding
discussion comprises Section 4.

2. Preliminaries

Useful lemmas, to be employed in the optimality proofs in Section 3, are established
here. At the heart of these are two results, stated first, due to M. Jacroux. For information
matrix Cd = (cdii′) define the quantity θdii′ for each i 6= i′ by θdii′ = cdii + cdi′i′ − 2cdii′ .
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From (2), θdii′ may be written as

θdii′ = rdi + rdi′ −
1
bk

[b
b∑

j=1
(ndij − ndi′j)2 + k

k∑
l=1

(mdil −mdi′l)2] + (rdi − rdi′)2

bk
(5)

Lemma 1: (Jacroux, 1982) Let d ∈ D(v, b, k) have information matrix Cd = (cdii′).

(i) If M is a subset of {1, 2, . . . , v} of size m, 1 ≤ m ≤ v − 1, then
zd1 ≤ (v/m(v −m))(∑i∈M cdii +∑

i∈M
∑
i′( 6=i)∈M cdii′);

(ii) zd1 ≤ θdii′/2 for i, i′ = 1, . . . , v (i 6= i′).

Moreover, in light of (4), d in the right-hand side of each of these two inequalities can be
replaced by dN , providing two additional (and possibly less sharp) upper bounds for zd1.

Lemma 2: (Jacroux, 1983) Let d ∈ D(v, b, k) have information matrix Cd = (cdii′). For any
i 6= i′,

(1/σ2)V ard ̂(τi − τi′) ≥
4
θdii′
≥ 4
θdN ii′

.

Proofs for Lemmas 1 and 2 may be found in the cited papers. Proofs for the lemmas
that follow appear in the appendix.

Lemma 3: A row-column design d ∈ D(v, b, 3) for which the column design is a CSD with
cd∗N ii = r(k−1)

k
for all i = 1, . . . , v satisfies

zd1 = λv

3 −
1
2b

(
a1d +

√
2a2d − a2

1d

)
where a1d = tr(Bd) and a2d = tr(B2

d) for the matrix Bd = MdM
′
d − 1

k
rdr
′
d.

Lemma 4: A row-column design d ∈ D(v, b, 3) for which rdi ≤ r − 1 for some i satisfies

θdii′ ≤
2λv
3 + 2[v(q − 1) + p]

3(v − 1) .

for some i′ 6= i.

Lemma 5: A row-column design d ∈ D(v, b, k) for which some treatment with replication r
is nonbinary in columns satisfies

θdii′ ≤
2vr(k − 1)
k(v − 1) −

2
k

+ p(k − 1)− 4
k(v − 1)

for some i 6= i′.

Lemma 6: For the row-column setting D(v, b, k) with p ≤ v − 2, let d ∈ D(v, b, k) have
rdi ≥ r for all i. If two treatments i 6= i′ with rdi = r = rdi′ have λdii′ ≤ λ− 1, then

θdii′ ≤
2(λv + q − 1)

k
.
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Lemma 7: Let d ∈ D(v, b, 3) satisfy

(i) rd1 = . . . = rd,v−p = r,

(ii) rd,v−p+1 = . . . = rdv = r + 1, and

(iii) the treatments with replication r + 1 are generalized binary in rows.

If some treatment with replication r is not generalized binary in rows, where r ≡ 1 (mod 3)
and p < (v + 3)/2, or where r ≡ 2 (mod 3), then

θdii′ ≤ 2r − 1
3b [b

b∑
j=1

(ndij − ndi′j)2 + 18]

for some i 6= i′ with i, i′ ≤ v − p.

Lemma 8: Let d ∈ D(v, b, 3) satisfy

(i) rd1 = . . . = rd,v−p = r, and

(ii) rd,v−p+1 = . . . = rdv = r + 1.

If some treatment with replication r+1 is not generalized binary in rows, where r ≡ 1 ( mod
3) and p < (v + 3)/2, or where r ≡ 2 (mod 3) and p < (v + 6)/4, then

θdii′ ≤ 2r + 1− 1
3b [b

b∑
j=1

(ndij − ndi′j)2 + 14]

for some i ≤ v − p and some i′ ≥ v − p+ 1.

3. Main Results

As stated in Section 1, design classes D(v, b, k) for which the concurrence excess is q = 0
are the focus in the theorems to follow. Optimality results for the E and MV criteria will
now be derived for the plot excess p taking the values p = 1 and p = 0. The same techniques
can be successfully applied for some larger p, but for reasons of space are not pursued here.

3.1. Designs with p = 1

Theorem 1: Let D(v, b, 3) be the class of 3 × b row-column designs for which the plot
excess is p = 1, the concurrence excess is q = 0, and b > v + 2. If the target replication r
satisfies r ≡ 1 (mod 3) and d∗ ∈ D(v, b, 3) satisfies

(i) the column design of d∗ is a CSD with cd∗N ii = r(k−1)
k

for all i = 1, . . . , v, and

(ii) the row design of d∗ is generalized binary,
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then d∗ is E-optimal in D(v, b, 3), and any design failing either (i) or (ii) is E-inferior to d∗.
In particular, any design which is binary in columns is E-inferior to d∗.

Proof: Condition (i) implies that rd∗1 = . . . = rd∗v−1 = r and thus rd∗v = r + 1. It then
further implies that treatment v is nonbinary in columns of d∗.

For each treatment i, define the vector of row counts mdi for design d as mdi =
(mdi1,mdi2,mdi3), the ith row of Md. With appropriate labeling of treatments and order-
ing of rows, condition (ii) implies that md∗v = ( r+2

3 , r+2
3 , r−1

3 ) and so md∗i = ( r+2
3 , r−1

3 , r−1
3 )

for i = 1, . . . , v−2
3 ; md∗i = ( r−1

3 , r+2
3 , r−1

3 ) for i = v+1
3 , . . . , 2(v−2)

3 ; and md∗i = ( r−1
3 , r−1

3 , r+2
3 )

for i = 2v−1
3 , . . . , v − 1. With Md∗ so determined, write v1 = v2 = (v − 2)/3, v3 = (v + 1)/3

and v4 = 1 for the frequencies of its four distinct rows. It follows that the symmetric matrix
Bd∗ = Md∗(I3 − 1

3J3)M ′
d∗ is the partitioned block matrix with diagonal blocks 2

3Jvgvg for
g = 1, . . . , 4, and blocks −1

3Jvgvh
for g < h ≤ 3, 1

3Jvgv4 for g = 1, 2, and −2
3Jv3v4 above the

diagonal. It is now simple to calculate a1d∗ = tr(Bd∗) = 2v
3 and a2d∗ = tr(B2

d∗) = 2(v2+4)
9 , so

that by Lemma 3,
zd∗1 = λv

3 −
(v + 2)

3b .

Let d be any other design with rd1 ≤ . . . ≤ rdv. Suppose d has rdi ≤ r − 1 for some
i = 1, . . . , v. Then d is E-inferior to d∗, as by Lemma 1, and Lemma 4 with p = 1,

zd1 ≤
λv

3 + v(q − 1) + p

3(v − 1) = λv

3 −
1
3 <

λv

3 −
(v + 2)

3b = zd∗1, (6)

the last inequality due to the condition b > v + 2.

So assume d has rdi ≥ r for all i; with appropriate labeling of treatments, rdi = rd∗i
for all i. If d has some treatment with replication r nonbinary in columns, Lemmas 1 and 5
give

zd1 ≤
vr(k − 1)
k(v − 1) −

1
k

+ p(k − 1)− 4
2k(v − 1) = λv

3 −
1
3 −

1
3(v − 1) <

λv

3 −
(v + 2)

3b = zd∗1 (7)

and again d is E-inferior to d∗.

So now suppose d has treatments 1, . . . , v − 1 each binary in columns. If λdii′ ≤ λ− 1
for some i, i′ ≤ v − 1 (i 6= i′), then by Lemmas 1 and 6,

zd1 ≤
λv

3 −
1
3 <

λv

3 −
(v + 2)

3b = zd∗1 (8)

and again d is E-inferior to d∗.

Thus for d to be E-admissible, it must have rd1 = . . . = rdv−1 = r, and all treatments
replicated r times are binary in columns with λdii′ = λ for all i 6= i′ where i, i′ = 1, . . . , v−1.
If in addition treatment v is binary in columns then ∑v−1

i=1 λdvi = 2(r + 1), implying
v−2∑
i=1

v−1∑
i′=i+i

λdii′ =
v−1∑
i=1

v∑
i′=i+i

λdii′ −
v−1∑
i=1

λdvi = 3b− 2(r + 1) = (v − 2)r − 1,
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the last equality because bk = 3b = vr+ 1. Thus the average concurrence among treatments
replicated r times is

(v − 2)r − 1
(v − 1)(v − 2)/2 = (v − 2)r − 1

(v − 2)r/λ = λ− 1
(v − 2)r

so that λdii′ < λ for some i 6= i′, i, i′ < v. As shown above (see (8)), this implies d is
E-inferior to d∗, so d cannot have treatment v binary in columns.

Now cdvv ≤ cdNvv = r + 1 − (∑b
j=1 n

2
dvj) and nonbinarity of treatment v in columns

implies ∑b
j=1 n

2
dvj ∈ {r+3, r+5, r+7 . . .}. If ∑b

j=1 n
2
dvj ≥ r+5 then cdvv ≤ (r+1)−(r+5)/3 =

2(r − 1)/3 and by Lemma 1(i),

zd1 ≤
(

v

v − 1

)
cdvv = 2v(r − 1)

3(v − 1) = λv(r − 1)
3r

⇒ 3r(zd∗1 − zd1) ≥ λvr − (v + 2)r
b

− λv(r − 1) = λv − (v + 2)r
b

= λ+ 2r − (v + 2)r
b

> 0,

again invoking b > v + 2. So d must have ∑b
j=1 n

2
dvj = r + 3 ⇒ cdNvv = 2r/3 = cdN ii for

i = 1, . . . , v− 1. The same argument as in (8) implies λdvi ≥ λ for i < v and hence λdii′ ≥ λ
for all i 6= i′ ⇒ λdii′ = λ for all i 6= i′. This establishes that E-admissibility of d requires
CdN

= Cd∗N , that is, d and d∗ have identical information matrices for their column component
designs. If Cd differs from Cd∗ , it can do so only in the term MdM

′
d.

If the row design of d is generalized binary in rows then d fulfills the conditions of the
theorem, that is, d is a version of d∗. So suppose d is not generalized binary in rows. Then
a1d = ∑

i(µdii −
r2

di

k
) ≥ (2 +∑

i µd∗ii)− (∑i
r2

d∗i

k
) = a1d∗ + 2 = 2(v+3)

3 . By Lemma 3,

zd1 = λv

3 −
1
2b(a1d +

√
2a2d − a2

1d) ≤
λv

3 −
1
2ba1d ≤

λv

3 −
(v + 3)

3b <
λv

3 −
(v + 2)

3b = zd∗1,

completing the proof.

The strict inequality b > v+2, employed in equations (6) to (8), serves only to guarantee
that any design failing either condition (i) or (ii) will be E-inferior to d∗. With that note, E
optimality of d∗ also holds for b = v + 2. Following Theorem 2, it will be shown that when
b = v + 2 it is possible to find other E-optimal designs not satisfying (i) and (ii). This issue
does not arise in the MV optimality proof of Theorem 2, which otherwise covers the same
settings D(v, b, k) as in Theorem 1.

Theorem 2: Let D(v, b, 3) be the class of 3 × b row-column designs for which the plot
excess is p = 1, the concurrence excess is q = 0, and b ≥ v + 2. If the target replication r
satisfies r ≡ 1 (mod 3) and d∗ ∈ D(v, b, 3) satisfies

(i) the column design of d∗ is a CSD with cd∗N ii = r(k−1)
k

for all i = 1, . . . , v, and

(ii) the row design of d∗ is generalized binary,



264 J. P. MORGAN AND SIRILUCK JERMJITPORNCHAI [Vol. 19, No. 1

then d∗ is MV-optimal in D(v, b, 3), and any design failing either (i) or (ii) is MV-inferior to
d∗. In particular, any design which is binary in columns is MV-inferior to d∗.

Proof: Cd∗ , as determined in the proof of Theorem 1, has generalized group divisible struc-
ture (see e.g. Srivastav and Morgan, 1998) with four groups, call them Vg for g = 1, 2, 3, 4
with |Vg| = vg. Accordingly, V ard∗ ̂(τi − τi′) depends only on group membership for i and i′.
Writing Td∗ = Cd∗ + (λ3 −

1
3b)Jvv, a generalized inverse of Cd∗ is T−1

d∗ , from which the pairwise
variances arising from d∗, displayed in Table 1, are easily found. The reader may check that
these five variances satisfy var1 < var4 < var2 < var3 < var5. For the purposes of this proof
var5 = Υd∗ is rewritten as

Υd∗ = 6
λv

[
1 + 4

λvb− (v + 2)

]
= 6

λv

[
λvb− (v − 2)
λvb− (v + 2)

]
= 2

λv
3 −

4
3

λv
λvb−(v−2)

.

Let d be any other design with rd1 ≤ . . . ≤ rdv. First suppose d has rdi ≤ r − 1 for
some i = 1, . . . , v. Assume rd1 ≤ r − 1. From Lemmas 2 and 4,

Υd ≥
2

λv
3 −

1
3
≥ 2

λv
3 −

(v+2)
3b

>
2

λv
3 −

4
3

λv
λvb−λv

>
2

λv
3 −

4
3

λv
λvb−(v−2)

= Υd∗ (9)

and therefore d∗ is MV-better than d.

Next, suppose d has rdi ≥ r for i = 1, . . . , v. Since p = 1, there are v − 1 treatments
replicated r times and one treatment replicated r + 1 times. Assume rd1 = . . . = rdv−1 = r
and rdv = r + 1.

Suppose d has some treatment with replication r nonbinary in columns. Then by the
same calculation as in (7), there is some θdii′ ≤ 2λv

3 −
2(v+2)

3b . Applying Lemma 2 as shown
in (9) gives Υd > Υd∗ . The same θ bound, and thus the same result for Υd, is found (see
(8)) if two treatments i < i′ < v are binary in columns with λdii′ ≤ λ− 1. Thus the column
component design for d must be binary in treatments 1, . . . , v−1, and it must have λdii′ ≥ λ
for any two of these v − 1 treatments.

If treatment v is binary in columns of d, then just as shown in the proof of Theorem 2,
λdii′ ≤ λ−1 for some i < i′ < v and so, as established in the preceding paragraph, Υd > Υd∗ .
If treatment v is nonbinary in columns and ∑j n

2
dvj ≥ r+ 5, then as established in the proof

Table 1: Pairwise variances for d∗ of Theorem 2

i 6= i′ 1
σ2V ard∗ ̂(τi − τi′)

i, i′ ∈ Vg, g = 1, 2, 3 var1 = 6
λv

i ∈ V1, i
′ ∈ V2 var2 = 6

λv
[1 + 3

λvb−(v−2) ]
i ∈ V1 or V2, i

′ ∈ V3 var3 = 6
λv

[1 + 3(λvb−(v−1))
(λvb−(v+2))(λvb−(v−2)) ]

i ∈ V1 or V2, i
′ ∈ V4 var4 = 6

λv
[1 + 2(λvb−3(v−1))

(λvb−(v+2))(λvb−(v−2)) ]
i ∈ V3, i

′ ∈ V4 var5 = 6
λv

[1 + 4
λvb−(v+2) ]
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of Theorem 1, cdvv ≤ 2(r − 1)/3. This yields∑v−1
i=1 λdvi
v − 1 = 3cdvv

v − 1 ≤
2(r − 1)
v − 1 = λ(v − 1)− 2

v − 1
implying that for some i < v, say i = 1, λdv1 ≤ λ− 1. Then θdv1 is

θdv1 = 2r
3 + 2(r − 1)

3 + 2λdv1

3 ≤ 4r − 1 + 2(λ− 1)
3 = 2λv − 2

3

which upon applying Lemma 2 as shown in (9) again gives Υd > Υd∗ . Thus ∑j n
2
dvj = r+ 3,

cdNvv = 2r/3, and just as for E-admissibility in the proof of Theorem 2, it follows that that
MV-admissibility of d requires CdN

= Cd∗N .

It remains to consider the row component design for d. If the row design of d is
generalized binary in rows then d fulfills the conditions of the theorem, that is, d is a version
of d∗. So suppose d is not generalized binary in rows.

First consider if treatment i, for some i ≤ v− 1, is not generalized binary in rows, but
treatment v is. Note that ∑b

j=1(ndij − ndi′j)2 = 2(r − λ) for any i < i′ < v. Lemma 7 now
says there is θdii′ for which

θdii′ ≤ 2r − 1
3b [2b(r − λ) + 18] = 2(λvb− 9)

3b .

Employing this inequality in Lemma 2,

Υd ≥
4
θdii′

≥ 6
λv

(
λvb

λvb− 9

)
= 6

λv

(
1 + 9

λvb− 9

)
>

6
λv

(
1 + 4

λvb− (v + 2)

)
= Υd∗ .

Suppose treatment v is not generalized binary in rows. It has been established above
that ∑b

j=1 n
2
dvj = r+ 3, so that treatment v occurs twice in one column, and once in each of

r − 1 columns. Let treatment 1 be the treatment that appears in the block with ndvj = 2.
Then ∑b

j=1(ndvj − nd1j)2 = 2(r − λ) + 3. Lemma 8 now says

θd1v ≤ 2r+1− 1
3b [b

b∑
j=1

(ndij−ndi′j)2+14] = λ(v−1)+1− [2(r − λ) + 3]
3 −14

3b = 2(λvb− 7)
3b .

By Lemma 2,

Υd ≥
4
θdiv

≥ 6
λv

(
λvb

λvb− 7

)
= 6

λv

(
1 + 7

λvb− 7

)
>

6
λv

(
1 + 4

λvb− (v + 2)

)
= Υd∗ .

Example 1: Consider these designs d1, d2 ∈ D(5, 7, 3):

d1 :
5 1 3 2 4 4 3
5 2 1 5 2 3 4
4 5 5 3 1 1 2

d2 :
4 1 1 2 5 4 3
1 2 5 3 2 3 4
5 5 3 1 4 5 2
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Design d1 satisfies the conditions of Theorems 1 and 2, and so is E-optimal and MV-optimal
in D(5, 7, 3). As discussed following the proof of Theorem 1, since b = v+2 the E optimality
may not be unique. Design d2 fails both conditions (i) and (ii) of Theorem 1, but has the
same E value as d1. Thus d2 is also E-optimal, even while being MV-inferior to d1.

Example 2: Consider this design d∗ for v = 8, b = 19, and k = 3:

1 2 3 4 5 6 7 1 3 4 5 8 8 7 2 6 1 2 7
2 3 4 5 6 7 1 8 2 8 4 5 6 1 7 3 3 4 8
4 5 6 7 1 2 3 2 8 3 8 6 1 4 5 7 5 6 8

All conditions of Theorem 1 and Theorem 2 are satisfied, so d∗ is E- and MV-optimal in
D(8, 19, 3). Any design that is binary in columns, or which is row-regular, is inferior to d∗
on both of these criteria.

The column component designs for the design in Example 2, and for d1 in Example 1,
are two instances of an infinite series of completely symmetric block designs with k = 3
constructed by Morgan and Uddin (1995). Those designs have, for each t ≥ 1, parameters

v = 3t+ 2, b = 3t2 + 3t+ 1, k = 3, r = 3t+ 1, λ = 2, p = 1, q = 0. (10)

Also, each of these block designs has cdii = r(k − 1)/k = 2r/3 for all i, so if the blocks
are arranged as columns of a 3× b row-column design, condition (i) of the theorems will be
satisfied. To satisfy condition (ii), treatments must then be ordered in each column so that
each treatment appears in each row either t or t + 1 times. Examples 1 and 2 demonstrate
that this can be done for t = 1, 2. That it can be done for all t can be proven using systems
of distinct representatives, illustrating application of a result due to Das and Dey (1989).

Lemma 9: (Das and Dey, 1989) If a block design with v treatments in b blocks of size k
has treatment replication numbers ri = kmi for integer values mi and i = 1, . . . v, then the
blocks can be arranged as columns of a k × b row-column design so that, for i = 1, . . . v,
treatment i occurs in each row mi times.

The row-column arrangement guaranteed by Lemma 9 is a Youden type design.

The Morgan and Uddin (1995) construction of CSDs with parameters (10) is divided
into four cases. One of those (their Case 2(a)) will be employed here to show how condi-
tion (ii) can be achieved; the other three cases are handled similarly. Designs in this case
comprise the subseries of (10) with t = 4w + 2 having v = 12w + 8 and r = 12w + 7.
The treatment symbols in that construction are ∞1, ∞2, and the integers (mod 12w + 6).
To apply Lemma 9, partition the blocks of this subseries into four subdesigns as shown in
Table 2. Counting replications in each of the subdesigns S1, S2, and S3 shows that, by
Lemma 9, each can can be arranged as a Youden type design on the treatments involved.
Thus taken together, these three subdesigns form a 3 × (b − (v + 1)/3) row-column design
on all v treatments that is row-regular, all treatments being replicated r − 1 times. Adding
the (v + 1)/3 columns of S4 as displayed in Table 2, for which each treatment except ∞1
appears exactly once, gives the required design satisfying condition (ii) of the theorems.

Example 2 contains the Case 2(a) design with w = 0. In that example, the first seven
columns (making a Youden design) are subdesign S1, the next nine (making a Youden type
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design) are subdesign S3, and the last three are subdesign S4. Since w = 0, subdesign S2 is
empty.

For other CSDs having block size k = 3 with plot excess p ≥ 1, to which the methods
of this article can be applied, see Morgan and Srivastav (2002).

3.2. Designs with p = 0

Theorem 3: Let D(v, b, 3) be the class of 3 × b row-column designs for which the plot
excess p and the concurrence excess q are both zero. If d∗ ∈ D(v, b, 3) satisfies

(i) the column design of d∗ is a BIBD, and

(ii) the row design of d∗ is generalized binary,

then d∗ is E-optimal and MV-optimal in D(v, b, 3).

Proof: If r = bk/v is a multiple of 3 then d∗ is a regular GYD, for which the result is
already known. So only r = λ(v − 1)/2 which is not a multiple of 3 need be considered.
Condition (i) then implies that v is a multiple of 3, see (15) and (16) below. Write r1 = br/3c
and r2 = r1 + 1.

Letmdi = (mdi1,mdi2,mdi3). For any equireplicated d which satisfies (ii), mdil ∈ {r1, r2}
for every i and l, that is, mdi is some permutation of (r1, r1, r2) or (r1, r2, r2) as r ≡ 1 ( mod 3)
or r ≡ 2 ( mod 3). In either case, there are exactly v

3 treatments corresponding to each of the
three permutations, so that generalized binarity in rows induces a grouping of the treatments.
By “treatments in group g” is meant those i for which mdig is the distinct member of mdi,
g = 1, 2, 3. For generalized binary d, µdii′ = µ1 = r2−1

3 if i, i′ are in different groups, and
µdii′ = µ1+1 otherwise. Since the column design for d∗ is a BIBD and d∗ is generalized binary
in rows, Cd∗ has group divisble structure. In addition, Bd∗ may be written in partitioned
block form with matrices 2

3J v
3 ,

v
3

along the main diagonal and matrices −1
3J v

3 ,
v
3

along the
off-diagonal. It follows that tr(Bd∗) = 2v

3 and tr(B2
d∗) = 2v2

9 . By Lemma 3, and the fact that

Table 2: Partition of blocks for CSDs with t = 4w+2 in (10). Blocks are displayed
as rows for compactness. All integers are reduced mod (12w + 6).

Subdesign Blocks

S1 blocks of a BIBD(k = 3, λ = 1) on the v − 1 treatments ∞2 and 1, 2, . . . , 12w + 6

S2
(j, 5w+3−i+j, 5w+2+i+j) and (j, 3w+1−i+j, 3w+1+i+j)

for i = 1, 2, . . . , w and j = 1, 2, . . . , 12w + 6
S3 (∞1, i, 3w+1+i) for i = 1, 2, . . . , 12w + 6, (∞2, j, 6w+3+j) for i = 1, 2, . . . , 6w + 3.

S4 (j, 4w+2+j, 8w+4+j) for j = 1, 2, . . . , 4w + 2, and (∞1,∞1,∞2)
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r > 3 (see (15) and (16) below),

zd∗1 = λv

3 −
2

λ(v − 1) = λv

3 −
1
r
>

λv − 1
3 . (11)

Calculation of pairwise variances 1
σ2V ard∗ ̂(τi − τi′) with d∗ follows easily from the generalized

group divisible form of Bd∗ (and hence of Cd∗). They take only two values: var1 = 6
λv

, which
is the “same group” variance, and var2 = 6

λv
[1 + 3

λvb−v ], which is the “different group”
variance. This gives

Υd∗ = 6
λv

(
1 + 3

λvb− v

)
= 2

λv
3 −

λv
λvb−(v−3)

<
2

λv−1
3
. (12)

Now consider any d ∈ D(v, b, k) that does not satisfy (i). If d has rdi ≤ r−1 for some i,
then putting p = 0 in Lemma 4, there is i′ 6= i such that

θdii′ ≤
2λv
3 − 2v

3(v − 1) <
2(λv − 1)

3 . (13)

With (13), it is immediate from Lemma 1(ii) and (11), and from Lemma 2 and (12), that d
is E-inferior and MV-inferior to d∗.

Next, suppose d has rdi = r for all i but is nonbinary in columns. By Lemma 5 with
p = 0, there is i 6= i′ for which

θdii′ ≤
2λv
3 − 2

3 −
4

3(v − 1) <
2(λv − 1)

3 . (14)

The bound (14) is the same as found in (13), so again Lemmas 1(ii) and 2 show d is E-inferior
and MV-inferior to d∗.

So now suppose d is equireplicate and binary in columns, but has λdii′ < λ for some
i 6= i′, say λd12 ≤ λ − 1. Now Lemma 6 with p = 0 says θdii′ ≤ 2(λv−1)

3 and yet again
Lemmas 1(ii) and 2 show immediately that d is E-inferior and MV-inferior to d∗.

Now consider any d which satisfies (i) but not (ii). Since d is not generalized binary in
rows,

a1d =
∑
i

(µdii −
r2
di

k
) ≥ (2 +

∑
i

µd∗ii)− (
∑
i

r2
d∗i

k
) = a1d∗ + 2 = 2v

3 + 2 = 2(v + 3)
3 .

By Lemma 3,

zd1 = λv

3 −
1
2b(a1d +

√
2a2d − a2

1d) ≤
λv

3 −
1
2ba1d ≤

λv

3 −
(v + 3)

3b <
λv

3 −
1
r

= zd∗1.

Thus d∗ is E-better than d.

To complete the proof, note that by virtue of (i), ∑b
j=1(ndij − ndi′j)2 = 2(r − λ) for

every i 6= i′. Lemma 7 with p = 0 says

θdii′ ≤ 2r − 1
3b [2b(r − λ)b+ 18] = 2b(2r + λ)− 18

3b = 2(λvb− 9)
3b
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for some i 6= i′. By Lemma 2,

Υd ≥
6
λv

(
λvb

λvb− 9

)
= 6

λv

(
1 + 9

λvb− 9

)
>

6
λv

(
1 + 4

λvb− (v + 2)

)
= Υd∗ .

and therefore d∗ is MV-better than d.

The BIBDs with k = 3 for which r is not a multiple of 3 are those with parameters

v = 6t+ 3, b = λv(v − 1)
6 , k = 3, r = λ(v − 1)

2 , λ ≡ 1 or 2 (mod 3), (15)

and those with parameters

v = 6t, b = λv(v − 1)
6 , k = 3, r = λ(v − 1)

2 , λ ≡ 2 or 4 (mod 6), (16)

and any t ≥ 1. All of these designs are known (Hanani, 1961). Invoking Theorem 3.2
of Agrawal (1966) (also see Chai, 1998), they can all be arranged as row-column designs
satifying condition (ii) of Theorem 3. Thus all produce row-column designs that are E-
optimal and MV-optimal. Moreover, as can be seen in the proof, these designs are superior,
with respect to both of these optimality criteria, to any design failing either condition (i)
or (ii) of Theorem 3.

Example 3: The two designs shown here:
1 1 3 3 4 2 2 5 5 6
4 2 1 1 6 3 3 6 4 5
2 5 5 6 1 4 6 2 3 4

and
1 1 5 2 9 6 8 3 3 2 4 7
9 4 1 6 7 4 2 8 5 3 5 6
3 7 8 1 5 9 9 4 6 7 2 8

are E-optimal and MV-optimal in D(6, 10, 3) and D(9, 12, 3), respectively.

4. Discussion

An often employed property in determining optimal designs is maximal trace of the
information matrix over the class of competing designs. The designs shown here to be E-
optimal and MV-optimal do not have this property. The upper bound for tr(Cd), achieved by
Youden type designs with binary column components, is 2b. Designs d∗ satisfying Theorems 1
and 2 have tr(Cd∗) = 2b− 2(v+ b)/3b, and those for Theorem 3 have tr(Cd∗) = 2b− (2v/3b).
All designs satisfying any of Theorems 1 to 3 are superior to any competing, maximal
trace design. Indeed, they are superior to any competing design having larger trace, be that
maximal or not. This is a property, see Kiefer (1975), shared with the nonregular generalized
Youden designs, which also enjoy optimality properties without being of Youden type. The
Youden designs are, however, binary or generalized binary in both rows and columns, while
the designs satisfying Theorems 1 and 2 have nonbinarity in columns.
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APPENDIX

A. Proof of Lemma 3

Proof: From (3), the information matrix Cd for design d is

Cd = CdN
− 1
b
Bd

whereBd = Md(I3− 1
3J3)M ′

d is nonnegative definite. By assumption, CdN
has v−1 eigenvalues

equal to λv
3 . Since CdN

is completely symmetric, and since Bd and CdN
each have zero row

sums, it follows that Cdu = λv
3 u− 1

b
Bdu, where u is any eigenvector of Bd satisfying u′1 = 0.

Thus the nonzero eigenvalues of Cd are λv
3 −

1
b
ξi where ξd1 ≥ ξd2 ≥ . . . ≥ ξd,v−1 are the

eigenvalues of Bd corresponding to eigenvectors u as identified above.

Next, since Bd is nonnegative definite, and since r(Bd) ≤ r(I3 − 1
3J3) = 2, it follows

that ξdi = 0 for i ≥ 3.

Write a1d = tr(Bd) = ξd1+ξd2 and a2d = tr(B2
d) = ξ2

d1+ξ2
d2. Solving these two equations

for the eigenvalues in terms of the trace terms gives

ξd1 = 1
2[a1d +

√
2a2d − a2

1d] and ξd2 = 1
2[a1d −

√
2a2d − a2

1d].

so that zd1 = λv
3 −

ξd1
b

as claimed.

B. Proof of Lemma 4

Proof: For any d ∈ D(v, b, k) (for any k ≥ 2),

θdii′ ≤ θdN ii′ = cdN ii + cdN i′i′ − 2cdN ii′

= rdi −
λdii
k

+ rdi′ −
λdi′i′

k
+ 2λdii′

k
(17)

≤ k − 1
k

(rdi + rdi′ +
2λdii′
k − 1), (18)

the last inequality because λdii ≥ rdi and λdi′i′ ≥ rdi′ . Now write θ̄di = ∑
i′ 6=i θdii′/(v − 1).

Then under the conditions of the lemma, setting k = 3,

θ̄di ≤
2

3(v − 1)
∑
i′ 6=i

(rdi + rdi′ + λdii′) ≤
2

3(v − 1)[(v − 1)rdi + (vr + p− rdi) + 2rdi]

≤ 2
3(v − 1)[v(r − 1) + (vr + p)] = 2

3(v − 1)[λv(v − 1) + v(q − 1) + p)].

Since for some i′ 6= i, θdii′ ≤ θ̄di, the result is proven.

C. Proof of Lemma 5

Proof: Suppose treatment i having rdi = r is nonbinary in columns. So λdii ≥ r + 2 and
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∑
i′ 6=i λdii′ ≤ r(k − 1)− 2. Then from (17),

v∑
i′ 6=i

θdii′ ≤
v∑
i′ 6=i

[rdi −
λdii
k

+ rdi′ −
λdi′i′

k
+ 2λdii′

k
]

≤ (v − 1)r − (r + 2)
k

+ (k − 1
k

)[(v − 1)r + p] + 2[r(k − 1)− 2]
k

= 1
k
{2vr(k − 1)− 2(v − 1) + [p(k − 1)− 4]} .

Since for some i′, θdii′ ≤ θ̄di. = ∑v
i′ 6=i θdii′/(v − 1), the result follows.

D. Proof of Lemma 6

Proof: From (18),

θdii′ ≤
k − 1
k

(rdi + rdi′ +
2λdii′
k − 1) ≤ 2

k
[r(k − 1) + λ− 1].

E. Proof of Lemma 7

Proof: For any two treatments i 6= i′ having replication r, equation (5) says

θdii′ = 2r − 1
3b [b

b∑
j=1

(ndij − ndi′j)2 + 3
3∑
l=1

(mdil −mdi′l)2].

It will be shown that for some such i 6= i′, ∑3
l=1(mdil −mdi′l)2 ≥ 6, establishing the result.

This is done in two cases, depending on the r (mod 3) value.

Case 1: r ≡ 1 (mod 3) and p < (v + 3)/2.

Suppose treatment 1 is not generalized binary in rows. Then without loss of generality
(WLOG), md11 ≤ (r − 4)/3. There are two subcases to consider.

Case 1(a): mdi1 ≥ (r + 2)/3 for some i ≤ v − p. So take md21 ≥ (r + 2)/3 and write
mi(1) = ∑3

l=2 mdil/2. We have

m1(1) ≥
r − r−4

3
2 = r + 2

3 and m2(1) ≤
r − r+2

3
2 = r − 1

3

so that
3∑
l=1

(md1l −md2l)2 ≥ (md11 −md21)2 + 2(m1(1) −m2(1))2

≥
(

(r − 4)
3 − (r + 2)

3

)2

+ 2
(

(r + 2)
3 − (r − 1)

3

)2

= 6.



2021] ROW-COLUMN DESIGNS WITH THREE ROWS 273

Case 1(b): mdi1 ≤ (r − 1)/3 for i = 2, . . . , v − p. Then
v∑
i=1

mdi1 = b = vr + p

3 ≤ r − 4
3 + (v − p− 1)r − 1

3 +
v∑

i=v−p+1
mdi1

⇒
v∑

i=v−p+1
mdi1 ≥

v + pr + 3
3

Also, since treatments i > v− p are generalized binary in rows, ∑v
i=v−p+1 mdi1 ≤ p(r+ 2)/3.

Hence we must have

p(r + 2)/3 ≥ v + pr + 3
3 ⇔ p ≥ v + 3

2

contradicting the requirement on p and thus showing that Case 1(b) cannot occur.

Case 2: r ≡ 2 (mod 3)

Suppose treatment 1 is not generalized binary in rows. Then WLOG md11 ≥ (r+ 4)/3.
Again there are two subcases to consider.

Case 2(a): mdi1 ≤ (r− 2)/3 for some i ≤ v− p. So take md21 ≤ (r− 2)/3 and with the
notation employed in Case 1(a),

m1(1) ≤
r − r+4

3
2 = r − 2

3 and m2(1) ≥
r − r−2

3
2 = r + 1

3
so that

3∑
l=1

(md1l −md2l)2 ≥ (md11 −md21)2 + 2(m1(1) −m2(1))2

≥
(

(r + 4)
3 − (r − 2)

3

)2

+ 2
(

(r − 2)
3 − (r + 1)

3

)2

= 6.

Case 2(b): mdi1 ≥ (r + 1)/3 for i = 2, . . . , v − p. Since treatments i > v − p are
generalized binary in rows, mdi1 = (r + 1)/3 for i = v − p+ 1, . . . , v. Thus

3
v∑
i=1

mdi1 = bk = vr + p ≥ 3
[
r + 4

3 + (v − p− 1)r + 1
3 + p

(r + 1)
3

]
= vr + p+ 3,

a contradiction, showing that Case 2(b) cannot occur.

F. Proof of Lemma 8

Proof: For any two treatments i 6= i′ having replication r and r+1 respectively, equation (5)
says

θdii′ = 2r + 1− 1
3b [b

b∑
j=1

(ndij − ndi′j)2 + 3
3∑
l=1

(mdil −mdi′l)2 − 1].
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It will be shown that for some such i 6= i′, ∑3
l=1(mdil −mdi′l)2 ≥ 5, establishing the result.

This is done in two cases, depending on the r (mod 3) value.

Case 1: r ≡ 1 (mod 3) and p < (v + 3)/2.

Suppose treatment v is not generalized binary in rows. Then WLOG mdv1 ≥ (r+5)/3.
There are two subcases to consider.

Case 1(a): mdi1 ≤ (r − 1)/3 for some i ≤ v − p. So take md11 ≤ (r − 1)/3 and write
mi(1) = ∑3

l=2 mdil/2. We have

m1(1) ≥
r − r−1

3
2 = 2r + 1

6 and mv(1) ≤
r − r+5

3
2 = r − 1

3
so that

3∑
l=1

(md1l −mdvl)2 ≥ (md11 −mdv1)2 + 2(m1(1) −mv(1))2

≥
(

(r − 1)
3 − (r + 5)

3

)2

+ 2
(

(r − 1)
3 − (2r + 1)

6

)2

= 41
2 ,

and hence the integer ∑3
l=1(md1l −mdvl)2 is at least 5.

Case 1(b): mdi1 ≥ (r + 2)/3 for i = 1, . . . , v − p. Here p must satisfy p ≥ 2, for
otherwise,

3
v∑
i=1

mdi1 = bk = vr + p ≥ 3
[
(v − 1)r + 2

3 + (r + 5)
3

]
= vr + 2v + 3,

a contradiction. It is now claimed that mdi1 ≤ r−4
3 for some i ≥ v−p+1, for if not, employing

the condition p < (v + 3)/2,

0 = 3[(
v∑
i=1

mdi1)− b] = 3
[
(v − p)r + 2

3 + (p− 1)(r − 1)
3 + (r + 5)

3 − (vr + p)
3

]

= 2v − 4p+ 6 > 2v − 4v + 3
2 + 6 = 0,

another contradiction. Hence WLOG mdv−1,1 ≤ (r − 4)/3, so that with the same notation
as in Case 1(a),

m1(1) ≤
r − r+2

3
2 = r − 1

3 and mv−1(1) ≥
r + 1− r−4

3
2 = 2r + 7

6 .

Consequently,
3∑
l=1

(md1l −mdv−1,l)2 ≥ (md11 −mdv−1,1)2 + 2(m1(1) −mv−1(1))2

≥
(

(r + 2)
3 − (r − 4)

3

)2

+ 2
(

(r − 1)
3 − (2r + 7)

6

)2

= 81
2 .
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Case 2: r ≡ 2 (mod 3)

Suppose treatment v is not generalized binary in rows. Then WLOG mdv1 ≥ (r+4)/3.
Again there are two subcases to consider.

Case 2(a): mdi1 ≤ (r− 2)/3 for some i ≤ v− p. So take md11 ≤ (r− 2)/3 and with the
notation employed in Case 1(a),

m1(1) ≥
r − r−2

3
2 = r + 1

3 and mv(1) ≤
r + 1− r+4

3
2 = 2r − 1

6
so that

3∑
l=1

(md1l −mdvl)2 ≥ (md11 −mdv1)2 + 2(m1(1) −mv(1))2

≥
(

(r − 2)
3 − (r + 4)

3

)2

+ 2
(

(r + 1)
3 − (2r − 1)

6

)2

= 41
2

implying ∑3
l=1(md1l −mdvl)2 ≥ 5.

Case 2(b): mdi1 ≥ (r+ 1)/3 for i = 1, . . . , v− p. As in Case 1(b), p must satisfy p ≥ 2,
for otherwise

3
v∑
i=1

mdi1 = bk = vr + p ≥ 3
[
(v − 1)r + 1

3 + (r + 4)
3

]
= vr + v + 3,

a contradiction. It is now claimed that mdi1 ≤ r−5
3 for some i ∈ {v − p+ 1, . . . , v − 1}, for if

not, employing the condition p < (v + 6)/4,

0 = 3[(
v∑
i=1

mdi1)− b] = 3
[
(v − p)r + 1

3 + (p− 1)(r − 2)
3 + (r + 4)

3 − (vr + p)
3

]

= v − 4p+ 6 > v − 4v + 6
4 + 6 = 0,

another contradiction. Hence WLOG mdv−1,1 ≤ (r − 5)/3, so that with the same notation
as in Case 1(a),

m1(1) ≤
r − r+1

3
2 = 2r − 1

6 and mv−1(1) ≥
r + 1− r−5

3
2 = r + 4

3 .

Consequently,
3∑
l=1

(md1l −mdv−1,l)2 ≥ (md11 −mdv−1,1)2 + 2(m1(1) −mv−1(1))2

≥
(

(r + 1)
3 − (r − 5)

3

)2

+ 2
(

(2r − 1)
6 − (r + 4)

3

)2

= 81
2 .
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Abstract
The purpose of this paper is to present a heuristic algorithm for obtaining weighted A-

optimal balanced treatment incomplete block (BTIB) designs for making test versus test and
tests versus control comparisons. The proposed algorithm is implemented using R language.
The proposed algorithm has been used to obtain weighted A-optimal BTIB designs in a
restricted parametric range. A total of 369 weighted A-optimal BTIB designs are obtained
in the restricted parametric range.

Key words: Algorithm; BTIB Designs; Linear Integer Programming; Test Treatment; Con-
trol; R package.

1. Introduction

There are many experimental situations where the experimenter is interested in com-
paring a set of new treatments, called tests, with a standard treatment, called control. In the
presence of a single nuisance factor, block designs for tests versus control are recommended
for conducting such experiments. A number of useful classes of designs such as balanced
treatments incomplete block (BTIB) designs, group divisible treatment (GDT) designs, par-
tially balanced treatment incomplete block (PBTIB) designs are available in literature and
a lot of research efforts has been made on these designs. One can refer to Hedayat et al.
(1988), Gupta and Parsad (2001) and Section 5.4 of Dey (2010) for a review on designs for
tests versus control comparison.

Consider the experimental setting where v test treatments are to be compared with
a control using a block design with b blocks each of size k. Let D(v, b, k) denote the class
of connected block designs in v + 1 treatments with b blocks with size k each. In the
choice of A-optimal designs for tests versus controls comparisons, only comparison between
test treatments and the control played the role in the choice of A-optimal designs. No
consideration was made for pairwise comparison among test treatments. Since the designs
in D(v, b, k) are connected, they permit estimation of test versus test comparisons along
with test versus control comparisons. Though, the pairwise comparisons among test versus
test treatments would be required with lesser precision. To this end, Gupta et al. (1999)
introduced weighted A-optimality of the block designs. Gupta et al. (1999) derived conditions
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Email: bn.mandal@icar.gov.in



278 BAIDYA NATH MANDAL, RAJENDER PARSAD and SUKANTA DASH [Vol. 19, No. 1

under which a design is weighted A-optimal for estimating these two sets of contrasts with
unequal precisions. They provided a method of construction and a catalogue of weighted
A-efficient BTIB designs. Parsad et al. (2009) proposed an algorithm based on interchange-
exchange approach to obtain weighted A-efficient and weighted A-optimal designs for test
versus test and tests versus control comparisons. They also obtained 15259 weighted A-
efficient designs using the proposed algorithm. However, they reported only 43 weighted
A-optimal BTIB designs in Table 3 of their article.

The purpose of this article is to present an algorithm for construction of weighted
A-optimal BTIB designs and a list of 369 weighted A-optimal BTIB designs in a restricted
parametric range. The article is organized as follows. Section 2 gives the concept of weighted
A-optimality. An algorithm is proposed to obtain weighted A-optimal BTIB designs in sec-
tion 3. The list of weighted A-optimal BTIB designs obtained using the proposed algorithm
is presented in section 5. The article is concluded in section 6.

2. Preliminaries

Let the control treatment be indexed as 0 and the test treatments be denoted as
1, 2, ..., v. Assume the two-way classified fixed effects homoscedastic model

yijl = µ+ τi + βj + εijl (1)

where yijl denote the response from the lth experimental units in jth block receiving ith
treatment, τi is the effect of ith treatment, βj is the effect of jth block and εijl are uncorrelated
errors with mean zero and constant variance σ2,i = 0, 1, 2, ..., v, j = 1, 2, ..., b and l =
1, 2, ..., k. It may be mentioned here that Gupta et al. (1999) considered mixed effects model
with random block effects. However, we shall restrict ourselves to fixed effects of blocks. A
design d ∈ D(v, b, k) is said to be weighted A-optimal if it minimizes

β
v∑
i=1

var (τ̂d0 − τ̂di) + α
v−1∑
i=1

v∑
i′=i+1

var (τ̂di − τ̂di′)

with β+α = 1 and 0 ≤ α, β ≤ 1. The expression above is the weighted sum of the variances
of the estimates of test-control contrasts and test-test contrasts, respectively, with weights
as β and α, respectively. Clearly, for α = 0, the criterion reduces to A-optimality for tests
vs controls and for α = β, the criterion reduces to A-optimality for all pairwise comparisons.
Since more precision is required for test-control comparisons than the test-test comparisons,
β and α may be so chosen that β > α.

Let Pc = [1v : −Iv] and PT,Z = [0Z : 0Z×(v−Z−1) : 1Z : −IZ ], Z = 1, 2, ..., v − 1. Then

P =


Pc

P′T,1
P′T,2

...
P′T,v−1

 (2)
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is the coefficient matrix of the contrasts for test-control and test-test comparisons.

To search for A-optimal block designs in D(v, b, k), Gupta et al. (1999) focused their
attention in the class of BTIB(v, b, k; t, s) designs which was introduced by Stufken (1987).
Gupta et al. (1999) presented the following result to characterize weighted A-optimality of
BTIB designs.

Theorem 1: A BTIB(v, b, k; t, s) design is A-optimal over D(v, b, k) for fixed value of α if

g(t, s) = min
(x,z)∈∆

g(x, z)

where ∆ = {(x, z) : x = 0, 1, ..., int(k/2) − 1; z = 0, 1, ..., b with z > 0 when x = 0} and
g(x, z) = (β+αv)(v−1)2

A(x,z) + βb
B(x,z) ,

A(x, z) = k(v − 1)[b(k − x)− z]− [v{b(k − x)− z} − bk2 − bx2 − 2xz − z + 2k(bx+ z)],
B(x, z) = b[k(bx+ z)− (bx2 + 2xz+ z)] and α/β ≤ {(2vk−2v−k+1)2−(k−1)2(v−1)2}

v[(k−1)(v−1)]2 when k is odd

and α/β ≤ (2vk−2v−k)2−k2(v−1)2

v[k(v−1)]2 when k is even.

Theorem 1 gives a sufficient condition to check weighted A-optimality of a given BTIB
(v, b, k; t, s) design and is useful to see whether a BTIB design is weighted A-optimal or not
for given value of α. Gupta et al. (1999) used the result to check weighted A-optimality of
designs from Parsad et al. (1995). The number of weighted A-optimal BTIB designs obtained
by them are given below.

α 0 0.1 0.2 0.3 0.4
Number of designs 9 7 8 6 0

It is clear from above that more efforts are required to obtain weighted A-optimal BTIB
designs. To this end, we present an algorithm to obtain weighted A-optimal BTIB designs.

3. The Algorithm

In this section, we present the algorithm to obtain weighted A-optimal BTIB designs in
D(v, b, k) for test-test and test-control comparisons. Given v, b, k, the algorithm computes
the value of t and s which minimize g(x, z) and then obtains other parameters through
necessary parametric relations. Then it attempts to obtain the incidence matrix of a weighted
A-optimal BTIB design with these parameters through linear integer programming approach.

The steps of the algorithm are detailed below.

Step 1: Given v, b, k and α, first check whether α satisfies the condition of Theorem 1. If
α satisfies the condition of Theorem 1, obtain t and s which minimize g(x, z).

Step 2: Compute r0 = s+ bt, r = (bk − r0)/v, λ0 = (s(t+ 1)(k − t− 1) + (b− s)t(k − t))/v
and λ1 = (r(k− 1)−λ0)/(v− 1). If all of r, r0, λ and λ0 are integers then proceed, else
a weighted A-optimal BTIB does not exist.
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Step 3: (i) Create the first row of the incidence matrix N by assigning t+1 in s randomly
chosen columns and by assigning t in the remaining b−s columns of the row. The
first row of incidence matrix indicates the allocation of the control to b blocks.

(ii) Obtain the ith (i = 2, 3, . . . , v + 1) row for allocation of (i− 1)th test treatment
to blocks by solving the following linear integer programming formulation with
respect to binary decision variables x1, x2, . . . , xb:

Maximize φ =
b∑

j=1
wjxj

subject to constraints
b∑

j=1
xj = r

xj ≤ k − kj∀j = 1, 2, . . . , b
b∑

j=1
n1jxj = λ0

b∑
j=1

ni′jxj = λ1, ∀i′ = 2, 3, . . . , i− 1

(3)

where wj = 1
kj

if kj > 0 and wj = 1 if kj = 0, with kj being the size of the jth
block up to (i− 1) row and ni′j is the element at the i′th row and the jth column
of N.

(iii) If there is no optimal solution of the formulation (3), delete a random row m
between 2 to (i − 1)th row of the incidence matrix, store the deleted row in a
matrix T, update kj values and try to obtain a newer solution to mth row by
solving the formulation (4):

Maximize φ =
b∑

j=1
wjxj

subject to constraints
b∑

j=1
xj = r

xj ≤ k − kj ∀j = 1, 2, . . . , b
b∑

j=1
n1jxj = λ0

b∑
j=1

ni′jxj = λ1 ∀i′ = 2, 3, . . . ,m− 1,m+ 1, . . . , i− 1

b∑
j=1

tujxj < r ∀u = 1, 2, . . . , p

(4)

where p is the number of rows of the matrix T and tuj is the element at the
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uth row and the jth column of T matrix. If there is a solution then update the
incidence matrix. If there is no solution, repeat this step by drawing another
random number m. Once the mth row is obtained, then go back to step ii) to
obtain the ith row.

Step 4: If all the v + 1 rows of the matrix N are obtained, then compute the A-efficiency
by using the formula Ae = trace(PC−d∗P′)/trace(PC−d P′) to confirm weighted A-
optimality of the design. Here d∗ is a hypothetical A-optimal design in D(v, b, k) for
which trace(PC−d∗P′) is minimum. If Ae = 1, then the design is weighted A-optimal.

The formulations (3) and (4) allocate a particular test treatment to r blocks out of
the b blocks. While doing so, the objective function gives less weight to those blocks which
already contains more number of treatments compared to other blocks. The first constraint
ensures that the number of replications of the treatment is r. The second constraint is to
ensure that a block does not contain more than k treatments. The third and fourth set of
constraints ensure that for a given test treatment, the concurrences with the control and
with the other test treatments are λ0 and λ1, respectively. The additional fifth constraint in
formulation (4) prevents an already deleted solution for the mth row to recur.

Even if a weighted A-optimal BTIB design exists, sometimes the proposed algorithm
may not be able to obtain a weighted A-optimal design. For example, the algorithm may
get u < v + 1 rows of incidence matrix N and it may not be able to proceed after uth row.
This indicates that in these u rows, there may be some row(s) which do not allow the desired
structure of the required design. Though step (iii) of Step 3 is there to eliminate such rows,
however, it is not known which row(s) are actually the culprit and so step (iii) of Step 3
may not be 100% effective and this is the reason that the algorithm may not be able to get
a solution even though a weighted optimal exists for the given parameters.

We have seen that the algorithm works best when v ≤ 30 and k ≤ 10. The efficiency of
the algorithm to obtain weighted A-optimal design goes down with larger values of v. This is
due to the fact that the chances of entering improper candidate rows in the incidence matrix
increases with larger v. Further research efforts are required to obtain weighted A-optimal
BTIB designs for larger values of v and k.

The integer programming formulations (3) and (4) were solved using lpSolve R package
of Berkelaar and Others (2011) and the complete algorithm is implemented using R language.
Further, an R package Aoptbdtvc (Mandal et al., 2017a) has been built and published on
CRAN. The package is available on cran.r-project.org/web/packages/Aoptbdtvc/index.html.
A manual showing the usage of functions to implement the proposed algorithm is also avail-
able in the same web page.

4. Working of The Algorithm

In this Section, we illustrate the working of the algorithm with the help of an example.

Example 1: Consider construction of weighted A-optimal BTIB design for v = 4, b =
4, k = 4, α = 0.4 The algorithm finds that t = 0, s = 4 in Step 1. From Step 2, algorithm
gives r0 = 4, r = 3, λ0 = 3, λ = 2. Now in Step 3, the algorithm attempts to obtain an
treatment-block incidence matrix of such a BTIB design with these parameters.
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In the first step of Step 3, the algorithm obtains first row of the treatment-block
incidence matrix as

(
1 1 1 1

)
. To obtain the second row of the incidence matrix, following

linear integer program is solved:

Maximize φ = x1 + x2 + x3 + x4 subject to constraints

x1 + x2 + x3 + x4 = 3
x1 ≤ 4− 1
x2 ≤ 4− 1
x3 ≤ 4− 1
x4 ≤ 4− 1
x1 + x2 + x3 + x4 = 3.

An optimal solution to the above linear program is
(
0 1 1 1

)
. So after two steps, the

incidence matrix obtained is
(

1 1 1 1
0 1 1 1

)
. To obtain the third row, the linear integer

formulation is Maximize φ = x1 + 1
2x2 + 1

2x3 + 1
2x4 subject to constraints

x1 + x2 + x3 + x4 = 3
x1 ≤ 4− 1
x2 ≤ 4− 2
x3 ≤ 4− 2
x4 ≤ 4− 2
x1 + x2 + x3 + x4 = 3
x2 + x3 + x4 = 2.

An optimal solution to this formulation is
(
1 0 1 1

)
which gives incidence matrix up

to third row as

1 1 1 1
0 1 1 1
1 0 1 1

. For obtaining the fourth row, the formulation is Maximize

φ = 1
2x1 + 1

2x2 + 1
3x3 + 1

3x4 subject to constraints

x1 + x2 + x3 + x4 = 3
x1 ≤ 4− 2
x2 ≤ 4− 2
x3 ≤ 4− 3
x4 ≤ 4− 3
x1 + x2 + x3 + x4 = 3
x2 + x3 + x4 = 2
x1 + x3 + x4 = 2.

The algorithm gives an optimal solution to this formulation as
(
1 1 0 1

)
and hence, the
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incidence matrix obtained till fourth row is


1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1

. For getting the last row of the

incidence matrix, the formulation is as follows: Maximize φ = 1
3x1 + 1

3x2 + 1
4x3 + 1

4x4 subject
to constraints

x1 + x2 + x3 + x4 = 3
x1 ≤ 4− 3
x2 ≤ 4− 3
x3 ≤ 4− 3
x4 ≤ 4− 4
x1 + x2 + x3 + x4 = 3
x2 + x3 + x4 = 2
x1 + x3 + x4 = 2
x1 + x2 + x4 = 2.

An optimal solution to this formulation is
(
1 1 1 0

)
. As a result, the algorithm gives

treatment-block incidence matrix as


1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 and the corresponding design is

Block-1 (0 2 3 4)
Block-2 (0 1 3 4)
Block-3 (0 1 2 4)
Block-4 (0 1 2 3)

For confirmation of A-optimality, Ae is computed which isAe = trace(PC−d∗P′)/trace(PC−d P′)
= g(t, s)/trace(PC−d P′) = 3.2/3.2 = 1. Thus, the design so obtained is weighted A-optimal
BTIB design for v = b = k = 4, α = 0.4.

Let us consider another example with α = 0.5.

Example 2: Consider v = 6, b = 7, k = 4, α = 0.5. In Step 1, it can be found that
t = 0, s = 4 which gives r = r0 = 4, λ0 = λ1 = 2. Step 3 gives us the following design.

Block-1 (2 3 4 6)
Block-2 (0 2 3 4)
Block-3 (0 2 5 6)
Block-4 (1 2 4 5)
Block-5 (0 1 4 6)
Block-6 (1 2 3 6)
Block-7 (0 1 3 5)
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Clearly, the design is a balanced incomplete block design and is A-optimal for all possible
pair wise comparisons.

5. List of Weighted A-optimal BTIB Designs

The proposed algorithm in Section 3 can be used to construct weighted A-optimal BTIB
designs for given parameters v, b, k, and α. We utilized the algorithm to obtain weighted
A-optimal BTIB designs in a limited parametric range 2 ≤ v ≤ 30, v + 1 ≤ b ≤ 50, 2 ≤ k ≤
min(10, v), α = 0.2, 0.4, 0.6, 0.8. We denote this parametric range as P for further reference.

Within P, we obtained 369 A-optimal designs out of which 70 are R-type and 299
are S-type. The list of designs along with the layouts is available at https://drs.icar.
gov.in/WAoptBTIB/WAoptBTIB.htm, (Mandal et al., 2017b). The distribution of the designs
according to various values of block size k and α is given in Table 1.

Table 1: Distribution of weighted A-optimal designs according to block size and
α

α
Block size 0.2 0.4 0.6 0.8 Total Number of Designs

3 19 18 17 19 73
4 28 16 14 20 78
5 31 12 11 10 64
6 5 13 8 11 37
7 16 14 7 6 43
8 0 12 6 10 28
9 3 10 6 6 25
10 3 10 3 5 21

Total Number of Designs 105 105 72 87 369

We made a comparison of the weighted A-optimal designs obtained above with those
of Gupta et al. (1999) and Parsad et al. (2009). Out of 15 distinct weighted A-optimal BTIB
design given by Gupta et al. (1999), 7 fall in the parametric range P. Out of these 7 designs,
we obtained six of them and are shown in Table 2. Out of the 43 designs reported by Parsad
et al. (2009), only 14 designs fall in the parametric range P. We have obtained all these 14
designs and are given in Table 3.

Table 2: Weighted A-optimal BTIB designs in P from Gupta et al. (1999)

v b k t s α Type
6 15 5 0 15 0.2 S
6 18 3 0 12 0.2 S
4 12 4 0 8 0.6 S
4 18 4 0 16 0.4 S
7 7 7 0 7 0.4 S
4 24 4 0 12 0.8 S
4 36 4 0 32 0.4 S
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Table 3: Weighted A-optimal BTIB designs in P from Parsad et al. (2009)

v b k t s α Type
3 3 3 0 3 0.2 S
3 4 3 0 3 0.4 S
6 7 3 0 3 0.4 S
9 18 3 0 9 0.2 S
4 4 4 0 4 0.2 S
4 5 4 0 4 0.4 S
5 5 5 0 5 0.2 S
5 5 5 0 5 0.4 S
7 7 5 0 7 0.2 S
7 7 5 0 7 0.2 S
9 12 7 0 12 0.2 S
8 8 8 0 8 0.4 S
9 9 9 0 9 0.4 S

10 10 10 0 10 0.4 S

An interesting observation is that among the 369 designs in the parametric range P,
we found certain designs with same parametric combinations which are weighted A-optimal
for more than one value of α. The list of those designs are depicted in Table 4.

Table 4: Weighted A-optimal designs for multiple values of α

Sr No. v b k t s α Type
1 3 4 3 0 3 0.4, 0.6 S
2 4 4 4 0 4 0.2, 0.4 S
3 4 4 4 1 0 0.2, 0.4 R
4 4 5 4 0 4 0.4, 0.6 S
5 5 5 5 0 5 0.2, 0.4 S
6 5 5 5 1 0 0.2, 0.4 R
7 6 7 3 0 3 0.4, 0.6 S

6. Concluding Remarks

We have presented an algorithm to construct weighted A-optimal BTIB designs and
also listed 369 weighted A-optimal designs. We believe most of the designs, particularly
those with α > 0 are new and has not been reported elsewhere. The proposed algorithm will
be useful for experimenters and statisticians to obtain weighted A-optimal BTIB designs
for various values of parameters including other values of weights given to the contrasts.
Further efforts are required to devise algorithms which are able to construct weighted A-
optimal BTIB designs for larger number of treatments. The proposed algorithm in this
article has been restricted to construct weighted A-optimal BTIB designs where only one
control is considered. The algorithm may be extended for weighted A-optimal block designs
for more than one control treatment. Effort may also be made to obtain weighted A-optimal
block designs beyond the class of BTIB designs.
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Abstract
In the present paper we construct plans orthogonal through the block factor (POTBs).

We describe procedures for adding blocks as well as factors to an initial plan and thus generate
a bigger plan. Using these procedures we construct POTBs for symmetrical experiments with
factors having three or more levels. We also construct plans inter-class orthogonal through
the block factor for two-level as well as higher level factors.

Key words: Factorial experiments; Main effects; Orthogonal; Block factor.

1. Introduction

A situation in which a treatment factor is neither orthogonal nor confounded to a
nuisance factor was first explored in Morgan and Uddin (1996) in the context of nested
row-column designs. They derived a sufficient condition for a treatment factor, possibly
non-orthogonal to the nuisance factors, to be orthogonal to another treatment factor. They
also derived a sufficient condition for optimality and constructed several series of orthogonal
main effect plans (OMEPs) satisfying optimality properties. Mukherjee, Dey and Chatterjee
(2002) discussed and constructed main effect plans (MEPs) on small-sized blocks, not nec-
essarily orthogonal to all treatment factors. Their plans also satisfy optimality properties.
Optimal blocked MEPs of similar type are also constructed in Das and Dey (2004).

Bose and Bagchi (2007) provided plans satisfying properties similar to those of the plans
of Mukherjee, Dey and Chatterjee (2002), but requiring fewer blocks. In Bagchi (2010) the
concept of orthogonality through the block factor [see Definition 2.2] is introduced. In that
paper it has been shown that a plan orthogonal through the block factor (POTB) may exist
in a set up, where an OMEP can not exist. Making use of the Hadamard matrices in various
way, Jacroux and his co-authors (2011, 2017) have come up with a number of such plans,
mostly for two-level factors, many of them satisfying optimality properties. POTBs are also
constructed in Saharay and Dutta (2016).

Wang (2004) constructed plans for two-level factors on blocks of size two, estimating
interaction effects also. A general method of estimating interaction effects from plans on
blocks of small size is provided in Bagchi (2020). The method is applied to plans for two
and three-level factors estimating two-factor interactions.
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Preece (1966) constructed ‘BIBDs for two sets of treatments’. Subsequently several
authors constructed similar combinatorial objects. Among these, the ones relevant to the
present paper are ‘balanced Graeco-Latin block designs’ of Seberry (1979), ‘Graeco-Latin
designs of type 1’ of Street (1981) and ‘Perfect Graeco-Latin balanced incomplete block
designs (PERGOLAs)’ of Rees and Preece (1999). We note that all these combinatorial
designs are, in fact, two-factor POTBs satifying certain additional properties. We discuss
these interesting combinatorial designs briefly in Section 3.

In the present paper our main objective is to provide plans in those set ups where no
OMEP is available, accommodating as many factors as possible and deviating “as little as
possible” from orthogonality. We construct a few series of POTBs for symmetrical experi-
ment with factors having three or more levels. We also define plans inter-class orthogonal
through the block factor (PIOTBs) [see Definition 6.1] and construct a series of such plans.

In Section 2 we present the definition of a POTB along with its attractive features.
The later sections are devoted to construction. In Section 3 we obtain a few infinite series
of POTBs for symmetric experiments with four or less factors, each with five or more levels
[see Theorems 3.1, 3.2 and 3.3]. In Section 4 we describe methods of recursive construction.
In Section 5 we use these methods and construct two series of POTBs for three-level factors
on blocks of size four [see Theorems 5.1 and 5.3]. Finally, in Section 6 we construct two
infinite series of PIOTBs with orthogonal classes of small size, one for factors with level ≥ 5
[see Theorem 6.1] and another for two-level factors [see Theorem 6.3]. Many of the plans
constructed here are saturated. Moreover, many satisfy optimality properties.

2. Preliminaries

We shall consider main effect plans for a symmetrical experiment with m factors, laid
out on blocks of constant size.

Notation 2.1: (0)m and n will denote integers. M = {1, 2, · · ·m}. Further, ī = M\{i}, i ∈
M .

(1) P will denote a main effect plan for a sm experiment consisting of b blocks each of
size k. n will denote the total number of runs. Thus, n = bk.

(2) s will denote an integer and S the set of integers modulo s. The set of levels for
each factor is S unless stated otherwise. Sm will denote the following set of m × 1 vectors.
Sm = {(x1, · · ·xm)′ : xi ∈ S}.

(3) Ai denotes the ith factor, i = 1, 2, · · ·m. The vector x = (x1, x2, · · ·xm)′ ∈ Sm

represents a level combination or run, in which Ai is at level xi, i = 1, 2, · · ·m.

(4) B = {Bj, j = 1, · · · b} will denote the set of all blocks of P0, Thus, Bj ⊂ Sm, |Bj| =
k, 1 ≤ j ≤ b. Sometimes we describe a plan in terms of its blocks.

(5) The replication vector of Ai is denoted by the s×1 vector ri, the pth entry of which
is the number of runs x of P such that xi = p, p ∈ S. Ri denotes a diagonal matrix with
diagonal entries same as those of ri in the same order, 1 ≤ i ≤ m.

(6) For 1 ≤ i, j ≤ m, the Ai versus Aj incidence matrix is the si × sj matrix Nij.
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The (p, q)th entry of this matrix is N ij(p, q), which is the number of runs x of P such that
xi = p, xj = q, p ∈ Si, q ∈ Sj. When j = i, Nij = Ri.

(7) Fix i ∈M .

(a) Li will denote the Ai-versus block incidence matrix. Thus, the (p, j)th entry of the
Li is

Li(p, j) = |x ∈ Bj : xi = p|, p ∈ S, 1 ≤ j ≤ b.

(b) The s × 1 vector αi will denote the vector of unknown effects of Ai. The vector of raw
totals for Ai will be denoted by Ti. B will denote the vector of block totals.

(c) We define the following vectors and matrices in terms of ī [recall (0)]. The vector Uī

is of order (m−1)s×1, the matrices Vī andWī are of orders s×(m−1)s and (m−1)s×(m−1)s
respectively

Uī = ((Tj))j∈ī, (1)
Vī = ((Nij))j∈ī, (2)
Wī = ((Npq))p,q∈ī. (3)

Consider the normal equations for a plan P as described above. If we eliminate the
general effects and the vector of block effects from this system of equations, we get the
reduced normal equation for the vectors of all (unknown) effects of all the treatment factors.
This is a system of ms equations, but it is convenient to view it as m systems of s equations
each, the ith system equations is of the form

m∑
j=1

Cij;Bα̂j = Qi;B. (4)

Here Cij;B, 1 ≤ j ≤ m are the coefficient matrices and Qi;B is the vector of adjusted (for
the blocks) totals for Ai. The expressions of them are as follows.

Cij;B = Nij − (1/k)LiL
′
j and Qi;B = Ti − (1/k)LiB. (5)

For a fixed i, we can eliminate α̂j, j ∈ ī from (4) and get

the reduced normal equation for α̂i as Ci;̄iα̂
i = Qi;̄i, (6)

where Ci;̄i = Ri −VīW
−
ī

V′ī and Qi;̄i = Ti −VīW
−
ī

U′ī, Ui, Vi and Wi are as in (1) and the
equations next.

With this background we present a few definitions.

Definition 2.1: An m-factor MEP is said to be ‘connected’ if Rank(Ci;̄i) = s− 1, for every
i = 1, 2, · · ·m.

Definition 2.2: [ Bagchi (2010)] Fix i 6= j 1 ≤ i, j ≤ m. The factors Ai and Aj are said to
be orthogonal through the block factor (OTB) if

kNij = Li(Lj)′. (7)
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We denote this by Ai⊥blAj.

A plan P is said to be a plan orthogonal through the block factor (POTB) if
Ai⊥blAj for every pair (i, j), i 6= j, i, j = 1, · · ·m.

Remark 2.1: Condition (7) is equivalent to equation (7) of Morgan and Uddin (1996) in
the context of nested row-column designs.

Let us try to see the implications of orthogonality through the block factor. Let SSi;all

(respectively SSi;B) denote sum of squares for Ai, adjusted for all other factors (respectively
the block factor). The following results are known.

Theorem 2.1: Consider a plan P . Fix i ∈ {1, · · ·m}.

(a) [Bagchi(2010)] If for j 6= i Ai⊥blAj, then

(i) Cij;B = 0 and (ii) Cov(l′α̂i,m′α̂j) = 0, for l′1s = 0 = m′1s.

(b)[Bagchi (2020)] Further, Ai⊥blAj, ∀j 6= i is necessary and sufficient for the following.

(i) Ci;̄i = Cii;B and (ii) SSi;all = SSi;B with probability 1.

Discussion: Theorem 2.1 says the following about the inference on the factors of a
connected main effect plan. The inference on a factor Ai depends only on the relationship
between Ai and the block factor if and only if Ai is orthogonal to every other treatment
factor through the block factor. Moreover, the data analysis of a POTB is very similar to
the data analysis of a block design with s treatments.

It is well-known that the orthogonal MEP obtained from an orthogonal array is the
best possible MEP in the sense that the estimates have the maximum precision among all
MEPs in the same set up. The same cannot be said about an POTB since its performance
also depends on the relationships of the treatment factors with the block factor. In the next
theorem a guideline for the search for a ‘good’ POTB is provided. We omit the proof which
can be obtained by going along the same lines as in the proofs of Lemma 1 and Theorem 1 of
Mukherjee, Dey and Chatterjee (2002). [See Shah and Sinha (1989) for definitions, results
and other details about standard optimality criteria]

Theorem 2.2: Suppose a connected POTB P∗ satisfies the following condition. For a factor
Ai and a non-increasing optimality criterion φ, Li is the incidence matrix of a block design
d which is φ -optimal in a certain class of connected block designs with s treatments and b
blocks of size k each. Then, P∗ is φ-optimal in a similar class of connected m-factor MEPs
in the same set-up as P∗ for the inference on Ai.

In particular, using the well-known optimality result of Kiefer (1975) we get the fol-
lowing result.

Corollary 2.1: Suppose P∗ is a connected POTB. Fix i ∈ {1, · · ·m}.

If Li is the incidence matrix of a BIBD, then, for the inference on Ai, P∗ is universally
optimal in the class of all m-factor connected MEP containing P∗.
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In view of the above result, we introduce the following term.

Definition 2.3: A connected POTB is said to be balanced if each of its factors form
a BIBD with the block factor, that is Li is the incidence matrix of a BIBD for each
i, 1 ≤ i ≤ m

We now present a small example of a balanced POTB on six blocks of size two each.
It has two factors, each with four levels 0,1,2,3.

Example 1 (Bagchi and Bose, 2007) :

Blocks → B1 B2 B3 B4 B5 B6
Factors ↓ A1 0 2 1 3 0 3 1 2 0 1 3 2

A2 1 3 0 2 2 1 3 0 3 2 0 1

3. Construction of Plans with a Small Number of Factors

We shall now proceed to construct POTBs for a symmetric experiment. Most of the
constructions are of recursive type, in the sensethat from a given initial plan we generate a
plan by adding blocks and/or factors. Before going to the actual constructions, we present
a small POTB. This is not connected and therefore has no use in practice. However, its
property will be used in proving the results below.

Lemma 3.1: Let T = {a, b, c, d} ⊂ S. Consider the following plan for a 42 experiment
consisting of two blocks, in which the set of levels of A1 is T , while that of A2 is −T . Then,
A1⊥blA2.

Blocks → B1 B2
Factors ↓ A1 a c b d

A2 -d -b -a -c
.

Proof is by direct verification of (7).

Definition 3.1: Consider an initial plan P0 for an sm experiment as described in Notation
2.1. For B ∈ B and v ∈ Sm, B+v will denote the following set of k runs. B+v = {x+v, x ∈
B}. Here x+ v = [xi + vi : 1 ≤ i ≤ m]′, where the addition in each co-ordinate is modulo s.

By the plan generated from P0 by adding S we shall mean the plan (for the same
experiment) having the set of blocks {B + u1m : u ∈ S,B ∈ B}. The new plan P will be
denoted by P0 ⊕ S.

We present an useful result. The simple proof is omitted.

Lemma 3.2: Consider a t2 experiment, say E, such that the set of levels of Ai is Ti, which
is a subset of S and |Ti| = t, i = 1, 2. If there is a plan P0 for E in which A1⊥blA2, then
A1⊥blA2 in P = P0 ⊕ S too ; although in P the set of levels of each factor is S. P is
connected, even if P0 is not so.
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We shall now proceed to construction. We begin with plans with a small set of factors.
Let S+ denote S ∪ {∞}. The following rule will define addition in S+.

u+∞ =∞ =∞+ u, u ∈ S. (8)

Theorem 3.1: Suppose s is an integer ≥ 5. Then connected POTBs with block size two
exists for the following experiments.

(a) For an s2 experiment a POTB P on 2s blocks exists. In the case s = 5, P is
balanced.

(b) For an s4 experiment a POTB on 4s blocks exists, whenever s ≥ 9. If s = 9, P2 is
balanced.

(c) A POTB P for a (s+ 1)4 experiment with 6s blocks exists, whenever n ≥ 7.

Proof: In each case, we present the blocks, of an initial plan P0 The required plan is P0⊕S
[see Definition 3.1]. Here a, b, c, d are distinct members of S \ {0}.

(a) The blocks of P0 are given below.

Blocks → B1 B2
Factors ↓ A1 a -a b -b

A2 b -b -a a
.

We apply Lemma 3.1 with c = −a, d = −b and see that A1⊥blA2 in P0. Then we apply
Lemma 3.2 and get the result.

If s = 5, taking a = 1, b = 2 we see that L1 = L2, which is the incidence matrix of the
BIBD with parameters v = 5, b = 10, r = 4, k = 2, λ = 1. Hence the result.

(b) The blocks Bl, l = 1, · · · 4 of P0 are as follows.

Blocks → B1 B2 B3 B4
Factors ↓ A1 a -a b -b c -c -d d

A2 b -b -a a -d d -c c
A3 c -c d -d -a a b -b
A4 d -d -c c b -b a -a

To show that the generated plan is a POTB, we proceed as follows. We consider the
following subplans.

Let Pij = {Bi, Bj} i 6= j, i, j = 1, 2, 3, 4. Further, let P̄ij denote the plan Pkl, where
{k, l} = {1, 2, 3, 4} \ {i, j}. [Thus, P̄34 = P12 and so on].

Applying Lemma 3.1 on these subplans we see that Ai⊥blAj in Pij as well as in P̄ij.
Now the result follows from Lemma 3.2.
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By taking a = 1, b = 2, c = 3 and d = 4 in the case s = 9, we get Li is the incidence
matrix of the BIBD with parameters v = 9, b = 36, r = 8, k = 2, λ = 1. Hence the result.

(c) The set of levels for each factor is S+. The blocks Bl, l = 1, · · · 6 of the initial plan
are as follows.

Blocks → B1 B2 B3 B4 B5 B6
Factors ↓ A1 0 ∞ a -a b -b c -c a -a a -a

A2 a -a 0 ∞ c -c -b b a -a -a a
A3 b -b c -c 0 ∞ a -a -c c -c c
A4 c -c -b b a -a 0 ∞ -c c c -c

. 2

By using arguments similar to that in Case (b), together with the relation (8) we get
the result.

We now list a few combinatorial structures in the literature which are actually balanced
POTBs (for symmetrical or asymmetrical experiments).

(a) Balanced Graco-Latin block design defined and constructed in Seberry (1979)
heve two factors.

(b) Graco-Latin block design of type 1 of Street (1981) are also two-factor balanced
POTBs satisfying N12 = J.

(c) Perfect Graeco-Latin balanced incomplete block designs (PERGOLAs)
defined and discussed extensively in Rees and Preece (1999) are two-factor balanced POTBs
satisfying

N12N′12 = N′12N12 = fIs + gJs, where f, g are integers. (9)
Here In is the identity matrix and Jn is the all-one matrix of order n.

(d) Mutually orthogonal BIBDs defined and constructed by Morgan and Uddin
(1996) are multi-factor balanced POTBs.

Remark 3.1: The definition of neither balanced Graco-Latin block designs nor of mutually
orthogonal BIBDs include condition (9). However, it is interesting to note that all these
designs constructed so far do satisfy this condition. One would, therefore, suspect that this
condition is implicit in the definition. We have, however, found a balanced POTB which
does not satisfy this condition, as is shown below [see Theorem 3.2 (b)].

For the next construction we need a few notations. Recall that a multiset is a set in
which the number of occurrences of an element is counted.

Notation 3.1: (i) ⊔ denotes an union counting multiplicity.

(ii) For a set A and an integer n, nA denotes the multiset in which every member of
A occurs n times.
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(iii) For subsets A and B of a group (G,+), AB will denote the following multiset.

A−B = {a− b : a ∈ A, b ∈ B}.

Notation 3.2: Consider a plan P0 for an S2 experiment as in Notation 2.1.

(a) Consider the jth block Bj of P0. (xjt, yjt)′ will denote the tth run of Bj, j = 1, · · · b.
Xj = {xjt, t = 1, · · · k} (respectively Yj = {yjt, t = 1, · · · k}) is the set of levels of A1
(respectively A2) appearing in Bj.

(b) We define the following multisets.

Dj = {yjt − xjt, t = 1, · · · k} and D =
⊔

1≤j≤b

Dj. Further, δ =
⊔

1≤j≤b

(Yj −Xj).

The following result can be proved by direct verification.

Lemma 3.3: (a) If an element u of S appears p times in D, then the following holds for
P0 ⊕ S.

N12(i, j) = p if j − i = u.

(b) A sufficient condition for A1⊥blA2 in P0 ⊕ S is that δ = kD in P0.

Now we go to another construction.

Theorem 3.2: Let s be a positive integer ≥ 5. Then

(a) there exists a symmetric POTB P with three factors each having s + 1 levels on
b = 6s blocks of size two.

(b) In the case s = 5, we get a Balanced POTB. The restriction to any two of the
factors reduces it to a PERGOLA, except that condition (9) is not satisfied.

Proof : Let S+ be the set of levels for each factor. Consider an initial plan P0 with
the set of factors {A0, A1, A2} and B = {Bij, i = 1, 2, j = 0, 1, 2}, where Bij’ are as shown
in the table below. The required plan P = P0 ⊕ S.

Blocks → B10 B11 B11 B20 B21 B22
Factors ↓ A0 ∞ 0 -1 1 0 1 ∞ 0 1 2 0 2

A1 0 1 ∞ 0 -1 1 0 2 ∞ 0 1 2
A2 -1 1 0 1 ∞ 0 1 2 0 2 ∞ 0

.

(a) Consider a pair of factors of P0, say Ai, Aj. One can verify that the following are
satisfied.

D = {∞4, 02, 12,−12, 2,−2} and δ = 2D (10)
Here the superscript denote the multiplicity. In the computation we have used (8).

Now an application of Lemma 3.3 implies that Ai⊥blAj in P . Since i, j are arbitrary,
P is a POTB.
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(b) From (10), in view of Lemma 3.3 (a) it follows that in P

Npq =



0 2 2 2 2 2
2 2 2 1 1 2
2 2 2 2 1 1
2 1 2 2 2 1
2 1 1 2 2 2
2 2 1 1 2 2

 , p 6= q, p, q = 0, 1, 2. (11)

Moreover, by the construction,

Li(Li)′ = 8I6 + 2J6, i = 0, 1, 2.

From the relation above, we see that each Li is the incidence matrix of a BIBD with
parameters (v = 6, b = 30, r = 10, k = 2, λ = 2). Thus, by Definition 2.3 P is a balanced
POTB. However, Npq does not satisfy (9), p 6= q, p, q = 0, 1, 2. 2

Next we construct a series of balanced POTBs using finite fields. We need the following
notation.

Notation 3.3: (i) s is an odd prime power. t = (s − 1)/2. F denotes the Galois field of
order s. Further, F ∗ = F \ {0} and F+ = F ∪ {∞}.

(ii) α denotes a primitive element of F .

(iii) C0 denotes the subgroup of order t of the multiplicative group of F and C1 the
coset of C0. Thus, C0 is the set of all non-zero squares of F , while C1 is the set of all non-zero
non-squares of F .

(iv) (i, j) denotes the number of ordered pairs of integers (k,l) such that the following
equation is satisfied in F . [ This notation is borrowed from the theory of cyclotomy]

1 + αk = αl, k ≡ i, l ≡ j (mod 2).

We present the following well-known result for ready reference. [See equations (11.6.30),
(11.6.40) and (11.6.43) of Hall (1986)].

Lemma 3.4: The difference between the cosets of F ∗ can be expressed in terms of the
cyclotomy numbers as follows.

C1 − C0 =
1⋃

k=0
(k, 1)Ck.

The following cyclotomy numbers are known.

Case 1: t odd. (0, 0) = (1, 1) = (1, 0) = (t− 1)/2, (0, 1) = (t+ 1)/2.

Case 2: t even. (0, 0) = t/2− 1, (0, 1) = (1, 0) = (1, 1) = t/2.
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A series of two-factor balanced POTBs :

Theorem 3.3: Suppose s is an odd prime or a prime power. Then there exists a balanced
POTB P∗ for a (s+ 1)2 experiment on b = 2s blocks of size (s+ 1)/2 .

Proof: The set of levels of each factor is F+. We shall present the initial plan P0 consisting
of a pair of blocks. The required POTB is P∗ = P0 ⊕ F .

Let δ ∈ C1. Consider three 2 × (t + 1) arrays R0, R1 and R2, the rows of which are
indexed by {0, 1} and the columns by C0∪{0}. The entries of the arrays are as given below.

R0(1, 0) = R1(0, 0) = R2(0, 0) = 0 and R0(0, 0) = R1(1, 0) = R2(1, 0) =∞. (12)
For x = 0, 1, y ∈ C0, R

0(x, y) = δxy,R1(x, y) = δ−xy and R2(x, y) = δx−1y. (13)

For i = 0, 1, 2, let Bi be the block, the runs of which are the columns of Ri. When t is even,
B0 and B1 constitute P0, while B0 and B2 constitute P0 when t is odd.

Clearly block size is t+ 1 = (s+ 1)/2. To show that P∗ satisfies the required property,
we have to show that

(a) P∗ is a POTB and (b) each factor forms a BIBD with the block factor.

Condition (b) follows from the construction in view of Lemma 3.4. So, we prove (a).
Let us write N for N12. The rows and columns of N are indexed by F+. From (12) and
(3.9), we see that

N(ii) = 0, i ∈ F+ and N(∞, i) = N(i,∞) = 1, i ∈ F. (14)

So, we assume i 6= j ∈ F . Let u = j− i. Then, N(ij) is the number of times u appears
in the multiset {

(δ − 1)C0
⊔(δ−1 − 1)C0 if t is even

(δ − 1)C0
⊔(1− δ−1)C0 if t is odd

Since −1 ∈ C0 if and only if t is even, δ−1 − 1 is in the same coset as δ− 1 if and only if t is
odd. Therefore, the relations above together with (14) above imply that

N = Js+1 − Is+1. (15)

Now we take up L1L
′
2 = H (say). From (12) and (3.9), we see that

H(ii) = 0, i ∈ F+. (16)

Further, for every i ∈ F , H(∞, i) is the replication number of i in the block design generated
by the initial block {0} ∪ C1. Similarly, H(i,∞) is the replication number of i in the block
design generated by the initial block {0} ∪ C0 if t is odd and {0} ∪ C1 otherwise. Thus,

H(∞, i) = H(i,∞) = t+ 1, i ∈ F. (17)

We, therefore, assume i 6= j, i, j ∈ F . Let u = j − i. Then, H(ij) is the number of
times u appears in the multiset{

(({0} ∪ C1)− C0) ⊔(C1 − ({0} ∪ C0)) if t is even
(({0} ∪ C1)− C0) ⊔(C0 − ({0} ∪ C1)) if t is odd
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These relations, together with (16), (17) and Lemma 3.4 imply that H = (t+1)(Js+1−Is+1).
Therefore, in view of (15), (7) follows and we are done.

4. More on Recursive Construction

In this section we describe procedures for adding factors as well as blocks to an initial
plan.

Notation 4.1: Consider a subset V of Sm. For every i, 1 ≤ i ≤ m, Vi will denote the
following multiset of |V | members of S. Vi = {vi : v = (v1, · · · vm)′ ∈ V }.

Definition 4.1: Consider an initial plan P0 for an sm experiment as described in Notation
2.1. Let V be as in Notation 4.1. By the plan P0 + V generated from P0 along V we
shall mean the plan (for the same experiment) having the set of blocks B + V = {B + v :
v ∈ V,B ∈ B}, where B + v is as in Definition 3.1. Usually, V will contain the 0-vector, so
that the blocks of P0 will also be blocks of P0 + V .

The next lemma provides a few sufficient conditions on P0 and V so that a given pair of
factors are orthogonal through the block factor in P0 +V . The proof is by direct verification.

Remark 4.1: In an initial plan, say P0, one or more levels of one or more factors may be
absent. P0 may still be a POTB if (7) holds (with one or more row/column of N ′ijs being
null vectors) for every unordered pair of (i, j). In such cases one has to choose V such that
all levels of all factors do appear in P0 + V .

Lemma 4.1: Consider an initial plan P0 for an s2 experiment and a subset V of S2. The
following conditions on P0 and V are sufficient for P0 + V to be a POTB.

(a) In P0 all the levels of the first factor appear and V = {(0, i), i ∈ S}.

(b) P0 is arbitrary and V = {(i, j), i, j ∈ S}.

(c) P0 has a pair of blocks B0, B1 each of size 2, as described below. Let i 6= j, k 6=
l ∈ S. Let x0 = (i, i)′, y0 = (j, j), x1 = (k, l)′ and y1 = (l, k)′. Bi consists of runs xi and yi,
i = 0, 1. V = (u, u), u ∈ S.

(d) P0 is a POTB in which with one or more levels of one or both factors may be
absent. V is such that every member of S appears at least once in each Vi, i = 1, 2.

Our next procedure enlarges the set of factors of a given plan, while keeping the number
of blocks fixed.

Definition 4.2: (a) Consider a plan P as in Notation 2.1. Suppose there is another plan
P ′ having b blocks of size k each. We shall combine these two plans to get another one with
a larger set of factors.

Let xij (respectively x̃ij) denote the jth run in the ith block of P (respectively P ′),
1 ≤ j ≤ k, 1 ≤ i ≤ b. Let yij =

[
xij x̃ij

]′
, 1 ≤ j ≤ k, 1 ≤ i ≤ b. Then, the plan on

b blocks of size k with yij as the jth run in the ith block, 1 ≤ j ≤ k, 1 ≤ i ≤ b is said
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to obtained by joining the factors of P and P ′ together. The new plan will be denoted by[
P P ′

]
.

(b) In case P ′ is a copy of P then
[
P P ′

]
is denoted by P2. For t ≥ 3, the plan P t

is defined in the same way.

We find it convenient to name the factors of plan P in a manner different from Notation
2.1. The names the factors of P and its power P t will be as in the notation below.

Notation 4.2: Consider a plan P having the set of factors F0 = {A,B, · · ·H}. The set of
factors of P t will be named as

F =
t⋃

i=1
Fi,where Fi = {Ai, Bi, · · ·Hi}.

Combining Definitions 4.1 and 4.2 we get a recursive construction described below.

Definition 4.3: Consider an initial plan P0 for an sm experiment laid on b blocks of size
k each. Consider a p × q array H = ((hij))1≤i≤p,1≤j≤q. We now obtain a plan for an smq

experiment on bp blocks of size k using the array H as follows. We first obtain Pq
0 following

Definition 4.2.

Let vi =
[
hi1.1′t hi2.1′t · · · hiq.1′t

]′
, 1 ≤ i ≤ p and VH = {vi, 1 ≤ i ≤ p}.

Our required plan P is Pq
0 + VH and it will be denoted by H3P . Symbolically,

P = H3P0 = Pq
0 + VH . (18)

Our task is to find a suitable array H so that the plan H3P0 satisfies certain desirable
properties. A natural choice for H is an orthogonal array of strength 2. We shall use a
modification of such an orthogonal array so as to accommodate a few more factors.

Definition 4.4: (Rao, 1946) Let m,N, t ≥ 2 be integers and s is an integer ≥ 2. Then an
orthogonal array of strength t is an m×N array, with the entries from a set S of s symbols
satisfying the following. All the st t-tuples with symbols from S appear equally often as
columns in every t×N subarray. Such an array is denoted by OA(N,m, s, t).

Notation 4.3: (a) The set of symbols of an OA(N,m, s, 2) is assumed to be the set of
integers modulo s.

(b) The array obtained by adding a column of all zeros (in the mth position, say) to
an OA(N,m− 1, s, 2) will be denoted by Q(N,m, s).

Exploring the properties of an orthogonal array of strength 2, we get the following
result from the recursive construction described in Definition 4.3.

Theorem 4.1: Consider a plan P0 for an st experiment on b blocks of size k each. If an
OA(N,m − 1, s, 2) exists, then ∃ a plan P with a set of smt factors on bN blocks of size k
each with the following properties. Here the factors of Pq

0 as well as P are named according
to Notation 4.2. Let P 6= Q,P,Q ∈ F0.
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(a) Pi⊥blQj, i 6= j, 1 ≤ i, j ≤ m.

(b) Pi⊥blQi for every i, 1 ≤ i ≤ m, if and only if P⊥blQ in P0.

Proof: By assumption Q = Q(N,m, s) exists. The required plan P is Q3P0. Property (a)
follows from the construction while (b) follows from (b) of Lemma 4.1.

Remark 4.2: Table 1 of Rees and Preece (1999) presents a number of examples of two-
factor POTBs (which they call PERGOLAs). An Application of Theorem 4.1 on each of
them would yield a balanced POTB for a larger set of factors.

Finally, we describe a procedure of modifying the sets of levels of factors. Specifically,
given a pair of plans with the same number of factors and the same block size, we obtain a
plan by merging the sets of levels of the corresponding factors of the given plans.

Definition 4.5: Consider a pair of plans P1 and P2 each having t factors and blocks of size
k. Let Si denote the set of levels of each factor of Pi, si = |Si|, i = 1, 2. We assume that
S1 6= S2. Let U = S1 ∪ S2 and u = |U |. The plan consisting of all the blocks of P1 and P2
taken together will be viewed as a plan, say P1 ∪ P2, for an ut experiment in the following
sense.

(a) Each factor of P1 ∪ P2 will have U as the set of levels.

(b) Fix p ∈ U . Let Rij
p denote the set of runs of Pj, in which the level p of the ith

factor appears, j = 1, 2, 1 ≤ i ≤ t. [Needless to mention that Rij
p = φ if p is not in Sj.] Then,

the level p of the ith factor of P1 ∪ P2 appears in exactly the runs in Ri1
p tRi2

p , 1 ≤ i ≤ t.

Remark 4.3: From Definition 4.5 we see that for p ∈ U , the replication number of level p
of the ith factor of P1 ∪ P2 is ri1(p) + ri2(p), where rij(p) is the replication number of level
p of the ith factor of Pj.

For instance, in Theorem 5.1 below, Definition 4.5 is used to construct the plan Ph by
merging the corresponding factors of P1h and P2h. There, S1 = {0, 1}, while S2 = {0, 2}.
Thus, while both P1h and P2h are equireplicate, the replication number of level 0 of each
factor of Ph is double of that of the levels 1 and 2 of the same factor.

The following result is an immediate consequence of Definition 4.5 .

Lemma 4.2: Consider a pair of connected plans P1 and P2, as in Definition 4.5 (recall
Definition 2.1). Then, we can say the following about the plan P = P1 ∪ P2.

(a) If both P1 and P2 are POTB, then so is P .

(b) P is connected, if and only if S1 ∩ S2 6= φ.

5. Construction of POTBs for Three-level Factors

In this section we make use of the tools described in Section 4 to generate plans for
three-level factors. The factors of the initial and final plans are named in accordance with
Notation 4.2.
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Theorem 5.1: If h is the order of a Hadamard matrix, then there exists a connected and
saturated POTB Ph for a 33h experiment in 2h blocks of size 4 each.

Proof: Let O4 = OA(4, 3, 2, 2) with S = {0, 1}. Let P0 be the plan consisting of a single
block consisting of the four columns of O4 as runs. Thus, P0 is an OMEP for a 23 experiment.

Using the relation between orthogonal arrays of strength two and Hadamard matri-
ces, [see Theorem 7.5 in Hedayat, Sloane and Stuffken (1999), for instance], we see that a
Q(h, h, 2) exists, in view of the hypothesis.

Let P1h = Q(h, h, 2)3P0 and P2h be obtained from P1h by replacing level 1 of every
factor by the level 2. Next we construct our required plan Ph = P1h∪P2h by using Definition
4.5. By construction Ph has 2h blocks of size 4 each.

We now show that Ph is a POTB. We note that by Theorem 4.1, each of P1h and P2h

is a POTB for a 23h experiment on h blocks of size 4 each. The sets of levels of each factor
of them are {0, 1} and {0, 2} respectively. It follows from Lemma 4.2 that Ph is a connected
POTB for an experiment with 3h factors, the set of levels of each factor being {0, 1, 2}.
Since the available degrees of freedom for the treatment factors is 6h which is the same as
the required degrees of freedom, the plan is saturated.

We now take h = 2 and present the plan P2 for a 36 experiment on four blocks of size
four each.

Table 1 : The plan P2

Blocks → B01 B02 B11 B12
Factors ↓ A1 00 11 00 11 00 22 00 22

B1 01 01 01 01 02 02 02 02
C1 01 10 01 10 02 20 02 20
A2 00 11 11 00 00 22 22 00
B2 01 01 10 10 02 02 20 20
C2 01 10 10 01 02 20 20 02

For the next construction we need some more notations.

Notation 5.1: O4 is as in the proof of Theorem 5.1. T4 will denote the array obtained from
O4 by replacing each 1 by 2 and T̃4 the array obtained from T4 by interchanging 0 and 2.

Theorem 5.2: A POTB for a 33 experiment on two blocks of size four exists.

Proof: Let B10 = O4, B20 = T4 and B02 = T̃4. The set of columns of each of these 3 × 4
array constitutes an OMEP for a 23 experiment, the set of levels of factors being {0, 1} for
B10, while {0, 2} for the other two.

Let ρ1 (respectively ρ2) denote the plan consisting of the pair of blocks B10, B20 (re-
spectively B10, B02). By Lemma 4.2, each of ρ1 and ρ2 is a POTB for a 33 experiment.

Using the pair of plans constructed above, we generate a bigger plan.
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Theorem 5.3: (a) If there exists an OA(N,m, 3, 2), then there exists a connected POTB
Pm for a 33(2m+1) experiment in 2N blocks of size 4 each.

In particular Pm is saturated whenever N = 3n and m = (3n−1 − 1)/2, for an integer
n ≥ 2.

(b) There exists a connected POTB P1 for a 39 experiment in 6 blocks of size 4 each.

Proof: Part (a): Let the factors of ρ1 and ρ2 be named as A,B,C and Ã, B̃, C̃ respectively.
Let O = OA(N,m, 3, 2) and Q = Q(N,m, 3). We now use Definition 4.5 to generate bigger
plans P1m and P2m as follows.

P1m = Q3ρ1 and P2m = O3ρ2.

Clearly, P1m and P2m are plans for 33(m+1) and 33m experiments respectively, each on
2N blocks of size 4. Following Notation 4.2, we name of the factors of these plans as follows.

The factors of P1m are A0, B0, C0, A1, B1, C1, · · ·Am, Bm, Cm

and the factors of P2m are Ã1, B̃1, C̃1, · · · Ãm, B̃m, C̃m.

Now we combine the factors of P1m and P2m following Definition 4.2 (a) and thus
obtain our required plan Pm. Symbolically,

Pm =
[
P1m P2m

]
.

By construction, Pm is a plan for 2m+1 three-level factors on 2N blocks of size 4 each.
We shall now show that it is a POTB.

Theorems 4.1 and 5.2 imply that each one of P1m and P2m is a POTB. Therefore, if
we show the following relation, then we are done.

Pi⊥blQ̃j, P,Q ∈ {A,B,C}, i ∈ I ∪ {0}, j ∈ I, where I = {1, · · ·m}. (19)

To show this relation, we fix Pi and Q̃j as above.

Case 1. i, j ∈ I : Since ρ1 and ρ2 are POTBs, (19) follows from Lemma 4.1 (d),
whenever Q 6= P . Again, (c) of the same Lemma proves (19) for the case Q = P .

Case 2. i = 0, j ∈ I : We take P0 as the first and Q̃j as the second factor. Then
applying Lemma 4.1 (a) we get (19).

Hence the proof of the first part is complete.

To prove the second part, we see that Pm is saturated when N = 2m + 1. Now Rao
(1946) has shown that an OA(sn, (sn− 1)/(s− 1), s, 2) exists whenever n ≥ 2. (see Theorem
3.20 of Hedayat, Sloane and Stufken (1999) for instance). Putting s = 3, we get the result.
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Proof of (b) : Let O =
[

0 1 2
0 2 1

]
. and Q =

 0 0 0
0 1 2
0 2 1

 . Now the construction for

the plan, say P1, is just like that in Case (a). The verification is also exactly like the same
in Case (a) with I = {1}.

We now present the plan of Theorem 5.3 (b).

Table 2 : The plan P1

Blocks → B10 B20 B11 B21 B12 B22
Factors ↓ A0 00 11 00 22 00 11 00 22 00 11 00 22

B0 01 01 02 02 01 01 02 02 01 01 02 02
C0 01 10 02 20 01 10 02 20 01 10 02 20
A1 00 11 00 22 11 22 11 00 22 00 22 11
B1 01 01 02 02 12 12 10 10 20 20 21 21
C1 01 10 02 20 12 21 10 01 20 02 21 12
Ã1 00 11 22 00 11 22 00 11 22 00 11 22
B̃1 01 01 20 20 12 12 01 01 20 20 12 12
C̃1 01 10 20 02 12 21 01 10 20 02 12 21

6. Inter-class Orthogonal Plans

Inter-class orthogonal plans are defined in Bagchi (2019) in the context of plans without
any blocking factor. Here we extend the definition to the present context - the orthogonality
being through the block factor.

Definition 6.1: Let us consider a plan ρ. Suppose the set of all factors of ρ can be divided
into several classes in such a way that if two factors belong to different classes, then they are
orthogonal through the block factor. Such a plan ρ is called a “Plan Inter-class Orthog-
onal through the Blocks (PIOTB)” and the classes will be referred to as “orthogonal
classes”.

We shall now proceed towards the construction of PIOTBs.

Theorem 6.1: If s is an integer ≥ 5, then a PIOTBs with 4s blocks of size two exists for
an s4 experiment.

Proof: The blocks Bl, l = 1, · · · 4 of an initial plan P0 are presented below. Here a, b are
distinct members of S \ {0}. The required plan P is P0 ⊕ S [see Definition 3.1].

Blocks → B1 B2 B3 B4
Factors ↓ A1 0 a a -a 0 b -b b

A2 a -a 0 -a -b b 0 -b
A3 0 -b b -b -a 0 a -a
A4 b -b 0 b a -a a 0

.
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We define at subplans Pij, i, j = 1, 2, 3, 4 in the same way as in the proof of Theorem
3.1 (b). Using Lemma 3.1 we see that in each of the subplans P12 and P34 A1⊥blA2 and
A3⊥blA4. Similarly, in each of the subplans P13 and P24 A1⊥blA3 and A2⊥blA4. Therefore,
by Lemma 3.2 Ai⊥blAj in P , where i ∈ {1, 4} and j ∈ {2, 3}. However, A1 is not orthogonal
to A4 and A2 is not orthogonal to A3. It, therefore, follows that P is interclass orthogonal
with classes {A1, A4} and A2, A3}.

Next we present a PIOTB for three-level factors.

Theorem 6.2: A saturated PIOTB exists for a 36 experiment on four blocks of size four
each.

Proof: Consider the following plan P . It is easy to see that it is a PIOTB with non-
orthgonal classes {P1, P2}, P = A,B,C.

Table 1 : Plan P

Blocks → B1 B2 B3 B4
Factors ↓ A1 00 12 00 21 00 12 00 21

B1 01 02 02 01 10 20 20 10
C1 01 20 02 10 02 10 01 20
A2 01 01 02 02 01 01 02 02
B2 01 10 02 20 10 01 20 02
C2 00 11 00 22 11 00 22 00

Remark 6.1: A POTB for a 44 experiment on 4 blocks of size 4 is well-known [can
be obtained by treating a row of OA(16,5,4,2) as the block factor]. By collapsing two of the
levels of each factor to one level one gets a POTB for a 34 experiment on the same set up.
Allowing non-orthogonality we have been able to accommodate two more three-level factors,
making it saturated.

Theorem 6.3: Suppose Hadamard matrices of orders m and n exist. Then, there exists a
saturated PIOTB P(m,n) for a 2mn experiment on n blocks of size m + 1 each. There are n
orthogonal classes of size m each.

Proof: By hypothesis Qm = Q(m,m, 2) exists. Let R be the m×m+ 1 array obtained by
juxtaposing a column of all-ones to Qm. Let P0 be the plan for a 2m experiment on a single
block consisting of m + 1 runs, which are the columns of R. Let us name the factors of P0
as A,B, · · ·H}. Note that the column added to Qm saves H from being confounded with
the block. However, this column also destroys the relation of orthogonality enjoyed by the
factors in Qm (represented by its rows).

By hypothesis, Qn = Q(n, n, 2) exists. Let P(m,n) = Qn3P0. Clearly, P(m,n) is an main
effect plan for a 2mn experiment with parameters as in the statement. By construction, no
factor is confounded with the block factor. Using Theorem 4.1 and the property of P0, we
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see that Pn is interclass orthogonal with orthogonal classes {Ai, Bi, · · ·Hi}, 1 ≤ i ≤ n (recall
Notation 4.2). Hence the result.

We now present the plan P(4,2).

Table 6.2 : The plan P4,2

Blocks → B1 B1
Factors ↓ A1 00 11 1 11 00 0

B1 01 01 1 10 10 0
C1 01 10 1 10 01 0
D1 00 00 1 11 11 0
A1 00 11 1 00 11 1
B1 01 01 1 01 01 1
C1 01 10 1 01 10 1
D1 00 00 1 00 00 1

There are two orthogonal classes, which are {Ai, Bi, Ci, Di}, i = 1, 2.

A situation when a PIOTB is better than a POTB.

Since in a POTB the factors are orthogonal to each other, one expects that its per-
formance would be better than that of a PIOTB, in which orthogonality does not hold for
one or more pairs of factors. However, we find an example, where a PIOTB is better than a
POTB w.r.t. the commonly used optimality criteria.

Consider the following three plans for two-level factors on the set up with two blocks
of size 5 each.

P1 is a plan for four factors constructed in Jacroux and Kealy-Dichone (2015). A
POTB having seven factors is constructed in Bagchi and Bagchi (2020). Let P2 denote the
POTB obtained by deleting the last factor of it. Let P3 denote the plan obtained from P4,2
by deleting the factors D1 and D2.

We compare these plans in terms of the C-matrix for the contrasts. For the definition
of this C-matrix we refer to Jacroux and Kealy-Dichone (2015). We find the following.

Theorem 6.4: (a) P3 is A- and D-better than P2.

(b) Let P̃2 denote the restriction of P2 to four factors. Let P̃3 be the plan obtained
from P4,2 consisting of the factors A1, B1, A2, B2. Then, P̃3 is A- and D-better than P1 as
well as P̃2.

(c) All the three plans are E-optimal.

Proof: We compute the C-matrix for the contrasts of each plan and find the following.

CP1 = 8I4 + (8/5)J4 and CP2 = 8I6.

CP3 =
[
A 0
0 A

]
, where A = 8I3 + (8/5)J3.
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The spectrums of these matrices are as follows.

CP1 : 83(8 + 32/5)1,

CP2 : 85,

CP3 : 84(8 + 24/5)2

and CP̃3
: 82(8 + 16/5)2.

The rest is by simple computation.

Conjecture : An universally optimal plan can not exist in the above set up and P3 is
optimal w.r.t. a large class of optimality criteria.
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Abstract
Orthogonal saturated factorial designs are useful for screening a few important factors

from many. Independent effect estimates can be normalized to have common variance but,
with no independent estimate of variability, tests are based on the comparison of larger esti-
mates to smaller ones under an assumption of effect sparsity. Early methods of analysis were
proposed by Daniel (1959) and Birnbaum (1959), and subsequent work by Zahn (1975ab)
rekindled interest in the problem. They each suggested methods to be applied iteratively,
but justifications are generally empirical.

Analytical results establishing control of error rates remain limited. Voss (1988, 1999),
Holm, Mark, and Adolfsson (2005), and Voss and Wang (2006a) provided a class of closed
step-down tests shown to be of family-wise size-α, utilizing the order statistics of the normal-
ized estimates or the corresponding sums of squares. These are non-iterative tests, utilizing
the effect estimates as k order statistics, comparing the ith largest estimate to a critical
value based on the distribution of the ith largest of k estimates. However, the step-down
tests would be more powerful if conducted iteratively—namely, testing the effect with the
ith largest estimate using a critical value based on the largest of i estimates, rather than the
ith largest of k estimates. Iterative tests also require the tabulation of fewer critical values.

In this paper, simulations are used to support the conjecture that certain iterative step-
down tests for analysis of orthogonal saturated designs do strongly control the family-wise
error rate. Some insight is also garnered to guide efforts for an analytical proof.

Key words: Closed test; Family-wise error rate; Iterative testing; Screening experiment.

AMS Subject Classifications: Primary 62K15, 62F07, 62F03; secondary 62F35, 62L10.

1. Introduction

Orthogonal saturated factorial designs are useful for screening a few important factors
from many. Such designs yield independent effect estimates that can be normalized to have
common variance. Such designs provide no independent estimate of variability, but larger
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estimates can be compared to smaller estimates, so a standard premise for the analyses is
an assumption of effect sparsity—namely, that only a few of the effects under study are
substantial.

Daniel (1959) introduced the use of half-normal probability plots for the graphical anal-
ysis of the normalized effect estimates, and he proposed a corresponding testing procedure.
Birnbaum (1959) also proposed tests for the analysis of such designs. They each suggested
that their proposed methods be applied iteratively—namely, given k effects and correspond-
ing estimates, if the effect with largest normalized estimate is asserted nonzero, the remaining
k−1 effect estimates are then analyzed as if said largest estimate was never part of the data,
and this process is iterated till the largest remaining estimate is not significantly nonzero.
Zahn (1975ab) proposed and evaluated several variations on the iterative analyses of Daniel
(1959), including revised test statistics and critical values, comparing methods empirically.
His work renewed interest in the analysis of orthogonal saturated factorial designs, but es-
tablishing control of error rates remained an open problem.

Many methods of analysis of orthogonal saturated factorial designs have been proposed
over the years, but most authors have relied on simulation studies to justify the methods.
Progress on analytic justification has been slow, despite long interest in the problem. Voss
(1988) proposed a family-wise size-α step-down test of the effects based on the order statistics
of the normalized estimates. Subsequently, Voss (1999) provided a rigorous proof that said
test strongly controls the family-wise size of the test, characterizing the procedure as a
closed, step-down test (see Marcus, Peritz, and Gabriel, 1976), the proof utilizing an obscure
stochastic ordering lemma of Alam and Rizvi (1966) and Mahamunulu (1967). Holm, Mark,
and Adolfsson (2005) and Voss and Wang (2006a) also provided step-down tests strongly
controlling error rates. For reviews of methods of analysis of orthogonal factorial designs,
see Hamada and Balakrishnan (1998) and Voss and Wang (2006b).

To make our discussion concrete, consider here the step-down test procedure and statis-
tics utilized by Voss (1988). The test statistics are

ss(i)/qmse, i = 1, . . . , k,

for independent, normalized effect estimators θ̂i ∼ N(θi, σ), where ss(i) = θ̂2
(i) are the corre-

sponding order statistics of the sums of squares, and where qmse = ∑ν
i=1 ss(i)/ν is the quasi

mean squared error obtained as the average of the ν smallest sums of squares, for specified
ν.

For the step-down test proposed by Voss (1988), one asserts θh 6= 0 if θ̂h = θ̂(j) and
ss(i)/qmse > c(α, i, k) for all i = j, ..., k. In other words, if ss(15)/qmse > c(α, 15, 15), then
the effect corresponding to the largest order statistic θ̂(15) is asserted to be nonzero and one
continues; else one stops. If ss(15)/qmse > c(α, 15, 15) and ss(14)/qmse > c(α, 14, 15), then
one also asserts the effect corresponding to the second-largest order statistic to be nonzero
and one continues; else one stops. The test procedure continues stepping down in this
manner, testing each order statistic’s effect in turn starting with the largest and stepping
down, continuing as long as an assertion is made.
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Voss (1999) showed that the above test procedure is a closed step-down test and strongly
controls the family-wise error rate to be α if one uses critical value c(α, i, k) such that

P (SS(i)/QMSE) > c(α, i, k)) = α, (1)

for SS(i)/QMSE (i=1,. . . , k) the order statistics of the test statistics under the complete
null distribution—namely, assuming all effects are zero. A test strongly controls the family-
wise error rate to be at most α if the probability of any false assertions is at most α for all
parameter configurations.

However, many authors have proposed that such step-down tests be conducted itera-
tively in the following sense. As the step-down test is conducted, if an effect is asserted to
be nonzero, then the test proceeds as if that effect where never considered. For example,
suppose k = 15 effects are initially analyzed. If the effect with largest absolute estimate
(i.e. corresponding to ss(15)) is asserted nonzero, then one proceeds to test the remaining 14
effects as if there never was a 15th effect, and one iteratively steps down in this way until one
fails to make an assertion. Such is the case if the ith critical value c(α, i, k) is the upper α
quantile of the distribution of SS(i)/QMSE, the ith largest of i order statistics (rather than
the ith largest of k), under the complete null distribution. Call this variation the iterative
step-down test, rather than the closed step-down test. Such an iterative approach conjures
up a sense of statistical magic since, when testing the effect of any estimate smaller than
the largest, one would in essence and reality be ignoring the fact that effects with larger
estimates have already been inferred to be nonzero.

There are two advantages to the iterative step-down test. First, as observed by Voss
(1988), it is more powerful than the closed step-down test, having smaller critical values
after the first. This is not obvious, since the test statistic numerator SS(i) and denominator
QMSE are each stochastically larger as a function of i estimators than as a function of k.
However, this seems to be born out in practice. For example, Table 1 contains the critical
values for the closed and iterative step-down tests for k = 15 effects, ν = 8, and α = 0.10,
0.05, 0.01, based on 999,999 simulated null samples. The critical values are by definition the
same for the largest estimate, but the critical values for the iterative test are substantially
smaller for testing all remaining estimates. The second advantage of the iterative test is
that fewer critical values need be tabulated, since the iterative test only uses critical values
corresponding to the largest order statistics, whereas the closed test requires critical values
for each order statistic in a sample of size k.

The focus of this paper is the following conjecture, where strong control of the error rate
means control under all effect parameter configurations, assuming the standard assumptions
of normality and homogeneity of error variances.

Iterative step-down test conjecture. The iterative step-down test, using critical values
satisfying equation (1), strongly controls family-wise error rate at the specified level.

A colleague and I have for years sought a rigorous proof of this conjecture, to establish
its statistical magic as a happy reality. Alas, each time we ‘found’ a proof, we subsequently
found a hole in it. While we hope someone will succeed where we have thus far failed, it
is good to believe that what one hopes to prove is or may well be true. The simulation
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Table 1: Critical values for the closed and iterative step-down tests for k = 15,
ν = 8, and α = 0.01, 0.05, 0.10

α Test Type c15 c14 c13 c12 c11 c10 c9 c8
0.01 closed 151.2 123.4 98.13 76.31 56.78 39.79 24.66 6.360

iterative 151.2 84.28 55.25 37.79 25.87 17.35 10.67 5.002
0.05 closed 81.75 67.22 53.93 42.03 31.60 22.42 14.11 5.434

iterative 81.75 46.80 31.30 21.88 15.40 10.60 6.936 4.054
0.10 closed 60.23 49.51 39.93 31.30 23.65 16.88 10.78 4.907

iterative 60.23 35.11 23.76 16.83 12.01 8.433 5.712 3.631

results presented in this paper strongly support our belief that the iterative step-down test
conjecture is true. A secondary goal is to provide insight that may facilitate analytical proof
of the conjecture.

In each of the simulations presented here, the step-down test statistics of Voss (1988)
were utilized, but with the sharper critical values c(α, i, i) of the iterative test. Without loss
of generality, fix σ = 1. Thus, pseudo random estimates were generated as θ̂i = θi + εi, for
εi pseudo random N(0, 1), with each effect θi as specified, whether zero, a nonzero constant,
or N(0, σ = 5). In each case, the step-down test was stopped if the statistic ss(ν)/qmse was
significantly large, even though the closed step-down test if continued would still strongly
control the error rate. All computations were done using the SAS software.

In the simulations, the following events were of interest. Let IA denote the event of an
incorrect assertion—namely, that any effect with mean zero is asserted to be nonzero. Let
MN denote the event that ss(m)/qmse > c(α,m, k) for ss(m) the sum of squares corresponding
to the maximum nonactive effect estimate. This condition is necessary but not sufficient
for an incorrect assertion, since step-down testing may stop sooner, so P (IA) ≤ P (MN).
Hence, in search of an analytic proof, showing P (MN) ≤ α would establish the conjecture
concerning iterative testing. Finally, let P (A) denote the probability of an assertion (correct
or not), and P (CA) the probability of a correct assertion. Better understanding of the
behavior of these probabilities may help someone prove the iterative step-down conjecture.

In Section 2, consider the common case of 15 estimates, corresponding for example to
analysis of a 215−11

III fraction. For the setting, we ran an extensive simulation involving 100
distinct randomly chosen effect configurations for each number of active (nonzero) effects
from one to seven, plus 100 replications of the null scenario, using family-wise significance
level α = 0.01. Section 3 contains the results of a similar simulation but using α = 0.10.
Subsequent sections present simulations with systematically chosen non-null parameter con-
figurations. In Section 4, we consider a small simulation with only five effects and only one
active effect. In Section 5, we revisit the common case of 15 estimates, with from zero to
eight active effects, but systematically varying the values of the active effects over the values
0,3,6,9. The simulation in Section 6 likewise involves 15 estimates, but with from zero to
three active effects with values varying over the values 0.0001, 2, 4, 6, 8. Conclusions are
summarized in Section 7.
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2. Simulation for 15 Effects, with Zero to Seven Random N(0, 5) Active Effects,
with α = 0.01

In this section, we present the results of three iterations of an extensive three repli-
cate simulation, including 700 different randomly selected non-null parameter configurations,
providing substantial evidence of the conjecture that the iterative step-down test under con-
siderations does strongly control family-wise error rates.

In particular, consider again the case of 15 estimates, here with from zero to seven active
effects. For each number of active effects 1,2,. . . ,7, we generated 100 random parameter
configurations, where the active effects were independent N(0, σ = 5), yielding 700 distinct
non-null parameter configurations. Also included were 100 replications of the null parameter
configuration, giving 800 cases in total. For each of these 800 cases, 10,000 sets of 15 estimates
were generated by adding a N(0, 1) error to each active or null effect, and the iterative step-
down test was applied to each of the 10,000 sets of estimates set using α = 0.01. In each of
the 800 cases, the 10,000 tests were used to estimate the probability of an incorrect assertion,
P (IA). This same process was replicated three times, using the same 800 cases or parameter
configurations but using different N(0, 1) errors in each replicate, giving three estimates of
P (IA) for each of the 800 cases. The results are as follows.

For each of the 800 cases or parameter configurations, given an estimated value of
P (IA) from each of the three replicates, the minimum of the three values was saved. Only
11 of the 700 non-null parameter configurations yielded minP (IA) > 0.01, compared to
20 false positives in the 100 null cases. Furthermore, of the 11 non-null cases so flagged,
the largest estimate of minP (IA) was only 0.0110. This simulation strongly supports the
truth of the conjecture that iterative application of the step-down test strongly controls the
family-wise error rate.

While the above results seem convincing, one might want further evidence that the
11 (of 700) non-null parameter configurations yielding values of minP (IA) between 0.01
and 0.011 were indeed false positives. To this end, we repeated the above process two
more times, using the same 700 non-null parameter configurations each time, but generating
different random errors. In the second iteration of the simulation, only 13 of the 700 non-null
parameter configurations yielded minP (IA) > 0.01, compared to 17 false positives in the
100 null cases. In the third iteration of the simulation, only 13 of the 700 non-null parameter
configurations yielded minP (IA) > 0.01, compared to 15 false positives in the 100 null
cases. More importantly, while the three iterations respectively flagged 11, 13 and 13 of
700 non-null parameter configurations as having minP (IA) > 0.01, comparing the results
of the three iterations of the three-replicate simulations, none of the 700 non-null parameter
configurations where flagged in all three iterations. In other words, of the 700 randomly
chosen non-null parameter configurations, there was no non-null parameter configuration for
which minP (IA) exceeded α = 0.01 for all three iterations of the simulation.

This simulation concerned the fairly common case of k = 15 effects, with ν = 8 effects
to form the denominator and a family-wise test size of α = 0.01. In this case, the simulation
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strongly supports the truth of the conjecture that iterative application of the step-down test
strongly controls the family-wise error rate.

3. Simulation for 15 Effects, with from Zero to Seven Random N(0, 5) Active
Effects, with α = 0.10

The prior section described three iterations of a simulation for k = 15 effects, using
ν = 8 effects to form the denominator, and with α = 0.01. One may well prefer to use
a larger value of α for a screening experiment and family-wise control of test size. In this
section, we present the results of one iteration of the simulation presented in the prior section,
but with α = 0.10 rather than 0.01. As in the prior section, the simulation includes 700
different randomly selected non-null parameter configurations, plus 100 iterations for the
null parameter configuration. The results for α = 0.10 are as follows.

For each of the 800 cases or parameter configurations, the minimum estimated value
of P (IA) was computed over the three replications. Only 5 of the 700 non-null parameter
configurations yielded minP (IA) > 0.10, compared to 11 false positives in the 100 null cases.
Furthermore, of the 5 non-null cases so flagged, the largest estimate of minP (IA) was only
0.1027, with the other estimates ranging from 0.1002 to 0.1005.

With more false positives (11 out of 100 null cases) than possible true positives (5
out of 700 non-null cases), and given the small estimates of minP (IA) in the prospective
non-null cases, the results are again encouraging for α = 0.10. In short, this simulation also
strongly supports the truth of the conjecture that iterative application of the step-down test
strongly controls the family-wise error rate.

4. A Small Simulation with Five Effects with One Active

In this Section, we consider a small simulation with only five effects (k = 5) and at
most one active effect θ, forming qmse from the ν = 3 smallest sums of squares. The values
considered for the ‘active’ effects are θ = 0, 1, . . . , 10, with θ = 0 treated as active but
negligible for estimating probabilities. The simulation included 10,000 runs for each value
of θ, using α = 0.10. Simulation results are provided in Table 2.

Table 2: Simulation for k = 5, ν = 3, α = 0.1, and one active effect θ

θ P (IA) P (CA) P (A) P (MN)
0 0.089 0.028 0.100 0.093
1 0.074 0.060 0.104 0.081
2 0.068 0.156 0.168 0.078
3 0.077 0.308 0.310 0.087
4 0.094 0.501 0.501 0.099
5 0.096 0.671 0.671 0.097
6 0.097 0.809 0.809 0.098
7 0.099 0.901 0.901 0.099
8 0.100 0.953 0.953 0.100
9 0.097 0.981 0.981 0.097
10 0.100 0.993 0.993 0.100
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As noted above, the case with θ = 0 is treated in the simulation as a non-zero but neg-
ligibly small effect. Since this is in essence the null case, any assertion is really an incorrect
assertion, so it is not surprising that P (A) essentially equals α = 0.10. Not surprisingly,
the results suggest that going from the null case to having one negligible active effect (ap-
proximated by and corresponding to θ = 0) causes P (IA) to drop discretely from 0.10 to
0.08909—the value listed for P (IA) in Table 2. One might then anticipate P (IA) being
monotone increasing in θ for θ > 0. Interestingly though, such is not the case. Instead,
P (IA) actually decreases as θ goes from 0 (i.e. negligible) to 1 to 2, then increases for θ > 2;
the slight exception when θ = 9 is probably just simulation error. It is surprising that
P (IA) is not monotone in nonzero θ. This lack of monotonicity may be useful in proving
the conjecture, if one can prove concavity, for example. It is perhaps also noteworthy that
the greatest disparity between P (IA) and P (MN) is when θ is small, i.e. about 2 or 3.

Note that the probability of an incorrect assertion, P (IA), is at most 0.10 for all
nonzero values of θ, suggesting error rate control, so this simulation supports the iterative
testing conjecture.

5. Simulation for 15 Effects, with Seven or Fewer Active Effects with Values
3, 6 or 9, with α = 0.01

In this Section, we consider the common case of 15 estimates (e.g. corresponding to a
215−11
III fraction), with from zero to seven active effects, systematically varying the values of the

last seven effects θ9, . . . , θ15 to have nondecreasing values 0, 3, 6 or 9, yielding 120 distinct
parameter configurations. Any effect with value zero is treated as inactive in estimating
probabilities.

Simulation results are provided in Table 3 (after references). Only a few of the pa-
rameter configurations involving an effect of size three are shown, since P (IA) is well below
α in most such cases, including all cases not displayed. A few general observations are in
order. The probability of making any assertions, P (A), and the probability of making any
correct assertions, P (CA), are largest when there are a few large effects. The probability of
an incorrect assertion, P (IA), and the probability of the necessary condition for an incorrect
assertion, P (MN), are nearly equal when all active effects are very large, i.e. when all active
effects are highly likely to be asserted to be nonzero. Most importantly for our purposes,
note that the probability of an incorrect assertion, P (IA), never exceeds α = 0.01 by more
than a negligible amount attributable to simulation error, supporting the conjecture.

6. Simulation for 15 Effects, with Three or Fewer Active Effects with Values
0.0001, 2, 4, 6, or 8, with α = 0.01

In the prior section, it was seen that P (IA) and P (MN) are nearly equal when all
active effects are very large, and that the test had more power when there were a few large
effects. In this section, we examine whether the inclusion of a few small active effects among
only a small number of active effects sheds any light on the relative behavior of P (IA) and
P (MN), in case this helps in the quest for an analytic proof of the conjecture. In particular,
we revisit the common case of 15 estimates, but with from zero to three active effects,
systematically varying the values of the last three effects θ13, θ14, θ15 to have nondecreasing
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values 0.0001, 2, 4, 6, or 8. This yields 56 distinct parameter configurations. Any effect with
value zero is treated as inactive in estimating probabilities.

Simulation results are provided in Table 4 (after references). To save table space, the
results are not shown for any parameter configurations with θ13 = 2; these cases all yield
0.003 < P (IA) < 0.007 so are not interesting.

A few general observations are in order. The probability of making any assertions,
P (A), and the probability of making any correct assertions, P (CA), are largest when there
are a few large effects. Conversely, consider the three parameter configurations when all
active effects are small—namely, when the active effects consist of one, two or three effects
of size 0.0001. These are close to the complete null case, when all 15 effects are zero, so it
is not surprising that P (A) is approximately α in each case. That said, incorrect assertions
are more likely than correct assertions, since there are simply more null effects.

In examining the behavior of P (IA) and P (MN), perhaps the most interesting obser-
vations is that these can lack monotonicity in the effects. For example, in the cases with
14 null effects, these probabilities decrease as the lone active effect increases from 0.0001 to
2, but then they increase. It seems obvious that the conjecture should be true if all active
effects are either very large or very small. In particular, any very large effects will almost
surely correspond to the largest estimates and almost surely be asserted to be nonzero, af-
ter which the step-down test will proceed as if they were never in the picture; if so, then
large effects shouldn’t cause the size of the iterative step-down test to exceed α. Also, the
estimates of any very small effects will behave like null effect estimates, except asserting any
of them to be active would be correct assertions, so the existence of very small effects may
cause P (IA) to be less than α. In view of this, perhaps an analytic proof of the conjecture
would follow if one could establish that either P (IA) or P (MN) is concave in each nonzero
effect.

7. Concluding Remarks

In the analysis of orthogonal saturated designs, certain closed step-down tests are
known to provide strong family-wise control of error rates. Many authors have proposed
applying such step-down tests iteratively, but it remains an open problem to establish ana-
lytically the conjecture that iterative step-down tests strongly control family-wise error rates.
The various simulations presented in this paper strongly support this conjecture. Then may
also provide some insight that will be helpful in the search for an analytic proof of the con-
jecture. In particular, while the probability of making any incorrect assertions is apparently
largest in the null case and when all active effects are very large, interestingly, this prob-
ability is apparently not monotone in the value of active effects. Simulations suggest that
the behavior of the probability of incorrect assertions may be concave, but clearly it is not
monotone.
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Table 3: Simulation for k = 15, ν = 8, α = 0.01, and up to seven active effects of
size 3, 6 or 9

No. Null θ9–θ15 P (A) P (CA) P (IA) P (MN)
15 0 0 0 0 0 0 0 0.0102 0.0000 0.0102 0.0102
14 0 0 0 0 0 0 3 0.0791 0.0780 0.0081 0.0083
14 0 0 0 0 0 0 6 0.5852 0.5852 0.0099 0.0099
14 0 0 0 0 0 0 9 0.9477 0.9477 0.0101 0.0101
13 0 0 0 0 0 3 3 0.0891 0.0889 0.0071 0.0076
13 0 0 0 0 0 3 6 0.4899 0.4899 0.0078 0.0081
13 0 0 0 0 0 3 9 0.9102 0.9102 0.0082 0.0084
13 0 0 0 0 0 6 6 0.5986 0.5986 0.0104 0.0104
13 0 0 0 0 0 6 9 0.9098 0.9098 0.0104 0.0104
13 0 0 0 0 0 9 9 0.9478 0.9478 0.0102 0.0102
12 0 0 0 0 3 3 3 0.0726 0.0725 0.0049 0.0055
: : : : : : : : : : : :

12 0 0 0 0 3 9 9 0.9043 0.9043 0.0078 0.0082
12 0 0 0 0 6 6 6 0.5386 0.5386 0.0094 0.0095
12 0 0 0 0 6 6 9 0.8515 0.8515 0.0101 0.0101
12 0 0 0 0 6 9 9 0.9031 0.9031 0.0097 0.0097
12 0 0 0 0 9 9 9 0.9258 0.9258 0.0100 0.0100
: : : : : : : : : : : :

111 0 0 0 3 9 9 9 0.8569 0.8569 0.0075 0.0080
11 0 0 0 6 6 6 6 0.4408 0.4408 0.0100 0.0102
11 0 0 0 6 6 6 9 0.7567 0.7567 0.0099 0.0099
11 0 0 0 6 6 9 9 0.8243 0.8243 0.0099 0.0099
11 0 0 0 6 9 9 9 0.8531 0.8531 0.0100 0.0100
11 0 0 0 9 9 9 9 0.8730 0.8730 0.0104 0.0104
: : : : : : : : : : : :

10 0 0 3 9 9 9 9 0.7623 0.7623 0.0071 0.0078
10 0 0 6 6 6 6 6 0.3137 0.3137 0.0094 0.0096
10 0 0 6 6 6 6 9 0.6143 0.6143 0.0101 0.0104
10 0 0 6 6 6 9 9 0.6960 0.6960 0.0096 0.0097
10 0 0 6 6 9 9 9 0.7321 0.7321 0.0098 0.0099
10 0 0 6 9 9 9 9 0.7557 0.7557 0.0095 0.0096
10 0 0 9 9 9 9 9 0.7721 0.7721 0.0096 0.0096
: : : : : : : : : : : :
9 0 3 9 9 9 9 9 0.5901 0.5901 0.0062 0.0075
9 0 6 6 6 6 6 6 0.1789 0.1789 0.0082 0.0097
9 0 6 6 6 6 6 9 0.4178 0.4178 0.0084 0.0095
9 0 6 6 6 6 9 9 0.4958 0.4958 0.0099 0.0104
9 0 6 6 6 9 9 9 0.5361 0.5361 0.0099 0.0102
9 0 6 6 9 9 9 9 0.5658 0.5658 0.0096 0.0098
9 0 6 9 9 9 9 9 0.5814 0.5814 0.0094 0.0094
9 0 9 9 9 9 9 9 0.5989 0.5989 0.0100 0.0101
: : : : : : : : : : : :
8 3 9 9 9 9 9 9 0.3261 0.3261 0.0012 0.0070
8 6 6 6 6 6 6 6 0.0614 0.0614 0.0004 0.0094
8 6 6 6 6 6 6 9 0.1839 0.1839 0.0010 0.0104
8 6 6 6 6 6 9 9 0.2340 0.2340 0.0014 0.0101
8 6 6 6 6 9 9 9 0.2611 0.2611 0.0018 0.0100
8 6 6 6 9 9 9 9 0.2839 0.2839 0.0023 0.0100
8 6 6 9 9 9 9 9 0.2995 0.2995 0.0026 0.0096
8 6 9 9 9 9 9 9 0.3051 0.3051 0.0030 0.0101
8 9 9 9 9 9 9 9 0.3173 0.3173 0.0029 0.0098
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Table 4: Simulation for k = 15, ν = 8, α = 0.01, and up to three active effects of
size 0.0001, 2, 4, 6, or 8

No. Null θ13 θ14 θ15 P (A) P (CA) P (IA) P (MN)
15 0 0 0 0.0102 0.0000 0.0102 0.0102
14 0 0 0.0001 0.0099 0.0009 0.0094 0.0094
14 0 0 2 0.0257 0.0221 0.0072 0.0074
14 0 0 4 0.1998 0.1995 0.0097 0.0098
14 0 0 6 0.5826 0.5826 0.0100 0.0100
14 0 0 8 0.8767 0.8767 0.0102 0.0102
13 0 0.0001 0.0001 0.0102 0.0020 0.0094 0.0095
13 0 0.0001 2 0.0251 0.0221 0.0066 0.0069
13 0 0.0001 4 0.2007 0.2005 0.0083 0.0085
13 0 0.0001 6 0.5811 0.5811 0.0094 0.0094
13 0 0.0001 8 0.8774 0.8774 0.0094 0.0095
13 0 2 2 0.0293 0.0280 0.0048 0.0052
13 0 2 4 0.1561 0.1560 0.0065 0.0069
13 0 2 6 0.5067 0.5067 0.0070 0.0073
13 0 2 8 0.8309 0.8309 0.0073 0.0075
13 0 4 4 0.2146 0.2146 0.0087 0.0090
13 0 4 6 0.4970 0.4970 0.0096 0.0099
13 0 4 8 0.8180 0.8180 0.0098 0.0100
13 0 6 6 0.5988 0.5988 0.0100 0.0100
13 0 6 8 0.8252 0.8252 0.0101 0.0101
13 0 8 8 0.8831 0.8831 0.0102 0.0102
12 0.0001 0.0001 0.0001 0.0100 0.0030 0.0085 0.0086
12 0.0001 0.0001 2 0.0264 0.0235 0.0069 0.0071
12 0.0001 0.0001 4 0.2014 0.2012 0.0080 0.0082
12 0.0001 0.0001 6 0.5810 0.5810 0.0090 0.0090
12 0.0001 0.0001 8 0.8782 0.8782 0.0089 0.0090
12 0.0001 2 2 0.0280 0.0269 0.0049 0.0052
12 0.0001 2 4 0.1556 0.1555 0.0061 0.0064
12 0.0001 2 6 0.5055 0.5055 0.0063 0.0066
12 0.0001 2 8 0.8288 0.8288 0.0068 0.0071
12 0.0001 4 4 0.2182 0.2182 0.0079 0.0082
12 0.0001 4 6 0.4966 0.4966 0.0091 0.0092
12 0.0001 4 8 0.8151 0.8151 0.0093 0.0096
12 0.0001 6 6 0.5976 0.5976 0.0096 0.0096
12 0.0001 6 8 0.8237 0.8237 0.0095 0.0095
12 0.0001 8 8 0.8840 0.8840 0.0098 0.0098
: : : : : : : :

12 4 4 4 0.1815 0.1815 0.0078 0.0085
12 4 4 6 0.3991 0.3991 0.0089 0.0092
12 4 4 8 0.7293 0.7293 0.0084 0.0089
12 4 6 6 0.4879 0.4879 0.0087 0.0089
12 4 6 8 0.7386 0.7386 0.0091 0.0093
12 4 8 8 0.8095 0.8095 0.0090 0.0093
12 6 6 6 0.5384 0.5384 0.0100 0.0101
12 6 6 8 0.7428 0.7428 0.0101 0.0101
12 6 8 8 0.8109 0.8109 0.0100 0.0101
12 8 8 8 0.8442 0.8442 0.0102 0.0102
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Abstract
We consider locally D-optimal crossover designs for generalized linear models. Three

different types of responses were recorded in a work environment experiment conducted at
Booking.com. These responses follow Poisson, beta and gamma distributions. The responses
from the same subjects are naturally correlated. To capture the dependence among these
observations, we use six different types of correlation structures. The optimal allocations
of subjects to each treatment sequence are obtained by minimizing the objective function,
which is the variance of direct treatment effect estimates. We show that optimal allocations
are reasonably robust to a different choice of correlation structures. Although uniform allo-
cations are widely used in practice, we establish these designs are sub-optimal under certain
conditions.

Key words: D-Optimality; Generalized Linear Models; Generalized estimating Equations;
Latin Square Design.

1. Introduction

Crossover designs, also known as repeated measurements designs or change-over de-
signs, have been used extensively in pharmaceutical and agriculture research. Most of the
present work focuses on optimal crossover designs for normal responses. But, there are ample
examples where responses are non-normal and needed to be described by generalized linear
models (GLMs). The optimal designs obtained for normal responses can be quite inefficient
for GLMs. The goal of this manuscript is to bridge this gap in the literature and obtain
efficient designs for crossover experiments with responses under GLMs, including Poisson,
beta, gamma responses, etc.

In crossover experiments, every subject is exposed to a sequence of treatments over
different time periods, i.e., subjects crossover from one treatment to another. Among dif-
ferent types of experiments available for treatment comparisons with multiple periods, the
crossover designs are among the most important ones. We can get the same number of ob-
servations but with fewer subjects. The time at which the subject receives the treatment is
known as a period and the order in which the particular subject receives treatments is known
as a sequence. Each subject receives one treatment in each period, and the corresponding
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response is recorded. Naturally, crossover designs also provide within-subject information
about treatment differences.

Most of the current literature in the crossover design deal with the continuous responses
(see, for example, Kershner and Federer (1981), Laska and Meisner (1985), Matthews (1987),
Carriere and Huang (2000), and the references therein). The problem of determining optimal
crossover designs for continuous responses has been studied extensively (see, for example,
Bose and Dey (2009) for a review of results). For examples of practical cases where the
responses are discrete, such as binary responses, one may refer to Jones and Kenward (2014)
and Senn (2003).

Different fixed effects models have been proposed in the literature, but the following
linear model is used extensively to formulate crossover designs. For an experiment involving
n subjects and p periods, the response is modeled as

Yij = λ+ βi + αj + τd(i,j) + ρd(i−1,j) + εij, (1)

where Yij is the observation from the jth subject in the ith time period, with i = 1, . . . , p and
j = 1, . . . , n. Here d(i, j) stands for the treatment assigned to the jth subject at time period
i and λ, βi, αj, τd(i,j), ρd(i−1,j) are the corresponding overall mean, the ith period effect, the
jth subject effect, the direct treatment effect and the carryover treatment effect respectively.
We define ρd(0,j) = 0. Here εijs are the uncorrelated error terms which follow a normal
distribution with zero mean and constant variance. Model (1) is commonly referred to as
the traditional model due to its extensive use in the literature.

Note that the Fisher information matrix, for the linear model (1), is independent of
model parameters because all the effects are fixed. Various optimality criteria such as A-,
D-, E-optimality depend on this information matrix (see, for example, Pukelsheim (1993)).
The optimality of crossover designs for linear models has been studied extensively in the
literature. Hedayat and Afsarinejad (1978), Cheng and Wu (1980) and Kunert (1984b)
considered the optimality of balanced, uniform designs. Optimality of designs when p ≤ t
were first formulated in Dey et al. (1983). However, these results are not directly applicable
to non-normal responses. In the case of GLMs Fisher information matrix depends on the
model parameters (McCullagh and Nelder (1989), Stufken and Yang (2012)); hence the
results on the optimality of crossover designs for linear models cannot be readily extended
to other types of responses.

2. Preliminary Setup: Crossover Design for GLM

Most of the results available on optimal crossover designs deal with normal responses,
so the results on crossover designs under GLMs are limited. Before presenting the results
for optimal crossover designs, we formally introduce the associated generalized linear models
for crossover designs.

Consider a crossover experiment with t treatments, n subjects, and p periods. The
response from the jth subject is Yj = (Y1j, . . . , Ypj)′ and the overall response for these n
subjects are denoted as Y1, . . . , Yn. The marginal distribution of Yij is described using GLMs
as mentioned in Liang and Zeger (1986). Then the marginal mean µij of Yij for crossover
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trial is modeled as

g(µij) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j), (2)

where i = 1, . . . , p; j = 1, . . . , n; λ is the overall mean, βi represents the effect of the ith
period, τs is the direct effect due to treatment s assigned to subject j in period i, ρs is the
carryover effect due to treatment s assigned to subject j in period (i− 1), where s = 1, . . . , t
and g is a link function. We define ρd(0,j) = 0. For example, µ1,j is modeled as g(µ1,j) =
η1,j = λ+ τd(1,j).

In many situations interest lies mainly in the estimation of direct treatment effects, so
we treat carryover effects as nuisance parameter. To ensure the estimability of the parame-
ters, we set the baseline constraints as β1 = τ1 = ρ1 = 0.

Consider β = (β2, . . . , βp)′ , τ = (τ2, . . . , τt)′ and ρ = (ρ2, . . . , ρt)′, which define the
parameter vector θ = (λ, β, τ, ρ)′. Then the linear predictor corresponding to the jth subject,
ηj = (η1j, . . . , ηpj)′ can be written as

ηj = Xjθ.

The corresponding design matrix Xj can be written as Xj = [1p, Pj, Tj, Fj], where Pj
is p× (p− 1) matrix such that Pj = [0(p−1)1, Ip−1]′; Tj is a p× (t− 1) matrix with its (i, s)th
entry equal to 1 if subject j receives the direct effect of the treatment s in the ith period and
zero otherwise; Fj is a p× (t−1) matrix with its (i, s)th entry equal to 1 if subject j receives
the carryover effect of the treatment s in the ith period and zero otherwise. The columns
of Tj and Fj are indexed by 2, . . . , t. Note that Tj and Fj have t − 1 columns instead of t,
because of the baseline constraints τ1 = ρ1 = 0.

If the number of subjects is fixed to n and the number of periods is p, then we determine
the proportion of subjects assigned to a particular treatment sequence. As the number of
periods is fixed to p, each treatment sequence will be of length p and a typical sequence
can be written as ω = (t1, . . . , tp)′ where ti ∈ {1, . . . , t}. Now, let Ω be the set of all such
sequences and nω denote the number of subjects assigned to sequence ω. Then, the total
number of subjects n can be written as n = Σω∈Ωnω, with nω ≥ 0. A crossover design ζ in
approximate theory is specified by the set {pω, ω ∈ Ω}, where pω = nω/n is the proportion
of subjects assigned to treatment sequence ω. Such a crossover design ζ can be denoted as
follows:

ζ =
{
ω1 ω2 . . . ωk
pω1 pω2 . . . pωk

}
,

where k is the number of treatment sequences involved, such that ∑k
i=1 pωi

= 1. From the
definitions of matrices Tj and Fj it can be noted that they depend only on the treatments
sequence ω that subject j receives. Let Tω be the matrix T and Fω be the matrix F when
subject receives sequence ω. Then it can be inferred that all the subjects receiving sequence
ω have same T and F matrices. This implies, all the subjects receiving sequence ω have
same design matrix i.e. Xj = Xω as Pj = [0(p−1)1, Ip−1]′.
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Following Jankar et al. (2020), we use generalized estimating equations (GEEs) to
estimate quasi-likelihood estimates of the model parameters. As mentioned in Zeger et al.
(1988, equation (3.1)), it can be shown that for repeated measurement model, the GEEs are

n∑
j=1

∂µ′j
∂θ

W−1
j (Yj − µj) = 0,

where µj = (µ1j, . . . , µpj)′ and the asymptotic variance for the GEE estimator θ̂ (see Zeger
et al., 1988, equation (3.2)) is

Var(θ̂) =
 n∑
j=1

∂µ′j
∂θ

W−1
j

∂µj
∂θ

−1

,

where Wj = Cov(Yj).

We can write the above equation in the form of approximate designs as follows,

Var(θ̂) =
∑
ωεΩ

npω
∂µ′ω
∂θ

W−1
ω

∂µω
∂θ

,

where Wω corresponds to the covariance matrix of response Yj when subject j receives
treatment sequence ω.

Main interest usually lies in estimating the direct treatment effect contrasts. So, instead
of working with the full variance-covariance matrix of parameter estimator θ̂, we concentrate
only on the variance of the estimator of treatment effect Var(τ̂). Here

Var(τ̂) = HVar(θ̂)H ′, (3)

where H is a (t − 1) × m matrix given by [0(t−1)1, 0(t−1)(p−1), It−1, 0(t−1)(t−1)], where m =
p+ 2t− 2 is the total number of parameters in θ and 0(t−1)(p−1) is a (t− 1)× (p− 1) matrix
of zeros.

Optimal proportions for crossover designs are obtained by minimizing the variances of
estimators of treatment effect. We use the D-optimality criterion and use the determinant
of Var(τ̂) as our objective function. Then an optimal design ζ∗ minimizes the determinant
of Var(τ̂) in equation (3) with respect to pω, such that ∑w∈Ω pw = 1.

Note that the baseline constraints τ1 = 0 we set earlier results in the estimators for
τi − τ1 for i ≥ 2. In the case of a D-optimality criterion, it is okay to use an above baseline
constraint, but we must use different constraints in other optimality criteria. The above
method has been discussed in detail in Jankar et al. (2020).

3. The Work Environment Experiment

We considered the data obtained from the work environment experiment conducted at
Booking.com (Pitchforth et al. (2020)). In recent years, most corporate offices and organi-
zations are adopting open office spaces over the traditional cubical office spaces. Since there
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were no previous studies to examine the effects of office designs in workspaces, Booking.com
conducted an experiment to assess different office spacing efficiency.

In the work environment experiment, there were a total of n = 288 participants. These
participants were divided into four groups G1, G2, G3, G4 with each group having an equal
number of (72) individual participants. This experiment is essentially an uniform crossover
design with p = 4 periods and t = 4 treatments. Periods were named Wave1, Wave2, Wave3
and Wave4, where each Wave had a duration of 2 weeks. The four treatments involved in
this experiment are office designs named as A (Activity-Based), B (Open Plan), C (Team
Offices), and D (Zoned Open Plan), as shown in the figure below:

A− ACT B− OPEN

C− TEAM D− ZONE.

The images are reproduced from the manuscript Pitchforth et al. (2020), under Creative
Commons Attribution license (https://creativecommons.org/licenses/by/4.0/).

During the experiment, each group is exposed to different treatments over different
periods depending on the treatment sequence. At a given particular period, there was no
interaction between subjects from different groups. A Latin square design (Wu and Hamada,
2009) of order four has been used to decide the sequence of exposure so that no group was
exposed to the conditions in the same order as any other group. The design is shown below
in Table 1. A total of m = 23 covariates was involved in the experiment, but we consider
only the most important ones in our fitted model.

Table 1: Latin square design

Groups ⇒ G1 G2 G3 G3
Period ⇓
Wave 1 OPEN TEAM ZONE ACT
Wave 2 ACT ZONE OPEN TEAM
Wave 3 ZONE ACT TEAM OPEN
Wave 4 TEAM OPEN ACT ZONE

In the following analysis, we consider three different responses that were recorded dur-
ing the experiment. We discuss these responses in more detail in the following sections.

https://creativecommons.org/licenses/by/4.0/
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These three responses follow three different types of distributions. We make an extra as-
sumption that the responses from a particular subject are mutually correlated, while the
responses from different subjects are uncorrelated. To capture the dependency among the
observations coming from the same subject, we calculate optimal proportions for these dif-
ferent responses using six different correlation structures proposed in Section 2.3 of Jankar
et al. (2020) and shown in the Appendix. For each correlation matrix that we consider,
an optimal design ζ∗ is the one minimizing the determinant of Var(τ̂) in equation (3) with
respect to pω such that ∑w∈Ω pw = 1.

We use different colors to represent different correlation structures. The color scheme
that we use is as follows:

Correlation Structure Color

Corr(1)
Corr(2)
Corr(3)
Corr(4)
Corr(5)
Corr(6)

4. Poisson Regression

In the case of Poisson response we calculate locally optimal design for the above example
under the model,

log(µij) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j),

where notations have the same meaning as in equation (2). In the above experiment, there
were many different types of responses recorded. We consider the response commit count
to illustrate the optimal crossover design for the Poisson response. The commit counts were
the number of commits submitted to the main git repository.

4.1. Analysis of data

We consider the three main predictors in the model, which are area, wave and carryover
where area corresponds to the direct treatment effect, wave corresponds to the period effect,
and carryover corresponds to the carryover effect of a treatment given in previous period.
We use different kinds of correlation matrices and calculate the optimal proportions. As
mentioned earlier we consider baseline constraints as β1 = τ1 = ρ1 = 0, so that all the
parameters are estimable.

We fit the Poisson regression model to the commit data by using the glm function in R
and calculate the parameter estimates. We use these parameter estimates to make a guess
for values of unknown parameters. Our nominal guess for the parameter values is θ1 = [2,
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0.3, 0.8, −0.1, −0.2, 0.04, −0.2, −0.6, 0.15, −0.4]. It is interesting to note that carryover
effects are larger than direct effects even though θ1 is calculated using experimental data.
Now, we calculate the optimal designs for different correlation structures by minimizing the
objective function. We also calculate optimal proportions for another parameter θ2 = [2,
0.3, 0.8, −0.1, −2.0, 0.40, −2.0, −1.0, 0.30, −1.0], which is significantly different from θ1.

4.2. Optimal designs

In the Table 2, we present the optimal proportions corresponding to Poisson response
for six different choices of the correlation matrix.

Table 2: Optimal proportions in case of Poisson response

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
Corr(2) 0.2500 0.2500 0.2500 0.2500 0.2747 0.3113 0.1841 0.2299
Corr(3) 0.2500 0.2500 0.2500 0.2500 0.2795 0.3074 0.1798 0.2333
Corr(4) 0.2500 0.2500 0.2500 0.2500 0.2562 0.3168 0.1860 0.2410
Corr(5) 0.2500 0.2500 0.2500 0.2500 0.2736 0.3138 0.1922 0.2204
Corr(6) 0.2500 0.2500 0.2500 0.2500 0.2537 0.3190 0.1844 0.2429

As seen from Table 2, in case of Poisson response the optimal proportions that we
obtain using θ1 are nearly uniform and that using θ2 are non-uniform.

Figure 1: Uniform optimal proportions for Poisson response under θ1
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The plots in Figures 1 and 2 represent the optimal proportions for Poisson response
under θ1 and θ2 respectively. It can be seen from these plots that the optimal proportions
do not vary much when we use different correlation structures under θ1 and θ2. In most
situations in practice, uniform, optimal designs (the same proportion for each treatment
sequence) are used. It is clear from the above analysis that those uniform designs are sub-
optimal under θ2.

Figure 2: Non-uniform optimal proportions for Poisson response under θ2

5. Beta Regression

In the beta response case, we calculate the locally optimal design for the response
from the Booking.com example under two different models. We consider two different link
functions to model the marginal mean of the response as follows:

logit(µij) = log( µij
1− µij

) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j),

and,

log(µij) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j),

where notations have the same meaning as in equation (2).

To illustrate the optimal proportions in the beta response case, we consider the nor-
malized response engagement from the work environment experiment. In the case of this
experiment, engagement is a measure of the extent to which participants felt focused on and
excited to complete regular work tasks.
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5.1. Analysis of data

Similar to the Poisson response analysis, we consider three main predictors in the
model for a beta response which are area, wave and carryover. We use six different kinds
of correlation matrices as mentioned above and calculate optimal proportions under two
different models with different link functions. As mentioned earlier, we consider baseline
constraints so that all the parameters are estimable.

We get the initial estimates of parameters by fitting the beta regression model to the
response. For two different link functions we need to guess two different sets of parameter
values for θ1 and θ2. In case of logit link function, our nominal guess for the parameter
values is θ1 = [1.24, −0.035, 0.17, 0.078, −0.2, −0.3, 0.01, −0.35, −0.62, −0.329] and θ2
= [1.24, −0.035, 0.17, 0.078, −4, −6, 2, −3.5, −3.1, −1.28]. In case of log link function,
our nominal guess for the parameter values is θ1 = [−0.25, −0.01, 0.04, 0.02, −0.05, −0.08,
−0.004, −0.088, −0.172, −0.08] and θ2 = [−0.25, −0.01, 0.04, 0.02, −5, −8, −0.4, −2.2,
−4.3, −2]. Note that, as before, θ1 is an educated guess based on the data at hand, whereas
θ2 has significantly different values for the parameters of interest than that of θ1.

5.2. Optimal designs

In the Table 3, we present the optimal proportions corresponding to logit link case for
six different choices of correlation matrix. As seen from Table 3, in case of beta response
(logit link) the optimal proportions that we obtain using θ1 are nearly uniform and that
using θ2 are non-uniform.

Table 3: Optimal proportions in case of beta response (logit link).

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2518 0.2563 0.2465 0.2454 0.3418 0.2085 0.1643 0.2854
Corr(2) 0.2525 0.2572 0.2453 0.2450 0.3316 0.2066 0.1690 0.2928
Corr(3) 0.2515 0.2568 0.2462 0.2455 0.3363 0.2058 0.1682 0.2897
Corr(4) 0.2405 0.2539 0.2419 0.2637 0.3205 0.2043 0.1739 0.3013
Corr(5) 0.2595 0.2542 0.2467 0.2396 0.3250 0.2070 0.1711 0.2969
Corr(6) 0.2366 0.2562 0.2423 0.2649 0.3218 0.2088 0.1668 0.3026

In Table 4, we present the optimal proportions corresponding to the log link case for
six different choices of the correlation matrix. As before, in the beta response (log link) case,
the optimal proportions that we obtain using θ1 are nearly uniform and that using θ2 are
non-uniform.

The plots in Figures 3, 4 and Figures 5, 6 represent the optimal proportions for beta
response under θ1 and θ2 for two different choices of link functions respectively.
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Figure 3: Uniform optimal proportions for beta response (logit link) under θ1

Figure 4: Non-uniform optimal proportions for beta response (logit link) under
θ2
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Table 4: Optimal proportions in case of beta response (log link).

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2522 0.2560 0.2470 0.2448 0.3305 0.1470 0.1930 0.3295
Corr(2) 0.2529 0.2569 0.2458 0.2444 0.3270 0.1200 0.2084 0.3446
Corr(3) 0.2520 0.2564 0.2466 0.2450 0.3290 0.1210 0.2050 0.3450
Corr(4) 0.2410 0.2535 0.2425 0.2630 0.3271 0.1060 0.2137 0.3532
Corr(5) 0.2600 0.2540 0.2460 0.2400 0.3245 0.1101 0.2102 0.3552
Corr(6) 0.2371 0.2558 0.2428 0.2643 0.3272 0.1096 0.2120 0.3512

Figure 5: Uniform optimal proportions for beta response (log link) under θ1

It can be seen from these plots that optimal proportions do not vary much when we
use different correlation structures under θ1 and θ2. In most of the situations in practice
uniform optimal designs are used. The above analysis shows that those uniform designs are
sub-optimal under θ2 irrespective of what link function is used.
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Figure 6: Non-uniform optimal proportions for beta response (log link) under θ2

6. Gamma Regression

In the case of Gamma response, we calculate locally D-optimal design for the response
from the same Booking.com example under two different models. Similar to the beta re-
sponse, we consider two different link functions to model the marginal mean of the response.
We use the log, and inverse link functions, and the two models are as follows:

log(µij) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j),

and,

inv(µij) = 1
µij

= ηij = λ+ βi + τd(i,j) + ρd(i−1,j),

where, as before, notations have the same meaning as in equation (2).

From the work environment experiment, we consider the response satisfaction. Satis-
faction is an essential concept for organisational and office design research, and it is usually
used to measure employees’ sentiments. In the work environment experiment, the Leesman
satisfaction index was used, which is useful for many benchmark purposes. Since the response
is right-skewed, it is safe to assume that the response follows a gamma distribution.
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6.1. Analysis of data

Similar to previous two cases, we consider three main predictors in the model for gamma
response which are area, wave and carryover. As before, we consider six different kinds
of correlation matrices and calculate optimal proportions under two different models with
different link functions. We consider same baseline constraints as mentioned earlier. We fit
the gamma regression model to the data with satisfaction as response by using the glm
function in R and calculate the parameter estimates.

In case of log link function, our nominal guess for the parameter values is θ1 = [2.1,
−0.19, −0.04, −0.04, −0.16, −0.4, −0.06, 0.05, 0.005, −0.05] and θ2 = [2.1, −0.19, −0.04,
−0.04, −1.6, −4.0, −0.6, 0.5, 0.05, −0.5]. In case of inverse link function, our nominal
guess for the parameter values is θ1 = [0.13, 0.03, 0.003, 0.003, 0.025, 0.07, 0.008, −0.007,
−0.0001, −0.01] and θ2 = [0.13, 0.03, 0.003, 0.003, 2.5, 7, 0.8, −0.7, −0.01, −1]. As before,
θ1 was motivated by the data provided by Pitchforth et al. (20202) and θ2 is significantly
different from θ1.

6.2. Optimal designs

In the Table 5, we present the optimal proportions corresponding to log link case for
six different choices of correlation matrix. As seen from Table 5, in case of gamma response
(log link) the optimal proportions that we obtain using θ1 are nearly uniform and that using
θ2 are non-uniform.

Table 5: Optimal proportions in case of gamma response (log link).

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2500 0.2500 0.2500 0.2500 0.1328 0.2775 0.3336 0.2561
Corr(2) 0.2500 0.2500 0.2500 0.2500 0.1248 0.2639 0.3527 0.2586
Corr(3) 0.2500 0.2500 0.2500 0.2500 0.1258 0.2582 0.3596 0.2564
Corr(4) 0.2500 0.2500 0.2500 0.2500 0.1206 0.2671 0.3451 0.2672
Corr(5) 0.2500 0.2500 0.2500 0.2500 0.1225 0.2770 0.3354 0.2656
Corr(6) 0.2500 0.2500 0.2500 0.2500 0.1195 0.2685 0.3416 0.2704

In Table 6, we present the optimal proportions corresponding to inverse link case for
six different choices of correlation matrix. As before, Table 6 indicates that the optimal
proportions that we obtain using θ1 are nearly uniform and that using θ2 are non-uniform
in case of gamma response (inverse link).

The plots in Figures 7, 8 and Figures 9, 10 represent the optimal proportions for gamma
response under θ1 and θ2 for two different choices of link functions respectively.
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Figure 7: Uniform optimal proportions for gamma response (log link) under θ1

Figure 8: Non-uniform optimal proportions for gamma response (log link) under
θ2
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Table 6: Optimal proportions in case of gamma response (inverse link).

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2500 0.2500 0.2500 0.2500 0.2650 0.3093 0.1828 0.2429
Corr(2) 0.2500 0.2500 0.2500 0.2500 0.2486 0.3031 0.1911 0.2572
Corr(3) 0.2500 0.2500 0.2500 0.2500 0.2588 0.3051 0.1879 0.2482
Corr(4) 0.2500 0.2500 0.2500 0.2500 0.2389 0.3087 0.1784 0.2740
Corr(5) 0.2500 0.2500 0.2500 0.2500 0.2406 0.3112 0.1762 0.2720
Corr(6) 0.2500 0.2500 0.2500 0.2500 0.2421 0.3146 0.1740 0.2729

Figure 9: Uniform optimal proportions for gamma response (inv link) under θ1

It can be seen from these plots that optimal proportions do not vary much when we
use different correlation structures under θ1 and θ2. In most of the situations in practice
uniform optimal designs are used. The above analysis shows that those uniform designs are
sub-optimal under θ2 irrespective of what link function is used.
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Figure 10: Non-uniform optimal proportions for gamma response (inv link) un-
der θ2

7. Summary and Conclusion

In many experiments in real life, uniform designs are often used. Uniform designs are
those in which the same number of subjects are assigned to each treatment sequence. These
uniform designs are optimal in the linear model case, i.e. when the response is normally
distributed. But, in situations where responses are non-normal, the obtained optimal pro-
portions are not necessarily uniform. In this paper’s analysis, we identify locally optimal
designs for responses belonging to Poisson, beta and gamma distributions. Two different link
functions were considered in the case of beta and gamma responses. Tables 2 to 6 and plots
in Figures 1 to 10 suggest that obtained optimal proportions are robust for different choice of
correlations structures. These results also suggest that uniform designs are sub-optimal un-
der θ2 irrespective of the link function used or the response’s distribution. Note that we are
using the local optimality approach of Chernoff (1953). In real experiments, it is not always
possible to guess the values of parameter estimates from prior knowledge. In that case, it is
not easy to obtain locally optimal designs. In this paper we consider approximate designs
in terms of optimal proportions. While conducting real life experiments, the practitioners
must use exact designs where these proportions are to be converted into integers for deter-
mining the replication numbers of the sequences. The rounding off error might be significant
unless the total number of observations is large. The Work Environment Experiment had
288 subjects and hence such issues do not arise.
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APPENDIX

Six Different Correlation Structures

The first correlation structure is a compound symmetric correlation structure, i.e.,

Corr(1) = (1− ρ)Ip + ρJp,

where Ip is the identity matrix of order p, and Jp is a p× p matrix with all elements unity.

The second correlation structure is the AR(1) correlation structure, i.e.,

Corr(2) =
(
ρ|i−i

′|
)
,

so that the correlation between responses decreases as the time gap between responses in-
creases.

The third correlation structure is as follows:

Corr(3) =


1 ρ 0 . . . 0 0 0
ρ 1 ρ . . . 0 0 0
... ... ...
0 0 0 . . . ρ 1 ρ
0 0 0 . . . 0 ρ 1

 .

For each correlation structure different correlation matrices using different ρ values are
considered.

To understand the other three correlation structures, we denote the correlation coeffi-
cient between the response when a subject receives treatment A first and the response when
the same subject receives treatment B afterwards as ρAB and ρBA when the subject receives
B first and A afterwards. Note that in general, ρAB is not necessarily the same as ρBA. In a
similar manner we define ρAA and ρBB. To define the fourth type of correlation structure, we
will use the same structure as Corr(3) but with different values of the correlation coefficient
for different treatment sequences.

To define the fifth and sixth type of correlation structures, we use AR(1) correlation
structure with correlation coefficient depending on treatment sequence. For the fifth type,
we use the same values for ρAB and ρBA, and for the sixth type of correlation structure, we
use different values for ρAB and ρBA. For both fifth and sixth type of correlation structure
we keep ρAA = ρBB. These values might vary from example to example and depend on what
treatments A and B are. As the correlation matrix entries depend on which treatment the
subject receives in a particular period, these correlation matrices are different for different
treatment sequences.
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Abstract
We start with a recently published connection from Lomax to exponential distribution

through the limiting distribution of a Lomax distribution scaled by its shape parameter.
Motivated by that observation, we explore several relationships between (generalized) Lomax
and other distributions of exponential family such as Gamma, Beta type II, Rayleigh and
Weibull. As further extension, we introduce the generalized double Pareto distribution on the
entire real line. Various properties of generalized double Pareto distribution are then studied
including its representation as a mixture of Student’s t and its connection to Laplace (double
exponential) distribution. We then provide a simple approach to simulate random numbers
from the double Pareto distribution and its implementation in R. Finally, we illustrate an
application in a real biomedical research problem.

Key words: Double Pareto distribution; Exponential distribution; Khattree-Bahuguna skew-
ness; Laplace distribution; Lomax distribution; Multivariate Lomax distribution.
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1. Introduction

It is our distinct privilege to dedicate this paper in honor of Late Prof. Aloke Dey. One
of us has learned a lot and personally benefited greatly in his research as well as in teaching
from Prof. Dey’s landmark book on block designs and although later he never got a chance
to thank Prof. Dey in person, we hope our this article serves as our symbolic appreciation
of Prof. Dey’s contributions to the goal of advancing the knowledge for the betterment of
society.

This article came into being due to an earlier simple curiosity described in Lun and
Khattree (2020) about univariate and multivariate Lomax distributions. The relationship
between Pareto/Lomax and exponential distributions has been well recorded in the literature
(see Johnson, Kotz, and Balakrishnan (1994) and Kotz, Kozubowski and Podgórski (2001))
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yet has not been very well publicized. Harris (1968) provides an approach to generate the
Pareto variates through a mixture of exponential variates with parameter having a gamma
distribution. Specifically and more generally, let X follow an exponential distribution with
rate parameter η and allow η to have a gamma distribution with shape parameter β and
scale parameter θ. Then, the unconditional probability density function of X is

f(x) =
� ∞

0
ηe−ηx

1
Γ(β)θβ η

β−1e−η/θdη = θβ

(1 + θx)β+1 , x > 0, θ, β > 0, (1)

which is the density function of Lomax (also called Pareto type II) distribution (hereon
denoted by Lomax(β, θ)) with shape parameter β and rate parameter θ. Alternatively, given
two independent standard exponential variates W1 and W2, the probability density function
of Y = W1/W2 is a standard Lomax distribution (with θ = 1, β = 1). On the other hand,
assume that X has a Pareto type I distribution with density g(x) = λx−(λ+1), x ≥ 1, then
the density function of Y = logX is λe−λy, y > 0. To indicate the other connections, in
Table 1, we summarize the expectations, variances, Pearson’s coefficients of skewness and
Khattree-Bahuguna’s skewness 1 of Lomax and exponential distributions.

As β → ∞, for Lomax(β, θ
β
) , we observe that the variance approaches the square

of expectation of an Exponential distribution with the rate parameter θ and the Pearson’s
coefficient of skewness approaches to 2. As we shall see later, as β → ∞ the Khattree-
Bahuguna’s skewness of the above Lomax distribution also approaches that of exponential
distribution. Proof is given in Section 2.3. A natural question then arises as to why does
Lomax distribution have its distributional properties so similar to those of exponential dis-
tribution?

One of our main objectives in this article is to explore above question by showing
and generalizing the connections between Lomax and exponential distributions. These have
been motivated by a result by Lun and Khattree (2020) about the limiting distribution of
a Lomax random variable scaled by its shape parameter. Based on this result, we discover
many more results which establish many other connections between (generalized) Lomax
and other distributions of exponential family. We further take upon introducing another
connection between Laplace (double exponential) distribution and generalized double Pareto
distribution, which is a popular choice of prior distribution in recent years for robust Bayesian
shrinkage estimators.

The article is organized as follows. In Section 2, we show the Lomax-exponential and
generalized Lomax-gamma connections. Then, we attempt to quantify the distance of Lomax
to exponential distributions in terms of Patil-Patil-Bagkavos’s η (2012) and by using the
Kullback-Leibler divergence. In Section 3, we give some results pertaining to relationships
between multivariate Lomax and other distributions of exponential family such as Gamma,
Beta type II, Rayleigh and Weibull. In Section 4, we discuss a three-parameter generalized
double Pareto distribution, including its simulation and connection to Laplace distribution.
Section 5 includes an approach to simulation of generalized double Pareto variates. In Section
6, we give a real-world application of bivariate Lomax distribution. Section 7 includes some
concluding remarks.

1Khattree-Bahuguna’s skewness for a random variable is defined in Khattree and Bahuguna (2019) and
reproduced here in Section 2.3. The values of this skewness for Lomax and Exponential distributions are
also computed there.
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Table 1: Comparison of summary parameters for Lomax(β, θ) and Exp(λ)

Summary Parameter Lomax(β, θ) Exp(λ)

E(X) 1
θ(β−1) , β > 1 1

λ

Var(X) β
θ2(β−1)2(β−2) , β > 2 1

λ2

Pearson’s coefficient of skewness 2(β+1)
β−3

√
β−2
β , β > 3 2

Khattree-Bahuguna’s skewness 1
2

[
1 +

(
B(1− 1

β , 1−
1
β )− β2

(β−1)2

)
(β−1)2(β−2)

β

]
, β > 2 1− π2

12 ' 0.177533

2. Connections Between Generalized Lomax and Gamma Distributions

In this section, we first state a surprisingly simple connection between Lomax and
exponential distributions partially given in Lun and Khattree (2020). This result is then
generalized to connect the generalized Lomax with Gamma distribution in a straight forward
way. To begin with, we first address the limiting distributions.

2.1. Limiting distributions

The following two theorems about limiting distributions can be easily proved.

Theorem 1: Let X be a univariate Lomax(β, θ) random variable with probability density
function defined in (1). Define Y = βX. Then

(i) the distribution of Y is Lomax(β, θ
β
);

(ii) as β → ∞, the distribution of Y approaches an exponential distribution with rate
parameter θ;

(iii) as β →∞, the hazard function of Y approaches θ.

The result (ii) is given in Lun and Khattree (2020). It may be pointed out that an
exponential distribution is characterized by its constant hazard function. Thus, (iii) in fact,
provides an alternative proof of (ii). We leave it to the reader to calculate the hazard function
of the indicated Lomax distribution and then verify the assertion in (iii). The importance
of above theorem is that it allows us to be able to conveniently substitute, for large β, one
distribution for another by approximating Lomax(β, θ

β
) by Exp(θ). Figure 1 shows a series

of density function plots for Lomax(β, λ
β
) for parameter β = 3.01, 10, 20 and for a fixed

λ = 0.25, along with an exponential density with rate parameter λ. The closeness of two
distributions for large β values is self evident.

Nayak (1987) has introduced a k-dimensional multivariate Lomax distribution by mix-
ing k independent univariate exponential distributions with different failure rates with the
mixing parameter η that has a gamma distribution with certain shape parameter β and the
scale parameter 1. The Theorem 1 is easily extended to connect the multivariate Lomax and
exponential distributions. Again, see Lun and Khattree (2020).
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Figure 1: Density plots of a series of Lomax density for various β values (=
3.01, 10, 20) and with θ = λ/β where λ = 0.25, along with exponential density with
rate parameter λ = 0.25.

Theorem 2: Let X1, X2, . . . , Xk jointly have k-dimensional multivariate distribution with
probability density function (Nayak, 1987),

f(x1, x2, · · · , xk) =

(∏k
i=1 θi

)∏k
i=1 (β + i− 1)(

1 +∑k
i=1 θixi

)β+k , β > 0, (2)

where θi, xi > 0, i = 1, · · · , k. Define Yi = βXi, i = 1, · · · , k. Then as β → ∞, the joint
probability distribution of Y1, Y2, . . . , Yk approaches to that of k independent exponential
variates with rate parameters θi, i = 1, 2, · · · , k, respectively.

A series of density contour plots for bivariate Lomax distributions with parameters β
(= 3.01, 10, 200) and θ1 = λ1/β, θ2 = λ2/β where λ1 = 0.25, λ2 = 0.50 are shown in Figure 2
(a), (b) and (c). As one can see, as β increases, the density contour plots of bivariate Lomax
distribution more and more resemble the bivariate independent exponential density contour
plot given in Figure 2 (d) with respective rate parameters λ1 = 0.25, λ2 = 0.50.

Note that the resulting limiting distribution involves independent exponential variates.
In some ways, this is somewhat surprising even though the correlation matrix of a multivari-
ate Lomax distribution has a compound symmetric structure with Corr(Xi, Xi) = 1

β
which

clearly goes to 0 when β →∞. On the other hand, this fact also underscores the well known
difficulty that researchers have encountered to satisfactorily define a suitable multivariate
exponential distribution with some kind of dependence among variables.

Nayak (1987) also generalized the distribution in (2) by mixing conditionally indepen-
dent Xi having the Gamma(li, ηθi) distribution, with a mixing variable η ∼ Gamma(β, 1),
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(a) Bivariate Lomax (β = 3.01, θ1 = λ1
β , θ2 = λ2

β ) (b) Bivariate Lomax (β = 10, θ1 = λ1
β , θ2 = λ2

β )

(c) Bivariate Lomax (β = 200, θ1 = λ1
β , θ2 = λ2

β ) (d) Independent Bivariate Exponential (λ1, λ2)

Figure 2: Contour plots of a series of bivariate Lomax distributions with changing
parameters β, θ1 = λ1/β, θ2 = λ2/β where β = 3.01, 10, 200 and λ1 = 0.25, λ2 = 0.50
and independent bivariate exponential density function with rate parameters
λ1 = 0.25 and λ2 = 0.50, respectively.
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Figure 3: Density plots of a series of generalized Lomax distributions with
changing parameters β(= 3.01, 10, 50), θ = 1.0/β and a fixed parameter l = 3.0,
and gamma density function with shape parameter l = 3.0 and rate parameter
λ = 1.0.

i = 1, . . . , k. The generalization of above multivariate Lomax-exponential connection to this
generalized multivariate Lomax-gamma connection is stated in Theorem 3.

Theorem 3: Let X1, X2, . . . , Xk be a k-dimensional generalized multivariate Lomax random
variable with probability density function,

f(x1, x2, · · · , xk) =

(∏k
i=1 θ

li
i

)
Γ
(∑k

i=1 li + β
) (∏k

i=1 x
li−1
i

)
Γ(β)

[∏k
i=1 Γ(li)

] (
1 +∑k

i=1 θixi
)∑k

i=1 li+β
,

where β, li, θi, xi > 0, i = 1, · · · , k. Define Yi = βXi, i = 1, · · · , k. Then as β →∞, the joint
distribution of Y1, Y2, . . . , Yk approaches that of k independent gamma random variables with
shape parameter li and rate parameters θi, i = 1, 2, · · · , k, respectively.

Clearly, in the special case of li = 1, i = 1, · · · , k, the above generalized Lomax-gamma
connection reduces to the previous Lomax-exponential connection. Again, to underscores the
closeness, we give the density function plots in Figure 3 for a series of univariate generalized
Lomax distributions for various values of the parameters β, θ = λ/β where β = 3.01, 10, 50,
λ = 1.0, and for a fixed parameter l = 3.0, along with Gamma(3,1). To avoid being repetitive,
we suppress the contour plots.

2.2. Some measures of closeness to exponential distribution

We have shown that the similarity between Lomax and exponential is due to the
fact that the limiting distribution of Lomax(β, θ

β
) is Exp(θ) as β → ∞. That begs the
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question: How to quantify the closeness between a given Lomax distribution and an ex-
ponential distribution? To do so, we adopt several approaches. Specifically, we first use
Patil-Patil-Bagkavos’s η (2012) to measure the closeness of Lomax to exponential and then
employ the Kullback-Leibler divergence measure. Later In Section 2.3, we also evaluate their
Khattree-Bahuguna skewnesses for this purpose. In order to do all of this, we first define
the Patil-Patil-Bagkavos’s η (2012).

2.2.1. Patil-Patil-Bagkavos’s η

Patil, Patil and Bagkavos (2012) attempted to propose a measure of (a)symmetry of a
random variable X as,

η =
{
−Corr(f(X), F (X)) if 0 < Var(f(x)) <∞,
0 if Var(f(x)) = 0,

where f(x) and F (x) are the probability density function and the cumulative distribution
function of X, respectively. Clearly, −1 ≤ η ≤ 1. However, these authors incorrectly
claimed that the η defined above is a measure of the degree of (a)symmetry of a distribution
and hence can be used as a measure of skewness of a distribution. Eberl and Klar (2019)
disputed their claim and via several examples, they demonstrated that above as a measure
of asymmetry is indeed a misleading measure. They further pointed out that η is instead, a
measure of the closeness of a given distribution to the exponential distribution and based on
their extensive discussion, we readily agree! They further pointed out that η equal to zero
indicates a complete departure from exponential distribution while values of +1 (−1) show
a complete similarity with the positive (negative) exponential. Therefore, in our context, η
can be deemed as a tailor-made measure to evaluate the closeness of a Lomax distribution
to the exponential distribution. The following theorem gives an explicit expression for η for
the Lomax distribution.

Theorem 4: For the Lomax distribution, the Patil-Patil-Bagkavos’s η is given by, η =√
3β(3β+2)
(3β+1) .

Proof:. Let X be a Lomax random variable with pdf given in (1). The cumulative dis-
tribution function of X is then given by F (x) = 1 − 1

(1+θx)β . The covariance between f(x)

and F (x) is Cov [f(X), F (X)] =
�∞

0

[
θβ

(1+θx)β+1

]2 [
1− 1

(1+θx)β
]
dx −

�∞
0

[
θβ

(1+θx)β+1

]2
dx · 1

2 =
− θβ2(β+1)

2(2β+1)(3β+1) . Also, Var(F (x)) = 1
12 and Var(f(x)) = θ2β3(β+1)2

(3β+2)(2β+1)2 . Thus,

η = −Corr(f(X), F (X)) =
θβ2(β+1)

2(2β+1)(3β+1)√
θ2β3(β+1)2

(3β+2)(2β+1)2

√
1

12

=
√

3β(3β+2)
(3β+1) .

As one would anticipate, η does not depend on scale parameter θ since correlation is
invariant of any such scaling.

Straight forward calculations show that even for β as small as 3, η = 0.995, which
indicates that Lomax distribution is generally very similar to exponential distribution even
for small β value. Clearly, as β →∞, η → 1, thereby reaffirming the previous result about
a β multiple of Lomax distribution converging to the exponential distribution .
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2.2.2. Kullback-Leibler divergence

Kullback-Leibler divergence is a measure of how different a given probability distribu-
tion described by a probability density function f(x) is from another reference distribution
with the probability density function g(x) and is defined as

DKL(f : g) = Ef

(
log f(x)

g(x)

)
=

� ∞
−∞

f(x) log
(
f(x)
g(x)

)
dx.

A zero value indicates that the two distributions are identical. In our context, the following
theorem delivers the quantification of closeness.

Theorem 5: Let f(x) = θβ
(1+θx)β+1 and g(x) = λe−λx. Then the Kullback-Leibler divergence

measure for (Lomax : Exponential) pair is given by, DKL(f : g) = ln
(
βθ
λ

)
− β+1

β
+ λ

θ(β−1) .

Proof:. With f(x) and g(x) as given above, we have,

DKL(f : g) =
� ∞

0

θβ

(1 + θx)β+1 ln
 θβ

(1+θx)β+1

λe−λx

 dx
=

� ∞
0

θβ

(1 + θx)β+1 ln
(

θβ

(1 + θx)β+1

)
dx−

� ∞
0

θβ

(1 + θx)β+1 [ln(λ)− λx]dx

= ln(βθ)− β + 1
β
− ln(λ) + λ

θ(β − 1) = ln
(
βθ

λ

)
− β + 1

β
+ λ

θ(β − 1) .

The measure does depend on the ratio of scale parameters λ
θ
. When λ

β
= θ and thus

f(x) is the pdf of a Lomax(β, λ
β
), we have DKL(f : g) = β

β−1 −
β+1
β

= 1
β(β−1) . Clearly, the

convergence to zero is of order 1
β2 which again reaffirms our assertion of the considerable

closeness of the two distributions.

2.3. Khattree-Bahuguna’s skewness for Lomax/Pareto and exponential distribu-
tions

Khattree and Bahuguna (2019) recently defined a measure of skewness of a probability
distribution which for a quick reference, we state below.

Definition 6: Let X be a random variable possibly assumed to have been centered by mean
and let F (·) be its cumulative distribution function. The Khattree-Bahuguna’s skewness of
X is defined as

δ =
� 1

0

(
F−1(α)+F−1(1−α)

2

)2
dα� 1

0

(
F−1(α)+F−1(1−α)

2

)2
dα +

� 1
0

(
F−1(α)−F−1(1−α)

2

)2
dα
.

When the second moment exists, the above simplifies to

δ = 1
2

1 +
� 1

0 F
−1(α)F−1(1− α)dα

µ2

 , (3)
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where µ2 is the second central moment of the distribution. The sample skewness (after the
sample has been scaled to have zero mean) can be computed as (see Khattree and Bahuguna,
2019),

Definition 7: Given a random sample of size n consist of observations x1, x2, . . . , xn, let
x(1) ≤ x(2) ≤ · · · ≤ x(n) be the order statistics of x1, x2, . . . , xn after being centered by their
sample mean. Define yi = x(i)+x(n−i+1)

2 and wi = x(i)−x(n−i+1)
2 . The sample Khattree-Bahuguna

univariate skewness is then defined as δ̂ =
∑

y2
i∑

y2
i+
∑

w2
i
.

Clearly being the measures of skewness, δ or δ̂ have no reference to any other distri-
bution from which the distance of a given distribution can be measured. Nonetheless, δ is
essentially a function of the (inverse) cumulative distribution function of the random vari-
able and hence, intuitively speaking, if the two probability distributions are very similar,
we expect that it would be reflected in their respective expressions of Khattree-Bahuguna’s
skewness. With this in mind, we evaluate the Khattree-Bahuguna’s skewness of Lomax and
exponential distributions and indicate how the former converges to the later. For this we
first give, in Theorem 8, the explicit expressions for the two skewnesses. Theorem 9 then
establishes the convergence.

Theorem 8: Let X1 ∼ Lomax(β, θ) and X2 ∼ Exp(λ). Then the Khattree-Bahuguna’s
skewness of X1 and X2 are respectively given by,

Lomax: δX1 = 1
2

[
1 +

(
B(1− 1

β
, 1− 1

β
)− β2

(β−1)2

)
(β−1)2(β−2)

β

]
, β > 2;

Exponential: δX2 = 1− π2

12 .

Note that neither δX1 nor δX2 depends on respective scale parameters.

Proof: Proof involves the corresponding evaluations of the expression given in (3). For
exponential distribution this evaluation is straightforward. Thus, we will work out the details
only for the Lomax distribution. We know that for the Lomax random variable X1, F (x1) =

1 − (1 + θx1)−β and hence F−1(α) = (1−α)−
1
β −1

θ
. For β > 2, the mean and variance of X1

are 1
θ(β−1) and β

θ2(β−1)2(β−2) , respectively. Therefore,
� 1

0 [F−1(α)− µ] [F−1(1− α)− µ] dα =
� 1

0

[
(1−α)−

1
β − β

β−1
θ

] [
α
− 1
β − β

β−1
θ

]
dα = 1

θ2

[
B(1− 1

β
, 1− 1

β
)− β2

(β−1)2

]
. Thus,

δX1 = 1
2

[
1 +

(
B(1− 1

β
, 1− 1

β
)− β2

(β − 1)2

)
(β − 1)2(β − 2)

β

]
, β > 2.

Theorem 9: As β →∞, Khattree-Bahuguna’s skewness of Lomax distribution approaches
that of exponential distribution.



346 ZHIXIN LUN AND RAVINDRA KHATTREE [Vol. 19, No. 1

Proof: We have,

lim
β→∞

δX1 = lim
β→∞

1
2

[
1 +

(
B(1− 1

β
, 1− 1

β
)− β2

(β − 1)2

)
(β − 1)2(β − 2)

β

]

= lim
u→1

1
2

[
1 +

(
B(u, u) u2

(1− u)2 −
1

(1− u)2

)
(2u− 1)

] (
u = 1− 1

β

)

= 1
2 + 1

2 lim
u→1

u2B(u, u)− 1
(1− u)2

= 1
2 + 1

2 lim
u→1

2uB(u, u) + u2B′(u, u)
2(u− 1)

= 1
2 + 1

2 lim
u→1

2B(u, u) + 2uB′(u, u) + 2uB′(u, u) + u2B′′(u, u)
2

= 1
2 + 1

2 ·
2 + 2(−2) + 2(−2) + 8− π2

3
2 = 1− π2

12 = δX2 .

The calculation of the last limit in above is rather complex and therefore is evaluated by
using the Lemmas 21 and 22 which are given in ANNEXURE A.

3. Relationships of Multivariate Lomax to Other Distributions in Exponential
Family of Distributions

We now again consider the multivariate Lomax distribution of Nayak (1987). As
pointed out by him, multivariate Lomax distribution is related to many other multivari-
ate distributions such as Mardia’s Pareto type I, Burr, Logistic, Cook-Johnson’s uniform
(alternatively called Clayton copula), and F . We will further observe here that Lomax dis-
tribution is also related to a few other univariate distributions of exponential family through
the linear combinations of multivariate Lomax or via one-to-one transformation from uni-
variate Lomax. We convey these facts via following Theorems. We skip the proofs for the
sake of brevity.

Theorem 10: Let (X1, X2, · · · , Xk) follow a k-dimensional multivariate Lomax distribution
as given by probability density function in (2). Define X∗ = ∑k

i=1 θiXi. Then X∗ is dis-
tributed as beta type II (also called inverted beta or beta prime) with shape parameters k
and β, and therefore its probability density function is given by,

f ∗(x∗) = x∗k−1(1 + x∗)−(β+k)

B(k, β) . (4)

Theorem 11: Let (X1, X2, · · · , Xk) be k random variables jointly following multivariate
Lomax distribution as defined in (2). Define Y ∗ = β

∑k
i=1 θiXi. Then

(i) Y ∗ is distributed as beta type II with shape parameters k and β and scale parameter
β and therefore,

f(y∗) =
y∗k−1(1 + y∗

β
)−(β+k)

βkB(k, β) . (5)
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(ii) as β →∞, the distribution of Y ∗ approaches gamma distribution with shape parameter
k and scale parameter 1.

Theorem 12: Let X be a random variable following Lomax distribution defined in (1).
Define Y = (θX/d)1/c. Then

(i) the probability density function of Y is a Burr density with shape parameters β and c,
and rate parameter d 1

c , that is, f(y) = cdβyc−1

(1+dyc)β+1 , y > 0. See Nayak (1987);

(ii) let W = β
1
cY , then the probability density function of W is f(w) = cdwc−1

(1+ d
β
wc)β+1 , w > 0;

(iii) as β →∞, the distribution of W approaches a Weibull distribution with shape param-
eter c and rate parameter d, density which is given by, f(w) = cdwc−1e−dw

c
, w > 0.

It may be noted that when c = 2 and d = θ, the distribution of W approaches to that
of a Rayleigh random variable.

4. A Generalized Double Pareto-Laplace Connection

We take the previous discussion one step further by making the support of the respective
random variables as the entire real line. Specifically, the role of Lomax will now be played by
double Pareto distribution and that of exponential is now played by the generalized Laplace
distribution. The probability density function for the two are given below.

Double Pareto : f(x) =


θ1θ2β

(θ1+θ2)(1−θ1x)β+1 , if x ≤ 0, β, θ1, θ2 > 0

θ1θ2β
(θ1+θ2)(1+θ2x)β+1 , if x > 0, β, θ1, θ2 > 0.

Generalized Laplace : g(x) = 1
σ

κ

1 + κ2


e

1
σκ

(x−µ), if x ≤ 0, σ, κ > 0, µ ∈ R

e−
κ
σ

(x−µ), if x > 0, σ, κ > 0, µ ∈ R.

A particular connection between the above two distributions is given by Kotz et al. (2001)
who indicate that a double Pareto random variable can be generated by taking the ratio
of two independent Laplace variates. Two especially attractive properties of double Pareto
distribution are (i) its Laplace like spike of density function at zero and (ii) its Student’s t-like
heavy tails. See Armagan, Dunson and Lee (2013) and Pal, Khare and Hobert (2017). The
double Pareto has recently received considerable attention as a choice of the prior distribution
in the context of Bayesian robust shrinkage estimation (Armagan et al., 2013) and thus its
connection to generalized Laplace distribution is of special interest.

We will show that as in the case of Lomax-exponential connection, the properties (i)
and (ii) stated above can be interpreted through the double Pareto-Laplace connection. We
will also demonstrate that the double Pareto can be represented as a mixture of several
t-distributions. However, to do so, we must first define a three-parameter generalized double
Pareto distribution, which allows the possibility of asymmetry in the density. For this, it
is convenient to pursue an approach where the bivariate Lomax distribution plays a central
role. This is given by Theorem 13 that follows.
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4.1. Three-parameter generalized double Pareto distribution

To set the stage, we observe that similar to the case of Laplace, a classical symmetric
double Pareto distribution can be obtained by the difference of two independent Lomax
variates. In order to incorporate asymmetric double Pareto distributions, we propose a three-
parameter generalized double Pareto distribution defined via a bivariate Lomax distribution,
where the variates naturally exhibit dependence.

Theorem 13: Assume that X1 and X2 are jointly distributed as the bivariate Lomax vari-
ables with parameters β, θ1, θ2 as given in (2). Then the probability density function of
X = X2 −X1 is given by,

h1(x) =


θ1θ2β

(θ1+θ2)(1−θ1x)β+1 , if x ≤ 0, β, θ1, θ2 > 0

θ1θ2β
(θ1+θ2)(1+θ2x)β+1 , if x > 0, β, θ1, θ2 > 0.

(6)

Proof: Let X = X2−X1 and Y = θ1X1 + θ2X2, then the Jacobian of the transformation is
|J | = 1

θ1+θ2
. The joint probability density of X and Y is thus, h(x, y) = θ1θ2β(β+1)

(θ1+θ2)(1+y)β+2 , y >

max{θ2x,−θ1x}. Integrating over y gives the marginal density function of X as given above.

Note that for bivariate Lomax variate (X1, X2), X = X1 +X2 does not follow a Lomax
distribution. We state the result about this sum as follows.

Theorem 14: Let (X1, X2) follow a bivariate Lomax distribution with parameters β, θ1, θ2
and let X = X1 +X2. Assuming θ1 6= θ2, the probability density function of X is

h2(x) = θ1θ2β

(θ2 − θ1)

[
1

(1 + θ1x)β+1 −
1

(1 + θ2x)β+1

]
, x > 0.

When θ1 = θ2 = θ, the probability density function of X is beta type II distribution given
in (4) with shape parameters k = 2 and β, and rate parameter θ.

Proof follows by letting Y = X1 and X = X1 + X2 and integrating over y. For the
case θ1 = θ2 = θ, the distribution of Y = X1 + X2 is a beta type II distribution with rate
parameter θ, as already stated in Theorem 10. Figure 4 gives the density plots for the sum
of the components of a bivariate Lomax vector with parameters β = 4, θ1 = 2.5, θ2 = 5 in
(a) and parameters β = 4, θ1 = θ2 = 2.5 in (b). Clearly, both density plots exhibit a very
different shape compared to Lomax distribution. The nth raw moment of X = X1 + X2

is given by E(Xn) = θ1θ2n!
(θ2−θ1)(β−1)···(β−n)

[
1

θn+1
1
− 1

θn+1
2

]
, n < β, and E(Xn) = ∞ when n ≥ β.

Specifically, for β > 2, we have, E(X) = θ1+θ2
θ1θ2(β−1) and Var(X) = βθ2

1+βθ2
2+2θ1θ2

θ2
1θ

2
2(β−1)2(β−2) .

Definition 15: We define a generalized double Pareto distribution as that for a real-valued
random variable X whose probability density function is given by (6). We will denote it by
GDP(β, θ1, θ2).

Thus, in the case of generalized double Pareto distribution, β is the shape parameter
and θ1, θ2 are two rate parameters. It is clear that if X is GDP(β, θ1, θ2) then −X is
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(a) β = 4, θ1 = 2.5, θ2 = 5.0
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(b) β = 4, θ1 = θ2 = 2.5 (Beta type II: shape
parameters k = 2 and β = 4 and rate parameter
θ = 2.5)

Figure 4: Examples of sum variable for bivariate Lomax distribution

GDP(β, θ2, θ1). When θ1 = θ2 = θ, the generalized double Pareto distribution reduces to the
classical symmetric double Pareto distribution, denoted by CDP(β, θ) and with the density
function f(x) = θ

2
1

(1+θ|x|)β+1 ,−∞ < x < ∞, β, θ > 0. Letting θ = 1
ξ

and scaling X by shape
parameter β in this density results in the density of the double Pareto distribution defined by
Armagan et al. (2013) with probability density function, f(x) = 1

2ξ

(
1 + |x|

βξ

)−(β+1)
,−∞ <

x <∞, β, ξ > 0.

Figure 5 contrasts the behavior of the density function of the generalized double Pareto
distribution random variables for the symmetric (θ1 = θ2) and asymmetric (θ1 6= θ2) cases.

The cumulative distribution function of GDP(β, θ1, θ2) is given by

F (x) =


θ2

(θ1+θ2)(1−θ1x)β , if x ≤ 0, β, θ1, θ2 > 0

1− θ1
(θ1+θ2)(1+θ2x)β , if x > 0, β, θ1, θ2 > 0.

It is easy to observe that P (X ≤ 0) = θ2
θ1+θ2

and P (X > 0) = θ1
θ1+θ2

, which can be interpreted
as the weights of the two rate parameters. There is a larger proportion of negative values
whenever θ2 > θ1. This observation is evident in Figure 5 (c).

The quantile function F−1(α) of GDP(β, θ1, θ2) is,

F−1(α) =


1
θ1

[
1−

(
θ2

α(θ1+θ2)

) 1
β

]
, if 0 < α ≤ θ2

θ1+θ2
,

1
θ2

[(
θ1

(1−α)(θ1+θ2)

) 1
β − 1

]
, if θ2

θ1+θ2
< α < 1.

(7)
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(b) β = 4, θ1 = θ2 = 5
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(c) β = 4, θ1 = 0.5, θ2 = 5
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(d) β = 4, θ1 = 5, θ2 = 0.5
Figure 5: Examples of symmetric (a)-(b) and asymmetric (c)-(d) double Pareto
distributions
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The nth raw moment of GDP(β, θ1, θ2) is given by E(Xn) = n!
(θ1+θ2)(β−1)···(β−n)

[
(−1)nθ2
θn1

+ θ1
θn2

]
,

if n < β and E(Xn) = ∞ when n ≥ β. We defer this straightforward yet a bit tedious cal-
culation to ANNEXURE B. When β > 2, E(X) = θ1−θ2

θ1θ2(β−1) and Var(X) = βθ2
1+βθ2

2−2θ1θ2
θ2

1θ
2
2(β−1)2(β−2) =

β(θ1−θ2)2+2θ1θ2(β−1)
θ2

1θ
2
2(β−1)2(β−2) . Also assuming β > 3, the Pearson’s coefficient of skewness is given by,

γ =
2(β + 1)

√
(β − 2)(θ1 − θ2)[βθ2

1 + βθ2
2 + (β − 3)θ1θ2]

(β − 3)(βθ2
1 + βθ2

2 − 2θ1θ2)3/2 , β > 3.

Clearly, γ = 0 for the symmetric double Pareto as in that case, θ1 = θ2. By letting θ1
θ2

= κ, we

can further simplify the Pearson’s γ as γ = 2(β+1)
√

(β−2)(κ−1)[βκ2+β+(β−3)κ]
(β−3)(βκ2+β−2κ)3/2 . When κ→ 0, that

is, when θ1 � θ2, the skewness approaches to that of negative univariate Lomax distribution.
That is,

lim
κ→0

γ = −2(β + 1)
β − 3

√
β − 2
β

.

Similarly, let θ2
θ1

= κ∗, we have γ = 2(β+1)
√

(β−2)(1−κ∗)[βκ∗2+β+(β−3)κ∗]
(β−3)(βκ∗2+β−2κ∗)3/2 . When κ∗ → 0, that is,

θ2 � θ1, the skewness approaches that of positive univariate Lomax distribution. Specifically,
lim
κ∗→0

γ = 2(β+1)
β−3

√
β−2
β
.

By using (7), Khattree-Bahuguna’s skewness is evaluated to be

δ = 1
2

[
1 + 2I1 + I2 − µ2

µ2

]
,

where

I1 = d1

θ1θ2

 1
β − 1 −

(
d2

d1

) 1
β β

(β − 1)(β − 2)



I2 =
1

min(θ1, θ2)2

{
d

2
β

2

[
B

(
d2; 1−

1
β
, 1−

1
β

)
−B

(
d1; 1−

1
β
, 1−

1
β

)]
+ 2
(
d2

d1

) 1
β β

β − 1
d1 − 2

β

β − 1
d2 + d2 − d1

}

µ = θ1 − θ2

θ1θ2(β − 1) , µ2 = β(d2 − d1)2

d2
1d

2
2(β − 1)2(β − 2) + 2

θ1θ2(β − 1)(β − 2)

d1 = min
(

θ1

θ1 + θ2
,

θ2

θ1 + θ2

)
, d2 = 1− d1,

and B(x; a, b) =
� x

0 t
a−1(1 − t)b−1dt. For the symmetric double Pareto distribution, d1 =

d2 = 1
2 , and then I1 = −1

θ1θ2(β−1)(β−2) , I2 = 0. Accordingly, δ = 0. Detailed and cumbersome
calculations for all of these facts are deferred to ANNEXURE B.

Like Laplace distribution, the probability density function shown in Figure 5 is also
spiked. Thus, it is natural to explore any double Pareto-Laplace connection by using the
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similar technique as used earlier to obtain the Lomax-exponential connection. In fact, this
double Pareto-Laplace connection was indirectly hinted by Armagan et al. (2013) where
their Laplace prior (Bayesian lasso) was treated as the limiting case of double Pareto prior.
The following theorem formalizes it.

Theorem 16: Let X be a GDP(β, θ1, θ2) random variable. Define Y = βX. Then

(i) the distribution of Y is GDP(β, θ1
β
, θ2
β

);

(ii) as β →∞, the distribution of Y approaches a two-parameter Laplace distribution with
parameters θ1, θ2, (Laplace(θ1, θ2)) with probability density function

g∗(y) =


θ1θ2
θ1+θ2

eθ1y, if y ≤ 0,

θ1θ2
θ1+θ2

e−θ2y, if y > 0.
(8)

Therefore, we surmise that GDP(β, θ1
β
, θ2
β

) can be approximated by Laplace(θ1, θ2) if
the shape parameter β is large. Moreover, both GDP(β, θ1

β
, θ2
β

) and Laplace(θ1, θ2) have
the probability density spiked at zero. As pictorially demonstrated in Figure 6, as β in-
creases, the density plot of GDP(β, θ1, θ2) approaches that of Laplace distribution. Also
with reparameterization θ1 = 1

σκ
and θ2 = κ

σ
the Laplace density in (8) reduces to the form

introduced by Hinkley and Revankar (1977) with zero location parameter (µ = 0) as

g∗(y) = 1
σ

κ

1 + κ2


e

1
σκ
y, if y ≤ 0, σ, κ > 0

e−
κ
σ
y, if y > 0, σ, κ > 0.

4.2. A representation of double Pareto distribution

The next result shows that any symmetric double Pareto random variable can be
thought of as a Student’s t random variable when scaled by an independent Lomax random
variate. This results in a symmetric yet a Student’s t-like heavy tails of double Pareto
distribution. Due to this heavy-tail property, it has been widely used in Bayesian shrinkage
as a choice of prior. More formally,

Theorem 17: A symmetric double Pareto random variate X with shape parameter (ν− 1)
and scale parameter

√
ν can be represented as

X
d=
√
Y T, (9)

where the random variable Y has a standard Lomax distribution with shape parameter β > 0
and T has an independent Student’s t distribution with degrees of freedom ν = 2β + 1. The
notation d= indicates the equivalence of distributions.
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Figure 6: Density plots of GDP(β, 0.5
β
, 5
β
) with changing parameter β = 3.01, 5, 20

and Laplace(θ1 = 0.5, θ2 = 5)

Proof:. Given Y ∼ Lomax(β, 1) and T ∼ Student’s t with degrees of freedom ν, the
probability density function of X, is

fX(x) =
� ∞

0
fT ( x
√
y

) 1
√
y
fY (y)dy =

Γ(ν+1
2 )√

νπΓ(ν2 )

� ∞
0

1
(1 + x2

νy
) ν+1

2

1
√
y

β

(1 + y)β+1dy

=
2βΓ(ν+1

2 )√
νπΓ(ν2 )

� ∞
0

1
(1 + x2

νu2 ) ν+1
2 (1 + u2)β+1

du (u = √y).

= 2β√
νB(ν2 ,

1
2)

� ∞
0

1
(1 + x2

νu2 ) ν+1
2 (1 + u2)β+1

du.

The above integral is difficult to evaluate for general values of ν and β. However, when
ν = 2β + 1 and hence ν+1

2 = β + 1, (as stated in Theorem) simplification occurs. In this
case, by using the Lemma 23 which is stated and proved in ANNEXURE, we have,

fX(x) = (ν − 1)√
νB(ν2 ,

1
2)

B(ν+1
2 −

1
2 ,

1
2)

2(1 + |x|√
ν
)2· ν+1

2 −1
= 1

2
√
ν

(ν − 1)
(1 + |x|√

ν
)ν
, −∞ < x <∞,

which is a symmetric double Pareto distribution with shape parameter (ν − 1) and scale
parameter

√
ν.

Theorem 18: A symmetric double Pareto random variable X with shape parameter (ν−1)
and scale parameter ν can be represented as X d=

√
νY T, where the random variable Y has
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a standard Lomax distribution with shape parameter β > 0 and T has an independent
Student’s t distribution with degrees of freedom ν = 2β + 1. Moreover, as ν → ∞, X
approaches the standard Laplace distribution.

Proof: Through the linear transformation used on Theorem 17, we easily obtain the prob-
ability density function of X as fX(x) = 1

2ν
ν−1

(1+ |x|
ν

)ν
,−∞ < x < ∞. Clearly lim

ν→∞
fX(x) =

1
2e
−|x|,−∞ < x <∞.

The above two results actually describe another remarkable feature of double Pareto-
Laplace connection where Laplace distribution also has the similar representation but of
mixture of normal distributions instead of Student’s t. For completeness and for the sake of
comparison, we restate the representation of Laplace distribution mentioned in Kotz et al.
(2001), in the following result.

Theorem 19: A standard classical (symmetric) Laplace random variable X has the repre-
sentation X d=

√
2WZ, where the random variables W and Z are independent and have the

standard exponential and normal distributions, respectively.

The above result establishes the Laplace distribution as a mixture of normal distribu-
tion with a scale parameter having exponential distribution. Actually, the above proposition
can be viewed as the limiting case of both sides of (9) as β, ν →∞ where the double Pareto,
Lomax and Student’s t distributions respectively approach Laplace, exponential and normal.
This is perhaps the reason as to why the double Pareto appears to be a better choice for
prior distribution than the Laplace distribution in Bayesian shrinkage estimation when we
require a prior with heavy tails.

5. Random Number Generation from Double Pareto Distribution

The R (R Core Team, 2019) package NonNorMvtDist (Lun and Khattree, 2020) is a
recent versatile package which implements the simulation and probability computations for
a large number of non-normal multivariate distributions including the Lomax. See Figure
10. By Theorem 13 and by using the aforementioned package, random numbers from the
GDP(β, θ1, θ2) can be easily generated in barely two steps as follows.

1. Generate a sample of size n bivariate Lomax random vector (X1, X2) with shape pa-
rameter β and the vector of rate parameters (θ1, θ2) using the function rmvlomax().

2. Return X = X2 −X1.

As an example, we generate GDP(3.5, 1.5, 5) of size 5000, using the following R code.

library(NonNorMvtDist)
beta = 3.5; theta1 = 1.5; theta2 = 5
set.seed(2020)
bivLomax = rmvlomax(n = 5000, parm1 = beta, parm2 = c(theta1, theta2))
x = bivLomax[,2] - bivLomax[,1]
hist(x, breaks=30, freq = FALSE)
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With suitable similar extensions of other distributions as shown in Figure 10, one can
implement random number generations in other cases as well.

6. An Illustrative Biomedical Application of Bivariate Lomax distribution

We consider a data set from a breast cancer study from University of California Irvine
Machine Learning Repository to highlight the usefulness of Lomax distribution for modeling
the non-negative skewed data. The data are attributed to Patŕıcio et al. (2018) and consist of
nine quantitative clinical features (age, BMI, glucose, insulin, HOMA, leptin, adiponectin,
resistin, and MCP-1), and a binary classification variable (Patients vs. Healthy controls)
observed for 64 patients with breast cancer and 52 healthy control subjects recruited from
the University Hospital Centre of Coimbra. With substantial skewness present in all clinical
features and hence the lack of normality assumptions, Crisóstomo et al. (2016) analyzed the
data by applying the nonparametric methods (specifically the Kruskal-Wallis test). Among
other things, insulin was identified as a significant discriminator between the two groups but
only for corresponding subsets with BMI > 25kg/m2. However, for the group with BMI
≤ 25kg/m2, the significance of insulin seemed inconclusive. Nonparametric approach with
relatively low power may be one of the reason for not so clear a conclusion.

We will choose insulin as the variable of interest for our work. Instead of choosing a
nonparametric approach which usually has low power especially when the sample size is not
very large, and forgoing the normality based methods due to absence of normality, we here
propose a Lomax model for this data. The high skewness in the data, as shown in Figures
7 (a) and (b) for healthy group and the breast cancer group respectively and the shape of
the distributions justify our use of this model. Using BMI as a matching variable to match
pairs of one healthy subject and one breast cancer subject, from each of the two groups, we
obtain the bivariate data on insulin measurements for n = 52 such pairs. These values after
discarding unmatched subjects are presented in Table 4 in ANNEXURE. The corresponding
R code for this application can be obtained from the authors.

Sample descriptive statistics summary for the respective marginal distributions are
given in the columns 2-4 of Table 2. With skewed marginal distributions as shown in Figure
7 (a) and (b), we fit the bivariate Lomax distribution on this data, using the maximum like-
lihood (ML) approach. This results in, β̂ = 283.8444, θ̂health = 0.000508, θ̂cancer = 0.000299.
The values of descriptive statistics based on these estimates are given as columns 5-7 of
Table 2. The agreement between the sample descriptive statistics and ML based descrip-
tive statistics is quite good, even though standard deviation for the latter is somewhat
higher. Also the ML estimates of correlation between the paired variables, is equal to
1/β̂ = 1/283.8444 = 0.0035 (the sample correlation = 0.0465), which is low (as we must
expect since the patients as well as two samples are independent). The bivariate Lomax
seems to fit the data very well. This is further justified by Lomax Q-Q plots given in Figure
8.

Clearly as the ML estimates of mean and variance in Table 2, show, breast cancer
group does indeed have not only much higher mean value of insulin, its values also vary
much more greatly within the group, compared to those for healthy subject group. Further,
we note that large variability is persistent even in the group with BMI < 25kg/m2 – a fact
obscured and hence lost in the nonparametric analysis done by the original authors.
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Table 2: Descriptive and theoretical statistics for healthy controls and breast
cancer patients, respectively.

Descriptive Statistics (n = 52)
Sample ML-Based

Group Mean SD Skewness Mean SD Skewness
Healthy controls 6.9340 4.86 2.2765 6.9540 6.98 2.0213
Breast cancer patients 11.8420 10.20 1.4753 11.8194 11.86 2.0213

It may also be mentioned that in view of large β̂ = 283.8444, the exponential model,
for insulin levels scaled by β̂, may be applicable for both groups – healthy as well as the
breast cancer group. Thus, the estimates of the two rate parameter are

λ̂health = β̂θ̂health = 0.1442 (1/X̄health = 0.1441 if fitting the exponential distribution)
λ̂cancer = β̂θ̂cancer = 0.0849 (1/X̄cancer = 0.0845 if fitting the exponential distribution)

Clearly the estimated value of λcancer is smaller than that for λhealth then again recon-
firming the higher levels of insulin for the cancer group.

Returning to Lomax context, we may be interested in formally testing the null hypoth-
esis H0 : θhealth = θcancer vs. Ha : θhealth > θcancer which aims to test if two mean insulin
levels are same for the two groups against the alternative that it is higher for healthy control
groups. To do so, we consider the variable representing the difference Y = Xcancer −Xhealth.
With bivariate Lomax assumption on (X1, X2) in place, under the null hypothesis Y must
follow the symmetric double Pareto distribution.

We take Khattree-Bahuguna’s skewness δ̂ as the test statistic. Clearly, under H0 and
hence under symmetry, δ = 0. Thus we must reject H0 for large values of δ̂, where δ̂ is the
estimate of δ obtained by using the sample Khattree-Bahuguna’s univariate skewness. For
our data, δ̂ = 0.1164, which is considerably larger than the one-sided cutoff value δ0.95 =
0.0742 calculated under the null hypothesis via large number of simulations (nsim = 1000)
and by using the R packages of Lun and Khattree (2020). The null hypothesis is thus
rejected.

We may also be interested in those pairs with BMI < 25kg/m2 (this is the data, which
original authors had discarded as they analyzed only subjects with BMI ≥ 25kg/m2). Thus,
we may try to fit the bivariate Lomax distribution only on n = 17 pairs of healthy control

Table 3: Descriptive and theoretical statistics for healthy controls and breast
cancer patients with BMI < 25kg/m2, respectively.

Descriptive Statistics (n = 17)
Sample ML-Based

Group Mean SD Skewness Mean SD Skewness
Healthy controls 4.4304 1.44 0.5955 4.4100 4.4194 2.0128
Breast cancer patients 8.2047 8.76 2.2348 8.2512 8.2689 2.0128
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(a) Healthy Controls (skewness = 2.2765) (b) Breast Cancer Patients (skewness = 1.4753)

Figure 7: Empirical distributions of healthy controls and breast cancer patients
and density plots (dashed lines) obtained by maximum likelihood estimation
based on bivariate Lomax model

(a) Healthy controls (b) Breast cancer patients
Figure 8: Quantile-Quantile plot of insulin levels for healthy controls and for
breast cancer patients.

and breast cancer patient, using the maximum likelihood (ML) approach. This results in,
β̂ = 471.0522, θ̂health = 0.000482, θ̂cancer = 0.000258.

However, as the histograms and summary statistics show, the bivariate Lomax distri-
bution may not fit this subset of data as satisfactorily as the whole data since the group of
healthy controls has relatively low skewness while the breast cancer group is highly skewed.
See the sample descriptive statistics in Table 3 and histogram in Figure 9. Therefore, as-
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(a) Healthy Controls (skewness = 0.5955)
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(b) Breast Cancer Patients (skewness = 2.2348)

Figure 9: Empirical distributions of healthy controls and breast cancer patients
with BMI < 25kg/m2 and density plots (dashed lines) obtained by maximum
likelihood estimation based on bivariate Lomax model

sumptions for the corresponding hypothesis testing are not met and hence hypothesis testing
is not performed for this subset of data. It is difficult to determine if the poor fit to Lomax
distribution is due to small number (n = 17) observations.

7. Concluding Remarks

As the title suggests, this article revolves around connections between Lomax and ex-
ponential distributions and between the extensions thereof. Various relationships between
multivariate Lomax and several other univariate and multivariate distributions are known to
exist and these relationships are graphically reproduced in Figure 10. Via these interrelation-
ships one can possibly establish many more similar connections. For example, generalized
double Pareto distribution can also be conveniently obtained via appropriate transformations
of many of these bivariate distributions. The same can be said about the representation of
generalized double Pareto by a mixture of Student’s t distributions. Compared with scale
mixture of normal distributions, Generalized double Pareto distribution provides a possibly
more robust and more flexible choice of prior in practice, such as robust Bayesian shrinkage
estimation and biomedical data modeling.

Data analysis presented here exemplifies the potential applications which distributions
presented in this work may have. Comparisons such as that presented in our illustration,
require the distributions of random variables which are linear functions of such variables
and may not result in nice symmetric distributions with support on the entire real line.
Generalized double Pareto distribution with asymmetry, skewness and fat tail is one such
distribution which may be a flexible enough choice to accommodate such situations.
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Figure 10: Lomax and its relationships through transformation (solid lines), pa-
rameter substitution (dotted lines) and limiting distribution (dash-dotted lines).
Univariate distributions are marked with *.
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ANNEXURE

A. Proofs of Some of the Lemmas Used

Lemma 20: For 0 < α < 1,
� 1

0 ln(1− α) ln(α)dα = 2− π2

6 .

Proof: Clearly, the integral is convergent. The orders of integration and summation can be
interchanged. Using Taylor series to expand ln(1− α) = −∑∞n=1

αn

n
, we have

� 1

0
ln(1− α) ln(α)dα = −

� 1

0
ln(α)

∞∑
n=1

αn

n
dα

= −
∞∑
n=1

1
n

[
− 1

(n+ 1)2

]
(by using integration by parts)

=
∞∑
n=1

[
1
n
− 1
n+ 1 −

1
(n+ 1)2

]

=
∞∑
n=2

[ 1
n− 1 −

1
n

]
−
∞∑
n=2

[ 1
n2

]
= 1− (π

2

6 − 1) = 2− π2

6 . (10)

Lemma 21: For the first derivative of beta function B(u, u), with respect to u, say B′(u, u),
lim
u→1

B′(u, u) = −2.

Proof. Given B(u, u) =
� 1

0 x
u−1(1− x)u−1dx, we have by using the Leibniz’s Rule, the

derivative of B(u, u) with respect to u,

B′(u, u) =
� 1

0

[
xu−1 ln(x)(1− x)u−1 + xu−1(1− x)u−1 ln(1− x)

]
dx.

Accordingly, lim
u→1

B′(u, u) =
� 1

0 ln(x)dx+
� 1

0 ln(1− x)dx = −1 +−1 = −2.

Lemma 22: For the second derivative of beta function B(u, u), say B′′(u, u), lim
u→1

B′′(u, u) =
8− π2

3 .

Proof: Again, by applying Leibniz’s Rule, we have

B′′(u, u) =
� 1

0
[xu−1 ln(x)2(1− x)u−1 + xu−1 ln(x)(1− x)u−1 ln(1− x)

+ xu−1 ln(x)(1− x)u−1 ln(1− x) + xu−1(1− x)u−1 ln(1− x)2]dx



362 ZHIXIN LUN AND RAVINDRA KHATTREE [Vol. 19, No. 1

Thus,

lim
u→1

B′′(u, u) =
� 1

0
ln(x)2dx+ 2

� 1

0
ln(1− x) ln(x)dx+

� 1

0
ln(1− x)2dx

= 2 + 2(2− π2

6 ) + 2 = 8− π2

3 .

The middle integral is evaluated by using the Lemma 20 and integration by parts.

Lemma 23:
� ∞

0

1
(1 + x2

y2 )p(1 + y2)p
dy =

B(p− 1
2 ,

1
2)

2(1 + |x|)2p−1 , −∞ < x <∞, p >
1
2 .

Proof:. Let I =
�∞

0
1

(1+x2
y2 )p(1+y2)p

dy.Define t = |x|
y

, then dy = − |x|
t2
dt. So I =

�∞
0

1
(1+x2

y2 )p(1+y2)p
dy =

�∞
0

|x|
t2

(1+t2)p(1+x2
t2

)p
dt. Thus,

2I =
� ∞

0

1
(1 + x2

t2
)p(1 + t2)p

dt+
� ∞

0

|x|
t2

(1 + t2)p(1 + x2

t2
)p
dt

=
� ∞

0

(
1 + |x|

t2

)
1

(1 + x2

t2
)p(1 + t2)p

dt =
� ∞

0

(
1 + |x|

t2

)
1

(1 + x2

t2
+ x2 + t2)p

dt.

Now define, s = t− |x|
t
, then ds = 1 + |x|

t2
dt, s2 = t2 − 2|x|+ x2

t2
, and hence we have

2I =
� ∞
−∞

1
(1 + s2 + 2|x|+ x2)pds =

� ∞
−∞

1
[s2 + (1 + |x|)2]pds.

Thus, I =
�∞

0
1

[s2+(1+|x|)2]pds = B(p− 1
2 ,

1
2 )

2(1+|x|)2p−1 .

B. Moments and Skewness of Generalized Double Pareto Distribution

B.1. Moments

Consider the nth raw moment for univariate Lomax distribution with shape parameter
β and rate parameter θ:

µ′n =
� ∞

0
xnf(x)dx =

� ∞
0

xn
βθ

(1 + θx)β+1dx

= β

θn

� 1

0
u(β−n)−1(1− u)(n+1)−1du

(
Let u = 1

1 + θx
, then dx = − 1

θu2du
)

= β

θn
B(β − n, n+ 1) = n!

θn(β − 1) · · · (β − n) , n < β.
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Consider the nth raw moment for generalized double Pareto distribution with proba-
bility density function given by

h(x) =


h1(x) = θ1θ2β

(θ1+θ2)(1−θ1x)β+1 , if x ≤ 0, β, θ1, θ2 > 0

h2(x) = θ1θ2β
(θ1+θ2)(1+θ2x)β+1 , if x > 0, β, θ1, θ2 > 0.

Then we have

µ′n =
� 0

−∞
xnh1(x)dx+

� ∞
0

xnh2(x)dx

= θ2

θ1 + θ2
(−1)n n!

θn1 (β − 1) · · · (β − n) + θ1

θ1 + θ2

n!
θn2 (β − 1) · · · (β − n)

= n!
(θ1 + θ2)(β − 1) · · · (β − n)

[
(−1)nθ2

θn1
+ θ1

θn2

]
, n < β.

B.2. Pearson’s Coefficient of Skewness

The third central moment is given by µ3 = µ′3−3µ2µ
′
1−µ′31 while the third raw moment

is given by

µ′3 = 3!
(θ1 + θ2)(β − 1)(β − 2)(β − 3)

[
(−1)3θ2

θ3
1

+ θ1

θ3
2

]
= 6(θ2

1 + θ2
2)(θ1 − θ2)

θ3
1θ

3
2(β − 1)(β − 2)(β − 3) .

Also, µ2 = Var(X) = βθ2
1+βθ2

2−2θ1θ2
θ2

1θ
2
2(β−1)2(β−2) and µ′1 = θ1−θ2

θ1θ2(β−1) . Upon substitution, the third central
moment is given by

µ3 = 6(θ2
1 + θ2

2)(θ1 − θ2)
θ3

1θ
3
2(β − 1)(β − 2)(β − 3)

− 3(βθ2
1 + βθ2

2 − 2θ1θ2)
θ2

1θ
2
2(β − 1)2(β − 2)

(θ1 − θ2)
θ1θ2(β − 1) −

(θ1 − θ2)3

θ3
1θ

3
2(β − 1)3

= 2(θ1 − θ2)(β + 1)[βθ2
1 + βθ2

2 + (β − 3)θ1θ2]
θ3

1θ
3
2(β − 1)3(β − 2)(β − 3)

.

Finally, the Pearson’s skewness becomes

γ = µ3

µ
3/2
2

= 2(θ1 − θ2)(β + 1)[βθ2
1 + βθ2

2 + (β − 3)θ1θ2]
θ3

1θ
3
2(β − 1)3(β − 2)(β − 3) ×

(
θ2

1θ
2
2(β − 1)2(β − 2)

βθ2
1 + βθ2

2 − 2θ1θ2

)3/2

=
2(β + 1)

√
(β − 2)(θ1 − θ2)[βθ2

1 + βθ2
2 + (β − 3)θ1θ2]

(β − 3)(βθ2
1 + βθ2

2 − 2θ1θ2)3/2 , β > 3.

B.3. Khattree-Bahuguna’s Skewness

Recall the quantile function for GDP(β, θ1, θ2)

F−1(α) =


1
θ1

[
1−

(
θ2

α(θ1+θ2)

) 1
β

]
, if 0 < α ≤ θ2

θ1+θ2
,

1
θ2

[(
θ1

(1−α)(θ1+θ2)

) 1
β − 1

]
, if θ2

θ1+θ2
< α < 1.
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For simplification, we let d1 = θ2
θ1+θ2

, d2 = θ1
θ1+θ2

. Clearly, d1 + d2 = 1. Thus,

F−1(α) =


h1(α) = 1

θ1

[
1−

(
d1
α

) 1
β

]
, if 0 < α ≤ d1,

h2(α) = 1
θ2

[(
d2

1−α

) 1
β − 1

]
, if d1 < α < 1,

and

F−1(1− α) =


g1(1− α) = 1

θ2

[(
d2
α

) 1
β − 1

]
, if 0 < α ≤ d2,

g2(1− α) = 1
θ1

[
1−

(
d1

1−α

) 1
β

]
, if d2 < α < 1.

As the above quantile functions have not been centered, the Khattree-Baguhuna’s
skewness is computed by δ = 1

2

[
1 +

� 1
0 F
−1(α)F−1(1−α)dα−µ2

µ2

]
. We consider the computation

of the kernel term
� 1

0 F
−1(α)F−1(1 − α). If d1 < d2, we have

� 1
0 F

−1(α)F−1(1 − α)dα =� d1
0 h1(α)g1(1−α)dα+

� d2
d1
h2(α)g1(1−α)dα+

� 1
d2
h2(α)g2(1−α)dα. Now, consider the first

and third integrals,

I1 =
� d1

0
h1(α)g1(1− α)dα = 1

θ1θ2

� d1

0

[(
d2

α

) 1
β

− 1−
(
d1d2

α2

) 1
β

+
(
d1

α

) 1
β

]
dα

= 1
θ1θ2

[(
d2

d1

) 1
β β

β − 1d1 − d1 −
(
d2

d1

) 1
β β

β − 2d1 + β

β − 1d1

]
= d1

θ1θ2

[(
d2

d1

) 1
β
(

β

β − 1 −
β

β − 2

)
+ 1
β − 1

]

= d1

θ1θ2

[
1

β − 1 −
(
d2

d1

) 1
β β

(β − 1)(β − 2)

]
.

Similarly,

I3 =
� 1

d2

h2(α)g2(1− α)dα = 1
θ1θ2

� 1

d2

[(
d2

1− α

) 1
β

−
(

d1d2

(1− α)2

) 1
β

− 1 +
(

d1

1− α

) 1
β

]
dα

= 1
θ1θ2

[(
d2

d1

) 1
β β

β − 1d1 −
(
d2

d1

) 1
β β

β − 2d1 − d1 + β

β − 1d1

]
= d1

θ1θ2

[
1

β − 1 −
(
d2

d1

) 1
β β

(β − 1)(β − 2)

]
.

Thus, I1 = I3. Now we consider the second integral term:

I2 =
� d2

d1
h2(α)g1(1− α)dα =

� d2

d1

1
θ2

[(
d2

1− α

) 1
β
− 1

]
1
θ2

[(
d2

α

) 1
β
− 1

]
dα

=
1
θ2

2

� d2

d1

[
d

2
β
2 (1− α)

− 1
β α

− 1
β −
(

d2

1− α

) 1
β
−
(
d2

α

) 1
β

+ 1

]
dα

=
1
θ2

2

{
d

2
β
2

[
B

(
d2; 1−

1
β
, 1−

1
β

)
− B
(
d1; 1−

1
β
, 1−

1
β

)]
− d

1
β
2

β

β − 1

[
−d

− 1
β

+1
1 + d

− 1
β

+1
2

]
− d

1
β
2

β

β − 1

[
d

− 1
β

+1
2 − d

− 1
β

+1
1

]
+ d2 − d1

}
=

1
θ2

2

{
d

2
β
2

[
B

(
d2; 1−

1
β
, 1−

1
β

)
− B
(
d1; 1−

1
β
, 1−

1
β

)]
+ 2
(
d2

d1

) 1
β β

β − 1
d1 − 2

β

β − 1
d2 + d2 − d1

}
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Recall that µ = θ1−θ2
θ1θ2(β−1) = d2−d1

θ2d2(β−1) and µ2 = β(d2−d1)2

d2
1d

2
2(β−1)2(β−2) + 2

θ1θ2(β−1)(β−2) . Therefore, the
Khattree-Bahuguna’s skewness is δ = 1

2

[
1 + 2I1+I2−µ2

µ2

]
. We omit the similar derivation for

d2 < d1.

Table 4: Data set of healthy controls and breast cancer pa-
tients (Suitably adjusted from the source data reported at
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra)

Healthy controls Breast cancer patients
Pair BMI Insulin BMI Insulin

1 18.67 6.11 18.37 6.03
2 20.69 3.12 20.83 4.56
3 20.76 7.55 20.83 3.42
4 21.11 3.55 21.08 6.20
5 21.37 3.23 21.30 13.85
6 21.47 3.47 21.36 3.00
7 22.00 3.35 21.51 6.68
8 22.03 2.87 22.21 36.94
9 22.70 4.69 22.22 5.70
10 22.85 3.23 22.50 5.26
11 22.86 4.09 22.66 3.48
12 23.00 4.95 22.83 6.86
13 23.01 5.66 22.89 2.74
14 23.12 4.50 23.14 4.90
15 23.34 5.78 23.62 4.42
16 23.50 2.71 24.22 3.73
17 23.80 6.47 24.24 21.70
18 25.30 3.51 25.51 10.39
19 25.70 8.08 25.59 2.82
20 25.90 4.58 26.56 10.55
21 26.35 5.14 26.56 6.52
22 26.60 4.46 26.67 41.61
23 27.10 26.21 26.67 22.03
24 27.20 14.07 26.84 4.53
25 27.30 5.20 26.85 3.33
26 27.69 3.85 27.18 19.91

Healthy controls Breast cancer patients
Pair BMI Insulin BMI Insulin
27 27.70 6.04 27.64 2.43
28 28.58 4.34 28.44 8.81
29 29.22 5.38 29.14 10.95
30 29.40 10.70 29.15 16.58
31 29.61 5.82 29.30 4.17
32 30.28 4.38 29.38 4.71
33 30.30 8.34 29.67 14.65
34 30.48 5.54 29.78 8.40
35 31.24 4.18 30.48 7.01
36 31.45 9.24 30.80 30.21
37 31.98 4.53 30.84 41.89
38 32.04 18.08 30.92 10.49
39 32.27 5.81 31.22 18.08
40 32.50 5.43 31.23 30.13
41 34.17 6.59 31.25 4.33
42 34.42 23.19 31.25 12.16
43 34.53 4.43 31.64 9.67
44 35.09 5.65 31.98 16.64
45 35.25 6.82 32.05 5.73
46 35.59 3.88 32.46 28.68
47 35.86 8.58 32.46 24.89
48 36.21 15.53 33.18 5.75
49 36.51 14.03 34.84 12.55
50 36.79 10.18 35.56 8.15
51 37.04 6.76 36.05 11.91
52 38.58 6.70 37.11 5.64
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Abstract 

COVID-19 pandemic has reshaped our world in a timescale much shorter than what we 
can understand and is now a major global health threat. As there was no preparedness on this 
virus, authorities around the world took restrictive policy measures to control the spread to 
ensure the wellbeing of the people. This pandemic affected both developed and underdeveloped 
countries equally. Moreover, existing socioeconomic and demographic characteristics of the 
countries may be contributing to the variation in health outcomes between countries. This study 
aims to analyse the influence of socioeconomic and demographic factors on COVID-19 related 
health outcomes in SAARC nations. The study is important as the objectives behind SAARC 
are regional integration and economic development of its member countries.  

Panel regression analysis and Negative binomial regression are used to identify country 
specific factors that are associated with COVID-19 related Case Fatality Rate (CFR) and count 
data, such as, daily cases and active cases, respectively. The findings of the study indicate that 
increasing CFR are associated with countries having higher cardiovascular death rates, diabetes 
prevalence, health expenditure (percentage of GDP) and life expectancy. It is also found that 
co-morbidities such as cardiovascular disease, Tuberculosis and diabetes prevalence are 
associated with increased national caseloads and mortality, respectively. The study may help 
government to evaluate policies that can aid in managing the effects of the pandemic by 
utilizing resources and capabilities in an efficient way. 

Key words: COVID-19; Case Fatality Rate; SAARC nations; Socioeconomic factors; 
Demographic factors; Negative binomial regression; Panel data analysis.   

 

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus 
disease 2019 (COVID-19), was first reported in Wuhan, Hubei Province, China in December 
2019 [Yang et al. (2020)]. It was declared global pandemic by World Health Organisation 
(WHO) on 11th March 2020 [Cucinotta and Vanelli (2020)]. As on 31st January 2021, more 
than 100 million people were infected with COVID-19 and 2.2 million have already died 
[WHO (2020)]. After initial breakout of COVID-19 in China, the epicentre changed to Italy, 
United Kingdom (UK) and then to United States of America (USA) [Gupta and Misra (2020)]. 
Most infected cases were in USA followed by India and Brazil [WHO (2020)]. SARS-CoV-2 
has a stronger transmission capacity as compared with the SARS-CoV that caused an outbreak 
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of SARS in 2003 [Ma et al. (2020)]. Possible modes of transmission of virus causing COVID-
19 includes animal-to-human transmission, human-to-human through casual contact, droplets, 
airborne, fomite, fecal-oral, bloodborne and mother-to-child transmission [World Health 
Organization (2020)]. Although most people infected with the SARS-COV-2 virus will 
experience mild to moderate respiratory illness and recover without requiring special treatment. 
Older people, on the other hand, with underlying medical problems like cardiovascular disease, 
diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness 
[World Health Organization (2020)].  

The South Asian Association for Regional Cooperation (SAARC) countries comprises 
3% of the world's area and home to 21% of the world’s total population and comprising of 
eight nations—Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri 
Lanka—has experienced the wave of pandemic much later than Europe and America [Shohan 
et al. (2020), WHO (2020)]. SAARC nations share a common regional space with similar 
geographical conditions and population, yet they differ significantly in the prevalence, severity, 
mortality and management of the pandemic. The first case of COVID-19 in this region was 
reported in Nepal on 23rd January 2020 [WHO (2020)]. As on 31st January 2021, India has the 
highest prevalence of COVID-19 in the region and ranks second globally, on contrary, Bhutan 
records one death due to the virus [WHO (2020)]. Some of these variations could be ascribed 
to demographic, social and economic factors, as well as health infrastructure, access to 
healthcare, political and public health response. Although SAARC countries had gained upper 
hand in demarcating the initial entry of COVID-19 into the countries, the region is much more 
vulnerable to its severe impacts. Infectious diseases are the major cause of mortality and 
morbidity in South Asia [Zaidi et al. (2020)]. Recently, World Bank has warned that South 
Asia faces its worst economic performance in ten years due to this deadly SARS-COV-2 virus. 
An emergency fund in response to the pandemic has been set up by these nations where each 
country has voluntarily contributed to secure the people of the region [Augustine (2020)]. But 
the region is less prepared against pandemic due to poverty, poor medical infrastructure and 
medical care facilities, as well as the lower number of physicians. An evidence-based study 
thus becomes imperative to assist policy makers and government in limiting the impact of 
COVID-19. 

Good health improves learning, working production and income and as such health 
contributes to economic growth and development of the nation. For an unprecedented epidemic 
such as COVID-19 where individual level data is not available, frequency level estimation such 
as number of cases, number of deaths, number of active cases, etc., becomes a viable choice. 
Various studies have been conducted on COVID-19 related impacts on SAARC nations. 
Sultana and Reza (2020) studied the impact of COVID-19 from the perspective of working 
population of SAARC nations. Shohan et al. (2020) examined the onset and transmission of 
the virus in each SAARC country at an early stage and critically appraised their response with 
respect to their medical facilities for diagnosis and management. Awasthi (2020) discussed 
challenges faced by SAARC countries in the wake of COVID-19 pandemic and how India's 
endeavour is bringing all the nations together in combating the pandemic. Deo et al. (2020) 
predicted the dynamics of COVID-19 pandemic in India. Some studies have reported the effect 
of country specific factors on COVID-19 around the world. Chaudhry et al. (2020)  conducted 
a country level exploratory analysis to assess the impact of timing and type of national health 
policy/actions undertaken towards COVID-19 mortality and related health outcomes. Yang et 
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al. (2020) studied the impact of COVID-19 in Wuhan, China and suggests that older patients 
with co-morbidities had increased risk of death.  

This paper aims to examine how country-specific socioeconomic and demographic 
factors effect health outcomes related to COVID-19 in SAARC nations. The importance of 
selecting SAARC for this study is that the geographical position of some of the member 
countries is such that they share their borders with China, where the cases first reported. Panel 
regression analysis and Negative Binomial (NB) regression modelling are utilised to model 
COVID-19 related health outcomes such as, Case Fatality Rate (CFR), daily infected cases and 
total active cases against country specific factors.  

2. Materials and Methodology 
 

2.1. Data   

The study includes twelve country specific factors of eight countries. COVID-19 related 
health outcomes included in this study are Case fatality rate (CFR), number of reported cases 
and number of active cases. Publicly available information on COVID-19 related health 
outcomes such as number of cases, recovered cases and total deaths were extracted from 
various websites [Roser et al. (2020), COVID (2019)]. CFR is defined as the ratio of number 
of deaths by number of infected cases due to disease over a certain period of time. For any 
disease to be less severe, the CFR should be less than 1 % [Global Health Observatory (2020)]. 
The higher CFR suggests that the disease is severe and requires measures by government and 
individuals to minimise the fatalities. Daily cases are calculated by subtracting total number of 
cases at time t to total number of cases at time (t–1). Active cases are the number of cases 
which are neither dead nor recovered but are still infected. It is calculated by subtracting 
recovered and dead cases from the number of infected cases. Various other rates that are 
utilized in the study to measure the severity of COVID-19 related health outcomes are recovery 
rate, percentage of active cases and infection cases per capita. Recovery rate and percentage of 
active cases are calculated similarly as CFR with numerator changed to number of recovered 
cases and number of active cases, respectively. Infection per capita is another measure for 
understanding severity of the disease. It is calculated as the number of infections in each region 
to the total population in that region over a certain period of time.  

Data on country level variables and indices were captured through various sources (see 
Appendix Table A.1). These includes  total population (2019), population density, life 
expectancy, cardiovascular death rates, diabetes prevalence, GDP per capita and handwashing 
facilities [Roser et al. (2020)]. Other factors included were health expenditure (% of GDP), 
Tuberculosis (TB) prevalence, age dependency ratio, hospital beds per ten thousand population 
and proportion of employed population below poverty line [Asian Development Bank (ADB) 
(2020)]. Global health security (GHS) is another factor that is included in the study for each 
country [GHS Index Project Team (2019)].    

The proportion of the employed population below the international poverty line of 
US$1.90 per day, also referred to as the working poverty rate, reveals the proportion of the 
employed population living in poverty despite being employed, implying that their 
employment-related incomes are not enough to lift them and their families out of poverty and 
ensure decent living conditions [United Nations SDG indicators (2020)]. Age dependency ratio 
(% of working population) is the ratio of dependents of people younger than 15 or older than 
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64, to the working-age population, that is, between 15-64 years of age. Data are shown as the 
proportion of dependents per 100 working-age population [World Bank, (2019)]. Similarly, the 
data on stringency index was also obtained for each country at each point of time (Hale et al. 
2020). The index is published and updated real time by a research group from Oxford university 
on nine response indicators including school closures, workplace closures, and travel bans, 
rescaled to a value from 0 to 100 (100 = strictest) [Jayatilleke et al. (2020), Hale et al. (2020)].  

Another index utilised in the study is Global Health Security index (GHS). The index is 
the comprehensive assessment of 195 countries’ health security and related capabilities 
cross six categories, 34 indicators, and 85 sub-indicators. The six categories are as follows: 
Prevention of the emergence or release of pathogens; early detection and reporting for 
epidemics of potential international concern; rapid response to and mitigation of the spread of 
an epidemic; Sufficient and robust health system to treat the sick and protect health workers; 
commitments to improving national capacity, financing plans to address gaps and adhering to 
global norms; and; overall risk environment and country vulnerability to biological threats 
[GHS Index Project Team (2019)].  

As the data is continuously evolving, the period for the study considered is from 25th 
January 2020 to 31st January 2021. The data is divided into two parts and the point of partition 
is obtained by plotting the average stringency index per day and recording the date when 
stringency index was below 60. The date thus obtained is 15th September 2020. For this study, 
the first phase is considered from 25th January 2020-14th September 2020 and the second phase 
is considered from 15th September 2020-31st January 2021. We then determine the impact of 
the socioeconomic and demographic factors on COVID-19 health outcomes in these two 
periods of the pandemic. 

 
2.2. Statistical models  

 
The descriptive analysis was conducted on COVID-19 related health outcomes of 

SAARC nations. For modelling the relationship between CFR and country specific variables, 
Panel regression modelling technique is utilized. Panel regression modelling is used to model 
longitudinal data.  

2.2.1.  Panel regression modelling  
 
The basic linear panel models can be described through suitable restrictions of the 

following general model:  

𝑦!" = 𝛼!" + 𝛽!"# 𝑥!" + 𝜇!"          (1) 

where, i = 1,2,…,n is the individual country index, and, t = 1,2,…,T is the time index and 𝜇!" is 
a random disturbance term of mean 0 [Menard (2007), Croissant and Millo (2008)]. When t is 
same for all countries, it is called balanced data, otherwise it is unbalanced data. The data is 
recorded from the occurrence of first COVID-19 case in the each of the SAARC country, the 
data set is thus unbalanced. When the assumption of parameter homogeneity is taken, that is, 
𝛼!" = 𝛼 for all i, t and 𝛽!" = 𝛽 for all i, t; the resulting model is standard linear pooled model, 
written as, 

𝑦!" = 𝛼 + 𝛽#𝑥!" + 𝜇!"     (2) 
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To model individual heterogeneity, the error term assumes two separate components, one 
of which is specific to the individual and does not change over time. This is called the 
unobserved effects model which can be represented as: 

𝑦!" = 𝛼 + 𝛽#𝑥!" + 𝜇!" + 𝜀!"    (3) 

The appropriate estimation method for this model depends on the properties of the two 
error components. If the individual component is missing altogether, pooled OLS is the most 
efficient estimator for 𝛽. To check ‘poolability’ of the data, pooling tests is conducted i.e., the 
hypothesis that the same coefficients apply across all individuals. It is a standard F test, based 
on the comparison of a model obtained for the full sample and a model based on the estimation 
of an equation for each country [Croissant and Millo (2008)]. Rejection of null hypothesis 
implies the rejection of poolability and other techniques should be utilized to analyse the data.  

2.2.2. Poisson model 

For studying the relationship between frequency type dependent variable and other 
independent variables, Poisson and Negative Binomial modelling are recommended. Poisson 
regression is typically used to evaluate count data in public health. It is often assumed that the 
number of events follows a Poisson distribution with a conditional mean µ depending upon a 
set of regressors x and corresponding parameters β for a participant’s linear predictor. Using a 
log link, we can express the expected number of events for country i as 𝜇! = 𝐸(𝑦!|𝑥!) = 𝑒$!%" . 
The Poisson probability distribution of 𝑦! given 𝑥! can be expressed as:  

𝑃(𝑌! = 𝑦!) = 	
&#$"'"%"

("!
               (4) 

where, yi is a non- negative integer. The log likelihood for the model can be expressed as:  

𝐿𝐿(𝛽) = ∑ 𝑦!𝑋′𝛽 − 𝜇! − log	(𝑦!!)*
!+,     (5) 

However, this model assumes the variance is equal to mean, an assumption which is often 
violated [Rose et al. (2006)]. The most common alternative for over dispersion of dependent 
variable over Poisson regression is Negative Binomial (NB) model, which has a built-in 
dispersion parameter and can account for variance greater than mean [Agresti (2003)].  

2.2.3. Negative Binomial (NB) model 

The NB regression model allows for over dispersion by introducing an unobserved 
heterogeneity term for observation [Sheu et al. (2004)], i.e., 𝜇! = 𝑒($!%".&"). We normally 
assume that exp	(𝑒!)  has a gamma distribution with mean 1 and variance 𝑎 so that the 
conditional mean of 𝑦! is still 𝜇! but the conditional variance of 𝑦! becomes 𝜇!(1 + 𝑎𝜇!). As 𝑎 
approaches zero, y becomes a Poisson distribution and as 𝑎 becomes larger the distribution 
becomes more dispersed. The NB probability distribution for country i is given by: 

                               	𝑃(𝑌! = 𝑦!) =
0((".1#&)

0((".,)0(1#&)
	@ ,
,.1'"

A
1#&

@ 1'"
,.1'"

A
("

               (6) 

where, 𝜇! , 𝑎, 𝑎𝑛𝑑	Γ(. )		refer to the mean of the count distribution, the NB dispersion parameter, 
and the gamma function [Rose et al. (2006)].  The log likelihood for the model can be expressed 
as:  
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𝐿𝐿(𝛽, 𝑎) = ∑ {log	[Γ(𝑦! + 𝑎2,)] − log	[Γ(𝑦! + 1)] − log	[Γ(𝑎2,)] − 𝑎2,log	(1 + 𝑎𝜇!) +*
!+,

𝑦!log	(𝜇!) + 𝑦!log	(𝑎) − 𝑦!log	(1 + 𝑎𝜇!)}        (7) 

which can be maximized by iterative methods (preferably Newton–Raphson) to obtain the 
estimates of β and 𝑎. 

2.2.4.  Model comparison 

To compare the predictive performance of NB regression model with that of Poisson 
regression, common model selection criterion, Akaike information criterion (AIC) is used. AIC 
is calculated as –𝐴𝐼𝐶	 = 	−2	𝑙𝑜𝑔	𝐿	 + 	𝑘, where L denotes the likelihood function of the model 
evaluated at maximum likelihood estimates and k is the total number of parameters in the 
model. The models which had a higher log-likelihood, or a lower AIC value are considered to 
be the best. Model’s goodness of fit was accessed by AIC and Cox and Snell pseudo R-squared 
statistic. Cox and Snell pseudo R-squared that uses likelihood ratio to assess overall fit 
compared to null model. It is calculated as : 

              𝐶𝑜𝑥	𝑎𝑛𝑑	𝑆𝑛𝑒𝑙𝑙	𝑝𝑠𝑒𝑢𝑑𝑜	𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 = 1 − Y34(5677	9:;&7)
34(*677	9:;&7)

Z
</*

      (8) 

where n is the sample size and LR is the likelihood ratio of the model. NB regression does not 
have an equivalent to the R-squared measure found in ordinary least squares (OLS) regression, 
pseudo R-square measure are utilised. Its value ranges from 0 to l higher value indicates a better 
fitting model [Allison (2014)].  

Given the limited sample size of 8 countries, the potential independent variables included 
in the models were identified using forward selection process. Population density was adjusted 
on logarithmic scale for ease of calculation. The results of the selected regression models were 
reported in the incidence rate ratio (IRR) where a value less than one suggests a decreased 
likelihood and a value of greater than one denotes an increased likelihood of the event under 
investigation. Similar analysis is then carried out on the two parts of the data as explained in 
Section 2.1.The data was managed in excel and the statistical analysis was carried out using R 
software.  

 
3. Results 

 
The situation of COVID-19 related health outcomes of 8 SAARC countries as on 31st 

January 2021 are presented in Table A.2 (see Appendix). India has recorded highest number of 
cases with 10,757,610 infected individuals, followed by Pakistan 546,428 and Bangladesh 
535,139. It is evident that death toll was highest in India with 154,392 people dying due to 
COVID-19 followed by Pakistan (11,683) and Bangladesh (8,127). Bhutan on the other hand 
had only one death due to COVID-19. Highest number of recovered and active cases were seen 
in India. Pakistan and Bangladesh recorded recovered cases at 501,252 and 479,744, 
respectively.  

Only 814 patients were recovered in Bhutan with 44 patients still active. Sri Lanka 
reports 57,159 recovered and 6,682 active cases.  Maldives stands at 14,139 recovered patients 
with Nepal at 266,336 and Afghanistan at 47,679. Figure A.1 (see Appendix) shows the 
progression of the epidemic from the first reported case in each of the SAARC nations. Table 
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1 enlists the percentage of COVID-19 related outcomes. Even though India records highest 
COVID-19 related cases, but it is observed that infection per capita (percentage of people 
infected with COVID-19) is highest in Maldives with 2.93 per cent of people infected, followed 
by Nepal at 0.93 and India at 0.78 per cent.  Bangladesh has 0.32 per cent of population infected 
and Sri Lanka with 0.3 per cent. 

Table 1: COVID-19 related events rate as on 31st January, 2021 

 

Bhutan reports lowest per capita infection of 0.11 percent, with Afghanistan at 0.14 
percent and Pakistan 0.25. It can be observed that percentage of deaths out of total infected 
cases, also known as CFR, was highest in Afghanistan (4.36) followed by Pakistan (2.14), 
Bangladesh (1.52) and India (1.44). Maldives and Sri Lanka record the fatality rate at 0.33  and 
0.49 percent, respectively. Bhutan, on the other hand, witnessed 0.12 percent fatalities. The 
highest recovery rate has been recorded in Nepal of 98.29 percent followed by India where 97 
percent of COVID-19 infected patients have gained recovery. Bhutan has also witnessed a 
recovery rate of 94.76 percent while the rate of recuperation in the Bangladesh stands at 89.65 
percent. Maldives and Sri Lanka both have 10.42 percent of active cases out of total infected 
cases whereas Nepal has only 0.96 percent of active cases and India with 1.56 active cases. 
Figure 1 illustrates these rates from the first reported cases in each of the SAARC nations.  

Table 2: Descriptive Statistics of the variables 

Variable N Mean 
Standard 
Deviation Minimum Maximum 

Number of cases 8 582574 1963378 1 10757610 
Number of recovered cases 8 516435 1827691 0 10434983 
Number of deaths 8 9108 29157.71 0 154392 
Number of active cases 8 57031 158712.3 0 1017754 
Number of daily cases 8 4391 14244.32 0 97894 
Case Fatality Rate (CFR) 8 1.27 1.42 0 12.82 
Recovery rate (RR) 8 61.47 32.21 0 100 
Stringency Index 7 37.26 25.26 2.78 100 

 

Descriptive analysis of the COVID-19 related health outcomes and stringency index 
recorded for each of the SAARC nations are recorded in the Table 2. On an average 582,574 
infected cases, 516,435 recovered cases and 9,108 deaths were recorded for all nations. 
Average daily cases recorded were 4,391 with total active cases average being 57,031. Average 

Countries Infection per 
capita 

CFR Recovery rate Active cases 
rate 

Afghanistan 0.14 4.36 86.65  8.99 
Bangladesh 0.32 1.52 89.65  8.83 
Bhutan 0.11 0.12 94.76  5.12 
India 0.78 1.44 97.00  1.56 
Maldives 2.93 0.33 89.26 10.42 
Nepal 0.93 0.75 98.29  0.96 
Pakistan 0.25 2.14 91.73  6.13 
Sri Lanka 0.30 0.49 89.09 10.42 
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CFR was 1.27, reaching maximum at 12.82. Average recovery rate recorded was 61.47. The 
countries’ stringency index average was 37.26 with minimum being 2.78 and highest recorded 
value being 100 (Table 2).  

 

Figure 1: COVID-19 related rates as on 31st  January 2021 in SAARC nations 

Results of the tests to validate the choice of the regression models are presented in Table 
3. The pooling tests to check ‘poolability’ of the data, i.e., the hypothesis that the same 
coefficients apply across all individuals, has the normal test statistic –1.369 and p-value 0.9145. 
Null hypothesis is not rejected implying that the individual effect of coefficient is missing, and 
pooling technique is the most suitable for CFR. The suitable model for daily cases and active 
cases was assessed using AIC. For daily reported cases, NB model has smaller AIC (40376.93) 
than Poisson model (49386782), suggesting that NB model is better fit. Similarly, for active 
cases, NB model shows better fit over Poisson model. 

Table 3: Tests to validate the choice of models for each dependent variable 

Dependent variable 1: 
CFR  

Dependent variable 2 : 
Daily cases  

Dependent variable 3 : 
Active cases  

Pooling test                      AIC                       AIC 
Test statistic –1.369 Poisson 49386782 Poisson 537267252 
p-value 0.9145 NB 40376.93 NB 56942.78 
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Table 4: Multiple regression models for the dependent variable 'daily cases' 

  Poisson distribution NB distribution 

Variables 
 

Estimate  S.E.  p-value 
 

Estimate  S.E.  p-value 
(Intercept) –18.00 0.02131 <.0001 –27.37 0.6842 <.0001 
GHS 0.3421 0.00015 <.0001 0.3344 0.0105 <.0001 
Population density 1.1070 0.00163 <.0001 2.168 0.0335 <.0001 
TB prevalence 0.0032 0.00003 <.0001 0.0022 0.0008 <.0001 
Age dependency ratio 0.0798 0.00023 <.0001 0.1165 0.0079 <.0001 
Health expenditure (% 
of GDP) 0.0379 0.00079 <.0001 0.2194 0.0303 <.0001 
Stringency index 0.0119 0.00002 <.0001 0.02441 0.0015 <.0001 
AIC 12159689 33821 
Residual deviance 12143840 2998.6 
Degrees of freedom 2452 2452 

    Note: S.E. stands for Standard Error; GHS stands for Global Health security index 

Poisson and NB regression models fitted to the data with daily cases as dependent 
variable are presented in Table 4. The AIC of NB regression (33,821) is much lower than that 
of Poisson regression (12,159,689). It can be observed that residual deviance of NB regression 
(2,998.6) is much lower suggesting that the model estimates decent amount of variation than 
the Poisson regression model. The same results can be verified from regression plots in Figure 
A.2.(see Appendix). As can be observed from Q-Q plot, the points fall relatively closer to the 
dashed line for NB regression model than Poisson regression. The residual vs leverage plot 
shows that there are several problematic points in the Poisson model and fewer in the NB 
regression model. In general, NB regression model provides a better fit for daily reported cases.  

Table 5: Multiple regression model for dependent variable ‘active cases' 

  Poisson distribution NB distribution 

Variables 
 
Estimate  S.E. p-value Estimate  S.E. p-value 

(Intercept) –3.771 0.03597 <0.0001 –3.7711 0.6587 <0.0001 
Population density 1.981 0.00290 <0.0001 1.9810 0.0394 <0.0001 
Cardiovascular death 
rate 0.009 0.00003 

<0.0001 
0.0094 0.0012 

<0.0001 

Age dependency ratio –0.095 0.00043 <0.0001 –0.0947 0.0127 <0.0001 
Employed people BPL 0.093 0.00010 <0.0001 0.0938 0.0051 <0.0001 
Hospital beds(per 
10,000 people) 

–0.330 0.00005 <0.0001 –0.3301 0.0067 <0.0001 

Handwashing facilities 0.121 0.00007 <0.0001 0.1211 0.0043 <0.0001 
AIC 147431462 47480 
Residual deviance 147408287 3042.4 
Degrees of freedom 2411 2411 

 Note: BPL stands for Below Poverty Line, S.E. stands for Standard Error 

Similarly, the results from Poisson regression model and NB regression model for 
‘Active cases’ as the dependent variable are recorded in Table 5. It can be observed that the 
NB regression model has comparatively smaller residual deviance (3,042.4) and AIC (47,480) 
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value than Poisson regression model implying that NB regression model has better fit. The 
results can be verified from the regression plots (Figure A.3, see Appendix). The Q-Q plot 
shows that the NB regression model should be preferred over the Poisson model. The analysis 
thus suggests that NB regression model has better than Poisson regression model for active 
cases variable.    

 Table 6: Panel regression analysis on COVID-19 Case fatality rate (CFR) 

Variables IRR (95%CI) IRR (95%CI) IRR (95%CI) 
Case Fatality Rate 

(CFR) 
25/01/2020-
31/01/2021 

25/01/2020-
14/09/2020 

15/09/2020- 
31/1/2021 

Cardiovascular 
death rate 

1.025 (1.023-1.027) 1.029 (1.026-1.032) 1.019 (1.018-1.019) 

Diabetes prevalence 2.735 (2.469-3.029) 3.551 (3.024-4.157) 1.792 (1.757-1.829) 
Hospital beds (per 
10,000 people) 

0.835 (0.821-0.849) 0.792 (0.771-0.813) 0.905 (0.902-0.908) 

Employed people 
BPL 

0.905 (0.891-0.920) 0.882 (0.861-0.905) 0.943 (0.940-0.946) 

Health expenditure 
(% GDP) 

1.148 (1.110-1.187) 1.143 (1.085-1.205) 1.145 (1.137-1.152) 

Life expectancy 2.249 (2.101-2.409) 2.885 (2.582-3.201) 1.555 (1.535-1.576) 
R-squared 0.53 0.42 0.99 

Note: IRR stands for incidence rate ratio, CI stands for confidence interval, BPL stands for Below Poverty Line 

The findings for association between CFR and country specific factors from Panel 
regression modelling are presented in Table 6. The significant factors associated with the CFR 
are cardiovascular death rates, prevalence of diabetes, hospital beds per ten thousand people, 
employed persons below poverty line, health expenditure (% of GDP) and life expectancy. 
There was negative association between hospital bed per ten thousand people (IRR = 0.835; 
95% CI: 0.821-0.849) and CFR. People employed below poverty line, earning less than 
US$1.99 per day was also negatively associated with CFR (IRR = 0.905; 95% CI: 0.891-0.920).  

Table 7: Negative Binomial regression analysis on COVID-19 daily reported cases  

Variables IRR (95%CI) IRR (95%CI) IRR (95%CI) 
Daily Cases 25/01/2020-

31/01/2021 
25/01/2020-
14/09/2020 

15/09/2020- 
31/1/2021 

GHS 1.397 (1.366-1.430) 1.436 (1.398-1.477) 1.472 (1.435-1.510) 
Population density 8.731 (8.082-9.409) 8.633 (7.788-9.544) 8.967 (8.301-9.665) 
TB prevalence 1.002 (1.0003-1.004) 1.009 (1.006-1.012) 0.991 (0.989-0.994) 
Age dependency ratio 1.123 (1.103-1.143) 1.171 (1.144-1.199) 1.218 (1.187-1.251) 
Health expenditure (% 
GDP) 

1.249 (1.184-1.318) 1.037 (0.952-1.141) 1.212 (1.147-1.281) 

Stringency index 1.024 (1.019-1.029) 1.057 (1.050-1.063) 1.057 (1.048-1.065) 
Cox and Snell pseudo 
R-square 

0.65 0.70 0.84 

Note: IRR stands for incidence rate ratio, CI stands for confidence interval, GHS stands for Global Health 
security index 

In contrast, countries with higher cardiovascular death rates (IRR = 1.025; 95% CI: 
1.023-1.027), higher diabetes prevalence (IRR= 2.735; 95% CI: 2.469-3.029), spends higher 
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percentage of GDP on healthcare (IRR= 1.148; 95% CI:1.110-1.187) and have higher life 
expectancy (IRR = 2.249; 95% CI: 2.101-2.409) had significantly higher CFR. The R-squared 
value is 0.53 reveals that model explains 53% of the variation in the response variable CFR. 
This implies that the model has decent fit.  

The results of NB regression for daily reported cases are presented in Table 7 in terms of 
IRR. Socioeconomic and demographic factors positively associated with the increasing daily 
cases are Global health score (GHS) (IRR = 1.397; 95% CI: 1.366 -1.430), population density 
(IRR = 8.731; 95% CI: 8.082-9.409), higher prevalence of Tuberculosis (IRR = 1.002; 95% CI: 
1.0003-1.004), higher age dependency ratio (% of working population) (IRR = 1.123; 95% CI: 
1.103-1.143) and higher stringency index (IRR = 1.024; 95% CI: 1.019-1.029). Higher 
healthcare expenditure as percentage of GDP (IRR = 1.249; 95% CI: 1.184-1.318) was 
associated also with higher number of daily reported infected cases. Cox & Snell’s pseudo R-
squared value is 0.65 which implies that the model has decent fit. 

The findings of NB regression analysis of the total active cases on each day (Table 8) 
suggests that factors significantly associated with increased active cases are: population density 
(IRR = 7.254 95% CI: 6.710- 7.832), higher cardiovascular death rates (IRR = 1.009; 95% CI: 
1.007- 1.012), higher employed people working below poverty line (with less than US$1.99 
per day) (IRR = 1.099; 95% CI: 1.088- 1.109) and higher handwashing facilities in the country 
(IRR = 1.129; 95% CI: 1.120- 1.138). In contrast, higher age dependency ratio (IRR = 0.910; 
95% CI: 0.887- 0.933) and more hospital bed available per ten thousand people (IRR = 0.719; 
95% CI: 0.709- 0.728) were associated with lower number of active cases in the country. Cox 
& Snell’s pseudo R squared value reported as 0.72 implies that the model has decent fit. 

Table 8: Negative Binomial regression analysis on COVID-19 active cases 

Variables IRR (95%CI) IRR (95%CI) IRR (95%CI) 
Active Cases 25/01/2020-

31/01/2021 
25/01/2020-
14/09/2020 

15/09/2020- 
31/1/2021 

Population density 7.254 (6.710-7.832) 7.749 (6.862-8.722) 7.064 (6.727-7.414) 
Cardiovascular death 
rate 

1.009 (1.007-1.012) 1.017 (1.013-1.021) 1.003 (1.002-1.005) 

Age dependency ratio 0.910 (0.887-0.933) 0.869 (0.837-0.904) 0.934 (0.919-0.949) 
Employed people BPL 1.099 (1.088-1.109) 1.086 (1.069-1.103) 1.114 (1.106-1.120) 
Hospital beds(per 
10,000 people) 

0.719 (0.709-0.728) 0.724 (0.709-0.738) 0.708 (0.702-0.714) 

Handwashing facilities 1.129 (1.120-1.138) 1.129 (1.114-1.143) 1.132 (1.126-1.138) 
Cox & Snell pseudo R-
square 

0.72 0.63 0.95 

Note: IRR stands for incidence rate ratio, CI stands for confidence interval, BPL stands for Below Poverty Line 

Further, the results of partitioned data to ascertain any differential change in impact of 
socioeconomic and demographic variables on the health outcomes are presented in Table 6-8. 
The point of partition is fixed on 15th September 2020, when the average stringency index was 
below 60 for the first time (see Appendix Figure A.4) Notable difference appears in the 
association of Tuberculosis prevalence and daily reported cases. In the phase from 15th  
September 2020 to 31st January 2021 there is negative association between TB prevalence and 
daily reported cases (Table 7). The result contrasts with the positive association during the first 
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phase and full data analysis. All the other results are in line with the complete data analysis 
(Table 6-Table 8).   

 
4. Discussion 

It is important to analyse the significant association between country specific 
socioeconomic and demographic factors and COVID-19 related health outcomes. The three 
most affected SAARC countries are India, Bangladesh and Pakistan, respectively, which are 
also the densely populated nations of SAARC (see Appendix Table A.1). It is evident that the 
death toll was highest in India followed by Pakistan and Bangladesh. Bhutan on the other hand 
records only one COVID-19 related death till date and has least number of COVID-19 
confirmed cases. On contrary, it is observed that the infection per capita was highest in 
Maldives, followed by Nepal and India. This is possibly because Maldives has the highest 
population density with 1,454 people living per square km, which might have resulted in higher 
transmission rates of infections. It was found that CFR is highest in Afghanistan, being 4.36% 
deaths of the confirmed cases. The reason of high fatality may be limited health resources and 
poor health knowledge. Poverty is another issue contributing to worsening the situation of 
COVID-19 in a war-torn Afghanistan, which is in line other studies, such as, Husseini and 
Kamil (2020), Sultana and Reza (2020), among others.  

The findings of impact of country specific factors on CFR suggests that countries with 
higher diabetes prevalence and cardiovascular death rates are associated with higher CFR. 
Also, countries with higher cardiovascular death rate have higher number active cases. 
Complications are more common in patients with cardiac complication and diabetes with 
higher mortality than those without it. The results are supported by various studies such as 
Yang et al. (2020) and Zheng et al. (2020). Another finding of this analysis is that countries 
with higher life expectancy have higher CFR. Reports by Onder et al. (2020) and Hussain et 
al. (2020) showed similar results that older patients with chronic diseases were at higher risk 
for severe COVID-19 related mortality. 

Health infrastructure is an important factor that affects cases and fatalities. It is found 
that higher number of hospital beds per ten thousand people was associated with lower CFR 
and reduced active cases each day. Hospital beds are crucial during an outbreak such as 
COVID-19 to assess the health facility, as critical cases need medical care in hospital settings 
for a longer time compared to ordinary patients, thus reducing the active cases and mortality 
rates. The result is line with the findings of Khan et al. (2020) and Blondel and Vranceanu 
(2020) reporting that COVID-19 fatalities are lower in countries with significant resources 
dedicated to health care such as hospital beds. Further we have also found that the countries 
which spend higher percentage of GDP on healthcare witnessed higher number of daily 
reported cases and CFR. This means that nations that spent more percentage of GDP on 
healthcare were not insulated from COVID-19 related deaths. This trend was also seen among 
the wealthy nations such as North America and Europe. There are a few possible explanations 
for this result between healthcare investment and CFR related to COVID-19 among SAARC 
nations. Higher healthcare expenditure (% of GDP) was not associated with higher GDP per 
capita (see Appendix Table A.1). For example, Afghanistan has the lowest GDP per capita but 
spends more that 10% of GDP on healthcare, which also reports highest CFR. With higher 
underlying disease burden and higher population, these nations have much lower number of 
hospital beds and advanced equipment per population, and fewer medical staff to respond to 
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this unprecedented threat from the pandemic. Similar results have been reported by Sorci et al. 
(2020) and Khan et al. (2020).   

The findings shows that countries with higher TB prevalence have more reported cases 
per day. SAARC has 37% of the global burden of TB [STAC (2018)]. It may be the case that 
chronic respiratory diseases such as active TB could lead to increase in susceptibility to the 
COVID virus in this region. Other studies have also arrived on similar results [Liu, Bi et al. 
(2020), Maciel et al.(2020)].  

Our analysis also suggests that countries with higher population density are associated 
with increased daily cases and active cases. Higher population density may potentially facilitate 
interactions between susceptible and infectious individuals, which sustains continued 
transmission and spread of COVID-19. This has been observed in case of Maldives which has 
the highest population density and has the highest infection per capita. Higher age-dependency 
ratio is associated with have higher number of daily cases and lower active cases. Younger 
individuals tend to have a higher proportion of asymptomatic or mild symptoms which are less 
likely to be detected in testing [Cortis (2020)]. On the contrary, elderly family members with 
underlying comorbidities are more susceptible to the disease [Liu et al. (2020)]. Further, 
demography of Asia has a lower proportion of elderly individuals than Western nations, with 
about 85% of the population in India, Pakistan and Bangladesh is younger than 50 years 
[Sultana and Reza (2020), Gupta and Misra (2020)]. Younger population has shorter disease 
course than elderly, hence lower active cases [Yang, Hung et al. (2020)].   

The results also show that the countries with higher proportion of employed people 
earning below poverty line are associated with increased number of active cases but witnessed 
lower CFR. About 33.4% of the population in South Asia is living on less than US$1.99 per 
day income [Sultana and Reza (2020)]. This large population needs to go out to earn living, 
which increases the chances of infection spread. Also, poor housing facilities and overcrowded 
accommodation with limited access to personal outdoor space reduces compliance with social 
distancing thus increasing the overall active cases. The potential reason for lower CFR might 
include low testing and poor quality of data [Sannigrahi et al. (2020), Schellekens and 
Sourrouille (2020)]. As the huge proportion of this population is underprivileged, illiterate with 
poor health knowledge and have poor access to healthcare services due to limited income may 
contribute to the reason behind poor death records. 

 It is found that even countries that were in relatively more prepared condition according 
to the GHS index witnessed higher number of daily cases. This may point to the issue that 
health security is essentially weak in the SAARC nations. The average GHS index of SAARC 
nations is 36.55 and the global average is just 40.2 [Index Project Team (2019)]. The results 
also show that countries with higher handwashing facilities have higher reported active cases. 
The potential reason for such relationship is that  high population density in SAARC nations 
makes it very difficult, if not impossible, to follow basic handwashing, hygiene and physical 
distancing practices advised during the COVID-19 outbreak, increasing transmission risks, and 
leading to increased precariousness in living conditions. 

 Another important finding is that the countries with higher stringency index witnessed 
increase in daily reported cases. This suggests that the stringent measures did not insulate the 
nations from spread of infection. Imposing stringent measures is very resource intensive which 
requires widespread testing and scrupulous contact tracing. The weak healthcare system with 
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low testing rate in SAARC nations coupled with other factors such as, economically 
unprivileged population and high population density made maintaining social distance and 
lockdown challenging in these countries [Niazi et al. (2020)].  

There are important limitations of the study. First, this study does not consider post 
COVID-19 factors such as increase in isolation camps, hospital beds, handwashing facilities 
and number of tests performed in each country. There was missing data for stringency index 
(Maldives) and handwashing facilities (Sri Lanka). This may have introduced important 
unintended bias. Missing values were not treated. Various other assumptions are also 
considered in the study. The basic definition of CFR is utilized for global comparison. The 
other popular definition, such as, the ratio of number of deaths to the sum of recovered and 
death cases was not used. Secondly, the asymptomatic COVID-19 population is not considered 
in the study. Thirdly, the population is assumed to be constant, i.e., it is closed for birth, death 
and migration. Also, the basic definition of population density is used that is the number of 
people living per square kilometre. This definition in denominator includes non-habitable lands 
where no or very little population resides. These assumptions might have led to 
underestimation of the results. 

5. Conclusion 
 
The COVID-19 pandemic has had a significant impact all over the world. During this 

time, a high number of deaths, public stress and economic damage was witnessed. This study 
addresses the association of various socio-economic and demographic factors with pandemic 
related health outcomes in the countries of the SAARC region. The results reveal that diseases, 
such as tuberculosis, cardiovascular diseases and diabetes, are related with increased mortality 
and national caseloads. Higher life expectancy is associated with increased mortality. 
Healthcare infrastructure such as higher number of hospital beds are associated with reduced 
active cases and mortality. Countries with higher GHS index witnessed higher number of 
caseloads. Increasing active cases and daily reported caseloads have a positive association with 
high population density. The findings from the data also suggest that during the later phase of 
the study period, socioeconomic factors such as, health expenditure (% of GDP), proportion of 
employed people earning below poverty line, hospital bed, age dependency ratio became more 
prominent in describing the path of pandemic.  

There are many challenges before the SAARC nations, especially in the health sector. 
Due to this pandemic, healthcare has become a central point of economic and social well-being 
of all, even more so than before. It has made us realise how important it is to work on all 
dimensions jointly to save the mankind’s present and future. This study will be helpful for 
evaluation of public health policies in SAARC countries. 
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Appendix 

 
Table A.1: Socioeconomic and demographic factors of SAARC nations 

 
Source: Roser et al. (2020), Asian Development Bank (ADB) (2020), GHS Index Project Team (2019) 

    Table A.2: COVID-19 situation as on 31st January 2021 

Country Confirmed Deaths Recovered Active 
Afghanistan 55023 2400 47679 4944 
Bangladesh 535139 8127 479744 47268 
Bhutan 859 1 814 44 
India 10757610 154392 10434983 168235 
Maldives 15841 52 14139 1650 
Nepal 270959 2029 266336 2594 
Pakistan 546428 11683 501252 33493 
Sri Lanka 64157 316 57159 6682 

     Source: Our World in Data (Roser et al.(2020)) 
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Figure A.1: COVID-19 related outcomes in SAARC nations 
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Figure A.2: Poisson regression plot (A) and Negative Binomial regression plot (B) for 
'Daily cases' 

 
 
Figure A.3: Poisson regression plot (A) and Negative binomial regression plot (B) for 
'Active cases' 
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Figure A.4: Average stringency index per day among SAARC nations 
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Abstract 
 

An alley cropping comprises rows of perennial shrubs/trees bordering the alleys of 
grasses/crops. An appropriately chosen alley cropping provides improvement in feeds for small 
ruminants, food for human consumption, and contributes to economic security and 
environmental sustainability. Several experimental designs and statistical models are 
presented. The experimental/environment designs considered are the complete block with or 
without split-plot frames for the self-borders and partial diallel borders in shrubs and alley 
experimental units. The treatment designs include a factorial structure of shrub-borders and 
grasses. The linear models consisting of shrubs effects, grasses effects and their interaction 
with different structures are considered with parameters defined for shrub × grass interaction. 
A statistical analysis of the alley- responses will be illustrated with a simulated dataset. 

 
Key words: Alley cropping; Shrub and grass effects and interaction; Self and diallel designs; 
Blocks; Split plots.  
 

1. Introduction 

 An alley cropping, an agroforestry system, comprises rows of perennial shrubs or trees 
bordering the alleys of grasses/crops, is a low input system for forage and food production and 
serves as a mechanism for sustainable agriculture. With suitable choice of crop, shrub or tree 
species in the system it supports diverse needs of human and other domestic animals, arrest the 
land degradation and soil erosion, and plays a major role in mitigating climate change. Alley 
cropping manages the soil nutrients more effectively between the species, e.g., perennial 
trees/shrubs and annual crops, and different layers of soil depth. A wide range of references are 
available on various types of crop production systems including alley cropping (Solaimalai et 
al., 2005; AFNTA 1992a, b). Rangeland and forage development studies aim at evaluation of 
interference of shrubs (e.g., saltbush Atriplex) with the grasses or fodder/forage crops (e.g., 
vetch/barley).  
 

Experimental designs and data analysis for evaluating shrub × grass interaction are 
presented here. These designs can also be used to estimate main effects and interaction of crops 
involved in inter-cropping systems.  Section 2 presents the construction of experimental 
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designs and proposed linear models for estimation of effects and interactions. For one of the 
experimental designs discussed here, the proposed method of estimation has been illustrated 
with simulated data.  

 

2. Experimental Designs and Models for Statistical Analysis 

Consider a set of s shrubs denoted by S1, …, Si, …, Ss for planting as the borders and a 
set of g grasses/crops G1, …, Gj, …, Gg for the alleys. The following frames of experimental 
units, or shrub–grass plots will be considered. Experimental units receive: (1) combinations of 
shrubs and grasses, or (2) shrubs with long borders and all grasses in smaller alleys within these 
borders. The following two treatment designs, (1) self-borders and grasses combination, and 
(2) diallel-borders and grasses combinations, can be implemented with any one of the above 
two frames of the experimental units. The resulting designs may or may not share borders 
between two alleys. In case they do, search for appropriate covariance structures for grass plot 
errors would be needed. Examples of such designs are given in the following schemas along 
with models for data analysis.  
 

3. Designs for Non-Shared Borders 

Consider the case where the borders are not shared between the alleys, i.e., same shrub 
does not affect the grasses on its opposite sides of alleys.  

a. Self- borders 

In the self-border situation is defined here as the one where the same shrubs serve as the 
border of a grass plot on its both sides. 

Design 1. Self-borders of shrubs and grasses combinations in Randomized Complete Block 
(RCB) design 
 
Method of construction: Get all the possible combinations of shrubs (S1, …, Si, …, Ss) and 
grasses (G1, …, Gj, …, Gg).  For a combination (SiGj), the grass Gj will have shrub Si on both 
(left and right) borders. These sg combinations are randomized independently within each of 
the r complete blocks.   Figure 1 shows an example of randomized plan for s = 4 shrubs (S1, …, 
S4), g = 3 grasses (G1, G2, G3), for one replicate. 
 

Replicate 1            
Left border S1 S1 S2 S2 S1 S3 S4 S4 S3 S2 S4 S3 
Alley G2 G3 G2 G3 G1 G3 G2 G1 G2 G1 G3 G1 
Right border S1 S1 S2 S2 S1 S3 S4 S4 S3 S2 S4 S3 
Plots 101 102 103 104 105 106 107 108 109 110 111 112 

 

 
Figure 1: Schema of a randomized plan for 4 shrubs (S1, S2, S3, S4), 3 grasses (G1, G2, G3), self-
borders, factorial in RCB design, one replicate shown. 
 
Statistical model for response of grasses (under Design 1) 
 

Let  = response from the alley under grass  or , self-borders (left, right):  

or , block/replicate , = general mean;  = Effect of block ; = effect of grass ; = 
, ,i jj ly iG i ( , )j jS S

jj l µ lb l ig i jy
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effect of borders, , under shrub from both sides; = interaction between grass  and shrub 
borders ;  and . 
 

The following response model can be assumed: 
 

Response = general mean + block effect + grass effect + shrub-effect + shrub × grass interaction 
+ Error, or, 
 

 
 
where independently distributed errors . 

 
For generating this class of experimental design and carrying out data analysis, modify 

the “Randomize” directive in the Genstat software (VSN Inc., 2015) codes given in the 
Appendix. 
 
Design 2. Self-borders of shrubs in main plots in RCB design and grasses in sub-plots.  
 
Method of construction: Get the each of shrubs (S1, …, Si, …, Ss) as both the borders long 
enough to accommodate the plots of all the grasses (G1, …, Gj, …, Gg).  Randomize the shrubs 
within each block. Randomize the grasses within each shrub border. In this way shrubs form 
main-plots and grasses subplot within each of the r complete blocks.  Figure 2 shows an 
example of randomized plan for s = 4 shrubs (S1, S2, S3, S4) and g = 3 grasses (G1, G2, G3), for one 
replicate. 
 

Replicate 1            
Left border S2 S2 S2 S3 S3 S3 S1 S1 S1 S4 S4 S4 
Alley G1  G3   G2   G2   G3   G1   G1   G2   G3   G1   G2   G3 
Right border S2  S2   S2   S3   S3   S3   S1   S1   S1   S4   S4   S4 
Plots 101 102 103 104 105 106 107 108 109 110 111 112 

 

 
Figure 2: Schema for a randomized plan for 4 shrubs (S1, S2, S3, S4), 3 grasses (G1, G2, G3), 
self-borders, split-plot (Shrub-borders main plot) in RCB design, one replicate. 
 
Statistical model for response of grasses (under Design 2) 
 
Response = general mean + block effect + shrub-effect + Error (a) [Block × Shrub interaction] 
+ grass effect + Shrub × grass interaction + Error(b), or, 
 

 
 
For generating this class of experimental design and carrying out data analysis, modify the 
“Randomize” directive in the Genstat software codes given in the Appendix. 

b. Diallel- borders:  

Different shrubs on the borders will be used in the following two designs. 

Design 3. Combinations of shrub diallel-borders and grasses in RCB design 

jj j ijd i
jj 1, ,g;i = ! 1, , ;j s= ! 1, ,l r= !

, , , ,i jj l l i j ij i jj ly µ b g y d e= + + + + +

2
, , ~ (0, )i jj l Ne s

, , , ,( ) [ E ( )] [ ( )]i jj l l j jl i ij i jj ly rror a Error bµ b y by g d e= + + + = + + + =
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Method of construction. We create borders of shrubs (S1, …, Si, …, Ss), by selecting them 
from a diallel crosses plan in s lines, say, SiSi'. It may be noted that there are no genetic crosses 
between two shrubs being made, but the combinations of lines that would have been in a cross 
are used for the borders. Such combinations of shrubs will be called diallel-borders. The all 
possible cominations of the diallel- border and grasses are randomized within each of the r 
blocks. Figure 3 shows an example of randomized plan for s = 4 shrubs (S1, S2, S3, S4), with dillel-
borders (S1S3, S3S4, S4S2, S2S1), and g = 3 grasses (G1, G2, G3), for one replicate.    
  

Replicate 1            
Left border S1 S4 S2 S2 S1 S3 S4 S1 S3 S2 S3 S4 
Alley G2 G1 G1 G3 G3 G3 G2 G1 G1 G2 G2 G3 
Right border S3 S2 S1 S1 S3 S4 S2 S3 S4 S1 S4 S2 
Plots 101 102 103 104 105 106 107 108 109 110 111 112 

 

 
Figure 3: Schema for a randomized plan for diallel-borders in 4 shrubs, and 3 grasses as 
factorial combinations in RCB design, one replicate. 
 

In case of diallel-borders, the number of borders (shrub pairs) p say, may not necessarily 
be equal to , the number of shrubs. For generating this class of experimental designs based on 
diallel boders, we may use the partial crosses designs presented in Curnow and Kempthorne 
(1961), Curnow (1963), Arya (1983), Singh and Hinkelmann (1990) among other papers, and 
also reviewed in Singh et al. (2012). These designs are constructed for estimation of general 
combining ability (gca) effects while specific combining ability (sca) effects are assumed 
absent or can be ignored. In case of the complete diallel crosses, sca effects are also estimable.  

 
Statistical model for response of grasses (under Design 3) 
 

Let = response from the alley under grass , diallel-borders (left, right):  or
(shrub left border  and shrub on the right) and block/replicate  

 
A statistical model for the response is 

 
 

 
In the above model, the parameters  in the alley cropping design is the general effect 

of shrub (irrespective of border direction) on the grasses (gesg) and is equivalent to the gca 

in the case of partial dial crosses. The , is the specific effect of the shrub borders on 
the grasses (sesg) and would be equivalent to the sca in the diallel crosses situation. The 
quantity is the interaction between shrub effect  and grass effect  and may be termed 
as grass-specific general effect of shrub (irrespective of border direction) on the grass (gs-

gseg), and is grass-specific specific effect of the shrub borders on the grass (gs-
sesg). Errors . 

 
There may be situations where the following assumption may apply. 

 

s

, ,i jk ly i ( , )j kS S
jk j k l
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Assumption: sesg  and gs-sesg  may be absent or negligible 
 

In this case the model reduces to 
 

 
 

Further, ’s under the designs 1 and 2 (self-borders) would be different from those 
under the diallel borders. However, in case (specific border combination effects) are absent, 
then ’s under Designs 1 and 2 would be twice of those under Design 3 and Design 4. 
 
Design 4. Diallel-borders in main plots in RCB design and grasses in sub-plots 
 
Method of construction: Get the each of diallel combinations of shrubs (SiSi') as the borders 
long enough to accommodate the plots of all the grasses (G1, …, Gs). Randomize theses diallel 
borders shrubs within each block. Randomize the grasses within each diallel-borders of the 
shrubs. In this way pair of shrubs (diallel-borders) form main-plots and grasses subplot within 
each of the r complete blocks. Figure 4 shows an example of randomized plan for s = 4 shrubs 
(S1, S2, S3, S4) with dillel-borders (S1S3, S3S2, S2S4, S4S1) in main-plots, and g = 3 grasses (G1, G2, 
G3), for one replicate. 
 
Replicate 1            
Left border S2 S2 S2 S4 S4 S4 S1 S1 S1 S3 S3 S3 
Alley G2 G3 G1 G3 G1 G2 G3 G2 G1 G2 G3 G1 
Right border S4 S4 S4 S1 S1 S1 S3 S3 S3 S2 S2 S2 
Plots 101 102 103 104 105 106 107 108 109 110 111 112 

 
Figure 4: Schema for a randomized plan for 4 shrubs, 3 grasses, diallel-borders, split-plot 
(Shrub-borders main plot) in RCBD. 
 
Statistical model for response of grasses (under Design 4) 
 

 
 
Assumption: sesg  and gs-sesg  may be absent or negligible 
 

 
 

Design for diallel boders as discussed in Design 3 can be used for conducting the trial in 
split-plots with diallel-borders in mainplots and grasses in sub-plots. The codes for generating 
the Design 4 are given in the Appendix. 

 
Estimation of the effects and interactions 

 
A practical approach would be to estimate the response of the combinations of shrub-

borders and gasses with adjustment for block differences, covariates for slope and fertility trend 
in the alleys, spatial error structures. Let the adjusted mean for the treatment combination: grass 

jky ijkd
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and diallel-border (left, right) be denoted by . In vector notation, we can use  

. One may use all pairs of shrubs , equivalent to
as borders, but limited resouces may lead to the choice of partial diallel-borders. Based on a 
simple cyclic structure in shrubs may give a set of diallel-borders as: 

, which could be chosen for all the replicates, or even a better spread 
could be carried over the replication by using a different spacing between the shrub numbers, 
e.g.,  in replicate 2, where the subscripts “–“ stand for appropriate 

shrub numbers,  etc. Let the estimated variance covariance of vector  be denoted by  .  For 
the full factorial of border and alley treatment factors in an RCB design with replicates and 
estimated residual mean square , . Let the grass effects, shrub effects and their 
interaction be represented in vector form respectively as: 

 
,  and . 

 
Let the interaction between grass and border combinations (not the shrubs) be denoted 

by . 
 
Thus where stands for the border comprising of the shrubs  and ; 

. 
 
A model for estimation of , and  may be wriiten as 
 
  
 
where is general mean, a vector of 1s and length of , and vector of mean errors with 

 
 

Conditions on the vectors of effects are: ,  and more than one conditions on 
the interaction vector: and . 

 
The estimation can have one of the several approaches, particularly in case of orthogonal 

structure between grasses and diallel-borders.  
 

Approach 1: One can estimate grasses and borders effects and interaction using ANOVA 
directives. The border effects overall the grasses or for individual grasses data can be modelled 
by fitting columns of  (no intercept) to estimate s and s respectively.  
 
Approach 2:  Another could be based on matrices but still using the ANOVA estimates of 
border effects with variance-covariance matrix or ignoring the covariances. This may be 
completed in the following two stages: 
 

i ( , )j k ,i jky

1,12 1,13 1,1s, ,s 1s( , , ..., ) 'gy y y y y -= ( , )j kS S ( , )k jS S

1 2 2 3 1( , ), ( , ),..., ( , )sS S S S S S

1 3 3 5( , ), ( , ),..., ( , )S S S S S S- -

y Ŝ
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Stage 1: Estimate gamma and , we can fit the general model, ignoring s and fitting a 
reduced model for , where  of order  and 

. 
 
Using Rao (1973),  where, 
 

 and , assuming that the design keeps matrix  non-singular, otherwise 
replace by its Moore-Penrose psuedoinverse denoted by . 
 
Estimated variance-covariance matrix of is  
 
Borders × grass interaction vector can be estimated as the residual vector 
 

 with , say.  
 

Actually, the variance-covariance matrix  may be available along with  while 
using ANOVA in any software, e.g., Genstat (VSN Inc. 2015). 
 
Stage 2: Next step would be to partition  into ’s estimates as follows. Obtain a matrix 
with its column number  obtained by element-wise multiplication of th column 

of and th column of , i.e. Schur multiplication of all possible cross combinations 
between columns of  and . The order of  is . We can obtain parameters in 

s by solving the equation: 
 

, where  
to obtain 

 and  
 

 where for a matrix , denotes its Moore-Penrose psuedoinverse. 
 
Optimal design: Optimality and efficiency of the design can be studied in terms of the 
respective covariance matrices for gamma, s and ’s. There could be alternative options 
to estimate the effects using a software. Genstat codes are given on the set of data generated 
for illustration in the following section. 

4. Shared Borders 

Design 5. Sharing of borders between the alleys would lead to a resource saving design. 
However, data analysis may be based on a relatively more complex model due to the feature 
that the same shrub may affect grasses on its opposite sides of alleys. Self-borders or diallel-
boders can be used. Due to sharing of the same border between the alleys the randomization of 
the shrubs as borders would become quite restricted.  
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Method of construction: The construction can be easily explained using an example, which 
requires that one has a partial diallel design. Let the partial diallel considered for the borders 
be written as S1S3, S3S2, S2S4, S4S3, S3S1…, while the grasses (G1, G2, G3) are in alleys, that is, 
the sub-plots. We will have much restricted randomization as these partial diallels in shrubs 
now follow a sequence where the the shrub on right of a diallel is same the left of the diallel 
that follows in the sequence. Hence the randomization can be done within the set of all the 
shrubs. In the present case, the shrubs pair (S1, S3) from the partial diallel, one border, say left-
border is S1 while the right-border is S3. This right-border S3 is same as the left border in S3S2, 
therefore S3 is shared border. Similarly, S2 in (S3S2) is shared border with (S2S4), and so on 
(Figure 5). 
 

Left border S1 S1 S1 
Alley G1 G3 G2 
Shared border S3 S3 S3 
Alley G2 G3 G1 
Shared border S2 S2 S2 
Alley G1 G2 G3 
Shared border S4 S4 S4 
Alley G3 G1 G2 
Shared border S3 S3 S3 
Alley G2 G3 G1 
Shared border S1 S1 S1 
Alley G3 G2 G1 
Shared border .  
Alley  .   

 
Figure 5. Schema for a randomized plan for 4 shrubs (S1, S2, S3, S4) using the partial diallel       
(S1S3, S3S2, S2S4, S4S3, S3S1… more) and 3 grasses with shared diallel-borders in a split-plot 
(Shrub-borders main plot) in RCB design. 
 
Statistical model for response of grasses (under Design 5) 
 

In this case correlated responses may be assumed, and covariance modelling would a 
worthy exercise to induct in the analysis. Model: 

 
 

 
Correlated model structures:  
 

 and may need to be simplified using a criterion such 
as Akaike Information Criterion (AIC) (Akaike, 1974). The selected covariance structure(s) 
can then be used for estimation of the effects and interaction.  
 

5. An Illustration 

A dataset was generated for experimental design situation, Design 4 using the following 
set of values of effects taken for random generation of data (Table 1). 
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Table 1:  Values of parameters to model the response from Design 4 
 

General mean: = 5 
Coefficient of variation based on main-plot error = 10% 
 Coefficient of variation based on subplot error = 15% 
 
Block effects:  ( =1…3) =  –1.0, –0.5, 0.0 
Grasses effects:  ( =1…3) = –2, –1, 3 
Shrubs effects:  ( ) = –1., –.5, 1., 0.5, 0.0 

Interactions  
         

Shrubs 
 

Grasses S1 S2 S3 S4 S5 
G1 0.2 –0.4 –0.2 0.0 0.4 
G2 –0.3 0.2 0.4 0.1 –0.4 
G3 0.1 0.2 –0.2 -0.1 0.0 

 

 
 

Genstat codes for generating a randomized plan and data analysis (Design 4) are given 
in Appendix. The statistical analysis was repeated 100 randomly generated data sets. Table 2 
gives average, over the simulation runs, of each of the effects and interactions parameters set 
in Table 1. It may be observed that, the displayed averages of gesg (  s general effects of 
shrubs on the grasses) and is the interaction (or gs-gseg, the grass-specific general effect of 

shrub on the grass ) are very close to the values of the respective parameters. GenStat 
codes for construction and analysis of data using the other experimental designs are given in 
Singh (2017). 
 
Table 2: Mean of 100 simulations of estimates of shrub effects and interaction with 
grasses 
 

 A. Shrub Effects 

 
Shrub 

Sj 

True value 
( ) 

 Average of 
100 simulations 

 S1 –1.0  –0.997 
 S2 –0.5  –0.518 
 S3 1.0  1.068 
 S4 0.5  0.478 
 S5 0.0  –0.031 

     SE    ±0.325 
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B. Shrub × Grass Interaction 

 
Grass 

 
Shrub 

Sj 

True value 
( ) 

 Average of 
100 

simulations 
1 S1 0.2  0.230 
 S2 –0.4  –0.447 
 S3 –0.2  –0.200 
 S4 0  –0.018 
 S5 0.4  0.435 
2 S1 –0.3  –0.344 
 S2 0.2  0.248 
 S3 0.4  0.372 
 S4 0.1  0.122 
 S5 –0.4  –0.399 
3 S1 0.1  0.114 
 S2 0.2  0.199 
 S3 –0.2  –0.172 
 S4 –0.1  –0.104 
 S5 0.0  –0.037 

SE    ±0.455 
SE = Estimated standard error 
 

6. Conclusions  

Alley cropping with shrubs as borders or hedges and crops/grasses in the alleys are often 
agroforestry practices for sustainable crop production. The experimental designs and statistical 
models for data analyses are discussed for commonly occurring situations. These designs are 
recommended for conducting alley cropping trials. Once the real data become available, the 
steps presented here may be used for analysis. These designs and the approach of analysis can 
also be adapted for examining interactions or interference in intercropping experiments, which 
would need further extension to analyze two or more correlated responses on the component 
crops.   
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Appendix 

a. GenStat Codes for generation of Design 4 

 
Let NGrass, NShrub and NRep be the number of grasses, shrubs and replications 

respectively. The GenStat codes: 
 

"Generate Design 4.............. Diallel-borders in main-plots of a split plot design" 
Scal NRep, NGrass, NBorder, NPlots; 3, 3, 5,*  
Calc NPlots=NRep*NGrass*NBorder 
 
Unit[NPlots] 
Factor[Levels=NRep] Rep  : &[Levels=NGrass] Grass : &[Levels=NBorder; labels=!t('S5S4', 
'S4S1', 'S1S2','S2S3', 'S3S5')]Border 
Generate Rep,  Border, Grass 
 
Randomize[Block=Rep/Border/Grass; Seed=130572] Border, Grass 
Prin Rep,  Border, Grass 

 

b. GenStat Codes for analysis of data from Design 4 

Let Yield be the vector of plot yields. The codes for statistical analysis of variance and 
estimation of means, effects and interaction are: 
  

".............................. Analysis part............." 
"Genstat codes for estimating the effects and interactions using ANOVA and linear model fitting directives 
.............................. Analysis part............." 
"Stage 1: Estimate borders [shrub combinations] and grasses effect and their interactions" 
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Dele[rede=y] Borders0, LeftBorder0, RightBorder0,Grass0,Sh[1...NShr], yMeans, Weight, tbEff, 
yEff,tbMn, tbSeMn 
  Block Rep/Border/Grass 
 Treat Border*Grass 
 Anova[print=a,%cv, eff, mean;pse=m;fpro=y]Yield 
"Get the Grasses effects from above or below: Gammas" 
 Akeep  Grass; means=tbMn ; SEmeans=tbSe; Effect=tbEff 
Prin tbMn, tbEff, tbSe 
 
 "Stage 2:...............To get direct effect of Shrubs (saai s) on grasses" 
 
 Akeep  Border; means=tbMn ; SEmeans=tbSe; Effect=tbEff 
" Get error mean squre, weight of means " 
Vtable Table=tbMn, tbSe, tbEff; Vari=yMeans, ySeMn, yEff; Class=!P(Borders0) 
Vari [nval=NShr]Sh[1...NShr], Weight 
Calc Weight=1/ySeMn**2 
"Decode Borders into left and right border shrubs: S5S4, S4S1, S1S2,S2S3, S3S5" 
Vari[Values=5,4,1,2,3]LeftB 
Vari[Values=4,1,2,3,5]RightB 
For i=1...NShr;dd=Sh[1...NShr] 
   Calc dd=(LeftB.eq.i.or.RightB.eq.i) 
Endf 
"Print Borders0, LeftB, RightB,Sh[1...NShr], yMeans, ySeMn,yEff, Weight; field=6" 
 
" Regression Model/Fit to estimate Shrub direct effects: saai s " 
Print '   ***** Saai s and their standard errors for shrubs *****' 
Model[Weight=Weight; disp=1] yEff 
Terms [Full=Y] Sh[1...NShr] 
Fit[Prin=m,s,e; cons=o; fpro=y; tpro=y] Sh[1...NShr] 
 
"Estimate Shrub X Grass interaction delta s" 
Dele[rede=y] GrassBorders0, GrassLeftBorder0, GrassRightBorder0,Grass0,Sh[1...NShr], yMeans, 
Weight, tbMn, tbSe,tbEff, yEff 
 Akeep  Grass.Border; means=tbMn ; SEmeans=tbSe; Effects=tbEff 
" Get error mean squre, weight of means " 
Vtable Table=tbMn, tbSe, tbEff; Vari=yMeans, ySeMn, yEff; Class=!P(Grass0,Borders0) 
 
Scal NGrassXNShrub : Calc NGrassXNShrub=NShr*NGrass 
Scal NGrassXNBorder : Calc NGrassXNBorder=NBorder*NGrass 
Vari [nval=NGrassXNBorder]Sh[1...NShr], Grs[1...NGrass], Weight 
Calc Weight=1/ySeMn**2 
" Decode Borders into left and right border shrubs: S5S4, S4S1, S1S2,S2S3, S3S5 for each grass 
Borders0  Boders and grasses: 
  G1  G1  G1 G1  G1 / G2  G2  G2 G2  G2 / G3
 G3  G3  G3  G3 
 S5S4, S4S1, S1S2,S2S3, S3S5  S5S4, S4S1, S1S2,S2S3, S3S5  S5S4, S4S1, S1S2,S2S3, S3S5 
" 
Vari[Values=(5,4,1,2,3)3]LeftBG 
Vari[Values=(4,1,2,3,5)3]RightBG 
For i=1...NShr;dd=Sh[1...NShr] 
   Calc dd=(LeftBG.eq.i.or.RightBG.eq.i) 
Endf 
For i=1...NGrass; dd=Grs[1...NGrass] 
   Calc dd=(Grass0==i) 
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Endf 
Print Grass0, Borders0, LeftBG, RightBG,Sh[1...NShr], Grs[1...NGrass],yMeans, ySeMn,yEff, 
Weight ; field=6 
" Shrubs x Grass interaction: deltas and SE for each grass" 
For i=1...NGrass 
Print '   ***** Deltas and their standard errors for Grass = ', i, '  *****' 
Rest Sh[1...NShr], yEff ; Grass0==i 
Model[Weight=Weight; disp=1] yEff 
Terms [Full=Y] Sh[1...NShr] 
Fit[Prin=m,s,e; cons=o; fpro=y; tpro=y] Sh[1...NShr] 
Rest Sh[1...NShr], yEff 
Endf 
 STOP 
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Abstract
In the area of selection and ranking, partitioning of treatments by comparing them to

a control treatment is an important statistical problem. For over seventy years this problem
has been investigated by a number of researchers via various statistical designs to specify
the partitioning criteria and optimal strategies for data collection. Tong (1969) had pro-
posed a design which had generalized many formulations known at that time. Relying upon
Bechhofer’s (1954) indifference-zone formulation, Tong (1969) had designated the region be-
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the formulation presented in Tong (1969) has been adopted by a number of researchers to
study various aspects of the partition problem. However, in “Tong’s formulation” the dual
role the indifference zone plays, in defining the preference-zone and boundaries for “good”
and “bad” treatments, could potentially make the formulation impractical when there is a
large difference between the “good” and “bad” treatments. In Solanky and Jhou (2015), a
generalization of the “Tongs formulation” was introduced so that the treatments which fall
between the “good” and “bad” treatments can be partitioned as a separate identifiable group
by introducing two indifference-zones. It was also shown that the formulation design in Tong
(1969) is a special case of Solanky and Jhou’s (2015) formulation. However, the second-order
expansions of the probability of correct partition given in Solanky and Zhou (2015) does not
make it clear how close one really gets to the target probability requirement. In this paper,
we have proposed a fine-tuned purely sequential procedure which is asymptotically unbiased
and guarantees the probability requirement by taking a few additional samples along the
lines of Mukhopadhyay and Datta (1995). The “first-order” and “second order” asymptotics
of the fine-tuned procedure are derived and it is shown that the second-order expansion of
the stopping time has the same order of the remainder as that for the original procedure in
Solanky and Zhou (2015). The performance of the proposed fine-tuned procedure is studied
via Monte Carlo simulations.
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1. Introduction

The problem of comparisons with a control has intrigued the researchers for the last
seventy plus years. It has been investigated under different designs and sampling methodolo-
gies. Among the oldest investigations available in the statistical literature, Roessler (1946),
Paulson (1952), and Dunnett (1955) are three studies which had introduced the need for sta-
tistical methodologies to compare treatments with a control treatment and had formulated
designs for such a comparison.

For a somewhat related problem of selecting or isolating the best population, two
pioneering papers in 1950s had presented contrasting formulations. The first formulation
was in Bechhofer (1954) which introduced the idea of indifference-zone for selecting the
best normal population from a group of several normally distributed populations. This
formulation, known as “indifference-zone” formulation, had the property of selecting the
best population with the pre-determined probability specified by the practitioner for the
populations that are in the preference-zone. The region outside of the indifference-zone is
referred to as the preference-zone. From a practical point of view, the indifference zone was
envisioned to be small enough so that the experimenter could be easily be indifferent to
the treatments that fall inside this region. The other pioneering formulation, introduced in
Gupta (1956), did not restrict the selection from the preference-zone but rather the selection
was carried out from the entire parameter space. The formulation in Gupta (1956), known as
“subset-selection formulation”, is designed to select a subset of random size which includes
the best treatment with the pre-determined probability of correct selection. Since then, the
literature in this area has grown enormously extending Bechhofer’s (1954) indifference-zone
formulation and Gupta’s subset-selection formulation, to solve problems related to selecting
the best treatment and by defining the “best-treatment” in many ways to meet the goals of
the study. This area of research is broadly known as the area of selection and ranking in
the statistical literature. Along side with the research in the selection and ranking to select
the best population, another research problem has also been quite active which is concerned
with comparisons of treatments with a specific treatment of choice. What made this research
area different from selecting the best treatment is the experimenters requirement that the the
population to be selected must be some “specified amount better” than some other treatment
typically referred to as a control or standard. This area of research is typically known as the
problem of “comparisons with a control” or the “partition problem” in statistical literature.

1.1. Tong’s formulation of partition problem

We will start by presenting the partition problem formulation introduced in Tong
(1969) for the populations that follow a normal distribution. The formulation starts by
specifying the “good” and “bad” populations based on the input from experts in the area
of the application. The region that falls in between these two boundaries is next defined in
Tong (1969) as the “indifference zone”.

The concept of indifference-zone was introduced in Bechhofer (1954) for selecting the
best normal population in order to create a spacing between the best and the rest of the
treatments under consideration with the underlying requirement that the experimenter would
be “indifferent” to the treatments falling inside the indifference-zone. In other words, any
population that is inside the indifference-zone cannot be miss-classified.
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This dual role the indifference zone, in specifying the “good” and “bad” populations
boundaries and also the “indifference zone” itself, could potentially make the formulation
impractical in cases when there is a large difference between “good” and “bad” populations.
We will revisit this issue a bit later in this paper.

Let π0, π1, · · · , πk denote the (k + 1) independent and normally distributed populations
with respective means µi, i = 0, 1, · · · , k, and common variance σ2. Assume that all the
parameters µi, i = 0, 1, · · · , k, and variance σ2 are unknown. We will denote the population
π0 as the control population with which remaining k populations will be compared.

Based on the guidelines of “good” and “bad” treatments from the practitioner in the
area, Tong (1969) defined two appropriate constants δ1 and δ2, with the requirement that δ1 <
δ2, to split the parameter space Ω into three sets following Bechhofer’s (1954) indifference-
zone formulation, as follows

ΩBT = {πi : µi ≤ µ0 + δ1, i = 1, · · · , k},
ΩIT = {πi : µ0 + δ1 < µi < µ0 + δ2, i = 1, · · · , k},
ΩGT = {πi : µi ≥ µ0 + δ2, i = 1, · · · , k}.

(1)

Without loss of generality, the set ΩGT will be used to denote “good” populations
and the set ΩBT the “bad” populations. From the applications point of view, the values of
constants δ1 and δ2 are determined based on input from the experts to specify which popu-
lation should be classified as “good” population compared to control population and which
as a “bad” population compared to control population. The partition problem formulated
in Tong (1969) was designed to correctly partition the populations which belonged to only
ΩBT and ΩGT . Whereas, since the set expressed as ΩIT was the “indifference-zone” set, the
mathematical formulation was indifferent to the populations which are in this set. In other
words, the populations that are in ΩIT could be partitioned in ΩBT or ΩGT without any
penalty. The decision rule proposed in Tong (1969) was to partition or classify the set Ω of
the k populations into non-overlapping subsets SBT and SGT of Ω, such that, ΩGT ⊆ SGT
and ΩBT ⊆ SBT . A decision rule which classifies all populations in ΩBT or ΩGT correctly was
termed as a “correct decision (CD)”. The design constants used in the partition rule used in
Tong (1969) are defined below

d1 = δ1+δ2
2 , a1 = δ2−δ1

2 , λ = σ
a1
,

m1 =
{

k
2 for even values of k,
k+1

2 for odd values of k.
(2)

Mathematically, for any pre-specified probability P ∗, where 1
2k < P ∗ < 1, Tong (1969)

presented a decision rule ℘T to obtain sets SBT and SGT , which satisfy the probability
requirement

P{CD|µ, σ2, ℘} ≥ P ∗ ∀ µ ∈ Rk+1, σ ∈ R+, (3)
where µ = (µ0, µ1, · · · , µk).

Adopting a sampling design to determine the sample size of N observations from all the
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k+1 populations and control, the decision rule to partition the k populations in Ω presented
in Tong (1969) was the following:

SBT = {πi : X̄iN − X̄0N ≤ d1, i = 1, · · · , k},
SGT = {πi : X̄iN − X̄0N ≥ d1, i = 1, · · · , k}, (4)

where d1 comes from (2).

For “partition problem” as outlined above, Tong (1969) derived a fixed sample size so-
lution for the case when σ2 is known by determining the optimal sample size needed to meet
the probability condition specified in (3). Tong (1969) also considered the case when the
common variance σ2 unknown by designing a two-stage stopping rule and a purely-sequential
in order to meet the probability requirement (3). Tong’s (1969) formulation was utilized by
Datta and Mukhopadhyay (1998) to construct a fine-tuned purely sequential procedure, an
accelerated sequential procedure and a three-stage procedure focusing on the second-order
asymptotics for each procedure. Also following Tong’s (1969) formulation, with the addi-
tional goal of reducing the sampling from populations which can be partitioned based on
smaller sample sizes due to being significantly better or worse than the control population,
Solanky (2001) constructed an elimination type purely-sequential stopping rule. Using trian-
gular boundaries, Solanky (2001) was designed to reduce the sampling cost by not following
“vector-at-a-time” sampling methodology and instead it presented a sampling design that
eliminated and partitioned the non-contending populations early during the sampling pro-
cess. The operational inconvenience of purely-sequential stopping rules was also the focus of
Solanky (2006) which designed a two-stage sampling rule which had the desirable property
of eliminating “too inferior” or “too superior” populations based on samples collecting dur-
ing the first stage by tactfully implementing Gupta’s subset selection for screening of such
populations. In the stage two of sampling in Solanky (2006), only the competing treatments
which were shortlisted in stage one were sampled from and partition was implemented us-
ing Bechhofer’s indifference zone approach. Also relying on the Tong’s (1969) formulation,
Solanky and Wu (2004) had constructed an “unbalanced sampling design” which allows
an experimenter to collect a bigger sample size from the control population while reducing
the sample size from the non-control populations from which “vector-at-a-time” sampling
methodology is adopted. For references on partition problem for Binomial treatments the
reader is referred to Buzaianu (2019).

1.2. Generalization of the partition problem

The formulation presented above due to Tong (1969) was constructed under the Bech-
hofer’s(1954) “indifference-zone formulation” to partition the k populations as either a
‘Good” treatments or a “Bad” treatments with respect to the control population. The
methodology of Tong (1969) was formulated to partition the populations which may fall
under the indifference-zone as either “Good” populations or “Bad” populations without any
penalty on the probability requirement specified in (3). This requirement of Tong’s (1969)
formulation would be intuitively serve the experimenter well as long as the distance between
the “Good” populations and “Bad” populations is is not large so that one could be “indif-
ferent” to how the populations which fall inside it are partitioned. However, when there
is large gap between the “Good” populations and “Bad” populations boundaries then this
could result in misleading results and would also violate the concept of minimum distance
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worth measuring as represented by the indifference-zone. One is referred to Solanky and
Zhou (2015) for illustrations and further insights.

In Solanky and Jhou (2015), the partition problem was formulated in such a fashion that
does not require the region that falls between the “Good” populations and “Bad” populations
boundaries to be designated as indifference zone. Instead, by utilizing the creation of two
indifference-zones, the generalized formation was able to partition the treatments which fall
between the “Good” populations and “Bad” populations as a group by itself. The two
indifference-zones thus created were based on the fundamentals of “indifference-zone” as
intended in Bechhofer (1954) and they could be as small as the experimenter desires and
also met the criteria to be minimum distance worth measuring. Put differently, the Solanky
and Jhou (2015) generalized formulation had the capability of creating indifference-zones
independently of the boundaries of “Good” populations and “Bad” populations. Next, we
represent the mathematical details of the generalized formulation of Solanky and Jhou (2015).

Based on the input from experts in the area, the statistical design would start by
selecting two design constants δ1 and δ4, δ1 < δ4, to define the “Good” populations and “Bad”
populations compared to the control population. Next, based on experts understanding of
how much distance is worth detecting or the “threshold”, one would quantify that information
by the design constants δ2 and δ3 so that δ2−δ1(> 0) and δ4−δ3(> 0) are the spacing’s which
will be used to construct two ‘indifference-zones”. Next, one would define the following sets
to split the entire parameter space Ω along the lines of Bechhofer’s (1954) “indifference-zone
formulation”

ΩB = {πi : µi ≤ µ0 + δ1, i = 1, · · · , k},
ΩI1 = {πi : µ0 + δ1 < µi ≤ µ0 + δ2, i = 1, · · · , k},
ΩM = {πi : µ0 + δ2 < µi ≤ µ0 + δ3, i = 1, · · · , k},
ΩI2 = {πi : µ0 + δ3 < µi ≤ µ0 + δ4, i = 1, · · · , k},
ΩG = {πi : µi > µ0 + δ4, i = 1, · · · , k}.

(5)

One may note that the sets ΩI1 and ΩI2 will serve as the two “indifference-zones”. It is
also apparent that the sizes of these two “indifference-zones” does not depend on the what
a practitioner may have picked to specify the “Good populations” and “Bad populations”
compared to the control population. Next, following Solanky and Jhou (2015), we define the
constants

d1 = (δ1 + δ2)/2, d2 = (δ3 + δ4)/2, a1 = (δ2 − δ1)/2, a2 = (δ4 − δ3)/2. (6)

We write Xij to denote a random sample of size n from the population πi where j = 1, · · · , n
and i = 0, 1, · · · , k. Writing X̄i and S2

i for the usual sample mean and sample variance from

the ith population πi as X̄i =
∑n

j=1Xij

n
, and S2

i =
∑n

j=1 (Xij−X̄i)2

n−1 , we obtain the pooled

estimator of the common variance σ2 to be denoted as U(n) =
∑k

i=0 S
2
i

k+1 . Next, as in Solanky
and Jhou (2015), we propose a intuitively defined decision rule Pn based on the vector-at-a-
time sampling strategy of size n from all the populations:
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SB = {πi : X̄in − X̄0n ≤ d1, i = 1, · · · , k},
SM = {πi : d1 ≤ X̄in − X̄0n ≤ d2, i = 1, · · · , k},
SG = {πi : X̄in − X̄0n ≥ d2, i = 1, · · · , k},

(7)

where SB is the set of populations that are classified as“Bad populations”, SM as “Medium
populations”, and SG as“Good populations”. As explained earlier, above decision rule does
not change the definition of “Good” populations and “Bad” populations compared to the
control population which are based on input from experts in the area.

Also, as it is customary for the selection and ranking problems, the decision rules and
the probabilities of correct decision are generally derived under the worst possible parametric
configurations, which are referred to as the “least favorable configurations (LFC)”. And, when
the parametric configurations become favorable, then the observed probabilities of correct
decision would exceed the target probability values. Using symmetry argument, it is apparent
that if ΩI1 and ΩI2 not equal in width then the LFC would become a function of constants
δ2 and δ3, and hence LFC would cease to exist in a general form. Also, intuitively because
there is no penalty for misidentifying the populations that fall inside the two “indifference-
zones” ΩI1 and ΩI2 , under the LFC should not have any population that falls inside any of
them. Utilizing the above information, in Solanky and Zhou (2015) the LFC was introduced
taking advantage of the symmetry in the decision rule (7). We rewrite the spacing’s using
a = δ4 − δ1, the distance between the “Good” populations and “Bad” populations, and a
constant ρ, 0 < ρ < 1

2 , which expresses the size of the two “indifference-zones” as a function
of a.

(1) δ4 − δ3 = δ2 − δ1 = ρa, 0 < ρ < 1
2 . Note that ρ is a design constant which is used to

define the size of the indifference-zones;

(2) r2 +r3 =
[
k
2

]
= k1, r1 +r4 = k−k1, r2 =

[
k1
2

]
, r3 = k1−r2, r1 =

[
k−k1

2

]
, r4 = k−k1−r1,

where r1, r2, r3, and r4 denotes the number of populations with the respective means:
µ0 + δ1, µ0 + δ2, µ0 + δ3, and µ0 + δ4, where [x] equals x

2 if x is even and x+1
2 if x is odd.

We denote this parametric configuration as µ0(r1, r2, r3, r4).

As explained in Solanky and Zhou (2015), the condition (1) above forces the two
indifference-zone’s ΩI1 and ΩI2 to be of same size, whereas, the condition (2) adds symmetry
to the problem and essentially allows equal number of populations at the four boundaries
µ0 + δ1, µ0 + δ2, µ0 + δ3, and µ0 + δ4. Solanky and Zhou (2015) had shown that LFC is
when r1 = r2 = r3 = r4. It is easy to note that as ρ becomes large and approaches 1

2 , the
size of the ΩI1 and ΩI2 increases and the size of “Medium populations” which are classified
as a separate group under generalized partition methodology becomes smaller. And, in this
case the generalized partition rule would approach the formulation presented in Tong (1969).
The constant ρ determines the “threshold” or “minimum distance worth detecting” along
the lines of Bechhofer (1954). Whereas, in the formulation of Tong (1969) the “indifference
zone” played the dual role of defining the “Good” and “Bad” populations and the role of the
“threshold” or the “minimum distance worth detecting”. As derived in Solanky and Jhou
(2015), for the known common variance σ2 case, the probability for the correct decision for
(7) can be shown to be
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P
[
CD|µ0(r1, r2, r3, r4), σ2

]
≥ P ∗ (8)

if the sample size from the k populations and the control population at least 8b2σ2

(ρa)2 (=C) and
the design constant b = b(k, P ∗) is obtained by solving:

� b

−b

� b

−b
...

� b

−b
(2π)−

k1
2 |Σ|− 1

2 exp(−1
2y
′Σ−1y)dy1...dy k1

2
= P ∗ + 1

2 . (9)

In the statistical literature, C = 8b2σ2

(ρa)2 , is referred to as the fixed-sample solution to the
partition problem. The values of design constant b = b(k, P ∗) are available in Solanky and
Jhou (2015).

In section 2, we have proposed a fine-tuned purely sequential procedure that is asymp-
totically unbiased and guarantees the probability requirement by taking a few additional
samples along the lines of Mukhopadhyay and Datta (1995) and Woodroofe (1991). The
“first-order” and “second order” asymptotics of the proposed procedure are obtained and it
is shown that the second-order expansion of the stopping time has the same order of the
remainder as that for the original procedure in Solanky and Zhou (2015). The probabil-
ity of the correct decision for the fine-tuned version of the purely-sequential procedure for
the generalized partition problem will be shown to be at least P ∗ up to the second-order
approximation and will not have additional terms.

2. Fine-Tuned Purely Sequential Procedure

Next, we propose a “fine-tuned purely sequential procedure” for the generalized par-
tition problem described in (5). The procedure starts with initial sample size of m0 (≥ 2)
observations. Next, adopting the “vector-at-a-time” sampling design and it takes one obser-
vation at a time updating the statistic U(n) after each observation until the first time the
condition in the condition below is satisfied

N ≡ N (a) = Inf
{
n ≥ m0 : n+ ε ≥ 8b2U(n)

(ρa)2

}
, (10)

where the constant ε = ε (k, P ∗) is defined in (21) and b = b(k, P ∗) in (9). We first verify
that the stopping rule (10) will terminate with probability one. Note that for given values
of constants µ, σ2, m0, ρ and a, we can write

P (N <∞) = 1− lim
n→∞

P (N > n)

> 1− lim
n→∞

P

{
n+ ε <

8b2U(n)
(ρa)2

}

= 1, since U(n) P−→ σ2 as n→∞.

Hence, with probability one the proposed “fine-tuned purely sequential procedure” (10) will
terminate. Based on the totality of all samples of size N , one computes the sample means
X̄0N , X̄1N , ..., X̄kN and implements the decision rule (7). Next, we will derive some theoretical
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properties to establish the performance of the “fine-tuned purely sequential procedure” (10)
asymptotically. It is easy to verify that as a becomes small, the sample size as determined
by the stopping rule (10) becomes larger. We start with presenting first-order asymptotics
“fine-tuned purely sequential procedure” (10).

Theorem 1: For N as defined by the“fine-tuned purely sequential procedure” (10), the
following properties are satisfied :

(i) N
C

P−→ 1 as a→ 0:

(ii) E(N
C

)→ 1 as a→ 0:

(iii) N−C
C

1
2

L−→ N(0, 2
k+1) as a→ 0:

(iv) lim infa→0 P (CD|PN) > P ∗ under the LFC;

where C = 8b2σ2

(ρa)2 , b = b(k, P ∗) is defined in (9) and has been tabulated in Solanky and Zhou
(2015), and the constant ε = ε(k, P ∗) is defined in (21).

Proof: We start the proof by noting that the N is well-defined and is a non-decreasing
function of a. Next, along the lines of Theorem 2.4.1 of Mukhopdahyay and Solanky (1994)
we use the Lemma 1 of Chow and Robbins (1965) to note N

P−→ ∞ as a → 0. Also,
U(N) P−→ σ2 and U(N − 1) P−→ σ2 as a → 0. Next, inequality (2.4.3) from Mukhopadhyay
and Solanky (1994) for the stopping rule (10) simplifies to

8b2U(N)
(ρa)2 − ε ≤ N ≤ m0 − ε+ 8b2U(N − 1)2

(ρa)2 . (11)

We can rewrite (11) as

8b2U(N)
(ρa)2C

− ε

C
≤ N

C
≤ m0 − ε

C
+ 8b2U(N − 1)2

(ρa)2C
,

which simplifies to

U(N)
σ2 − ( ερ2

8b2σ2 )a2 ≤ N

C
≤ ((m0 − ε)ρ2

8b2σ2 )a2 + U(N − 1)
σ2 .

Above with U(N) P−→ σ2 and U(N − 1) P−→ σ2 as a→ 0 completes the part (i) of the Theorem.
Next, as in Mukhopadhyay and Solanky’s (1994) Theorem 3.5.1, we rewrite the estimator
U(n) by using the “Helmert’s orthogonal transformation” to obtain R′1, R′2, · · · which are
i.i.d. (k + 1)−1 σ2χ2

k+1 to express U(n) = 1
n−1

∑n−1
i=1 R

′
i. Considering only one side of (11),

and writing R∗ = supn≥2

{
1

n−1

n−1∑
i=1

R′i

}
, we have

N ≤ m0 − ε+ 8b2R∗

(ρa)2 .
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This can be rewritten as
N

C
≤ m0 − ε

C
+ R∗
σ2 , (12)

and when a is small enough so that 1
C

become less than 1, the inequality (12) simplifies to
N
C
≤ m0 − ε+ R∗

σ2 . By “Wiener’s (1939) dominated ergodic theorem” we have E (R∗) <∞.
By applying the “dominated convergence theorem” and using Theorem’s (i) result, have the
proof for part (ii). The proof for part (iii) of the Theorem can be derived by comparing the
“fine-tuned purely sequential procedure” (10) with (3.5.1) of Mukhopadhyay and Solanky
(1994). The details are omitted for brevity.

Next, to prove the part (iv), note that without loss of generality we will assume that
πi, i = 1, ..., r1 have means µ0 + δ1; πj, j = r1 + 1, ..., r1 + r2 have means µ0 + δ2; πl, l =
r1 + r2 + 1, ..., r1 + r2 + r3 have means µ0 + δ3; and πm,m = r1 + r2 + r3 + 1, ..., k have means
µ0 + δ4. Next, the probability of correct decision can be written as

P
(
CD|PN ;µ0(r1, r2, r3, r4), σ2

)
= P

[
X̄i − X̄0 < d1, d1 < X̄j − X̄0 < d2, d1 < X̄l − X̄0 < d2, X̄m − X̄0 > d2,

0 < i ≤ r1, r1 < j ≤ r1 + r2, r1 + r2 < l ≤ r1 + r2 + r3, r1 + r2 + r3 < m ≤ k
]
.

As in Solanky and Zhou (2015), the P(CD) can be tactfully written as probability expres-
sions for the correct partition of the populations which are “Good” or “Bad populations”
and probability expressions for the correct partition of the populations which are “Medium
populations”. Assuming that the practitioner considers the correct partition of these two
groups of populations as equal, then the P(CD) expression would simplify to:

P (CD|PN) ≥ (−1) + 2P
{
d1 < X̄j − X̄0 < d2, r1 + 1 ≤ j ≤ r1 + r2;

d1 < X̄l − X̄0 < d2, r1 + r2 + 1 ≤ l ≤ r1 + r2 + r3
}
.

Above can be simplified as

P (CD|PN) ≥ (−1) + 2P

d1 − δ2√
σ2

N

<

(
X̄j − µj

)
√

σ2

N

−

(
X̄0 − µ0

)
√

σ2

N

<
d2 − δ2√

σ2

N

;

r1 + 1 ≤ j ≤ r1 + r2; ρa√
σ2

N

<

(
X̄l − µl

)
√

σ2

N

−

(
X̄0 − µ0

)
√

σ2

N

<
d2 − δ3√

σ2

N

, r1 + r2 + 1 ≤ l ≤ r1 + r2 + r3

 .
Denoting, b = ρa/2√

σ2
N

, and c = (2a−3ρa)/2√
σ2
N

, then the above can be rewritten as

P (CD|PN) ≥ (−1) + 2P {−b < Zj − Z0 < c, r1 + 1 ≤ j ≤ r1 + r2;
−c < Zl − Z0 < b, r1 + r2 + 1 ≤ l ≤ r1 + r2 + r3} .
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In order to obtain a simpler closed form expression for P (CD) note that for ρ < 1
2 , b < c,

and hence −b > −c giving the P (CD) as

P (CD|PN) ≥ (−1) + 2P (−b < Zj − Z0 < b, r1 + 1 ≤ j ≤ r1 + r2, −b < Zl − Z0 < b,

r1 + r2 + 1 ≤ l ≤ r1 + r2 + r3)
= (−1) + 2P (−b+ Z0 < Zi < b+ Z0, r1 + 1 ≤ i ≤ r1 + r2 + r3)

= (−1) + 2E[
� +∞

−∞
{Φ(z + b)− Φ(z − b)}r2+r3 φ(z)dz|Z0 = z]. (13)

Rewriting the first result in the Theorem, we have
√
N ρa√

8σ
P−→ b as a → 0, and next using

the “dominated convergence theorem” completes the proof of part (iv).

Next, for the the “fine-tuned purely sequential procedure” (10) the “second-order ex-
pansions” are presented to asymptotically quantify the number of observations the procedure
will sample compared to the optimal same size. We will also show that the proposed pro-
cedure is asymptotically unbiased version of the procedure in Solanky and Zhou (2015) in
achieving the targeted value of probability requirement.

Theorem 2: The“fine-tuned purely sequential procedure” (10), have the following proper-
ties as a→ 0 :

(i) E (N) = C − ε+ ν−2
k+1 + ◦ (1) , provided that m0 ≥ 1 + 2

k+1 ;

(ii) E (Nω) = Cω + [ω(ν−2
k+1 − ε) + 1

2ω(ω − 1) 2
k+1 ]Cω−1 + ◦ (1) , provided that (a) m0 ≥

1 + (3− ω) 2
k+1 for ω ∈ (∞, 2)− {−1, 1}; (b) m0 ≥ 1 + 2

k+1 for ω = 1 and ω ≥ 2;
(c) m0 ≥ 1 + 4

k+1 for ω = −1.

(iii) P (CD|PN ;µ0(r1, r2, r3, r4), σ2) > P ∗+o( 1
C

) provided that m0 >
5

k+1 +1 for the LFC;

where C = 8b2σ2

(ρa)2 , and the constant ν (k) is defined in equation (16).

Proof: First note that as in Woodroofe (1977) and Theorem 2.4.8 of Mukhopadhyay and
Solanky (1994), the pooled estimator U(n) of σ2 can be written as sum of i.i.d. random
variables as U(n) = 1

n−1
∑n−1
i=1 R

′
i, where R′1, R′2, · · · are i.i.d. 1

k+1σ
2χ2

k+1 random variables.
Let’s write Ri = (k + 1)σ−2R′i, with Ri being i.i.d. χ2

k+1. Using this the purely sequential
procedure could be rewritten as

N = Inf
{
n ≥ m0 : n+ ε ≥ 8b2

(ρa)2 (n− 1)−1 σ2

k + 1

n−1∑
i=1

Ri

}
.

This can rewritten as

N = Inf
{
n ≥ m0 : C−1(n+ ε) (n− 1) (k + 1) ≥

n−1∑
i=1

Ri

}
. (14)
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Next, following Mukhopadhyay and Solanky’s (1994) Theorem 2.4.8 we express N as T + 1,
for the stopping rule T defined as

T = Inf
{
n ≥ m− 1 : C−1n2 (k + 1)

(
1 + ε+ 1

n

)
≥

n∑
i=1

Ri

}
. (15)

The stopping rule T has been expressed in the general form of “equation (2.4.7) in Mukhopad-
hyay and Solanky (1994)” with the values: L0 = ε+ 1; δ = 2; h∗ = k+1

C
; θ = E (R1) = k+ 1;

r2 = E (R2
1) − θ2 = 2 (k + 1); β∗ = 1

δ−1 which simplifies to 1; the value of n∗0 = ( θ
h∗ )β∗

simplifies to C; and the constant p = β∗2r2

θ−2 becomes 2
k+1 . Also, note that with Ri being i.i.d.

χ2
k+1, we can express

P (Ri ≤ r) =
� r

0

e
−x
2 x

k+1
2 −1

2 k+1
2 Γ( k+1

2 )
dx.

Since e−x
2 ≤ 1, replacing e−x

2 by 1 and carrying out the integral one will obtain

P (Ri ≤ r) ≤ 2
k + 1

1
2 k+1

2 Γ( k+1
2 )
r
k+1

2 .

Also, note that for the random variable R, we have

P (Ri ≤ r) ≤ Hrh, where H = 2
k+1

1
2
k+1

2 Γ( k+1
2 )

and h = (k + 1)
/

2. Next, using the
nonlinear renewal theory from “Mukhopadhyay and Solanky (section 2.4.2)” we define the
constant ν = ν (k) as below:

ν = ν (k) = k + 3
2 −

∞∑
n=1

1
n
E
[
max

{
0, χ2

(k+1)n − 2 (k + 1)n
}]
. (16)

Next, following “equation (2.4.10) in Mukhopadhyay and Solanky (1994)” the constant η =
β∗ν
θ
− L0β

∗ − δβ∗2r2

2θ2 would become

η = (k + 1)−1(ν − 2)− (ε+ 1). (17)

Since T = N − 1 and therefore E(T ) = E(N) − 1, next with η as defined above in (17),
applying the “Theorem 2.4.8(v) of Mukhopadhyay and Solanky (1994)” would lead to

E (N) = C − ε+ ν − 2
k + 1 + ◦ (1) ,

provided that m > 1 + 2 (k + 1)−1. This completes the proof of part (i).

The proof of the part (ii) follows by expressing the stopping variable T in the form of
“Mukhopadhyay and Solanky (1994)’s equation (2.4.7)” and applying the “Theorem 2.4.8
of Mukhopadhyay and Solanky (1994)”. The details are omitted for brevity. One may note
that the part (i) is a special case of part (ii) when ω = 1.
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For part (iii), note that from (13) we can express the probability of correctly partition-
ing all k populations using the decision rule PN under the LFC as

P (CD|PN) ≥ (−1) + 2E[
� ∞
−∞
{Φ(z + b)− Φ(z − b)}k1 φ(z)dz|Z0 = z].

Next, we write b = 21/2x and define a function β(x) as

β(x) =
� ∞
−∞

{
Φ(z + 21/2x)− Φ(z − 21/2x)

}k1
φ(z)dz.

It is easy to verify that

β′(x) =
� ∞
−∞

k121/2
{

Φ(z + 21/2x)− Φ(z − 21/2x)
}k1−1

(φ(z + 21/2x) + φ(z − 21/2x))φ(z)dz

β′′(x) =
� ∞
−∞

2k1(k1 − 1)
{

Φ(21/2x+ z)− Φ(−21/2x+ z)
}k1−2

(φ(21/2x+ z) + φ(−21/2x+ z))2 − 2k1
{

Φ(21/2x+ z)− Φ(−21/2x+ z)
}k1−1

(
(21/2x+ z)φ(21/2x+ z) + (21/2x− z)φ(−21/2x+ z))

)
φ(z)dz.

Next, we write g(x) for the function β(bx 1
2 ) and then we can express

g′(x) = 1
2bx

− 1
2β′(bx 1

2 )

g′′(x) = 1
4b

2x−1β′′(bx 1
2 )− 1

4bx
− 3

2β′(bx 1
2 ) (18)

and
|g′′(x)| ≤ a1x

− 1
2 + a2x

−1 + a3x
− 3

2 ,

where a1, a2 a3 are positive constants. For the fine-tuned purely sequential procedure
(10), one can verify that the distribution of N does not depend on the mean vector and
P (N < ∞) = 1. Hence, by using “Theorem 3.2.1 of Mukhopadhyay and Solanky (1994)”,
we have

inf
a→0

P [CD|PN ;µ0(r1, r2, r3, r4), σ2] > (−1) + 2E(g(N
C

)). (19)

Next, taking a series expansion of the function g(x) at x = 1 for random Z ∈ (1, N
C

), we can
write

g(x) = g(1) + g′(1)(x− 1) + 1
2g
′′(Z(x))(x− 1)2.

As shown above, we can express |g′′(x)| ≤ ∑3
i=1

ai
xαi

, with ai > 0 and α1 > 0, by applying
“Lemma 3.5.1 of Mukhopadhyay and Solanky (1994)”, we can show that for m0 >

5
k+1 + 1,

one will obtain

E(g(N
C

)) = g(1) + 1
C
g′(1)E(N − C) + 1

2C2E(g′′(Z(x))(N − C)2).
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With α1 = 1
2 , α2 = 1, and α3 = 3

2 and maximum of (α1, α2, α3) = 3
2 , the “Lemma 3.5.1 of

Mukhopadhyay and Solanky (1994)” leads to

E(g(N
C

)) = g(1) + 1
C
g′(1)E(N − C) + 1

k + 1
1
C
g′′(1) + o( 1

C
) (20)

Following “Mukhopadhyay and Datta (1995)’s Theorem 2.1” with the function g(.) defined
as above, and ε as:

ε = ε (k, P ∗) = (k + 1)−1[ν − 2 + g′′(1)(g′(1))−1], (21)

the E(N) would simplify to

E(N) = C − (k + 1)−1[g′′(1)(g′(1))−1] + o(1), provided m0 > 1 + 2
k + 1 . (22)

Using the equations (20) and (22), one can obtain

E(g(N
C

)) = g(1) + o( 1
n∗

), provided m0 > 1 + 5
k + 1 .

That is,

inf
a→0

P [CD|PN ;µ0(r1, r2, r3, r4), σ2] > (−1) + 2g(1) + o( 1
n∗

), provided m0 > 1 + 5
k + 1 .

Note that g(1) = 1
2(P ∗ + 1) to conclude part(iii) of the theorem.

3. Simulation Study for the Fine-tuned Purely Sequential Procedure

In this section using the Monte Carlo simulation study, the “fine-tuned purely sequential
procedure” (10) is replicated independently 5,000 times by picking different values of design
constants to study how the asymptotic values provided in the Theorems 2.1 and 2.2 compare
with the observed values when the procedure is simulated for small and moderate sample
sizes. For the simulation results presented in the Table 1, we selected k = 8 and P ∗ = 0.95
and generated two independent normal populations at each of the four boundaries to generate
data from LFC, as outlined in the Section 1. In order to obtain the value of constant b for
given choice of k and P ∗, we used the “Table 1 in Solanky and Zhou (2015)”. For example, the
value of constant b for k = 8 and P ∗ = 0.95 is 2.6959. By picking the values of the “optimal
sample sizes” (=C) as 25, 50, 100, 200, 400, and 800 and taking r = 1

3 , we obtained the
values of constant a which are reported in the Table 1. In a practical application, the values
δ1 and δ4 would be chosen so as to reflect the “Good populations” and “Bad populations”
based on the situation. Note that the difference between the “Good populations” and “Bad
populations” is a = δ4−δ1. In the Table 1, by picking r = 1

3 we have divided the indifference-
zone of Tong (1969) into three non-overlapping regions of equal size. The “middle” of these
three regions would serve as the region which we will serve as ΩM and the other two as
indifference-zones ΩI1 and ΩI1 as defined in (5).

The procedure (10) starts with the initial sample size of m0 = 5 observations from
each of the 8 populations and the control population. Then, each additional observation is
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Table 1: Performance of the Fine-Tuned Purely Sequential Procedure (10)

(k = 8, P ∗ = 0.95, ρ = 1
3 , σ = 1.0, m0 = 5)

C ρa a N̄ std(N̄) P̄ std(P̄ )
25 1.5250 4.575 25.3246 0.0347 0.9710 0.0024
50 1.0784 3.2351 50.2660 0.0481 0.9720 0.0023
100 0.7625 2.2875 100.2612 0.0682 0.9776 0.0021
200 0.5392 1.6175 200.2736 0.0943 0.9746 0.0022
400 0.3813 1.1437 400.2050 0.1327 0.9772 0.0021
800 0.2696 0.8088 800.2242 0.1890 0.9750 0.0022

collected according to the following stopping rule (10). In the Table 1, the average value of
the stopping time N and the proportion of the times all the 8 populations were partitioned
correctly are reported as N̄ and P̄ respectively. The Table also reports the standard deviation
of these two reported statistics as std(N̄) and std(P̄ ). For all the cases considered in the
Table 1, the P̄ is larger than the desired probability of correct decision which was selected to
be 0.95. Also, the N̄ matches the optimal sample size values (=C) indicating that the “fine-
tuned purely sequential procedure” (10) over-samples by less than half an observation on
the average. The overall findings in the Table 1 confirm the theoretical results which were
derived asymptotically in the Theorems 2.1 and 2.2 for the “fine-tuned purely sequential
procedure” (10) are met even for small and moderate sample sizes.
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Abstract

The paper proposes a new metric SAVE for finding the best fitted unsaturated log-linear
model to describe the categorical data in a contingency table with m categorical variables.
Two kinds of extensions, standard and orthogonal, of an unsaturated log-linear model to
the saturated model are the foundation of SAVE. The performance of SAVE in terms of the
correct model parameter(s) detection is comparable with or even better than the commonly
used metrics: Deviance, AIC, and BIC, as demonstrated in simulation studies.

Key words: Categorical; Log-linear; Model selection; Orthogonal extension; Unsaturated.

AMS Subject Classifications: 62H17, 62R07, 62B10.

1. Introduction

Let X1, . . . , Xm denote m categorical variables, Xi with Ii categories, i = 1, . . . ,m.
The n subjects selected in a study using a multinomial sample are cross-classified into
N = I1 × · · · × Im possible combinations on m categorical variables X1, . . . , Xm in a contin-
gency table. The wth combination is represented by (w1, . . . , wm), where wu is the level of
Xu; wu = 0, . . . , Iu − 1;u = 1, . . . ,m. The number of subjects for the wth combination is a
random variable Yw having the observed value yw and the expected value E(Yw) = µw = npw,
where pw and µw are unknown parameters. The µw is the cell mean and pw is the cell proba-
bility for the cell represented by the wth combination. We have Yw ≥ 0 and Y1+· · ·+YN = n,
p1 + · · ·+ pN = 1 and µ1 + · · ·+µN = n. Also, yw ≥ 0, w = 1, . . . , N , and y1 + · · ·+ yN = n.
The saturated log-linear model is

log(pw) = λ+δ1λ
X1
w1 +· · ·+δmλ

Xm
wm

+δ1δ2λ
X1X2
w1w2 +· · ·+δ1δ2δ3λ

X1X2X3
w1w2w3 +· · ·+δ1 . . . δmλ

X1...Xm
w1...wm

, (1)

where {λXi1 Xi2
wi1 wi2 }, {λ

Xi1 Xi2 Xi3
wi1 wi2 wi3 }, . . ., and λX1...Xm

w1...wm
, are the unknown association parameters.

The {λXi
wi
} are the unknown effect parameters. The λ is the unknown overall effect parameter.

Correponding Author: Subir Ghosh
Email: subir.ghosh@ucr.edu
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The δu, u = 1, . . . ,m, are

δu =
{

0 if wu = 0,
1 if wu 6= 0.

When at least one association parameter is zero or absent in the saturated model,
the model becomes an unsaturated model in presence of the overall effect and the effect
parameters. The unsaturated models considered in this paper consist of the overall effect, the
effect parameters, and one or more association parameters. When all association parameters
are absent in the unsaturated model, the categorical variables become mutually independent.
“In practice, unsaturated models are preferable since their fit smoothes the sample data and
has simpler interpretations” (page 341, Agresti (2013)). On the one hand, the over-fitted
saturated model is unnecessary, but on the other hand, an under-fitted unsaturated model
is deficient for describing the data. We propose a new method of finding the best fitted
unsaturated log-linear model using the association parameters absent in the model considered
but present in the saturated model. We compare the proposed method with the standard
measures such as AIC, BIC, and Deviance using the 100,000 realizations of simulated data.

In Section 2, we present two saturated representations of standard and orthogonal
extensions of unsaturated log-linear models. In Section 3, we explain the saturated repre-
sentations with two illustrative examples in Sections 3.1 and 3.2. The data on the use of
automobile seat-belt for lowering fatal injury is in Section 4. We propose the new metric,
SAVE, in Section 5. We compare the new metric with the other available metrics AIC, BIC,
and MDI in Section 5.1. Section 6 presents their performance comparison for the 100,000
simulated data from each of the six data-generating models. We conclude in Section 7 with
some remarks.

2. Two Saturated Representations : S1 and S2

Let p = (p1, . . . , pN)> be the column vector of expected counts for the N cells of
the contingency table, λ(1) (k1× 1) be the vector of the overall effect, the effect parameters,
and the one or more association parameters in an unsaturated model considered for fitting
to the collected data, and X1 (N × k1) be the model matrix generated from the indicator
variables for the parameters in λ(1)

1 . Let λ2 (k2× 1) be the vector of association parameters
that are absent in λ(1) and X2 (N × k2) be the model matrix generated from the indicator
variables for the parameters in λ2. In the saturated model (1), the parameters in both λ(1)

and λ2 are present. The unsaturated model consists of the parameters in λ(1) but not the
parameters in λ2. The matrix representation of the unsaturated model considered is

logp = X1λ
(1)
1 , (2)

where rank(X1) = k1. We consider two representations of the saturated model. The first
representation is the standard saturated model and we denote it by S1. The second represen-
tation is the orthogonal extension of the assumed unsaturated model in (2) and it is denoted
by S2 (Klimova, Rudas and Dobra (2012), Klimova and Rudas (2016), Rudas (2018)). The
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standard representation S1 of the saturated log-linear model is

logp = X1λ
(1)
1 +X2λ2, (3)

where rank(X1, X2) = k1 + k2 = N .

Let D (N × k2) be a matrix which satisfies

rank(D) = k2,X
>
1 D = 0. (4)

The matrix D is not unique. A simple form of the matrix D satisfying (4) is

D = [IN −X1(X>1 X1)−1X>1 ]X2, (5)

where IN is the (N × N) identity matrix. Note that rank([IN − X1(X>1 X1)−1X>1 ]) =
N − k1 = k2 = rank(X2) = rank(D). From (5), it can be seen

Dλ2 = [IN −X1(X>1 X1)−1X>1 ]X2λ2,

X2λ2 = Dλ2 +X1(X>1 X1)−1X>1 X2λ2.
(6)

Let
λ

(2)
1 = λ

(1)
1 + (X>1 X1)−1X>1 X2λ2. (7)

The orthogonal saturated extension of the unsaturated model in (2), S2, is obtained from
(3) and (7) as

logp = X1λ
(1)
1 +X2λ2

= X1λ
(1)
1 +Dλ2 +X1(X>1 X1)−1X>1 X2λ2

= X1
(
λ

(1)
1 + (X>1 X1)−1X>1 X2λ2

)
+Dλ2

= X1λ
(2)
1 +Dλ2.

(8)

From (4) and (8), it follows that

λ
(2)
1 = (X>1 X1)−1X>1 logp

λ2 = (D>D)−1D>logp.
(9)

Klimova, Rudas and Dobra (2012), Klimova and Rudas (2016), Rudas (2018) defined
two kinds of relational models, dual and non-dual. For a dual representation of a relational
model, we have D>logp = 0. In other words, from (9), λ2 = 0. Hence, the unsaturated
model in (2) has a dual representation. On the other hand, for a non-dual representation
of a relational model, we have D>logp 6= 0. Therefore, the saturated model in (3) has a
non-dual representation.
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3. Examples

3.1. Example 1

For a 2 × 2 × 2 contingency table and the unsaturated model in (2) with three inde-
pendent categorical variables X1, X2 and X3, we have m = 3, N = 8, k1 = k2 = 4. Table 1
presents the cell representations.

Table 1: The cell representations for Example 1

Number Combination Probability
w (w1, w2, w3) pw

1 (0, 0, 0) p1
2 (0, 0, 1) p2
3 (0, 1, 0) p3
4 (0, 1, 1) p4
5 (1, 0, 0) p5
6 (1, 0, 1) p6
7 (1, 1, 0) p7
8 (1, 1, 1) p8

The matrices X1 and X2 are

X1 =



1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1


,X2 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1


, (10)

and the vectors λ(1)
1 and λ2 in (3) are

λ
(1)
1 = (λ, λX1

1 , λX2
1 , λX3

1 )>,λ2 = (λX1X2
11 , λX1X3

11 , λX2X3
11 , λX1X2X3

111 )>. (11)
Two D matrices, D(1) and D(2) in (12), are obtained by using (5) and (10). The last column
of D(1) is not orthogonal to its first three columns. The first three columns of D(1) are
mutually orthogonal. The first three columns of D(2) are the same as the corresponding
columns in D(1). The four columns of D(2) are mutually orthonormal. Thus, D>(2)D(2) = I4.

D(1) = (1/4)



1 1 1 1
1 −1 −1 0
−1 1 −1 0
−1 −1 1 −1
−1 −1 1 0
−1 1 −1 −1

1 −1 −1 −1
1 1 1 2


,D(2) = (1/8)



1 1 1 1
1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 1
−1 −1 1 −1
−1 1 −1 1

1 −1 −1 1
1 1 1 −1


. (12)
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For a dual relational model by using the expression of D(2) in (12) for D, we find

(i). log
(
p1p2p7p8

p3p4p5p6

)
= 0, (ii). log

(
p1p3p6p8

p2p4p5p7

)
= 0,

(iii). log
(
p1p4p5p8

p2p3p6p7

)
= 0, (iv). log

(
p1p4p6p7

p2p3p5p8

)
= 0.

(13)

From the equations (iii) and (iv) in (13), it can be seen

(i). log
(
p1p4

p2p3

)
= 0, (ii). log

(
p5p8

p6p7

)
= 0. (14)

In Table 1, we observe that X1 = 0 for w = 1, 2, 3, 4 and X1 = 1 for w = 5, 6, 7, 8. The
equation (i) in (14) implies the conditional independence between the categorical variables
X2 and X3 given X1 = 0. The equation (ii) in (14) implies the conditional independence
between X2 and X3 given X1 = 1.

From the equations (i) and (iv) in (13), we observe

(i). log
(
p1p6

p2p5

)
= 0, (ii). log

(
p4p7

p3p8

)
= 0. (15)

In Table 1, we observe that X2 = 0 for w = 1, 2, 5, 6 and X2 = 1 for w = 3, 4, 7, 8. The
equation (i) in (15) implies the conditional independence between the categorical variables
X1 and X3 given X2 = 0. The equation (ii) in (15) implies the conditional independence
between X1 and X3 given X2 = 1.

From the equations (i) and (iv) in (13), we find

(i). log
(
p1p7

p3p5

)
= 0, (ii). log

(
p2p8

p4p6

)
= 0. (16)

In Table 1, we observe that X3 = 0 for w = 1, 3, 5, 7 and X3 = 1 for w = 2, 4, 6, 8. The
equation (i) in (16) implies the conditional independence between the categorical variables
X1 and X2 given X3 = 0. The equation (ii) in (16) implies the conditional independence
between X1 and X2 given X3 = 1.

3.2. Example 2

For a 3× 2 contingency table and the unsaturated model in (2) with two independent
categorical variables X1 and X2, we have m = 2, N = 6, k1 = 4, k2 = 2. Table 2 presents
the cell representations.

The matrices X1 and X2 are

X1 =



1 0 0 0
1 0 0 1
1 1 0 0
1 1 0 1
1 0 1 0
1 0 1 1


,X2 =



0 0
0 0
0 0
1 0
0 0
0 1


, (17)
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Table 2: The cell representations for Example 2

Number Combination Probability
w (w1, w2) pw

1 (0, 0) p1
2 (0, 1) p2
3 (1, 0) p3
4 (1, 1) p4
5 (2, 0) p5
6 (2, 1) p6

and the vectors λ(1)
1 and λ2 in (3) are

λ
(1)
1 = (λ, λX1

1 , λX1
2 , λX2

1 )>,λ2 = (λX1X2
11 , λX1X2

21 )>. (18)

The matrices D(1) and D(2) in (19) are obtained by using (5) and (17). The two columns
of D(1) are not mutually orthogonal. The two columns of D(2) are mutually orthonormal.
Thus, D>(2)D(2) = I2.

D(1) = (1/6)



1 1
−1 −1
−2 1

2 −1
1 −2
−1 2


,D(2) =



1 1
−1 −1
−2 0

2 0
1 −1
−1 1


[
(1/2
√

3) 0
0 (1/2)

]
. (19)

For a dual relational model by using the expression of D(2) in (19) for D, we find

(i). log
(
p1p5

p2p6

)
= 2× log

(
p3

p4

)
, (ii). log

(
p1p6

p2p5

)
= 0. (20)

4. A Real Data

A research investigation started with a question (Agresti (2013)): Does seat-belt use
in automobiles reduce injury? The collected data in Table 4 were on the injury outcomes
of 68,694 passengers in autos and light trucks involved in accidents one year in the state of
Maine, USA. Three factors each at two levels displayed in Table 3 were three categorical
variables (m = 3) for the Table 4 data.

For the vectors λ(1)
1 and λ2 in (3) as

λ
(1)
1 = (λ, λX1

1 , λX2
1 , λX3

1 , λX1X3
11 , λX2X3

11 )>,λ2 = (λX1X2
11 , λX1X2X3

111 )>, (21)
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Table 3: Three factors and their levels

Factors/ Xi Levels
Categories 0 1

Location X1 Urban Rural
Seat-belt use X2 No Yes
Injury X3 No Yes

Table 4: The number of subjects yw

w X1, X2, X3 yw

1 000 17,668
2 001 1,808
3 010 22,556
4 011 1,139
5 100 9,369
6 101 2,057
7 110 12,827
8 111 1,270

the matrices X1 and X2 in (3), and D in (5) are

X1 =



1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 1 1 1


,X2 =



0 0
0 0
0 0
0 0
0 0
0 0
1 0
1 1


,D =



0.25 0.00
0.25 0.25
−0.25 0.00
−0.25 −0.25
−0.25 0.00
−0.25 −0.25

0.25 0.00
0.25 0.25


. (22)

5. SAVE - A New Model Selection Criterion

For the saturated log-linear model S1 in (3), assume

X =
[
X1 X2

]
=
[
X11 X12
X21 X22

]
, (23)

where the matrix X11(k1 × k1) has rank k1 and X>1 X2 6= 0. Recall from (2) and (3) that
rank(X1) = k1 and rank(X)= k1 + k2 = N .

For the saturated log-linear model S2 in (8), assume

X∗ =
[
X1 D

]
=
[
X11 D1
X21 D2

]
, (24)
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where rank(X∗) = k1 + k2 = N . Recall from (4) that rank(D) = k2 and X>1 D = 0.
Let P be an (N ×N) lower-diagonal matrix

P =
[

Ik1 0
−X21X

−1
11 Ik2

]
. (25)

Pre-multiplying the matrices X in (23) and X∗ in (24) by P in (25)

PX =
[
X11 X12
0 X22 −X21X

−1
11 X12

]
,PX∗ =

[
X11 D1
0 D2 −X21X

−1
11 D1

]
. (26)

Let λ̂(1)
1 be the estimator of λ(1)

1 and λ̂(1)
2 of λ2, for S1 in (3). Let λ̂(2)

1 be the estimator of
λ

(2)
1 and λ̂(2)

2 of λ2, for S2 in (8). From (8) and (26), it can be seen that

X11λ̂
(1)
1 +X12λ̂

(1)
2 = X11λ̂

(2)
1 +D1λ̂

(2)
2 ,

(X22 −X21X
−1
11 X12)λ̂(1)

2 = (D2 −X21X
−1
11 D1)λ̂(2)

2 .
(27)

Clearly from (27),

λ̂
(1)
2 = (X22 −X21X

−1
11 X12)−1(D2 −X21X

−1
11 D1)λ̂(2)

2 ,

λ̂
(2)
1 − λ̂

(1)
1 = X−1

11 (X12λ̂
(1)
2 −D1λ̂

(2)
2 ).

(28)

Theorem 1: For two matrices, X in (23) in the standard representation S1 of the saturated
log-linear model in (3) and X∗ in (24) in the orthogonal extension representation S2 of the
saturated log-linear model in (5), the estimators λ̂(1)

1 of λ(1)
1 and λ̂(1)

2 of λ2 for S1 in (3), λ̂(2)
1

of λ(2)
1 and λ̂(2)

2 of λ2 for S2 in (8), satisfy
(i) λ̂(2)

2 = λ̂
(1)
2 if (X22 −X21X

−1
11 X12) = (D2 −X21X

−1
11 D1),

(ii) λ̂(2)
1 = λ̂

(1)
1 if and only if X12λ̂

(1)
2 = D1λ̂

(2)
2 .

Proof: The proof follows from (28).

Theorem 2: For the orthogonal extension representation S2 of the saturated log-linear
model in (8), the matrix D is not unique but Dλ̂(2)

2 is unique.
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Proof: From (3), (8), (9), and the condition X>1 D = 0 in (4),

logp̂ = X1λ̂
(1)
1 +X2λ̂

(1)
2

= X1λ̂
(2)
1 +Dλ̂(2)

2 ,

λ̂
(2)
2 = (D>D)−1D>X2λ̂

(2)
2

= (D>D)−1D>logp̂,

λ̂
(2)
1 = (X>1 X1)−1X>1 logp̂,

Dλ̂
(2)
2 = logµ̂−X1λ̂

(2)
1

= [IN −X1(X>1 X1)−1X>1 ]logp̂.

(29)

The right hand side ofDλ̂(2)
2 in (29) depends only onX1 and p̂ but notD since the elements

of p̂ are yw/n, w = 1, . . . , N . Hence, Dλ̂(2)
2 is unique.

Theorem 3: The sum of the elements in Dλ̂(2)
2 is zero.

Proof: Since the first column of X1 is an (N × 1) column vector jN = (1, 1, . . . , 1)> with
the elements equal to one, it follows from (4) that j>ND = 0 and therefore, j>NDλ

(2)
2 = 0.

In other words, the sum of elements of Dλ̂(2)
2 is zero.

It follows from Theorem 3 that the non-zero elements ofDλ̂(2)
2 are either positive or negative.

Moreover, the sum of the positive elements is negative of the sum of the negative values. A
new model comparison criterion is proposed as

SAVE = The sum of the absolute values of the elements in Dλ̂(2)
2

= 2× The sum of the positive elements in Dλ̂(2)
2 .

(30)

for comparing a class of unsaturated log-linear models. Smaller the value of SAVE for a
model means the better fit to describe the data. The unsaturated model having the smallest
value of SAVE means the elements of Dλ̂(2)

2 are overall individually small. In other words,
the unsaturated model provides the closest fitted values of pw to their corresponding ob-
served values yw/n, for w = 1, . . . , N .

5.1. Comparison of unsaturated models fitted to the seat-belt use data

Table 5 compares the seven unsaturated models in fitting to the Section 4 data using the
four criterion functions: AIC, BIC, MDI, and SAVE. From now on, λX1

1 , λX2
1 , λX3

1 , λX1X2
11 , λX1X3

11 ,
λX2X3

11 , and λX1X2X3
111 are denoted by λ1, λ2, λ3, λ12, λ13, λ23, and λ123, respectively.
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Table 5: The comparison of seven unsaturated log-linear models

Model AIC BIC MDI SAVE
1 λ123 = 0 99.14 99.69 85.14 0.09
2 λ23 = λ123 = 0 878.96 879.43 866.96 1.50
3 λ13 = λ123 = 0 830.53 831.01 818.53 1.44
4 λ12 = λ123 = 0 111.70 112.18 99.70 0.09
5 λ13 = λ23 = λ123 = 0 1596.57 1596.96 1586.57 1.51
6 λ12 = λ23 = λ123 = 0 877.73 878.13 867.73 1.50
7 λ12 = λ13 = λ123 = 0 829.31 829.71 819.31 1.47

The criterion functions AIC and BIC (Akaike (1973), Schwarz (1978)), Konishi and
Kitagawa (2008)) penalize the bigger model, while the Minimum Discrimination Information
(MDI) (Kullback and Leibler (1951), Kullback (1959), Csiszár (1975), Gokhale and Kullback
(1978), Haberman (1984), Kullback, Keegel, and Kullback (2013)) and SAVE do not. The
best-fitted model having the smallest values of all four criterion functions is the model with
λ123 = 0. The second-best model under all four criterion functions, is the model having
λ12 = λ123 = 0, which means the conditional independence between X1 and X2 given X3.
The proposed criterion function SAVE does not discriminate visibly between the top two
models by the other three criterion functions numerically for the data considered.

6. A Performance Evaluation Simulation Study for a 2×2×2 Contingency Table

The 100,000 multinomial random samples are generated from the six log-linear models
satisfying (1) for a 2 × 2 × 2 contingency table. The eight λ values for the data generating
six models are given in Table 6 so that the sum of pw, w = 1, . . . , 8, is 1. The pw values are
displayed in Table 7.

Table 6: The λ parameters of the six data generating models

Parameters M1 M2 M3 M4 M5 M6
λ -2.4654 -4.3262 -1.3008 -2.0844 -0.7839 -3.9759
λ1 -1.6094 0.5000 -1.6094 0.5000 -1.6094 -1.6094
λ2 -0.9163 -0.9163 -0.9163 -0.9163 -0.9163 -0.9163
λ3 -1.2040 -1.2040 -1.2040 -1.2040 -1.2040 -1.2040
λ12 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
λ13 3.2834 3.2834 0.0500 0.0500 0.0150 3.2834
λ23 2.3434 2.3434 2.3434 2.3434 0.0200 2.3434
λ123 0.0300 0.0300 0.0300 0.0300 0.0300 1.9738

Table 8 displays the unsaturated models fitted to the 100,000 datasets generated using each
model in Table 6. The best-fitted models satisfy the criterion functions Deviance, AIC, BIC,
and SAVE.
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The number or proportion of times a parameter appearing or not-appearing in the
best-fitted models is a measure of correct detection. For the data generating six models in
Table 6, the values of λ12 are identical, smallest, and close to zero. Hence, smaller the num-
ber or proportion of times λ12 appearing in the best-fitted models is better and larger the
number or proportion of times λ12 not-appearing in the best fitted models is better, are two
equivalent measures of correct detection. Table 9 provides the comparison between Deviance
Statistic/AIC/BIC and SAVE in terms of the number of times λ12 does not appear in the
best fitted models of three groups (g = 1, 2, 3 in Table 8) to 100,000 datasets generated by
the six models (Mi, i = 1, . . . , 6, in Table 7). Table 9 demonstrates that the number of times
λ12 does not appear in the best fitted models using the criterion function SAVE, is greater
than or equal to the corresponding number which is the common value of the criterion func-
tions Deviance, AIC, and BIC. In other words, the new criterion function SAVE makes the
correct detection more frequently than the three popular criterion functions: Deviance, AIC,
and BIC.

Table 7: The cell probabilities pw of the six data generating models

w M1 M2 M3 M4 M5 M6
(0,0,0) 0.0850 0.0132 0.2803 0.1244 0.4566 0.0188
(0,0,1) 0.0255 0.0040 0.0841 0.0373 0.1370 0.0056
(0,1,0) 0.0340 0.0053 0.1121 0.0498 0.1826 0.0075
(0,1,1) 0.1062 0.0165 0.3504 0.1555 0.0559 0.0235
(1,0,0) 0.0170 0.0218 0.0561 0.2051 0.0913 0.0038
(1,0,1) 0.1360 0.1743 0.0177 0.0647 0.0278 0.0300
(1,1,0) 0.0069 0.0088 0.0227 0.0829 0.0369 0.0015
(1,1,1) 0.5895 0.7561 0.0767 0.2825 0.0118 0.9094

For the data generating six models M1, . . . ,M6, the values of λ13 are equal and largest
among the association parameters for M1, M2, and M6. Therefore, larger the number of
times λ13 appearing in the best fitted models is better. Table 10 presents the comparison
between Deviance Statistic/AIC/BIC and SAVE with respect to the number of times λ13
appears in the best fitted models of three groups(g = 1, 2, 3 in Table 8) to 100,000 datasets
generated by M1, M2, and M6. The SAVE makes the correct detection more frequently
than Deviance/AIC/BIC for the datasets generated by M1 in the group g = 1 and for the
datasets generated by M6 in the group g = 2. The performances are equal for the other
cases in Table 10. The Deviance/AIC/BIC makes the correct detection more frequently than
SAVE for the datasets generated by M2 in the group g = 1. Overall, SAVE performs better
than Deviance/AIC/BIC.

7. Concluding Remarks

We constructed the new metric SAVE from the standard and orthogonal extensions of
the unsaturated models. The construction process is simple and meaningful. We made the
comparison of the metric SAVE with its competitors Deviance, AIC, and BIC. The SAVE
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Table 8: The fitted models for k = 1, 2, and 3

g h The fitted The common λ The other λ The λ
Model g.h parameters present parameters present parameters absent

1 1 1.1 λ, λ1, λ2, λ3 λ123 λ12, λ13, λ23
2 1.2 λ, λ1, λ2, λ3 λ12 λ123, λ13, λ23
3 1.3 λ, λ1, λ2, λ3 λ13 λ123, λ12, λ23
4 1.4 λ, λ1, λ2, λ3 λ23 λ123, λ13, λ12

2 1 2.1 λ, λ1, λ2, λ3 λ123, λ23 λ12, λ13
2 2.2 λ, λ1, λ2, λ3 λ123, λ13 λ12, λ23
3 2.3 λ, λ1, λ2, λ3 λ123, λ12 λ13, λ23
4 2.4 λ, λ1, λ2, λ3 λ12, λ13 λ123, λ23
5 2.5 λ, λ1, λ2, λ3 λ12, λ23 λ123, λ13
6 2.6 λ, λ1, λ2, λ3 λ13, λ23 λ123, λ12

3 1 3.1 λ, λ1, λ2, λ3 λ123, λ13, λ23 λ12
2 3.2 λ, λ1, λ2, λ3 λ123, λ12, λ23 λ13
3 3.3 λ, λ1, λ2, λ3 λ123, λ13, λ12 λ23
4 3.4 λ, λ1, λ2, λ3 λ12, λ13, λ23 λ123

Table 9: The number of best fitted unsaturated models without λ12

g Data Deviance/ SAVE g Data Deviance/ SAVE
generated by AIC/BIC generated by AIC/BIC

1 M1 100,000 100,000 2 M1 100,000 100,000
M2 100,000 100,000 M2 100,000 100,000
M3 100,000 100,000 M3 97,211 98,658
M4 100,000 100,000 M4 94,223 96,230
M5 100,000 100,000 M5 56,993 62,540
M6 100,000 100,000 M6 99,987 100,000

3 M1 51,143 62,773
M2 55,043 58,533
M3 46,476 55,344
M4 40,095 49,677
M5 27,104 32,107
M6 100,000 100,000

Table 10: The number of best fitted unsaturated models including λ13

g Data Deviance/ SAVE g Data Deviance/ SAVE
generated by AIC/BIC generated by AIC/BIC

1 M1 0 36,684 2 M1 100,000 100,000
M2 100,000 29, 153 M2 100,000 100,000
M6 100,000 100,000 M6 99,987 100,000

3 M1 100,000 100,000
M2 100,000 100,000
M6 100,000 100,000
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performed as well as or even better than Deviance, AIC, and BIC. We compared them in
terms of the correct identification of parameters of unsaturated log-linear models.
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Abstract 
 

Data on human systems biology are being generated at a rapid pace due to technological 
advances in not only high-throughput, but also high-resolution, platforms. Increasing 
availability of single cell omic data have motivated complex experiments with the intention to 
gain deeper insights into complex biological systems such as those involved in the development 
of organisms. Individual, technological and biological sources of heterogeneity of outcomes 
that are observed among the different populations of cells that are sampled in such experiments 
require robust analysis. We describe our Linear Combination Test (LCT) methodology, and 
briefly review its applications to binary, multivariate continuous and longitudinal outcomes in 
a wide range of omic studies. It allows us to test hypothesis not just about the role of single 
genes in discrete outcomes, but of large sets of genes in multivariate continuous outcomes, 
which are representative of dynamic biological phenomena such as embryogenesis, 
degenerative diseases, etc. LCT, which uses a shrinkage covariance matrix estimator, has been 
shown to be effective at a small computational cost in both simulated omic studies and real-life 
biomedical applications. In this study, we applied LCT to analyze a new collection of stem cell 
gene signatures associated with single cell RNA-Seq data measured during human 
preimplantation embryonic development. 
 
Key words: Linear combination test; Single cell analysis, RNA-Seq; Stem cell gene signatures. 
 
1. Introduction 
 

In early microarray data analysis, individual genes that were differentially expressed 
across 2 or more classes or conditions were identified using traditional statistical methods such 
as the 𝑡-test, ANOVA, etc., Drăghici (2012). Then, the most significant genes were selected 
based on a predefined threshold and validated for biological patterns. However, given the 
heterogeneity of gene expression levels, biological interpretation of the results was sensitive to 
the choice of the threshold, and this subjectivity remains an important concern in such analysis 
of individual genes. In order to overcome this problem, Gene Set Analysis (GSA) uses existing 
experimentally obtained knowledge of genes and their pathways to test for significant 
regulation of sets of multiple genes (called genesets) instead of individual genes. Since the 
genes within such genesets share a common biological function, considering the correlations 
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within each set is a key aspect of a sound GSA method. However, it was shown by Tsai and 
Chen (2009) that many of the known GSA methods, e.g., Wang et al. (2011), Dinu et al. (2007), 
Goeman et al. (2004), Mansmann and Meister (2005), Kong et al. (2006), Subramanian (2005), 
Efron and Tibshirani (2007), were affected by large type II errors. Another important limitation 
of many GSA methods is that they can only accommodate binary outcomes, such as disease 
versus control. Our method, Linear Combination Test (LCT) is a GSA method that was 
designed to address these limitations by taking into account correlations across genes and 
outcomes, and dealing with binary, univariate or multivariate continuous outcomes, measured 
either at a single point in time or at multiple time points, and therefore, allow us to analyze a 
wider range of studies involving complex study designs (Wang et al. 2014). 

 
Single cell omic studies have become increasingly popular over the past decade, due to their 

powerful ability to profile from a panel of selected few dozen genes up to the entire 
transcriptome of a large number of individual cells in parallel. A typical example of a basic 
experiment on single-cell analysis (SCA) of gene expression is described in Figure 1 due to 
Kalisky et al. (2018). SCA involves experiments on individual cells that are typically isolated 
from a biological sample and then physically separated from each other and assayed upon DNA 
amplification. For each cell, the expressions of genes (or their products such as proteins) are 
measured using different well-established (or newly emerging) omic platforms such as RNA 
sequencing as reviewed by Lafzi (2018), Dal Molin (2019), Kalisky (2018). In the resulting 
data, the single cells could be considered as samples that are assumed independent and hence 
possibly affected by different sources of variation among the expression-levels of even the 
same genes.  

 
The large volume of data measured by single cell omic studies calls for sound statistical and 

computational analysis methods. Various methods at the individual gene level, have been 
reviewed by Andrews et al. (2021). While most of such methods are focused on differential 
expression of individual genes between cells representing (generally two) different states, here 
we reason that an analysis using sets of genes, i.e., GSA, has important advantages over the 
individual gene level analysis when applied to single cell omic studies. The stochasticity of 
expression levels of the same genes in individual cells could be due to different factors ranging 
from biological (e.g., the cell cycle phase of a particular cell) to technical (e.g., missing data). 
While specific genes may not show consistent expression across single cells, if we consider 
testing the differential expression of not one gene at a time but multiple genes together that are 
known to belong to a carefully selected geneset, then our LCT method is more likely than 
traditional approaches to detect the regulation of a functional process or biological pathway 
that is significantly associated with the outcomes of a given SCA experiment.  

 
Interestingly, LCT allows multivariate and continuous outcomes that could be more 

realistic representations of single cell level stochasticity of behaviors than univariate and 
discrete class labels as used in traditional studies of bulk samples. For such reasons, LCT can 
provide an overall more robust analytical approach for SCA experiments. In addition, LCT 
type I error, power and computational efficiency were compared to top GSA methods in 
simulations and real data analysis studies (Wang et al., 2014). LCT type I error and power were 
comparable to MANOVA-GSA (Tsai and Chen 2009), and superior to SAM-GS (Dinu et al., 
2007), especially at higher magnitudes of the correlations values across sets of genes, which is 
a common scenario in GSA. LCT was superior to both methods in terms of computational 
efficiency. LCT performed better than GSEA in a simulation study presented by Khodayari et 
al. (2018). However, we would like to point out that GSEA uses information from genes 
exterior to a pre-defined set or pathway. Based on methodological considerations, Goeman and 
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Buhlmann (2007) discourage comparing methods involving only genes belonging to the pre-
defined set to methods involving genes outside the pre-defined set, as these two categories are 
conceptually different, and they are testing different hypotheses. 

 
GSA focuses on analysis of biological pathways, or genesets sharing a common 

biological function.  Well-known examples of such collections of pre-defined, often expert-
curated, genesets include The Cancer Genome Atlas (TCGA), Tomczak et al. (2015); Gene 
Expression Omnibus (GEO), Edgar et al. (2002); Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Kanehisa et al. (2000); BioCarta, Nishimura et al. (2001); Molecular Signature 
Database (MSigDB), Liberzon et al. (2015). The use of a carefully selected collection of 
genesets relevant to the outcomes of interest is a key aspect in GSA. In this study, we compiled 
a new, large collection of genesets that were reported by several past embryonic stem cell gene 
expression experiments, and used them to test their association with different stages of early 
human embryonic development. The remaining of this paper consists of a presentation of the 
LCT methodology, followed by its application to single cell embryonic genome-wide 
expression (RNA-Seq) data. We will also discuss various extensions of LCT, including its 
applications beyond gene expression studies. 
 
2. Data and Methods  
 
Data: In this study, we used 2 types of data. First, for our genesets, we introduce a large 
collection of 457 curated genesets that were derived from experimentally identified signatures 
of gene expression in human embryonic stem cells. Hence, we call the collection “stem cell 
signatures”. These genesets were compiled from the Molecular Signature DataBase (MigDB), 
Liberzon et al. (2015); the Differentiation Map portal, Novershtern et al. (2011); Ingenuity 
Pathway Analysis tool (2020); and ChIP-X database, Lachmann et al. (2010). We restricted 
the size of genesets to be between 5 and 500. There are 281 genesets in this range (The full 
collection of these stem cell signatures is available from the authors upon request). Second, we 
downloaded the single cell RNA-Seq data from ArrayExpress database, Athar et al. (2019); 
access number E-MTAB-3929 ArrayExpress (2020). The dataset consists of 17855 genes 
measured in each of 1529 individual cells from 88 human preimplantation embryos. The total 
of 1529 individual cells is broken down during days 3 to 7 of the embryonic development as 
follows: 81 cells measured on day 3; 190 on day 4; 377 on day 5; 415 on day 6; and 466 on 
day 7. During the first 7 days of human development, the zygote undergoes cellular division 
and establishes the first three distinct cell types of the mature blastocyst: trophectoderm (TE), 
primitive endoderm (PE), and epiblast (EPI). Petropoulos et al. (2016) While the analysis of 
these data at individual gene level was conducted previously by Petropoulos (2016), in this 
study, we performed LCT analysis at geneset level of the same data using the above-mentioned 
stem cell signatures.  
 
Methods: LCT tests if there is a linear relationship between the geneset 𝑋 =
$𝑥!, … , 𝑥"( consisting of p genes and a set of q multivariate outcomes 𝑌 = $𝑌!, … 𝑌#(. The 
multivariate null hypothesis can be expressed linearly and univariately as 
 

H0: There is no association between any linear combination of gene expressions of the 
members of a geneset 𝑋 and any linear combination of multivariate outcomes 𝑌. 

 
If 𝑍(𝑋, 𝐴) is a linear combination of gene expression measurements within a set of 𝑥$s 

with coefficient vector 𝐴 and 𝑍(𝑌, 𝐵) is a linear combination of outcomes 𝑦$s with coefficient 
vector 𝐵, then we calculate the following statistic to test the null hypothesis 



434  I. DINU ET AL.  [Vol. 19, No. 1 

 
𝑇% = 𝑚𝑎𝑥|𝜌((𝑍(𝑋, 𝐴), 𝑍(𝑌, 𝐵))%|.	

 
                 (1) 

The coefficient vectors 𝐴	and 𝐵 are estimated in a way that maximizes the Pearson 
correlation between  𝑍(𝑋, 𝐴)	and 𝑍(𝑌, 𝐵).  𝑇% can be rewritten as 

 

𝑇! = 𝑚𝑎𝑥 "#!$%&((,*),-"

(#!$%&((,()#).(,!$%&(*,*),)
= "#!/#$,-

"

(#!/###)	.(,!/$$,)
	.	

 

                 (2) 

In the procedure for estimation of the coefficient vectors, two problems arise: singularity 
caused by the high dimensionality of data (solved by shrinkage methods) and computational 
efficiency (solved by eigenvalue decomposition). Then, the p-value is calculated using sample 
permutations. Sample permutation method preserves the correlation structure within geneset 
and the correlation structure within multivariate outcomes, see Schäfer and Strimmer (2005). 
 
Specifically, the (𝑖, 𝑗)th entry of the shrinkage covariance matrix 𝛴&&∗  is given by 

𝜎$(∗ = 𝛾$(;𝜎$$𝜎((  
	

with shrinkage coefficients 1 for the diagonal terms, and the off-diagonal terms 
 

𝛾$( = 𝜌$(𝑚𝑖𝑛( 1,𝑚𝑎𝑥( 0,1 − 𝜆∗)) 

 
where ρij is the sample correlation between xi and xj. The optimal shrinkage intensity can be 
estimated by 

𝜆∗ =
∑ &34(5%&)%'&

∑ 5%&
"

%'&
 . 

 
Based on this shrinkage strategy, we get the shrinkage version of the test statistic 
 

                                 𝑇!∗ = 𝑚𝑎𝑥
#,,

(#!/#$,)"

(#!/##∗ #) . (,!/$$∗ ,)
.	 	 	 	 	 																												(3)	

 
The computational cost of calculating (3) has to be taken into consideration, since the 

right-hand side is a nonlinear programming problem involving 𝑝 + 𝑞 parameters. The 
computational cost can be very high for maximizing directly the right-hand side of (3), 
especially when permutations are used for calculating the 𝑝-values of the test. To address the 
computational efficiency problem, we adopt a strategy of using two groups of normalized 
orthogonal bases, instead of using the original observation vectors of X and Y. We perform 
eigenvalue decompositions for the two shrinkage covariance matrices, 𝛴&&∗ = 𝑈𝐷&𝑈)  and 
𝛴**∗ = 𝑉𝐷*𝑉), and obtain two groups of orthogonal basis vectors 𝑋H = (𝑥I1… , 𝑥Ip) = (𝑥! −
�̅�1, … , 𝑥" − �̅�p)𝑈𝐷&

+!/% and vectors 𝑌H = (𝑦I1… , 𝑦Iq) = (𝑦! − 𝑦K1, … , 𝑦# − 𝑦Kq)𝑉𝐷*
+!/%. 

 
 The test statistic in (3) can further be rewritten as  

 
𝑇!∗ = 𝑚𝑎𝑥

7,8

(7!/#)$)8)
"

||7||"" . ||8||"" 
 ,	 	 	 	 (4)	
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where 𝛼 = 𝐷&
! %⁄ 𝑈)𝐴 and 𝛽 = 	𝐷*

! %⁄ 𝑉)𝐵, and 𝛴&.*.  is the covariance matrix between 𝑋H and 𝑌H , 
with its (𝑖, 𝑗)th entry being 𝑐𝑜𝑣( 𝑥I$ , 𝑦I(). 
 
The optimization problem in (4) can be solved in two steps. First, for a given β, we find the 
optimal, α which is proportional to 𝛴&.*.𝛽; second, substitute the optimal α into (4), and find the 
global optimal, which is proportional to the first eigenvector of the matrix 𝛴&.*.

) 𝛴&.*.  
corresponding to the largest eigenvalue. We note that the value of  equals to the largest 
eigenvalue of either the 𝑞 × 𝑞 matrix 𝛴&.*.

) 𝛴&.*. 	or the 𝑝 × 𝑝 matrix 𝛴*.&.
) 𝛴*.&. . The cost of 

obtaining the largest eigenvalue is low, providing min(𝑝, 𝑞) is not large.  
 

The computational advantage is obvious when sample permutations are used to calculate 𝑝-
values of the test. Since sample permutation changes neither the correlation structure within 
genesets nor that within the outcomes, we do not need to repeat the same eigenvalue 
decompositions of the two shrinkage covariance matrices in (3) for the permuted data, but only 
for the original outcome. That is, after performing the eigenvalue decompositions for the two 
shrinkage covariance matrices 𝛴&&∗  and 𝛴**∗  and creating two groups of orthogonal basis vectors 
𝑋H and 𝑌H , permutations can be done only on 𝑌	Wdirectly, instead of on the original outcome 𝑌. 

 
For multiple comparisons over large collections of genesets, False Discovery Rate (FDR) is 

a commonly used method that can provide a better alternative to the more conservative 
Bonferroni approach. In this study, we used 𝑞-value, which is the expected positive FDR, to 
identify the significantly regulated genesets at different 𝑞-value levels (Storey and Tibshirani 
2003). 
 
3.  Results and Discussion 
 

In this study, we used LCT for testing associations of a new, large collection of curated 
stem cell signatures with a single-cell RNA-Seq based genome-wide expression dataset on 
human embryo development. We conducted a quick confirmation of the relevance of these 
signatures in stem cell gene regulation during human embryo development by applying LCT 
to single cell data across each pair of consecutive days, from day 3 to day 7. Petropoulos et al. 
(2016) reported results of an analysis at the individual gene level, across the three distinct cell 
types of the mature blastocyst. We note that segregation of EPI, PE and TE cell types appears 
at day 5. The breakdown of sample sizes by day and cell type is as follows: 41 EPI, 32 PE and 
142 TE for day 5; 45 EPI, 39 PE and 331 TE for day 6; 41 EPI, 37 PE and 388 TE for day 7.  

 
Differential expression analysis between the EPI cell types and PE cell types performed 

by Petropoulos et al. (2016) identified 43, 1,412, and 542 differentially expressed genes at days 
5, 6 and 7 respectively (at FDR ≤ 0.05), with earlier days’ (5 and 6) significance being 
maintained through later days (6 and 7). Our analysis at the geneset level identified 126 
differentially regulated stem cell signatures between EPI and PE at day 5 (𝑞-value ≤ 0.001), 
and a selected subset of 105 genesets that were the most significant (𝑞-value ≤ 0.0001) on days 
6 and 7 is shown in Table 1. Regarding the other two cell type pairs, TE versus PE, and TE 
versus EPI, our analysis at the geneset level indicated more obvious differences compared to 
EPI versus PE. More importantly, all 281 genesets, which are known stem cell signatures, were 
found to be significant on each pair of consecutive days from 5 to 7, and for each pair of cell 
types of TE versus PE, and TE versus EPI, which is in agreement with the individual gene 
analysis results of Petropoulos et al. (2016).  

2*T
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Finally, we focused on the endothelial transcription factor genes GATA2 and GATA3, 

which have been previously reported as known markers of TE segregation, and thus, for 
playing an important role in embryonic development. Ortega et al. (2018) We performed LCT 
using the expressions of these two genes as a bivariate continuous outcome. One hundred and 
thirty-eight stem cell signatures were significantly associated (𝑞-value ≤ 0.001) with the 
bivariate continuous phenotype at day 3. For the subsequent days, this count increased to 234, 
278 and 281 respectively.  
 

We presented here a new application of LCT methodology to SCA experiments with an 
illustration on human embryonic development gene expression data. Our approach extends the 
individual gene analysis to identification of sets of genes that share a common biological 
function. Such collections of sets exhibit higher reproducibility across studies, and are more 
robust for addressing complex questions in systems biology. Notably, our new collection of 
stem cell signatures presented the opportunity to confirm their relevance to the dynamic gene 
regulation during human embryonic development. As stem cells are an active area of research 
in biology and medicine, multivariate dynamic outcomes and associated markers (and 
combinations thereof) can be analyzed by LCT, which can also be extended to testing of newer 
gene signatures such as those reported by novel experiments to chart a single cell level 
transcriptional roadmap of human development, e.g., Blakeley et al. (2015), Durruthy-
Durruthy et al. (2016).  

 
Unlike the traditional analysis of bulk samples composed of thousands of different cells, 

experiments that can measure the expressions of selected markers in individual cells are 
capable of revealing not only the occurrence but also the dynamic states of diverse cell 
populations, including rare ones, as shown by Pyne et al. (2009), Pyne et al. (2014), Qi et al. 
(2020), etc. In order to characterize the cellular heterogeneity of a given sample (say, a tumor) 
with precision, the experimenter will need to select the corresponding panels of marker genes. 
Different choices of markers are given by genesets which must be compiled carefully as we 
have done for characterizing embryonic stem cell signatures in this study.  

LCT is a powerful correlation-based test that can be used to explore thousands of 
genesets in an automated yet computationally efficient manner. However, we note that the 
linear combinations identified by LCT are not unique, and there is no direct interpretation of 
the linear combination coefficients that one can achieve through classical linear regression 
techniques. To address this, statistical models for high-dimensional analysis can be applied 
post hoc to the identified sets of genes, based on their LCT significance, and selected for their 
biological relevance. Such methods may provide further interpretation and insight into the 
selected sets. LCT was extended to longitudinal multivariate outcomes by Khodayari et al. 
(2019). LCT has also proven to be effective beyond gene expression data. Analogous to 
genesets, we have used LCT on collections of metabolite-sets to test for associations between 
oncogenic outcomes and high-throughput metabolomic data from prostate cancer patients in 
Khodayari et al. (2018).  
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Figure 1: A schematic diagram showing a basic SCA experiment. Single-cell gene 
expression measurement using qPCR workflow is performed with the Fluidigm Dynamic 
Array microfluidic chip. Reproduced from Kalisky et al. (2018) with permission. 
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Table 1: Stem cell gene signatures differentially regulated between 41 epiblast and 32 
primitive endoderm lineages at day 5 in human embryo development (shown in the 
increasing order of size) 

Geneset Size q-value 
StemCell_Lian07_20genes_17053208.table1a 20 <0.0001 
StemCell_Shim04_23genes_15246160.table4 22 <0.0001 
IPA_affects.epithelial.mesenchymal.transition.of.cells 22 <0.0001 
IPA_increases.epithelial.mesenchymal.transition.of.cells 24 <0.0001 
StemCell_Kocer08_44genes_18667080.TableS3 26 <0.0001 
StemCell_Matushansky08_35genes_18310505.TableS6 28 <0.0001 
StemCell_Lottaz10_30genes_20145155.Table1 29 <0.0001 
IPA_increases.differentiation.of.embryonic.stem.cells 29 <0.0001 
StemCell_Lim08_35genes_18510698.Table3 34 <0.0001 
Ben.Porath_ES_2 39 <0.0001 
StemCell_Seo07_61genes_18034892.Table1 40 <0.0001 
DMAP_TCELLA3_DN 40 <0.0001 
Marson_H3K4me3 41 <0.0001 
DMAP_PRE_BCELL2_UP 42 <0.0001 
DMAP_PRE_BCELL3_DN 42 <0.0001 
IPA_affects.differentiation.of.embryonic.stem.cells 43 <0.0001 
DMAP_EOS_DN 44 <0.0001 
DMAP_BCELLA3_DN 44 <0.0001 
DMAP_CMP_DN 44 <0.0001 
DMAP_NKA2_DN 44 <0.0001 
DMAP_TCELL_DN 45 <0.0001 
DMAP_GRAN3_UP 45 <0.0001 
DMAP_MEGA2_DN 45 <0.0001 
DMAP_NKA3_UP 45 <0.0001 
DMAP_ERY1_DN 46 <0.0001 
DMAP_ERY2_UP 46 <0.0001 
DMAP_HSC3_DN 46 <0.0001 
DMAP_BCELLA1_DN 47 <0.0001 
DMAP_TCELLA2_UP 47 <0.0001 
DMAP_TCELLA6_DN 47 <0.0001 
StemCell_Lim08_50genes_18510698.Table1 48 <0.0001 
DMAP_MYP_UP 48 <0.0001 
DMAP_BCELLA2_UP 49 <0.0001 
StemCell_Duhagon10_60genes_20500816.Table1 56 <0.0001 
IPA_affects.differentiation.of.hematopoietic.progenitor.cells 56 <0.0001 
IPA_affects.differentiation.of.hematopoietic.cells 62 <0.0001 
IPA_increases.differentiation.of.stem.cells 68 <0.0001 
StemCell_Kocer08_87genes_18667080.TableS6 71 <0.0001 
IPA_affects.differentiation.of.stem.cells 73 <0.0001 
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StemCell_Hao09_97genes_20077526.TableS7 74 <0.0001 
Kim_CORE 74 <0.0001 
StemCell_Almstrup04_138genes_15256440.tableS1 80 <0.0001 
DB_KLF2.18264089 83 <0.0001 
DB_KLF4.18264089 83 <0.0001 
DB_KLF5.18264089 83 <0.0001 
Taube.et.al._EMT_upregulated_genes 86 <0.0001 
StemCell_Colombo09_111genes_19123479.TableS1 90 <0.0001 
IPA_affects.differentiation.of.bone.marrow.cells 90 <0.0001 
DB_TRP63.18441228 94 <0.0001 
Ben.Porath_ES_CORE_NINE_CORRELATED 99 <0.0001 
StemCell_Korkola05_146genes_15870693.SuppTable1 100 <0.0001 
StemCell_Bohgaki05_118genes_16014681.table2 113 <0.0001 
DB_NOTCH1.17114293 121 <0.0001 
StemCell_Hao09_173genes_20077526.TableS5 126 <0.0001 
DB_HOXD13.18407260 130 <0.0001 
StemCell_Kocer08_185genes_18667080.TableS4 154 <0.0001 
Ben.Porath_NOS_TARGETS 168 <0.0001 
DB_IRF1.19129219 173 <0.0001 
DB_TP63.19390658 176 <0.0001 
DB_ESR1.20079471 187 <0.0001 
DB_PPARG.19300518 187 <0.0001 
StemCell_Kocer08_236genes_18667080.TableS8 194 <0.0001 
DB_VDR.20736230 196 <0.0001 
DB_WT1.19549856 197 <0.0001 
DB_SCL.19346495 206 <0.0001 
Kim_GCN5L2 211 <0.0001 
Ben.Porath_MYC_TARGETS_WITH_EBOX 222 <0.0001 
StemCell_Hao09_359genes_20077526.TableS4 239 <0.0001 
DB_EGR1.19032775 242 <0.0001 
DB_CDX2.19796622 253 <0.0001 
Kim_CTR9 258 <0.0001 
StemCell_Matushansky08_297genes_18310505.TableS8 261 <0.0001 
DB_ZIC3.20872845 266 <0.0001 
Ben.Porath_OCT4_TARGETS 272 <0.0001 
StemCell_Hao09_612genes_20077526.TableS3 302 <0.0001 
StemCell_Matushansky08_886genes_18310505.TableS1 306 <0.0001 
StemCell_Bhattacharya05_2471genes_16207381.Table1Sb 308 <0.0001 
StemCell_Kocer08_575genes_18667080.TableS9 309 <0.0001 
StemCell_Kocer08_864genes_18667080.TableS2 310 <0.0001 
StemCell_Bhattacharya05_2843genes_16207381.Table1Sa 310 <0.0001 
StemCell_Majeti09_3024genes_19218430.TableS3 313 <0.0001 
StemCell_Matushansky08_1453genes_18310505.TableS7 315 <0.0001 
DB_POU5F1.18700969 322 <0.0001 
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DB_RARG.19884340 326 <0.0001 
Zola07_426genes_CellDifferentiationMarkers_17174972.TableS1 332 <0.0001 
StemCell_Qi03_534genes_12631704.table1 334 <0.0001 
StemCell_Hassan09_1544genes_19808871.TableS3 340 <0.0001 
DB_ESR1.17901129 347 <0.0001 
DB_TP53.16413492 349 <0.0001 
DB_HTT.18923047 355 <0.0001 
Ben.Porath_ES_1 358 <0.0001 
DB_SMAD4.19686287 367 <0.0001 
DB_STAT6.20620947 369 <0.0001 
DB_SOX2.18555785 388 <0.0001 
DB_CLOCK.20551151 399 <0.0001 
DB_NANOG.18555785 412 <0.0001 
DB_CTNNB1.20615089 416 <0.0001 
DB_TCF4.18268006 420 <0.0001 
DB_POU5F1.18555785 438 <0.0001 
DB_ZFP281.18358816 441 <0.0001 
Kim_PRC 444 <0.0001 
DB_CDX2.20551321 446 <0.0001 
Kim_ZFP281 461 <0.0001 
DB_SMAD1.18555785 465 <0.0001 
DB_PDX1.19855005 493 <0.0001 
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Abstract
In recent years there has been a vast amount of work to model the spread of rumour.

Here we review some of these mathematical models and present some of the main results.
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1. Introduction

The Oxford Dictionary defines rumour as ‘a statement or report circulating in a com-
munity, of the truth of which there is no evidence’. Mathematically, Gilbert (1961) used
the Poisson Boolean model and Maki and Thompson (1973) used a slight variant of this
model to study the transmission of information/rumour. This model consisted of a signal
being transmitted through a relay of transmitters to its recipient. Two such versions are the
Poisson Boolean model and the rumour processes. We present a brief description of these
processes here.

Poisson Boolean model: Let Ξ := (ξ1, ξ2, . . .) on Rd be a homogeneous Poisson point
process of intensity λ and {ρ1, ρ2, . . .} an independent collection of i.i.d. positive real valued
random variables. This is the Poisson Boolean model and its covered region is defined to be
the random set C := ∪∞i=1B(ξi, ρi), where B(ξ, ρ) is the closed ball centred at ξ and of radius
ρ in the Euclidean norm. Geometric properties of this Boolean model has been studied by
Matheron (1968), Hall (1988) and Chiu, et al. (2013). Kertesz and Vicsek (1982) used
this model to study a continuum version of percolation whose parameter is the intensity λ
with the radius random variables ρ1, ρ2, . . . being either constants or of a fixed distribution
(see Meester and Roy (1996) and Penrose (2003) for a review of the percolation properties
of this model). Gupta and Kumar (1998) used this model to study questions of signal-to-
interference-ratio (SINR) and other such problems in wireless transmission, see Franciscceti
and Meester (2007) for a review.

Rumour process: Sudbury (1985) studied the variant of the information-transmission
model introduced in Maki and Thompson (1973). Subsequently, Junior, et al.(2011) renamed
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the rumour process as the ‘firework process’ and introduced a different variant the ‘reverse
firework process’.

Firework process: Let {Ri : i ≥ 0} be a sequence of non-negative integer valued i.i.d.
random variables . At time 0 the origin starts a rumour and passes it onto all individuals in
the interval [0, R0]. At time t, all individuals who heard the rumour for the first time at time
t− 1 spread the rumour, with the individual at site j spreading it among all individuals in
the region [j, j + Rj]. Note that allowing P{Rj = 0} > 0 ensures that there are individuals
who are inactive.

Reverse firework process: The reverse firework process consists of the origin who knows
the rumour at time 0, and at time t an individual located at site j listens to individuals
in the interval [j − Rj, j]. If there is an individual at a site in this interval who has heard
the rumour by time t − 1, then the individual at site j gets to know the rumour. Here the
random variables {Ri : i ≥ 0} are as in the firework process.

1.1. Definitions

For each individual at site i ∈ N associate the pair (Xi, ρi) where (Xi)i≥1, is a sequence
of Bernoulli (p) random variables, i.e.,

Xi =
{

1 with probability p
0 with probability 1− p.

(1)

and (ρi)i≥1 a sequence of i.i.d. copies of some N-valued random, independent of the random
variables (Xi)i≥1. Let ρ denote a generic random variable with the same distribution as ρi.
In addition, let ρ0 an independent N valued random variables, independent of the collections
(Xi)i≥1 and (ρi)i≥1, with ρ0 having the same distribution as ρ. Whenever Xi = 1, the
individual at site i starts to spread rumour within a random distance to its right (an interval
of length ρi). Coverage occurs if every site of N is covered by some interval. Set X0 ≡ 1 and
let

C :=
⋃

{i≥0:Xi=1}
[i, i+ ρi],

and

D := {x ∈ R : there exist j, k ≥ −1 with j 6= k, Xj = Xk = 1
and x ∈ ([j, j + ρj] ∩ [k, k + ρk])}.

We say that N is eventually covered by C if there exists a t ≥ 1 such that [t,∞) ⊆ C.
We say that N is eventually doubly covered by D if it contains a region [t,∞), for some t ≥ 1.

Let {Xi : i ∈ Nd} be a collection of Bernoulli (p) random variables and {ρi : i ∈ Nd} a
collection of i.i.d. N valued random variables, independent of the collection {Xi : i ∈ Nd}.
Let ρ denote a generic random variable with the same distribution as ρi and

C := ∪{i:Xi=1}(i + [0, ρi]d)
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denote the covered region of Nd; here and subsequently i+[0, ρi]d = [i1, i1+ρi]×· · ·×[id, id+ρi],
where i = (i1, . . . , id). We say that Nd is eventually covered if there exists t ∈ Nd such that
t + Nd ⊆ C. Note that this definition may be seen to be equivalent to percolation of
the homogenous firework process for d = 1, and in that sense, it extends the definition of
percolation for a homogenous firework process in Nd. We say that Nd is eventually doubly
covered if there exists t ∈ Nd such that t + Nd ⊆ D, where

D := {x ∈ Rd : there exist i, j ∈ Nd with i 6= j and Xi = Xj = 1
such that x ∈ (i + [0, ρi]d) ∩ (j + [0, ρj]d)}.

The probability of coverage in terms of stochastic geometry or probability of survival
for the original rumour process depends on both, the marginal distribution of the radius of
influence ρ, and the joint distribution of the Xi’s. There are three types of scenarios for
random variables Xi’s for which we have a necessary and sufficient condition to guarantee a
positive probability of survival of the rumour:

(1): Xi’s are i.i.d. random variables.

(2): Xi’s are a {0, 1}-valued Markov chain.

(3): Xi’s are a one-dimensional undelayed discrete renewal point process.

2. The i.i.d Case

Suppose {Xi : i ∈ Nd} is a collection of {0, 1}-valued i.i.d. random variable with
p = P(Xi = 1). We assume that this collection is independent of the the collection of i.i.d.
positive integer-valued random variables {ρi : i ∈ Nd}. Let Pp denote the product probability
law of X and ρ. When the individuals are not sceptical we have:

Proposition 1: (Athreya, et al. (2004))

(i): For d = 1

Pp(C eventually coversN) =
{

1 if p > 1/l
0 if p < 1/L.

where
l := lim inf

j→∞
jP(ρ > j) > 1 and L := lim sup

j→∞
jP(ρ > j) <∞.

(ii): For d > 1 and 0 < p < 1, we have

Pp(C eventually coversNd) =
{

1 if lim infj→∞ jP(ρ > j) > 0
0 if limj→∞ jP(ρ > j) = 0.

A priori it may be the case that ‘single coverage’ occurs, i.e. C ⊇ t + Nd, but double
coverage does not occur. Equivalently, in terms of the rumour process, a rumour may
have a positive probability of spreading in a population consisting of only disbelievers or
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gullible persons. While if among the gullible persons there is also a further group who are
sceptics, then the rumour may not spread with positive probability. However, the following
proposition shows that this is not the case:

Proposition 2: (Sajadi and Roy (2019))

(i): For d = 1,

Pp(D eventually coversN) =
{

1 if p > 1/l
0 if p < 1/L.

where
l := lim inf

j→∞
jP(ρ ≥ j) > 1 and L := lim sup

j→∞
jP(ρ ≥ j) <∞.

(ii): For d > 1 and p > 0, we have

Pp(D eventually coversNd) =
{

1 if lim infj→∞ jP(ρ ≥ j) > 0
0 if limj→∞ jP(ρ ≥ j) = 0.

The key to the proof of Proposition 1 (i) is to note that, for d = 1, the coverage process
forms a renewal process, with renewal happening at every site i ∈ N such that i 6∈ C. Part
(ii) of the above two propositions exhibits a dichotomy in the behaviour of the process in
dimension 1 and in dimensions 2 or more. If P(ρ ≥ j) = O(j) as j →∞, then in dimension 1,
depending on the value of p, there may not be coverage or double coverage, with probability
1. However, for dimensions 2 or more, the only case when there is no coverage (and hence
no double coverage) with probability 1 when p = 0, i.e. there are no gullible people in the
population.

In particular, for p > 0 and i ≥ 1, let

Ai := {i 6∈ C} and Bi := {i 6∈ D}.

Taking G(i) = P(ρ ≥ i) and gp(i) = 1− pG(i), we observe that

Pp(Bi)
=P (Ai ∪ {(there exists exactly one j with Xj = 1 such that i ∈ [j, j + ρj]})

=Pp(Ai) +
i−1∑
l=0

Pp(Xi−l = 1, i ≤ i− l + ρi−l, i 6∈ ∪{j 6=i−l,Xj=1}[j, j + ρj])

=Pp(Ai) + p
i−1∏
l=1

gp(l) + p(1− p)
i−1∑
k=1

G(k)
i−1∏

l 6=k,l=1
gp(l). (2)

We next show that for p > 1/l, where l is as in Proposition 1∑
i

Pp(Bi) <∞, (3)

which, by Borel-Cantelli lemma yields Pp(Bi occurs finitely often) = 1, i.e. there is a random
variable T , with T <∞ almost surely, such that Pp{D ⊇ [T,∞)} = 1.
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Also, for p < 1/L, where L is as in Proposition 1 we have∑
i

Pp(Ai) =∞. (4)

However, since Ai’s are not independent events so we cannot apply the converse of the
Borel–Cantelli lemma. Our observation Ai’s are renewal events (in the sense that, for k > i,
Pp(Ak ∩ Ai) = Pp(Ak−i)Pp(Ai)) allows us to use Theorem 3, on page 312 of Feller (1971) to
conclude that (4) implies that Ai occurs for infinitely many i’s. Thus single coverage (and
hence double coverage) does not occur almost surely

3. The Markovian Case

Suppose (Xi)i≥1 is a {0, 1}-valued time-homogeneous Markov chain with pij = P(Xn+1 =
j|Xn = i), for i, j ∈ {0, 1} and n ≥ 0. Also suppose (ρi)i≥1 is an independent and identically
distributed sequence of random variables assuming values on N, independent of the Markov
chain. Let l := lim infj→∞ jP(ρ > j) > 1 and L := lim supj→∞ jP(ρ > j) <∞. We have

Theorem 1: (Athreya, et al. (2004)) For 0 < p00, p10 < 1, we have

P(C eventually coversN)

> 0 if p01
p10+p01

> 1/l
= 0 if p01

p10+p01
< 1/L.

Theorem 2: (Esmaeeli and Sajadi (2020)) For 0 < p00, p10 < 1, we have

P(D eventually coversN)

> 0 if p01
p10+p01

> 1/l
= 0 if p01

p10+p01
< 1/L.

The proofs of the above two theorems require intricate analysis using probability gener-
ating functions. In particular, for k ≥ 1 and the event Ai as before, let P0(Ak) = P(Ak|X1 =
0) and P1(Ak) = P(Ak|X1 = 1). We observe that

P0(Ak+1) = p00P0(Ak) + p01P1(Ak), P1(Ak+1) = P(ρ0 ≤ k − 1)[p10P0(Ak) + p11P1(Ak)]. (5)

Taking k0 such that k0 + (1−L) > 0, and considering the functions A(s) := ∑
k≥k0 P0(Ak)sk

and B(s) := ∑
k≥k0 P1(Ak)sk we show that

A(1) =
∑
k≥k0

P0(Ak) = B(1) =
∑
k≥k0

P1(Ak) =∞.

This along with the observation that Ak’s are delayed renewal events allow us to use the
theorem in Feller (1971). The proof of the double coverage case involves the same ideas,
except that the relation (5) is more complicated and as such the calculations are more
intricate.

4. The Renewal Case

Let (Ti)i≥1 be a sequence of independent copies of some N-valued random variable T .
Taking X0 = 1, define the {0, 1}-valued random variables X = (Xi)i≥1 as follows:
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Xi =
{

1 if and only if there existsn ≥ 1 such that ∑n
k=1 Tk = i

0 otherwise.
(6)

Observe that X is a binary undelayed renewal sequence with inter-arrival times T . Let (ρi)i∈N
be a sequence of independent copies of some N-valued random variable ρ, independent of the
sequence X and satisfying P(ρ = 0) > 0. We say that there is coverage if the event

A :=
( ⋃
{i≥0:Xi=1&ρi≥1}

[i+ 1, i+ ρi] = N
)
,

occurs. The main objective is to study P(A). We start with conditions under which this
probability is null.

Proposition 3: (Gallo and Garcia (2018)) If E[T ] =∞, then P(A) = 0.

Also

Proposition 4: (Gallo and Garcia (2018)) If lim sup
n→∞

nP(ρ > n)
E[T ] < 1, then P(A) = 0.

But the case where E[T ] =∞, is not interesting and usually it assumes that the process
(Xi)i≥1) is positive recurrent. If we further assume that X is aperiodic, we have the following
formula from Gallo and Garcia (2018), for the probability of coverage:

Theorem 3: (Gallo and Garcia (2018))

P(A) =
1 +

∑
n≥1

E
n−1∏
i=0

[P(ρ ≤ i)]Xi+1

−1

.

This above quantity is difficult to handle in general and Gallo and Garcia (2018)
presented explicit bounds for the probability of coverage.

To guarantee positive probability of coverage, Gallo and Garcia (2018) needed an extra
assumption.

Proposition 5: (Gallo and Garcia (2018)) Let qi := max
n≤i

P(T ≥ n+ 2|T ≥ n+ 1), i ≥ 0. If

k∑
j=1

k+j−2∏
i=k

qi = o(k) (7)

and lim sup
n→∞

nP(ρ > n)
E[T ] > 1 then P(A) > 0.

If the rumour process satisfies condition (7), then by Propositions 3 and 4, we have a
sharp phase transition between null and positive probability of coverage.

Gallo and Garcia (2018) conjectured that if the renewal process is positive recurrent,

then lim inf
n→∞

nP(ρ > n)
E[T ] > 1 should guarantee that P(A) > 0.
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5. Fireworks Version of Rumour Processes

To study rumour propagation in terms of the fireworks process, the main goal is to find
out the probability of having an infinite set of individuals knowing the rumour is positive.
Junior, et al. (2011) presented the survival event as a limit of an increasing sequence of
events whose probability can be bounded by a use of the FKG inequality. To find conditions
under which the process dies out, they used a non-standard version of the Borel-Cantelli
lemma. Gallo, et al. (2014) used a technique based on the relationship between the rumour
process and a certain discrete time renewal process to obtain more precise results for the
homogeneous versions of the fireworks process.

Suppose at time 0, the origin spreads a rumour to all individuals in the interval [0, ρ0].
At time t all individuals, who received the rumour at time t − 1, spread the rumour, with
an individual j spreading the rumour to all individuals in the interval [j, j + ρj] who have
not been activated before. Define the following monotone decreasing event and its limit:

Vn := {the vertex n is hit by an explosion} and V = lim
n→∞

Vn.

Theorem 4: (Junior, et al. (2011)) For the homogeneous firework process we have

∞∑
n=1

n∏
i=0

P(ρ ≤ i) =∞ if and only if P(V ) = 0 .

Let µ := 1 +
∑
n≥1

n−1∏
i=0

P(ρ ≤ i).

Theorem 5: (Gallo, et al. (2014)) For the homogeneous fireworks process

P(V ) = 1
µ
.

Esmaeeli and Sajadi (2021) extended this result for the propogation of rumour among
sceptics. Suppose that at the beginning, only two individuals {0, 1} are active and set
B0 := {0, 1}. Define the sequence of events (Bn)n≥1 as

Bn := {i ≥ 2 : ∃j1 6= j2 ∈ ∪n−1
i=0 Bi such that i ∈ [j1, j1 + ρj1 ] ∩ [j2, j2 + ρj2 ] ∩ N}.

Let B := ⋃
n≥1 Bn. B is the set of all sceptic individuals who have heard the rumour.Let

Ā be the event that the rumour survives among sceptic individuals. We have the following
result.

Theorem 6: (Esmaeeli and Sajadi (2021)) P(Ā) = 1
µ̄

, where

µ̄ = 2 +
∞∑
k=2

k∏
i=2

ᾱi and ᾱi =
i∑
l=1

(−1)l−1 ∑
I⊂{1,...,i},|I|=l

∏
r∈I

i∏
k=1,k 6=r

P(ρ ≤ k − 1), i ≥ 2. (8)
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They also showed that µ̄ <∞ if and only if µ <∞ and from that they concluded the
rumour dies out among sceptics under the same conditions presented in Gallo, et al. (2014)
for non-sceptics.

Theorem 7: (Esmaeeli and Sajad (2021))

P(Ā) = 0⇐⇒ P(A) = 0.

6. Further Questions

Bertacchi and Zucca (2013) studied the spread of rumour in a random environment on
N and on Galton-Watson trees. Also, as in Mukhopadhyay, et al. (2020), a natural question
is to ask for the rate of the spread of a rumour in a complete graph of N individuals,
when every individual samples a fixed k number of individuals. The mean field limit of
this model may suggest the rate of spread. Also if there are competing rumours, then a
majority rule mechanism may also be used to find which rumour survives and which does
not. This approach may provide rigorous answers to the simulation based observations of
Zanette (2001, 2002).
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Abstract
The objective of the order-of-addition (OofA) problem is to find the optimal (addition)

order. Existing literature concentrated on the responses of different orders with homoscedas-
ticity. Study was made here for the cases of heteroscedasticity, where the dispersion effects
for replicated OofA experiments should be considered. This paper proposes some approaches
to speculate optimal orders for the replicated OofA experiment. Based on the pair-wise-order
(PWO) model, the obtained orders from the proposed methodologies not only achieve the
goal of OofA experiment, but also minimize the standard deviation within the OofA frame-
work. Theoretical support is given under the specific setups. Simulation studies are used
to illustrate these methodologies. It is shown that the proposed methods perform well for
replicated OofA experiments.

Key words: Constrained optimization; Dual response; Mean square error; Pair-wise-order
model.
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1. Introduction

The order-of-addition (OofA) experiment has been found to have wide applications in
many areas, such as, bio-chemistry, nutritional science and scheduling problems. The goal
of the OofA experiment is to find the optimal order. Suppose the OofA experiment involves
m (≥ 2) components. There will be m! intrinsic different orders of adding sequences in the
system. Each order π is a permutation of {1, . . . ,m}. It is not affordable to test all the
m! orders, especially when m is large (e.g., when m = 10,m! = 10! ≈ 3.6 millions). A
(relatively small) subset is desirable to explore the optimal order. Empirical studies show
that a random selection is rather inefficient (Zhao, et al., 2020). Thus the design problem
arises to choose a subset of all possible orders for searching the optimal order.

For any pair of components i and j, Van Nostrand (1995) proposed the pair-wise-order
(PWO) factor. Define

Iij =
{

1, if i precedes j;
−1, if j precedes i,

(1)

Corresponding Author: Xue-Ru Zhang
Email: zhangxueru2019@gmail.com



454 JIANBIN CHEN, XUE-RU ZHANG AND DENNIS K.J. LIN [Vol. 19, No. 1

as the PWO factor, where i and j are different components. Clearly, there are q =
(
m
2

)
PWO factors, corresponding to all pairs of component orders, and such factors are arranged
according to the lexicographic ordering of the components’ indices. Denote βij as the effect
to response caused by Iij, then the PWO model is a linear model of

y(π) = β0 +
∑
i<j

βijIij(π) + ε, π ∈ Π, (2)

where y is the response of interest, ε is a random error from independent normal distribution
N(0, σ2), and Π is the set of all of m! possible orders. There are p = q + 1 parameters
to be estimated. The PWO model is used in most recent literature. For a comprehensive
discussion on OofA experiments, one may refer to Lin and Peng (2019), Peng, et al. (2019b),
Voelkel (2019), Chen, et al. (2020a, 2020b, 2020c), Mee (2020), Winker, et al. (2020), Yang,
et al. (2020), Zhao, et al. (2020) and the references therein.

In general, a good solution (optimal order) should be reproducible under various
(mostly uncontrollable) environments. It is thus critical to study the stability of the op-
timal order. Ding, et al. (2015) investigated the sequence of drug administration that can
impact clinical outcomes. They also showed that the setting of the time interval influences
the final cell livability. Hence, the sequence of drug and time interval should be considered
simultaneously in the experiment. However, time intervals are not easy to be controlled in
practice. An alternative way is treating such factors as noise factors. Assume the relation-
ship between factors (variables) and response y is formulated by y = f(π,z), where π is the
ordering factor and z is the vector of noise factors. Specifically, the variation of y stems from
both the random error ε and the variation of z. The purpose of this problem is then to find
the optimal addition order for achieving the accepted targets, while simultaneously minimiz-
ing its standard deviation. The existing analytical OofA methods are not appropriate for
this case. The dispersion effect for each OofA experiment should be considered.

For a replicated OofA experiment, the location and the dispersion effects of the OofA
experiment are the two interested responses. Solving the replicated OofA experiment can
then be considered as solving a dual response surface problem. For such a dual response
problem, a good solution is to achieve at some compromise involving these two responses.
The dual response surface approach employs two separate models to the mean and standard
deviation of response. Vining and Myers (1990) utilized the dual response approach by
Myers and Carter (1973), and demonstrated to optimize one response with an acceptable
constraint on the value of another response. For more details please refer to Lin and Tu
(1995), Copeland and Nelson (1996) and Kim and Lin (1998).

This paper proposes two modified dual response approaches to speculate optimal orders
of OofA experiment for balancing two objective functions: (a) achieve the goal of location
effect and (b) minimize the dispersion effect. The rest of the paper is organized as follows.
Section 2 discusses the dual response surface approach for OofA experiments. A case study
for job scheduling problems is discussed in Section 3. The corresponding theoretical support
is given in Section 4. Section 5 introduces a simulation study with m = 10. The conclusion
and discussion are given in Section 6.
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2. Proposed Methods

2.1. Review of the analyzing approach for OofA experiment

The PWO model (2) is used as the assumed model. The sign of the true parameter
βij shows the order of components i and j, i.e., the positive sign of βij represents i −→ j
(component i shall proceed component j), when the goal of the objective is “the larger the
better”, while the negative sign of βij represents j −→ i. The hypothesis H0 : βij = 0
is used to identify the significant parameters. Each component is regarded as a node in
the directed graph. The arranged order “i −→ j” indicates an edge from i to j, and an
insignificant β̂ij (namely, βij = 0) implies no edge between i and j. One can generate
the corresponding directed graph by sequentially connecting the nodes according to the all
significant parameters. Finally, all feasible paths (a small candidate pool of optimal orders)
can be obtained from the specifically directed graph. The details of finding optimal order(s)
can be found in Chen, et al. (2020c).

2.2. Dispersion effects for OofA experiments

We next consider the OofA experiments involves heterogeneous standard deviations.
Suppose each OofA experiment with t ≥ 2 replicates. Let ykl denote the lth replicated
experiment (or response) at the kth treatment (or design point), where l = 1, . . . , t and
k = 1, . . . , n. Define

mk = 1
t

t∑
l=1

ykl, k = 1, . . . , n,

and

sk =

√√√√ 1
t− 1

t∑
l=1

(ykl −mk)2, k = 1, . . . , n.

Let ŷµ = (m1, . . . ,mn) and ŷσ = (s1, . . . , sn) be the estimator of the local effect (yµ) and
the dispersion effect (yσ). Here, we apply a dual response surface approach to solve the
replicated OofA problem under the PWO model (2). Suppose the fitted location response
function is

yµ = α̂0 +
∑
i<j

(α̂cijIcij + α̂µijI
µ
ij) + εµ, (3)

and the fitted dispersion response is

yσ = β̂0 +
∑
i<j

(β̂cijIcij + β̂σijI
σ
ij) + εσ, (4)

where Icij denote the variables in both yµ and yσ; Iµij and Iσij denote the variables only in yµ
and yσ, respectively. Therefore Iij = (Icij, I

µ
ij, I

σ
ij)T . For the location function, there are three

basic situations to be considered: (a) “the target is the best”; (b) “the larger the better”;
and (c) “the smaller the better”. For simplicity, we only focus on the case (a), the other two
cases can be conducted in a similar manner. For the dispersion function, only the situation
for the smaller the better needs to be considered.
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2.3. Proposed methods

Here, we propose two methods to tackle the replicated OofA problem: (a) the two-step
approach: first minimize the dispersion model, and next achieve the location model closer
to the target T ; and (b) the mean square error (MSE) approach.

The PWO model (2) is commonly used as the assumed model. The location model yµ
and dispersion model yσ are fitted based on the obtained data from the OofA design. For
the two-step approach, we choose the appropriate levels for some factors (Iµij, not in yσ) to
make yµ closer to the target value T , and select the level of factor (Icij, Iσij) to minimize yσ.
Combining these factors setting together, the optimal order(s) is finally obtained. (One could
also first select the level of factor (Icij, Iσij) to minimize yσ), and then choose the appropriate
levels for factor (Iµij, not in yσ) to make yµ closer to the target value T ).

The two-step approach is powerful when the location model yµ does not have any
common factors in the dispersion model yσ. Otherwise, adjusting the factor level in yµ may
make yσ undesirable, i.e., the two-step approach may obtain undesirable results when two
interesting responses have common factors (see Section 5). In this case, the MSE approach
(see below) should be considered.

The MSE criterion allows the location effect closer to the target T , while keeps the
minimum standard deviation. The MSE criterion is defined as

MSE = ŷ2
σ + (ŷµ − T )2, (5)

where T is the target value, ŷµ and ŷσ are the estimates of yµ and yσ, respectively. The MSE
approach are formally presented in Algorithm 1.

Algorithm 1 The MSE approach

Step 1 Based on the PWO model, select the best OofA design and conduct OofA experiment
with t ≥ 2 replicates;

Step 2 Based upon the obtained data, the location model yµ and dispersion model yσ are
fitted;

Step 3 Evaluate the MSE value (5) and regard it as the response to be optimized;

Step 4 Construct the corresponding directed graph according to the active factors in the
MSE (5).

Step 5 Obtain the optimal orders as the output.

In Step 3 of Algorithm 1, the MSE value for OofA experiment is considered as the re-
sponse. In Step 4, we construct the corresponding directed graph according to the significant
parameters in MSE (5). Based on the constructed directed graph, the optimal sequences are
thus obtained.
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3. An Illustrative Example

3.1. Problem formulation

Inspired by the drug experiment of Ding, et al. (2015), an illustrative example of OofA
problems with heteroscedasticity is considered in this section. The noise factor z is subject
to a uniform distribution over [−1, 1]. Let m = 3, the true relationship between the two
kind variables and response y ∈ [0, 1] be

y = 0.5− 0.1(4I12(π) + I13(π))z + 0.1I23(π) + ε,

where ε ∼ N(0, 0.092). The optimal order (unknown to us) is 2 −→ 1 −→ 3.

The main purpose of this problem is finding the optimal (stable) order to make yµ as
close to T = 1 as possible. For each order, we conduct three replicated experiments and
denote the obtained response values by Y1, Y2, Y3. The order can be converted into PWO
factor Iij. Take the first run (row) of Table 1 as an example, 3 −→ 2 −→ 1, the component
2 precedes component 1, then I12 = −1. Similarly, we have I13 = −1, I23 = −1. All possible
(3! = 6) experiments, their resulting replications Y1, Y2, Y3, the corresponding values of I12,
I13 and I23 for each order, as well as the estimated ŷµ and ŷσ are displayed in Table 1.

Table 1: The design and responses of the drug problem

Run Order I12 I13 I23 Y1 Y2 Y3 ŷµ ŷσ
1 3 −→ 2 −→ 1 −1 −1 −1 0.199 0.010 0.508 0.239 0.251
2 3 −→ 1 −→ 2 1 −1 −1 0.731 0.137 0.307 0.392 0.306
3 2 −→ 3 −→ 1 −1 −1 1 0.223 0.605 0.385 0.404 0.192
4 2 −→ 1 −→ 3 −1 1 1 0.363 0.391 0.423 0.392 0.030
5 1 −→ 2 −→ 3 1 1 1 0.573 0.350 0.709 0.544 0.181
6 1 −→ 3 −→ 2 1 1 −1 0.332 0.085 0.053 0.157 0.153

3.2. Conventional approach

In the conventional method, the dispersion response yσ is considered to be a constant;
and the local response yµ is considered as the only response. Without consideration of yσ,
the existing conventional OofA methods aim to find the optimal order based on yµ. The
fitting model for the location effect (yµ) is,

yµ = 0.355 + 0.092I23(π) + εµ. (6)

This problem is essentially an unconstrained optimization problem that aims to make yµ
in (6) as close to T = 1 as possible. For the fitting model (6), the sign of the significant
parameter β23 is positive (“+”), hence, the possible optimal orders are subject to 2 −→ 3.
Model (6) provides no information on the order relative to the component 1. Consequently,
three possible orders are: (1) 1 −→ 2 −→ 3; (2) 2 −→ 1 −→ 3; and (3) 2 −→ 3 −→ 1. All
orders have the prediction ŷµ = 0.447 via (6). With the conventional approach, any of these
three orders can be considered as the optimal order. Note that these three orders have the
same ŷµ, but different standard deviations ŷσ (as will be shown next). To obtain the stable
order(s), new approach should be employed.
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3.3. Proposed approaches

According the data in Table 1, the fitting models for yµ and yσ of the replicated response
are

yµ = 0.355 + 0.092I23(π) + εµ, and
yσ = 0.185 + 0.055I12(π)− 0.082I13(π) + εσ. (7)

For the two-step approach, the first step sets the level of the adjusting variables I2,3(π)
as “+1” for closing ŷµ to T = 1. Thus, the possible orders should satisfy the arranged order
“2 −→ 3”. The second step is to determine the arranged orders of significant parameters
to minimize ŷσ in (7). Given the constraint ŷσ ≥ 0, the recommend levels of PWO factors
are set as I1,2(π) = −1 and I1,3(π) = 1 for minimizing ŷσ. Hence, the arranged orders are
“2 −→ 1” and “1 −→ 3”. Combining those arranged orders together, the optimal order
2 −→ 1 −→ 3 is resulted. This is indeed the true optimal order.

Next, the MSE approach in Algorithm 1 is used to solve the problem. The MSE
criterion (ŷµ − T )2 + ŷ2

σ is used to find the optimal order. In Step 3, the objective function
of this example becomes

min (0.092I23(π)− 0.645)2 + (0.185 + 0.055I12(π)− 0.082I13(π))2

For Step 4 of Algorithm 1, the level of PWO factors are found to be I1,2(π) = −1, I1,3(π) = 1
and I2,3(π) = 1 for minimizing MSE. Thus, the possible orders should achieve “2 −→ 1”,
“1 −→ 3” and “2 −→ 3”. Based on the generated directed graph, the optimal order 2 −→
1 −→ 3 is obtained. That is identical to the true optimal order.

3.4. Discussion

Using the conventional approach, three orders are resulted. For any OofA problem, yσ
should be taken into account to explore an optimal order. The dispersion effect yσ mainly
stems from the noise factor z (hard to be controlled accurately in practice). Therefore, the
location model and dispersion model are respectively built based on both the control factors
and ordering factors (such as PWO factors). The experimental goal is to find an optimal
order such that (a) location effect yµ is closer to the target T ; and (b) dispersion effect yσ
is minimized. The proposed methods (both the two-step method and the MSE approach)
yield the same optimal order 2 −→ 1 −→ 3. This may not be the case in general.

Compared with the conventional approach which only considers yµ (assuming yσ is a
constant), the proposed methods not only focus on the location model yµ, but also consider
the dispersion model yσ. The dispersion model yσ adds more restrictions on the possible
orders decided by the location model yµ. For this case, the resulting orders of the MSE
approach achieve the target of location model(yµ), while perform well on dispersion model
(yσ).

4. Theoretical Supports

Denote S1 and S2 are the candidate pool of optimal orders for ŷµ (3) and ŷσ (4),
respectively. Let S be the candidate pool of optimal orders for ŷµ (3) and ŷσ (4). Suppose
there exist orders π1 ∈ S1, π2 ∈ S2 and π ∈ S, we have the following theorem.
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Theorem 1: For replicated OofA experiments, if we have orders π1 ∈ S1, π2 ∈ S2 and
π ∈ S, then MSE(π) ≤MSE(π1) and MSE(π) ≤MSE(π2).

Proof: For simplicity, we only discuss the case of “the smaller, the better”. The proofs
of the remaining two cases (“the larger, the better” and “the target, the better”) are similar
and thus omitted. Recall that the fitted location model is

yµ = α̂0 +
∑
i<j

(α̂cijIcij + α̂µijI
µ
ij) + εµ,

and the fitted dispersion model is
yσ = β̂0 +

∑
i<j

(β̂cijIcij + β̂σijI
σ
ij) + εσ,

where Icij denote the variables in both yµ and yσ; Iµij and Iσij denote the variables only in yµ
and yσ, respectively.

Case 1. Suppose location model yµ (3) and dispersion model yσ (4) have common
factors, i.e., Iµij = Iσij = 0 for all i, j ∈ {1, . . . ,m}. In this case, the optimal order π1
of yµ (3) is also the optimal order for yσ (4). Hence, for π1 ∈ S1 and π ∈ S, we have
MSE(π) = MSE(π1).

Case 2. Suppose there exist an factor making Iµkl(π1) = −Iσkl(π2) 6= 0. Note that
MSE(π1) = ŷ2

µ(π1) + ŷ2
σ(π1)

=

α̂0 +
∑

i<j,i6=k,l;j 6=k,l
(α̂cijIcij + α̂µijI

µ
ij) + α̂µklI

µ
kl

2

(π1)+

β̂0 +
∑

i<j,i6=k,l;j 6=k,l
(β̂cijIcij + β̂σijI

σ
ij) + β̂σklI

σ
kl

2

(π1)

= C + (α̂µkl + β̂σkl)B,
where B and C are constant with other active standard deviations. Similarly, we have

MSE(π) = ŷ2
µ(π) + ŷ2

σ(π)
= C + (α̂µkl − β̂σkl)B.

Obviously, we have MSE(π) < MSE(π1). In this case, one seeks the optimal order π1
making the target optimal regardless of standard deviation. Theses π1 making the standard
deviation large.

Case 3. For {k, l, s, t} 6= {i, j}, we have two active standard deviations Ipkl(π1) 6= 0 and
Isst(π2) 6= 0. Note that

MSE(π1) = ŷ2
µ(π1) + ŷ2

σ(π1)

=

α̂0 +
∑

i<j,i6=k,l;j 6=k,l
(α̂cijIcij + α̂µijI

µ
ij) + α̂µklI

µ
kl

2

(π1)+

β̂0 +
∑

i<j,i6=k,l;j 6=k,l
(β̂cijIcij + β̂σijI

σ
ij)
2

(π1).
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Similarly, we have

MSE(π) = ŷ2
µ(π) + ŷ2

σ(π)

=

α̂0 +
∑

i<j,i6=k,l;j 6=k,l
(α̂cijIcij + α̂µijI

µ
ij) + α̂µklI

µ
kl

2

(π)+

β̂0 +
∑

i<j,i6=k,l;j 6=k,l
(β̂cijIcij + β̂σijI

σ
ij) + β̂σklI

σ
kl

2

(π).

The solution π want to keep ŷ2
σ(π) smaller. Obviously, ŷ2

µ(π1) = ŷ2
µ(π) and ŷ2

σ(π) = ŷ2
σ(π1),

thus MSE(π) < MSE(π1).

The other cases can be similarly proved. Hence, the proof is completed.

Theorem 1 shows that the obtained order by the proposed approach is optimal com-
pared to the conventional method. This indicates that the proposed approaches have a
smaller MSE value in the replicated experiments.

5. A Numerical Simulation

Here, we provide a distinct example with m = 10 for illustrating the effectiveness of
the proposed method for OofA experiments with heteroscedasticity. The underlying true
model is

y = 50 + 2I13(π)− 5I14(π)− 2I26(π) + 3I2(10)(π) + 3I35(π)z1 + 3I39(π)− I45(π)
−2I5(10)(π)− 2I67(π) + 4I68(π)z2 + 7I78(π) + 5I7(10)(π)z1 + 4I8(10)(π)z2 + ε, (8)

where z1 and z2 are two noise factors with z1 ∼ N(0, 0.52), z2 ∼ N(0, 1), and ε ∼ N(0, 0.052).
Note that I2(10) (for example) is the PWO variable between components 2 and 10. The pur-
pose of this experiment is to find optimal order making yµ close to T = 23, while minimizing
yσ. The optimal order is in fact 9 −→ 3 −→ 1 −→ 5 −→ 4 −→ 10 −→ 2 −→ 6 −→ 8 −→ 7,
whose resulting expectation is 23 with standard deviation 1.001.

A D-optimal OofA design (from Winker et al., 2020), with 46
(
= 1 +

(
10
2

))
runs, is

chosen the OofA design. For each run, five replicated experiments are conducted and their
responses Y1, . . . , Y5 are obtained. Two responses (ŷµ and ŷσ) are evaluated by those five
replicated responses. This is displayed in the Appendix (Table A.1). Via stepwise regression
method, the location model and the dispersion model are respectively fitted as

yµ = 49.583 + 2.231I13(π)− 4.513I14(π)− 1.286I18(π)− 0.843I26(π)− 1.085I27(π) + 3.318
×I2(10)(π) + 3.849I39(π) + 0.959I3(10)(π)− 1.145I45(π)− 1.354I49(π)− 3.406I5(10)(π)
+7.843I78(π) + εµ (9)

and

yσ = 5.051 + 1.697I14(π) + 0.764I29(π)− 2.423I35(π) + 2.735I45(π) + 1.618I57(π)
−1.226I67(π) + εσ. (10)
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We first employ the two-step approach to solve this example. To make yµ close to T =
23, the recommend levels of PWO factors in yµ (9) are I13(π) = I2(10)(π) = I39(π) = I49(π) =
I78(π) = −1 and I14(π) = I18(π) = I26(π) = I27(π) = I3(10)(π) = I45(π) = I5(10)(π) = 1.
According to those active factors, the orders of “3 −→ 1, 10 −→ 2, 9 −→ 3, 9 −→ 4,
8 −→ 7,1 −→ 4, 1 −→ 8, 2 −→ 6, 2 −→ 7, 3 −→ 10, 4 −→ 5, 5 −→ 10” are obtained.
Given the constraint yσ ≥ 0, the adjusted factors are set as I35(π) = I57(π) = I67(π) = 1
and I29(π) = −1. From those active factors, the optimal orders satisfy “3 −→ 5, 5 −→ 7,
6 −→ 7, 9 −→ 2 ”. Based on those arranged orders, all optimal orders can be found in the
Appendix (Table A.2). As an example, one of the orders is 9 −→ 3 −→ 1 −→ 4 −→ 5 −→
10 −→ 2 −→ 6 −→ 8 −→ 7 ( ŷµ = 22.377, ŷσ = 6.688, MSE = 45.118 via (9), (10) and (5),
respectively).

To avoid the above drawback of two-step method, the MSE method (Algorithm 1) is
used here to find the optimal order. The objective function of MSE method in Step 3 is
Equation (5) (ŷµ − T )2 + ŷ2

σ, where now ŷµ and ŷσ represent the location model (9) and
dispersion model (10), respectively. Via Step 4 of Algorithm 1, the level of PWO factors are
set as I14(π) = I18(π) = I26(π) = I27(π) = I35(π) = I3(10)(π) = I57(π) = I5(10)(π) = I67(π) =
1 and I13(π) = I29(π) = I45(π) = I49(π) = I2(10)(π) = I39(π) = I78(π) = −1.

Thus, the possible orders are “1 −→ 4, 1 −→ 8, 2 −→ 6, 2 −→ 7, 3 −→ 5, 3 −→ 10,
5 −→ 7, 5 −→ 10, 6 −→ 7, 3 −→ 1, 9 −→ 2, 5 −→ 4, 10 −→ 2, 9 −→ 4, 9 −→ 3, 8 −→ 7”.
Each component is regarded as a node, the possible order “i −→ j” implies a directed edge
from i to j. One can generate the directed graph by connecting all directed edges (see Figure
1). According to Figure 1, all optimal orders can be found in Table 2. For example, one
possible order is 9 −→ 3 −→ 1 −→ 5 −→ 4 −→ 10 −→ 2 −→ 6 −→ 8 −→ 7 ( ŷµ = 24.667,
ŷσ = 1.218 and MSE = 4.262 via (9), (10) and (5), respectively). This is to make ŷµ close
to the target T = 23 while keeping ŷσ relatively small. As compared to the solution from the
two-step approach, the order obtained by the MSE approach has a much smaller ŷσ while ŷµ
is also close to the target. For confirmation, those two orders obtained by two-step as well
MSE approaches were evaluated via the true model (8). It is shown that the expectations
are 21 (for two-step order), and 23 (for MSE order), respectively; with identical standard
deviations of 1.001.

Table 2: The optimal orders by MSE approach

Run Order
1 9 −→ 3 −→ 1 −→ 8 −→ 5 −→ 4 −→ 10 −→ 2 −→ 6 −→ 7
2 9 −→ 3 −→ 1 −→ 5 −→ 8 −→ 4 −→ 10 −→ 2 −→ 6 −→ 7
3 9 −→ 3 −→ 1 −→ 5 −→ 4 −→ 8 −→ 10 −→ 2 −→ 6 −→ 7
4 9 −→ 3 −→ 1 −→ 5 −→ 4 −→ 10 −→ 8 −→ 2 −→ 6 −→ 7
5 9 −→ 3 −→ 1 −→ 5 −→ 4 −→ 10 −→ 2 −→ 8 −→ 6 −→ 7
6 9 −→ 3 −→ 1 −→ 5 −→ 4 −→ 10 −→ 2 −→ 6 −→ 8 −→ 7
7 9 −→ 3 −→ 5 −→ 1 −→ 8 −→ 4 −→ 10 −→ 2 −→ 6 −→ 7
8 9 −→ 3 −→ 5 −→ 1 −→ 4 −→ 8 −→ 10 −→ 2 −→ 6 −→ 7
10 9 −→ 3 −→ 5 −→ 1 −→ 4 −→ 10 −→ 8 −→ 2 −→ 6 −→ 7
10 9 −→ 3 −→ 5 −→ 1 −→ 4 −→ 10 −→ 2 −→ 8 −→ 6 −→ 7
11 9 −→ 3 −→ 5 −→ 1 −→ 4 −→ 10 −→ 2 −→ 6 −→ 8 −→ 7

Note: All orders have ŷµ = 24.667 and ŷσ = 1.218 and MSE=4.262.
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Figure 1: Directed graph

6. Conclusion and Discussion

The goal for an OofA experiment is to find the optimal order. The current research
focuses on the case where the dispersion effect for each order is a constant (yσ ≡ c). For
the OofA experiments with heteroscedasticity, the dual response approach is employed. The
location and the dispersion effects are the two interested responses. The two-step and MSE
approaches are proposed to speculate optimal orders. When the location model and the
dispersion model do not share any common factors, the commonly used two-step method, is
able to find optimal order. The location model and dispersion model typically share some
common active factors. The two-step approach may be misleading in this case. Lin and Tu
(1995) showed that the optimization problem based on MSE is more appropriate to solve the
dual response problem. Motivated by their idea, this paper proposes an MSE approach to
find the optimal orders for the OofA experiments. Based on the MSE, the obtained orders
not only achieve the goal of the OofA experiment, but also minimize the standard deviation
within the OofA framework. Some theoretical supports are given (Section 4) to illustrate the
effectiveness of the proposed method for OofA experiments with heteroscedasticity. Simula-
tion studies confirmed that the proposed approaches perform well for searching the optimal
order(s) in replicated OofA experiments.

The proposed method can be easily extended to the OofA problem with some prior
information, the objective function of MSE criterion can be rewritten as

MSE = ωŷ2
σ + (1− ω)(ŷµ − T )2, (11)

where ω measures the relative importance of ŷσ and ŷµ with 0 ≤ ω ≤ 1. Especially, for
ω > 0.5, the experimenter is inclined to “risk lover”; for ω = 0.5, the experimenter tends to
“risk-neutral”; and for ω < 0.5, the experimenter is more likely to “risk averter”. Naturally,
if there is no prior information, we suggest setting ω = 0.5. The MSE (11) can be used in
Step 3 for Algorithm 1 to tackle the replicated OofA experiment with prior information.
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ANNEXURE

Table A.1: The design and responses for m = 10 in Section 5

Run Order Y1 Y2 Y3 Y4 Y5 ŷµ ŷσ
1 4 −→ 5 −→ 10 −→ 2 −→ 3 −→ 8 −→ 9 −→ 6 −→ 7 −→ 1 21.730 51.429 37.559 37.766 20.475 33.792 12.883
2 8 −→ 3 −→ 4 −→ 10 −→ 6 −→ 5 −→ 9 −→ 2 −→ 7 −→ 1 46.328 47.872 47.869 47.793 48.517 47.676 0.808
3 3 −→ 1 −→ 8 −→ 10 −→ 6 −→ 2 −→ 9 −→ 5 −→ 7 −→ 4 40.144 38.301 37.612 40.160 40.079 39.259 1.214
4 9 −→ 6 −→ 4 −→ 10 −→ 8 −→ 7 −→ 3 −→ 5 −→ 2 −→ 1 39.611 42.334 39.546 40.570 41.057 40.624 1.152
5 8 −→ 2 −→ 10 −→ 6 −→ 4 −→ 7 −→ 9 −→ 1 −→ 3 −→ 5 44.863 46.482 46.901 46.364 45.377 45.997 0.845
6 9 −→ 2 −→ 7 −→ 3 −→ 6 −→ 5 −→ 10 −→ 1 −→ 8 −→ 4 48.396 48.322 48.050 51.828 51.925 49.704 1.988
7 3 −→ 9 −→ 1 −→ 7 −→ 8 −→ 5 −→ 4 −→ 10 −→ 2 −→ 6 48.768 50.391 50.193 49.121 50.767 49.848 0.859
8 1 −→ 5 −→ 6 −→ 2 −→ 9 −→ 3 −→ 10 −→ 4 −→ 7 −→ 8 52.615 55.621 59.494 53.982 58.514 56.045 2.924
9 6 −→ 10 −→ 2 −→ 4 −→ 3 −→ 9 −→ 1 −→ 8 −→ 7 −→ 5 47.376 48.119 46.674 46.319 46.005 46.899 0.852
10 10 −→ 6 −→ 7 −→ 2 −→ 1 −→ 8 −→ 5 −→ 4 −→ 3 −→ 9 55.107 58.215 62.524 60.011 52.709 57.713 3.890
11 8 −→ 9 −→ 7 −→ 5 −→ 1 −→ 10 −→ 3 −→ 4 −→ 2 −→ 6 33.430 33.170 32.657 33.080 31.654 32.798 0.697
12 10 −→ 8 −→ 2 −→ 6 −→ 4 −→ 3 −→ 5 −→ 7 −→ 1 −→ 9 44.626 35.094 58.733 37.707 39.556 43.143 9.387
13 10 −→ 2 −→ 1 −→ 7 −→ 8 −→ 5 −→ 9 −→ 3 −→ 6 −→ 4 61.054 37.452 40.934 44.154 47.954 46.310 9.112
14 7 −→ 4 −→ 9 −→ 1 −→ 3 −→ 10 −→ 6 −→ 5 −→ 8 −→ 2 66.904 60.267 56.888 60.988 57.257 60.461 4.027
15 5 −→ 6 −→ 8 −→ 2 −→ 1 −→ 4 −→ 10 −→ 9 −→ 3 −→ 7 39.443 42.287 26.276 39.532 19.579 33.423 9.936
16 9 −→ 3 −→ 7 −→ 8 −→ 6 −→ 4 −→ 2 −→ 1 −→ 5 −→ 10 59.972 62.076 63.205 55.378 64.840 61.094 3.653
17 7 −→ 1 −→ 6 −→ 4 −→ 2 −→ 8 −→ 3 −→ 5 −→ 10 −→ 9 64.383 63.005 62.900 47.747 48.806 57.368 8.328
18 8 −→ 5 −→ 9 −→ 2 −→ 10 −→ 1 −→ 3 −→ 6 −→ 7 −→ 4 30.842 36.799 40.545 36.269 30.181 34.927 4.361
19 8 −→ 6 −→ 4 −→ 9 −→ 3 −→ 10 −→ 1 −→ 2 −→ 7 −→ 5 41.884 42.204 40.577 41.517 39.555 41.147 1.079
20 3 −→ 8 −→ 2 −→ 7 −→ 1 −→ 4 −→ 5 −→ 6 −→ 9 −→ 10 41.364 40.458 43.810 30.455 42.614 39.740 5.343
21 10 −→ 4 −→ 1 −→ 3 −→ 2 −→ 6 −→ 9 −→ 7 −→ 5 −→ 8 62.047 61.259 60.860 60.301 60.776 61.049 0.654
22 4 −→ 2 −→ 8 −→ 1 −→ 7 −→ 3 −→ 9 −→ 10 −→ 5 −→ 6 57.020 59.270 53.590 57.238 57.690 56.961 2.080
23 4 −→ 6 −→ 7 −→ 8 −→ 2 −→ 9 −→ 5 −→ 3 −→ 10 −→ 1 45.022 63.261 46.962 63.306 60.828 55.876 9.104
24 10 −→ 3 −→ 7 −→ 6 −→ 1 −→ 9 −→ 5 −→ 4 −→ 2 −→ 8 56.225 56.508 57.817 57.147 57.051 56.950 0.617
25 5 −→ 2 −→ 9 −→ 8 −→ 4 −→ 3 −→ 1 −→ 6 −→ 10 −→ 7 45.928 37.625 47.268 42.823 44.084 43.546 3.721
26 3 −→ 6 −→ 8 −→ 1 −→ 10 −→ 7 −→ 4 −→ 5 −→ 2 −→ 9 48.220 41.063 31.275 33.908 40.185 38.930 6.638
27 3 −→ 5 −→ 8 −→ 9 −→ 4 −→ 10 −→ 1 −→ 7 −→ 6 −→ 2 48.260 50.106 48.836 48.423 50.625 49.250 1.056
28 10 −→ 9 −→ 2 −→ 7 −→ 4 −→ 6 −→ 3 −→ 8 −→ 5 −→ 1 54.791 54.607 55.921 54.604 55.423 55.069 0.583
29 7 −→ 10 −→ 5 −→ 8 −→ 3 −→ 9 −→ 1 −→ 2 −→ 6 −→ 4 66.056 51.830 67.087 61.377 64.349 62.140 6.156
30 1 −→ 6 −→ 3 −→ 5 −→ 4 −→ 2 −→ 7 −→ 10 −→ 9 −→ 8 56.312 58.569 51.123 65.361 56.110 57.495 5.171
31 10 −→ 3 −→ 7 −→ 4 −→ 1 −→ 8 −→ 9 −→ 5 −→ 6 −→ 2 61.557 59.821 53.028 53.603 59.097 57.421 3.858
32 4 −→ 6 −→ 1 −→ 3 −→ 10 −→ 8 −→ 9 −→ 5 −→ 7 −→ 2 50.623 52.384 51.387 50.144 52.042 51.316 0.939
33 3 −→ 9 −→ 4 −→ 1 −→ 2 −→ 5 −→ 10 −→ 6 −→ 8 −→ 7 43.954 44.504 44.216 44.102 45.845 44.524 0.766
34 6 −→ 1 −→ 5 −→ 7 −→ 8 −→ 9 −→ 10 −→ 3 −→ 2 −→ 4 45.547 50.965 38.488 56.200 52.814 48.803 6.937
35 1 −→ 3 −→ 10 −→ 7 −→ 2 −→ 4 −→ 9 −→ 5 −→ 8 −→ 6 66.057 60.607 57.330 44.683 64.239 58.583 8.466
36 1 −→ 3 −→ 7 −→ 2 −→ 6 −→ 8 −→ 4 −→ 9 −→ 10 −→ 5 56.218 59.921 50.645 70.229 60.365 59.475 7.163
37 8 −→ 2 −→ 9 −→ 3 −→ 7 −→ 4 −→ 10 −→ 6 −→ 1 −→ 5 48.917 41.185 47.054 54.306 47.560 47.805 4.689
38 4 −→ 9 −→ 6 −→ 8 −→ 10 −→ 7 −→ 1 −→ 2 −→ 5 −→ 3 57.758 48.841 41.355 44.317 48.609 48.176 6.202
39 7 −→ 10 −→ 2 −→ 8 −→ 3 −→ 1 −→ 6 −→ 4 −→ 9 −→ 5 51.210 58.677 50.375 57.681 49.846 53.558 4.261
40 10 −→ 5 −→ 7 −→ 8 −→ 6 −→ 4 −→ 3 −→ 2 −→ 9 −→ 1 72.109 63.371 74.888 57.994 62.421 66.157 7.071
41 9 −→ 5 −→ 6 −→ 3 −→ 8 −→ 7 −→ 10 −→ 4 −→ 2 −→ 1 41.493 34.877 37.153 36.896 38.706 37.825 2.462
42 8 −→ 6 −→ 7 −→ 4 −→ 5 −→ 10 −→ 1 −→ 2 −→ 3 −→ 9 47.518 46.557 46.132 46.314 49.209 47.146 1.271
43 1 −→ 4 −→ 8 −→ 6 −→ 9 −→ 7 −→ 2 −→ 10 −→ 3 −→ 5 43.905 46.309 43.034 33.763 38.586 41.119 4.972
44 7 −→ 8 −→ 9 −→ 1 −→ 4 −→ 6 −→ 10 −→ 2 −→ 3 −→ 5 56.602 49.770 47.541 49.172 50.307 50.678 3.470
45 9 −→ 3 −→ 8 −→ 5 −→ 6 −→ 7 −→ 10 −→ 1 −→ 2 −→ 4 29.556 28.567 24.450 26.749 31.075 28.079 2.566
46 10 −→ 8 −→ 1 −→ 9 −→ 4 −→ 7 −→ 6 −→ 5 −→ 3 −→ 2 23.215 37.266 61.518 42.248 34.875 39.824 13.994
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Table A.2: The optimal orders by two-step approach in Section 5

Run Order
1 9 −→ 3 −→ 1 −→ 8 −→ 4 −→ 5 −→ 10 −→ 2 −→ 6 −→ 7
2 9 −→ 3 −→ 1 −→ 4 −→ 8 −→ 5 −→ 10 −→ 2 −→ 6 −→ 7
3 9 −→ 3 −→ 1 −→ 4 −→ 5 −→ 8 −→ 10 −→ 2 −→ 6 −→ 7
4 9 −→ 3 −→ 1 −→ 4 −→ 5 −→ 10 −→ 8 −→ 2 −→ 6 −→ 7
5 9 −→ 3 −→ 1 −→ 4 −→ 5 −→ 10 −→ 2 −→ 8 −→ 6 −→ 7
6 9 −→ 3 −→ 1 −→ 4 −→ 5 −→ 10 −→ 2 −→ 6 −→ 8 −→ 7
Note: All orders have ŷµ = 22.377 and ŷσ = 6.688 with MSE=45.118.
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Abstract
A set of measures is developed which indicate the robustness of a Balanced Incom-

plete Block Design (BIBD) against yielding a disconnected eventual design in the event of
observation loss. The measures have uses as a pilot procedure and as a tool to aid in design
selection in situations in which significant observation loss is thought possible. The measures
enable non-isomorphic BIBDs with the same parameters to be ranked. Investigation of a
class of BIBDs suggests there is some correspondence between robustness against becoming
disconnected and rankings associated with A-efficiency.

Key words: Connected; Efficiency; Observation loss; Optimality.

AMS Subject Classifications: 62D10, 62K05, 62K10

1. Introduction

Consider D, a binary connected incomplete block design. During experimentation,
some observations may be lost and the properties of the eventual design, De, will be different
from those of D. The eventual design may be far less efficient than the original design. In
an extreme situation, De may be disconnected, resulting in serious damage to the aims of
the experiment. When selecting a design for experimentation, it is prudent to assess the
potential for observation loss to result in a disconnected design.

The universal optimality properties of BIBDs make such designs appealing when avail-
able within the practical constraints of an experiment. Where it is non-empty, the class of
non-isomorphic BIBDs with υ treatments arranged in b blocks of size k is denoted D(υ, b, k).
See Mathon and Rosa (1996) for sets of relatively small non-isomorphic designs. All designs
in a D(υ, b, k) have treatments replicated r = bk/υ times and each pair of treatments occurs
together in λ = r(k−1)/(υ−1) blocks. Designs in D(υ, b, k) are usually considered as having
equal merit. In particular, optimality criteria cannot be used to distinguish between designs
in a class. However, in the event of observation loss from a BIBD, the property of balance
is destroyed and the A-efficiency of the eventual design may be small.
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Many authors investigate observation loss in binary connected incomplete block de-
signs, which are not necessarily balanced. A design is said to be Criterion-1 robust against
a specific pattern of observation loss, if a connected eventual design is guaranteed in the
event of such observation loss. The Criterion-1 robustness of designs against the loss of t
observations is investigated in Ghosh (1979), and results are given on the maximum num-
ber of blocks and the maximum number of observations that can be lost whilst ensuring
a connected eventual design in Ghosh (1982) (see Kageyama (1990), for a review of other
related work up to 1988). Baksalary and Tabis (1987) and Godolphin and Warren (2011)
give sufficient conditions for Criterion-1 robustness against the loss of a subset of blocks.
Bailey et al. (2013) investigate the Criterion-1 robustness of classes of universally optimal
and D-optimal designs. Tsai and Liao (2013) look into the Criterion-1 robustness of designs
with blocks of size two. Conditions on the number of individual observations and on the
number of whole blocks that a design is Criterion-1 robust against losing, are given in terms
of the E-value of the design and of the design support, in Godolphin (2016, 2019).

The A-efficiency of eventual designs following a specified pattern of observation loss, for
which it is known that De will be connected, provides a second measure of design robustness.
A design is Criterion-2 robust against a pattern of observation loss if the A-efficiency for
any potential De is not too small. Dey (1993) investigates the Criterion-1 and Criterion-2
robustness of a design according to two patterns of loss: the loss of t observations on the same
treatment; the loss of all observations in a single block. Lal et al. (2001) develop conditions
for Criterion-1 robustness against the loss of any t observations, and give expressions for the
A-efficiencies of eventual designs resulting from the loss of some configurations of observation
pairs, any pair of blocks and for sets of disjoint blocks. Related work by Bhar (2014)
advocates the advantages of the E-efficiencies of potential eventual designs as an alternative
criterion to assess design robustness in the event of observation loss.

For results specific to Criterion-1 robustness of BIBDs see, for example, Ghosh (1982),
where it is established that a BIBD is Criterion-1 robust against the loss of any r− 1 obser-
vations and against the loss of any r − 1 blocks. Key work associated with the Criterion-2
robustness of BIBDs includes Bhaumik and Whittinghill (1991), who consider the loss of
complete blocks, and Whittinghill (1995) who considers the effect of losing any two observa-
tions on optimality criteria. Das and Kegeyama (1992) investigate the Criterion-2 robustness
of a BIBD against observation loss in one block. Results of Lal et al. (2001) on observa-
tion loss in BIBDs mirror those of Whittinghill (1995), with Whittinghill’s case 3 omitted.
Prescott and Mansson (2001) investigate properties of eventual designs arising from the loss
of observation pairs, with reference to a design in D(8, 14, 4). The Intersection Aberration
criterion of Morgan and Parvu (2008) ranks members of D(υ, b, k) according to efficiency
properties of eventual designs arising from the loss of two blocks.

A Rank Reducing Observation Set (RROS) in D is a set of observations, the removal
of which yields De with Rank(X) > Rank(Xe), where X and Xe are the design matrices of
D and De, respectively. In this work, the focus is on identifying the sizes and numbers of
RROSs for designs in D(υ, b, k) that are most damaging to the aims of the experiment. The
work is closely aligned to the concept of Criterion-1 robustness: if D is not Criterion-1 robust
against a specific pattern of observation loss, then there will be at least one set of observations
corresponding to this pattern that comprise a RROS. Using an approach closely aligned to
the treatment partitioning processes of Godolphin and Warren (2011), the smallest RROSs
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for different treatment partitions are determined. Expressions for the measure (Su, Tu) are
developed, where Su is the smallest number of observations in a RROS of specific type and
Tu is the number of such RROSs. Observation loss is assumed to be random, that is, each
observation has the same probability of being lost, independent of any other. For designs in
a D(υ, b, k) the (Su, Tu) measure has uses:

(i) as a pilot procedure to provide information on the robustness of a design;

(ii) to aid selection of a design from a D(υ, b, k) having cardinality greater than one.

In §2, the different types of RROS are defined and illustrated via an example. Formulae
for the (Su, Tu) measures are developed in §3. These are of two types: (Su, Tu) depending
only on υ, b, k, u, which are fixed for all designs in a D(υ, b, k); (Su, Tu) that can vary within
a D(υ, b, k). The former can be used to assess the general robustness of designs in the class
against giving rise to a disconnectedDe. The latter provide a means of design comparison and
aid in design selection. In §4, results are illustrated by reference to D(8, 14, 4). The design
ranking obtained by the (Su, Tu) measure is found to be consistent with ranking according
to worst A- and E-efficiencies according to the loss of between two and five observations,
and to the Intersection Aberration criterion of Morgan and Parvu (2008).

2. Preliminaries

Consider D, a planned incomplete block design, that is both binary and connected,
with n observations on υ treatments in b blocks of size k. The observations are assumed to
be uncorrelated each with variance σ2, and the observation vector Y is assumed to follow
the additive model.

E(Y) = µ1n +X1τ +X2β.

Here, µ is a scalar constant, 1n is the vector of length n with all elements unity, and τ =
(τ1, τ2, . . . , τυ)T and β are vectors of the treatment and block effects. Matrices X1 and X2,
of orders n× υ and n× b, relate to the treatment and block components of D, each row of
Xi, i = 1, 2, having one element unity and remaining elements zero. The design has design
matrix X = (1nX1X2) and υ × υ information matrix:

C = XT
1 X1 −XT

1 X2(XT
2 X2)−1X1.

Since D is connected, Rank(C) = υ − 1 and the positive eigenvalues of C are expressed as:

0 < µ1 ≤ µ2 ≤ · · · ≤ µυ−1.

Any RROS of D can be categorised as being of Types I to III. These types are not
mutually exclusive. Brief details are given below.

Type I: If observations comprising a Type I RROS are lost from D then Be, the set of
blocks of De, can be partitioned into non-empty sets B0 and Be \ B0 with the treatments in
B0 being distinct from those in Be \ B0.

Type II: A Type II RROS contains all observations from one or more blocks.
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Type III: A Type III RROS contains all replicates of one or more treatments.

The most extreme consequence of observation loss arises if not all υ(υ− 1)/2 pairwise treat-
ment contrasts are estimable from De. The loss of a RROS that is of Type II only will not
restrict the capacity to estimate treatment contrasts, but will affect the overall efficiency.
Such RROSs are not the focus of this work. However, in the event of the loss of observations
comprising a RROS that is Type I and/or Type III then Rank(Ce) < υ−1, where Ce denotes
the information matrix of De, and not all treatment contrasts will be estimable. A Type
III RROS contains all replicates of a subset of υ0 treatments. Such RROSs are immediately
evident from the treatment replications of D. In the event that a RROS that is Type III and
not Type I is lost from D, then Rank(Ce) = υ− υ0− 1 and all contrasts in the υ− υ0 treat-
ments occurring in De will be estimable. If a Type I RROS is lost from D then no pairwise
treatment contrast involving one treatment occurring in a block of B0 and one occurring in
a block of Be \B0 will be estimable. The available data comprise two observation sets which
cannot be analysed as a single entity, although they can be analysed separately, see Searle
(1971, §7.4), to gain limited information.

Whilst the aims of the experiment are seriously compromised by the loss of a Type I
or a Type III RROS from D, the Type I RROSs are not easily identifiable from the planned
design and these are the main focus of this work. For more extensive discussion of the types
of RROS see Godolphin and Warren (2014). Type I and Type III RROSs are demonstrated
in the following example.

Example: The design D has seven treatments, each with replication three, arranged in
seven blocks of size three. The design is depicted below, with columns as blocks numbered
1 to 7.

D =

1 2 3 4 5 6 7
1 1 1 2 2 3 4
2 3 3 5 5 4 5
7 4 6 7 7 6 6

The following six potential eventual designs, labelled De1, . . . , De6, result from different con-
figurations of observation loss, with each pattern of loss corresponding to a RROS of Type
I and/or Type III.

De1 =

1 2 3 4 5 6 7
1 1 1 ∗ ∗ 3 4
∗ 3 3 5 5 4 5
7 ∗ 6 7 7 6 6

De2 =

1 2 3 4 5 6 7
1 1 1 2 2 ∗ 4
2 ∗ ∗ 5 5 4 5
7 4 6 7 7 6 6

De3 =

1 2 3 4 5 6 7
∗ 1 1 2 2 3 4
2 3 3 5 5 4 ∗
7 4 6 7 7 6 6

De4 =

1 2 3 4 5 6 7
1 1 1 2 2 3 4
∗ 3 3 5 5 4 ∗
∗ 4 6 7 7 6 6

De5 =

1 2 3 4 5 6 7
∗ 1 1 2 2 3 4
2 ∗ 3 5 5 4 ∗
7 4 6 7 7 6 6

De6 =

1 2 3 4 5 6 7
∗ 1 1 2 2 3 4
2 3 3 ∗ ∗ 4 ∗
7 4 6 7 7 6 6

The RROSs giving rise to De1 and De2 are Type III only. In both cases all replicates of
one treatment have been lost. The eventual designs are connected designs in six treatments.
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Thus Rank(Ce1) = Rank(Ce2) = 5. All pairwise treatment contrasts in the six treatments
of De1 and De2 are estimable. The RROS giving rise to De2 is minimal in the sense that, if
any observation of the RROS is reinstated then the resulting design is a connected design in
seven treatments. The RROS of De2 is not minimal: if the replicate of treatment 4 in block
2 is reinstated then the observation loss incurred still corresponds to a Type III RROS.

The RROSs giving rise to De3 to De5 are Type I only. All three eventual designs are
disconnected with the blocks partitioned so that each block contains treatments from exactly
one set of {1, 3, 4, 6} and {2, 5, 7}. The eventual designs have Rank(Ce3) = Rank(Ce4) =
Rank(Ce5) = 5. Pairwise treatment contrasts are estimable within each treatment set, but
the 12 pairwise treatment contrasts involving one treatment from each set, such as τ1 − τ2,
are not estimable. The Type I RROSs leading to De3 and De4, containing two and three
observations respectively, are minimal. The Type I RROS leading to De3 is of particular
interest, since no smaller Type I RROS exists for D. The Type I RROS leading to De5 is
not minimal: reinstatement of the replicate of treatment 3 in block 2 gives De3.

Finally, the RROS giving rise to De6 is both Type I and Type III. The eventual design
De6 is disconnected with block partition such that treatments in {2, 7} are contained in B0,
say, and treatments in {1, 3, 4, 6} are contained in Be \ B0. Only seven pairwise treatment
contrasts are estimable. The eventual design has Rank(Ce6) = 4.

Some basic properties can be established for minimal Type I RROSs, such as those
RROSs leading to De3 and De4 in Example 1.

Theorem 1: Consider a Type I RROS for design D such that no subset is also a RROS.
Then, the eventual design De arising due to the loss of the RROS from D has the properties:

(i) De, has b blocks;

(ii) De, has υ treatments.

Proof: By the definition of a Type I RROS, the blocks of De, can be partitioned into non-
empty sets B0 and Be \ B0 with the treatments in blocks of B0 being distinct from those in
the blocks of Be \ B0. For (i): assume De has fewer than b blocks. Then the RROS contains
all observations from at least one block of D. Reinstate any one observation in such a block
to form D†e. The additional block of D†e, over those of De, can be allocated to one of B0 and
Be \ B0 to form a partition in D†e. Thus the observation loss resulting in D†e corresponds to
a Type I RROS, but the missing observations are a subset of those lost to form De. This
provides a contradiction and it follows that De has b blocks, as required. For (ii), assume
De has fewer than υ treatments. Then the RROS contains all replicates of one or more
treatments of D. Reinstate one observation of such a treatment to form D††e . By (i) the
reinstated observation will be in a block in either B0 and Be \ B0. In either case, there is
partition in D††e . As with (i), the observations lost from D to form D††e comprise a Type I
RROS, but are a subset of those lost to form De. This gives a contradiction. Hence, De has
υ treatments, as required.

Such RROSs are summarised in the following definition, where V , B denote the sets of
treatments and blocks of D, respectively:
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Definition: A RROS(u) for D, for 1 ≤ u ≤ υ/2, is a Type I RROS with the following
properties:

(i) no subset is also a RROS;

(ii) in De, the treatments are partitioned into sets Vu, Vυ−u, with cardinalities u and υ−u,
and the blocks are partitioned into non-empty sets B1, B2, with treatments from Vu
arranged exclusively in blocks of B1 and those from Vυ−u exclusively in blocks of B2.

The partitioning of V and B induced by the loss of a Type I RROS is termed a consistent
treatment and block partition.

3. Robustness Measures for BIBDs

Henceforth, any planned design, will be taken as being a BIBD, that is, D ∈ D(υ, b, k).
It is evident thatD contains υ Type III RROSs of size r. The aim is to add to this information
by finding RROS(u)s of smallest size for 1 ≤ u ≤ υ/2. From Ghosh (1982), D is Criterion-1
robust against the loss of any r − 1 observations. Thus, a RROS(u) must be of size at least
r. A RROS(u) consists of all replicates of treatments in Vυ−u contained in blocks of B1 and
all replicates of treatments in Vu contained in blocks of B2. The consequence of losing all
observations in the RROS(u) is that in B1 only treatments from Vu are preserved and it is
precisely treatments in Vu that are lost from B2. For a given Vu, denote the smallest number
of observations in a RROS(u) by su. Further, define Su to be minVu{su}, the minimisation
being over all υ!/[u!(υ−u)!] sets of u treatments, and define Tu to be the number of RROS(u)s
of size Su. The pair (Su, Tu) forms the robustness measure. It gives the smallest number
of observations that must be lost, and the number of observation sets of this size, for the
possibility of an eventual design with a consistent treatment and block partition, with the
treatment sets being of sizes u and υ − u.

Relationships associated with the distribution of subsets of treatments in Vu amongst
the blocks of D arise as a consequence of the properties of BIBDs. These relationships are
given below without proof.

Theorem 2: For given Vu, let bj be the number of blocks in D containing exactly j elements
from Vu, for 0 ≤ j ≤ w, where w = min{u, k}. Then:

w∑
j=0

bj = b (1)

w∑
j=0

jbj = ur (2)

w∑
j=0

(
j

2

)
bj =

(
u

2

)
λ. (3)

Corollary 1: For any D ∈ D(υ, b, k):

(i) Each of the υ sets V1 has (b0, b1) = (b− r, r);
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(ii) Each of the υ(υ − 1)/2 sets V2 has (b0, b1, b2) = (b− 2r + λ, 2r − 2λ, λ).

For any D ∈ D(υ, b, 2):

(iii) Every Vu has (b0, b1, b2) = (b− ur + u(u− 1)λ/2, ur − u(u− 1)λ, u(u− 1)λ/2).

Proof: (i) follows through application of (1) and (2) with w = 1. Similarly, (ii) and (iii)
follow through use of (1) to (3), with u = 2, k ≥ 2 for (ii), and u ≥ 2, k = 2 for (iii).

From Corollary 1, the values of bj are dependent only on the design parameters and u
for w = min{u, k} ≤ 2. For many D ∈ D(υ, b, k), the elements of (b0, b1, . . . , bw) will depend
on the particular Vu, for w ≥ 3. For example, some sets of three treatments may occur
together in more blocks than other sets. Consider D ∈ D(υ, b, k), with k ≥ 3. Using (1), (2)
and (3), a given V3 has:

(b0, b1, b2, b3) = (b− 3r + 3λ− b3, 3r − 6λ+ 3b3, 3λ− 3b3, b3). (4)

Further, for given u, the distributions of (b0, b1, . . . , bw) may differ between designs within a
D(υ, b, k).

We now use the properties of D(υ, b, k) design classes to obtain expressions for the
(Su, Tu) measures.

3.1. (Su, Tu) measures for D(υ, b,2)

Any non-empty D(υ, b, 2) has cardinality one and thus the (Su, Tu) measures provide
a pilot process to check the Criterion-1 robustness properties of the design.

Let D ∈ D(υ, b, 2). First consider the trivial case u = 1. For any V1, exactly r of the
blocks of D contain the treatment in V1. There are 2r − 1 ways of selecting one observation
from each of these blocks to form a RROS(1), that is, to yield a treatment disconnected
eventual design in υ treatments. There are υ ways of selecting V1. Thus S1 = r and
T1 = υ(2r − 1). Now consider any set Vu with 2 ≤ u ≤ υ/2. A RROS(u) is formed by
selecting one observation from each of the b1 blocks containing one element from Vu. Using
Corollary 1 (iii), b1 = ur − u(u − 1)λ = ru(υ − u)/(υ − 1). This is independent of the
particular set of u treatments, indicating that su = ur(υ − u)/(υ − 1), for every Vu. There
are υ!/(u!(υ − u)!) sets of u treatments. It follows that the robustness measures are:

(S1, T1) = (r, υ(2r − 1)) (5)

(Su, Tu) =
(
ru(υ − u)
υ − 1 ,

2Suυ!
u!(υ − u)!

)
, for 2 ≤ u ≤ υ/2. (6)

From (5) and (6) Su increases monotonically with u. Thus a pilot procedure starts by
evaluation of S1. Hence, in addition to the υ Type III RROSs of size r, by (5) there are
υ(2r − 1) Type I RROSs, also of size r. Then, by (6) there are many Type I RROSs of size
2r(υ − 2)/(υ − 1), and so on.
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3.2. (Su, Tu) measures for D(υ, b,3)

ManyD(υ, b, 3) design classes have cardinality greater than one. For example, D(7, 14, 3),
D(7, 21, 3) and D(7, 28, 3) have cardinalities 4, 10 and 35 respectively.

Consider D ∈ D(υ, b, 3). For any set V1, exactly r blocks of D contain the treatment in
V1. For a valid RROS(1), the eventual design must contain all υ treatments, thus a smallest
RROS(1) contains the replicate of the treatment of V1 from r−1 blocks and the replicates of
the two treatments from Vυ−1 from the rth block. This gives s1 = r+ 1, independent of the
particular V1. For given V1 there are r ways of selecting the replicate of the treatment in V1
that is preserved in De and there are υ ways of selecting V1. Thus, S1 = r + 1 and T1 = rυ.
Now let Vu be any set with 2 ≤ u ≤ υ/2. For Vu, a RROS(u) of smallest size comprises the
observation of a treatment contained in Vu from each of the b1 blocks containing one element
of Vu and the observation of a treatment in Vυ−u from each of the b2 blocks containing two
elements of Vu. Using (2) and (3), su = b1 + b2 = ur − λu(u − 1)/2 = ru(υ − u)/(υ − 1).
Again, the value of su is independent of the particular Vu. Given Vu, the RROS(u) of size
su is unique. Thus, the robustness measures for D(υ, b, 3) are:

(S1, T1) = (r + 1, rυ) (7)

(Su, Tu) =
(
ru(υ − u)
υ − 1 ,

υ!
u!(υ − u)!

)
, for 2 ≤ u ≤ υ/2. (8)

As with k = 2, the value of Su increases with u for 1 ≤ u ≤ υ/2.

Results for k = 3 merit special comment. In some D(υ, b, 3), designs in the class differ
in the number of repeated blocks. For example, the four designs in D(7, 14, 3) have support
sizes (i.e. number of distinct blocks) of 7, 11, 13 and 14 respectively. Several authors, in-
cluding Bhaumik and Whittinghill (1991), recommend avoiding BIBDs with repeated blocks
when observation loss is possible. Also, see Raghavarao et al. for an investigation of designs
in D(7, 21, 3) with emphasis on the relationship between the support size and the estimation
of contrasts of the block effects. Conversely, Foody and Hedayat (1977) discuss some ex-
perimental situations in which deliberate use of designs with repeated blocks gives practical
advantages. In assessing robustness within a D(υ, b, 3) via (Su, Tu) measures, no advantage
is gained by the avoidance of designs with repeated blocks, since the formulae of (7) and (8)
are the same for all designs in a class. Thus, all designs in a D(υ, b, 3) are equally vulnerable
to becoming disconnected through random observation loss.

3.3. (Su, Tu) measures for D(υ, b, k), with k ≥ 4

Let D ∈ D(υ, b, k), with k ≥ 4.

For 1 ≤ u < k/2, choose any u treatments from any one block for Vu. From the same
block, select the k − u treatments in Vυ−u for removal. From the b − 1 remaining blocks,
select the treatments from Vu for removal. The (k − u) + (r − 1)u = u(r − 2) + k selected
observations comprise a RROS(u) and, by the process used, there is no smaller RROS(u)
for that Vu, giving su = (k − u) + (r− 1)u = u(r− 2) + k. The value of su does not depend
on the chosen block or on the treatments used from the block for Vu. Thus

(Su, Tu) =
(
u(r − 2) + k,

k!b
u!(k − u)!

)
, for 1 ≤ u < k/2. (9)
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Now, for even k, consider u = k/2. For a Vk/2 with bk/2 > 0, select the observations
from Vυ−k/2 for removal from at least one of the bk/2 blocks containing all k/2 treatments of
Vk/2. From all other blocks select the observations from Vk/2 for removal. Every observation
on a treatment in Vυ−k/2 occurs in a block with no more than k/2 treatments from Vk/2,
thus, the selected observations comprise a RROS(k/2) of minimal size: sk/2 = kr/2. For the
particular Vk/2, there will be 2bk/2 − 1 RROS(k/2)s of this size, giving

(Sk/2, Tk/2) =
kr

2 ,
∑
Ψ0

(
2bk/2 − 1

) , (10)

where, the summation is over Ψ0, the set of Vk/2 sets with bk/2 > 0.

Now consider k/2 < u ≤ k. For every Vu, perform a scan of D in the following way.
For blocks containing fewer than k/2 members of Vu, select the members of Vu for removal.
Conversely, for blocks containing more than k/2 members of Vu, select the members of Vυ−u
for removal. For even k, for blocks containing exactly k/2 members of Vu, select either
treatment set for removal. Let the number of selected observations be N . Then

N =
[k/2]∑
i=1

ibi +
k−1∑

i=[k/2]+1
(k − i)bi,

where [k/2] denotes the integer part of k/2. Using (2):

N = ur −
k−1∑

i=[k/2]+1
(2i− k)bi. (11)

The selected observations form a RROS of Type I and/or Type III. Any Vu with bj = 0
for all j > k/2 has N = ur, and any Vu with bj > 0 for at least one j > k/2 has N < ur.
Thus, for any Vu yielding the minimum value for N , there is at least one block containing
more than k/2 treatments from Vu in D. Suppose a RROS obtained by the scan for a Vu for
which N is minimised comprises a Type III RROS. Call this Vu set V∗u. Then all replicates
of a member of V∗u, say u0, are selected by the scan and at least one treatment from V \ V∗u,
say u1, is in a block containing more than k/2 treatments from V∗u. Now consider the set
V†u with u1 replacing u0 but with the other u − 1 treatments common to those of V∗u. This
has smaller N , providing a contradiction. Thus, Vu sets corresponding to the smallest value
of N only yield RROS(u)s by the scan, and, by the process, no smaller RROS(u) exists for
that Vu. It follows that Su = minVu{N} < ur. Let Ψ1 be the set of Vu sets achieving Su.
Then Tu = ∑

Ψ1 2bk/2 , where bk/2 is taken to be zero for odd k. Thus,

(Su, Tu) =
ur −max

Vu


k−1∑

i=[k/2]+1
(2i− k)bi

 ,∑
Ψ1

2bk/2

 , for k/2 < u ≤ k.

Now consider k < u ≤ υ/2. As for k/2 < u ≤ k, the approach is to conduct a scan for
each Vu and to obtain N as given by (11). However, in this case the minimum value of N
can arise for sets of selected observations corresponding to Type III RROSs. An additional
step is required in order to identify RROS(u)s of smallest size.
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Definition: A covering for Vu comprises two sets of blocks from D, denoted B1c and B2c,
such that together the blocks of B1c contain all the treatments of Vu, and together the blocks
of B2c contain all the treatments of Vυ−u. The weight of the covering is

[k/2]−1∑
j=1
B1c

(k − 2bj) +
k−1∑

j=[k/2]+1
B2c

(2bj − 1).

Consider a scan of D conducted with treatment set Vu in the usual way, but with an
adjustment for the blocks of a covering. Treatments from Vυ−u are selected from the blocks
of B1c, and treatments from Vu are selected from the blocks of B2c, regardless of the numbers
of treatments from Vu in blocks of either set. Then, the number of observations selected in
total exceeds N by the weight of the covering. For a given Vu, let W be the minimum weight
of all coverings for Vu. Then, the RROS(u) of smallest size for that Vu contains W + N
observations. These are: observations from Vυ−u in blocks of B1c; observations from Vu in
blocks of B2c; observations selected from the scan in the usual way for all other blocks. Thus
Su = minVu{W +N}. Let Ψ2 be the set of Vu sets achieving Su. Then

(Su, Tu) =
min
Vu

{W +N} ,
∑
Ψ2

2bk/2

 , for k < u ≤ υ/2. (12)

3.4. A lower bound for Su

For k < u ≤ υ/2, the process of obtaining minimal coverings for each Vu, before
running the scan, to obtain (Su, Tu) via (12) can be computer intensive. The following
result gives a lower bound for Su. For u moderate in size, the magnitude of this bound
might indicate that Su is sufficiently large that the identification of the exact value is not
of concern, given understanding of the expected level of observation loss for the particular
experimental situation.

Theorem 3: For D ∈ D(υ, b, k) and 1 ≤ u ≤ υ/2, a lower bound for Su is given by:⌈
u(υ − u)r
υ − 1

⌉

Proof: For any set Vu, the sum of concurrences between treatments in Vu and treatments
in Vυ−u is u(υ − u)λ. To induce a Type I RROS through observation loss, the concurrence
between any treatment in Vu and a treatment in Vυ−u must be reduced to zero. The greatest
reduction in the sum of the concurrences between treatments in Vu and Vυ−u caused through
the loss of a single observation occurs if the observation is in a block containing exactly
one or k − 1 treatments from Vu. The loss of such an observation reduces the sum of the
concurrences by k − 1. Thus the number of observations in a RROS(u) is at least

u(υ − u)λ
k − 1 = u(υ − u)r

υ − 1

as required.
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4. Investigation of Designs in D(8,14,4)

We use the D(8, 14, 4) design class, which has cardinality four, to demonstrate the
results of §3, and compare the design ranking produced with design comparisons focused on
Criterion-2 robustness. A set of four non-isomorphic designs in D(8, 14, 4) is obtained by
combining pairs of four base designs. Base designs Da and Db contain treatments 1, 2, . . . , 7
and base designs Dc and Dd contain treatments 1, 2, . . . , 8. Each base design is obtained
via a cyclic construction, modulo 7: Da and Db are members of D(7, 7, 4) with initial blocks
containing 1, 3, 4, 5 and 1, 2, 3, 5, respectively; Dc has initial block containing 1, 2, 4 and each
block is augmented with treatment 8; Dd is obtained from Dc with treatments 1 and 2
interchanged. The base designs are displayed below:

Da =

1 2 3 4 5 6 7
1 2 3 4 5 6 7
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4

Db =

1 2 3 4 5 6 7
1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
5 6 7 1 2 3 4

Dc =

1 2 3 4 5 6 7
1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3
8 8 8 8 8 8 8

Dd =

1 2 3 4 5 6 7
2 1 3 4 5 6 7
1 3 4 5 6 7 2
4 5 6 7 2 1 3
8 8 8 8 8 8 8

Members of D(8, 14, 4), denoted by D1, D2, D3 and D4, comprise the base design pairs:

D1: Da and Dd, D2: Db and Dd, D3: Db and Dc, D4: Da and Dc

The labelling of the designs as D1 to D4 is consistent with Morgan and Parvu (2008). Design
D3 is the design given careful consideration in Prescott and Mansson (2001).

4.1. (Su, Tu) measures for D(8,14,4)

Robustness measures for u = 1 and u = 2 are common to all designs in the class. By
(9), (S1, T1) = (9, 56). Every V2 in each design has b2 = λ = 3, giving (S2, T2) = (14, 196),
by (10). These measures indicate the extent of observation loss required from designs in
D(8, 14, 4) to result in an eventual design in which the treatments are partitioned into sets
of size one and seven, and into sets of size two and six, respectively. The lowest value of u
enabling discrimination between the four designs is u = 3. The measure (S3, T3) is different
for each design and ranks the designs in terms of robustness against incurring a RROS(3).
For each design and each V3, (11) gives s3 = 3r − 2b3 = 21 − 2b3. Designs D1 to D3 each
have some V3 sets with b3 = 2. For example D1 has b3 = 2 for the sets {1, 3, 5}, {1, 6, 7},
{2, 3, 7} and {2, 5, 6}. Thus, designs D1 to D3 each have S3 = 17. By contrast, D4 has
b3 = 1 for every set V3, giving S3 = 19. The values of T3 depend on the numbers of V3 with
maximum b3. Using (4),

(b0, b1, b2, b3) = (2− b3, 3 + 3b3, 9− 3b3, b3). (13)

For designs D1 to D3, the V3 sets with b3 = 2 each have b2 = 3, by (13) and contribute
23 = 8 to T3. For D4, each V3 set has b2 = 6, and contributes 64 to T3. The (S3, T3) measures
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Table 1: (S3, T3) measures for designs in D(8,14,4)

Design maxV3 b3 (S3, T3) Rank
D1 2 (17, 32) 2
D2 2 (17, 48) 3
D3 2 (17, 56) 4
D4 1 (19, 3584) 1

are displayed in Table 1. Design D4 is ranked highest with S3 = 19. The other designs have
S3 = 17 and are ranked according to T3. To summarise, of designs in D(8, 14, 4), design D4
is the most robust against becoming disconnected through a consistent treatment and block
partition with treatments separated into sets of sizes three and five. Two more observations
need to be lost from D4 than from the other designs, before there is a possibility of a De

with a consistent block and treatment partition, with the treatments partitioned into sets of
cardinalities 3 and 5.

4.2. A- and E-efficiencies of eventual designs

It would be hoped that the loss of as many as 17 observations from a design inD(8, 14, 4)
would be considered a remote possibility in most experimental situations. It is interesting to
investigate the quality of eventual designs arising from the loss of much smaller numbers of
observations from D1 to D4. To compare the designs with regards to Criterion-2 robustness,
the A-efficiencies of eventual designs are considered and, in line with suggestions of Bhar
(2014), the E-efficiencies are also obtained.

For D ∈ D(υ, b, k), all non-zero eigenvalues of C are υλ/k. Let De be a connected
eventual design arising from the loss of observations from D and let the eigenvalues of Ce
be 0 < µ1e ≤ µ2e ≤ · · · ≤ µ(υ−1)e. The A- and E-efficiencies of De, denoted EA(De) and
EE(De), have formulae:

EA(De) =
∑υ−1
i=1

1
µi∑υ−1

i=1
1
µie

= (υ − 1)2k

υr(k − 1)∑υ−1
i=1

1
µie

and EE(De) = µ1e

µ1
.

Hence, for designs in D(8, 14, 4), the A- and E-efficiencies of De are EA(De) = 7/(6∑υ−1
i=1

1
µie

)
and EE(De) = µ1e/6. In Table 2 results are given on the lowest A- and E-efficiencies of De

arising from the loss of up to five observations from designs in D(8, 14, 4). As established in
the literature, for example see Whittinghill (1995), all designs are equivalent when only one
observation is lost. For the loss of between 2 and 5 observations the ranking of D1 to D4,
according to the lowest A- and E-efficiences of eventual designs, is consistent with the design
ranking according to (S3, T3). Design D4 consistently demonstrates better performance.
Designs D1 to D3 have the same values for the lowest A- and E-efficiences, but the number
of eventual designs with worst properties is consistent with T3 measure. It is notable that,
in each case, the eventual designs with lowest A-efficiency are exactly those with lowest
E-efficiency.

4.3. Intersection Aberration

The Intersection Aberration criterion of Morgan and Parvu (2008) extends results
of Bhaumik and Whittinghill (1991) to enable the comparison of designs in a D(υ, b, k)
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Table 2: Smallest A-efficiency values following the loss of up to five observations
from designs in D(8,14,4)

Design No.of missing min{A-efficiency} min{E-efficiency} No. of eventual
observations designs

D1 1 0.9722 0.8333 36
D2 1 0.9722 0.8333 36
D3 1 0.9722 0.8333 36
D4 1 0.9722 0.8333 36
D1 2 0.9354 0.6806 12
D2 2 0.9354 0.6806 18
D3 2 0.9354 0.6806 21
D4 2 0.9373 0.6944 168
D1 3 0.8885 0.5462 36
D2 3 0.8885 0.5462 54
D3 3 0.8885 0.5462 63
D4 1 0.8909 0.5556 280
D1 4 0.8216 0.4096 36
D2 4 0.8216 0.4096 54
D3 4 0.8216 0.4096 63
D4 4 0.8249 0.4167 280
D1 5 0.7155 0.2722 12
D2 5 0.7155 0.2722 18
D3 5 0.7155 0.2722 21
D4 5 0.7206 0.2778 168

according to lowest A-efficiency on the loss of two blocks. This criterion enables the ranking
of designs within a D(υ, b, k) in order of their robustness against suffering the most damage
on the loss of any two blocks. For D ∈ D(υ, b, k), let ηg(D) denote the number of pairs of
blocks such that blocks in a pair have exactly g common treatments. These design properties
can be summarised by the intersection aberration vector η(D) = (η0(D), η1(D), · · · , ηk(D)).
Following Morgan and Parvu (2008):

Definition: Let designs D†, D‡ ∈ D(υ, b, k), and let p be the largest integer such that
ηp(D†) 6= ηp(D‡). Then D† is described as having less intersection aberration than D‡ if
ηp(D†) < ηp(D‡).

A design with less intersection aberration has greater Criterion-2 robustness against the loss
of two blocks than one with more intersection aberration.

Designs in D(8, 14, 4), investigated in Morgan and Parvu (2008), have intersection
aberration vectors:

η(D1) = (3, 12, 72, 4, 0)
η(D2) = (1, 18, 66, 6, 0)
η(D3) = (0, 21, 63, 7, 0)
η(D4) = (7, 0, 84, 0, 0)
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The designs are ranked by Intersection Aberration from most to least robust in the
order D4, D1, D2, D3, according to η3(.) values. This ranking is consistent with the ranking
obtained by consideration of (S3, T3) in §4.1. Note that the η3(.) values are precisely the
number of V3 sets having b3 = 2 for each design. Thus within D(8, 14, 4) the robustness of
a design against incurring a RROS(3) through the loss of random observations corresponds
to its robustness against lowest A-efficiency from the loss of two blocks.

See Thornewell (2011) for further investigation into coincidence between rankings of
designs according to Intersection Aberration and (S3, T3).

5. Conclusion

For D ∈ D(υ, b, k), the (Su, Tu) measures developed in §3 give the smallest number of
observations that comprise a specific kind of RROS and the number of such observation sets.
Loss of observations in such a RROS yields an eventual design in which the treatments are
partitioned into sets of size u and υ − u respectively, and the usual analysis to compare the
treatments cannot be conducted.

For u ∈ {1, 2} and u < [k/2], both Su and Tu are fixed for all designs in D(υ, b, k).
Also, for D(υ, b, 2) and D(υ, b, 3) design classes, all Su and Tu are functions of the basic
design parameters. Information obtained from these measures complements information on
the Type III RROSs to give a full picture of the vulnerability of a design to become dis-
connected through observation loss. Prior to experimentation, calculation of fixed measures,
and knowledge of the potential level of observation loss, provide the experimenter with a
pilot procedure to check that the eventual design is likely to be connected.

Other measures are dependent on properties of the particular design. For k even and
at least six, Sk/2 is fixed but Tk/2 is design dependent. For k ≥ 4 and u > k/2, both Su and
Tu can vary within a D(υ, b, k) indicating that consequences of observation loss may vary
within the design class. For a D(υ, b, k) with cardinality greater than one, comparison of
measures for the lowest value of u for which (Su, Tu) vary, enables the designs to be ranked
according to vulnerability.

Investigation of designs in D(8, 14, 4) indicates that designs which are ranked high
according to (Su, Tu) also perform well with regards to Criterion-2 robustness in the event
of different patterns of observation loss.
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