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PREFACE

We are pleased to present the Special Conference Proceedings 2025 from the twenty-
seventh annual conference of the Society of Statistics, Computer, and Applications (SSCA),
organized by the Department of Statistics at North-Eastern Hill University, Shillong, Megha-
laya, India, from February 21-23, 2025. This conference was a significant part of the broader
international event focused on “Advances of Interdisciplinary Statistics and Applications in
AI & ML (AISAAM-2025).”

Founded in 1998, with its inaugural gathering at Haryana Agricultural University,
Hisar, SSCA has consistently organized annual conferences at various educational institu-
tions across the country. The society’s core mission is to foster research at the intersection
of Statistics and Information Technology, supporting both theoretical and applied statisti-
cians dedicated to technological advancements for societal progress. SSCA also promotes
open access to knowledge through its journal, Statistics and Applications, which facilitates
free downloads, saving, and printing of full-length papers. In addition to regular issues,
the journal periodically releases special volumes addressing significant global and national
themes.

The recent 27th conference aimed to provide a unified platform for discussions on
regional and global statistical issues. Distinguished experts in theoretical and applied statis-
tics from India and abroad, particularly from the USA, actively participated in knowledge
dissemination. Speakers represented prestigious Indian institutions, including the Indian
Statistical Institute, IITs, ICAR, RBI, universities, and government offices. The conference
featured several notable events, including a pre-conference workshop and various technical
sessions. These sessions included the M.N. Das Memorial Lecture and a dedicated session
on Financial Statistics, where renowned statisticians and leading practitioners shared in-
sights on finance-related topics. Additionally, three endowment lectures were presented: the
B.K. Kale Memorial Endowment Lecture, the J.K. Ghosh Memorial Endowment Lecture,
and the Bikas Kumar Sinha Endowment Lecture. These lectures were delivered by speak-
ers closely associated with, or students of, the respective honorees. Furthermore, the V.K.
Gupta Endowment Award Lecture for Achievements in Statistical Thinking and Practice
was presented by Shyamal Peddada from the USA on June 22, 2025. In 2024, the SSCA
established the Aditya Shastri Memorial Lecture in memory of the late Aditya Shastri, Vice
Chancellor of Banasthali Vidyapith, who passed away in 2021 due to COVID-19. The first
lecture was delivered by Navin M. Singhi, and this year, the second lecture was presented
by R.K. Sharma.



The Executive Council of SSCA resolved to compile the “Special Conference Proceed-
ings 2025,” highlighting selected presentations, including those from the specialized Financial
Statistics session. The Guest Editors appointed by the Council—V.K. Gupta, Baidya Nath
Mandal, Durba Bhattacharya, R. Vishnu Vardhan, Ranjit Kumar Paul, Rajender Parsad,
and Dipak Roy Choudhury—meticulously curated these proceedings. Although constraints
limited the inclusion of all invited papers, esteemed speakers were invited to submit their
research contributions. Following a rigorous review process, a distinguished selection of 13
papers was accepted for publication in the special proceedings. We extend our sincere grat-
itude to all authors for the prompt submission of high-quality research papers. We owe a
special debt of thanks to all the reviewers whose dedicated efforts ensured a swift and thor-
ough review process, completing it within a short timeframe. Special acknowledgment is
also due to all members and office bearers of the SSCA Executive Council for their steadfast
support. We are particularly grateful to Ashish Das, Treasurer of the SSCA, for arranging
funds for publishing these special proceedings. We also thank Ms. Jyoti Gangwani for metic-
ulously formatting the papers. Furthermore, our deepest appreciation goes to all the family
members and students who sponsored the Endowment Lectures. The special proceedings
from these sessions have been assigned the ISBN #: 978-81-950383-8-1.

We are confident that the contents of these special proceedings will be immensely ben-
eficial to our readership, fostering further insights and advancements in the field of Statistics
and its applications in AI and beyond. We welcome any suggestions for improving future
conferences and special proceedings as we continually strive to better serve the statistical
community.

V.K. Gupta
Baidya Nath Mandal
Durba Bhattacharya
R. Vishnu Vardhan
Ranjit Kumar Paul

September 30, 2025 Rajender Parsad

ii
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Failure Time Prediction Model for an
Injection Molding System
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Abstract

In industrial sectors, understanding machine behaviour in real-time is crucial for min-
imizing unscheduled downtime and maximizing production with expected quality. Advanced
machines like injection molding machine used for manufacturing plastic bottles for soft drinks
are equipped with sensors that record event log times. We adopt a hierarchical paramet-
ric model to predict machine failure time based on its current state, that are, “running
with alerts,” “running without alerts,” and system breakdown. The model utilizes Weibull
distribution for the event duration to predict failure times.

Key words: Generalized linear regression; Predictive modeling; Count data distribution;
Lifetime distribution.

AMS Subject Classifications: 62N05, 90B25

1. Injection molding machine

Running manufacturing equipment involves maintenance of machines on a regular
basis. Preventive maintenance is a popular and well accepted approach, however, such tasks
are carried out according to a timetable, and not always done when the equipment specifically
calls for them. Thus, it is crucial to predict machine failures with enough lead time.

Several predictive models have been proposed by different authors to predict the fail-
ure time using the sequence of events. Li et al. (2007) developed a Cox-proportional hazard
(CPH) model to predict the time to failure model. Luo et al. (2014) proposed a frame-
work which consists of three stages: data pre-processing, event extraction, and correlation
analysis. In the data pre-processing stage. A few other works on the correlation based
event prediction model are Motahari-Nezhad et al. (2011); Wu et al. (2010); Zhu and
Shasha (2002); Lou et al. (2010). Agrawal et al. (1993) use association mining to learn a
pattern based on a historical sequence of past events to predict the probable occurrence of
next event(s). In retail sector, the market basket analysis has been recognized as a proven

Corresponding Author: Pritam Ranjan
Email: pritamr@iimidr.ac.in
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and successful application of association rule mining for cross selling, product placement,
promotion affinity analysis, and product promotion and targeting (Kohavi et al. , 2004),
for mining gene sequence expression (Jiang and Gruenwald , 2005) and for web-log mining
(Huang and An , 2002; Rudin et al. , 2011).

The main objective of this study is to propose a time to failure model of an injection
molding (IM) machine for a plastic soft drink bottle (see Figure 1).

Figure 1: An injection molding (IM) machine schematic diagram (source:
https://prototechasia.com/en/injection-molding/questions-injection-molding)

Industry 4.0 brings forth intelligent machines equipped with sophisticated sensors,
embedded software, and robotics which gather and store data as machine logs in a semi-
structured format. These data are usually collected while machine is in running condition,
and primarily consists of operation events, performance counters, and alert messages, among
others. This research focuses on the system logs data that are captured through various
sensors mounted in the IM machine (see Figure 2).

Figure 2: A schematics of IM machine with various sensors.
Figure 3 depicts different operational sequence of a few events of an IM machine which

typically provide sufficient information for engineers to diagnose the working condition of
equipment.

The alert messages have been clubbed into three groups. When the machine is running
smoothly and does not produce any message or alert we label it as “running without alert”.
Alternatively, when the machine is running but generate some warning or requires human
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Figure 3: An example of sequence of events while machine is in operational
condition.

intervention, we call it as “running with alert”. Finally, “failure” refers to the state of the
machine when the system is down and requires maintenance.

Furthermore, if there are two or more consecutive occurrences of the same type of
events (say, “running with alert”) then Pal et al. (2024) clubbed them together as one event.
This implied that “running without alert” and “running with alert” will occur alternatively
followed by “failure”. It may also be possible that the machine experiences only one type
of events, say “running without alert” or “running with alert” in an epoch before “failure”.
One sequence of events until the failure is also referred to as an epoch. In this illustrative
image only two epochs are shown for the purpose of understanding. Figure 4 illustrate the
sequence of events leading to failure.

Figure 4: Illustration of a snapshot of different states of the machine (i.e., “run-
ning without alert”, “running with alert” and “failure”).

The data considered by Pal et al. (2024) consists of 45 epochs, in which the total
number of “running with alert” events is 1584, whereas the total number of “running without
alert” events is 1606 (i.e., 3190 running events and 45 failures). Moreover, the IM machine
considered here consists of 72 different sensors that may explain the reasons behind the time
spent on the three states. These sensors are majorly related to mold surface temperature,
cooling rate of cavities, post gate cavity pressure, filled area of post gate cavity, filled area of
molding, injection fill time, screw runtime, etc.
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2. Model developed by Pal et al. (2024)

This section summarizes the key aspects of the failure time prediction methodologies
developed by Pal et al. (2024).

1. Pre-processing of the data: the machine states are labelled into three categories: failure,
running with alert, and running without alert. Furthermore, the consecutive (different)
alerts with the same label (e.g., running with alert) are clubbed together as the same
state / event.

2. Distributional assumption of the key variables:

(a) Number of events per epoch (Ri): Since Ri ≥ 1 (0 is not possible), a shifted
Poisson distribution is assumed. The probability mass function (PMF) is

P (Ri = ri) = e−µ µ(ri−1)

(ri − 1)! ; ri = 1, 2, · · · . (1)

(b) Duration of a “running without alert” event j in epoch i (denoted by X1
ij): expo-

nential with rate parameter λ1

(c) Duration of a “running with alert” event j in epoch i (denoted by X2
ij): exponen-

tial with rate parameter λ2

3. Let N1
i be the number of “running without alert” events in the i-th epoch, and N2

i

refers to the number of “running with alert” event in the i-th epoch. Grouping of
epochs into four situations:

(a) Situation 1: The epoch starts with the event “running without alert” and the
number of events ri is odd. Hence N1

i = ri+1
2 and N2

i = ri−1
2 .

(b) Situation 2: The epoch starts with the event “running without alert” and the
number of events ri is even. Hence N1

i = ri

2 and N2
i = ri

2 .
(c) Situation 3: The epoch starts with the event “running with alert” and the

number of events ri is odd. Hence N1
i = ri−1

2 and N2
i = ri+1

2 .
(d) Situation 4: The epoch starts with the event “running with alert” and the

number of events ri is even. Hence N1
i = ri

2 and N2
i = ri

2 .

4. Likelihood calculation: the likelihood for Situation 1 can be written as:

L1(θ) = c1
∏

i∈S1


P (Ri = ri) × p ×

ri+1
2∏

j=1
f 1(x1

ij) ×
ri−1

2∏

j=1
f 2(x2

ij)


 , (2)

where, fk(.) is the probability density function (PDF) of exponential distribution with
mean 1/λk, for k = 1, 2, p is the probability of the first event being “running without
alert”, and c1 is the proportionality constant independent of the parameters θ. Af-
ter ignoring the constant, using appropriate PDFs and PMF in the above likelihood
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function, and taking natural-log we get the log-likelihood,

L1(θ) = − n1 µ + ln(µ)
∑

i∈S1

(ri − 1) −
∑

i∈S1

ln((ri − 1)!) + ln(λ1)
∑

i∈S1

(
ri + 1

2

)

− λ1
∑

i∈S1

ri+1
2∑

j=1
x1

ij + ln(λ2)
∑

i∈S1

(
ri − 1

2

)
− λ2

∑

i∈S1

ri−1
2∑

j=1
x2

ij + n1ln(p).
(3)

For other situations, the likelihood expression will be similar and the readers can refer
to Appendix A1 in Pal et al. (2024). Subsequently, the log-likelihood of the data from
all n epochs and four situations can be written as, L(θ) = L1(θ)+L2(θ)+L3(θ)+L4(θ).
The parameter vector θ = (λ1, λ2, p, µ) is estimated by maximizing L(θ). By defining
N s

il = ri+as
l

2 and

as
l =





(−1)s+1, if l = 1
0, if l = 2, 4
(−1)s, if l = 3

for s = 1, 2, the closed form analytical expression of the maximum likelihood estimators
(MLEs) are given by

λ̂s =

4∑

l=1

∑

i∈Sl

N s
il

4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
xs

ij

for s = 1, 2, p̂ = n1 + n2

n
and µ̂ = 1

n

4∑

l=1

∑

i∈Sl

(ri − 1). (4)

5. Since there are 72 sensors, important ones that might influence the current state of
the machine are identified via variable importance method within the random forest
model framework.

6. Subsequently, these m important sensor-based covariates are introduced in the model
via generalized linear regressors. That is, the generalized linear model (GLM) consid-
ered for λ1, λ2 and µ in i-th epoch can be written as,

λ1i = exp
(

β0 +
m∑

k=1
Fkiβk

)
, λ2i = exp

(
γ0 +

m∑

k=1
Fkiγk

)
, µi = exp

(
η0 +

m∑

k=1
Fkiηk

)
,

where βk, γk, ηk for k = 0, 1, · · · , m denote the unknown regression coefficients and Fki

denotes the k-th sensor value in the i-th epoch.

7. Next, the MLEs of these regression parameters are obtained using numerical opti-
mization. Additionally, uncertainty bounds for these estimates are obtained through
non-parametric (asymptotic and Bootstrap) confidence intervals.

8. Finally, Pal et al. (2024) addressed the main objective of the paper, i.e., the derivation
of the expected time to fail for the IM machine. Given that the epochs in four situations
are based on whether the number of events is even or odd, and whether the first event
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is of “running with alert” or “running without alert”, the expected time to fail can be
written as:

E[Time to fail] = (1 − e−2µ)(µ + 1)
4

( 1
λ1

+ 1
λ2

)

+(1 + e−2µ)
4

[
µ + 2p

λ1
+ µ + 2(1 − p)

λ2

]
. (5)

In practice, the values of λ1, λ2, µ and p are required, which in-turn requires the values
of covariates, to compute the expected time to fail for an out-of-sample epoch. Pal et
al. (2024) have taken the epoch-wise average value of covariates for comparison the
model performance. Alternatively, one can take the average sensor values across all 45
epochs (i.e., over 3190 events) to estimate the expected time to fail. Of course, if we
know the true values of the sensors, one can use that instead, however these values are
typically not known in advance.

Pal et al. (2024) implemented the methodology on the data obtained from the IM
machine that manufactures softdrink bottles. The performance comparison of the actual time
to fail with the expected time to fail derived in Step 8, and the popular Cox-proportional
hazard (CPH) model is presented in Figure 5.

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Actual Expected Expected (CPH model)

Figure 5: Plot of epoch-wise actual and expected time to fail by the proposed
model and the CPH model.

The visual comparison between the three sets of values in Figure 5 clearly show the
superior performance of the proposed model as compared to the CPH model. However, one
can compute various goodness of fit measures for quantitative comparison as well. Table 1
presents the mean square error (MSE), mean absolute error (MAE), maximum error (MaxE)
and correlation between actual data and the proposed model.
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Table 1: Performance of the proposed model vs CPH model

Model MSE MAE MaxE Correlation
Proposed 1299394.36 796.38 2881.12 0.89

CPH 5389542.03 1102.77 10477.12 0.48

3. Proposed extension

Although the model proposed by Pal et al. (2024) demonstrates superior perfor-
mance than the popular CPH model, there is a room for further investigation and possible
improvement. For instance, the distribution of Xk

ij (j-th event of type k (k = 1, 2) in epoch
i), the time duration spent by the machine on a given state (i.e., duration of “running with-
out alert” or “running with alert”) was assumed to be exponential because of popularity and
simplicity. It turns out that Weibull distribution is more general and hence a better choice
than exponential for modeling Xk

ij. This paper discusses the key expressions of Pal et al.
(2024) that need to be modified as per the Weibull distribution.

Let Xk
ij ∼ Weibull(αk, λk), for k = 1, 2. For simplicity, one can take identical shape

parameters, i.e., αk = α. As a result, the PDF of Xk
ij is given by

fk(x) = λkαxα−1e−λkxα

,

with mean 1
λ1/k Γ(1 + 1

α
).

First, the likelihood in (2), and for other situations, will be modified as

L1(θ) = c1
∏

i∈S1


P (Ri = ri) × p ×

ri+1
2∏

j=1

{
λ1α(x1

ij)α−1e−λ1(x1
ij)α
}

×
ri−1

2∏

j=1

{
λ2α(x2

ij)α−1e−λ2(x2
ij)α
}

 .

This leads to the update of the log-likelihood expression in (3) as

L1(θ) = −n1 µ + ln(µ)
∑

i∈S1

(ri − 1) −
∑

i∈S1

ln((ri − 1)!) + ln(α)
∑

i∈S1

ri + n1ln(p)

+ln(λ1)
∑

i∈S1

(
ri + 1

2

)
− λ1

∑

i∈S1

ri+1
2∑

j=1
(x1

ij)α + (α − 1)
∑

i∈S1

ri+1
2∑

j=1
ln(x1

ij)

+ln(λ2)
∑

i∈S1

(
ri − 1

2

)
− λ2

∑

i∈S1

ri−1
2∑

j=1
(x2

ij)α + (α − 1)
∑

i∈S1

ri−1
2∑

j=1
ln(x2

ij).

AS earlier, the total log-likelihood of the data from all n epochs and four situations,
L(θ) = L1(θ) + L2(θ) + L3(θ) + L4(θ), can be maximized to obtain

λ̂s =

4∑

l=1

∑

i∈Sl

N s
il

4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)α̂

for s = 1, 2, p̂ = n1 + n2

n
and µ̂ = 1

n

4∑

l=1

∑

i∈Sl

(ri − 1), (6)
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where, α̂ can be obtained by maximizing the profile log-likelihood function of α, given by,

g(α) = ln(α)
4∑

l=1

∑

i∈Sl

ri −
2∑

s=1

4∑

l=1

∑

i∈Sl

(
ri + as

l

2

)
ln

( 4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)α

)

+α
2∑

s=1

4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
ln(xs

ij). (7)

The uniqueness of α̂ can be established with the help of the following two theorems

Theorem 1: The profile log-likelihood of α, given by, g(α) in (7) is a concave function.

Proof: We skip the derivation of the first derivative of g(α) and directly jump to the second
derivative of g(α), i.e.,

d2g(α)
dα2 = − 1

α2

4∑

l=1

∑

i∈Sl

ri −
2∑

s=1

4∑

l=1

∑

i∈Sl

(
ri + as

l

2

)
(Ds(α) − Es(α))

( 4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)α

)−2

,

where, Ds =
4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)α
4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)α(ln(xij))2 and Es =
( 4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)αln(xij)
)2

.

Using Cauchy-Schwarz inequality, we get Ds(α)−Es(α) ≥ 0 confirming d2g(α)/dα2 ≤
0. Hence g(α) is a concave function.

Theorem 2: The profile log-likelihood of α, given by, g(α) in (7) has a unique maximum.

Proof: Given Theorem 1, we only need to show that the first order derivative of g(α) has a
unique root. Note that dg(α)/dα = 0 can be written as G(α) − H(α) = 0,

where, G(α) =

4∑

l=1

∑

i∈Sl

ri

α
+

2∑

s=1

4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
ln(xs

ij),

and H(α) =
2∑

s=1

4∑

l=1

∑

i∈Sl

(
ri + as

l

2

)
4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)αln(xs
ij)

( 4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)α

) . (8)

Clearly G(α) is a decreasing function of α. Also the first order derivative of H(α) is

d

dα
H(α) =

2∑

s=1

4∑

l=1

∑

i∈Sl

(
ri + as

l

2

)
Ds(α) − Es(α)

( 4∑

l=1

∑

i∈Sl

Ns
il∑

j=1
(xs

ij)α

)2

,
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where, Ds(α) and Es(α) are defined in Theorem 1. By using Cauchy-Schwarz inequality, it
can be noted that dH(α)/dα ≥ 0, ensuring H(α) is an increasing function of α. Since G(α)
is a decreasing function of α and the function g(α) has at-least one maximum, it is clear
that G(α) and H(α) intersect at only one point ensuring unique solution of (8). Hence g(α)
has the unique maximum value.

Using Theorem 1 and Theorem 2, it is proved that α̂ exists and is unique. By using
invariance property of MLE, λ̂1 and λ̂2 are also unique.

As proposed by Pal et al. (2024), the sensors-based covariates are used to form
generalized linear regression with the same re-parametrization as follows,

λ1i = exp
(

β0 +
m∑

k=1
Fkiβk

)
, λ2i = exp

(
γ0 +

m∑

k=1
Fkiγk

)
, µi = exp

(
η0 +

m∑

k=1
Fkiηk

)
.

For the sake of simplicity, the parameter α is not parametrized in terms of the covariates
although one can re-parametrize it if needed as αi = exp (ζ0 +∑m

k=1 Fkiζk), for some unknown
regression coefficients ζk for k = 0, 1, · · · m.

Following the similar approach by Pal et al. (2024), the expression for the expected
time to fail can be written as:

E[Time to fail] = Γ
(

1 + 1
α

)
(1 − e−2µ)(µ + 1)

4

(
1

λ
1/α
1

+ 1
λ

1/α
2

)

+(1 + e−2µ)
4

[
µ + 2p

λ
1/α
1

+ µ + 2(1 − p)
λ

1/α
2

]
. (9)

Therefore after substituting the values of α̂, λ̂1, λ̂2 and p̂ in (9), the estimated time
to fail of the machine is obtained.

4. Concluding remarks

This study extends the model proposed by Pal et al. (2024) to analyze sequential data
from an IM machine, focusing on alternating periods of operation with alerts and without
alerts, resulting in machine failure. The durations with alerts is assumed to follow Weibull
distribution with scale parameter λ1 and shape parameter α, while durations without alerts
is assumed to follow Weibull distribution independently with scale parameter λ2 and the
same shape parameter α, allowing for flexible modeling. Notably setting α = 1 recovers the
earlier model by Pal et al. (2024) as a special case. The number of events before failure
is modeled using a conditional Poisson distribution, given at least one has happened prior
to failure. We have derived maximum likelihood estimators for the parameters and used
these to formulate the expected time to machine failure. However we have not reported the
numerical findings of the proposed model and we at this stage leave it for a future work.
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Abstract

In this paper we have considered bivariate Weibull frailty (BWF) model. It has a
singularity along the line x = y. There is a positive probability that the two marginals
can be equal similar to the Marshall-Olkin bivariate exponential or Marshall-Olkin bivariate
Weibull models. The Marshall-Olkin bivariate exponential or Weibull distribution can be
obtained as a limiting case of the proposed model. It is a very flexible model. The joint prob-
ability density function can take variety of shapes. Different properties of the BWF model
have been studied. Different dependency measures have been investigated. The model has
five parameters. Computing the maximum likelihood estimators of the unknown parameters
involves solving a five dimensional optimization problem. An effective EM algorithm has
been proposed and it can be implemented quite conveniently in practice. Extensive simula-
tions have been performed to show the effectiveness of the proposed method. One diabetic
retinopathy data set has been analyzed. We have further proposed to analyze dependent
competing risks data, and one competing risks data set has been analyzed. The results are
quite satisfactory.

Key words: Marshall-Olkin bivariate exponential distribution; Marshall-Olkin bivariate
Weibull distribution; Bivariate singular distribution; Bivariate copula; Positive dependence,
Maximum likelihood estimators; EM algorithm.

AMS Subject Classifications: 62F10, 62F03, 62H12.

1. Introduction

The motivation of this work came when we were trying to analyze a diabetic retinopa-
thy data set. The diabetic retinopathy is a medical condition of the eyes. This particular
eye conditions may depend on various factors of the individual namely age, sex, blood sugar
level, cholesterol level etc. One major issue of this disease is that unless somebody goes for a
regular eye check-up this may not be detected at the early stage. The final outcome of this
disease is blindness. Till today we do not have any treatment available so that this disease
can be cured. The available treatment can only delay the onset of blindness. Due to this
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reason an extensive amount of work is going on to develop new treatment so that the onset
of the blindness can be delayed. One such treatment which has been recently introduce is
the laser treatment. Different experiments have been conducted to test whether the laser
treatment has any significant effect in delaying the onset of blindness or not, compared to
the traditional treatment.

We will be discussing two such data sets. One data set is of the form (X, Y ). Here X
and Y denote the time to blindness of the laser treated eye and the other eye, respectively,
of the same individual. Clearly, here both X > 0 and Y > 0. The other data set is of the
form (T,∆), here T = min{X, Y }, where X and Y are same as defined above, and ∆ = 1,
∆ = 2 or ∆ = 3, if T = X, T = Y or T = X = Y , respectively. One important feature of
these data sets is that there is a significant portion of the data points where X = Y , hence
it cannot be ignored. Due to this reason, several authors have analyzed these data sets
based on the assumptions that (X, Y ) follows Marshall-Olkin bivariate Weibull (MOBW)
distribution, see for example Feizjavadian and Hashemi (2015), Cai et al. (2017), Shen and
Xu (2018), Kundu (2022) and Samanta and Kundu (2023).

In the first data set few covariates (age, sex and blood sugar level) are available,
where as in the second data set no covariates is available. It is quite possible that many
other variables also influence these survival times. Such factors are usually unknown and thus
cannot be explicitly included in the analysis. Vaupel et al. (1979) suggested a mathematical
model for this. They have introduced a random variable, which is not observed, for each
individual to the associated survival function. Since it is not observed it is integrated out.
There is some identifiability issue but it can be sorted out.

The main aim of this paper is to introduce the frailty for the MOBW model in a very
natural way. We call this new model as the Bivariate Weibull Frailty (BWF) model. It may
be mentioned that the MOBW distribution has received a considerable amount of attention
in analyzing bivariate data with ties. Extensive work has been done in establishing different
properties and developing both the classical and Bayesian inference procedures for MOBW
model, see for example the review article by Kundu (2023) and the references cited there
in. The MOBW model can be obtained as a limiting case of the BWF mode. The MOBW
distribution has four parameters, where as the proposed BWF model has five parameters.
The BWF model is a very flexible model and it also has a singularity along the line x = y
similar to the MOBW model. Hence, this model also can be used quite effectively if there
are ties in the data set. The joint probability density function (JPDF) can be take variety of
shapes, and we have derived different properties of the BWF model. Different dependency
properties and dependency measures also have been established. The maximum likelihood
estimators of the unknown parameters cannot be obtained in explicit forms. It involves
solving five dimensional optimization process. Moreover, finding the five dimensional initial
guesses also is not a trivial issue. To avoid that we have proposed to use EM algorithm,
which can be implemented quite conveniently in practice. Extensive simulations have been
performed to show the effectiveness of the proposed method and one bivariate diabetic
retinopathy data set has been analyzed based on the proposed model. We have further
proposed a competing risks model based on the BWF model, and one diabetic retinopathy
competing risks data has been analyzed based on this model.

The rest of the paper is organized as follows. In Section 2 we have defined the BWF
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model and provided several of its properties. The maximum likelihood estimators based
on the EM algorithm has been proposed in Section 3. The analysis of a bivariate diabetic
retinopathy data set has been provided in Section 4. In Section 5 we have indicated how
the proposed BWF model can be used effectively to analyze competing risks data and the
analysis of a data set has also been presented. Finally we have concluded the paper in
Section 6.

2. Bivariate Weibull frailty model

2.1. Notations and preliminaries

We will use the following notations for the rest of the paper. The two-parameter
Weibull distribution with the shape parameter α > 0 and λ > 0 has the following probability
density function (PDF);

fW E(x;α, λ) = αλxα−1e−λxα ; for x > 0, (1)

and zero, otherwise. The corresponding cumulative distribution function (CDF), survival
function (SF) and the hazard function (HF) will be denoted by FW E(x;α, λ), SW E(x;α, λ)
and hW E(x;α, λ), respectively, and for x > 0, they are as follows:

FW E(x;α, λ) = 1 − e−λxα

, SW E(x;α, λ) = e−λxα

, hW E(x;α, λ) = αλxα−1.

From now on a Weibull distribution with the shape parameter α and scale parameter λ will
be denoted by WE(α, λ). The two-parameter gamma distribution with the shape parameter
α > 0 and λ > 0 has the following probability density function (PDF);

fGA(x;α, λ) = λα

Γ(α)x
α−1e−λx; for x > 0, (2)

and zero, otherwise. It will be denoted by GA(α, λ).

Let U1 ∼ (follows) WE(α, λ1), U2 ∼ WE(α, λ2), U3 ∼ WE(α, λ3) and they are in-
dependently distributed, then (X, Y ), where X = min{U1, U3}, Y = min{U2, U3} follows
Marshall-Olkin bivariate Weibull (MOBW) distribution with parameters α, λ1, λ2, λ3. From
now on it will be denoted by MOBW(α, λ1, λ2, λ3). The joint PDF of (X, Y ) can be written
as

fMOBW (x, y) =





fW E(x;α, λ1)fW E(y;α, λ2 + λ3) if x < y
fW E(x;α, λ1 + λ3)fW E(y;α, λ2) if x > y

λ3
λ1+λ2+λ3

fW E(z;α, λ1 + λ2 + λ3) if x = y = z.
(3)

2.2. Model descriptions

Definition: Suppose U1 ∼ WE(α, λ1), U2 ∼ WE(α, λ2), U3 ∼ WE(α, λ3), V ∼ GA(β, β)
and they are all independently distributed. Let us define

X = min
{
U1

V 1/α
,
U3

V 1/α

}
and Y = min

{
U2

V 1/α
,
U3

V 1/α

}
. (4)

Then (X, Y ) is said to have BWF distribution with parameters α, λ1, λ2, λ3, β. It will be
denoted by BWF(α, λ1, λ2, λ3, β).
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The joint SF of (X, Y ) for x > 0 and y > 0 becomes

SBW F (x, y) = P (X > x, Y > y)

=
∫ ∞

0
P (U1 > v1/αx, U2 > v1/αy, U3 > v1/α max{x, y})fGA(v; β, β)dv

=
∫ ∞

0
P (U1 > v1/αx, U2 > v1/αy, U3 > v1/α max{x, y})fGA(v; β, β)dv

=
∫ ∞

0
e−vλ1xα

e−vλ2yα

e−vλ3 max{xα,yα}fGA(v; β, β)dv

= ββ

Γ(β)

∫ ∞

0
vβ−1e−v(β+λ1xα+λ2yα+λ3 max{xα,yα})dv

=
[
1 + λ1

β
xα + λ2

β
yα + λ3

β
max{xα, yα}

]−β

=
{

[1 + θ1x
α + (θ2 + θ3)yα]−β if x < y

[1 + (θ1 + θ3)xα + θ2y
α]−β if y ≤ x.

Here we have denoted θ1 = λ1/β, θ2 = λ2/β and θ3 = λ3/β. Hence, the marginal SFs of X
and Y become

P (X > x) = [1 + (θ1 + θ3)xα]−β and P (Y > y) = [1 + (θ2 + θ3)yα]−β .

The PDFs of X and Y for x > 0 and y > 0 become

fX(x) = αβ(θ1 + θ3)xα−1

[1 + (θ1 + θ3)xα]β+1 and fY (y) = αβ(θ2 + θ3)xα−1

[1 + (θ2 + θ3)yα]β+1 ,

respectively. We introduce the following notation. A random variable is said to have a
univariate Weibull frailty (UWF) distribution with parameters α, β, θ, if it has the following
PDF for x > 0

fW F (x;α, β, θ) = αβθxα−1

[1 + θxα]β+1 , (5)

and zero, otherwise. It will be denoted by UWF(α, β, θ). The generation of random sample
from a UWF model is quite simple by using the inverse transformation. Hence, the generation
of random sample from a BWF model can be performed very easily.

Following exactly the same procedure as in Kundu and Gupta (2009) the joint PDF
of (X, Y ) if (X, Y ) can be obtained from the joint SF of the BWF. Alternatively, it can be
obtained as follows. Observe that {(X, Y )|V = v} ∼ MOBW(α, λ1v, λ2v, λ3v). Hence, using
(3) we can write the joint PDF of (X, Y ) given V = v as follows;

f(X,Y )|V =v(x, y) =





fW E(x;α, λ1v)fW E(y;α, (λ2 + λ3)v) if x < y
fW E(x;α, (λ1 + λ3)v)fW E(y;α, λ2v) if y < x

λ3
λ1+λ2+λ3

fW E(z;α, (λ1 + λ2 + λ3)v) if x = y = z.
(6)

Hence, the joint PDF of (X, Y ) becomes

fBW F (x, y) =





α2β(β+1)θ1θ2xα−1yα−1

(1+θ1xα+(θ2+θ3)yα)β+2 if x < y
α2β(β+1)θ1θ2xα−1yα−1

(1+(θ1+θ3)xα+θ2yα)β+2 if y < x
αθ3βzα−1

(1+(θ1+θ2+θ3)zα)β+1 if x = y = z.

(7)
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The BWF distribution has an absolutely continuous part and a singular part. It is absolutely
continuous on 0 < x ̸= y < ∞ and it has a singular part on 0 < x = y < ∞. The joint PDF
(7) can be written as

fBW F (x, y) = θ1 + θ2

θ1 + θ2 + θ3
fac(x, y) + θ3

θ1 + θ2 + θ3
fsi(x, y), (8)

where

fac(x, y) = θ1 + θ2 + θ3

θ1 + θ2





α2β(β+1)θ1θ2xα−1yα−1

(1+θ1xα+(θ2+θ3)yα)β+2 if x < y
α2β(β+1)θ1θ2xα−1yα−1

(1+(θ1+θ3)xα+θ2yα)β+2 if y < x

and
fsi(x, y) =

{
αβ(θ1+θ2+θ3)zα−1

(1+(θ1+θ2+θ3)zα)β+1 if x = y = z

0 if x ̸= y.

It can be easily seen that

P (X < Y ) = θ1

θ1 + θ2 + θ3
, P (Y < X) = θ2

θ1 + θ2 + θ3
, P (X = Y ) = θ3

θ1 + θ2 + θ3
,

The correlation coefficient of X and Y varies from zero to one. X and Y are independent if
θ3 = 0 and the correlation tends to one as θ3 → ∞.

The following results will be used in the implementation of the EM algorithm and
they can be obtained after some calculations.

V |{(X, Y ) = (x, y)} ∼ Gamma(β + 2, (β + λ1x
α + (λ2 + λ3)yα) if x < y, (9)

V |{(X, Y ) = (x, y)} ∼ Gamma(β + 2, (β + (λ1 + λ3)xα + λ2y
α) if x > y, (10)

V |{(X, Y ) = (x, y)} ∼ Gamma(β + 1, (β + (λ1 + λ2 + λ3)zα) if x = y = z. (11)

Hence,

E(V |{(X, Y ) = (x, y)}) = β + 2
(β + λ1xα + (λ2 + λ3)yα) if x < y, (12)

E(V |{(X, Y ) = (x, y)}) = β + 2
(β + (λ1 + λ3)xα + λ2yα) if x > y, (13)

E(V |{(X, Y ) = (x, y)}) = β + 1
(β + (λ1 + λ2 + λ3)zα) if x = y = z (14)

and

E(ln V |{(X, Y ) = (x, y)}) = ψ(β + 2) − ψ(β + λ1x
α + (λ2 + λ3)yα)) if x < y, (15)

E(ln V |{(X, Y ) = (x, y)}) = ψ(β + 2) − ψ(β + (λ1 + λ3)xα + λ2y
α)) if x > y, (16)

E(ln V |{(X, Y ) = (x, y)}) = ψ(β + 1) − ψ(β + (λ1 + λ2 + λ3)zα)) if x = y = z.(17)

2.3. Properties

In this section we provide some properties of the UWF and BWF models. If X ∼
UWF(α, β, θ), then it can be easily seen that the PDF of X is a decreasing function for
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0 < α ≤ 1 and it is an unimodal function for all values of β > 0 and θ > 0. The hazard
function of X becomes

hW F (x) = αβxα−1

1 + θxα
; x > 0. (18)

It can be easily shown that if 0 < α ≤ 1, the hazard function is a decreasing function and
for α > 1, the hazard function is an unimodal function. It is clear that the shape (whether
it will be decreasing or unimodal) of the PDF or HF does not depend on β and θ, it depends
only on α. In Figure 1 we provide the plot of the PDF and HF for different values of α.
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Figure 1: The PDF and HF of WF(α, β, θ) for different values of α, when β = θ = 1:
(a) PDF and (b) HF

The following results are useful for data analysis purposes or it may have some inde-
pendent interests also.
Theorem 1: Suppose (X, Y ) ∼ BWF(α, β, θ1, θ2, θ3). Then we have the following results:

(a) X ∼ UWF(α, β, (θ1 + θ3)).

(b) Y ∼ UWF(α, β, (θ2 + θ3)).

(c) min{X, Y } ∼ UWF(α, β, (θ1 + θ2 + θ3))

Proof: The proof can be easily obtained from the joint survival function.

The following results provide the shapes of the joint PDF of the absolute continuous
part of the BWF.

Theorem 2: Suppose (X, Y ) ∼ BWF(α, β, θ1, θ2, θ3). Then we have the following results:

(a) The joint PDF of the absolute continuous part of (X, Y ) is continuous everywhere if
θ1 = θ2.
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(b) If θ1 ̸= θ2, the joint PDF of the absolute continuous part of (X, Y ) is continuous
everywhere except on the line x = y.

(c) If 0 < α ≤ 1, the joint PDF of the absolute continuous part of (X, Y ) is a decreasing
function for all values of β > 0, θ1 > 0, θ2 > 0 and θ3 > 0.

(d) If θ1 = θ2 = θ and α > 1 the joint PDF of the absolute continuous part of (X, Y ) has

a unique mode at


(

α− 1
(2θ + θ3)(αβ + 1)

)1/α

,

(
α− 1

(2θ + θ3)(αβ + 1)

)1/α

.

(e) If θ1 > θ2 + θ3 and α > 1 the joint PDF of the absolute continuous part of (X, Y ) has

a unique mode at


(

α− 1
θ1(αβ + 2)

)1/α

,

(
α− 1

(θ2 + θ3)(αβ + 2)

)1/α

.

(f) θ2 > θ1 + θ3 and α > 1 the joint PDF of the absolute continuous part of (X, Y ) has a

unique mode at


(

α− 1
(θ1 + θ3)(αβ + 2)

)1/α

,

(
α− 1

θ2(αβ + 2)

)1/α

.

(g) If θ2 < θ1 < θ2 + θ3 or θ1 < θ2 < θ1 + θ3, the joint PDF of the absolute continuous part
of (X, Y ) does not have any mode on 0 < x ̸= y < ∞.

Proof: The Proof of Theorem 2 is not very difficult, hence it is avoided.

In Figure 2 we provide the contour plot of the joint PDF of the absolute continuous
part of BWF for different parameter values. It shows that when α > 1, the joint PDF is an
unimodal function Figures 2 (a),(c),(d), if α ≤ 1, the joint PDF is an decreasing function
Figure 2 (b), if θ1 = θ2, the mode of the joint PDF is on x = y, Figure 2 (a), if θ1 > θ2 + θ3,
the mode of the joint PDF is on x < y, Figure 2 (c) and if θ2 > θ1 + θ3, the mode of the
joint PDF is on x > y, Figure 2 (d).

The hazard gradient of BWF model according to Johnson and Kotz (1975) can be
defined as follows;

h1(x, y) = − ∂

∂x
lnSX,Y (x, y) and h2(x, y) = − ∂

∂y
lnSX,Y (x, y).

Hence, the hazard gradients of BWF are as follows’:

h1(x, y) = − ∂

∂x
lnSX,Y (x, y) =





βαθ1xα−1

1+θ1xα+(θ2+θ3)yα if x < y
βα(θ1+θ3)xα−1

1+(θ1+θ3)xα+θ2yα if x > y

h2(x, y) = − ∂

∂y
lnSX,Y (x, y) =





βα(θ2+θ3)yα−1

1+θ1xα+(θ2+θ3)yα if x < y
βαθ2yα−1

1+(θ1+θ3)xα+θ2yα if x > y

Now we will show that the survival function of BWF satisfies the total positivity of order
two (TP2) property, and also it satisfies some hazard rate ordering properties. Note that
a function g : R −→ R is said to have TP2 property, if for all x = (x1, x2) ∈ R2, y =
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Figure 2: The contour plot of the joint PDF of the absolute continuous part of
BWF(α, β, θ1, θ2, θ3) for different parameter values: (a) α = 2, β = 2, θ1 = θ2 = 1,
θ3 = 2, (b) α = 1, β = 0.5, θ1 = θ2 = 1, θ3 = 2, (c) α = 2.5, β = 0.5, θ1 = 3, θ2 = θ3
= 1, (d) α = 2.5, β = 0.5, θ1 = θ3 = 1, θ2 = 3
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(y1, y2) ∈ R2, g(x)g(x) ≤ g(x ∧ y)g(x ∨ y). Here x ∧ y = (min{x1, y1},min{x2, y2}) and
x ∨ y = (max{x1, y1},max{x2, y2}). Let U and V be two bivariate random vectors with
survival function SU and SV , respectively. We say that U is smaller that V in the bivariate
hazard rate order (denoted by U ≤hr V ) if

SU(x)SV (y) ≤ SU(x ∧ y)SV (x ∨ y); x,y ∈ R2.

We say that U is smaller that V in the bivariate weak hazard rate order (denoted by
U ≤whr V ) if

SU(x)SV (y) ≤ SU(x)SV (y); x,y ∈ R2. (19)
We have the following results.

Theorem 3:

(a) If (X, Y ) ∼ BWF(α, β, θ1, θ2, θ3), then the survival function of (X, Y ) has the TP2
property.

(b) If X = (X1, X2) ∼ BWF(α, β, θ1, θ2, θ3) and Y = (Y1, Y2) ∼ BWF(α, β, θ1, θ2, θ̃3). If
θ3 > θ̃3, then X ≤whr Y .

(c) If X = (X1, X2) ∼ BWF(α, β, θ1, θ2, θ3) and Y = (Y1, Y2) ∼ BWF(α, β, θ1, θ2, θ̃3). If
θ3 > θ̃3, then X ≤hr Y .

Proof:

(a) To prove this, we need to show that for all possible values of x = (x1, x2) ∈ R2 and
y = (y1, y2) ∈ R2

SX,Y (x1, x2)SX,Y (y1, y2) ≤ SX,Y (x1 ∧ y1, x2 ∧ y2)SX,Y (x1 ∨ y1, x2 ∨ y2). (20)
Now the above inequality (20) can be shown by considering all possible twenty four
cases namely x1 < x2 < y1 < y2, x1 < x2 < y2 < y1, and so on.

(b) To prove this, we need to show (19). It can be shown again by considering all possible
twenty four cases as above.

(c) Using (a), (b), and Theorem 2.1 of Hu et al. (2003), the result follows.

The BWF has the following survival copula

C(u, v) =





(
θ1

θ1+θ3
(u−1/β − 1) + v−1/β

)−β
if (θ2 + θ3)(u−1/β − 1) < (θ1 + θ3)(v−1/β − 1)

(
u−1/β + θ2

θ2+θ3
(v−1/β − 1)

)−β
if (θ2 + θ3)(u−1/β − 1) > (θ1 + θ3)(v−1/β − 1)

(21)
If θ1 = θ2 and if we denote δ = θ1

θ1 + θ3
= θ2

θ2 + θ3
, then (21) becomes

C(u, v) =





(
δ(u−1/β − 1) + v−1/β

)−β
if u > v

(
u−1/β + δ(v−1/β − 1)

)−β
if u < v

(22)

Hence, different dependency properties of BWF may be explored through copula function.
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3. Inference

3.1. Modified EM algorithm

In this section we provide the maximum likelihood estimators of the unknown param-
eters based on the observations D = {(xi, yi); i = 1, . . . , n}. Let us denote D = D1 ∪D2 ∪D3,
where D1 = {(xi, yi) : xi < yi},D2 = {(xi, yi) : xi > yi}, D3 = {(xi, yi) : xi = yi = zi} and
the number of elements in the set Dj is nj for j = 1, 2, 3. The log-likelihood function of the
observed data D becomes

l(Θ|D) = (2n1 + 2n2 + n3) lnα + n ln β + (n1 + n2)(ln(β + 1) + ln θ1 + ln θ2) + n3 ln θ3 +

(α− 1)

 ∑

i∈D1∪D2

(ln xi + ln yi) +
∑

i∈D3

ln zi


− (β + 1) ln(1 + (θ1 + θ2 + θ3)zα

i ) −

(β + 2)

∑

i∈D1

ln(1 + θ1x
α
i + (θ2 + θ3)yα

i ) +
∑

i∈D1

ln(1 + (θ1 + θ3)xα
i + θ2y

α
i )

 , (23)

where Θ = (α, β, θ1, θ2, θ3). It may be mentioned that to avoid introducing another notation,
we sometime denote Θ = (α, β, λ1, λ2, λ3) and it should be clear from the context. Hence,
the MLEs of the unknown parameters can be obtained by maximizing (23) with respect to
unknown parameters. It involves a 5-dimensional optimization problem. To avoid that we
treat this as a missing value problem. First observe that {(X, Y )|V } has MOBW distribution,
and there is a very effective EM algorithm has been proposed by Kundu and Dey (2009).
It is assumed that the complete observations are coming from the following random vector
(X, Y,∆1,∆2, V ). Here V is the frailty random variable, and (∆1,∆2) are defined as follows:

∆1 =
{

0 if X = U3
V 1/α

1 if X = U1
V 1/α

∆2 =
{

0 if Y = U3
V 1/α

2 if Y = U2
V 1/α

Here U1, U2, U3 are same as defined before. Note that

P (∆ = 1,∆2 = 0|X < Y ) = θ3

θ2 + θ3
, P (∆ = 1,∆2 = 2|X < Y ) = θ2

θ2 + θ3
,

P (∆ = 0,∆2 = 2|X > Y ) = θ3

θ1 + θ3
, P (∆ = 1,∆2 = 2|X > Y ) = θ1

θ1 + θ3
.

It can be easily seen that if we have a complete observations Dc = {(xi, y,δ1i, δ2i, vi); i =
1, . . . , n}, the MLEs of the unknown parameters can be obtained by solving two one dimen-
sional optimization problems. We use the following notations for further development. At
the k − th stage of the EM algorithm, the parameter vector the estimate of the parameter
vector Θ will be denoted by Θ(k) = (α(k), β(k), θ

(k)
1 , θ

(k)
2 , θ

(k)
3 ) and

a
(k)
1 = θ

(k)
3

θ
(k)
2 + θ

(k)
3
, a2 = θ

(k)
2

θ
(k)
2 + θ

(k)
3
, b1 = θ

(k)
3

θ
(k)
1 + θ

(k)
3
, b2 = θ

(k)
1

θ
(k)
1 + θ

(k)
3
,

c
(k)
1i = E(Vi|xi = X < Y = yi), c

(k)
2i = E(Vi|xi = X > Y = yi), c(k)

3i = E(Vi|X = Y = zi,Θ(k))

d
(k)
1i = E(ln Vi|xi = X < Y = yi), d

(k)
2i = E(ln Vi|xi = X > Y = yi),
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d
(k)
3i = E(ln Vi|X = Y = zi).

At the k-th stage of the EM algorithm, the pseudo log-likelihood contribution of (xi, yi) with
out the constant for different cases are as follow;
Case 1: xi < y1

2 lnα + ln λ1 + a
(k)
1 ln λ3 + a

(k)
2 ln λ2 + α(ln xi + ln yi) − λ1c

(k)
1i x

α
i − (λ2 + λ3)c(k)

1i y
α
i +

β ln β − ln(Γ(β)) + β(d(k)
1i − c

(k)
1i )

Case 2: xi < y1

2 lnα + ln λ2 + b
(k)
1 ln λ3 + b

(k)
2 ln λ1 + α(ln xi + ln yi) − (λ1 + λ3)c(k)

2i x
α
i − λ2c

(k)
2i y

α
i +

β ln β − ln(Γ(β)) + β(d(k)
2i − c

(k)
2i )

Case 3: xi = y1 = zi

lnα + ln λ3 + α ln zi − (λ1 + λ2 + λ3)c(k)
3i z

α
i + β ln β − ln(Γ(β)) + β(d(k)

3i − c
(k)
3i ).

Hence, the pseudo log-likelihood function at the (k + 1) − th stage can be written as

lpseudo(Θ|Θ(k)) = (n1 + n2b
(k)
2 ) lnλ1 − λ1


∑

i∈D1

c
(k)
1i x

α
i +

∑

i∈D2

c
(k)
2i x

α
i +

∑

i∈D3

c
(k)
3i z

α
i


+

(n2 + n1a
(k)
2 ) lnλ2 − λ2


∑

i∈D1

c
(k)
1i y

α
i +

∑

i∈D2

c
(k)
2i y

α
i +

∑

i∈D3

c
(k)
3i z

α
i


+

(n1a
(k)
1 + n2b

(k)
1 + n3) lnλ3 − λ3


∑

i∈D1

c
(k)
1i y

α
i +

∑

i∈D2

c
(k)
2i x

α
i +

∑

i∈D3

c
(k)
3i z

α
i


+

(2n1 + 2n2 + n3) lnα + α


 ∑

i∈D1∪D2

(ln xi + ln yi) +
∑

i∈D3

ln zi


+

nβ ln β − n ln(Γ(β)) + β


∑

i∈D1

(d(k)
1i − c

(k)
1i ) +

∑

i∈D2

(d(k)
2i − c

(k)
2i )

+
∑

i∈D3

(d(k)
3i − c

(k)
3i )


 . (24)

Now Θ(k+1) can be obtained by maximizing (24) with respect Θ, and they are as follows. If
we denote

λ
(k+1)
1 (α) = (n1 + n2b

(k)
2 )

∑
i∈D1 c

(k)
1i x

α
i +∑

i∈D2 c
(k)
2i x

α
i +∑

i∈D3 c
(k)
3i z

α
i

λ
(k+1)
2 (α) = (n2 + n1a

(k)
2 )

∑
i∈D1 c

(k)
1i y

α
i +∑

i∈D2 c
(k)
2i y

α
i +∑

i∈D3 c
(k)
3i z

α
i

λ
(k+1)
3 (α) = (n1a

(k)
1 + n2b

(k)
1 + n3)

∑
i∈D1 c

(k)
1i y

α
i +∑

i∈D2 c
(k)
2i x

α
i +∑

i∈D3 c
(k)
3i z

α
i

,
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then first obtain α(k+1) by maximizing g(α) with respect to α, where

g(α) = (2n1 + 2n2 + n3) lnα + α


 ∑

i∈D1∪D2

(ln xi + ln yi) +
∑

i∈D3

ln zi


+ (n1 + n2b

(k)
2 ) (25)

ln λ(k+1)
1 (α) + (n2 + n1a

(k)
2 ) lnλ(k+1)

2 (α) + (n1a
(k)
1 + n2b

(k)
1 + n3) lnλ(k+1)

3 (α).

Once α(k+1) is obtained, then obtain λ
(k+1)
1 , λ(k+1)

2 , λ(k+1)
3 as λ(k+1)

1 (α(k+1)), λ(k+1)
2

(α(k+1)) and λ
(k+1)
3 (α(k+1)), respectively. Obtain β(k+1) by maximizing h(β) with respect to

β, where

h(β) = nβ ln β − n ln(Γ(β)) + β


∑

i∈D1

(d(k)
1i − c

(k)
1i ) +

∑

i∈D2

(d(k)
2i − c

(k)
2i ) +

∑

i∈D3

(d(k)
3i − c

(k)
3i )


 .

(26)
The following algorithm can be used for that purpose.

Algorithm:

Step 1: Take some initial values of Θ = (α, β, λ1, λ2, λ3), say Θ(0) = (α(0), β(0), λ
(0)
1 , λ

(0)
2 , λ

(0)
3 ).

Step 2: Based on Θ(0), compute a(0)
1 , a

(0)
2 ,b(0)

1 , b
(0)
2 , {(c(0)

1i , c
(0)
2i , c

(0)
3i , d

(0)
1i , d

(0)
2i , d

(0)
3i ); i = 1, . . . , n}.

Step 3: Obtain α(1) by maximizing (??), obtain λ(1)
1 , λ

(1)
2 , λ

(1)
3 and obtain β(1) by maximizing

(26).

Step 4: Go back to Step 1 and replace ‘0’ by ‘1’ and continue the process until convergence
takes place.

3.2. Testing of hypothesis

In this section we want to discuss the following testing of hypothesis problem which
has some practical importance. We want to test the following hypothesis

H0 : λ1 = λ2 vs. H1 : λ1 ̸= λ2. (27)

It manly tests the equality of the two marginals. To test the hypothesis (27), we propose
to use the likelihood ratio test. Hence, we need to maximize the log-likelihood function
(23) under H0. In this case also the modified EM algorithm can be used quite effectively
with the necessary changes. If we denote the estimate without restriction of the unknown
parameter vector Θ as Θ̂ and by Θ̂0 with restriction, then we reject the null hypothesis if
−2(l0(Θ̂0|D) − l(Θ̂|D)) is greater than the appropriate upper percentage of χ2

1 value.

4. Data analysis

In this section we analyze one bivariate data set to show how the proposed model
and the method can be used in practice. The proposed model has been used on a diabetic
retinopathy data set. Diabetic retinopathy is a physical disorder of the eye, and it is ob-
served mainly among the diabetic patients. This particular disease leads to blindness. An
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extensive amount of work has been done in developing different treatment for this disease.
Among different methods one recent treatment is the laser treatment. The main aim of this
experiment is to test whether the laser treatment has significant different effect compared
to the traditional treatment in delaying the onset of blindness. The experiment has been
conducted as follows. For each patient one eye has been chosen at random and the laser
treatment has been given where in the other eye the traditional treatment has been admin-
istered. For each patient the time to onset of blindness of both the eyes have been recorded.
Here X and Y denote the times for the laser treated eye and the traditionally treated eye,
respectively. The data set has been presented in Table 1.

Table 1: Bivariate diabetic retinopathy data set. Here Y1 denotes the time to
blindness of the laser treated eye and Y2 denotes the same for the other eye

Sl. X Y Sl. X Y Sl. X Y Sl. X Y
No. No. No. No.

1. 20.17 6.90 2. 10.27 1.63 3. 5.67 13.83 4. 5.77 1.33
5. 5.90 35.53 6. 25.63 21.90 7. 33.90 14.80 8. 1.73 6.20
9. 30.20 22.00 10. 25.80 13.87 11. 5.73 48.30 12. 9.90 9.90

13. 1.73 1.73 14. 1.77 43.03 15. 8.30 8.30 16. 18.70 6.53
17. 42.17 42.17 18. 14.30 48.43 19. 13.33 9.60 20. 14.27 7.60
21. 34.57 1.80 22. 4.10 12.20 23. 21.57 9.90 24. 13.77 13.77
25. 33.63 33.63 26. 63.33 27.60 27. 38.47 1.63 28. 10.33 0.83
29. 13.83 1.57 30. 11.07 1.97 31. 2.10 11.30 32. 12.93 4.97
33. 24.43 9.87 34. 13.97 30.40 35. 6.30 56.97 36. 13.80 19.00
37. 13.57 5.43 38. 42.77 42.77 39. 42.43 46.63 40. 2.70 2.70

For this data set n = 38, and 12, 20 and 6 observations for which X < Y , X > Y
and X = Y , respectively. Based on this data set we want to test whether laser treatment
has any significant different effect compared to the traditional treatment or not. Before
progressing further we provide some of the basic statistics of the data set. We have provided
the median, Q1 (first quartile) and Q3 (third quartile) of X, Y and min{X, Y }. We have also
fitted UWF models to X, Y and min{X, Y }, their fitted parameter values, the Kolmogorv-
Smirnov distances (KSD) and the associated p-values have been presented in Table 2. Based
on the KSD and the associated p-values, it is clear that UWF model fitsX, Y and min{X, Y }.
We have plotted the empirical survival curves of the time to blindness of both the eyes in
Figure 3. We have also plotted the best fitted UWF models to the marginals in Figure 4.
They fit loots quite quite well in both the cases. Hence, it is reasonable to try to fit BWF
model to the bivariate data set (X, Y ).

We would like to compute the MLEs of the fitted BWF model using the EM algo-
rithm as proposed in Section 3. Based on the fitted UWF models to the marginals and the
minimum, we have obtained the following initial guesses; α(0) = 1.2597, β(0) = 4.8359, λ(0)

1
= 0.0016, λ(0)

2 = 0.0089 and λ
(0)
3 = 0.0110. We have stopped the EM algorithm when the

relative difference between to consecutive log-likelihood functions is less than ϵ = 10−6. The
iteration stops after 12 steps. The MLEs of the unknown parameters and the associated 95%
confidence intervals are also obtained from the las t step of the EM algorithm based on the
method of Louis (1982). They are as follows: α̂ = 1.2077(∓0.3765), β̂ = 11.4772(∓2.6754),
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Table 2: Some basic statistics of the bivariate retinopathy data set. The median,
Q1 and Q3 of the marginals and their minimum. The estimated parameters
of the UWF models, their respective K-S distances and the associated p-values
have been presented

Variable Median Q1 Q3 α β θ KSD p-Value

X 13.82 13.35 25.03 1.4698 5.3205 0.0026 0.1278 0.5640
Y 10.60 5.20 21.95 1.1516 4.5085 0.0099 0.1186 0.6581

min{X, Y } 7.25 1.88 13.83 1.1577 4.6788 0.0115 0.1365 0.4787
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Figure 3: Empirical survival functions of the time to blindness of the two eyes

λ̂1 = 0.00220(∓00034), λ̂2 = 0.00245(∓0.00037), λ̂3 = 0.00031(∓0.00001). The correspond-
ing log-likelihood value is -292.9115.

One natural question is whether the proposed BWF distribution provides a good fit
to the above bivariate data. For that purpose we consider the following statistic

D = sup
x,y

|Sn(x, y) − ŜBW F (x, y)|.

Here Sn(x, y) denotes the empirical survival function, i.e. Sn(x, y) = #{i;xi ≥ x, yi ≥ y}
n

and ŜBW F (x, y) denotes the estimated value of SBW F (x, y) based on MLEs. We obtain the
D = 0.1134 and based on simulation we obtain the associated p value as 0.681. Hence, it
shows that the proposed BWF provides a good fit to the bivariate Retinopathy data set.

Now we want to test whether the laser treatment has any significant effect in de-
laying the blindness or not. It is equivalent in testing (27). We have obtained the MLEs
and the associated 95% confidence intervals of the unknown parameters under the null hy-
pothesis as follows: α̂0 = 1.2041(∓0.3668), β̂0 = 13.2188(∓2.5753), λ̂10 = 0.00202(∓00032),
λ̂20 = 0.00202(∓0.00032), λ̂30 = 0.00027(∓0.00001). The corresponding log-likelihood value
is -292.9893. Hence, based on −2(l0(Θ̂0|D) − l(Θ̂|D)), we cannot reject the null hypothesis.
Therefore, the present data indicates that there is no significant difference between the laser
treatment and the traditional treatment.
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Figure 4: Empirical and fitted survival functions of the time to blindness of the
two eyes (a) laser treated eye and (b) traditionally treated eye

5. Application: Competing risks

In many life testing experiment the failure might occur due to different causes. In
this type of experiment one observes the failure time as well as the cause of failure. It is
important to study the effect of one cause in presence of other causes. In the statistical
literature it is known as the competing risks problem. There are mainly two approaches
to analyze competing risks data; one is latent failure type approach of Cox (1959) and the
other one is cause specific hazard function approach by Prentice et al. (1978). In case of
exponential or Weibull failure time distributions it has been shown by Kundu (2004) that
both the methods provide the same likelihood function, although their interpretations are
different. An extensive amount of work has been done in the area of competing risks both in
the parametric and non-parametric set up. One is referred to the book by Crowder (2001)
for a comprehensive treatment on this topic.

A typical competing risk data is of the form (T,∆), here T denotes the observed
failure time and ∆ denotes the cause of failure. The failure time T is usually assumed to be
continuous, where as ∆ is a discrete random variable. In this paper we have assumed Cox’s
latent failure approach to analyze the competing risks data. In this case it is assumed that
there are total K causes of failures, i.e. ∆ can take values 1, . . . , K. Further, there are K
lifetimes say T1, . . . , TK due to K different causes, where T = min{T1, . . . , TK} and ∆ = j if
Tj < {T1, . . . , Tj−1, Tj+1, . . . , TK}.

We have another data set from a diabetic retinopathy study has been obtained as
before. The experiment was same as before, but here the minimum time to blindness (T )
and the indicator specifying whether the laser treated eye (∆ = 1), the traditionally treated
eye (∆ = 2) or both the eyes (∆ = 3) have failed simultaneously have been recorded. The
data set has been presented in Table 3.
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Table 3: Competing risks diabetic retinopathy data set. Here T denotes the
minimum time to blindness in days and ∆ denotes its causes

T ∆ T ∆ T ∆ T ∆ T ∆ T ∆
266 1 272 3 203 3 91 2 1137 3 84 1
154 2 1484 1 392 1 285 3 315 1 1140 2
583 1 287 2 901 1 547 2 1252 1 1247 3
79 1 717 2 448 2 622 3 642 1 904 2

707 2 141 2 276 1 469 2 407 1 520 1
93 1 356 1 485 2 1313 2 1653 3 248 2

805 1 427 2 503 1 344 1 699 1 423 2
790 2 36 2 285 2 125 2 667 1 315 2
777 2 588 2 727 2 306 1 471 3 210 2
415 1 126 1 409 2 307 2 350 2 584 1
637 2 350 1 355 1 577 2 663 3 1302 1
178 1 567 2 227 2 517 2 966 3

The problem is same as before, i.e. we want to test whether there is any significant
between the laser treatment and the traditional treatment in delaying the onset of blindness
of the affected eyes. We treat this data as a competing risks data where the two treatments
can be considered as the two different causes of failures. Here T = min{T1, T2}, where T1
(T2) denotes the lifetime of the laser (traditionally) treated eye, and ∆ = 1, if T1 < T2,
∆ = 2, if T1 > T2 and ∆ = 3 if T1 = T2. Here both T1 and T2 are continuous random
variables, but there is a positive probability that T1 = T2. We have assumed that (T1, T2) ∼
BWF(α, β, λ1, λ2, λ3). Now based on the observations D = {(ti, δi); i = 1, . . . , n}, the log-
likelihood function can be written as

l(Θ|D) = n log β + n lnα + n1 ln θ1 + n2 ln θ2 + n3 ln θ3 + (α− 1)
n∑

i=1
ln ti −

(β + 1)
n∑

i=1
ln(1 + (θ1 + θ2 + θ3)tαi ). (28)

Here n1, n2 and n3 denote the number of δi = 1, δi = 2 and δi = 3, respectively. The
MLEs of the unknown parameters can be obtained by maximizing (28) with respect to the
unknown parameters. The MLEs of the unknown parameters and the associated 95% con-
fidence intervals are: α̂ = 6.6043(∓1.1967), β̂ = 0.0242(∓0.0061), θ̂1 = 0.5984(∓0.1534),
θ̂2 = 0.8245(∓0.2278) and θ̂3 = 3.0644(∓1.0014). The corresponding log-likelihood value
is -5191.931. We want to test whether there is any significant difference between the
laser treatment and the traditional treatment and it is equivalent to test (27). Under
the null hypothesis the estimates and the associated 95% confidence intervals are: α̂0 =
6.6113(∓1.1913), β̂0 = 0.0239(∓0.0058), θ̂10 = 0.8154(∓0.2256), θ̂20 = 0.8154(∓0.2256) and
θ̂30 = 3.0657(∓0.9976). The corresponding log-likelihood value is -5203.363. Based on the
test statistic −2(l0(Θ̂0|D) − l(Θ̂|D)) we reject the null hypothesis. Hence, in this case the
laser treatment has a significant different effect than the traditional treatment.

6. Conclusions

In this paper we have proposed a bivariate Weibull frailty model which is a singular
distribution. The proposed model has five parameters and the joint PDF can take variety



2025] BIVARIATE FRAILTY MODEL 29

of shapes. We have derived different properties and developed the classical inference of
the unknown parameters. We have used this model to analyze a dependent competing
risks data. Although we have developed the classical inference, we have not developed any
Bayesian inference of the unknown parameters. It will be interesting to develop the Bayesian
inference of the unknown parameters for this model. More work is needed in that direction.
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1. Introduction

1.1. A prologue from the author

It was around 1979-80 that I first met Professor Bikas K. Sinha or ”Bikas-da” (as
Professor Bikas K. Sinha is most popularly known to almost all of his younger colleagues,
friends and also a large majority of his ex-students). I was a first year research scholar
(Ph.D. student) then in the Stat-Math division at I.S.I., Kolkata, and attended, along with
a few others, a research course on Optimal Designs taught by Bikas-da. Had I not left for
USA next year to pursue my PhD, there was a distinct possibility that I could have earned
the honour of being the first PhD student of Bikasda in ISI. Anyway, it was a little over
eight years later when I retuned to ISI to join as a faculty in Stat-Math, that my contact
with Bikasda had a restart. And, from then on till today, Bikasda remained my friend, my
elder brother, my long time colleague. What I am going to discuss in this article are two
interesting problems that we collaborated on. These were problems that originally Bikasda
was investigating and at some point, he decided to discuss those with me and get me on
board. This is another fascinating thing about Bikasda that when he discusses a problem
with someone else, he can instill genuine interest in that person about the problem and, more
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Email: alok.goswami@iacs.res.in
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often than not, it culminates into a productive collaboration. In fact, I do not personally
know of anyone who has had as many collaborators as Bikasda has worked with, and that
too from widely different fields of expertise, from pure mathematics to applied statistics,
from sociology to biology. After having seen and known Bikasda for a very long time, first as
his student and then as his younger colleague, I can only repeat what anyone and everyone,
who has come in touch with him in any capacity, will say. He is one of the finest human
beings that I have known, always jovial, always in high spirits, always with that reassuring
smile on his face that makes a very bad day seem not so bad. During our joint tenure in
ISI for a long period of time, there have been many occasions when Bikasda and I travelled
together to multiple places to participate in a variety of academic programmes. Each of
these occasions presented a wonderful opportunity for me to know Bikasda more closely,
outside the framework of our relationship in ISI. They just reinforced my impression of him
as an amazingly fascinating person with an unstoppable liveliness that always spread like an
infection. Of all these journeys, there was one that deserves a special mention. Sometime
during 2017, one day Bikasda asked me casually (at least that’s how it seemed to me) ‘ki
bhaiya, bangladesh jabe naki? ’, meaning “brother, interested in a trip to Bangladesh?” I was,
of course, very excited and replied with an emphatic ‘Yes’. Sure enough, a trip was organized
for September that year. The two of us were invited to deliver lectures, first at Rajshahi
University for 3-4 days and then at East West University in Dhaka for another 3-4 days.
The entire trip was wonderful. The exciting academic interactions with young masters’ and
PhD students, the fascinating traditional Bangladeshi hospitality, the lazy evenings spent
strolling along the serene banks of the river Padma, stopping occasionally to enjoy a sip
of ‘Morich Cha’ (finely brewed tea garnished with a pod of split green pepper to make it
just a bit fiery) — all of these made it one of the most enjoyable trips of my life. But the
part of the trip that will always remain etched in my memory, happened during our road
trip from Rajshahi to Dhaka. We took a slight detour to visit Bikasda’s ancestral village.
Riding through that village with Bikasda recalling his childhood memories, lots and lots of
magical stories about the young twin brothers· · · · · · I really had a glimpse into a different
side of Bikasda that not too many persons I know had perhaps seen· · · · · · visualizing the
twin brothers strolling and running through the muddy roads of the village, occasionally
indulging in small mischiefs for fun, that is typical of that age· · · · · · it was a total surprise
that I didn’t expect. And Bikasda being Bikasda hadn’t informed me in advance of this
plan. We finally stopped at his ancestral home where members of their family who stayed
back still live. Needless to say we were offered an elaborate lunch, with multiple fish dishes
in abundance, before we hit the road again on our way to Dhaka. The detour turned out to
be an absolutely memorable surprise indeed! Thank you Bikasda for gifting me this magical
experience!!!

1.2. Two interesting problems

The first problem we discuss here falls in the domain of biodiversity analysis. Two
quantities that are regarded as central to the measurement of biodiversity are species richness
and species abundance. In the context of developing appropriate sampling strategies to
gain understanding of species richness and species evenness, a conjecture, supported also by
empirical observations, that has inherently played a crucial role, is that the species evenness
distribution which allows for a minimal sample size is the one, in which, for a fixed size of
species richness, the abundance rates are all equal [see Gore and Paranjape (1997), (2001)].



2025] TWO INTERESTING COLLABORATIONS 33

This was our focus of study in one of the two collaborations mentioned above and is discussed
in greater detail in Section 2. The main objective of our work was to try and provide an
analytical proof of thisd conjecture and, luckily, we succeeded. For a fixed species richness
size, we considered the distribution of “effort size” for full discovery, as a function of the
underlying species abundance rate vector, and showed analytically that, it is stochastiaclly
smallest when all the species are “as equally abundant as possible”, a phrase that is going
to be clarified in Section 2. The analysis is done separately for the two cases, namely, for
infinite population and for finite population. The mathematical formulation of the problem
and sketches of the proof of the main results are given in Section 2. The details are skipped
here, since complete details are available in Goswami and Sinha (2006).

The other problem discussed in this article is in the context of social networks. Con-
cept of Reciprocity in a social network is recognized as an important characteristic for study
in order to gain understanding of the network. Rao and Bandyopadhayay (1987) suggested a
simple natural measure of Reciprocity. Our focus in this work of collaboration was the choice
of optimal sampling strategies for unbiased estimation of the above measure of reciprocity.
Being a diehard champion of optimality, Bikasda had a firm conviction that, in this par-
ticular context, with some of its inherent special characteristics, the standard (SRSWOR,
sample mean) strategy cannot be the last word. The strength of our collaboration, with
Professor S. Sengupta from Calcutta University also joining the team, was rooted in that
conviction. Finally (and despite challenges thrown by some rather complicated algebra), our
work was able to illustrate that certain naturally suggested sequential strategies using spe-
cific selection rules coupled with appropriately defined unbiased estimators, fare better than
the usual (SRSWOR, sample mean) strategy. Outlines and some crucial steps behind the
core ideas are discussed in some detail in Section 3. For complete details and more (including
numerical illustrations), the reader may see Goswami, Sinha and Sengupta (1990).

2. Analyzing time till discovery of all species

We consider a population consisting of m different species. The number m, called
the species richness, is assumed to be fixed in this analysis. Clearly, only m ≥ 2 is of any
interest. The variable parameter in our analysis is going to be the abundance rate vector

p = (p1, · · · , pm), (1)

where pi, the abundance rate of the ith species, is its proportion in the population (equiva-
lently, the probability that a randomly drawn unit from the population is from ith species).

In case of a finite population, say, of known size N , the admissible abundance rate
vectors will have to be necessarily of the form

p =
(

N1
N

, · · · , Nm

N

)
, (2)

where N1, · · · , Nm are positive integers adding up to N , while for an infinite population,
any set of numbers pi ∈ (0, 1), i = 1, · · · , m, that add up to 1, will constitute a possible
abundance rate vector p = (p1, · · · , pm).

The focus and aim of our investigation here are as follows. Suppose we keep on draw-
ing units at random from the population until all the m species are “discovered”. Denoting T
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to be the number of draws needed, it is clear that T is a random variable whose distribution
depends on the abundance rate vector p, and also on the sampling scheme − specifically, in
case of a finite population, whether the sampling is done with or without replacement. We
state the main result that we are able to prove.

Main result: In both cases of random sampling from an infinite population as well as
random sampling, with or without replacement, from a finite population, the random variable
T is “stochastically smallest” when all the m species are “almost” equally abundant.

In case of any concern about the phrase “almost” equally abundant used above, we
want to point out that this is relevant only in finite population case and will be elaborated
in Section 2.2. We proceed now to present an outline of the steps through which the above
result is proved. The cases of infinite population and finite population need to be handled
separately and that is what we do. But at the start, let us state a simple result which will
be used frequently in the sequel. Noting that relabelling the m species among themselves
does not have any impact on the time T till full discovery, the following result is obvious.

Theorem 1: The distribution of T , under an abundance rate vector p, remains invariant
over permutations of the coordinates of the vector p.

2.1. Infinite population

In this case, we do not need to distinguish between sampling with or without replace-
ment. As mentioned before, any choice of numbers pi ∈ (0, 1), i = 1, · · · , m, with ∑

pi = 1,
will constitute a possible abundance rate vector p = (p1, · · · , pm). Let us denote

Φ(t, m, p) = P (T > t
∣∣∣ m, p), for each t. (3)

The abundance rate vector capturing the “equally abundant” case is denoted p0, that is.
p0 = ( 1

m
, · · · , 1

m
). With these notations, here is our main result.

Theorem 2: For an infinite population with m species, where m ≥ 2,
Φ(t, m, p) ≥ Φ(t, m, p0), for all t ≥ m, (4)

with the inequality in (4) being strict, for every t ≥ m, unless p = p0.

Proof: (outline) The case m = 2 is fairly trivial. For any p = (p1, p2), one has Φ(t, 2, p) =
pt

1 + pt
2, for all t ≥ 2, and the right-hand-side, for each t ≥ 2, can easily be shown to have a

unique minimum at p1 = p2 = 1
2 , subject to the conditions that p1 > 0, p2 > 0, p1 + p2 = 1.

A natural idea now is to complete the proof by induction, but a first step towards
that would be to get some relation between ϕ(·, m, ·) and ϕ(·, m − 1, ·). To do this, we
need a notation. For m > 2 and for any abundance rate vector p = (p1, · · · , pm), let us
denote p(i), for 1 ≤ i ≤ m, to be the abundance rate vector of size m − 1, obtained by
removing the ith coordinate from p and normalizing the remaining coordinates, that is,
p(i) =

(
p1

1−pi
, · · · , pi−1

1−pi
, pi+1

1−pi
, · · · , pm

1−pi

)
. By a fairly straightforward conditioning argument,

one can now show that, for any m > 2, any p = (p1, · · · , pm) and any i ∈ {1, . . . , m},

Φ(t, m, p) = b(t, pi; 0)+
∑

s≥t−m+2
b(t, pi; s)+

t−m+1∑

s=1
b(t, pi; s) Φ(t−s, m−1, p(i)), for all t ≥ m, (5)
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where b(t, pi; s), 0 ≤ s ≤ t, are the p.m.f. of the Binomial distribution with parameters (t, pi).

This paves the way for invoking induction. Assuming the assertion (4) to hold for
m − 1 will mean that Φ(t′, m − 1, p(i)) ≥ Φ

(
t′, m − 1, ( 1

m−1 , · · · , 1
m−1)

)
, for all t′ ≥ m − 1,

with strict inequality unless p(i) =
(

1
m−1 , · · · , 1

m−1

)
. Using this in (5) and recombining the

terms, one easily gets that, for all m ≥ 3, all p = (p1, · · · , pm) and all i ∈ {1, · · · , m},

Φ(t, m, p) ≥ Φ
(
t, m, ( 1−pi

m−1 , · · · , 1−pi

m−1 , pi,
1−pi

m−1 , · · · , 1−pi

m−1 )
)
, for all t ≥ m, (6)

with strict inequality unless the pj, j ̸= i are all equal.

Now, if p ̸= p0, then there must exist i such that pj, j ̸= i are not all equal. Recalling
that Φ(t, m, p) is invariant under permutations of coordinates of p, we can, without loss of
generality, assume i = 1. Writing p1 = p, we then have

Φ(t, m, p) > Φ
(
t, m, (p, 1−p

m−1 , · · · , 1−p
m−1 )

)
, for all t ≥ m, (7)

Denoting the right-hand-side as g(p), our final job is to show that the function g on (0, 1) has
a unique global minimum at p = 1/m (for all t ≥ m!). Having thus reduced the problem to
one of ascertaining the global minimum of a function of a single variable, one would like to
believe that the job should now be easily completed through simple calculus. Unfortunately,
that is not to be! The second derivative g′′ seems intractable. Overcoming this hurdle
required a completely different idea. Denoting f(p) = 1−p

m−1 , for p ∈ (0, 1), the inequality (6)
can be paraphrased as saying that, for all m ≥ 3, all p = (p1, · · · , pm) and all i ∈ {1, · · · , m},

Φ(t, m, p) ≥ Φ
(
t, m, (f(pi), · · · , f(pi), pi, f(pi), · · · , f(pi) )

)
, for all t ≥ m, (8)

with strict inequality unless the pj, j ̸= i are all equal. Now, if p ̸= p0, then, as argued
above, we may assume that pj, j ̸= 1 are not all equal, so that, by denoting p1 = p, we get

Φ(t, m, p) > Φ
(
t, m, (p, f(p), · · · , f(p))

)
, for all t ≥ m. (9)

Now applying inequality (8) with i = 2 on the right-hand-side of (9) and then using invariance
of Φ under permutation of coordinates of abundance rate vector will give

Φ
(
t, m, (p, f(p), · · · , f(p))

)
≥ Φ

(
t, m, (f(p), f(f(p)), · · · , f(f(p)))

)
, for all t ≥ m. (10)

Repeating this and denoting f (n) to be the nth iterate of f , one gets the string of inequaities

Φ
(
t, m, (p, f(p), · · · , f(p))

)
≥ Φ

(
t, m, (f(p), f(f(p)), · · · , f(f(p)))

)

≥ · · · · · · · · · · · ·
≥ Φ

(
t, m, (f (n−1)(p), f (n)(p), · · · , f (n)(p))

)

≥ · · · · · · · · · · · ·
The job is now completed by invoking the Lemma stated below, the proof of which is fairly
easy and hence omitted. Using the Lemma and the fact that Φ

(
t, m, (p1, · · · , pm)

)
, for every

t ≥ m, is continuous in p1, · · · , pm (an easy exercise!), one can easily put together (9) and
the above string of inequalities to complete the proof of assertion (4).

Lemma 1: The function f(p) = 1−p
m−1 , p ∈ [0, 1], has a unique fixed point at p0 = 1

m
. Further,

p0 is a globally attracting fixed point in the sense that lim
n

f (n)(p) = p0, for all p ∈ [0, 1].
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2.2. Finite population

Handling the finite population case follows the same central ideas as in the infinite
population case, but, not surprisingly, the actual execution gets somewhat complicated.
Recall that in case the population size is finite, say, N , the abundance rate vectors are
necessarily of the form p =

(
N1
N

, · · · , Nm

N

)
, where the Ni are positive integers adding up to

N . If we assume N to be fixed, then the actual “abundance vector” N = (N1, · · · , Nm) can
be regarded as an equivalent representation of the underlying parameter, in place of the rate
vector p. We will follow this viewpoint and formulate everything in terms of the abundance
vector N as the parameter. Using notations similar to the infinite population case, we denote
Φ(t, N, m, N) to be the probability that for a population of size N with abundance vector N
for m species, more than t draws are needed to discover all the species. This probability, of
course, depends on whether the draws are with or without replacement, but we will use the
same notation. We ask the same question again, namely, is there a special abundance vector
that minimizes Φ(t, N, m, N), uniformly over all t ≥ m? The answer we get is ‘Yes’; there
is a special abundance vector N0, representing “almost equal” abundance for the m species,
that does the job, irrespective of whether draws are made with or without replacement.

Let us first explain what we mean by “almost equal” abundance and why we need
this. Note that all the m species being exactly equally abundant would mean that the Ni’s
must all be equal, which, of course, can happen only if the population size N is a multple
of m. That will certainly be an undesirable restriction on N . So, the right thing to do
would be to get, for any given N , as close as possible to equal abundance and that is what
is represented by the special vector N0, which is formally defined below.

For any abundance vector N = (N1, · · · , Nm), let d(N) = max{|Ni−Nj| : i ̸= j}. It is
obvious that d(N) is invariant under permutations of coordinates of N (as is Φ(t, N, m, N)).
Also, the larger d(N) is, the farther is N from “equal abundance”. A little reflection will
convince the reader that the minimum value of d(N) equals 0 only if N is a multiple of m and
is attained by N0 = (N

m
, · · · , N

m
); otherwise, the minimum value is 1, attained by the unique

(upto permutations) abundance vector of N0 =
(

N0 + 1, · · · , N0 + 1︸ ︷︷ ︸
k

, N0, · · · , N0︸ ︷︷ ︸
m−k

)
, where

N = mN0 + k, 0 < k < m. In other words, N0 is always the unique (upto permutations)
abundance vector satisfying d(N0) ≤ 1. It is clear that N0 represents, for any given N , an
admissible abundance vector where the m species are as equally abundant as possible. Here
is our main result for the finite population case.

Theorem 3: For a finite population of size N , consisting of m (2 ≤ m ≤ N) different
species,

Φ(t, N, m, N) ≥ Φ(t, N, m, N0), for all t ≥ m, (11)

irrespective of whether units are drawn with or without replacement. Further, the inequality
in (11) is strict (for all t, for which the left-hand-side is positive), unless N = N0 (upto
permutations).

As mentioned earlier, the main ideas of the proof are the same as those in case of
infinite population, but the execution of those ideas are far more complicated. That should
not be surprising because, in the infinite population case, we were dealing with continuous



2025] TWO INTERESTING COLLABORATIONS 37

variables pi, whereas now we are handling the problem of minimizing a function of positive
integer variables Ni. The difficulty gets a bit more multiplied by the fact that we also have
to treat the cases of sampling WR and WOR differently. Since the details are available in
Goswami and Sinha (2006), we just briefly outline the steps here.

As before, the idea is to first prove it for m = 2 and then use induction on m.
For m = 2, we can take any abundance vector (N1, N2), where (without loss of generality)
N1 ≤ N2, and write down explicit formulas for Φ

(
t, N, 2, (N1, N2)

)
in both WR and WOR

cases. Now, if N2 − N1 ≥ 2, one can, with some work, show that

Φ
(
t, N, 2, (N1, N2)

)
> Φ

(
t, N, 2, (N1 + 1, N2 − 1)

)
, for all t ≥ 2.

It is now just a matter of repeating this inequality over and over again to finally get (11) for
m = 2. To proceed with induction now, we need, as before, a formula relating Φ(·, ·, m, ·) to
Φ(·, ·, m−1, ·). This can again be obtained by using a similar kind of conditioning as before.
Indeed, for any m ≥ 3, N ≥ m and any abundance vector N = (N1, · · · , Nm), one can get
Φ(t, N, m, N) to be a weighted average of 1 and Φ(t−s, N −Ni, m−1, n(i)), 1 ≤ s ≤ t−m+1,
where the weights are p.m.f.s of an appropriate Binomial distribution or Hypergeometric
distribution, according as the draws are WR or WOR. Here, N(i), for any i, is the abundance
vector of size (m−1), obtained by just removing Ni from N. Using the induction hypothesis
now, one can get an inequality analogous to (6), namely,

Φ(t, N, m, N) ≥ Φ(t, N, m, N(i)), for all t ≥ m and each 1 ≤ i ≤ m, (12)

where N(i) is the abundance vector whose ith coordinate is the same as that of N, that
is, Ni, while the rest of the coordinates are those of an abundance vector of size (m − 1),
adding up to N − Ni, that represents “as equal abundance as possible” for m − 1 species in
a population of size N − Ni. An explicit description is given in Goswami and Sinha (2006).
Further, induction hypothesis will also imply strict inequality in (12), unless d(N(i)) ≤ 1.

Now comes the final step. Recall that, the final step in the infinite population case
presented a little hurdle and we needed to use a result like Lemma 1 to complete the proof.
Here also, the job is far from over. The passage from (12) to completion of the proof of
Therem 3, poses a significant challenge. Luckily, with some effort, we were able to formulate
and prove a result that helped us cross this last hard mile. This result played a role very
analogous to that played by Lemma 1 in Section 2.1. Unfortunately (but perhaps not
surprisingly), neither the statement of the result nor its proof are as straightforward as
Lemma 1. For the sake of brevity of this article, we refrain from stating the result here and
also skip the details of how the lemma is used to complete the proof of Theorem 3. An
interested reader will find all the details in Goswami and Sinha (2006).

3. Sampling from a social network: optimal strategies

A social network is a population equipped with an irreflexive binary relation. Denot-
ing the binary relation by⇝, we say that two distinct units i and j have some “tie” if either
i⇝ j or j ⇝ i. We say that there is a “symmetric tie” or a “reciprocal tie” between units i
and j if both i⇝ j and j ⇝ i hold. Given a social network, one among several quantities of
interest for sociologists, is the extent of reciprocity in the network. Many different measures
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have been proposed for this, among which we consider here the simplest one, proposed by
Rao and Bandyopadhayay (1987). It is defined as

θ = 1
N(N − 1)

∑ ∑

i,j∈Ω
i ̸=j

θ(i, j), (13)

where Ω denotes the population, N the size of the population and θ(i, j) is defined to be 1
if both i⇝ j and j ⇝ i hold and defined to be 0 otherwise.

The problem that we investigated in Goswami, Sinha and Sengupta (1990) is that of
estimating the population parameter θ unbiasedly on the basis of “data available” from a
sample of size n drawn from the population. Note that if SRSWOR is used to draw a sample
s of size n, then one can easily see that the usual sample mean

θ̂(s) = 1
n(n − 1)

∑ ∑

i,j∈s
i ̸=j

θ(i, j) (14)

is an unbiased estimator of θ. The question we asked is whether one can do better (in
the sense of reducing the variance) by adapting an appropriate sequential sampling scheme,
coupled with an appropriate unbiased estimator. To keep the question alive, it is very
important to turn our attention to a clear understanding of “data available from the sample”.

To clarify our point, let us denote θi, for each i ∈ Ω, to be the average number of
symmetric ties in which i is involved, that is, θi = 1

N−1
∑
j

θ(i, j). Clearly then, θ is the

population mean of the θi and therefore, if one stipulates that from a sample drawn from
the population, the value of θi will be “available” for each sample unit i, then our question
stops there. This is because, in that case, the admissibility of the (SRSWOR, sample mean)
strategy is a classical result. However, a large number of practitioners in this field are strongly
opposed to the stipulation that θi for sample units i are “observable”. So, let us place here
the wide consensus on what is “observable” and what is not.

For each population unit i, the “out-set” and “in-set” of i are defined respectively
as O(i) = {j : i ⇝ j} and I(i) = {j : j ⇝ i}, with their cardinalities, denoted by di

and ei respectively, being called the “out-degree” and “in-degree” of i. It then follows that,
θi = 1

N−1

∣∣∣O(i)∩I(i)
∣∣∣, for any i ∈ Ω, and so information on both O(i) and I(i) is required to

know θi. The widely held opinion of practitioners is that, while somewhat reliable information
on O(i) may be available from a sample unit i, but information on I(i) is highly unreliable.

We accept this premise, namely, that the only information “available” from a sample
unit i, that is reliable and useful, is its out-set O(i). This would mean that the admissibility
of (SRSWOR, sample mean) strategy is no longer guaranteed and therefore, our search for
a better strategy becomes valid and meaningful.

Indeed, what we were able to achieve in Goswami, Sinha and Sengupta (1990) is
to stitch up an alternative strategy that performs uniformly better than the (SRSWOR,
sample mean) strategy. The main idea behind our proposed strategy essentially orginated
from a detailed examination of the case with sample size n = 2. So, we are going to describe
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that special case in detail here and follow it up by just giving an outline of the scheme for
general sample size n.

Just to keep things simple, we make an additional assumption that di > 0, for each i.
We assure the reader that this is not at all indispensable and can be easily done away with.
From the underlying stipulation that information on O(i) is available from each sample unit
i, it is easy to see that the value of θ(i, j) will be known for each pair of units (i, j) in the
sample. Now, in case of sample size n = 2, the unbiased estimator that the (SRSWOR,
sample mean) strategy proposes boils down to

θ̂1(s) = θ(i, j), if s = {i, j}. (15)

What we propose in our alternative strategy is the estimator

θ̂2(s) = di

N − 1θ(i, j), if s is the ORDERED sample (i, j). (16)

It is fairly easy to simplify E
(
θ̂2

)
= ∑ ∑

i,j∈Ω
i ̸=j

P
(
s = (i, j)

)
di

N−1θ(i, j) and hence show that θ̂2 is

unbiased. What is really important is that one can do a little computation to get the second
moments of the unbiased estimators (15) and (16) and deduce that

E
(
θ̂

2
1

)
− E

(
θ̂

2
2

)
= 1

N(N − 1)
∑ ∑

i,j∈Ω
i ̸=j

(
1 − di

N − 1
)

θ(i, j) ≥ 0. (17)

An immediate consequence of (17) is that θ̂2 performs uniformly better than θ̂1, in the sense
of reducing variance. Further, the right-hand-side of (17) also shows that θ̂2 has strictly
smaller variance except in the extreme case when di = N − 1 for all i with ∑

j θ(i, j) > 0.
Of course, noting that our proposed estimator θ̂2 is “order dependent”, an initiated reader
will immediately see an opportunity of further improving on it by using the classical idea
of what is widely known as “Blackwellization”. By “averaging over order”, one gets an even
more improved estimator given by

θ̂3(s) = 2didj

(N − 1)(di + dj)
θ(i, j), if s = {i, j}. (18)

Having thus described our improved strategy in detail for the case n = 2, it is quite
natural now to try and extend this idea for a general sample size n. This (and much more) was
indeed done and reported in detail in Goswami, Sinha and Sengupta (1990). In particular,
we were able to exhibit a sequential strategy (p0, e0), for any sample size n, that performs
uniformly better than a size n (SRSWOR, sample mean) strategy. An initiated reader would
surely recall that a sampling stategy consists of a pair (sampling scheme, estimator). Our
proposed sequential strategy (p0, e0) is described below, from which it will be clear to the
reader that it is a generalization of what was done for n = 2.

Sequential strategy (p0, e0): For distinct population units i1, · · · , ik, let us denote

O(i1, · · · , ik) =
(
O(i1) ∪ · · · ∪ O(ik)

)
\ {i1, · · · , ik} and d(i1, · · · , ik) = |O(i1, · · · , ik)|.
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• p0 : First draw a SRSWOR of size (n − 1), say, {i1, · · · , in−1}

• p0 : Now draw a random unit, say, in from O(i1, · · · , in−1)

• e0 : For s = {i1, · · · , in−1; in} define

e0(s) = 1
n(n − 1)

∑ ∑

1≤k,l≤n−1
k ̸=l

θ(ik, il) + 2d(i1, · · · , in−1)
n(n − 1)(N − n + 1)

n−1∑

k=1
θ(ik, in) (19)

The following theorem captures one of our main results in the context of this investigation.

Theorem 4: For every n ≥ 2, the sequential sampling strategy (p0, e0) of sample size n
perfoms better than the size n (SRSWOR, sample mean) strategy uniformly, in the sense of
having smaller variance.

Did we bump into this sequential strategy by some magic or chance? The answer to
that is an emphatic ’No’. In fact, what we were able to do is to describe in detail the string
of main ideas that essentially leads one to not just this particular sequential strategy (p0, e0),
but to a whole class of possible sequential strategies, each of which beats the (SRSWOR,
sample mean) strategy uniformly. The strategy (p0, e0) is just a special case. The story
behind the closed doors is that we did not arrive at our sequential strategies at one go.
We did it in two steps. To briefly describe it, let us fix n > 2 and denote the (SRSWOR,
sample mean) strategy of size n by (p, e). In our first step, we construct a variable sample
size strategy (p∗, e∗), with sample size varying between n and n − 1, which is equivalent to
(p, e), in the sense that Ep∗(e∗) = Ep(e) and Ep∗(e∗2) = Ep(e2). Then, in our next step, we
construct a sequential strategy (p∗∗, e∗∗) of sample size n and show that it performs uniformly
better than (p∗, e∗) and hence uniformly better than (p, e). The important point is that in
this last step, we actually prescribe not just one sequential strategy but a whole class of
possible sequential strategies (p∗∗, e∗∗) of sample size n, each of which performs uniformly
better than (p∗, e∗) (and hence, better than (p, e)). It will be too much to give the complete
descriptions of all of these and the corresponding proofs here. For complete details, we refer
to Goswami, Sinha and Sengupta (1990).

4. Some concluding remarks

Section 2.1 :

It is well-known that an arbitrary p vector is “majorized” by the vector p0 and hence
the results on Schur concave functions will directly apply, provided one can establish Schur
concavity of Φ(t, m, p) as a function of p. This is worth exploring (see Marshall and Olkin
(1979)). Another question that occured to the author while taking a fresh relook at the paper
just before the talk, is that p0 is known to have the maximum Shannon entropy among all
probability vectors p of size m. It is worth investigating whether that has any role to play.
Cracking this may lead to formulating a large number of more general problems and getting
interesting answers to those.
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Section 2.2 :

Our proposed sequential strategy (p0, e0) (and, more generally, (p∗∗, e∗∗)) leaves sev-
eral questions unanswered. Firstly, the estimator e0 is order dependent and so, it leads one
to possibly think of improving it further by using “Blackwellization” (that is, symmetriza-
tion). We tried it, but the variance of the symmetrized version seemed rather intractable.
Another more significant limitation with (p0, e0) is that the sampling design p0 differs very
little from SRSWOR, in the sense that the sequential nature of p0 appears only while draw-
ing the last unit. This would mean that the improvent wouldn’t mean much when n is large
(as is evidenced by the expression for variance). So, a natural question is whether we can
devise a strategy that brings in the sequential nature much earlier, thereby hoping to make
more significant improvement over (p, e). Some efforts in this direction were undertaken for
sample size n = 3. The results we obtained are reported in Goswami, Sinha and Sengupta
(1990). However, the issue remains wide open for general n and is certainly worth pursuing.
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Abstract

Tail equivalence between two distribution functions was introduced in Resnick, S.I.
(1971). Tail equivalence and its applications, Journal of Applied Probability, 8(1), 136-156.
After clarifying a few properties and giving examples of classes of tail equivalent distributions,
this article looks briefly at some interesting applications of tail equivalence in establishing
tail behaviours of mixtures and order statistics, in particular, of limit laws of normalised k-th
upper order statistics from a random sample, for fixed integer k. The tail behaviours of such
limit laws have been studied via tail equivalence. It turns out that tail equivalence simplifies
much of the apparent difficulty in handling the tails of such limit laws. A consequence is
a method of generating random observations from regularly varying tails having different
exponents of regular variation.

Key words: Extreme value theory; Limit laws; Mixtures; Partial maximum; Tail equivalence;
Upper order statistics.

AMS Subject Classifications: 60F05, 60G70, 62G30.

1. Introduction

Resnick (1971) introduces the concept of tail equivalence between two distribution
functions (dfs) on the real line R. Here tail refers to right tail and we confine to right tail in
this article. Similar results for left tail can be derived from the results discussed here. Tail
equivalence divides the class of all dfs on the real line into equivalence classes. In this article,
after giving known definitions of heaviness of tail, illustrations of the use of tail equivalence to
study the tail behaviour of limit laws of normalised mixtures and k-th upper order statistics
from a random sample for fixed integer k are given, under fixed and random sample sizes.
These results were derived by the author and co-workers in several articles.

1.1. Tail equivalence

Definition (Resnick, 1971): Two dfs F and G on R are said to be tail equivalent, denoted
by F

T= G, if
lim

x→∞
1 − F (x)
1 − G(x) = A, 0 < A < ∞. (1)

Sreenivasan Ravi
ravi@statistics.uni-mysore.ac.in



44 SREENIVASAN RAVI [SPL. PROC.

We refer to Resnick (1971) for applications of tail equivalence in extreme value theory. The
following are easy consequences of the definition:

• If F
T= G, and r(F ) = sup{x ∈ R : F (x) < 1} denotes the right extremity of F, then

r(F ) = r(G), finite or infinite. This is because, otherwise, A in (1) will be 0 or ∞
according as r(F ) < r(G) ≤ ∞ or r(G) < r(F ) ≤ ∞, respectively.

• Since F
T= F with A = 1 in (1), the relation T= is reflexive.

• If F
T= G with the limit in (1) as A, then G

T= F with the limit in (1) as 1/A, so that
the relation T= is symmetric.

• If F
T= G with the limit in (1) as A, and G

T= H with the limit in (1) as B, then
F

T= H with the limit in (1) as AB, so that the relation T= is transitive, proving that
the relation is an equivalence relation.

Now we give some examples of tail equivalent families of dfs on R.

Examples of classes of tail equivalent dfs:
• Family of exponential distributions with different location parameters:

If F (x; µ) = 1−ex−µ, x > µ, and 0 elsewhere, with µ ∈ R as a location parameter, then
limx→∞

1−F (x;µ1)
1−F (x;µ2) = e−(µ1−µ2). However, note that family of exponential distributions

with different scale parameters, is not a tail equivalent class.

• Family of Pareto distributions with location and scale parameters:
If F (x; µ, σ) = 1− 1

(x−µ
σ ) , x > µ+σ, and 0 elsewhere, with µ ∈ R as a location parameter

and σ > 0 as a scale parameter, then limx→∞
1−F (x;µ1,σ1)
1−F (x;µ2,σ2) = σ2

σ1
.

• Family of log-Pareto distributions with scale and shape parameters:
If F (x; µ, σ) = 1 − 1

ln( x
µ)σ , x > µe1/σ, and 0 elsewhere, with µ > 0 as a scale parameter

and σ > 0 as a shape parameter, then limx→∞
1−F (x;µ1,σ1)
1−F (x;µ2,σ2) = σ2

σ1
.

1.2. Heavy tails

We refer to Praveena and Ravi (2023, 2025) and Nair et al. (2023) for definitions and
results mentioned below and some recent work. We give some definitions now, followed by
some examples.

Definitions:

• A df F on R is heavy tailed if lim supx→∞
1 − F (x)

e−x
= ∞.

• If not, F is said to be light tailed.

• A df F on R is super-heavy tailed to the right if lim supx→∞
1 − F (x)

x−α
= ∞, for all

α > 0.
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Examples:

• Pareto df F (x) = 1 − 1
xα

, x > 0, α > 0, Weibull df with shape parameter greater than
1, are examples of heavy tailed dfs.

• Normal, exponential dfs are examples of light tailed dfs.

• Cauchy, Fréchet, Burr dfs are super-heavy tailed distributions.

• But there can be heavier tails like dfs log-Pareto, log-log-Pareto, etc.

1.3. Extremes and upper order statistics

The extreme value laws: If X1, X2, . . . , are independent and identically distributed ran-
dom variables with common df F, Mn = max{X1, . . . , Xn}, and limn→∞ P (Mn ≤ anx+bn) =
limn→∞ F n(anx + bn) = G(x), x ∈ C(G), the set of all continuity points of the limit df G,
then we denote this as F ∈ Dl(G). It is known that G is a type of the extreme value laws,
given by:

• Fréchet law: Φα(x) = exp(−x−α), 0 ≤ x,

• Weibull law: Ψα(x) = exp(−|x|α), x < 0,

• Gumbel law, Λ(x) = exp(− exp(−x)), x ∈ R; where α > 0 a parameter.

Max stability: The extreme value laws satisfy the following stability property:

Φn
α

(
n1/αx

)
= Φα(x), Ψn

α

(
n−1/αx

)
= Ψα(x), Λn(x + log n) = Λ(x), x ∈ R.

1.4. Order statistics and k-th extremes

We denote the order statistics of {X1, . . . , Xn} by X1:n ≤ . . . ≤ Xn:n and assume
that F ∈ Dl(G) for some G. The df of the k-th upper order statistic Xn−k+1:n, for a fixed
positive integer k is given by

Fk:n(x) = P (Xn−k+1:n ≤ x) =
k−1∑

i=0

(
n

i

)
F n−i(x)(1 − F (x))i, x ∈ R.

The limit Gk(x) = limn→∞ Fk:n(anx + bn) is given by

Gk(x) = G(x)
k−1∑

i=0

(− log G(x))i

i! , x ∈ {y : G(y) > 0}.

2. Applications of tail equivalence to tail behaviour

The following questions on tails of dfs were answered by using tail equivalence.
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2.1. Questions and motivation

• If F (.) = αF1(.) + (1 − α)F2(.) is a mixture df with component dfs F1, F2, how are the
tails of F related to those of F1, F2? Or, how is F ∈ Dl(.) related to Fi ∈ Dl(.), i =
1, 2?

• What is the tail of Gk like? Or, Gk ∈ Dl(.)?

2.2. On mixtures

The following discussion is from Praveena et al. (2019).

• If F is the mixture df, r(F ) = max{r(F1), r(F2)}.

• If F ∈ Dl(.) with some norming constants and r(F1) < r(F2), then F2 ∈ Dl(.) with
the same norming constants. This is because F

T= F2.

• If F ∈ Dl(.) with some norming constants and r(F1) = r(F2), then nothing can be
said about the max domains to which F1, F2 may belong to. Examples have been given.

• If F1
T= F2 and one of them belong to Dl(.) with some norming constants, then F ∈ Dl(.)

with the same norming constants.

2.3. On k-th extremes via tail equivalence

The discussion here is from Ravi and Manohar (2018).

A recurrence relation: For any df F, fixed integer k ≥ 1, define
Fk(x) = F (x)

k−1∑
i=0

(− ln F (x))i

i! , x ∈ {y : F (y) > 0}. The df Fk satisfies the recurrence
relation

Fk+1(x) = Fk(x) + F (x)
k! (− ln F (x))k, k ≥ 1, x ∈ {y : F (y) > 0}.

The pdf of Fk+1 is

fk+1(x) = f(x)
k! (− ln F (x))k, k ≥ 1, x ∈ {y : F (y) > 0}.

A result for fixed sample size: If F is a df with pdf f, then for every positive integer
k, (1 − F (x))k is tail of the df Hk(x) = 1 − (1 − F (x))k , x ∈ R, and Hk is also
absolutely continuous with pdf H ′

k(x) = k{1 − F (x)}k−1f(x), x ∈ R. Further, the following
are true:

• If F ∈ Dl(Φα), then r(Hk) = r(F ) = ∞, and Hk ∈ Dl(Φkα) with an =
F −(1 − (1/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Hk) = r(F ) < ∞, and Hk ∈ Dl(Ψkα) with an =
r(F ) − F −(1 − (1/n)1/k), bn = r(F ).
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• If F ∈ Dl(Λ), an = v(bn) and bn = F −
(
1 − 1

n

)
then r(Hk) = r(F ), and

Hk ∈ Dl(Λ) with an = v(bn)
k

, bn = H−
k (1 − 1/n).

Another result for fixed sample size: Let rv X have absolutely continuous df F

with pdf f and k be a positive integer. Then for Fk(x) = F (x)∑k−1
i=0

(− ln F (x))i

i! ,

x ∈ {y : F (y) > 0}, the following results are true:

• Fk is a df with r(Fk) = r(F ), pdf fk(x) = f(x)
(k − 1)!(− ln F (x))k−1, x ∈ {y ∈ R :

F (y) > 0}; and limx→r(F )
1 − Fk(x)

(1 − F (x))k
= 1

k! , so that Fk
T E= Hk.

• If F ∈ Dl(Φα), then r(Fk) = r(F ) = ∞, and Fk ∈ Dl(Φkα) with an =
F −(1 − (k!/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Fk) = r(F ) < ∞, and Fk ∈ Dl(Ψkα) with an =
r(F ) − F −(1 − (k!/n)1/k), bn = r(F ).

• If F ∈ Dl(Λ), an = v(bn) and bn = F −
(
1 − 1

n

)
then r(Fk) = r(F ), and

Fk ∈ Dl(Λ) with an = v(bn)
k

, bn = F −
k (1 − 1/n).

2.3.1. Results for random sample size

Uniform k-th extremes: Suppose that n in the previous section is replaced by a discrete
uniform rv Nn with P (Nn = r) = 1

n
, r = m + 1, m + 2, . . . , m + n, Nn independent of the

iid rvs X1, X2, . . . , m ≥ 1 a fixed integer. We look at the tail behaviour of the limit of
linearly normalized XNn−k+1:Nn . Observe that XNn−k+1:Nn is well defined for 1 ≤ k ≤ m.
We have Fk:Nn(x) = P (XNn−k+1:Nn ≤ x) = ∑∞

r=m P (XNn−k+1:Nn ≤ x, Nn = r)
= ∑∞

r=m

∑k−1
i=0

(
r
i

)
F r−i(x)(1 − F (x))iP (Nn = r), x ∈ R. The following results are true:

• If F ∈ Dl(G) for some max stable df G then limn→∞ Fk:Nn(anx + bn) is equal to
Uk,G(x) = k{ 1−G(x)

− ln G(x)} − G(x)∑k−1
l=1 (k − l) (− ln G(x))l−1

l! , x ∈ {y ∈ R : G(y) > 0},

G = Φα or Ψα or Λ.

• For any df F, and fixed integer k ≥ 1, let Uk,F (x) = k{ 1−F (x)
− ln F (x)} − F (x)∑k−1

l=1 (k −
l) (− ln F (x))l−1

l! , x ∈ {y : F (y) > 0}. If X has df F, pdf f, k is a fixed positive inte-

ger, and U1,F (x) = 1 − F (x)
− ln F (x) , x ∈ {y : F (y) > 0}, then U1,F is a df with r(U1,F ) =

r(F ), pdf u1,F (x) = f(x)
F (x)

U1,F (x) − F (x)
− ln F (x) = f(x)

F (x)

{
1 − F (x) + F (x) ln F (x)

(− ln F (x))2

}
, x ∈

{y ∈ R : F (y) > 0}; and limx→r(F )
1 − U1,F (x)
1 − F (x) = 1

2 so that U1,F
T= F.
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For the family of dfs Uk,F and Hk(x) = 1 − (1 − F (x))k, x ∈ R, the following results are
true.

• Uk,F is a df with r(Uk,F ) = r(F ), pdf uk,F (x) = kf(x)
(− ln F (x))2

{
1

F (x)−
∑k

l=0
(− ln F (x))l

l!

}
, x ∈ {y ∈ R : F (y) > 0}, limx→r(F )

1 − Uk,F (x)
(1 − F (x))k

= 1
(k + 1)! , and

Uk,F
T= Hk.

• If F ∈ Dl(Φα), then r(Uk,F ) = r(F ) = ∞, Uk,F ∈ Dl(Φkα) with an = F −(1 −
((k + 1)!/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Uk,F ) = r(F ) < ∞, Uk,F ∈ Dl(Ψkα) with an = r(F ) −
F −(1 − ((k + 1)!/n)1/k), bn = r(F ).

• If F ∈ Dl(Λ), an = v(bn) with bn = F −
(
1 − 1

n

)
then r(Uk,F ) = r(F ), Uk,F ∈

Dl(Λ) with F = Uk,F , G = Λ, an = v(bn)
k

, bn = U−
k,F (1 − 1/n).

• The df Uk,F satisfies the recurrence relation

Uk+1(x) = Uk,F (x) + U1,F (x) − F (x)
k∑

l=1

(− ln F (x))l−1

l! .

Geometric k-th extremes: Let Nn be a shifted geometric rv with pmf P (Nn = r) =
pnqr−m

n , r = m, m + 1, m + 2, . . . , 0 < pn < 1, qn = 1 − pn and limn→∞ npn = 1.

• If F ∈ Dl(G) for some max stable law G, then for fixed integer k, 1 ≤ k ≤ m,
limn→∞ Fk:Nn(anx + bn) is equal to

Rk,G(x) = 1 −
(

− ln G(x)
1 − ln G(x)

)k

, x ∈ {y ∈ R : G(y) > 0}, with

Rk,G(x) =





1 −
(

1
1+xα

)k
if G(x) = Φα(x),

1 −
(

(−x)α

1 + (−x)α

)k

if G(x) = Ψα(x),

1 −
(

e−x

1+e−x

)k
if G(x) = Λ(x).

The first two are Burr distributions of XII kind (Burr, 1942) and the last is the logistic
distribution.

• If X has df F, pdf f, k a positive integer and Rk,F is as defined above, then the
following are true:

• Rk,F is a df with pdf rk,F (x) = kf(x)(− ln F (x))k−1

F (x)(1 − ln F (x))k+1 , x ∈ {y ∈ R : F (y) > 0},

r(Rk,F ) = r(F ), and limx→r(F )
1 − Rk,F (x)
(1 − F (x))k

= 1, and Rk,F
T= Hk.
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• If F ∈ Dl(Φα), then r(Rk,F ) = r(F ) = ∞, and Rk,F ∈ Dl(Φkα) with an =
F −(1 − (1/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Rk,F ) = r(F ) < ∞, and Rk,F ∈ Dl(Ψkα) with F =
Rk,F , G = Ψkα, an = r(F ) − F −(1 − (1/n)1/k), bn = r(F ).

• If F ∈ Dl(Λ), an = v(bn) and bn = F −
(

1 − 1
n

)
then r(Rk,F ) = r(F ), and

Rk,F ∈ Dl(Λ) with F = Rk,F , G = Λ, an = v(bn)
k

, bn = R−
k,F (1 − 1/n).

The Burr connection: Burr (1942) proposed twelve explicit forms of dfs which have since
come to be known as the Burr system of distributions. A number of well-known distributions
such as the uniform, Rayleigh, logistic, and log-logistic are special cases of Burr dfs.

A df W is said to belong to the Burr family if it satisfies the differential equation
dW (x)

dx
= W (x)(1 − W (x))h(x, W (x)), where h(x, W (x)) is a non-negative function for

x for which the function is increasing, h(x, W (x)) could be h(x, W (x)) = h1(x)
W (x) where

h1(x) ≥ 0. Then dW (x)
dx

= (1 − W (x))h1(x).

The dfs Rk,F belong to the Burr family.

Negative Binomial k-th extremes: Let Nn be a shifted negative binomial rv with
P (Nn = l) =

(
l−m+r−1

l−m

)
pr

nql−m
n , r = m, m + 1, m + 2, . . . , where 0 < pn < 1, qn = 1 − pn

and limn→∞ npn = 1.

If F ∈ Dl(G) for some G, then for fixed integer k, 1 ≤ k ≤ m,
limn→∞ Fk:Nn(anx + bn) is equal to

Tk,G(x) =
k−1∑

l=0

(
l + r − 1

l

)
(− ln G(x))l

(1 − ln G(x))r+l
, x ∈ {y ∈ R : G(y) > 0}.

The df Tk,F satisfies the recurrence relation

Tk+1,F (x) = Tk,F (x) +
(

k + r − 1
k

)
(− ln F (x))k

(1 − ln F (x))k+r
, k ≥ 1, x ∈ R.

Its pdf is tk+1,F (x) = 1
B(r, k + 1)

f(x)
F (x)

(− ln F (x))k

(1 − ln F (x))r+k+1 , k ≥ 1, x ∈ R.

Let rv X have df F with pdf f and k be a fixed positive integer. Then for Tk,F ,
the following results are true.

• Tk,F is a df with pdf tk,F (x) = 1
B(r, k)

f(x)
F (x)

(− ln F (x))k−1

(1 − ln F (x))r+k
, x ∈ {y ∈ R : F (y) > 0},

right extremity r(Tk,F ) = r(F ), and limx→r(F )
1 − Tk,F (x)
(1 − F (x))k

= k

B(r, k) .
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• If F ∈ Dl(Φα), then r(Tk,F ) = r(F ) = ∞, and Tk,F ∈ Dl(Φkα) with an =
F −(1 − (1/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Tk,F ) = r(F ) < ∞, and Tk,F ∈ Dl(Ψkα) with an =
r(F ) − F −(1 − (1/n)1/k), bn = r(F ).

• If F ∈ Dl(Λ), an = v(bn) and bn = F −
(

1 − 1
n

)
then r(Tk,F ) = r(F ), and

Tk,F ∈ Dl(Λ) with an = v(bn)
k

, bn = T −
k,F (1 − 1/n).

3. Conclusion

In this article, tail behaviour of several interesting tails are explored through the
concept of tail equivalence which simplifies several proofs. After recalling the definition of
tail equivalence and clarifying some simple properties of tail equivalence, the article explores
tail behaviour of mixtures of dfs and the limit laws of linearly normalised k upper order
statistics of a random sample of size n, when n is fixed and n is replaced by Uniform,
Geometric and Negative Binomial random sample sizes. Several results stated here can be
used to simulate random observations from a variety of tails.
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Abstract

Stepped wedge designs (SWDs) are increasingly gaining popularity in cluster ran-
domized trials. This review provides a comprehensive overview of stepped wedge cluster
randomised trials (SW–CRTs), beginning with their historical development and rationale in
the Introduction. We classify and compare different types of stepped wedge designs, high-
lighting their relative advantages and practical considerations. We then examine the primary
statistical models used for analysis, key approaches to sample size determination, and the
impact of various intracluster and temporal correlation structures on trial inference. Special
attention is given to trials with unequal cluster sizes, addressing design adaptations and
efficiency implications. We review recent advances in Bayesian optimal design strategies for
SW–CRTs and extend the discussion to include adaptations for non-normal outcome data.
As an alternative framework, we explore the staircase design, comparing its logistical and
analytical features with those of traditional stepped wedge trials.

Key words: Staircase design; Stepped wedge trials; Cluster randomized trials; Optimal de-
sign; Bayesian design.

1. Introduction

Cluster Randomized Trials (CRTs) are pivotal in evaluating interventions where
groups, rather than individuals, are randomized. Statistical methods for CRTs have been
the focus of extensive research over the past several decades and are well-documented in
various methodological reviews [Donner and Klar (2000), Turner et al. (2017a), and Turner
et al. (2017b)]. Among CRT designs, the stepped wedge cluster randomized trial (SW-CRT)
has garnered increasing attention, alongside traditional parallel and crossover CRTs [Brown
and Lilford (2006), Mdege et al. (2011), Hemming et al. (2015)]. While parallel designs ran-
domize clusters to fixed intervention or control arms and crossover designs alternate clusters
between arms over time, the SW-CRT employs a unidirectional roll-out of all the clusters
from control to intervention in sequential ”steps”. A SW–CRT comparing control and in-
tervention conditions is illustrated in Table 1. The order in which the different individuals
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or clusters receive the intervention is random. The study continues until all the clusters
are assigned to the intervention and outcome data will be collected from each cluster. The
SW design offers a versatile framework for CRTs, particularly in public health and service
delivery. SW–CRTs offer several distinctive advantages including:

• Evaluation During Rollout: SW–CRTs are particularly useful for assessing the
community level effectiveness of an intervention while it is being gradually rolled out
across clusters.

• Acceptability (Social, Political, Ethical): Since all clusters eventually receive the
intervention, this design is often more acceptable to stakeholders, especially in contexts
where withholding a potentially beneficial intervention may be controversial.

• Logistical and Financial Feasibility: In many cases, it is not practical due to
resource, personnel, or policy constraints to implement the intervention across all units
simultaneously. SW–CRTs accommodate such staged implementation.

• Statistical Efficiency: Because each cluster serves as its own control at different time
points, this design can increase statistical efficiency and may require fewer clusters
compared to parallel-arm trials.

While its ethical and practical benefits are significant, researchers must address analytical
complexities and potential biases. Hemming and Taljaard (2020) discussed several key factors
that should be considered when implementing a SW-CRT.

The Gambia Hepatitis Intervention Study (Hall et al. (1987)) is the first ever reported
stepped wedge trial which is also the longest running. The study was set up in 1986 to
investigate whether vaccination against hepatitis B in infancy could reduce the risk of liver
cancer over the next 30 to 40 years of life. The usefulness of SW-CRTs was recognized only
later, but they are now highly regarded and widely used in medical research, as demonstrated
by a recent review by Varghese et al. (2025), which examines studies published in high-impact
journals. Some previous reviews on SW–CRTs include Brown and Lilford (2006) and Beard
et al. (2015).

This paper focuses on reviewing recent statistical developments related to the design
of SW-CRT trials. In doing so, we also introduce several variants of SW-CRTs that are widely
used in current practice. The organization of this article is as follows: Section 2 reviews types
of stepped wedge designs; Section 3 covers models, sample size determination and correlation
structures; Section 4 examines unequal cluster sizes; Section 5 presents Bayesian optimal SW
designs; Section 6 addresses non-normal outcome data; Section 7 introduces the staircase
design as an alternative to SWD; and Section 8 provides discussion and conclusions.

2. Types of stepped wedge designs

Following (Copas et al., 2015), SW–CRTs can be broadly classified in three categories:
(i) Cohort SW–CRTs; (ii) Cross–sectional; and (iii) Continuous recruitment SW–CRTs.
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2.1. Cohort SW–CRTs

When researchers track a group of individuals over time and assess their health out-
comes at regular intervals, this is referred to as a cohort study design. A cohort design further
classified in two categories: (a) Closed cohort SW–CRTs and (b) Open cohort SW–CRTs.
In a stepped wedge trial, where the same clusters are revisited at different time points, it is
common to measure outcomes for some or all of the same individuals on multiple occasions
some before and some after the intervention is introduced. When the measurements are
taken from same individuals at each time point in a cluster, the design is known as a closed
cohort stepped wedge trial (Li et al. (2018a), Li (2020), Gasparini et al. (2025)). While this
is a reasonably appropriate design, it may not always be realistic. In practice, it is more
likely that participants may enter or leave the study over time. So, when some individuals
are the same and others differ across measurement periods within a cluster, the design is
referred to as an open cohort stepped wedge trial (Copas et al. (2015), Kasza et al. (2020)).
Here, the term ”open cohort” reflects the natural flow of participants in and out of the study
population.

2.2. Cross–sectional SW–CRT

Sometimes clusters that are very large or densely populated, where researchers do not
try to measure outcomes for everyone, but instead select a small, random sample at each
visit. In that case, the chance of observing the same person twice is minimal. At this point,
no individual is followed longitudinally across multiple time points (steps). Instead, each
sample taken from a cluster represents a snapshot or cross-section of the population at that
specific time. This type of design is known as a repeated cross-section stepped wedge trial
(Hussey and Hughes (2007), Martin et al. (2019), Thompson et al. (2017)). It is relatively
logistically simpler than cohort SW, since we do not need to track the same individuals over
months, or in other words, we do not have to deal with individual’s auto correlation.

2.3. Continuous recruitment SW–CRTs

In aforementioned SW–CRTs, we have described scenarios where extending the du-
ration of a cluster randomized trial involves returning to the same clusters multiple times
to collect outcome data. But what if, instead, participants enter and exit the trial in a
continuous flow like an ongoing stream of eligible individuals? In this case, extending the
trial simply means recruiting over a longer period of time, allowing more people from that
continuous stream to be included. This type of design is known as a continuous recruitment
stepped wedge trial (Hooper and Copas (2019), Hooper et al. (2020)). An example of a
this type of stepped wedge trial is the Gambia Hepatitis Intervention Study discussed in
the Introduction section. In this study, new eligible participants (newborn infants) arrived
at a fairly steady rate, as is natural. In any continuous one year period of recruitment the
researchers expected to recruit around 30,000 children into the study, and by scheduling the
trial over a total of four years they hoped to see 120,000.
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Table 1: A T–period stepped wedge design with T − 1 sequences, comparing the
control (in grey) and treatment (in blue).

Sequence Time
0 1 2 3 4 5

1
2
3
4
5

Cluster unexposed to intervention Cluster exposed to intervention

3. Models, sample size determination and correlation structures in
SW–CRTs

This section reviews key developments in the statistical methodology of SW-CRTs.
We begin by exploring various modeling structures, followed by a review of sample size
determination methods and the different forms of correlation, a key aspect of SW–CRTs.

3.1. Models

Broadly, SW–CRTs are analyzed using conditional (cluster/subject/time specific) and
marginal (population average) models. Conditional models, commonly implemented via
linear mixed effects models (LMMs) or generalized linear mixed-effects models (GLMMs),
account for clustering through random effects and estimate intervention effects conditional
on these latent cluster/subject/time–level factors. Conditional models are utilized by Hussey
and Hughes (2007), Hughes et al. (2015), Hooper et al. (2016), Girling and Hemming (2016),
Kasza et al. (2019), Kasza and Forbes (2019), and Hemming et al. (2018).

Marginal models, typically fitted via generalized estimating equations (Liang and
Zeger (1986)), directly target the population average treatment effect, offering robust infer-
ence even under correlation structure misspecification. Within each framework, a variety
of correlation structures such as exchangeable, nested exchangeable, and exponential decay
have been proposed to capture within and between period intraclass correlations (ICCs).
Marginal models are used by Hussey and Hughes (2007), Li et al. (2018b), Ford and West-
gate (2020), Li (2020), Thompson et al. (2021), and Li et al. (2022).

The choice between conditional and marginal approaches affects both interpretation
and efficiency. There has existed controversy about the use of marginal and conditional
models. Lee and Nelder (2004) discussed the advantages of conditional models over marginal
models and regarded the conditional model as fundamental, from which marginal predictions
can be made. Various models employed in SW design are thoroughly discussed in the review
paper by Li and Wang (2022).
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3.2. Sample size determination

3.2.1. Foundational work

A critical aspect of SWDs is sample size calculation, which has seen significant
methodological advancements. The seminal paper by Hussey and Hughes (2007) introduced
analytical formulas for power and sample size calculations in SWDs. The model proposed
by Hussey and Hughes (2007), though foundational for sample size estimation in SWDs,
has notable limitations. First, it assumes a cross-sectional design with no repeated mea-
surements on individuals, rendering it unsuitable for cohort-based studies where individual
correlation must be accounted for (Hooper et al., 2016). Second, it presumes constant cluster
sizes and a simplistic intracluster correlation (ICC) structure, ignoring variability in cluster
sizes (Matthews, 2020) or more complex correlation patterns (e.g., decaying correlations over
time). Third, the model assumes fixed time effects and a constant intervention effect, failing
to accommodate time-varying treatment effects or interactions between time and interven-
tion exposure (Kenny et al., 2022). Finally, it is restricted to continuous outcomes and does
not generalize readily to binary, count, or survival data without modification (Zhou et al.,
2020).

3.2.2. Sample size calculations based on design effects

The design effect quantifies the increase in variance of an estimator due to deviations
from a simple random sampling design. In cluster-based studies, it accounts for correlations
within clusters, which reduces the effective sample size. The standard approach to calculat-
ing sample size in parallel group CRTs begins with estimating the required sample size under
individual randomization, denoted as Nu. This unadjusted sample size is then scaled by the
design effect [1+(n−1)ρ] to account for clustering, where n is the number of individuals per
cluster and ρ is the intracluster correlation coefficient (Donner and Klar, 2000). To adopt a
similar framework, Woertman et al. (2013) derived the following design effect for SWDs:

DEsw = 1 + ρ(ktn + bn − 1)
1 + ρ

(
1
2ktn + bn − 1

) 3(1 − ρ)
2t

(
k − 1

k

) .

Here, k represents the number of steps, b is the number of baseline measurements, and t is
the number of measurements after each step. Thus, each cluster is measured (b + kt) times.
This design effect appropriately adjusts for both clustering and the stepped wedge structure
and the required sample size for a stepped wedge trial is Nsw = NuDEsw.

The design effect DEsw is influenced by three key parameters: the number of post–
step measurements t, the number of baseline measurements b, and the number of steps k.
Increasing any of these reduces the design effect and, consequently, the required sample size.
In contrast, increasing the cluster size n slightly increases the design effect. Additionally,
DEsw depends on the intracluster correlation coefficient (ICC), ρ, which reflects variability
between clusters. While ρ is contextd ependent and not under direct control, it should be
estimated using prior studies, pilot data, or domain knowledge. As ρ increases, the design
effect initially rises and then begins to decline. Woertman et al. (2013) have shown that
increasing the number of steps improves efficiency in terms of sample size and also the gain
is substantially larger when increasing from 2 to 3 steps than from 6 to 12 steps.
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3.2.3. Simulation–based sample size calculations

Analytical sample size formulas, while computationally efficient, are often constrained
by simplifying assumptions that limit their applicability in real world SW–CRTs. For ex-
ample, Hussey and Hughes (2007), Woertman et al. (2013) etc assumed balanced design
and intervention effect is modeled as constant across clusters. Also analytical formulas work
well for continuous outcomes but struggle with binary or count outcomes Xia et al. (2021)
or when repeated measures are taken on the same individuals over time, due to the ad-
ditional level of correlation implied in this case. Simulation–based sample size calculation
has emerged as a robust and flexible approach for designing SW-CRT, particularly when
analytical formulas are insufficient due to the complexity of the design or outcome types.
Simulation-based sample size calculation typically follows these steps:

• Define the Data-Generating Model: Specify fixed effects (e.g., intervention effect, time
trends) and random effects (e.g., cluster-level or time-level variability).

• Simulate Datasets: Generate repeated datasets under the assumed model, incorporat-
ing design parameters (for example number of clusters, steps, and observations per
cluster).

• Analyze Simulated Data: Apply the planned statistical method (e.g., mixed-effects
regression) to each dataset, estimate the intervention effect and its standard error and
p-value and then record the proportion of simulations where the intervention effect is
statistically significant (empirical power).

• Iterate Until Target Power is Achieved: Adjust parameters (e.g., cluster size or number
of steps) and repeat simulations until the desired power is reached

But at the same time there are challenges in simulation-based sample size calculation. Sim-
ulations require significant computational resources, especially for large trials or complex
models. Analyzing thousands of datasets with complex models can be slow. Parallel com-
puting is often essential and also complex models may fail to converge in some simulations.
Further, results depend on accurate pre–specification of nuisance parameters (e.g., ICC),
which may be uncertain in practice.

3.3. Correlation structures

Stepped wedge designs inherently involve longitudinal and clustered data, leading to
multiple correlation structures that complicate statistical analysis. These structures arise
from repeated measurements within clusters over time, participant-level dependencies in
cohort designs, and temporal trends.

3.3.1. Correlation parameters in SW–CRTs

Hemming et al. (2015) incorporated both within-period and between-period ICCs in
their sample size calculation for cross-sectional designs. Hooper et al. (2016) and Li et al.
(2018b) extended this by considering a three correlation structure that also accounts for
within individual repeated measurements in closed cohort designs.
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• Within period intracluster correlation (wp–ICC): Measures similarity of outcomes
within the same cluster and time period.

• Between period intracluster correlation (bp–ICC): Captures correlation between out-
comes from the same cluster across different periods.

• Individual level autocorrelation: Relevant in closed cohort designs where the same
participants are measured repeatedly.

For example, in cross sectional designs (new participants each period), wp–ICC and bp–ICC
dominate, while closed cohort designs require an additional parameter for individual autocor-
relation. Ignoring these distinctions can lead to biased variance estimates and underpowered
studies (Girling and Hemming, 2016).

Table 2: Different types of correlation structures in SW design (0 < r < 1 is any
constant value)
(a) Constant ICC over time: within period ICC = between period ICC
Used in Hussey and Hughes (2007) − no decay

Period 1 Period 2 Period 3 Period 4 Period 5
Period 1 ρ ρ ρ ρ ρ
Period 2 ρ ρ ρ ρ
Period 3 ρ ρ ρ
Period 4 ρ ρ
Period 5 ρ

(b) Fixed between period ICC and within period ICC > between period ICC
Used in Hooper et al. (2016)− no decay

Period 1 Period 2 Period 3 Period 4 Period 5
Period 1 ρ rρ rρ rρ rρ
Period 2 ρ rρ rρ rρ
Period 3 ρ rρ rρ
Period 4 ρ rρ
Period 5 ρ

(c) Between ICCs decay exponentially and within period ICC > between period ICC
Used in Kasza and Forbes (2019)− allows decay

Period 1 Period 2 Period 3 Period 4 Period 5
Period 1 ρ rρ r2ρ r3ρ r4ρ
Period 2 ρ rρ r2ρ r3ρ
Period 3 ρ rρ r2ρ
Period 4 ρ rρ
Period 5 ρ
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3.3.2. Modeling decaying correlation structures

In longitudinal studies, “decay in correlation over time” refers to the phenomenon
where the correlation between two measurements decreases as the time interval between
them increases. In other words, observations made closer together in time tend to be more
similar (more correlated) than observations that are farther apart.

The assumption of constant ICC, as used by Hooper et al. (2016) and Li et al. (2018b),
may not reflect real world data structures. Therefore, alternative design and analysis strate-
gies that account for temporal correlation decay are essential in stepped wedge trials. In
cross sectional designs, where different individuals are observed in each period, some studies
(Hemming et al., 2015) allowed between period ICC to differ from within period ICC but
assumed constancy across time. Kasza et al. (2019), Kasza and Forbes (2019) introduced
a nonuniform correlation model incorporating exponential decay, improving sample size es-
timation. Grantham et al. (2019) extended this to continuous time correlation decay in
multiple periods CRTs with continuous recruitment. Ignoring correlation decay, as shown
by Kasza et al. (2019), can lead to misestimate intervention effects and incorrect sample size
calculations.

4. SW–CRTs with unequal cluster size

Methods for calculating power and sample size in SW-CRTs assuming equal cluster
sizes have been extensively discussed in the literature see for example Hussey and Hughes
(2007), Woertman et al. (2013), Baio et al. (2015), and Hemming and Taljaard (2016). In
many studies, such as observational studies, unequal cluster sizes are a common occurrence.
This presents significant challenges in the design and analysis of SW–CRTs. A comprehensive
methodological review addressing unequal cluster sizes in cluster randomized trials, including
SW-CRTs, is provided in Zhan et al. (2021b). The impact of cluster size imbalance on the
power is discussed in Ouyang et al. (2020). Martin et al. (2019) examined how randomly
allocating clusters of varying sizes to sequences impacts different aspects of the analysis.
They investigated cluster–balanced stepped wedge designs (SWDs) with unequal cluster
sizes and observed that, when the total number of individuals is fixed, such designs can be
more efficient than those with equal cluster sizes. This finding contrasts with traditional
cluster balanced designs, where equal sized clusters are typically considered optimal. Girling
(2018) investigate the impact of unequal cluster size and found the expressions for the relative
efficiency (RE) of the treatment effect estimate relative to that for the equal cluster design
with the same total number of observations. Matthews (2020) proposed near optimal designs
for unequal cluster size. Kristunas et al. (2017) proposed corrections to the design effect(DE)
for SWD with unequal cluster sizes. Girling (2018) investigate the impact of unequal cluster
size and found the expressions for the relative efficiency (RE) of the treatment effect estimate
relative to that for the equal cluster design with the same total number of observations. Using
simulations Martin et al. (2019) showed that the while the average power reduction in SW-
CRTs is smaller than in parallel designs, the variance in power across allocations is higher,
particularly with fewer clusters.

Typically, larger clusters are assigned to the extreme sequences. However, this pattern
may not hold in closed-cohort stepped wedge designs (SWDs), where optimal allocation
depends on various correlation parameters. In a working paper, we observed that an efficient
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design tends to allocate an equal number of clusters to sequences i and T − 1 − i for i =
1, . . . , T − 1. A similar symmetry is also observed in the allocation of total cluster size
across these sequences. The determination of optimal cluster–to–sequence proportions in the
context of unequal cluster sizes remains an area that requires further detailed investigation.

5. Bayesian optimal SWD

An optimal design is obtained by optimizing a specific criterion. For example, by min-
imizing the variance of the estimated treatment effect or by maximizing the study’s power
or precision. Lawrie et al. (2015) found out optimal allocation of clusters into sequences
under the linear mixed effect model given by Hussey and Hughes (2007) by minimizing the
variance of the treatment effect. They demonstrated that when cluster sizes are equal, the
extreme sequences (first and last) receive the same level of allocation, while all intermediate
sequences receive an equal but smaller allocation compared to the extremes. This work is
then extended to closed cohort SW–CRT designs with repeated measures per subject by Li
et al. (2018a). Thompson et al. (2017) examined the optimal structure of stepped wedge
cluster randomized trial (SW–CRT) designs under the assumption of normally distributed
data and equal allocation of clusters across sequences. In contrast, Zhan et al. (2018) ex-
plored optimal designs where some clusters may not be sampled during certain stages of the
trial. Optimal design, thus obtained, is called locally optimized design as they are sensitive
to the choice of different correlation parameters. More recently, to obtain a robust optimal
design a Bayesian approach is adopted. Zhan et al. (2021a) demonstrated that incorporating
prior information on time effects through a Bayesian approach can significantly reduce the
required sample size. However, due to the risk of bias from mis-specified prior distributions,
they do not recommend this as the default method for sample size calculation. Nevertheless,
when it is difficult to recruit enough clusters or participants, using external information on
time effects with a Bayesian approach can help assess if a smaller sample size would still
be sufficient, making it easier to decide whether the trial can go ahead. Singh (2024) pro-
posed a Bayesian optimal SWD by placing priors on the ICC and demonstrating robustness
against ICC misspecification compared to locally optimal designs. Under a marginal (GEE)
model with either exchangeable or exponential-decay working correlation, Etfer et al. (2024)
developed a framework for finding Bayesian D-optimal SW designs for binary outcomes.

Bayesian designs for stepped wedge trials remain a significantly underdeveloped area
of research with considerable potential. For instance, in closed–cohort studies, the presence
of multiple correlation parameters introduces substantial uncertainty in the design process.
This challenge can be effectively addressed by adopting a Bayesian framework. Moreover,
in the case of non–normal responses where the optimal design criteria depend on unknown
model parameters, a Bayesian approach can offer substantial advantages.

6. SW design for non–normal data

In recent years, a substantial body of work has extended the SW-CRT framework to
accommodate non-normal outcomes, most notably binary and count data through a variety
of methodological and practical innovations. Stepped-wedge trials with non-normal out-
comes (counts or binary) extend the usual mixed-effects framework by replacing the linear
mixed model with a generalized linear mixed model (GLMM) or generalized estimating equa-
tions (GEE). Broadly, for binary outcomes one uses logistic-link GLMMs or marginal GEE,
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whereas for counts one adopts Poisson (or negative-binomial) GLMMs. Zhou et al. (2020)
developed a numerical method for the power analysis for stepped-wedge cluster randomized
trials (SW-CRTs) with binary outcomes, utilizing a maximum-likelihood estimation frame-
work. Their approach allows researchers to assess the statistical power of complex SW-CRT
designs without relying on simplified analytical approximations, making it particularly useful
for settings with unequal cluster sizes or varying intraclass correlations.Wang et al. (2021)
found out a sample size and power calculation method using GEE that can be broadly
applied to both closed-cohort and cross-sectional SW-CRTs with binary outcomes. Also,
they introduced a correction method to address the problem of underestimated variance
in the GEE approach when the number of clusters is small in SW-CRTs. Building on the
Laplace approximation of Breslow and Clayton (1993), Xia et al. (2021) have derived an
analytical variance formula for the intervention effect estimator using GLMM, encompassing
both normal (identity link) and non-normal (e.g., logistic, Poisson) outcomes. Lastly as
mentioned in the previous section, Etfer et al. (2024) develop a Bayesian D-optimal design
framework for stepped-wedge cluster randomized trials with binary outcomes by combining
generalized estimating equations and approximate design theory under both exchangeable
and exponential-decay correlation structures.

7. Staircase design: An alternative to SWD

Stepped wedge designs require clusters to collect data across all trial periods, leading
to high logistical and financial burdens. A staircase design is an “incomplete” variant of the
stepped-wedge, in which each cluster contributes data only for a small number of periods
immediately before and after its switch from control to intervention. The staircase design was
first formalized by Grantham et al. (2024), who noted that the most informative observations
in a stepped-wedge lie along its main diagonal (the “zigzag” of switches) and proposed
focusing data collection there only. Like a stepped-wedge, all clusters eventually receive the
intervention and the rollout is staggered; unlike a complete stepped-wedge, clusters do not
collect data in every period, reducing burden and potentially attrition.

The general class of staircase designs is denoted by SC(S, K, R0, R1), where S and R0
denote the number of distinct treatment sequences and the number of clusters per sequence,
R0 is the number of control periods before the switch to intervention, and R1 is the number
of intervention periods after the switch. Different types of staircase designs can be achieved
depending on the values of R0 and R1 (see Figure 1). In total, the design includes SK
clusters, and the trial spans S + R0 + R1 − 1 periods. Clusters in sequence s are observed
from period s through s + R0 + R1 − 1. A balanced staircase design has equal numbers of
control and intervention periods in each sequence (i.e. R0 = R1). In contrast, an imbalanced
staircase design allows for different numbers of pre and post switch periods (R0 ̸= R1).

Grantham et al. (2024) have derived explicit expressions for the variance of the gen-
eralized least squares estimator of treatment effect for the basic staircase design under the
assumption that the observed periods in each sequence follow the same schedule of control
and intervention periods. This expression can be used to calculate sample size and power
for staircase designs. Grantham et al. (2025) examined the relative efficiency of the stepped
wedge design compared to various forms of the basic staircase design, where each sequence
consists of one control period followed by one intervention period. Their analysis began
with a basic staircase design embedded within a stepped wedge framework, and extends to
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Figure 1: Design schematics for several staircase designs with 6 clusters: a basic
staircase with two clusters assigned to each of three unique sequences (top left),
a basic staircase with one cluster assigned to each of six unique sequences (top
right), a balanced staircase with two control periods followed by two intervention
periods in each sequence and one cluster assigned to each of six unique sequences
(bottom left), and an imbalanced staircase with one control period followed by
two intervention periods in each sequence and one cluster assigned to each of six
unique sequences (bottom right).

versions with either more clusters or larger cluster-period sizes–some maintaining the same
total number of participants as the stepped wedge design, and others using fewer participants
overall. The relative efficiency of these designs is influenced by the intracluster correlation
structure, correlation parameters, and trial configuration, including the number of sequences
and the size of each cluster–period. They concluded that basic staircase design is a par-
ticularly lean and potentially powerful alternative to the stepped wedge design as across
a broad range of realistic trial scenarios, the basic staircase design often provides greater
statistical power than the stepped wedge design, even when using the same or even fewer
total participants. A comprehensive analysis of staircase design including optimal cluster
proportion to the sequences, appropriate cluster sizes, and Bayesian design strategies should
be thoroughly explored.

8. Discussion and conclusion

In this review we have traced the evolution of stepped wedge designs (SWDs) from the
foundational Hussey–Hughes random-intercept model through modern Bayesian and “stair-
case” alternatives. A recurring theme is the trade–off between analytical simplicity and
realistic correlation structure. Early formulas for power and sample size assume constant
ICCs, cross-sectional sampling, and equal cluster sizes; these yield closed-form design effects
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but can mislead when within- and between-period correlations differ or clusters vary in size.
Extensions to cohort and open-cohort SWDs introduced additional ICC parameters and de-
cay models, but at the cost of analytical intractability. Simulation-based approaches remedy
this at the expense of computational burden and reliance on assumed nuisance parameters.
Our survey of optimal-allocation methods highlights how design efficiency depends critically
on the allocation of clusters to sequences. Bayesian D-optimal frameworks then add robust-
ness by placing priors on ICC or time-effect parameters, reducing required sample size when
external information is reliable but risking bias under prior misspecification. Lastly, the
staircase design represents a pragmatic compromise: by sampling only around each cluster’s
switch point, it retains most information on treatment contrasts while cutting data-collection
burden. Across a broad range of ICC scenarios, basic staircase trials can even outperform
full SWDs in power per participant.

Despite these advances, several gaps remain. First, most methods target continuous
outcomes; extensions to binary, count or time–to–event endpoints require further develop-
ment. Second, while correlation-decay models are conceptually appealing, real world valida-
tion via intensive pilot data or retrospective re-analysis of completed SWDs remains scarce.
Third, the increasing complexity of hybrid designs (e.g. unequal cluster sizes, open cohorts,
Bayesian priors) calls for user friendly software that integrates power, sample size, and op-
timal allocation routines under a unified interface. Finally, practical considerations such as
staggered enrollment logistics, missing data, and secular trends–deserve more attention in
design-stage simulations.

In sum, the stepped wedge framework has matured from simple cross sectional formu-
las to a rich design space encompassing complex correlation structures, Bayesian robustness,
and lean staircase variants. The choice among these should be driven by the substantive
context–outcome type, anticipated ICC patterns, logistical constraints and cluster sizes. In
this review paper, we not only mention a few relevant works in various field of SW design but
also explain fundamental terminologies related to this design in a concise manner, aiming
to assist readers who are encountering these concepts for the very first time. We hope this
introductory yet informative overview provides a solid foundation for further exploration
into the field of SW design.
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Abstract

Statistical analysis of point-referenced spatial/geostatistical data generally considers
a multivariate Gaussian distribution as the underlying probability model. That way, the
related statistical inference boils down to estimating the mean vector and the covariance
matrix of some multivariate normal distribution. While a fully general specification of the
covariance matrix yields a flexible model for the data, it introduces too many parameters
for consideration, thereby rendering statistical inference impossible. Alternatively, one can
use a parametric covariance function that aligns with the underlying data. This covariance
function is then used to form the elements of the covariance matrix under consideration.
Parametric covariance functions often rely on the assumption of isotropy, or if not so, at least
assume stationarity. However, stationary covariance functions are inadequate for explaining
the complex dependence structure of spatial data arising out of environmental applications.
In this article, we review prominent approaches for the construction of non-stationary co-
variance functions. Once a suitable covariance function is selected, the next challenge that
one faces is to carry out computation using that covariance function. Non-stationary covari-
ance functions although flexibly capture the spatial dependence structure, model fitting with
them requires O(n3) computation, which is impossible to commence if n is massive. Basis
function-based construction of non-stationary covariance functions can reduce the computa-
tional cost by a large margin. Recently, the Vecchia approximation-based nearest-neighbour
Gaussian process has gained popularity among applied researchers. In this article, we review
these approaches and some more for the construction of scalable spatial covariance functions
for point-referenced spatial data.

Key words: Geostatistical data; Non-stationary covariance function; Vecchia approximation;
Scalable spatial models.

AMS Subject Classifications: 62M30.

1. Introduction

Point-referenced spatial/geostatistical data arises when observations are made at n
spatial/geographical locations s1, s2, · · · , sn. They are routinely encountered in a broad range
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of areas like environmental, meteorological, ecological, and economic studies. The observa-
tions y(s1), y(s2), · · · , y(sn) are generally scalar-valued, and can signify temperature, rainfall,
ground-level ozone concentration, house price, etc. Often the observations are recorded from
satellite-based images and as a result, n can be as large as of the order ∼ 100000. In addi-
tion to the dependent nature of the background random variables Y (s1), Y (s2), · · · , Y (sn),
a large value of n renders the statistical modeling to be doubly difficult. In fact, a large n
implies that the number of parameters p required for model specification may also be large.
So, it is a high dimension high sample size (HDHSS) problem that couples high dimension
(large p) with big data (large n).

Statistical inference is often carried out assuming that (Y (s1), Y (s2), · · · , Y (sn)) is
distributed according to a multivariate Gaussian distribution with mean vector µ and co-
variance matrix Σ. An exception to Gaussianity is noted for spatial data associated with
extreme events like daily maximum windspeed, daily maximum temperature (Huser and
Wadsworth (2022)), extreme snow depth (Blanchet and Davison (2011)), etc., which requires
modeling with multivariate extreme value distribution. Apart from that, spatial data that
are positive-valued, skewed (Ayalew et al. (2024)) with a possible heavy tail, are also modeled
by multivariate skewed distributions (Hazra et al. (2020)). Nevertheless, for the majority of
cases, the inference boils down to estimating the mean vector and the covariance matrix of a
multivariate normal distribution. Generally, the mean vector µ = (µ(s1), µ(s2), · · · , µ(sn))
is assumed to be a function of spatial locations; for example, µ(si) = β0 + β1si,1 + β2si,2.
Geostatistical data y(s1), y(s2), · · · , y(sn) is often accompanied by measurements on other
spatially indexed covariates, and those covariates are included in the model by extending the
formula of mean to µ(si) = β0+β1si,1+β2si,2+γ1x1(si)+γ2x2(si). Unlike µ, the specification

of Σ requires additional care. A fully general specification of Σ as




σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

σn1 σn2 · · · σnn




elicits a flexible covariance structure for the data, although it brings n(n+1)
2 parameters un-

der consideration, thereby making statistical inference impossible. Note that, the number of
data points is n, and hence, any meaningful specification of Σ must not exceed n parameters.
One way of achieving that is to consider a parametric covariance function cY (s, s′) and use

it to specify the spatial covariance matrix as Σ =




cY (s1, s1) cY (s1, s2) · · · cY (s1, sn)
cY (s2, s1) cY (s2, s2) · · · cY (s2, sn)

...
cY (sn, s1) cY (sn, s2) · · · cY (sn, sn)




.

In that case, the estimation of Σ translates to the estimation of only a few unknown param-
eters associated with cY (s, s′).

A well-known and much-used parametric covariance function is the exponential co-
variance function defined as cY (s, s′) := σ2e−ϕ∥s−s′∥2 . The two parameters σ2 and ϕ > 0
are used to specify the shape of the covariance function. σ2 specifies the variance of
the underlying spatial process {Y (s)} and ϕ, which is the decay parameter, decides how
strong the spatial correlation is between Y (s) and Y (s′). Sometimes, an additional τ 2 pa-
rameter is brought in to define a squared exponential covariance function with nugget as
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cY (s, s′) :=
{

σ2 + τ 2 if 0 =∥s − s′∥2

σ2e−ϕ∥s−s′∥2 if 0 <∥s − s′∥2.

τ 2 is referred to as the nugget variance and it quantifies the variability of the microscale
spatial components. The microscale spatial components are those parts of {Y (s)} which are
uncorrelated at even the minutest spatial resolution, and hence practically behave like an
iid process. Besides the exponential covariance function, there are many other parametric
covariance functions that are used to model geostatistical data. Some of them are presented
in the following table.

Table 1: Useful parametric covariance functions for geostatistical modeling

Covariance function Formula

Spherical cY (s, s′) :=




σ2 + τ 2if 0 =∥s − s′∥2

σ2
[
1 − 3

2ϕ∥s − s′∥2 + 1
2ϕ3∥s − s′∥3

2

]
if 0 <∥s − s′∥2

Exponential cY (s, s′) :=
{

σ2 + τ 2if 0 =∥s − s′∥2

σ2e−ϕ∥s−s′∥2 if 0 <∥s − s′∥2

Squared exponential cY (s, s′) :=
{

σ2 + τ 2if 0 =∥s − s′∥2

σ2e−ϕ∥s−s′∥2
2 if 0 <∥s − s′∥2

Powered exponential cY (s, s′) :=
{

σ2 + τ 2if 0 =∥s − s′∥2

σ2e−ϕ∥s−s′∥α
2 if 0 <∥s − s′∥2; 0 < α ≤ 2

Rational quadratic cY (s, s′) :=




σ2 + τ 2if 0 =∥s − s′∥2

σ2
(
1 − ∥s−s′∥2

2
ϕ+∥s−s′∥2

2

)
if 0 <∥s − s′∥2

Matérn (ν > 0) cY (s, s′) :=




σ2 + τ 2if 0 =∥s − s′∥2
σ2

2ν−1Γ(ν)

(√
2νϕ∥s − s′∥2

)ν
Kν

(√
2νϕ∥s − s′∥2

)
if 0 <∥s − s′∥2

The squared exponential covariance function resembles the exponential covariance
function but suffers from the limitation that the associated spatial process {Y (s)} is in-
finitely many times differentiable. The spherical covariance function on the other hand has
compact support and hence is useful in creating a sparse Σ. The Matérn covariance func-
tion is attractive in the sense that the associated spatial process {Y (s)} has controllable
smoothness with ⌈ν⌉ − 1 times differentiability. However, all these parametric covariance
functions depend only on the distance ∥s − s′∥2 disregarding the direction along which s′

is separated from s. This property is known as isotropy. Isotropic covariance functions are
not suitable for modeling environmental datasets that are under the influence of wind flow.
For such datasets, the observations separated along the direction of wind flow typically dis-
play stronger dependence compared to the ones separated along other directions. Banerjee
et al. (2003) analyzed a scallop catch dataset where the dependence structure along differ-
ent directions varied substantially thereby necessitating the use of anisotropic covariance
functions.

Unlike the isotropic covariance functions, whose covariance contours are circles, the
covariance contours of the anisotropic covariance functions can take the shape of arbitrary
closed curves. Different notions of anisotropy have been introduced by different researchers.
Zimmerman (1993) systematically studied them and classified them roughly into three dif-
ferent broad categories. In order to understand them we first need to define the variogram
function γY (s, s′) associated with a spatial process {Y (s)}. It is defined by the formula
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γ(s, s′) := 1
2var(Y (s) − Y (s′)). In an alternative approach to geostatistical modeling, the

whole theory that can be developed using the covariance function cY (s, s′), has been devel-
oped parallel using the variogram function γ(s, s′). Zimmerman (1993) defined three classes
of anisotropy as follows. The differential dependence along the different directions is referred
to as sill anisotropy if lima→∞ γ( ah

∥h∥) depends not on ∥h∥ but on h. Here h = (s − s′) is
the lag between two spatial locations s and s′. When lima→0 γ( ah

∥h∥) depends on h, one says
the process shows nugget anisotropy. The third and last type of anisotropy occurs when the
decay parameter ϕ depends on h. It is referred to as range anisotropy. A particularly inter-
esting subclass of the range anisotropy is the geometric anisotropy. Geometrically anisotropic
spatial process {Y (s)} has a covariance function with elliptical covariance contours. A sim-
ple recipe for creating a geometrically anisotropic covariance function is to replace ∥s − s′∥2

by
√

(s − s′)′A(s − s′) in the formula of a parametric isotropic covariance function cY (s, s′).
The 2 × 2 matrix A is a pd matrix with 3 unknown parameters, that control the shape and
the alignment of the elliptical covariance contours.

Although useful, the anisotropic covariance functions are not the best choice for mod-
eling the complex dependence structure associated with geostatistical data arising out of
environmental applications. The reason is that such a covariance function cY (s, s′), although
invokes differential dependence structure along different directions, is still a function of the
lag h between two spatial locations s and s′. This property is known as stationarity. Sta-
tionarity implies that the covariance between Y (s) and Y (s′) remains unchanged if both the
spatial locations are shifted by the same lag h, i.e., CY (s, s′) = CY (s+h, s′ +h). Efforts have
been made to create non-stationary covariance functions CY (s, s′) which depend on both s
and s′.

2. Towards non-stationary covariance functions

Over the years different strategies to create non-stationary covariance functions have
been proposed. Here we discuss a few prominent ones.

Approach 1 : Direct construction The simplest approach is to propose a formula
of CY (s, s′) that involves both s and s′ and then subsequently show that CY (s, s′) is a valid
covariance function. However, guessing such functions and then showing them to be valid
covariance functions can be difficult.

Approach 2 : Transformation of the original process Alternatively, one can
start with a spatial process {Y (s)} that has an isotropic covariance function and then take
a transformation of {Y (s)} to define a new process {Y ∗(s)} which has an anisotropic co-
variance function. The transformations used are generally elementary in nature. One such
transformation Y ∗(s) = σ(s)Y (s) gives rise to the non-stationary covariance function of the
form CY ∗(s, s′) = σ(s)σ(s′)CY (s, s′) = σ(s)σ(s′)f(∥s− s′∥2). σ(s) is a geographically varying
positive function that enforces the departure from stationarity in a multiplicative manner.
In another transformation, one can propose Y ∗(s) = Y (s) + δ(s)Z, where Z is a random
variable with mean 0 and variance σ2

Z and δ(s) is a positive function of s. The transformed
process has the covariance function CY (s, s′) + δ(s)δ(s′)σ2

Z = f(∥s − s′∥2) + δ(s)δ(s′)σ2
Z . In

this case, the departure from stationarity takes place in an additive manner. To combine
both, one can define Y ∗(s) = σ(s)Y (s) + δ(s)Z leading to a non-stationary covariance func-
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tion of the form σ(s)σ(s′)f(∥s − s′∥2) + δ(s)δ(s′)σ2
Z . However, the class of non-stationary

covariance functions that can be generated by the transformation approach are very limited.

Approach 3 : Deformation approach Richer class of non-stationary covariance
functions can be created by the deformation approach. In a seminal paper, Sampson and
Guttorp (1992) first came up with the idea of deformation g(·) of the original geographi-
cal space so that the observed spatial process {Y (s)} is stationary with respect to to the
deformed geographical locations g(s1), g(s2), · · · , g(sn). Hence, the covariance of Y (s) and
Y (s′) is of the form f(∥g(s) − g(s′)∥2). When considered in terms of the original geographi-
cal space, the covariance function is not a function of ∥s − s′∥2, hence non-stationary. This
brilliant idea however suffers from the serious shortcoming that estimating the deformation
function g(·) from the data is a highly non-linear optimization problem that can be numer-
ically very challenging. Moreover, the estimated g(·) can sometimes fold over its domain
leading to a meaningless covariance function, and also, the estimation process as proposed
by Sampson and Guttorp (1992) requires replicated samples at the original geographical
locations s1, s2, · · · , sn.

Approach 4 : Process convolution approach In time series analysis, starting
with a white noise process {Zt} that has the simplest covariance function, one can create a
moving average process {Xt} by taking a linear combination of Zt as Xt := Zt + θ1Zt−1 +
· · · + θqZt−q. The process {Xt} has a substantially improved covariance function compared
to the original process {Zt}. Much to the same spirit, starting with a spatial white noise
process {Z(s)} with a simple spatial covariance function one can create a new process {Y (s)}
by the following process convolution

Y (s) :=
∫

R2
K(s − s′)Z(s′)ds′. (1)

Strictly speaking, the above integral is not defined and should be interpreted as Y (s) :=∫
R2 K(s − s′)dB(s′) where B(s) denotes a two-dimensional Brownian motion on R2. When

interpreted as above, the process {Y (s)} has a stationary covariance function given by the
formula cY (s, s′) = σ2 ∫

R2 K(s − t)K(s′ − t)dt. Higdon (1998) used spatially varying kernel
functions in the above formula to generate a non-stationary covariance function. In that
case, Y (s) :=

∫
R2 Ks(s − s′)dB(s′), where Ks(s − t) is a non-negative real-valued integrable

function (bivariate kernel function); the associated covariance function is non-stationary, and
is given by the formula

cY (s, s′) = σ2
∫

R2
Ks(s − t)Ks′(s′ − t)dt. (2)

The convolution approach was later extended by Paciorek and Schervish (2006) to produce
a flexible non-stationary Matérn covariance function with nugget as

cY,NS(s, s′) :=





τ 2 + σ2 if s = s′

σ2

2ν−1Γ(ν) |Σ(s)| 1
4 |Σ(s′)| 1

4
∣∣∣Σ(s)+Σ(s′)

2

∣∣∣
− 1

2

×
(
2
√

νϕ
√

Q(s, s′)
)ν

Kν

(
2
√

νϕ
√

Q(s, s′)
)

if s ̸= s′.

(3)

Here Σ(s) =
(

cos(θ(s)) − sin(θ(s))
sin(θ(s)) cos(θ(s))

)(
λ1(s) 0

0 λ2(s)

)(
cos(θ(s)) sin(θ(s))

− sin(θ(s)) cos(θ(s))

)
and Q(s, s′) =

(s − s′)′
(

Σ(s)+Σ(s′)
2

)−1
(s − s′). Paciorek and Schervish (2003) also used the cY,NS(s, s′) as
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the covariance function of a Gaussian process prior for a Bayesian non-parametric regression
problem. While λ1(s) and λ2(s) determine the length of the major and minor axis of the el-
liptical covariance contours at location s, the θ(s) determines the alignment of the contours.
cY,NS(s, s′) is non-stationary since the shape of the covariance contours vary with respect to
s.

3. Scalable covariance functions for massive geostatistical data

Once an appropriate non-stationary covariance function is selected, the next step is
to estimate the unknown parameters associated with the mean and the covariance func-
tion. Assume that the vector of those unknown parameters is denoted by θ. Hence, µ
and Σ are functions of θ and are better represented as µ(θ) and Σ(θ). Under the classi-
cal paradigm, the estimation is mostly carried out by maximizing the Gaussian likelihood
function L(θ|y) :=

(
1√
2π

)n 1
|Σ(θ)| 1

2
e− 1

2 (y−µ(θ))′Σ(θ)−1(y−µ(θ)). The likelihood function is highly
non-linear in θ and hence requires numerical algorithms for finding the global maximum.
On the other hand, if the Bayesian path is chosen, one needs to find the posterior distribu-
tion π(θ|y) ∝

(
1√
2π

)n 1
|Σ(θ)| 1

2
e− 1

2 (y−µ(θ))′Σ(θ)−1(y−µ(θ))π(θ). The posterior generally does not
appear in the form of nice well-known distributions, and hence its exploration requires an
MCMC method. Regardless of the classical or Bayesian approach being adopted, one needs
to evaluate the terms |Σ(θ)| and (y − µ(θ))′Σ(θ)−1(y − µ(θ)) repeatedly. Each evaluation
of |Σ(θ)| and Σ(θ)−1 requires O(n3) operations and n being a large number of the order
∼ 100000, the computational cost jumps to a staggering O(1015) operations making it im-
possible to implement. Suitable strategies have been developed to bring the computational
cost down to a manageable level. Below we discuss some such strategies. Most of these ap-
proaches are based on replacing the terms |Σ(θ)| and (y − µ(θ))′Σ(θ)−1(y − µ(θ)) by some
approximation and then carrying out the computation. Their success depends on whether
the approximation to the original term is good and itself is easily computable.

3.1. Fixed rank Kriging

In one of the earliest works in this direction Cressie and Johannesson (2008), while
fitting a centered Gaussian process Y (s) ∼ GP (0, cY (s, s′)) to the observed geostatistical
data, approximated {Y (s)} by a new process defined as Ỹ (s) = ∑R

r=1
∑Kr

k=1 θr,kφr,k(s) +
ϵ(s)v(s). φr,k(s) are basis functions of resolution r and θr,k are dependent Gaussian random
variables with covariance matrix K(ϕ). So, Ỹ (s) ∼ GP (0, cỸ (s, s′)) and its covariance
function cỸ (s, s′) approximates cY (s, s′). Consequently, the covariance matrix Σ is also being
approximated by the covariance matrix φK(ϕ)φ′ + τ 2V. For the approximating covariance
matrix φK(ϕ)φ′ + τ 2V calculating the determinant and inverse it takes O(n) operations
only. Thus they approximated the original likelihood L(θ|y) by a new likelihood L(ϕ, τ 2|y)
where (ϕ, τ 2) is the vector comprising the new parameters.

3.2. Gaussian predictive process models

In another approach more geared towards the Bayesian paradigm, Banerjee et al.
(2008) considered a centered Gaussian process Y (s) ∼ GP (0, cY (s, s′)) and approximated
it by a predictive process [Y (s)|Y (s∗

1), Y (s∗
2), · · · , Y (s∗

k)] + ϵ(s). So, the predictive process
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can be expressed as Ỹ (s) = [cY (s1, s∗), cY (s2, s∗), · · · , cY (sn, s∗)]Σ∗
Y

−1




Y (s∗
1)

Y (s∗
2)...Y (s∗
k)


 + ϵ(s) =

S(θ)




Y (s∗
1)

Y (s∗
2)...Y (s∗
k)


+ ϵ(s). s∗

1, s∗
2, · · · , s∗

k are some knot points on the geographical plane. So, the

approximating covariance matrix ΣỸ is of the form S(θ)K(θ)S′(θ) + τ 2I. Calculating the
determinant and inverting S(θ)K(θ)S′(θ) + τ 2I takes only O(n) operations. For fixed rank
Kriging, the number of basis functions n = K1 + K2 + · · · + KR determines the the quality
of approximation, and it should be chosen judiciously to trade quality of approximation for
computational cost. In the case of the Gaussian predictive process model, the number of the
knot points n plays the same role.

3.3. Covariance tapering

While the last two approaches were based on approximating the original Gaussian
process {Y (s)} by a new Gaussian process {Ỹ (s)} with which the computational cost reduces
significantly to O(n), other approaches directly approximate Σ by a new covariance matrix
Σ̃. In the covariance tapering approach, instead of approximating Σ by a new covariance
matrix Σ̃, one transforms Σ to convert it to a sparse matrix. With that, the likelihood can
be rewritten as

(
1√
2π

)n 1
|Σ| 1

2
e− 1

2 tr((y−µ)′Σ−1(y−µ)) =
(

1√
2π

)n 1
|Σ| 1

2
e− 1

2 tr((y−µ)(y−µ)′Σ−1), and can

be approximated by
(

1√
2π

)n 1
|Σ| 1

2
e− 1

2 tr((y−µ)(y−µ)′Σ−1). Here Σ is approximated by Σ⊙T. The
transformation T is referred to as the one-taper transform and it transforms Σ to Σ ⊙ T.
T is a covariance matrix formed by a compactly supported covariance function (Kaufman
et al. (2008)). The tapered matrix Σ ⊙ T is also a covariance matrix and it is sparse,
thereby making the approximating likelihood scalable to massive n. A variation of the one-
taper transform is called a two-taper transform that transforms Σ to Σ ⊙ T as well as the
empirical covariance matrix (y − µ)(y − µ)′ to (y − µ)(y − µ)′ ⊙ T. That way, both the
model covariance matrix and the empirical covariance matrix become sparse.

3.4. Vecchia approximation and nearest neighbour Gaussian process (NNGP)

Any likelihood function can be expressed as products of conditional distributions as
follows

[Y (s1), Y (s2), · · · , Y (sn)] = [Y (sn) | Y (sn−1), · · · , Y (s1)] × [Y (sn−1) | Y (sn−2), · · · , Y (s1)]
× · · · × [Y (s2) | Y (s1)] × [Y (s1)].

Based on this representation Vecchia (1988) in an early work figured out how to reduce the
computational cost of evaluating a likelihood. He demonstrated that the above expression is

≈ [Y (sn) | Y (s)s∈Nn ] × [Y (sn−1) | Y (s)s∈Nn−1 ] × · · · × [Y (s2) | Y (s)s∈N2 ] × [Y (s1)].

where Ni denotes of neighbourhood set of si that contains atmost k spatial locations. So
under the traditional Gaussian setup evaluating [Y (si) | Y (s)s∈Ni

] requires calculating the
determinant and inverse of at most a k × k covariance matrix. The computational cost
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is atmost O(k3). As there are n − 1 such products, the overall computational cost for
calculating the approximating likelihood [Y (sn) | Y (s)s∈Nn ] × [Y (sn−1) | Y (s)s∈Nn−1 ] × · · · ×
[Y (s2) | Y (s)s∈N2 ] × [Y (s1)] sum up to O(nk3). Although the idea was first presented by
Vecchia (1988), it became familiar when Datta et al. (2016) applied it successfully to model
a massive forest inventory dataset. Moreover, it is to the credit of Datta et al. (2016) who
showed that the approximating likelihood can be associated with another Gaussian process,
which they referred to as the nearest neighbour Gaussian process (NNGP). Although, the
NNGP produced promising result, the method’s dependence on the number of neighbours,
and the set of neighbouring locations requires further investigation. Another issue is that
the decomposition of the likelihood function as products of conditional distributions is not
unique, and hence the success of the Vecchia approximation and the NNGP depend on the
particular version one uses.

4. Concluding remarks

In this article, we have briefly touched upon different approaches for the creation
of non-stationary covariance functions. The list is ever growing and many of them are
not discussed here. For example, Fuentes (2002) considered the convolution of stationary
processes and created locally stationary covariance functions. Then we have seen that the
problem does not just end with the selection of an appropriate non-stationary covariance
function. The advent of GIS-based data collection system coupled with advancement in
data storage capacity, allows us to gather data at millions. Directly working with a non-
stationary covariance function for such massive dataset leads to O(n3) computations making
the task impossible to commence. In this regard, we have discussed different methods of
scalable modeling of massive geostatistical data. Among them, the Vecchia approximation
has recently gained popularity with the work of Datta et al. (2016). In a recent work, Zheng
et al. (2023) extended the idea to a non-Gaussian spatial process. Besides the approaches
discussed here, the multiresolution analysis proposed by Katzfuss (2017) is also useful in
modeling massive geostatistical data. There are many more methods for scalable modeling
of geostatistical data and a comparative analysis of them have been carried out in Heaton
et al. (2019). The field is growing rapidly. For a more comprehensive review of the Bayesian
methods for massive geostatistical data, one can consider the recent articles by Banerjee and
Fuentes (2012) and Banerjee (2017).
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Abstract

In this article we highlight how the combinatorial properties of statistical designs of
experiments have been used by many researchers for constructing various types of crypto-
graphic schemes. In particular, we discuss key predistribution schemes for distributed sensor
networks in some detail and show through examples, how useful schemes can be constructed
from the duals of certain block designs.
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Steiner’s triple systems; Distributed sensor networks; Resilience.
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1. Introduction

Combinatorial structures of different kinds have been extensively studied over the
years by mathematicians, for example, Hadamard Matrices, orthogonal arrays, Latin squares,
Steiner’s triple systems, etc. The construction and existence of these structures have been
well-developed and a considerable literature is available on such structures.

Later, statisticians found that many of these structures are useful in the field of Design
of Experiments. Subsequently, optimality properties of the designs based on these structures,
were also proved. For example, it was found that Hadamard matrices were useful in obtain-
ing optimal weighing designs using the chemical balance, Steiner’s triple systems were useful
as incomplete block designs for one-way elimination of heterogeneity, Latin squares and mu-
tually orthogonal Latin squares were useful as optimal designs for eliminating heterogeneity
in two or three directions, orthogonal arrays were useful in obtaining fractional factorial
designs, and the list goes on. For a comprehensive discussion on these designs, their com-
binatorial properties and construction, and their statistical optimality aspects, we refer to
Raghavarao (1971), Street and Street (1987), Shah and Sinha (1989) and Hedayat, Stufken
and Sloane (1999).

Much later, cryptographers found that many of these statistical designs of experiments
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based on combinatorial structures can also be used to generate good cryptographic schemes.
For some details of such use, we refer to Stinson (2004) and Stinson and Patterson (2023).

Cryptography is the practice of scrambling communications so that only the intended
recipient can access them. In modern times, cryptography is used to protect confidentiality
of sensitive information and protect it from hackers and other cyber criminals. It can be used
to obscure various forms of digital communication, including text, images, video, or audio;
protect confidentiality and integrity in communication. e.g., computer passwords, email,
online transactions, transmitting confidential information, etc. For a historical perspective
of the development of the subject since ancient to recent times, we refer to Kahn (1996) and
Bauer (2021). For a technical perspective of some schemes, we refer to Stinson and Patterson
(2023).

In this paper we mention some cryptographic schemes which can be obtained from
combinatorial structures. In Section 1, we give a brief description of two such schemes and
mention the combinatorial structures which lead to these schemes. In Section 2 we focus on
distributed sensor networks and describe how they can be obtained from statistical designs.
References are given for all these results and the reader may obtain the details from these
references.

2. Some cryptographic schemes and related combinatorial structures

In this section we mention two cryptographic schemes, error-correcting codes and
visual cryptographic schemes, and mention the designs that may be used to construct these
schemes. Our objective here is to only give a flavor of the versatility of the application of
designs to cryptography. There are many other schemes which are not mentioned here for
the sake of brevity.

2.1. Error correcting codes and Hadamard matrices

Error-correcting codes are used to detect and correct errors that can occur when
transmitting data over noisy channels. They add extra bits, i.e., redundant information, to
the original data in such a way that the recipient of the data can compare the received data
with the redundancies and identify the errors which arise due to noise or other factors. Each
code is a collection of codewords, or k-tuples, say, with symbols from a set of symbols or an
alphabet.

It is well known that optimal weighing designs are given by Hadamard matrices, e.g.,
to optimally weigh 8 objects using 8 weighings with a chemical balance, the optimal design
matrix will be given by a Hadamard matrix of order 8. In the cryptography context, the
rows of this same Hadamard matrix, after replacing −1 by 1 and 1 by 0, will give an error-
correcting code for transmitting a binary message of 3 bits as a message of 8 bits, and it
can correct one error. More generally, using Hadamard matrices, one can construct the first-
order Reed-Muller code over the binary alphabet which is useful in transmitting messages
over noisy channels. For some applications in this context, we refer to Serberry, Wysocky
and Wysocki (2005) and Yarlagadda and Hershey (1997).
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2.2. Error-correcting codes and orthogonal arrays

Orthogonal arrays are well-known structures which are useful in statistics for obtain-
ing suitable fractions of factorial experiments for experimentation. These orthogonal arrays
also give useful error-correcting codes, namely MDS (Maximum distance separable) codes,
the Reed Solomon Codes, Hamming codes, etc. These codes have optimal properties of
various kinds.

2.3. Visual cryptographic schemes and BIBD, PBIBD

In a (k, n) visual cryptography scheme, a secret image (or text) is encoded to form n
‘shares’ and each share is printed on a transparency sheet. There are n participants, each
of whom gets one share. The encryption is such that only when k(≥ 2) participants get
together and stack their sheets one above another, the secret image is revealed, no set of
k − 1 or fewer participants can decode the secret image. This scheme is useful as decoding
can be done simply by the human eye without the need of any computers or equipment.
More details can be obtained from Naor and Shamir (1994) and Kang, Arce and Lee (2011),
Ibrahim, Teh and Abdullah (2021) and Climato, Prisco and Santis (2005).

It has been shown in Blundo, Santis and Stinson (1999) that balanced incomplete
block designs (BIBDs) are useful in encoding the secret image and forming the shares. Ad-
hikari and Bose (2004) and Adhikari, Bose, Kumar and Roy (2007) showed that partially
balanced incomplete block Designs (PBIBDs) lead to schemes where the sharpness of the
recovered image is better for certain set of participants. Bose and Mukerjee (2006, 2010)
showed that various other incomplete block designs like regular graph designs, symmetrical
unequal block designs may also be used to obtain schemes with many desirable properties.

There are several other schemes in the literature which have been developed from
designs of experiments and which have not been mentioned here, e.g., general threshold
access structures, anti-collusion digital fingerprinting, etc. Some references on these are
Kang, Sinha and Lee (2006), Yagi, Matsushima and Hirasawa (2007), Bose and Mukerkee
(2013, 2014). Moreover, there could be many other possibilities of using designs to construct
useful cryptographic schemes of various types in future.

3. Distributed sensor networks

Distributed sensor networks (DSNs) are used in a wide range of applications. Some ex-
amples of their use are in air quality monitoring, water quality monitoring, wildlife tracking,
seismic activity detection etc. These are also used in military applications such as battlefield
surveillance, target tracking, perimeter security, reconnaissance missions, etc. Another in-
teresting use of this system is in smart cities where they prove useful in traffic management,
congestion monitoring, parking availability detection, street lighting control, etc.

This wide applicability of these network schemes is due to the ability of DSNs to collect
real-time data from geographically dispersed sensors, enabling comprehensive monitoring and
analysis of various physical phenomenon across large areas.

We now discuss key-predistribution schemes for DSNs in some detail, based on results
from Bose, Dey and Mukerjee (2013); more references may be found therein.
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3.1. Key predistribution schemes(KPS) for DSNs

We begin with an example of a situation where sensor nodes are pre-distributed in
several locations. Suppose in a military operation, several sensor nodes, each with some
secret keys installed in them, are randomly scattered over a sensitive area. The keys in each
node are taken from a large set of keys. Each node can send or receive signals only over a
certain wireless communication range or neighbourhood. Once deployed, these nodes have to
communicate with each other through secure keys in order to gather and relay information.

In this context, some metrics of the KPS are important:

1. Network size, i.e., the number of nodes deployed, say, n.

2. Key storage, i.e., the number of keys stored per node, say, k.

3. Intersection Threshold i.e., the number of keys common between 2 nodes, say, q.

4. Communication rule i.e., if two nodes are within each other’s neighbourhood, they can
communicate with each other
(a) directly, if they have q ≥ 1 common keys, or
(b) via one hop if there is a third node within the intersection of their neighbourhoods
which shares q common keys with each of them. If needed, multiple secure links can
also be used if there is a sequence of nodes connecting them such that every pair of
successive nodes in this sequence share q(≥ 1) common keys.

Now, after deployment, some nodes may be captured in an attack. In that case, all the
keys in these captured nodes are considered to be lost and cannot be used for communication
by the other nodes. However, if the remaining nodes can still communicate using their
remaining keys as per 4 (a) or 4 (b) above, then the KPS is said to be ‘resilient’. Resilience
is a desirable property of a KPS.

3.2. Correspondence with block designs

Now we introduce a correspondence between some terms used in the context of block
designs with the terms used in the context of the KPS as introduced in section 3.1.

The set of all keys of the KPS corresponds to the set of all treatments in a block
design.

The sensor nodes of the KPS correspond to the blocks in a block design. Here, since
we would like a large number of nodes in the system, we need a large number of blocks in
the designs, as opposed to fewer blocks preferred in designs of experiments.

The key storage of a KPS corresponds to the block size of a design.

With the above correspondence, it is clear that the ‘intersection threshold’ of a KPS
corresponds to the number of treatments that are common to two blocks. This means that
the block intersection number of a block design becomes important. We will consider the
duals of block designs where the roles of treatment and block in the original block design are
reversed, and so, the incidence between the treatments and blocks is also reversed.
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We give examples of two designs, one PBIBD(d1) wih 2 associate classes, and one
BIBD(d2), and their corresponding dual designs d∗

1 and d∗
2, as shown below. These duals

will be used subsequently to construct KPS. For the design di, let vi, bi, ri and ki denote the
number of treatments, number of blocks, replication number, and block size, respectively,
i = 1, 2. Then, from the properties of BIBD and PBIBD it may be noted that these duals
d∗

i , i = 1, 2, are such that:

1. every symbol occurs at most once in any block

2. every symbol occurs in ki blocks, 2 ≤ ki < bi

3. every block contains ri symbols, vi > ri ≥ 2, and

4. there is an association scheme with 2 associate classes on the sets of blocks of d∗
i ,

i = 1, 2. Any 2 distinct blocks will either have no symbol in common (then we call
these blocks 1st associates of each other) or they will have exactly one symbol in
common (then we call these blocks 2nd associates of each other). Each block is called
the 0th associate of itself. Clearly, any 2 distinct blocks of d∗

2 will be 2nd associates,
while any two distinct blocks of d∗

1 may be either 1st or 2nd associates.

Example 1: PBIB design with GD scheme d1(v1 = 6, b1 = 9, r1 = 3, k1 = 2, λ1 = 0, λ2 = 1),
blocks shown as columns labeled 1, . . . , 9.

d1 :
1 2 3 4 5 6 7 8 9
1 1 1 2 2 2 3 3 3
4 5 6 4 5 6 4 5 6

Dual of d1: d∗
1(v∗

1 = 9, b∗
1 = 6, r∗

1 = 2, k∗
1 = 3), blocks shown as columns labeled B1, . . . , B6.

d∗
i :

B1 B2 B3 B4 B5 B6
1 4 7 1 2 3
2 5 8 4 5 6
3 6 9 7 8 9

Example 2: BIB design d2 (v2 = 9, b2 = 12, r2 = 4, k2 = 3, λ = 1), blocks shown as columns
labeled 1, . . . , 12.

d2 :

1 2 3 4 5 6 7 8 9 10 11 12
4 7 1 5 8 2 6 9 3 1 4 7
7 1 4 8 2 5 9 3 6 2 5 8
2 5 8 3 6 9 1 4 7 3 6 9

Dual of d2: d∗
2(v∗

2 = 12, b∗
2 = 9, r∗

2 = 3, k∗
2 = 4), blocks shown as columns labeled C1, . . . , C9.

d∗
2 :

C1 C2 C3 C4 C5 C6 C7 C8 C9
2 1 4 1 2 5 1 3 6
3 5 8 3 4 7 2 4 7
7 6 9 8 6 9 9 5 8
10 10 10 11 11 11 12 12 12
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3.3. Use of block designs

We can build useful key predistribution schemes based on block designs because using
the combinatorial structures of the designs we can

1. study the connectivity property of the scheme

2. study the resilience property of the scheme, and

3. carry out shared-key discovery and path-key establishment in a structured manner.

Schemes are evaluated on the basis of their connectivity and resilience using the
measures Pr1, P r2 and fail(s) as proposed by Lee and Stinson (2004) and defined below:

For any 2 randomly chosen nodes in each other’s neighbourhood, let Pr1 be the
probability that the 2 nodes can securely communicate directly with each other, i.e., they
have q keys in common.

Again, for any 2 randomly chosen nodes in each other’s neighbourhood, let Pr2 be
the probability that these 2 nodes do not share q common keys but there is a third key in
the neighbourhood of both of them which shares q common keys with both these nodes. So
these 2 nodes can communicate securely via this third node.

Finally, Pr1 +Pr2 is used to study the connectivity of a KPS, either through a secure
direct path, or through a secure path via a third node. The larger the value of Pr1 + Pr2,
the better is the connectivity of the KPS.

In the event of an attack a number of nodes are compromised and the keys in the
compromised nodes are rendered unusable for communication. Let A and B be 2 uncompro-
mised nodes which share q common keys. Then, the resilience of the KPS is measured by
fail(s) which is equal to the conditional probability that the link between A and B will fail,
when out of the other n − 2 nodes, s randomly chosen nodes are compromised. A smaller
fail(s) means a larger resilience property for the KPS.

Several researchers have studied this problem. Lee and Stinson (2004) considered
KPS with q = 1 and q = 2 and used transversal designs for their construction. Bose, Dey
and Mukerjee (2013) studied KPS for general q and used various types of designs for their
construction, e.g., BIBD, PBIBD based on GD, LS and triangular association schemes, and
suitable duals of these designs, for general q.

3.4. An illustration of the construction of KPS for q = 2

We now illustrate how duals of some suitable block designs can be used in the con-
struction of the schemes. For our illustration, we use the designs shown in Section 3.2. For
more examples, details and theoretical justifications, we refer to Bose, Dey and Mukerjee
(2013). We only consider the case where q = 2; the case with q = 1 is easier and omitted
here.

We can onstruct a KPS with q = 2 as follows:
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(1) We start with 2 designs, each being either a PBIB design with λ1 = 0, λ2 = 1,
or a BIB design with λ = 1, and then we consider their dual designs. e.g., we start with d1
and d2 shown in Section 3.2 and take their duals d∗

1 and d∗
2.

(2) We identify the symbols of d∗
1 and d∗

2 as the keys. So, the number of possible
keys is v∗

1 + v∗
2 = b1 + b2, which equals to 9 + 12 = 21 keys in our example.

(3) We take all possible selections of a block from each of d∗
1 and d∗

2, and consider
their union as a node. So, any node in our example is of the form: Bi ∪ Cj, i = 1, . . . , 6, j =
1, . . . , 9. Thus we get the number of nodes as n = b∗

1 × b∗
2 = v1 × v2, which equals 6 × 9 = 54

nodes in our example. Each of these nodes have k∗
1 +k∗

2 = r1 +r2 keys, which equals 3+4 = 7
keys in our example.

We can check the properties of the KPS from the properties of the constituent designs.

For example, by taking the union of block B1 from d∗
1 and block C1 from d∗

2, and
writing the symbols of d∗

2 in italics to differentiate them from the symbols of d∗
1, we get the

node as

B1 ∪ C1 = 1 2, 3, 2, 3, 7, 10

Similarly, taking union of block B3 from d∗
1 and block C4 from d∗

2, and writing the
symbols of d∗

2 in italics, we get the node as

B3 ∪ C4 = 7, 8, 9, 1, 3, 8, 11

Note that B1 and B3 have no symbol in common and hence these blocks are 1st
associates of each other. Again, blocks C1 and C4 have 1 symbol in common and hence these
blocks are 2nd associates of each other. So we will say that the 2 nodes given by B1 ∪ C1
and B3 ∪ B4 are 12 th associates of each other.

Now, since d1 is a PBIB design with 2 associate classes, blocks of d∗
1 can be either 0,

1, or 2 associates. Again, as d2 is a BIB design, blocks of d∗
2 can be either 0, or 2 associates.

So the association relationship between any 2 distinct nodes Bi1 ∪ Cj1 and Bi2 ∪ Cj2 in this
KPS will be given by the set

{02, 10, 12, 20, 22}

Using this association structure between two nodes, we can deduce which two nodes
can directly communicate with each other and which two nodes need a path via a third node
to communicate.

It can be shown that with q = 2, all pairs of nodes except those which are 12 associates
of each other can communicate directly with one another.

In this example, it can be checked that the number of 12 associates of any node in
the KPS is 16. So the remaining 54 − 16 = 38 nodes can directly communicate with each
other.
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Algebraic expressions for Pr1, P r2 and fail(s) can also be obtained using the combi-
natorial properties of the component designs. We omit the details here.

3.5. Evaluating Local connectivity and resilience for the above KPS

For the KPS obtained from the designs d∗
1 and d∗

2, it may be shown that:

Pr1 = 0.6981, P r2 = 16
53[1 − (1 − 29

52)η]

where the intersection of the neighbourhoods of nodes A and B contain η nodes, excluding
A and B themselves. So for q = 2 and for some choices of η, the probability that any 2
randomly chosen nodes in the KPS can communicate with each other is equal to

η 1 2 3 4 5 10 15 20
Pr1 + Pr2 0.867 0.941 0.974 0.988 0.995 0.9999 1.000 1.000

The above table shows that this KPS has quite high local connectivity. Different choices of
the constituent designs will lead to different KPS and their metrics can be computed.

This idea of construction for q = 2 can be extended to general q(≥ 2) where we start
with q suitable initial designs, take their duals, and then form KPS as in steps (1), (2) and
(3) in Section 3.3. Each time, n is multiplicative in the b∗

i while k is additive in k∗
i . Thus,

this method gives schemes with many nodes but small key storage. The properties of such
KPS can be similarly ascertained from the properties of the designs.
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Abstract

This survey presents a comprehensive overview of current methodologies and chal-
lenges in the development of large language models (LLMs), focusing on training processes,
knowledge integration techniques, and evaluation frameworks. The review examines both
traditional and innovative approaches, including the DeepSeek methodology, and discusses
critical challenges such as static knowledge limitations, hallucinations, and the need for
robust guardrails. The analysis covers the full spectrum from foundational training to pro-
duction deployment, providing insights into the evolving landscape of LLM systems and their
practical applications.

Key words: Large language models; Knowledge bases; RLHF18.

1. Introduction

Large Language Models (LLM) have emerged as transformative technologies in ar-
tificial intelligence, demonstrating remarkable capabilities across diverse natural language
processing tasks. However, their development, deployment, and evaluation present complex
challenges that require sophisticated frameworks and methodologies. This survey synthesizes
current approaches to LLM training, knowledge integration, and evaluation, drawing from
recent advances in the field and practical implementation experiences.

The rapid evolution of LLMs necessitates a comprehensive understanding of their
underlying mechanisms, from initial training processes to production-ready systems. This
review addresses key challenges including knowledge cutoff limitations (Chen et al., 2023),
hallucination mitigation (Zhang et al., 2023), and the development of robust evaluation
metrics that ensure both performance and safety.

2. Large language model training frameworks

2.1. Traditional training pipeline

The conventional LLM training process follows a structured approach involving sev-
eral critical stages, each presenting unique technical challenges and optimization opportuni-
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ties.

2.2. Data collection and preprocessing

The foundation of any LLM involves gathering vast amounts of text data from diverse
sources and preparing it for training. This stage encompasses several processes: (1) Web
crawling and curation, where large-scale internet scraping operations collect terabytes
of textual data from websites, forums, and digital repositories, requiring advanced filtering
mechanisms to ensure quality and remove duplicates (OpenAI, 2023); (2) Multilingual cor-
pus construction, involving the careful balance of languages to prevent model bias toward
dominant languages while ensuring adequate representation of low-resource languages; (3)
Quality assessment algorithms, implementing perplexity-based filtering, n-gram overlap
detection, and semantic coherence scoring to eliminate low-quality content; and (4) Tok-
enization strategies, employing subword tokenization methods like Byte-Pair Encoding
(BPE) or SentencePiece to handle out-of-vocabulary words and optimize vocabulary size for
computational efficiency (Vaswani et al., 2017).

2.3. Self-supervised learning

Models are trained to predict missing words in sequences through attention mecha-
nisms that enhance language understanding via pattern recognition and contextual learn-
ing (Vaswani et al., 2017). This phase implements the transformer architecture’s core in-
novation: multi-head self-attention, where the model computes attention weights Aij =

exp(QiK
T
j /

√
dk)∑n

k=1 exp(QiKT
k

/
√

dk) , allowing each position to attend to all positions in the input sequence.
The self-supervised objective maximizes the likelihood L = ∑T

t=1 log P (xt|x<t), where the
model learns to predict token xt given all previous tokens. This approach builds funda-
mental language capabilities through masked language modeling (MLM) and next sentence
prediction (NSP) tasks, establishing the semantic and syntactic understanding necessary for
more complex reasoning tasks.

2.4. Supervised learning and fine-tuning

The transition from self-supervised pre-training to supervised fine-tuning adapts the
model for specific tasks using curated instruction datasets. This process uses gradient-based
optimization, updating parameters as θt+1 = θt − α∇θL(θ), where L(θ) is the task-specific
loss. The supervised phase employs: (1) Instruction tuning, where models learn to follow
human instructions via prompt-response datasets; (2) Task-specific adaptation, involving
fine-tuning on datasets such as SQuAD for question-answering or WMT for translation; and
(3) Multi-task learning, where models simultaneously optimize multiple objectives to
boost generalization.

2.5. Distributed training infrastructure

The computational intensity of LLM training requires parallel computing architec-
tures that utilize multiple GPUs in distributed systems (Shoeybi et al., 2020). Modern
training implementations employ several parallelization strategies: (1) Data parallelism,
where different GPU nodes process separate batches of data while maintaining synchro-



2025] FRAMEWORKS FOR LARGE LANGUAGE MODELS 89

nized model parameters through all-reduce operations; (2) Model parallelism, splitting the
model architecture across multiple devices, particularly useful for models exceeding single-
GPU memory capacity; (3) Pipeline parallelism, dividing the model into sequential stages
across different devices, enabling concurrent processing of different micro-batches; and (4)
Tensor parallelism, partitioning individual tensor operations across multiple devices to
handle extremely large parameter matrices.

2.6. DeepSeek methodology: an alternative paradigm

The DeepSeek training framework (DeepSeek Team, 2024) follows established LLM
training practices with architectural innovations, implementing a mixture-of-experts (MoE)
architecture with 671B total parameters and 37B activated parameters. DeepSeek-R1 specif-
ically uses reinforcement learning without supervised fine-tuning to develop reasoning capa-
bilities.

2.7. Architectural innovations

The DeepSeek architecture integrates several advanced components: (1) Multi-
head latent attention mechanisms, extending traditional attention by incorporating
latent variable modeling where attention weights are computed through a latent space z:
Aij = softmax(f(Qi, Kj, z)), allowing for more flexible attention patterns; (2) Chain-of-
Thought integration (Wei et al., 2022), embedding reasoning pathways directly into the
model architecture through specialized attention heads that track logical dependencies; (3)
Mixture of Experts (MoE) architectures (Fedus et al., 2022), implementing sparse ac-
tivation patterns where only a subset of parameters are active for any given input, defined
by the gating function G(x) = softmax(Wg · x) that routes inputs to appropriate expert
networks.

2.8. Training methodology distinctions

The DeepSeek approach differs fundamentally from standard training in several key
aspects:

Data Usage Philosophy: While conventional approaches require extensive human-
labeled datasets often exceeding billions of examples, DeepSeek employs a cold-start method-
ology with minimal initial supervision, typically requiring only thousands of high-quality seed
examples. The system then implements iterative synthetic data generation through rejec-
tion sampling, where candidate responses are generated and filtered based on quality metrics
Q(r) = α · coherence(r) + β · relevance(r) + γ · factuality(r).

Reinforcement Learning Integration: Traditional RLHF (Ouyang et al., 2022)
applies reinforcement learning as a post-processing step, whereas DeepSeek integrates RL
throughout the training process. The system alternates between supervised fine-tuning
phases and pure reinforcement learning episodes, implementing policy gradient methods
where the policy πθ(a|s) is updated according to ∇θJ(θ) = E[∇θ log πθ(a|s)A(s, a)], where
A(s, a) represents the advantage function estimating the quality of action a in state s.
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3. Foundational challenges in LLM knowledge systems

3.1. Static knowledge limitations and temporal boundaries

Large language models face fundamental epistemological challenges related to knowl-
edge representation and temporal validity that significantly impact their practical deploy-
ment and reliability.

3.2. The knowledge freeze problem

LLMs experience ”knowledge freeze” at their training cutoff dates, creating a tem-
poral boundary beyond which the model lacks awareness of events, discoveries, or factual
updates (Chen et al., 2023). Scientific knowledge continuously evolves, with research showing
that various domains experience different rates of knowledge obsolescence, though specific
quantification varies significantly across fields. One possible mathematical representation of
knowledge decay could follow an exponential decay model K(t) = K0 ·e−λt, though empirical
validation of such models remains an area of active research.

The implications extend beyond simple factual updates to encompass: (1) Causal re-
lationship evolution, where the relationships between entities change over time, requiring
dynamic graph structures to represent evolving knowledge networks; (2) Semantic drift,
where word meanings and contextual associations shift, particularly in rapidly evolving do-
mains like technology and social media; and (3) Emerging concept integration, where
entirely new concepts, terminologies, or frameworks arise that require knowledge incorpora-
tion mechanisms.

3.3. Parametric versus non-parametric knowledge trade-offs

The tension between internal (parametric) knowledge storage and external (non-
parametric) knowledge retrieval presents complex optimization challenges. Parametric knowl-
edge, encoded within model weights, offers rapid access but suffers from staleness and limited
update mechanisms. The storage capacity can be estimated as C = N ·log2(Q)

B
bits, where N

is the number of parameters, Q is quantization levels, and B is bits per parameter.

Non-parametric knowledge systems, while offering currency and updateability, intro-
duce latency and consistency challenges. The trade-off can be formalized as an optimization
problem: minα α · Latency(retrieval) + (1 − α) · Staleness(parametric), where α balances
between retrieval overhead and knowledge currency.

3.4. The hallucination frontier

Hallucinations represent a critical failure mode where models generate seemingly plau-
sible but factually incorrect information (Zhang et al., 2023; Ji et al., 2023; Manakul et al.,
2023). The phenomenon occurs primarily when models encounter queries that exceed their
knowledge boundaries, leading to confabulation based on statistical patterns rather than
factual grounding.

Research has identified several hallucination triggers: (1) Knowledge boundary
proximity, where queries approach the limits of training data coverage; (2) Confidence
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calibration failures, where models express high confidence in incorrect information; (3)
Context insufficient disambiguation, where ambiguous queries lead to incorrect assump-
tion propagation; and (4) Training data biases, where systematic errors in training corpora
propagate to model outputs.

Mitigation strategies include: (1) Uncertainty quantification, implementing Bayesian
approaches to estimate prediction confidence: P (y|x) =

∫
P (y|x, θ)P (θ|D)dθ; (2) Attention

mechanism analysis, monitoring attention patterns to detect when models rely on weak or
irrelevant context; and (3) Consistency checking, validating responses through multiple
generation paths and cross-referencing.

3.5. The paradox of re-use and training data ecosystem

An emerging concern involves the ”paradox of re-use,” where increased LLM adoption
potentially degrades the quality of future training data through feedback loops. As LLMs
generate increasing amounts of web content, subsequent training iterations may incorporate
model-generated text, leading to potential quality degradation through recursive training
effects.

This phenomenon can be modeled as a Markov chain where each generation Gn

of models trains on data that includes outputs from previous generations: Dn+1 = (1 −
ρ)Dhuman + ρ

∑n
i=1 αiOGi

, where ρ represents the proportion of synthetic content, and αi

weights the contribution of generation i outputs.

4. Knowledge editing methodologies

4.1. Retrieval-augmented generation

RAG systems (Lewis et al., 2020) implement sophisticated information retrieval pipelines
that dynamically incorporate external knowledge during generation. The architecture com-
prises several interconnected components operating in a coordinated fashion. The embed-
ding subsystem converts both queries and document collections into high-dimensional vec-
tor representations using transformer-based encoders. Query embedding q = Encoderq(x)
and document embeddings di = Encoderd(doci) are typically generated using models like
BERT or specialized sentence transformers, producing dense vectors in Rd where d com-
monly ranges from 384 to 1024 dimensions.

The retrieval mechanism implements similarity search through vector databases
(Anderson et al., 2023) that support efficient approximate nearest neighbor queries. The
similarity function, typically cosine similarity sim(q, di) = q·di

||q||·||di|| , ranks documents by rele-
vance. Advanced implementations employ learned sparse retrieval methods combining dense
embeddings with traditional term-frequency approaches.

The context integration module aggregates the retrieved information with the
original query through prompt engineering, where the selected documents are formatted
according to task-specific templates that optimize information utilization while respecting
context length constraints.
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4.2. Multi-level RAG complexity framework

A comprehensive survey by researchers (Lewis et al., 2020) categorizes RAG tasks
into four levels based on external data requirements and reasoning complexity:

Level 1: Explicit Fact Queries implement direct factual lookup mechanisms
where queries map to specific knowledge entries. The retrieval function operates as R(q) =
arg maxd∈D match(q, d), where exact or near-exact matches suffice for response generation.
This level handles queries like ”What is the capital of France?” through straightforward
entity-attribute lookups.

Level 2: Implicit Fact Queries require multi-hop reasoning across connected
knowledge pieces. The system must identify relevant fact chains {f1, f2, . . . , fn} where
each fact fi provides context for subsequent facts. The reasoning process implements graph
traversal algorithms over knowledge graphs, where edges represent relationships and nodes
represent entities or concepts.

Level 3: Interpretable Rationale Queries extend beyond factual retrieval to
incorporate logical reasoning patterns from external sources. The system must identify and
apply reasoning templates that provide step-by-step solution methodologies. This involves
template matching where query patterns P (q) are matched against reasoning frameworks
R(t) to generate structured response sequences.

Level 4: Hidden Rationale Queries requires discovery of implicit reasoning strate-
gies not explicitly present in retrieved documents. The system must synthesize reasoning
approaches from multiple sources, implementing meta-learning mechanisms that identify
optimal problem-solving strategies for novel query types.

4.3. Hypernetwork-based knowledge updates

Hypernetworks (Ha et al., 2016) provide a mechanism for targeted knowledge modifi-
cation without full model retraining. These auxiliary networks generate weight modifications
for the primary model, implementing the transformation W’=W+H(c), where W represents
original weights, H is the hypernetwork function, and c is the conditioning context repre-
senting the knowledge update requirement.

The hypernetwork architecture typically employs a multi-layer perceptron that takes
knowledge update specifications as input and produces delta weights for specific model com-
ponents. The training objective minimizes L = E(x,y,c)[||f(x; W + H(c)) − y||2], where f
represents the primary model, and (x, y, c) are input-output-context triples representing de-
sired knowledge updates.

Advanced implementations employ attention mechanisms within hypernetworks to
selectively modify relevant parameter subsets, reducing computational overhead and mini-
mizing interference with existing knowledge. The attention-weighted modification becomes
W prime equals W plus the sum over i of alpha sub i times H sub i of c, where alpha sub i
represents attention weights determining the relevance of each hypernetwork component.
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4.4. Localized knowledge neuron editing

Recent research has identified specific neural pathways responsible for the storage of
factual knowledge within transformer architectures (Meng et al., 2021). These ”knowledge
neurons” can be precisely targeted for updates without affecting broader model capabilities.

The identification process employs gradient-based attribution methods, computing
∇hi

log P (y|x) for each hidden unit hi to determine its contribution to specific factual pre-
dictions. Neurons with high attribution scores for particular facts become candidates for
targeted modification.

The editing process implements constrained optimization where knowledge neuron
activations are modified to reflect updated information while preserving surrounding model
behavior. The objective function balances update accuracy with behavioral consistency:
min∆W ||f(xedit; W + ∆W ) − ynew||2 + λ

∑
x∈Xpreserve

||f(x; W + ∆W ) − f(x; W )||2.

4.5. Continual learning integration

Continual learning approaches (Parisi et al., 2019) enable incremental knowledge up-
dates while mitigating catastrophic forgetting. These methods implement memory systems
and regularization techniques to maintain previously acquired knowledge during updates.

Elastic Weight Consolidation (EWC) computes parameter importance scores
based on Fisher Information Matrix diagonal elements: Fi = E[(∂ log P (y|x)

∂θi
)2]. The regular-

ization term λ
∑

i Fi(θi − θ∗
i )2 prevents important parameters from deviating significantly

during updates.

Progressive Neural Networks implement modular architectures where new knowl-
edge modules are added while preserving existing ones. The architecture employs lateral
connections h

(k)
i = f(W (k)h

(k)
i−1 + ∑

j<k U
(k:j)
i h

(j)
i−1), where knowledge from previous modules

j influences current module k processing.

Memory-Augmented Networks maintain explicit episodic memories of previous
learning experiences, implementing retrieval mechanisms that recall relevant examples during
new learning episodes. The memory update process balances between adding new experiences
and maintaining diverse historical knowledge.

5. Evaluation frameworks for LLM systems

5.1. Perplexity-based assessment

Perplexity serves as a fundamental intrinsic evaluation metric measuring model un-
certainty in predicting text sequences (Brown et al., 2023). Mathematically defined as
PPL(X) = exp

(
− 1

N

∑N
i=1 log P (xi|x<i)

)
, perplexity quantifies the model’s predictive con-

fidence, with lower values indicating superior language modeling capabilities.

Advanced perplexity analysis employs domain-specific decomposition, computing sep-
arate scores for different text types: PPLdomain = exp

(
− 1

Ndomain

∑
x∈Ddomain log P (x)

)
. This

approach reveals model strengths and weaknesses across different knowledge domains and
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text genres.

Conditional perplexity measurements evaluate model performance given specific con-
texts or constraints, implementing PPL(X|C) = exp

(
− 1

N

∑N
i=1 log P (xi|x<i, c)

)
, where c

represents conditioning information. This metric proves particularly valuable for assessing
context utilization in RAG systems and domain adaptation effectiveness.

5.2. Reference-based similarity metrics

BLEU Score Implementation (Papineni et al., 2002) computes n-gram overlap
between generated and reference texts through the geometric mean of precision scores:
BLEU = BP · exp

(∑N
n=1 wn log pn

)
, where pn represents n-gram precision and BP is the

brevity penalty addressing length disparities.

The metric implements modified precision calculations to prevent repetition: pn =
(sum over C in Candidates of sum over n-gram in C of Countclip(n − gram) / (sum over C’
in Candidates of sum over n-gram’ in C’ of Count(n-gram’)), where Countclip limits n-gram
counts to reference frequencies.

ROUGE Metrics (Lin, 2004) implement recall-oriented evaluation through vari-
ous formulations: ROUGE-N computes n-gram recall, ROUGE-L employs longest common
subsequence matching, and ROUGE-S utilizes skip-bigram co-occurrence. The ROUGE-L
formulation Rlcs = LCS(X,Y )

m
and Plcs = LCS(X,Y )

n
compute recall and precision based on

longest common subsequences, providing robust similarity assessment for variable-length
outputs.

BLEU Score Implementation (Papineni et al., 2002) computes n-gram overlap
between generated and reference texts through the geometric mean of precision scores:
BLEU = BP · exp

(∑N
n=1 wn log pn

)
, where pn represents n-gram precision and BP is the

brevity penalty addressing length disparities.

ROUGE Metrics (Lin, 2004) implement recall-oriented evaluation through vari-
ous formulations: ROUGE-N computes n-gram recall, ROUGE-L employs longest common
subsequence matching, and ROUGE-S utilizes skip-bigram co-occurrence. The ROUGE-L
formulation Rlcs = LCS(X,Y )

m
and Plcs = LCS(X,Y )

n
compute recall and precision based on

longest common subsequences, providing robust similarity assessment for variable-length
outputs.

5.3. Advanced evaluation methodologies: multi-dimensional human assessment

Human evaluation protocols implement structured assessment frameworks encom-
passing multiple quality dimensions. Evaluators assess responses across: (1) Fluency, mea-
suring grammatical correctness and natural language flow; (2) Coherence, evaluating log-
ical consistency and thematic unity; (3) Relevance, assessing response appropriateness to
query context; (4) Informativeness, measuring content richness and factual density; and
(5) Truthfulness, verifying factual accuracy and consistency with reliable sources.

Calibration techniques align LLM judge scores with human evaluations through re-
gression models or distribution matching. The calibration function f : SLLM → Shuman learns
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mappings from LLM scores to human-equivalent scores, improving evaluation validity.

5.4. Benchmark dataset assessment

Standardized benchmarks provide systematic performance comparison across models
and methodologies. GLUE and SuperGLUE implement comprehensive evaluation suites
covering diverse NLP tasks including sentiment analysis, textual entailment, and question
answering. Performance aggregation employs weighted averages accounting for task difficulty
and dataset size.

Domain-specific benchmarks evaluate specialized capabilities such as mathemati-
cal reasoning (GSM8K), coding proficiency (HumanEval), and scientific knowledge (SciBench).
These benchmarks implement rigorous evaluation protocols with automated scoring systems
and comprehensive test suites covering edge cases and challenging scenarios.

5.5. Adversarial robustness testing

Adversarial evaluation assesses model robustness through deliberately challenging in-
puts designed to expose failure modes. Techniques include: (1) Prompt injection attacks,
testing resistance to malicious instruction manipulation; (2) Context manipulation, eval-
uating performance degradation under misleading or contradictory context; (3) Semantic
perturbations, testing sensitivity to paraphrasing and synonym substitution; and (4) Out-
of-distribution queries, assessing behavior on inputs significantly different from training
data.

The evaluation protocol implements systematic perturbation generation through au-
tomated techniques and human-crafted challenging examples. Robustness metrics quantify
performance degradation: R = 1 − Performanceadversarial

Performanceclean
, where lower values indicate better

robustness.

6. LLM guardrails and safety frameworks

6.1. Input validation and preprocessing

Modern LLM deployment requires comprehensive safety frameworks implementing
defense-in-depth strategies across multiple system layers (Johnson et al., 2024).

The first line of defense implements input analysis to detect potentially harmful or
manipulative queries. Prompt injection detection employs trained classifiers that identify
attempts to override system instructions or extract sensitive information. The detection
system analyzes query patterns using features such as instruction keywords, context breaks,
and linguistic anomalies.

The classifier implements a multi-stage approach: (1) Syntactic analysis identifying
structural patterns common in injection attempts; (2) Semantic analysis using embedding
similarity to detect attempts to mimic system prompts; and (3) Contextual analysis
evaluating query appropriateness given conversation history and system role.

Content sanitization processes inputs to remove or neutralize potentially harmful
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elements while preserving legitimate query intent. This involves entity recognition for sensi-
tive information, toxicity scoring using specialized models, and context-aware filtering that
considers domain-specific content policies.

6.2. Response generation controls

During the generation process, multiple safeguards ensure output quality and safety.
Real-time monitoring tracks model attention patterns and internal states to detect po-
tential safety violations before completion. The monitoring system implements threshold-
based intervention where concerning patterns trigger alternative generation paths or safety
responses.

Content filtering pipelines evaluate generated text across multiple dimensions:
(1) Toxicity detection using specialized classifiers trained on harmful content datasets; (2)
Bias assessment measuring unfair treatment of protected groups through demographic par-
ity metrics; (3) Factuality verification cross-referencing claims against reliable knowledge
bases; and (4) Coherence validation ensuring logical consistency and topical relevance.

6.3. Post-processing and output validation

The final safety layer implements comprehensive output validation before response de-
livery. Multi-model consensus employs multiple independent models to evaluate response
quality and safety, implementing voting mechanisms where responses require majority ap-
proval for release.

Dynamic policy enforcement applies context-sensitive rules based on user profiles,
conversation history, and application domain. The rule engine implements conditional logic
trees evaluating multiple safety criteria simultaneously.

Audit trail generation maintains comprehensive logs of all safety interventions,
enabling continuous improvement of safety systems through analysis of edge cases and system
failures.

7. Production-scale LLM infrastructure

7.1. Data pipeline infrastructure

Production LLM systems require integrated data processing pipelines handling diverse
input types and sources. Stream processing systems like Apache Kafka and Apache
Pulsar manage real-time data ingestion with low latency and high throughput requirements.
The architecture implements pub-sub patterns enabling scalable data distribution across
processing components.

ETL frameworks such as Apache Airflow orchestrate complex data transformation
workflows, implementing DAG-based scheduling with dependency management and error
recovery mechanisms. These systems handle: (1) Data ingestion from multiple sources in-
cluding APIs, databases, and file systems; (2) Transformation and normalization ensuring
consistent data formats; (3) Quality validation through automated testing and anomaly de-
tection; and (4) Loading into downstream systems with appropriate partitioning and indexing
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strategies.

Vector database systems (Anderson et al., 2023) provide specialized storage and
retrieval for high-dimensional embeddings. Production implementations employ distributed
architectures with horizontal scaling capabilities, implementing approximate nearest neigh-
bor algorithms like HNSW or IVF for efficient similarity search. The query processing
pipeline optimizes for both accuracy and latency through techniques such as query caching,
index warming, and adaptive batching.

7.2. Model serving and orchestration

Model serving infrastructure implements request routing and load balancing
across multiple model instances. The architecture employs containerized deployments using
technologies like Docker and Kubernetes, enabling dynamic scaling based on demand pat-
terns. Advanced implementations utilize model parallelism across multiple GPUs or nodes,
implementing tensor sharding strategies that distribute computational load while maintain-
ing response coherence.

Orchestration frameworks coordinate complex workflows involving multiple mod-
els, retrieval systems, and validation components. Systems like LangChain and LlamaIndex
provide abstraction layers enabling composable AI workflows, implementing retry mecha-
nisms, timeout handling, and fallback strategies for robust production operation.

Caching systems optimize performance through multi-level caching strategies: (1)
Response caching storing complete answers for frequently asked questions; (2) Embedding
caching maintaining computed vector representations; (3) Context caching preserving pro-
cessed conversation history; and (4) Model state caching reducing initialization overhead for
dynamically loaded models.

7.3. Performance monitoring systems

Production LLM systems require comprehensive monitoring across multiple perfor-
mance dimensions. Latency tracking measures end-to-end response times with percentile-
based analysis identifying performance outliers and degradation patterns. The monitoring
system tracks: (1) Model inference time including tokenization and generation phases; (2)
Retrieval system latency for RAG implementations; (3) Network communication overhead;
and (4) Queue waiting times during high-load periods.

Throughput monitoring tracks request processing rates with capacity planning
metrics. The system implements predictive scaling based on traffic patterns and resource
utilization trends, automatically adjusting compute resources to maintain target performance
levels.

Resource utilization tracking monitors GPU memory usage, CPU consumption,
and network bandwidth to identify bottlenecks and optimization opportunities. Advanced
implementations employ machine learning models to predict resource requirements and de-
tect anomalous usage patterns indicating potential issues.
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7.4. Quality assurance and safety monitoring

Response quality tracking implements automated assessment of output quality
using multiple evaluation metrics. The system continuously monitors response relevance,
coherence, and factual accuracy, alerting operators to quality degradation that may indicate
model drift or system issues.

Safety violation detection tracks incidents where safety guardrails activate, ana-
lyzing patterns to identify potential attack vectors or system vulnerabilities. The monitoring
system implements real-time alerting for serious safety violations while maintaining compre-
hensive audit logs for forensic analysis.

User satisfaction metrics collect implicit and explicit feedback signals, implement-
ing sentiment analysis on user interactions and conversion rate tracking for task completion
metrics. These signals provide early warning of system degradation and guide improvement
efforts.

8. Conclusion and future directions

The landscape of LLM development encompasses sophisticated technical challenges
requiring integrated solutions across training methodologies, knowledge management, eval-
uation frameworks, and production systems. The survey has examined the evolution from
traditional training approaches to innovative methodologies like DeepSeek, highlighting the
trade-offs between human supervision and automated optimization.

Key technical advances include the development of multi-level RAG systems that
enable reasoning capabilities, the implementation of precise knowledge editing techniques
targeting specific neural pathways, and the deployment of comprehensive safety frameworks
addressing the complex challenges of production AI systems.

Future research directions encompass several critical areas: (1) Development of more
efficient training paradigms that reduce computational requirements while maintaining or
improving model capabilities; (2) Advanced knowledge integration techniques that enable
real-time updates without catastrophic forgetting; (3) End to end evaluation frameworks that
better capture real-world performance and safety characteristics; and (4) Scalable production
architectures that can handle the increasing demands of widespread LLM deployment.

The convergence of these technical advances represents a pathway toward more ca-
pable, efficient, and trustworthy AI systems that can effectively serve diverse human needs
while maintaining appropriate safety standards and ethical considerations. As the field con-
tinues to evolve rapidly, the integration of these comprehensive frameworks will be essential
for realizing the full potential of large language models in practical applications.
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Abstract

In this study, the Nakagami distribution is examined in the context of reliability anal-
ysis, focusing on key reliability measures. Various estimation techniques for the distribution
parameters are explored and compared. A novel approach for deriving different estimators
is introduced. Asymptotic confidence intervals for the parameters are constructed based on
both MLE and log-MLE methods. In addition, hypothesis testing procedures are developed
for different scenarios. The performance of the proposed estimation methods is assessed
through a comprehensive Monte Carlo simulation study. Finally, the applicability of these
methods is demonstrated using a real data set, providing clarity and practical insight into
the estimation process.

Key words: Nakagami distribution; Reliability; Classical methods; Markov chain Monte
Carlo.
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1. Introduction and preliminaries

Reliability function is the probability that a system performs its intended function
without any failure at time t under the prescribed conditions. So, if we suppose that life-
time of an item or any system is denoted by the random variate X then the reliability is
R(t) = Pr(X > t). The other important measure of reliability is P = Pr(X > Y ) and this
represents reliability of X (random strength) subject to Y (random stress). This is known as
the reliability of an item under the stress strength set up. This measure is very useful to find
the reliability of an item in no time like in case we want to test the reliability of an electric
wire. Various authors have conducted estimation and testing of the reliability measure R(t)
and P considering different distributions. For literature, one can refer Pugh (1963), Basu
(1964), Tong (1974, 1975), Johnson (1975), Sathe and Shah (1981), Chao (1982). Chaturvedi
and Surinder (1999) developed the inferential procedures for testing these reliability mea-
sures of exponential distribution. Awad and Gharraf (1986) estimated P in case of Burr
distribution. Tyagi and Bhattacharya (1989) and, Chaturvedi and Rani (1998) done esti-
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mation related to Maxwell and generalized Maxwell distributions respectively. Chaturvedi
and Pathak (2012) derived inferential procedures for exponentiated Weibull and Lomax dis-
tributions. Chaturvedi and Rani (1997) and Chaturvedi and Tomer (2003) draw inferences
for R(t) and P for the families of lifetime distributions which are very useful as they cover
many distributions as particular cases. Chaturvedi and Vyas (2018) have done estimation of
R(t) and P for three parameter Burr distribution under different censoring schemes.
In the present communication, a very important distribution known as the Nakagami distri-
bution is taken into consideration which is most useful in communication engineering. It was
Nakagami (1960) who proposed this distribution which models the fading of radio signals by
name as Nakagami-m distribution with shape parameter m.
If a random variable (rv) X follows the Nakagami distribution with shape parameter α ≥ 0.50
and scale parameter λ > 0 then its probability density function (P.d.f) is as follows

f(x; α, λ) = 2
Γα

(
α

λ

)α

x2α−1exp

(
− α

λ
x2
)

; x > 0, α ≥ 0.5, λ > 0. (1)

Hereafter, we denote Nakagami distribution by ND(α, λ), where shape parameter α is known
and scale parameter λ is unknown. The corresponding cumulative distribution function (cdf)
of ND(α, λ) is given by,

F (x) = 1
Γα

Γ
(

α

λ
x2, α

)
; x > 0, α ≥ 0.5, λ > 0. (2)

where Γ(x, a) =
∫ x

0 ta−1e−tdt is the lower incomplete gamma function.
The reliability function of ND(α, λ) is

R(t) = 1 − 1
Γα

Γ
(

α

λ
t2, α

)
; t > 0, α ≥ 0.5, λ > 0 (3)

The failure rate of ND(α, λ) is

h(t) =

2
Γα

(
α
λ

)α

t2α−1exp

(
− α

λ
t2
)

1 − 1
Γα

Γ
(

α
λ
t2, α

) ; t > 0, α ≥ 0.5, λ > 0. (4)

1.1. Relations with other distribution

1. For α = 0.5, ND(α, λ) reduces to Half Normal distribution.

2. With α = 1, ND(α, λ) becomes Rayleigh distribution.

3. If rv Y is distributed as Gamma(k, λ) with shape k and scale λ then
√

Y follows
ND(k, kλ).

4. If Z follows chi-square with parameter 2α and 2α is integer-valued then
√

λ
2α

Z is
ND(α, λ) variate.
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This distribution has found applications in various disciplines such as in hydrology,
multimedia data traffic over networks, medical imaging studies, in modeling of seismogram
envelope of high frequency etc. For review, one may see Schwartz et al. (2013). Using
the Monte Carlo simulation technique, Abdi and Kaveh (2000) made comparison of three
different estimators of Nakagami-m distribution. Cheng and Beaulieu (2001) estimated
the distribution using Maximum Likelihood method. Schwartz et al. (2013) discussed the
estimation of the shape parameter using improved maximum likelihood estimation and also
gave some distributional properties.

The main aim of this paper is to develop point estimation and hypotheses testing pro-
cedures for two measures of reliability viz., R(t) and P . In Section 2, we present point estima-
tion when shape parameter is known but scale parameter is unknown. Uniformly Minimum
Variance Unbiased Estimators (U.M.V.U.Es), Maximum Likelihood Estimators(M.L.Es) and
Moment estimators have been found in this section. Section 3 comprises of point estima-
tion when both scale and shape parameters are unknown. Asymptotic confidence intervals
are developed for the parameters in Section 4. Section 5 is devoted for developing testing
procedures for testing different hypotheses. In Section 6, we present the simulation study
using Monte Carlo techniques with Section 6.1 devoted for the case when shape parameter
α is known and scale parameter λ is unknown, Section 6.2 for the case when both α and
λ are unknown and Section 6.3 for hypotheses testing . In Section 7, a real data study is
performed and finally the paper is concluded in Section 8.

2. Point estimation when shape parameter is known

Let us take a random sample X1, X2, . . . , Xn from the model (1) having size n. Taking
α to be known, the likelihood function of the parameter λ given the sample observations x
comes out to be

L(λ|x) =
n∏

i=1
f(xi, λ) =

(
2αα

Γα

)n 1
λαn

n∏

i=1
xi

2α−1exp

(
− α

λ

n∑

i

xi
2
)

(5)

Theorem 1: For q ∈ (−∞, ∞), q ̸= 0, U.M.V.U.E of λq is

λ̃q =





{
Γ(nα−q)

Γ(nα)

}
Sq ; nα > q

0 ; Otherwise
(6)

Proof: From the likelihood (5) and factorization theorem Rohtagi and Saleh (2012, pp.361)
it can be easily obtained that S = ∑n

i=1 xi
2 is a sufficient statistic for λ and the P.d.f of S is

fs(S|λ) = Snα−1

Γ(nα)λnα
exp

(
− S

λ

)
(7)

From (7), since the distribution of S belongs to the exponential family, it is also complete
Rohtagi and Saleh (2012, pp.367).



104 RAHUL GUPTA AND BHAGWATI DEVI [SPL. PROC.

Now, from (7), we have

E[S−q] = 1
Γ(nα)λnα

∫ ∞

0
Snα−q−1exp

(
− S

λ

)
dS

=
{

Γ(nα − q)
Γ(nα)

}
1
λq

and the theorem holds on using Lehmann-Scheffe theorem Rohtagi (1976, pp.357).

Theorem 2: The U.M.V.U.E of the reliability function is

R̃(t) =




1 − I t2
S

[α, (n − 1)α] ; t2 < S
α

0 ; Otherwise
(8)

where Ix(p, q) = 1
β(p,q)

∫ x
0 yp−1(1 − y)q−1 dy; 0 ≤ y ≤ 1, x < 1, p, q > 0 is the incomplete beta

function.

Proof: Let us define a random variable as

V =
{

1, X1 > t

0, Otherwise
(9)

which is based on a single observation and is an unbiased estimator of R(t). Using Rao-
Blackwellization and (9), we have

R̃(t) = E(V |S)
= P (X1 > t|S)

= P

(
v1 >

t2

S

)
, say; (10)

where v1 = X12

S
. From (7), we see that v1 follows beta distribution of first kind with

parameters [α, (n − 1)α]. Applying Basu’s theorem, from (10), we have

R̃(t) = 1 − P

(
v1 ≤ t2

S

)

= 1 − β[ t2

S
; α, (n − 1)α]

β[α, (n − 1)α] (11)

and the theorem holds.

Corollary 2.1: The Reliability estimate of the distribution for which α = 1 is

R̃(t) =





(
1 − t2

S

)n−1

; t2 < S

0 ; Otherwise
(12)
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Corollary 2.2: The U.M.V.U.E of sampled P.d.f (1) at a specified point x is :

f̃(x; λ) =





(
α
S

)α
x2α−1

β[α,(n−1)α]

(
1 − αx2

S

)(n−1)α−1

; x2 < S
α1

0 ; Otherwise
(13)

Let us take two independent random variables X and Y with P.d.fs f(x, α1, λ1) and
f(y, α2, λ2) respectively, where

f(x; α1, λ1) = 2
Γα1

(
α1

λ1

)α1

x2α1−1exp

(
− α1

λ1
x2
)

; x > 0, α1 ≥ 0.5, λ1 > 0. (14)

and
f(y; α2, λ2) = 2

Γα2

(
α2

λ2

)α2

x2α2−1exp

(
− α2

λ2
y2
)

; y > 0, α2 ≥ 0.5, λ2 > 0. (15)

Now draw a random sample X1, X2, . . . , Xn from f(x; α1, λ1) and random sample Y1, Y2, . . . , Ym

from f(y; α2, λ2). Denote S = ∑n
i=1 xi

2 and T = ∑m
i=1 yi

2.

Theorem 3: The U.M.V.U.E of P is

P̃ =





1
2β[α2,(m−1)α2]

∫ α2S

α1T

0 {1 − I T z
α2S

[α1, (n − 1)α1]}zα2−1(1 − z)(m−1)α2−1 dz

;
(

S
α1

) 1
2 ≤

(
T
α2

) 1
2

1
2β[α2,(m−1)α2]

∫ 1
0 {1 − I T z

α2S
[α1, (n − 1)α1]}zα2−1(1 − z)(m−1)α2−1 dz

;
(

S
α1

) 1
2 >

(
T
α2

) 1
2

Proof:

Proceeding as in case of proving Corollary 2, we can rewrite U.M.V.U.E of P in terms
of R̃(y, λ1) as follows

P̃ =
∫ ∞

y=0

∫ ∞

x=y
f̃(x; λ1)f̃(y; λ2) dx dy

=
∫ ∞

y=0
R̃(y; λ1)f̃(y; λ2) dy

Now, using Theorem 2, we have

P̃ =
∫ min

[(
S

α1

) 1
2

,

(
T

α2

) 1
2
]

0

[
1 − I y2

S

(α1, (n − 1)α1)
]

(
α2

T

)α2 y2α2−1

β[α2, (m − 1)α2]

(
1 − α2y

2

T

)(m−1)α2−1

dy

=

(
α2
T

)α2

β[α2, (m − 1)α2]

∫ min

[(
S

α1

) 1
2

,

(
T

α2

) 1
2
]

0
[
1 − I y2

S

(α1, (n − 1)α1)
]
y2α2−1

(
1 − α2y

2

T

)(m−1)α2−1

dy (16)
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Now from (16), when
(

S
α1

) 1
2 ≤

(
T
α2

) 1
2

P̃ = 1
2β[α2, (m − 1)α2]

∫ α2S

α1T

0
{1 − I T z

α2S
[α1, (n − 1)α1]}zα2−1

(1 − z)(m−1)α2−1 dz

and we have the first assertion.

Furthermore, for
(

S
α1

) 1
2 >

(
T
α2

) 1
2 ,

P̃ = 1
2β[α2, (m − 1)α2]

∫ 1

0
{1 − I T z

α2S
[α1, (n − 1)α1]}zα2−1

(1 − z)(m−1)α2−1

and this proves the second assertion.

Corollary 3.1: U.M.V.U.E of P when α1 = α2 = 1 is given by

P̃ =




1
2β[1,m−1]

∫ S
T

0 {1 − IT z
S

[1, (n − 1)]}(1 − z)(m−2 dz; S
1
2 ≤ T

1
2

1
2β[1,m−1]

∫ 1
0 {1 − IT z

S
[1, (n − 1)]}(1 − z)(m−2) dz; S

1
2 > T

1
2

We provide M.L.E. of λq, R(t) and P under the assumption that α is known in the
following given theorems.
From (5), M.L.E of λ is

λ̂ = S

n
(17)

Theorem 4: The M.L.E. of λq is
λ̂q =

(
S

n

)q

(18)

Theorem 5: The M.L.E. of R(t) is given by

R̂(t) = 1 − 1
Γα

Γ
(

nαt2

S
, α

)
(19)

We obtain M.L.E. of sampled P.d.f with the help of Theorem 5 in the following
corollary. This will be used to obtain M.L.E. of P .

Corollary 5.1: The M.L.E. of f(x; λ) at a specified point x is

f̂(x; λ) = 2
Γα

(
nα

S

)α

x2α−1exp

(
− nαx2

S

)
(20)

Theorem 6: The M.L.E. of P is

P̂ = 1 − 1
Γα1Γα2

∫ ∞

z=0
zα2−1e−z Γ

(
nα1zT

mα2S
, α1

)
dz (21)
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Proof: We know that

P̂ =
∫ ∞

y=0

∫ ∞

x=y
f̂(x; λ1)f̂(y; λ2) dx dy

=
∫ ∞

y=0
R̂(y; λ1)f̂(y; λ2) dy

Now using (20) and Theorem 5, we have

P̂ =
∫ ∞

y=0

[
1 − 1

Γα1
Γ
(

nα1y
2

S
, α1

)]
2

Γα2

(
mα2

T

)α2

.y2α2−1exp

(
− mα2y

2

T

)
dy

Substituting mα2y2

T
= z and solving for the above integral, we get the desired result.

Next, we provide moment estimators for the parameters. For this, below given theorem
provides the rth moment generating function of the distribution.

Theorem 7: For r = 1, 2, 3 . . . , the moment generating function rth is given by

ur = E(Xr) =
Γ(α + r

2)
Γ(α)

(
λ

α

) r
2

(22)

From (22), we have

u1 =
Γ(α + 1

2)
Γ(α)

(
λ

α

) 1
2

and

u2 =
Γ(α + 2

2)
Γ(α)

(
λ

α

) 2
2

= λ

Equating the population moments with the sample moments, we have

λ̂m = S

n
(23)

Using (23), the moment estimator α̂m of α is obtained by the solution of

X̄ − Γ(α + 1
2)

Γ(α)

√√√√√


 λ̂m

α


 = 0 (24)

uniroot function in R-software is used for finding the roots of the above equation.

3. Point estimation when shape parameter is unknown

Now we discuss the case when both the parameters are unknown. The log-likelihood
function of the parameters α and λ given the sample observations x is:

l(λ|x) = nlog(2αn) − nlog(Γα) − nαlog(λ) +
n∑

i=1
log(xi

2α−1) − α

λ

n∑

i

xi
2
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The M.L.E of α is given by the solution of the following equation

∂l

∂α
= n2

α
− nΨ0(α) − nlog(λ) + 2

n∑

i=1
log(xi) − 1

λ

n∑

i=0
xi

2 = 0 (25)

where Ψ0 is a polygamma function of order zero and Ψ0(α) = ∂logΓ(α)
∂α

is diagamma function.

∂l

∂λ
= −nα

λ
+ α

λ2

n∑

i=1
xi

2 = 0 (26)

=⇒ λ̂ = S

n

Since (25) do not have a closed form solution, therefore any iterative procedure have to be
use to compute M.L.E.

Theorem 8: The M.L.E. of R(t) is given by:

R̂(t) = 1 − 1
Γα̂

Γ
(

nα̂t2

S
, α̂

)
(27)

Corollary 8.1: The M.L.E. of f(x; α, λ) at a specified point x is

f̂(x; α, λ) = 2
Γα̂

(
nα̂

S

)α̂

x2α̂−1exp

(
− nα̂x2

S

)
(28)

Theorem 9: The M.L.E. of P is

P̂ = 1 − 1
Γα̂1Γα̂2

∫ ∞

z=0
zα̂2−1e−z Γ

(
nα̂1zT

mα̂2S
, α̂1

)
dz (29)

4. Asymptotic confidence intervals

The Confidence Intervals (C.I) can be obtained by using the variance-covariance
matrix of the M.L.Es of the parameters. The asymptotic variance-covariance matrix of
η̂ = (α̂, λ̂) is the inverse of the following Fisher Information matrix

I(η) = −E

[
∂2l
∂2α

∂2l
∂α∂λ

∂2l
∂λ∂α

∂2l
∂2λ

]

This is very cumbersome to obtain the exact distributions of the M.L.Es and the alternative
is to use the observed Fisher information matrix which is

I(η̂) =
[

− ∂2l
∂2α

− ∂2l
∂α∂λ

− ∂2l
∂λ∂α

− ∂2l
∂2λ

]

Thus, we have observed variance-covariance matrix as

I−1(η̂) =
[

V̂ ar(α̂) Ĉov(α̂, λ̂)
Ĉov(λ̂, α̂) V̂ ar(λ̂)

]
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Assuming asymptotic normality of the M.L.Es, confidence intervals for α and λ are con-
structed. Let σ̂2(α̂) and σ̂2(λ̂) be the estimated variances of α and λ. Then the two
sided equal tail asymptotic 100(1 − δ)% confidence intervals for the parameters α and λ

are
(

α̂ ± Z δ
2
σ̂(α̂)

)
and

(
λ̂ ± Z δ

2
σ̂(λ̂)

)
, respectively, where Z δ

2
is the

(
δ
2

)th
percentile of the

standard normal distribution. The coverage probabilities (CP) are given as,

CPα = P

[∣∣∣∣∣
α̂ − α

σ̂(α̂)

∣∣∣∣∣ ≤ Z δ
2

]

and

CPλ = P



∣∣∣∣∣∣
λ̂ − λ

σ̂(λ̂)

∣∣∣∣∣∣
≤ Z δ

2




The asymptotic C.I based on log(M.L.E) has better coverage probability as reported by
Meeker and Escober (1998). An approximate 100(1 − δ)% C.I for log(α) and log(λ) are

{
log(α̂) ± Z δ

2
σ̂[log(α̂)]

}
and

{
log(λ̂) ± Z δ

2
σ̂[log(λ̂)]

}
,

where σ̂2[log(α̂)] and σ̂2[log(λ̂)] are the estimated variance of log(α) and log(λ) respectively,
and are approximated by

σ̂2[log(α̂)] = σ̂2(α̂)
α̂2 and σ̂2[log(λ̂)] = σ̂2(λ̂)

λ̂2 .

Hence, approximate 100(1 − δ)% C.I for α and λ are

(
α̂e

±Z δ
2

σ̂(α̂)
α̂

)
and

(
λ̂e

±Z δ
2

σ̂(λ̂)
λ̂

)
.

5. Testing of statistical hypotheses

Under this section, we consider the following three cases of hypothesis testing.
1. H0 : λ = λ0 versus H1 : λ ̸= λ0, when α is known.
2. H0 : λ ≤ λ0 versus H1 : λ > λ0, when α is known.
3. H0 : P = P0 versus H1 : P ̸= P0, when α1 = α1 is known.
Testing H0 : λ = λ0 against H1 : λ ̸= λ0 is considered to be the most important. From (5),
we can have the likelihood of observing λ given the sample observations x as

L(λ|x) =
(

2αα

Γα

)n 1
λαn

n∏

i=1
xi

2α−1exp

(
− α

λ

n∑

i

xi
2
)

(30)

Under H0, we have

sup
Θ0

L(λ; x, α) =
(

2αα

Γα

)n 1
λαn

0

n∏

i=1
xi

2α−1exp

(
− α

λ0

n∑

i

xi
2
)

; Θ0 = {λ : λ = λ0} (31)
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and

sup
Θ

L(λ; x, α) =
(

2αα

Γα

)n (
n

S

)αn n∏

i=1
xi

2α−1exp

(
− nα

S

n∑

i

xi
2
)

; Θ0 = {λ : λ > 0} (32)

Therefore, the Likelihood Ratio (L.R) is given by

ϕ(x) = supΘ0 L(λ; x, α)
supΘ L(λ; x, α)

=
(

S

nλ0

)nα

exp
[
−α

(
S

λ0
− n

)]
(33)

From Right Hand Side (R.H.S) of above equation, it is clear that first term is an increasing
whereas the second term is monotonically decreasing function in S. As 2 S

λ0
∼ χ2

(2n), where
χ2

(2n) is the Chi-Square statistics with 2n degrees of freedom, the critical region is given by

{0 < S < γ0} ∪ {γi
0 < S < ∞},

where the constants γ0 and γi
0 are obtained such that

P

[
χ2

(2n) < 2γ0

λ0
or 2γi

0
λ0

< χ2
(2n)

]
= ε

Thus,

γ0 =
λ0χ

2
(2n)

(
1 − ε

2

)

2
and

γi
0 =

λ0χ
2
(2n)

(
ε
2

)

2
where ε is the probability of type I error.

The second important hypothesis is H0 : λ ≤ λ0 versus H1 : λ > λ0. For λ1 > λ2, we
have from (5)

L(λ1|x)
L(λ2|x) =

(
λ2

λ1

)nα

exp
[
−S

(
α

λ1
− α

λ2

)]
(34)

From (34), we can see L(λ, x) has Monotone Likelihood Ratio (M.L.R) in S. Thus,
the Uniformly Most Powerful Critical Region (U.M.P.C.R) for testing H0 : λ ≤ λ0 against
H1 : λ > λ0 is given as Lehmann (1959, pp.88)

ϕ(x) =
{

1, S ≤ γii
0

0, Otherwise.

where, γii
0 is obtained such that P

[
χ2

(2n) < 2γii
0

λ0

]
= ε. Therefore,

γii
0 =

λ0χ
2
(2n) (1 − ε)

2
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It can be seen that for two independent random variables X and Y with α1 = α2 = 1,

P = λ1

λ1 + λ2

Let us test H0 : P = P0 against H1 : P ̸= P0. Thus, H0 is equivalent to λ1 = kλ2, where
k = P0

1−P0
. Therefore, H0 : λ1 = kλ2 and H1 : λ1 ̸= kλ2.

Under H0, we can have
λ̂1 = S + Tk

(n + m)
and

λ̂2 = S + Tk

k(n + m)
Thus, for C (a generic constant), we have the likelihood of observing λ1 and λ2 as

L(λ1, λ2|x, y) = C

λ1
nλ2

m exp
[
−
(

S

λ1
+ T

λ2

)]
(35)

Thus,

sup
Θ0

L(λ1, λ2|x, y) = C

[
k(n + m)
S + Tk

]n+m

exp [−(n + m)] ; Θ0 = {λ1, λ2 : λ1 = kλ2} (36)

and

sup
Θ

L(λ1, λ2|x, y) = C
(

n

S

)n (m

T

)m

exp [−(n + m)] ; Θ = {λ1, λ2 : λ1 > 0, λ2 > 0} (37)

From (36) and (37), the Likelihood ratio criterion is

ϕ(x, y) =
C
(

S
T

)n

(
1 + S

T k

)n+m (38)

Let us denote the F - statistic with (a, b) degrees of freedom by Fa,b(.). As

S

T
∼ nλ1

mλ2
F(2n,2m),

the critical region is {
S

T
< γ2 or

S

T
> γ2

i
}

,

where γ2 and γ2
i are obtained such that

P

{
nkγ2

m
< F2n,2m ∪ nkγ2

i

m
> F2n,2m

}
= ε

Thus, we have γ2 = nk
m

F2n,2m

(
1 − ε

2

)
and γ2

i = nk
m

F2n,2m

(
ε
2

)
.
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6. Simulation study

For validating the results obtained theoretically in Section 2 and Section 4, we, firstly
present results which are based on Monte Carlo simulation technique. We have computed
Mean Square Error (M.S.E) for comparison purpose. All the analyses have been done using
R 3.4.3 software R Core Team (2013).

6.1. When shape parameter is known

For acquiring the performance of λ̃q and λ̂q, we have generated 1000 random samples
from (1) of different sizes n = (20, 30, 40, 60) with α = (0.8, 0.9, 1.0). We have computed
average λ̃q, λ̂q, corresponding average biases and M.S.E, and approximate (1−δ)100%, where
δ = 0.05, confidence intervals for λq. As q ∈ (−∞, ∞), q ̸= 0, we choose a negative and a
positive power of q to have better look into the performance of the estimators. For q = −1
and q = 1, results are given in Table ??. The 1st, 2nd, 3rd row represents average estimates,
average bias, M.S.E and 4th row represents the confidence interval. From Table ??, we can
infer that for negative values of q, U.M.V.U.E is performing better than the M.L.E but for
positive value of q M.L.E is performing better than U.M.V.U.E. It can be seen that as the
value of sample size is increasing M.S.E is decreasing for both the estimators. The length
of the confidence interval is shorter for both estimators in all cases which means it is more
informative. So, U.M.V.U.E should be preferred if we want to estimate the negative power
of λ and for positive power, we should opt for M.L.E. It is interesting to note here that for
α = 1 and q = −1 both estimators are yielding the same results for all values of sample sizes.

Now, to acquire and compare the performance of the two estimators of R(t), 1000
random samples are generated from (1) of different sizes n = (10, 20, 30, 40, 60) with α = 3
and λ = 0.5. Taking values of t = (0.10, 0.15, 0.20, 0.25, 0.35), R̃(t) and R̂(t), corresponding
biases, M.S.E and approximate (1 − δ)100% C.I have been calculated. The obtained results
are presented in Table 2 where Ist, 2nd, 3rd row represents average estimates, average bias,
M.S.E and 4th row represents the C.I.
Looking at M.S.E values in Table 2, we can say that performance of M.L.E of R(t) is better
than that of U.M.V.U.E of R(t). Performance of estimators is decreasing with the increase
in time t as the M.S.E values are increasing. Estimators tends to perform better in case
of large sample sizes. Table 3 presents Moment estimators α̂m and λ̂m of the parameters α
and λ are given for different values of n=(500,1000,1500) and different set of the parameters
(α, λ) = (0.6, 0.8), (1.5, 0.8) and (1.5, 1.0). The moment estimator and M.L.E of λ are equal
and both the estimators are the functions of the sufficient statistics. So, both M.L.E and
Moment estimators are equally efficient and works good.

In order to investigate how well estimators of P performs, 1000 random samples are
generated from (14) and (15) of sizes (n, m) = (5, 10), (10, 5) and (10, 10) with α1 = 0.5
and α2 = 10, and (λ1, λ2) = (3, 5), (3, 6), (4, 5), (4, 6). The obtained results are presented
in Table 4 where Ist, 2nd, 3rd row represents average estimates, average bias, M.S.E and 4th

row represents the confidence interval. Data in table 4 reveals that M.L.E of P gives better
estimates than U.M.V.U.E of P for all combinations of (λ1, λ2) and (n, m).
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Figure 1: Estimates of Sampled Probability Density Function

The estimates of P.d.f obtained in Section 2 are plotted in Figure 1. From the figure,
we can see that the estimates of P.d.f fits well to the actual model.

6.2. When both scale and shape parameters are unknown

For obtaining the estimate of R(t) when both scale and shape parameters are un-
known, we have generated first random sample of size n = 15 from (1) with α1 = 5 and
λ1 = 4. Let it be X- population or random strength X given as
X- Population: 2.049508, 1.697911, 2.057258, 2.093914, 1.830376, 2.299230, 1.030369,
1.352851, 1.910835, 2.518206, 1.717836, 2.318662, 1.932082, 1.436255, 2.776821.
The M.L.Es of α and λ comes out to be α̂1 = 5.512470 and λ̂1 = 3.937005. For t = 0.2,
actual R(t) = 0.9999869 and R̂(t) = 0.9999869.
Now, for estimation of P , we have generated another random sample say Y population or
random stress Y from (1) of size m = 10 with α2 = 4 and λ2 = 3. The sample is
Y Population: 1.263758, 1.816875, 1.346044, 2.083317, 2.489531, 1.119266, 1.714329,
1.912815, 1.371682, 2.496376. The M.L.Es of α and λ comes out to be α̂2 = 4.118107
and λ̂2 = 3.321188. For t = 0.2, actual R(t) = 0.9964545 and R̂(t) = 0.9994916. The actual
P = 0.4363503 and the M.L.E of P comes out to be P̂ = 0.4696917. All the estimates can
be seen validating the theoretical results obtained.

6.3. Hypothesis testing

This section comprises of checking the validity of the hypothesis testing procedures
developed in section 5. Firstly, we test the hypothesis H0 : λ = λ0 = 4 against H1 : λ =
λ0 ̸= 4. For this we have generated a random sample of size 50 from (1) with (λ = 4, α = 5),
given by
Sample 1 : 1.8715040, 2.4957160, 1.3041026, 1.0625339, 1.9552509, 1.8412767, 1.4635787,
1.6677863, 2.1402472, 1.6651901, 1.4523474, 2.4088220, 1.6413565, 2.2162550, 1.6001383,
2.0236934, 2.0894237, 1.7744711, 2.0995504, 2.9366243, 2.3269415, 1.6324515, 1.5328350,
0.9560068, 2.4759661, 2.0723630, 2.2769360, 1.3536968, 2.0298724, 2.4644942, 2.0113171,
1.6845441, 1.8919575, 2.5608773, 1.9408668, 1.8201857, 2.3742209, 2.1374813, 2.5166206,
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2.4151387, 1.4238698, 1.4754821, 1.6192035, 2.1958351, 1.7966403, 2.2790533, 2.0138617,
1.4063136, 1.8715380, 1.6387806.
Now, using chi-square table at ε = 5% Level of Significance (LOS), we obtained γ0 = 259.12
and γi

0 = 148.44. From the sample we have S = 192.5144. Here, it can be seen that the
value of S is not lying in the critical region. So, we do not have enough evidence to reject
the null hypothesis at 5% LOS.

Consider the above sample 1 again for testing H0 : λ = λ0 ≤ 4 against H1 : λ = λ0 > 4
at 5% LOS, we obtained γii

0 = 148.68. As S = 192.5144 is not lying in the critical region
so we do not have sufficient evidence in support of alternate hypothesis. Thus, we do not
reject the null hypothesis.

Now, to test H0 : P = P0 = 0.5 against H1 : P = P0 ̸= 0.5, we have generated
two random samples Xi and Yi of sizes n = 12 and m = 10 from the distribution with
λ1 = λ2 = 4 and α1 = α2 = 1 given by X= 0.6960666, 1.9268595, 2.1383461, 1.4266733,
1.8846088, 2.1335468, 2.0400911, 0.2361899, 3.8670944, 1.0444884, 1.5116124, 1.0438313
and Y=0.843277, 2.642273, 2.342635, 1.710249, 2.558351, 2.145001, 1.933631, 2.861752,
3.867026, 1.158481. From the two samples, we get S

T
= 0.766934. Using F-table at 5%

LOS, we computed γ2 = 2.7924 and γi
2 = 0.498. Thus, we do not reject the null hypothesis

on the basis above information.

7. Real data analysis

Now we present two real data set to understand and illustrate the procedures discussed
in the previous sections broadly.

7.1. First data set

The data set has been taken from Lawless (2003, pp.267). This was originally reported
by Schafft et al. (1987). This data represents the hours to failure of 59 conductors of 400-
micrometer length. The specimens are put on a test with same temperature and current
density and they all ran to failure at a certain high temperature with current density.
X-Population: 6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591,
6.129, 11.038, 5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807,
6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009,
7.489, 7.398, 6.033, 10.092, 7.496,4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434,
7.937, 6.515, 6.476, 6.071, 10.491, 5.923.
Kumar et al. (2017) used this data set and found that Nakagami distribution fits well to the
data with M.L.Es as α̂ = 4.8336 and λ̂ = 51.2823. For t = (0.1, 0.2, 0.3, 0.4, 0.5) we have
computed R(t) = (0.9985447, 0.9985376, 0.9985258, 0.998509, 0.9984872) and their M.L.Es
are R̂(t) = (0.9999184, 0.999918, 0.9999174, 0.9999164, 0.9999152).

7.2. Second data set

The second data set given below is taken from Murthy et al. (2004, pp.180)(2004,
pp.180). This data represents 50 items that are put on use at t=0 and failure times are in
recorded (in weeks). The data set is
Y-Population: 0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 0.684, 0.747, 0.997,
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1.284, 1.304, 1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789, 4.849, 5.202, 5.291,
5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 7.291, 7.087, 7.787, 8.596, 9.388, 10.261,
10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 32.795, 48.105.
Mudasir and Ahmed (2017) used this data set for analysis and comparison purpose in case
of weighted Nakagami distribution. The M.L.Es of α and λ came out to be α̂ = 4.1 and λ̂ =
144.2292. For t = (0.1, 0.2, 0.3, 0.4, 0.5), R(t) = (0.9966496, 0.9966451, 0.9966375, 0.9966269, 0.9
966132) and their M.L.Es are R̂(t) = (0.9995082, 0.9995075, 0.9995064, 0.9995049, 0.9995029).
The MLE estimate of R(t) for both data sets is plotted in Figure 2. From the figure, it can

0.2 0.4 0.6 0.8 1.0 1.2

0.
99

98
95

0.
99

99
00

0.
99

99
05

0.
99

99
10

0.
99

99
15

Time

M
.L

.E
 o

f R
(t)

(a) Population X

0.2 0.4 0.6 0.8 1.0 1.2

0.
99

94
7

0.
99

94
8

0.
99

94
9

0.
99

95
0

Time

M
.L

.E
 o

f R
(t)

(b) Population Y
Figure 2: M.L.Es of R(t)

be seen that in both cases the survival is very high at initial time but as the time increases
survival probability goes on decreasing.
To evaluate M.L.E of P , first data set is taken as X population and second set as Y popu-
lation. Actual P came out to be P = 0.7377018 and its M.L.E is P̂ = 0.703271.

8. Conclusion

This paper presents estimation and testing procedures for the reliability functions
of the Nakagami distribution. A new, simpler technique for obtaining Uniformly Minimum
Variance Unbiased Estimators (UMVUEs) and Maximum Likelihood Estimators (MLEs) of
R(t) and P is introduced, requiring no explicit forms of the parametric functions. In addition
to these estimators, moment estimators for the parameters are derived. The efficiency of
MLEs and moment estimators is compared through simulations, showing similar performance
as both are functions of the sufficient statistic. Hypothesis testing is also performed, with
real data analysis on strength (X) and stress (Y) datasets.
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Abstract

This paper develops a Bayesian Generalised Pareto Regression (GPR) model to fore-
cast extreme losses in Indian equity markets, with a focus on the Nifty 50 index. Extreme
negative returns, though rare, can cause significant financial disruption, and accurate mod-
elling of such events is essential for effective risk management. Traditional Generalised Pareto
Distribution (GPD) models often ignore market conditions; in contrast, our framework links
the scale parameter to covariates using a log-linear function, allowing tail risk to respond
dynamically to market volatility. We examine four prior choices for Bayesian regularisation
of regression coefficients: Cauchy, Lasso (Laplace), Ridge (Gaussian), and Zellner’s g-prior.
Simulation results suggest that the Cauchy prior delivers the best trade-off between pre-
dictive accuracy and model simplicity, achieving the lowest RMSE, AIC, and BIC values.
Empirically, we apply the model to large negative returns (exceeding 5%) in the Nifty 50
index. Volatility measures from the Nifty 50, S&P 500, and gold are used as covariates to
capture both domestic and global risk drivers. Our findings show that tail risk increases
significantly with higher market volatility. In particular, both S&P 500 and gold volatilities
contribute meaningfully to crash prediction, highlighting global spillover and flight-to-safety
effects. The proposed GPR model offers a robust and interpretable approach for tail risk
forecasting in emerging markets. It improves upon traditional EVT-based models by incor-
porating real-time financial indicators, making it useful for practitioners, policymakers, and
financial regulators concerned with systemic risk and stress testing.
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1. Introduction

Stock market crashes have significant economic implications, often resulting in large
wealth erosion, investor panic, and long-lasting financial instability, see Liu et al. (2021); Song
et al. (2022). Understanding and anticipating such extreme events is vital for effective risk
management, financial regulation, and economic forecasting, see Dai et al. (2021). During
the COVID-19 crash, for instance, Giglio et al. (2020) document a sharp decline in short-
term investor expectations and a surge in disagreement about future market performance.
Mazur et al. (2021) further highlight that while sectors like healthcare and software showed
resilience, others such as hospitality and energy experienced extreme negative returns and
asymmetric volatility, accompanied by varied corporate responses.

Extreme Value Theory (EVT) provides a principled framework for modelling the sta-
tistical behaviour of rare but severe events, particularly through the Generalised Pareto Dis-
tribution (GPD), which is commonly used for modelling exceedances over a high threshold,
see Smith (1985). In the context of financial crashes, Fry (2008) presents a comprehensive
investigation into bubbles, volatility, and contagion, deriving a GPD-based model for market
drawdowns to analyse tail risk dynamics.

Several studies have applied the GPD to model extreme financial phenomena. Malev-
ergne et al. (2006) and Das and Halder (2016) use EVT to characterise financial extremes,
but their models lack covariate inputs, limiting their capacity to account for underlying
market conditions such as volatility or liquidity. Liu (2011) advances the field by detecting
structural breaks in tail behaviour using a transformed GPD and fluctuation tests, highlight-
ing the need for flexible models when estimating extreme quantiles under changing market
regimes.

More recent work by Rai et al. (2022) analyses the statistical behaviour of aftershocks
in stock market crashes and finds that tail patterns and inter-occurrence times vary depend-
ing on the nature of the crash. This supports the hypothesis that covariate information,
such as macroeconomic signals, volatility, or liquidity, can influence the shape and scale of
extreme return distributions.

Motivated by these findings, we extend the standard GPD framework by modelling
the scale parameter as a function of covariates through a log-linear link. This Generalised
Pareto Regression (GPR) model enhances both interpretability and predictive capacity by
incorporating market-relevant features directly into the tail distribution.

Earlier examples of GPR models include Das et al. (2010), who model extreme alcohol
consumption events using a covariate-linked scale parameter within a GPD framework. In
the operational risk domain, Hambuckers et al. (2018) employ a regularised GPD regression
where both the scale and shape parameters vary with covariates. While flexible, such mod-
els risk overparameterisation and identifiability issues. To maintain parsimony and model
explainability, we assume a common shape parameter across observations and model only
the scale parameter as a function of predictors.

While it is possible to model the shape parameter ξ as a function of covariates, we
keep it constant across observations to ensure model parsimony and stability. Varying ξ with
covariates substantially increases model complexity and introduces identifiability challenges,
especially with limited tail data. Our preliminary experiments indicated that such extensions
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did not significantly improve predictive performance but led to unstable estimates. Hence,
we opt for a simpler model with a shared shape parameter across all observations.

Next in Section 2 we present the data description and exploratory data analysis.
In Section 3 we present the Bayesian methodology for Generalised Pareto Regression. In
Section 4, we present a thorough simulation study to evaluate the performance of different
methodologies. In Section 5, we present the Bayesian analysis of Indian market crash events.
Section 6 conclude the paper.

2. Data insight

We analyse the Nifty 50 index over the period from 17 September 2007 to 13 June
2025. Figure 1(a) shows the daily closing prices of the Nifty 50, and Figure 1(b) displays the
corresponding log-returns. The blue dashed line marks the −2% threshold and the red dashed
line indicates the −5% threshold in returns. During this period, the index experienced a few
sharp declines exceeding 5%, most notably during the 2008 global financial crisis and the
COVID-19 pandemic. Given that the daily volatility of log-returns is approximately 1.32%,
a drop of more than 2% is typically regarded as a significant shock. The choice of 2% as the
lower threshold aligns with commonly used multiples of standard deviation in financial risk
literature, indicating a statistically significant deviation.

The 5% threshold corresponds to historically observed crash magnitudes, such as those
during the 2008 financial crisis and COVID-19 market panic, and serves as a benchmark for
severe market stress. These thresholds were also supported by exploratory diagnostics that
revealed natural separation in the distribution of extreme returns. A decline exceeding 5%
in a single day can trigger widespread panic, often resulting in substantial margin calls in the
derivatives market, particularly in futures and options, which may lead to forced liquidations
and amplified market instability.

Figure 1(c) displays the empirical volatility of daily returns. This is computed us-
ing an exponentially weighted moving average (EWMA) method that considers past return
variance over a rolling window of k = 21 trading days. Specifically, the conditional variance
at time t is calculated as

σ2
t = α · s2

t−1 + (1 − α) · r2
t ,

where rt is the daily return, s2
t−1 is the sample variance of returns over the previous k − 1

days, and α = 0.9 is the smoothing parameter; see Sen and Das (2023). The resulting
daily volatility is annualised by multiplying by

√
250, reflecting the approximate number of

trading days in a year. This approach yields a more adaptive and responsive measure of
recent market volatility compared to traditional historical estimates.

Figure 1(d) presents the Garman-Klass estimate of intraday volatility. This estimator
offers a more efficient measure of daily volatility by incorporating high, low, opening, and
closing prices, see Garman and Klass (1980). It reduces estimation variance by using price
range data instead of just closing prices. The Garman-Klass volatility is defined as

σ2
GK = 1

2

(
log

(
H

L

))2
− (2 log(2) − 1)

(
log

(
C

O

))2
,

where O, H, L, and C denote the opening, high, low, and closing prices, respectively. This
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(a) (b) (c) (d)

(e) (f)

Figure 1: Visual summary of Nifty50 prices and volatility measures: (a) closing
price, (b) log-return, (c) empirical volatility, (d) Garman-Klass volatility, (e)
empirical vs GK volatility, and (f) log-transformed comparison of empirical vs
GK volatility.

formula assumes zero drift and the absence of overnight jumps, making it well suited for
capturing intraday risk characteristics.

Figure 1(e) shows the scatter plot of empirical volatility against Garman-Klass volatil-
ity. Figure 1(f) presents the same comparison on a logarithmic scale. The correlation be-
tween the logarithms of empirical and Garman-Klass intra-day volatility is approximately
0.71, suggesting a strong association in the log scale, and highlighting consistency between
the two methods of volatility estimation.

In addition, we incorporate the S&P 500 index and gold prices into our analysis to
capture global market volatility and assess its influence on the Indian stock market. To study
the tail behaviour of returns, we focus on large daily losses in the Nifty 50 index, specifically,
those drops, exceeding 2% level, and examine their relationship with daily empirical volatility.
Figure 2 visualises this association across three dimensions of volatility: panel (a) presents the
Nifty’s own empirical volatility, panel (b) shows S&P 500 volatility, and panel (c) depicts
gold volatility. The plots reveal that large negative returns often coincide with elevated
volatility, both domestically and globally. The strong alignment with S&P 500 volatility
suggests the presence of spillover effects from global equity markets, while the relationship
with gold volatility may reflect investor flight-to-safety behaviour during periods of financial
stress.
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(a) (b) (c)

Figure 2: Relationship between large losses (negative returns) in the Nifty 50
and empirical volatility measures: (a) own volatility of Nifty 50, (b) S&P 500
volatility, and (c) gold volatility. Dashed lines indicate thresholds at 2% and 5%
loss levels.

3. Methodology

Suppose D = {(yi, xi) | i = 1, 2, · · · , n} is the observed dataset, where yi follows a
Generalised Pareto Distribution (GPD), i.e.,

yi ∼ GPD(µ, σi, ξ), i = 1, 2, · · · , n,

with probability density function:

f(yi | σi, ξ) = 1
σi

(
1 + ξ

yi − µ

σi

)−1/ξ−1
,

and xi = {xi1, xi2, · · · , xip} are the covariates associated with the ith observation. The
threshold µ is assumed known; the shape parameter ξ is same across observations, and the
scale parameter σi is modelled as a log-linear function of covariates:

log(σi) = x⊤
i β.

The support of Yi is (µ, ∞) if ξ < 0, and (µ, µ + σi/ξ) if ξ > 0. The special case ξ = 0
corresponds to the exponential distribution with mean σi, interpreted as the limit as ξ → 0.
The survival function of the GPD regression model is:

P(Y > y0 | Y > µ) =
(

1 − ξ(y0 − µ)
exp(x⊤

i β)

)1/ξ

=
(

1 + ξ(yi − µ)
exp(x⊤

i β)

)−1/ξ

.

In financial applications, if Y represents the daily negative return (in percentage), and a
market crash is defined as a daily drop exceeding y0 = 5%, then this survival function
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quantifies the conditional probability of a crash, given that a drop of, say, µ = 2% has
already occurred. The conditional expectation of Yi given the covariates is:

E(Yi | Yi ≥ µ) =





∞, ξ ≥ 1,

µ + exp(x⊤
i β)

1 − ξ
, ξ < 1.

The variance exists only when ξ < 0.5 and is given by:

Var(Yi | Yi ≥ µ) = exp(2x⊤
i β)

(1 − ξ)2(1 − 2ξ) .

This characterisation highlights the influence of covariates on the first two moments of the
tail distribution and emphasises the model’s ability to capture heavy-tailed behaviour.

3.1. Log-likelihood function

The log-likelihood function of the GPD regression model is:

log L(ξ, β) = −
n∑

i=1
x⊤

i β +
(

1
ξ

− 1
)

n∑

i=1
log

[
1 + ξ

yi − µ

exp(x⊤
i β)

]
.

This formulation treats the exceedances yi > µ as GPD-distributed with covariate-dependent
scale. The shape parameter ξ governs the heaviness of the tail, while the covariates modulate
the scale of exceedance. In particular, the conditional mean:

E(Yi | Yi ≥ µ) = µ + exp(x⊤
i β)

1 − ξ

exists only for ξ < 1, and the variance exists only if ξ < 0.5. This structure provides a
coherent framework for modelling the magnitude of extreme outcomes while adjusting for
covariate information. As shown in Smith (1985), the maximum likelihood estimator (MLE)
exists asymptotically when ξ < 1 and is consistent, asymptotically normal, and efficient
provided ξ < 0.5.

3.2. Truncated Cauchy prior on ξ

The truncated Cauchy(0,1) prior truncated from above at 1, i.e., the support is
ξ < 1. The probability density function of the standard Cauchy distribution is:

p(ξ) = 1
π(1 + ξ2) , ξ ∈ (−∞, ∞).

We define the truncated density:

ptrunc(ξ) = 1
Z

· 1
π(1 + ξ2) , for ξ < 1

where Z is the normalising constant, i.e. the total probability over the truncated domain:

Z =
∫ 1

−∞

1
π(1 + ξ2) dξ = 1

π
·
[
tan−1(ξ)

]1
−∞

= 1
π

·
(
tan−1(1) − tan−1(−∞)

)

= 1
π

(
π

4 − (−π

2 )
)

= 1
π

· 3π

4 = 3
4 (1)
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Now plug in Z = 3
4 :

ptrunc(x) = 4
3π(1 + ξ2) , ξ < 1.

The pdf of truncated Cauchy(0,1) prior density, with upper truncation at ξ = 1.

p(ξ) = 4
3π(1 + ξ2) , for ξ < 1

3.3. Cauchy prior on β

In our Bayesian regression framework, we assign a standard Cauchy prior to the
regression coefficients β, see Gelman et al. (2008). The Cauchy distribution is symmetric
and heavy-tailed, making it well-suited for scenarios where large effect sizes are plausible or
when robust shrinkage is needed. The standard Cauchy prior has the following probability
density function:

p(β) = 1
π(1 + β2) , β ∈ R.

A key property of the Cauchy distribution is that it lacks a finite mean, variance, and higher
moments. This feature makes it a particularly attractive choice as a weakly informative
prior, see Berger (1985). It imposes minimal structure on the parameter space, allowing the
data to dominate the posterior inference, while still penalising extremely large values less
severely than priors with finite variance, such as the Gaussian. Consequently, the Cauchy
prior provides a balance between regularisation and flexibility, making it suitable for sparse
or high-dimensional regression models where robustness and parsimony are desired.

3.4. Lasso prior on β

An alternative to the Cauchy prior is the Lasso prior, which corresponds to a Laplace
(double-exponential) distribution on the regression coefficients β, see Hastie et al. (2009),
Park and Casella (2008). The Lasso prior encourages sparsity in the estimated coefficients by
applying stronger shrinkage towards zero, making it particularly useful for high-dimensional
models or when variable selection is of interest. The probability density function of the
Laplace distribution with scale parameter λ > 0 is given by:

p(β) = λ

2 exp(−λ|β|), β ∈ R.

This prior has a sharp peak at zero and heavier tails than the Gaussian, enabling it to shrink
small coefficients more aggressively while allowing larger coefficients to remain relatively
unaffected. The result is a sparse posterior mode, with many coefficients estimated as exactly
zero, aligning with the behaviour of the classical Lasso estimator. Unlike the Cauchy prior,
the Laplace distribution has finite mean and variance, making it more suitable when a
moderate degree of regularisation is desired without the extreme heavy tails of the Cauchy
prior. Its effectiveness in automatic variable selection and computational tractability makes
the Lasso prior a popular choice in Bayesian sparse regression models.
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3.5. Ridge prior on β

The Ridge prior assumes a Gaussian (normal) distribution on the regression coeffi-
cients β, offering smooth shrinkage without inducing sparsity, Hastie et al. (2009). It is
commonly used when multicollinearity is present or when all predictors are believed to have
small, non-zero effects. The probability density function of the Ridge prior with precision
parameter τ is:

p(β) =
√

τ

2π
exp

(
−τ

2β2
)

, β ∈ R.

This is equivalent to placing an independent N (0, τ−1) prior on each coefficient β. The Ridge
prior results in posterior estimates that are biased toward zero, but unlike the Lasso prior,
it does not set any coefficients exactly to zero. Consequently, it is well-suited for settings
where all predictors contribute weakly to the response.

In the Bayesian framework, the Ridge prior leads to a conjugate posterior when
combined with a Gaussian likelihood, allowing for closed-form posterior inference in linear
models. Its computational simplicity and regularising effect make it a widely used choice in
models where interpretability through sparsity is not essential but stabilisation of estimates
is desired.

3.6. Zellner’s g-prior on β

Zellner’s g-prior is a popular conjugate prior used in Bayesian linear regression, par-
ticularly when the design matrix X is fixed and known, see Zellner (1986),Sabanés Bové and
Held (2011). It imposes a multivariate normal prior on the regression coefficients β, with
the covariance structure informed by the design matrix:

β ∼ N
(
0, g(X⊤X)−1

)
,

where g > 0 is a scalar hyperparameter controlling the strength of the prior relative to the
likelihood. This prior has several attractive properties:

• It is invariant under linear transformations of the design matrix.

• The posterior mean shrinks toward zero as g → 0, while as g → ∞, the prior becomes
non-informative.

• The use of (X⊤X)−1 ensures the prior reflects the geometry of the predictors.

Zellner’s g-prior is especially useful for Bayesian model comparison and variable se-
lection, as it facilitates closed-form expressions for marginal likelihoods and Bayes factors.
However, care must be taken in the choice of g, as it significantly influences the inference.
Empirical Bayes, fixed g, or hierarchical models placing a hyperprior on g are common
approaches to address this.

3.7. MAP estimation for efficient Bayesian model exploration

Maximum a Posteriori (MAP) estimation provides a computationally efficient alter-
native to full Bayesian inference, especially when exploring different model specifications or
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prior structures. Unlike posterior summaries such as the posterior mean or credible intervals
that rely on Markov Chain Monte Carlo (MCMC) methods, MAP estimation avoids the com-
putational burden of sampling by framing inference as an optimisation problem. Formally,
the MAP estimate is defined as:

θ̂MAP = arg max
θ

p(θ | D) = arg max
θ

[log p(D | θ) + log p(θ)] ,

where D denotes the observed data, p(D | θ) is the likelihood function, and p(θ) is the prior
distribution. In our case θ = (β, ξ). This above expression highlights that MAP estimation
balances the fit to the data and the influence of prior information, analogous to penalised
likelihood methods in the frequentist setting.

MAP estimation is often preferred in high-dimensional problems or when computa-
tional resources are limited, as it offers faster and more stable inference than MCMC, which
can suffer from slow convergence and poor mixing. Moreover, it enables quick evaluation of
multiple models or regularisation schemes, such as Lasso or Ridge, where priors play the role
of sparsity-inducing penalties.

Importantly, MAP estimation is well-suited for the model exploration phase. Once
a final model is selected, based on predictive performance or interpretability, one may then
employ MCMC on that specific model to obtain a full characterisation of the posterior
distribution. In this way, MAP provides an efficient screening tool, while full Bayesian
inference is reserved for the final model of interest.

4. Simulation study of frequentist properties

To evaluate the performance of different regularised Generalised Pareto Distribution
(GPD) regression models, we conduct a simulation study comparing four Bayesian prior
structures on the regression coefficients: the Cauchy prior, Lasso (ℓ1 penalty), Ridge (ℓ2
penalty), and Zellner’s g-prior. Our aim is to assess and compare their predictive accuracy,
estimation error, model complexity (via AIC and BIC), and computational efficiency.

We simulate N = 100 datasets, each consisting of n = 100 observations. For each
dataset, the covariate matrix X ∈ Rn×p is generated from a multivariate normal distribution
with identity covariance, where the number of predictors is p = 5. The true regression coef-
ficients β are sampled from a standard normal distribution, and the GPD shape parameter
ξ is drawn from a uniform distribution on the interval (−0.5, 0.5). The response variable y is
generated from a GPD model with a fixed location parameter µ = 2 and a scale parameter
σ = exp(Xβ). Each dataset is then split into a training set (80%) and a testing set (20%).

Each of the four models is estimated using maximum a posteriori (MAP) estimation
via the BFGS optimisation algorithm. The Cauchy prior is specified as a weakly informative
heavy-tailed prior on the coefficients β, along with a truncated Cauchy prior on the shape
parameter ξ. The Lasso model imposes an ℓ1 penalty on the regression coefficients, while the
Ridge model uses an ℓ2 penalty; in both cases, the regularisation parameter is chosen using 5-
fold cross-validation. The Zellner’s g-prior assumes a prior of the form β ∼ N (0, g(X⊤X)−1),
and the hyperparameter g is selected through cross-validation.

We assess model performance using several metrics. These include the root mean
squared error (RMSE) of predictions on the test data, as well as the RMSE for recovering
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the true coefficient vector β and the shape parameter ξ. We also compute the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC), both based on
the negative log-likelihood (excluding the contribution of the prior). In addition, we record
the computational time taken to fit each model, and express it as a multiple relative to the
time taken for the Cauchy prior model, which serves as the baseline.

Table 1: Simulation comparison of GPD regression models with different priors

Metric Cauchy Lasso Ridge g-prior
RMSE (y) 11.36 10.37 10.65 10.43
RMSE (β) 0.10 0.16 0.16 0.18
RMSE (ξ) 0.08 0.08 0.09 0.11
AIC 162.67 177.15 175.74 180.94
BIC 176.97 191.44 190.03 195.24
Time (sec) 0.00 0.60 0.53 8.45
Time (relative) 1.00 175.64 155.69 2476.86

Finally, the results across the 100 simulations are aggregated using the median to
ensure robustness. The outcome is summarised in the Table 1, displaying predictive accu-
racy, parameter estimation error, model complexity, and computational cost for each prior,
facilitating a comprehensive evaluation of their relative performance.

5. Empirical study of market crashes

In this section, we investigate the application of Generalised Pareto Distribution
(GPD) regression for modelling extreme negative returns in the Indian equity market. Our
analysis is based on daily returns of the NSE Nifty 50 index, augmented with realised volatil-
ity measures derived from domestic and global financial assets. The central objective is to
assess the predictive performance and interpretability of GPD regression models under a
range of prior assumptions on the regression coefficients, within a Bayesian framework for
financial tail risk modelling.

All codes and datasets for this paper are available in the following GitHub reposi-
tory: https://github.com/sourish-cmi/quant/tree/main/Predicting_Stock_Market_
Crash

Data description and preprocessing

We work with a cleaned dataset comprising daily log-returns of the NSE Nifty 50
index, with all missing entries removed. Denoting the daily return at time t as rt, we
extract a subset of observations where rt < −2%, corresponding to the left tail of the return
distribution. This subset constitutes approximately 4.6% of all trading days. Among these
tail events, 11.6% show losses exceeding 5%, indicating the presence of disproportionately
large market crashes within the extreme left tail.

To facilitate interpretation and estimation, negative returns are transformed into
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absolute values, i.e., yt = |rt| for rt < −2%. We construct covariates based on (i) empirical
volatility and (ii) Garman–Klass (GK) volatility for the Nifty 50, S&P 500, and gold. These
volatility variables are standardised to have mean zero and unit variance. The baseline
model includes only the intercept and Nifty empirical volatility, while richer covariate sets
are examined in subsequent analyses.

Predictive evaluation and model comparison

We randomly split the dataset into training (80%) and test (20%) sets. Out-of-sample
predictive performance is assessed via Root Mean Squared Error (RMSE), and in-sample fit
is evaluated using Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC), both computed from the negative log-likelihood (excluding prior terms). For the
Lasso model, degrees of freedom are adjusted to reflect the number of non-zero coefficients.

Table 2: Model evaluation using RMSE, AIC, and BIC.

Prior Models RMSE AIC BIC
Cauchy 1.58 298.06 322.20
Lasso 1.80 311.57 335.71
Ridge 1.73 302.07 326.20
Zellner’s g-prior 1.94 308.12 332.25

Among all models, the Cauchy prior delivers the best fit, achieving the lowest AIC and
BIC values, along with the smallest RMSE, suggesting strong predictive accuracy and robust
in-sample performance. The Ridge and g-prior models provide competitive alternatives,
whereas the Lasso model performs relatively poorly, possibly due to over-shrinkage.

To understand the economic implications of volatility on tail risk, we compute both
the conditional expectation E[Y | Y > µ, x] and the conditional exceedance probability
P(Y > 5 | Y > 2, x) under the fitted Cauchy model. Results show a nonlinear increase in
both quantities with rising volatility. At the lower end (e.g., 10th percentile of volatility),
expected losses are around 2.4 with tail event probabilities below 5%. At the upper end
(90th percentile), expected losses exceed 7 with crash probabilities above 65%.

Figure 3 presents three visual diagnostics. Panel (a) plots the fitted vs. observed
tail losses on the log scale, with colour indicating empirical Nifty volatility. The upward
trend and colour gradient affirm that higher volatility coincides with more severe losses,
though dispersion increases in the tail. Panels (b) and (c) display the fitted probability
P(Y > 5 | Y > 2, x0) as a function of Nifty volatility, coloured by the S&P 500 and gold
volatilities, respectively. These plots reveal clear global spillover effects: both S&P 500 and
gold volatilities enhance the likelihood of extreme losses in the Indian market, the former via
market correlation and the latter via flight-to-safety dynamics.

This empirical exercise highlights that the tail behaviour of Indian equity returns is
jointly shaped by local volatility conditions and global financial signals. The GPD model
with a Cauchy prior not only provides superior predictive performance but also captures the
nonlinear and interactive effects of volatility on extreme losses. These findings underscore
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(a) (b) (c)

Figure 3: Relationship between extreme tail events in the Nifty 50 index and
market volatility. Panel (a) compares the log-fitted tail losses from the GPD
model under a Cauchy prior with actual observed losses. Panels (b) and (c) show
the model-based conditional tail probabilities as functions of Nifty volatility,
coloured by S&P 500 and gold volatilities, respectively.

the importance of robust regularisation and the inclusion of international covariates and
global spill-over effect in tail risk modelling of Indian stock market.

6. Conclusion

In this study, we developed and applied a Bayesian Generalised Pareto Regression
(GPR) framework to model and predict extreme negative returns in the Indian equity market,
particularly focusing on the Nifty 50 index. The core innovation lies in modelling the scale
parameter of the Generalised Pareto Distribution as a log-linear function of market volatility
indicators, while keeping the shape parameter same for all data points. This allows the model
to adapt to changing volatility regimes while preserving interpretability and parsimony.

Our theoretical development was supported by a thorough simulation study compar-
ing different regularisation strategies, including Cauchy, Lasso, Ridge, and Zellner’s g-prior;
within a MAP estimation framework. Among these, the Cauchy prior emerged as the most
effective in balancing predictive accuracy and model complexity. This observation was fur-
ther validated in the empirical analysis of actual market crash events, where the Cauchy
prior achieved the lowest AIC, BIC, and RMSE values.

Empirical findings highlight a strong nonlinear association between volatility and the
likelihood and magnitude of extreme losses. We demonstrated that both domestic (Nifty)
and global (S&P 500, gold) volatility measures significantly influence the tail risk. The
inclusion of global covariates like S&P 500 and gold volatilities proved crucial in capturing
spillover and flight-to-safety effects during periods of financial stress.

Visual diagnostics revealed that in high-volatility regimes, the conditional probability
of a crash; defined as a loss exceeding 5% given a 2% drop; can exceed 60%, with expected
losses rising sharply. These insights underscore the importance of incorporating volatility-
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sensitive covariates and flexible modelling strategies when forecasting rare but impactful
financial events.

Overall, our study demonstrates that Bayesian GPD regression, particularly under
heavy-tailed priors like the Cauchy, provides a powerful and interpretable tool for tail risk
modelling in financial markets. It holds promise for future applications in systemic risk
monitoring, stress testing, and portfolio tail risk management. Future research could explore
dynamic extensions, integrate macroeconomic signals, and investigate hierarchical Bayesian
formulations that allow for time-varying shape parameters or latent volatility drivers.
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Abstract

In the era of precision medicine, understanding the intricate biological mechanisms
underlying diseases requires a comprehensive analysis of multi-omics data, including ge-
nomics, transcriptomics, proteomics and metabolomics. The sheer volume and complexity
of these datasets present significant challenges in deciphering the interactions and regu-
latory networks that govern cellular functions. This paper will explore how cutting-edge
artificial intelligence (AI) and statistical methodologies, including deep learning approaches
like Variational Autoencoder (VAE) and Graph Neural Networks (GNNs), are transforming
the integration of multi-omics data, enabling new insights into biological complexity. We
will discuss advanced statistical models, such as Bayesian Networks, Canonical Correlation
Analysis (CCA) and Multi-Omics Factor Analysis (MOFA), that facilitate the integration of
diverse data types, revealing deeper layers of biological information that are often obscured
in traditional analyses. From identifying biomarkers for early disease detection to uncovering
therapeutic targets, the combination of AI, deep learning and statistical approaches holds
great promise in advancing our understanding of health and disease.

Key words: Multiomics; Data integration; MOFA; Deep learning; Network based approach.

AMS Subject Classifications: 62K05, 05B05.

1. Introduction

The central dogma of molecular biology, which describes the flow of genetic infor-
mation from DNA to RNA to protein, has long served as a cornerstone of biological un-
derstanding. However, a comprehensive understanding of biological systems requires the
integration of data from multiple ’omics’ layers. Genomics, transcriptomics, proteomics and
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metabolomics each offer a unique perspective, capturing different aspects of cellular func-
tion and regulation. The advent of high-throughput technologies, such as next-generation
sequencing and mass spectrometry, has led to an explosion of omics data, creating both
opportunities and challenges for systems biology, see Misra (2018).

While each omics layer provides valuable information, studying them in isolation offers
an incomplete and potentially misleading picture. For instance, changes in mRNA transcript
levels do not always directly correlate with corresponding protein abundances due to post-
transcriptional regulation, protein turnover and other factors. Multi-omics integration seeks
to address these limitations by combining data from multiple sources to provide a more
holistic and accurate representation of biological systems, see Subramanian et al. (2020).

In this paper, we explore a range of statistical and AI-based methods for multi-
omics data integration, with a focus on Canonical correlation analysis, Network modeling,
Bayesian inference and Deep learning strategies like Variational autoencoders. We review
existing tools such as mixOmics, RGCCA, and PINSPlus, which leverage these methods for
practical applications in agricultural and biomedical research.

2. Statistical approaches to multi-omics data integration

Statistical methods play a crucial role in managing the high-dimensional, heteroge-
neous nature of multi-omics data. Several widely used methods for integrating multi-omics
data are given below, see Naserkheil et al. (2022).

2.1. Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis is a statistical method designed to identify and quan-
tify the linear relationships between two multidimensional datasets. In the context of multi-
omics data integration, CCA helps in discovering correlated patterns across different omics
layers—such as transcriptomics and proteomics—thus uncovering shared biological signals,
see Wróbel et al. (2024).

Let X ∈ Rn×p and Y ∈ Rn×q be two centered datasets representing two omics layers,
where n is the number of samples, and p and q are the number of variables in each omics
type. CCA seeks linear combinations of the variables in each dataset such that the correlation
between these combinations is maximized. We aim to find vectors a ∈ Rp and b ∈ Rq such
that the correlation between the canonical variates Xa and Y b is maximized:

max
a,b

ρ= aTCXYb√
aTCXXa

√
bTCYYb

(1)

where:

• CXX= 1
n−1XT X is the covariance matrix of X.

• CY Y = 1
n−1Y T Y is the covariance matrix of Y.

• CXY = 1
n−1XT Y is the cross covariance matrix of XY.
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This leads to the generalized eigenvalue problem:

CXY C−1
Y Y CY X a=λ CXX a

CY XC−1
XXCXY b=λCY Y b

The first pair (a1, b1) gives the directions of maximal correlation. Subsequent canon-
ical directions are obtained by enforcing orthogonality constraints with previous variates.

In high-dimensional multi-omics data (where p or q is much larger than n), classical
CCA may become ill-posed. In such cases, regularized or sparse variants are used.

2.1.1. Regularized CCA

Regularized CCA adds penalties to the denominator to stabilize the solution, see
Parkhomenko et al. (2009).

max
a,b

ρ= aT CXY b√
aT (CXX + κxI)a

√
bT (CY Y + κyI)b

(2)

where κx and κy are regularization parameters.

2.1.2. Sparse CCA (sCCA)

Sparse CCA (sCCA) imposes sparsity constraints on a and b, leading to feature
selection and interpretability:

max
a,b

aT CXY b (3)

subject to ∥a∥2 ≤ 1, ∥b∥2 ≤ 1
∥a∥1 ≤ c1, ∥b∥1 ≤ c2

These constraints ∥ · ∥1 enforce sparsity, making sCCA particularly useful in the
context of omics data where many variables are irrelevant or noisy, see Witten and Tibshirani
(2009).

2.1.3. Advantages and limitations

CCA is a powerful tool for identifying relationships between multi-omics datasets.
It can handle high-dimensional data and identify complex dependencies. However, CCA is
sensitive to outliers and assumes a linear relationship between the variables. In cases where
the relationship is non-linear, other methods, such as kernel CCA, may be more appropriate.

2.1.4. Tools implementing CCA for multi-omics data integration

a. mixOmics R package with multivariate methods (including CCA) for exploring
and integrating omics datasets, see Rohart et al. (2017).
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b. RGCCA R package offering generalized CCA for integrating multiple datasets.

c. BLOCCS R package for Block Sparse CCA, estimating multiple canonical directions for
enhanced interpretability.

2.2. Similarity-based approaches

Similarity-based approaches represent a powerful class of methods in multi-omics
data integration. These methods focus on quantifying the similarity or distance between
samples within each omics layer and then combining these relationships to gain a unified
understanding of biological patterns, such as disease subtypes, cellular states, or treatment
responses.

Unlike direct feature-level integration, which merges raw data matrices, similarity-
based methods operate by first computing sample-sample similarity matrices independently
for each omics type (e.g., transcriptomics, proteomics, metabolomics). These matrices reflect
the relationship between samples based on their respective omics profiles.

Let us consider K different omics datasets {X(1), X(2), . . . , X(K)}, each with n samples
and their respective similarity matrices {S(1), S(2), . . . , S(K)}, where each S(k) ∈ Rn×n.

The key idea is to integrate these K similarity matrices into a single consensus matrix
Sintegrated, which captures the shared structure across all data types.

2.2.1. Similarity Network Fusion (SNF)

One of the most popular similarity-based methods is Similarity Network Fusion, which
iteratively updates each similarity matrix using neighborhood information from other omics
layers, see Wang et al. (2014).

The SNF algorithm involves the following steps:

1. Compute sample similarity matrices S(k) for each omics data type using a distance
metric (e.g., Euclidean distance or Gaussian kernel similarity)

2. Normalize the matrices to maintain comparability.

3. Iteratively update each matrix by combining it with others through a message-
passing mechanism:

W(k)
t+1=αP(k).


 1

K − 1
∑

l ̸=k

W(l)
t


 P(k)T + (1 − α)W(k)

t (4)

where P(k) is the transition probability matrix of S(k), and α is a regularization pa-
rameter (typically 0.5).

4. Fuse the final networks after convergence:

Sintegrated = 1
K

K∑

k=1
W(k)

T (5)
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The resulting integrated similarity matrix is then used for downstream tasks such as
spectral clustering, dimensionality reduction, or classification.

2.2.2. Other tools and methods

a. PINSPlus An extension of perturbation clustering that performs multiple clus-
tering runs on each omics dataset and integrates the results using co-clustering frequencies.

b. NEMO (Neighborhood-based multi-omics clustering) Designed for partial
datasets with missing omics layers, it builds local sample neighborhoods and combines them
across modalities.

c. iClusterPlus Although fundamentally a latent variable model, it also aligns
sample similarities and can be categorized under similarity-based frameworks.

2.2.3. Advantages and limitations

Similarity based integration methods offer several advantages and challenges. Among
the advantages, they are robust to missing data, as similarity matrices can still be com-
puted even when some features are absent. They also allow flexible integration, effectively
handling heterogeneous omics types without requiring normalization across different data
scales. Additionally, these methods enhance interpretability by providing integrated similar-
ity networks that visually and intuitively represent relationships among samples. However,
there are notable challenges as well. The choice of similarity metric is critical, as different
distance measures can produce significantly different outcomes. Computational complexity
is another concern, especially with large datasets, as calculating pairwise similarities can be
both memory and time-intensive. Lastly, parameter tuning is essential for algorithms like
Similarity Network Fusion, which rely on parameters such as the number of neighbors and
kernel width, requiring careful adjustment to ensure reliable results.

2.3. Bayesian models

Bayesian models offer a powerful and principled framework for multi-omics data in-
tegration by treating uncertainty explicitly and allowing incorporation of prior biological
knowledge. These models are particularly useful in handling heterogeneous, high-dimensional
and often noisy datasets typical in multi-omics studies, such as genomics, transcriptomics,
epigenomics and proteomics, see Kirk et al. (2012).

2.3.1. Bayesian clustering models

These models assign samples to latent clusters using probability distributions, rather
than hard assignments. A popular non parametric Bayesian clustering method is the Dirich-
let Process Mixture Model (DPMM).

In multi-omics integration, each omics dataset contributes to the clustering through
its own likelihood component. For instance, assuming omics data X(1), X(2), . . . , X(K) share
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a common clustering structure Z:

P
(
Z, θ(1), . . . , θ(K) | X(1), . . . , X(K)

)
∝ P (Z)

K∏

k=1
P

(
X(k) | Z, θ(k)

)
P

(
θ(k)

)
(6)

where: θk is cluster specific parameter.

Tools and methods include:

a. MDI (Multiple Dataset Integration) A joint Bayesian model that performs clus-
tering on multiple omics layers and identifies consensus clusters.

b. BCC (Bayesian Consensus Clustering) Estimates shared cluster structure while
allowing for data-specific variations.

c. LRAcluster (Low-Rank Approximation Clustering) Incorporates low-rank ap-
proximations to simplify the Bayesian model for high-dimensional omics data.

2.3.2. Bayesian networks

Bayesian networks are graphical models that represent conditional dependencies among
random variables. In multi-omics integration, they are used to model causal relationships
between genes, proteins, and metabolites.

A Bayesian network is a directed acyclic graph (DAG), where nodes represent vari-
ables (e.g., gene expression, protein levels), and edges encode conditional dependencies. The
joint distribution is factorized as:

P (X1, X2, . . . , Xn) =
n∏

i=1
P (Xi | Parents(Xi)) (7)

This formulation enables modeling of regulatory pathways or signaling cascades across omics
layers. Examples:

a. PARADIGM (Pathway Recognition Algorithm using Data Integration on
Genomic Models) Integrates copy number and gene expression data to infer pathway ac-
tivity, see Vaske et al. (2021).

b. CONEXIC (COpy Number and EXpression In Cancer) Uses Bayesian networks
to identify driver genes by integrating copy number alterations and expression profiles, see
Akavia et al. (2010).

2.3.3. Advantages and limitations

Bayesian models offer several compelling advantages and face notable challenges. On
the positive side, they excel at uncertainty modeling by providing full posterior distributions,
which yield credible intervals and enhance confidence in predictions. They also allow the
incorporation of prior knowledge, such as known biological pathways or disease associations,
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directly into the model. Thanks to modern techniques like variational inference and Markov
Chain Monte Carlo (MCMC) sampling, Bayesian methods have become scalable to large
datasets. Additionally, they handle missing data naturally as part of the inference process,
eliminating the need for imputation. However, these benefits come with challenges. Bayesian
inference can be computationally expensive, particularly when dealing with multiple omics
layers or a high number of variables. The complexity of designing and validating hierar-
chical models or directed acyclic graphs (DAGs) demands significant expertise and domain
knowledge. Moreover, the results can be sensitive to the choice of priors—poorly chosen or
inadequate priors may bias outcomes or impede model convergence.

2.4. Multivariate methods

Multivariate methods are essential tools in multi-omics data integration, offering the
capability to jointly analyze multiple variables from different omics layers. Unlike univariate
methods that treat each variable independently, multivariate approaches capture correla-
tions, co-variations, and shared structures across datasets, making them ideal for discovering
hidden biological relationships and reducing dimensionality in high-throughput omics data.
These methods are particularly valuable when integrating datasets from genomics, transcrip-
tomics, proteomics, metabolomics, and other omics types, where the number of variables far
exceeds the number of observations, and variables often interact in complex, non-linear ways.

2.4.1. Principal Component Analysis (PCA)

PCA is one of the most widely used unsupervised multivariate techniques for dimen-
sionality reduction. It identifies orthogonal directions (principal components) that capture
the maximum variance in the data. When applied to multi-omics datasets either jointly
or separately, PCA can reveal dominant variation patterns, batch effects, and clustering
structures, see Jolliffe and Cadima (2016).

Given a centered data matrix X ∈ Rn×p, PCA solves the eigenvalue problem:

XT Xv = λv (8)

where v is the eigenvector corresponding to the principal component, and λ is its associated
eigenvalue.

2.4.2. Partial Least Squares (PLS)

PLS is a supervised multivariate method that models relationships between predictor
and response datasets, see Tenenhaus (1998). In multi-omics, PLS is useful for integrating
two or more omics layers (e.g., gene expression and metabolite levels) and relating them to
phenotypic outcomes, see Lê C. et al. (2008).

PLS finds weight vectors wX and wY such that the covariance between the projections
XwX and YwY is maximized:

max
wX ,wY

Cov(XwX , YwY ) (9)

Variants like sparse PLS introduce regularization to enable feature selection.
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2.4.3. Multi-Omics Factor Analysis (MOFA)

MOFA is a latent variable model specifically developed for the integration of multi-
omics data. It decomposes each omics dataset into shared and data-specific factors, which
correspond to biological or technical sources of variation, see Argelaguet et al. (2018).

Given K omics matrices {X(1), X(2), . . . , X(K)}, MOFA models each as:

X(k) = ZW(k) + E(k) (10)

where:

• Z ∈ Rn×d is a matrix of latent factors shared across datasets,

• W(k) ∈ Rd×pk are weights for dataset k,

• E(k) is residual noise.

MOFA is probabilistic and handles missing data naturally. It enables unsupervised clus-
tering, dimensionality reduction, and exploration of latent drivers in biological systems, see
Vahabi and Michailidis (2022).

2.4.4. Sparse Multi-Block PLS (sMBPLS)

sMBPLS extends PLS to more than two data blocks and incorporates sparsity to
identify the most informative features across all omics layers, see Li et al. (2012). It is
especially suited for studies where multiple omics are related to a common response (e.g.,
disease status or treatment outcome).

This method builds a global latent structure and optimizes for interpretability, making
it useful in complex systems biology studies.

2.4.5. Gene-wise weights and feature selection

In some multivariate frameworks, gene-wise weights are assigned to different omics
variables to evaluate their contribution to observed variance or phenotype association. These
weights help rank and select biologically relevant features from high-dimensional data.

One example is the CNAmet model, which integrates copy number, methylation, and
expression data using correlation structures and statistical weighting.

2.4.6. Advantages and limitations

Multivariate methods offer a range of advantages and face several challenges in the
analysis of complex datasets. They enable joint analysis by accounting for co-variation and
correlations among variables, which enhances the understanding of interdependencies in the
data. These methods also facilitate dimensionality reduction, making high-dimensional omics
data more tractable and interpretable. Additionally, they are powerful tools for discovering



2025] MULTI-OMICS DATA INTEGRATION 143

latent factors that may represent hidden biological drivers of variation. Their flexibility
allows them to be applied in both supervised and unsupervised learning contexts. However,
multivariate methods can be computationally intensive, especially when applied to large-scale
omics datasets, necessitating efficient algorithmic implementations. They are also prone
to overfitting, particularly in scenarios with small sample sizes, which requires the use of
regularization techniques. Furthermore, while these methods can uncover latent components,
interpreting these components in terms of clear biological processes can be challenging.

3. AI and machine learning approaches

3.1. Variational Autoencoders (VAEs) in multi-omics data integration

Variational Autoencoders are a class of generative models that have gained popularity
in multi-omics data integration due to their ability to model complex, non-linear relation-
ships and uncover latent representations of high-dimensional biological data, see Kingma
and Welling (2013). VAEs are especially well-suited for handling the noise, sparsity, and
heterogeneity commonly found in multi-omics datasets, see Simidjievski et al. (2019).

3.1.1. Theoretical foundations of VAEs

VAEs belong to the family of probabilistic generative models and extend classical
autoencoders by introducing a probabilistic framework. Instead of encoding an input x into
a deterministic latent vector, VAEs encode it into a distribution over latent variable z. The
goal is to learn the parameters of the generative model pθ(x | z), and the inference model
qϕ(z | x), typically with neural networks.

The VAE objective is to maximize the evidence lower bound (ELBO):

log p(x) ≥ Eqϕ(z|x) [log pθ(x | z)] − DKL (qϕ(z | x) ∥ p(z)) (11)

where:

• E[log pθ(x | z)] is the reconstruction loss,

• DKL is the Kullback–Leibler divergence between the approximate posterior and the
prior p(z), typically N (0, I).

This formulation ensures that the latent space z is both continuous and regularized, which
enables smooth sampling and interpolation—useful for capturing underlying biological vari-
ation.

3.1.2. Application in multi-omics integration

In multi-omics studies, VAEs can be used to learn shared or modality-specific la-
tent representations that capture the biological signal common across omics layers while
accounting for layer-specific variation.
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3.1.2.1. Integration strategies

a. Early integration (Full Fusion) Concatenate all omics datasets as input to a sin-
gle VAE model.

b. Intermediate integration Each omics layer has a separate encoder, but a shared
latent space is learned.

c. Late integration Separate VAEs are trained for each omics dataset, and their latent
embeddings are later combined for downstream tasks (e.g., clustering, classification).

These approaches support modularity, scalability, and flexibility in integrating omics with
different feature spaces and distributions.

3.1.3. Tools

a. scVI A VAE model for single-cell RNA-seq data, modeling gene expression while cor-
recting batch effects.

b. Multi-omics VAE Custom-built frameworks where omics-specific encoders feed into a
joint decoder, enabling integrative modeling of transcriptomics, proteomics, and epigenomics,
see Xin et al. (2024)

3.1.4. Advantages and limitations

Variational Autoencoders offer several benefits in biological research, particularly in
the analysis of complex omics data. They enable dimensionality reduction by compressing
high-dimensional data into low-dimensional latent factors that capture key biological varia-
tion. Their probabilistic framework enhances robustness to noise and batch effects, making
them well-suited for real-world biological datasets. VAEs also handle missing data naturally
by modeling the underlying data distribution, allowing for effective imputation. The la-
tent space learned by VAEs often reveals meaningful clusters that correspond to phenotypes
or disease subtypes, aiding in visualization and interpretation. Furthermore, VAEs support
biomarker discovery by identifying important features that contribute to latent factors, which
can be biologically interpreted. However, VAEs also come with challenges. The interpretabil-
ity of latent dimensions can be limited, as they may not directly map to known biological
processes. Training complexity is another issue, requiring careful tuning of the model ar-
chitecture and learning parameters. Additionally, data scaling is crucial, as different omics
types must be normalized to prevent bias in the latent space. Lastly, over-regularization
due to the KL divergence term can overly constrain the latent space, potentially leading to
underfitting and loss of important biological signals.

3.2. Graph-based learning in multi-omics data integration

Graph-based learning has emerged as a powerful strategy for integrating multi-omics
data, particularly because biological systems are naturally structured as networks—whether
they be gene regulatory networks, protein–protein interaction (PPI) networks, metabolic
pathways, or cell–cell communication maps. Graph-based methods model the relationships
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between entities (e.g., genes, proteins, samples) as edges in a graph, enabling the analysis of
topological structure, dependency, and contextual interactions across multiple omics layers.

In traditional machine learning, samples are often treated as independent and iden-
tically distributed. However, in multi-omics analysis, samples or features often exhibit non-
linear dependencies and interconnected behaviors that are better captured by graphs. For
example: 1. Genes may co-express or be co-regulated, 2. Proteins interact physically or
functionally, 3. Samples (patients) may be similar based on integrated omics profiles. Graph-
based learning encodes this structure using nodes (e.g., genes, proteins, samples) and edges
(e.g., co-expression, similarity, interaction), and applies machine learning techniques tailored
for graphs, see Bengio et al. (2013).

3.2.1. Types of graph-based approaches

a. Similarity networks In this approach, each omics dataset is used to construct a similar-
ity matrix between samples, which is then converted into a graph. These graphs are fused to
form a unified network using methods such as Similarity Network Fusion. The final network
can be analyzed using spectral clustering or community detection to identify subgroups (
e.g., disease subtypes).

b. Graph Neural Networks (GNNs) GNNs are deep learning models designed to op-
erate on graph-structured data. They aggregate information from neighboring nodes and
learn node embeddings that capture structural and feature information, see Kipf and Welling
(2017). For multi-omics, nodes may represent genes with features from multiple omics. Edges
may encode gene–gene relationships or pathway links. The GNN learns to predict pheno-
types or latent node properties using neighborhood context, see Velickovic et al. (2017).

A common formulation in a GNN layer is:

h(l+1)
v = σ


 ∑

u∈N (v)

1
cvu

W(lh(l)
u


 (12)

where:

• h(l)
v is the representation of node v at layer l,

• N (v) is the set of neighbors of node v,

• cvu is a normalization constant,

• W(l) is the learnable weight matrix, and

• σ is a non-linear activation function.

c. Network propagation and diffusion These algorithms propagate information (e.g.,
expression signals, mutation scores) over a network to prioritize relevant nodes, see Köhler
et al. (2008). Examples include:
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• Random Walk with Restart (RWR) A random walker starts at a node and prob-
abilistically explores the network, returning to the start with probability r. This helps
rank nodes based on their proximity to known disease genes.

pt+1 = (1 − r)Wpt + rp0 (13)

where: pt is the probability vector at time t, W is the transition matrix, p0 is the initial
distribution.

• NetICS, TieDIE Used for integrating mutation data with expression or pathway data
using directed propagation, see Paull et al. (2013).

d. Probabilistic graphic models These include Bayesian Networks and Markov Random
Fields (MRFs) that model conditional dependencies among variables (genes, proteins, etc.).
For example, PARADIGM infers pathway activities by combining multiple omics layers
within a Bayesian graphical model framework.

3.2.2. Advantages and limitations

Graph-based learning has emerged as a powerful approach in multi-omics analysis
due to its ability to model complex, structured biological relationships. It has been applied
in various domains such as cancer subtype classification, where methods like Graph Neural
Networks and Similarity Network Fusion cluster patients based on integrated omics profiles;
biomarker discovery, where network diffusion identifies genes or proteins functionally related
to known disease markers; pathway activity inference, with tools like PARADIGM integrat-
ing gene expression and copy number data to predict pathway status; and feature selection,
where GNN attention mechanisms highlight informative nodes for downstream analysis. The
advantages of graph-based methods include their natural representation of biological systems
using existing knowledge like gene networks, flexibility in handling non-Euclidean and struc-
tured data, context-aware learning through neighborhood-informed node embeddings, and
scalability enabled by recent computational advances. However, challenges remain, such as
the need for careful data preprocessing to construct reliable graphs, limited interpretability
of deep graph models, complexity in integrating heterogeneous omics layers without intro-
ducing bias or losing specificity, and the high computational demands of training large-scale
graph models.

4. Conclusion

Multi-omics data integration is at the forefront of systems biology, enabling a holistic
view of cellular function by combining genomic, transcriptomic, proteomic, metabolomic, and
other omics data types. Each method explored—statistical, machine learning, and network-
based—offers unique strengths in addressing the challenges of high-dimensionality, hetero-
geneity, and noise inherent in biological data. Statistical approaches, particularly Canonical
Correlation Analysis and its variants (sparse and regularized CCA), provide interpretable
linear models for discovering cross-domain correlations between omics layers. These models
are well-suited for moderate-dimensional data and are often used as a first step in integrative
analysis. Similarity-based methods, such as Similarity Network Fusion, excel in clustering
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Figure 1: Workflow diagram of AI and statistical methods of multi-omics data
integration

Table 1: Multi-omics public datasets and compatible methods

Dataset / Resource Multi-omics layers Compatible methods
TCGA (via GDC portal) mRNA, miRNA,

methylation, CNV,
proteomics

PCA, PLS, SNF, BCC,
PARADIGM, MOFA, etc.

ICGC Genomics, transcriptomics,
epigenomics

Same as TCGA, broader
diversity

CMOB benchmark
(TCGA-based)

Processed multi-cancer data All listed ML/stat methods

MixOmics example sets mRNA, proteome,
metabolome

PCA, PLS, sMBPLS, CCA

BioGRID interactions +
TCGA

Network
/expression/proteomics

GNN, RWR

and patient stratification by leveraging sample-level relationships across different datasets.
These methods are robust to missing features and offer flexible data-type integration through
graph-based fusion strategies. Bayesian models introduce a probabilistic framework that ex-
plicitly handles uncertainty and allows for the incorporation of prior biological knowledge.
They are particularly effective in unsupervised clustering, causal inference, and modeling
hidden structures in multi-omics data, though often computationally demanding. Multivari-
ate methods, including PCA, PLS, MOFA, and sMBPLS, help in reducing dimensionality
and uncovering latent variables that drive shared or specific biological variation across omics
layers. These techniques are scalable and interpretable, making them widely adopted in both
research and clinical settings.
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Variational Autoencoders represent a more recent advancement, leveraging deep learn-
ing to capture complex, non-linear patterns and generate latent representations. Their flex-
ibility in integration strategies (early, intermediate, late) and natural handling of missing
data make them highly promising for large, noisy, and heterogeneous datasets. Graph-based
learning, including Graph Neural Networks and network propagation methods, allows inte-
gration of biological interaction networks with omics data. These methods encode structural
dependencies, enhance biological interpretability, and enable feature prioritization based on
contextual relevance within the network. However, no single method is universally supe-
rior; instead, the choice depends on the specific research question, data type, sample size,
and computational resources. As computational methods advance and multi-omics datasets
expand, integrative approaches will continue to unlock new insights into complex diseases,
biological pathways, and precision medicine.
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Table 2: Multi-omics data integration methods

Method Function Advantages Limitations
Canonical Correlation
Analysis (CCA)

Finds linear combina-
tions of features in two
datasets that are maxi-
mally correlated.

Simple and inter-
pretable; suitable for
moderate-dimensional
data.

Assumes linearity; un-
stable when number of
variables exceeds sam-
ples; sensitive to noise.

Sparse/Regularized
CCA

Extends CCA with
sparsity (L1) or regu-
larization to improve
feature selection or
stability.

Feature selection;
better suited for high-
dimensional omics data.

Parameter tuning re-
quired; interpretability
can decrease with com-
plexity.

Similarity Network Fu-
sion (SNF)

Constructs sample-
sample similarity
networks from each
omics and fuses them
iteratively.

Handles heterogeneous
data; robust to missing
features; good for clus-
tering.

Sensitive to similarity
metric choice; requires
careful normalization
and parameter tuning.

Bayesian Clustering
(MDI, BCC)

Uses probabilistic mod-
els to assign samples
to latent clusters across
datasets.

Models uncertainty; in-
corporates prior knowl-
edge; captures hidden
structure.

Computationally inten-
sive; may require strong
assumptions or priors.

Bayesian Networks
(e.g., PARADIGM)

Models conditional de-
pendencies among omics
variables via DAGs.

Captures causal rela-
tionships; integrates
multiple data types
with biological priors.

Complex to construct;
inference can be slow
and sensitive to data
quality.

Principal Component
Analysis (PCA)

Reduces dimensionality
by capturing directions
of maximum variance.

Simple, fast, and unsu-
pervised; good for vi-
sualization and variance
exploration.

Assumes linearity; may
overlook class-specific
patterns; not tailored to
response variables.

Partial Least Squares
(PLS)

Projects data onto la-
tent variables that cor-
relate with outcomes.

Supervised; identifies
correlated features
across data types.

May overfit with small
sample sizes; assumes
linear relationships.

Multi-Omics Factor
Analysis (MOFA)

Learns shared and spe-
cific latent factors across
omics layers.

Probabilistic; han-
dles missing data;
interpretable latent
structure.

Assumes Gaussian dis-
tributions; requires tun-
ing of latent dimension-
ality.

sMBPLS (Sparse Multi-
Block PLS)

Integrates multiple
omics datasets with
sparsity constraints.

Simultaneous inte-
gration and feature
selection; interpretable
loadings.

Computationally de-
manding; sensitive to
sparsity level selection.

Variational Autoen-
coders

Learns probabilistic
latent representations;
used for denoising,
imputation, clustering.

Captures nonlinear pat-
terns; handles missing
data; flexible integra-
tion strategies.

Requires deep learning
expertise; difficult to in-
terpret latent variables
biologically.

Graph Neural Networks
(GNNs)

Learns on graph-
structured data to
capture node-level and
graph-level representa-
tions.

Exploits interaction net-
works; context-aware;
scalable with recent ad-
vances.

Graph construction can
be noisy; hard to inter-
pret; requires large la-
beled datasets.

Network Propagation
(e.g., RWR)

Spreads signals across
biological networks to
prioritize genes or fea-
tures.

Integrates prior knowl-
edge; useful for rank-
ing and feature prioriti-
zation

Performance depends
on quality of network;
propagation may dilute
weak but important
signals.
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Table 3: Comparison of multi-omics integration methods

Method Description Software /
Package

Platform Link / Notes

CCA
(Canonical
Correlation
Analysis)

Identifies linear
relationships
between two
data matrices

mixOmics::rcc
/ PMA::CCA

R mixOmics,
PMA

SNF (Similarity
Network
Fusion)

Constructs
sample

similarity
networks and

fuses them

SNFtool /
SNFpy

R / Python SNFtool (R)

BCC (Bayesian
Consensus
Clustering)

Unsupervised
clustering

across multiple
data types

BayesCC R GitHub -
BayesCC

PARADIGM Integrates
multi-omics

using pathway
information

Java tool, also
in UCSC
Cancer

Genomics
Browser

Java / Web PARADIGM
GitHub, UCSC

site

PCA (Principal
Component
Analysis)

Linear
dimensionality

reduction

Base
R/prcomp,
sklearn

.decomposition.
PCA

R / Python scikit-learn
PCA

PLS (Partial
Least Squares)

Projects
predictor and

response
variables to a

new space

mixOmics::pls
/ sklearn.cross
decomposition.
PLSRegression

R / Python mixOmics,
scikit-learn

PLS

MOFA
(Multi-Omics

Factor
Analysis)

Probabilistic
latent variable

model for
multiple omics

MOFA2 R / Python MOFA2
GitHub,

Documentation

sMBPLS
(Sparse

Multi-block
PLS)

PLS extension
for multi-block

data, sparse
variant

mixOmics::block
.spls

R mixOmics -
block.spls

VAE
(Variational

Autoencoder)

Deep learning
model to learn

latent
representations

TensorFlow,
PyTorch, scVI

Python scVI, PyTorch
VAE example

GNN (Graph
Neural

Networks)

Deep models on
graph-

structured
omics data

PyTorch
Geometric,

DGL, Spektral

Python PyTorch
Geometric,

DGL, Spektral

RWR (Random
Walk with
Restart)

Graph-based
propagation for

gene
prioritization

Custom or
igraph,

NetWalker

R / Python /
Java

NetWalker,
igraph
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Abstract

In human genetics, Bayesian semiparametric approaches have proven especially effec-
tive in disease gene association studies, where genetic heterogeneity and complex interactions
are common. They are particularly advantageous in stratified subpopulation settings with
an unknown number of subgroups. Unlike traditional parametric models that require pre-
specifying the number of subpopulations, nonparametric methods such as Dirichlet Process
mixture models allow the number and structure of subpopulations to be learned from the
data. This flexibility enables more accurate detection of disease-associated variants while
accounting for population structure, which are key challenges in complex trait analysis and
precision medicine. This work provides an overview of how Dirichlet Process based mix-
ture models can be used to flexibly model gene-gene and gene-environment interactions and
identify disease-associated variants in complex, stratified populations with unknown hetero-
geneity.

Key words: Dirichlet process; Genetic association studies; Mixture model; Parallel comput-
ing; TMCMC.

AMS Subject Classifications: 62K05, 05B05.

1. Introduction

1.1. Gene-gene and gene-environment interaction

With recent technological advances, it is now possible to assay millions of loci in an
individual’s genomic DNA to identify disease-associated genes. While this capability has
revolutionized genetic research, it has also introduced substantial analytical challenges, par-
ticularly in managing the massive volume of data generated. Addressing these challenges
requires the development of sophisticated statistical models that integrate current biological
and biochemical knowledge of disease mechanisms. Such models not only facilitate efficient
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computation but also enable deeper insights into the complex pathways underlying multi-
factorial diseases.

Genome-wide association studies (GWAS) have identified numerous single nucleotide
polymorphisms (SNPs) associated with complex diseases, yet they explain only a small frac-
tion of heritable genetic variation; see Larson and Schaid (2013). A growing body of research
indicates that genes often function through intricate interaction networks, which significantly
shape the genetic basis of complex traits Bonetta (2010). The limited explanatory power of
GWAS may stem from the absence of models that incorporate gene-gene interactions into
genomic analysis Cordell (2009), thereby overlooking important biological mechanisms Yi
(2010).

A major obstacle in studying genetic interactions lies in the lack of a clear definition
of epistasis. Phillips (2008) distinguishes between functional and compositional biological
epistasis, both of which differ from the classical statistical definition proposed by Fisher
(1918) and extended by Kempthorne (1954). While VanderWeele (2009) identifies conditions
for alignment between statistical and biological definitions, most statistical tests fail to reflect
the biological complexity of interactions. Still, statistical models are essential for quantifying
these effects Cordell (2002), Wang et al. (2010).

SNP-SNP interactions are often used to model gene-gene interactions in case-control
studies Yi et al. (2011). However, SNP-level models are computationally intensive due to the
large number of interaction terms required, whereas gene-level models offer dimensionality
reduction at the expense of finer detail Larson and Schaid (2013), Musameh et al. (2015).
Moreover, additive linear models can oversimplify interaction mechanisms and obscure inter-
pretability, especially when principal components are used for reduction Wang et al. (2010).

These challenges are compounded by the frequent neglect of population substructure.
Genetic effects can vary across subpopulations, and ignoring such heterogeneity can lead to
biased inference and inflated false positives Bhattacharjee et al. (2010). Since the number and
structure of subgroups are usually unknown, flexible models that can infer latent structure
are critical.

Beyond genetic interactions, the interplay between genes and environmental factors
is critical to understanding disease etiology. Although most diseases arise from a com-
bination of genetic and environmental influences, only a small subset are purely mono-
genic. Environmental exposures can alter genetic risk Mapp (2003), Khouri (2005), and in
certain cases, disease manifestation occurs only beyond specific environmental thresholds.
Hunter (2005) emphasize that neglecting such interactions can lead to misestimation of the
population-level disease burden. These interactions are particularly salient in pharmacoge-
netics, where treatment efficacy and safety may vary by genotype Scott (2011). Mechanis-
tically, gene–environment interactions may act through pathways such as epigenetic mod-
ification and transcriptional regulation Purcell (2002), Ottman (2010). However, existing
statistical approaches, particularly linear and log-linear models, often fail to adequately cap-
ture these complex dependencies Mukherjee et al. (2008), Mukherjee and Chatterjee (2008),
Mukherjee et al. (2010), Mukherjee et al. (2012), Sanchez et al. (2012), Ahn et al. (2013),
Ko et al. (2013).

These limitations point to the need for more general, data-adaptive approaches.
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Bayesian nonparametric methods based on Dirichlet Process mixture models offer the flex-
ibility to address gene-gene and gene-environment interactions while accounting for popu-
lation stratification. This article surveys recent developments in this direction, building on
the framework proposed in Bhattacharya and Bhattacharya (2018) and Bhattacharya and
Bhattacharya (2024).

2. An overview of our Bayesian nonparametric ideas

This paper presents a Bayesian nonparametric/semiparametric framework for ana-
lyzing gene–gene interactions, fundamentally differing from traditional logistic regression
approaches. Rather than modeling disease status conditional on genotype, we model geno-
type distributions conditional on disease status. To account for hidden population sub-
structure, Dirichlet process-based finite mixtures (Bhattacharya, 2008) are embedded within
a hierarchical model that captures interactions at both gene and SNP levels via matrix-
normal priors. The framework extends naturally to gene–environment interactions through
covariate-dependent priors, enabling the assessment of how environmental factors influence
genetic associations.

Our Bayesian approach addresses multiple sources of uncertainty and moves beyond
binary presence–absence tests by modeling the magnitude and structure of interaction effects
using correlation-based measures. Disease-predisposing loci (DPLs) are detected through
novel posterior-clustering-based hypothesis testing. For computational efficiency in high-
dimensional settings, Transformation-based Markov Chain Monte Carlo (TMCMC) (Dutta
and Bhattacharya, 2014) is employed, facilitating block updates with high acceptance rates.
Combined with parallel Gibbs sampling tailored for Dirichlet process mixtures, the method
achieves substantial computational gains.

We validate the methodology through simulations and apply it to a myocardial in-
farction case–control SNP dataset. The results corroborate known associations and reveal
novel gene–gene and gene–environment interactions, illustrating the flexibility and inferential
power of the proposed framework.

Case/Control (k)

Gene j
Mixture for (j, k):

Gjk ∼ DirichletProcess

Minor allele
at SNP r: xijkr

ur, vr ∼ N (0, 1)
(Interactions)

λjk ∼ N (µ, A ⊗ Σ)
(Interactions)

Figure 1: Schematic representation of the Bayesian model for gene–gene inter-
actions
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For each gene and case-control status, genotype data are modeled using Dirichlet
process-based mixtures that capture sub-population structure. SNP-level dependencies and
gene-gene interactions are introduced through a matrix-normal prior on latent interaction
parameters. The modular design of the model allows efficient parallel computation: gene-
specific mixture components are updated independently across processors, while the inter-
action parameters are updated centrally using transformation-based MCMC (TMCMC).

2.1. Case-control type genotype data

Humans have 22 pairs of autosomes and one pair of sex chromosomes in the nuclear
genome. Chromosomes are composed of tightly coiled DNA, containing genes that may exist
in alternative forms, known as alleles, at the same genetic locus. Variation in alleles can lead
to phenotypic differences, and the specific allelic combination at a locus defines an individ-
ual’s genotype. The most common genetic variation is the Single Nucleotide Polymorphism
(SNP), a single base change in the DNA sequence. This study analyses SNP data from case
and control cohorts in relation to a specific disease.

Let s = 1, 2 represent the two chromosomes. For an individual indexed by i, gene
j, group k, and locus r, define xs

ijkr = 1 if the minor allele is present, and xs
ijkr = 0

otherwise. The indices range as follows: i = 1, . . . , Nk; j = 1, . . . , J ; k = 0, 1, where k = 1
corresponds to the case group; and r = 1, . . . , Lj. Given any (j, k), let xijkr = (x1

ijkr, x2
ijkr),

and Xijk = (xijk1, xijk2, . . . , xijkLj
).

2.2. Gene-gene interaction based mixture models driven by Dirichlet processes

We assume that for every triplet (i, j, k), Xijk are independently distributed with
mixture probability mass function with a maximum of M components, given by

[Xijk] =
M∑

m=1
πmjk

Lj∏

r=1
f (xijkr|pmjkr) , (1)

where f (·|pmjkr) is the probability mass function of independent Bernoulli distributions,
given by

f (xijkr|pmjkr) = {pmjkr}x1
ijkr+x2

ijkr {1 − pmjkr}2−(x1
ijkr+x2

ijkr) . (2)

Using allocation variables zijk, with probability distribution

[zijk = m] = πmjk, (3)

for i = 1, . . . , Nk and m = 1, . . . , M , (1) can be represented as

[Xijk|zijk] =
Lj∏

r=1
f

(
xijkr|pzijkjkr

)
. (4)

We may assume appropriate Dirichlet distribution priors on (π1jk, . . . , πMjk) for j = 1, . . . , J ;
k = 0, 1. Following Mukhopadhyay and Bhattacharya (2021), we set πmjk = 1/M , for
m = 1, . . . , M , and for all (j, k).
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Letting pmjk =
(
pmjk1, pmjk2, . . . , pmjkLj

)
, we further assume that

p1jk, p2jk, . . . , pMjk
iid∼ Gjk; (5)

Gjk ∼ DP (αjkG0,jk) , (6)

where DP (αjkG0,jk) stands for Dirichlet process with expected probability measure G0,jk

having precision parameter αjk. We assume that under G0,jk, for m = 1, . . . , M and r =
1, . . . , Lj,

pmjkr
iid∼ Beta (ν1jkr, ν2jkr) . (7)

Discreteness of Dirichlet processes causes coincidences among the parameter vectors
of PMjk = {p1jk, p2jk, . . . , pMjk} with positive probability, so that, with positive probability,
the actual number of mixture components in (1) falls below M , the maximum number of
components, the mixing probabilities taking the form M∗/M , where 1 ≤ M∗ ≤ M . The
property of coincidences among the parameter vectors is clearly preserved by the Polya
urn scheme. Notationally, we shall denote the number of distinct elements of PMjk =
{p1jk, p2jk, . . . , pMjk} by τjk and that of PMjk\{pmjk} by τ

(m)
jk .

Conditioned on Gjk, our fixed-M mixture model mimics an infinite-dimensional
Dirichlet process mixture despite the non-iid nature of the data (Mukhopadhyay and Bhat-
tacharya (2021)). The number of distinct components in PMjk can vary across (j, k) due to
random duplication. This flexibility aligns with biological expectations, as genotype distri-
butions often differ between cases and controls under genetic influence. Such heterogeneity
is naturally accommodated within our framework.

2.3. Gene-gene, SNP-SNP interactions and parallel processing

To incorporate the SNP-SNP dependence, which may exist within each gene and also
among the genes, The Beta parameters are modelled as ν1jkr and ν2jkr of (7) as follows:

For r = 1, . . . , L, where L = max{Lj; j = 1, . . . , J}, and for every (j, k),

ν1jkr = exp (ur + λjk) ; (8)
ν2jkr = exp (vr + λjk) . (9)

We further assume that for r = 1, . . . , L,

ur
iid∼ N(0, 1); (10)

vr
iid∼ N(0, 1). (11)

The Gaussian priors on ur and vr with other means and variances did not yield significantly
different results, establishing the prior robustness in our modeling strategy.

Subsequently, the SNP-wise dependence in a gene is modelled using matrix-normal
distribution

λ = {λjk; j = 1, . . . , J, k = 0, 1} ∼ N(µ, A ⊗ Σ),
as a prior for λ (Λ in matrix form) with appropriate inverse-Wishart priors on A and
Σ. Furthermore, the matrix-normal prior induces dependence among genes, which in turn
creates dependencies among the SNPs belonging to different genes.
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Given that the mixture distributions for each gene j ∈ 1, . . . , J and case-control
group k ∈ 0, 1 are conditionally independent when the interaction parameters are known, we
take advantage of this structure for efficient computation. Mixture components are updated
simultaneously across multiple processors, while the interaction parameters, which govern
the dependencies, are updated afterward on a single processor using a specialized TMCMC
approach.

This separation in the update steps enables the method to handle large-scale data
effectively while preserving the ability to capture complex gene-gene and SNP-SNP relation-
ships.

2.4. Summary of analysis of the MI dataset

In our analysis of the real Myocardial Infarction (MI) dataset, we focused on a to-
tal of 1251 SNPs, out of which only 33 had prior evidence suggesting a possible link to
the disease. The remaining 1218 SNPs had no documented association with MI and were
largely considered unlikely candidates for influencing disease risk. In fact, apart from a few
among the 33 literature-supported SNPs, most of the others were included not because of
prior biological relevance, but to test the robustness of our model in distinguishing mean-
ingful signals from noise. Interestingly, in several instances, the disease-predisposing loci
(DPL) identified by our Bayesian approach matched those already highlighted in the lit-
erature as relevant to MI. Notable examples include SNP rs7395662 in gene OR4A48P ,
SNP rs964184 in AP006216.10, SNP rs4420638 in APOC1, SNP rs1564348 in SLC22A1,
and SNP rs1013442 in BDNF -AS. This alignment underscores the model’s ability to suc-
cessfully detect true associations, thereby effectively controlling false negatives. Conversely,
SNPs not identified as DPLs either by our approach or by prior studies can be reasonably
regarded as unrelated to the disease, indicating that the model also maintains strong control
over false positives.

3. Extension to gene-environment interactions

Our Bayesian hierarchical mixture framework integrates the mechanisms by which
gene–environment interactions, as well as the isolated and joint effects of genes, contribute to
disease susceptibility, while accommodating potential population stratification. A distinctive
feature of the model is its ability to infer the number of latent genetic subpopulations.

To capture the influence of environmental variables, the proposed semiparametric
specification employs Dirichlet process-based finite mixtures at the individual level, jointly
modeling genetic profiles and case–control status. These mixtures are linked through a struc-
tured dependence encoded via hierarchical matrix-normal distributions, enabling the model
to account for correlations induced by environmental exposures. The framework extends
the gene–gene interaction model and Bayesian hypothesis testing methodology developed in
Section 2 to detect the effects of genes, environmental factors, and their interactions.

Computation is performed via a parallel MCMC scheme that leverages the model’s
conditional independence structure, combining Gibbs sampling with Transformation-based
MCMC (TMCMC) for efficient high-dimensional updates. Environmental covariates in-
fluence individual-level Dirichlet process mixtures, allowing for subject-specific modulation
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of genotype distributions. The prior hierarchy accommodates locus-specific, gene-specific,
and environment-dependent parameters. Parallel updates are applied to gene–environment-
specific components, while interaction parameters are updated centrally using TMCMC.
Figure 2 presents a schematic representation of the proposed framework.

Individual i
Environmental covariates Ei

Gene j
Mixture for (i, j, k):

Gijk ∼ DP

Minor allele
at SNP r: xijkr

ujr, vjr

(Interactions)
λijk, µjk, β⊤

jkEi

(Interactions)

Figure 2: Diagram of the extended Bayesian framework incorporating gene-
environment interactions

3.1. Modeling genotypic sub-populations with mixture models driven by Dirich-
let processes

Let Ei denote the set of environmental variables associated with the i-th individual.
We model the case-control genotype data, together with environmental information, using
our Bayesian semiparametric model.

Let xijkr = (x1
ijkr, x2

ijkr) denote the genotype at the r-th locus of the j-th gene for
the i-th individual in the k-th group (case/control), and let Xijk = (xijk1, xijk2, . . . , xijkLj

)
denote the genotype information across all Lj loci of the j-th gene. Let pmijkr denote the
minor allele frequency at the r-th locus of the j-th gene for the i-th individual in the k-
th group. The minor allele frequency represents the frequency at which the second most
common allele occurs in a given population.

We assume the mixture distribution:

[Xijk] =
M∑

m=1
πmijk

Lj∏

r=1
f(xijkr | pmijkr), (12)

where f(· | pmijkr) denotes the Bernoulli mass function:

f(xijkr | pmijkr) = p
x1

ijkr+x2
ijkr

mijkr (1 − pmijkr)2−(x1
ijkr+x2

ijkr), (13)

and M is the maximum number of mixture components. The allocation variables zijk are
such that:

[zijk = m] = πmijk, m = 1, . . . , M. (14)
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We set πmijk = 1/M for all (i, j, k) and m, as this fixed weight approach has been
shown to yield better performance than Dirichlet priors in learning about the true number
of components.

This representation captures the possibility that different individuals, even within the
same group and gene, may belong to different sub-populations, influenced by their environ-
mental exposures Ei. This is a substantial extension from the model in Section 3, which did
not account for environmental effects.

3.2. Summary of the results of MI data analysis with this new model

We applied the proposed model to the myocardial infarction (MI) dataset previously
analyzed in Section 2.4, incorporating sex as an environmental covariate. The resulting in-
ferences were consistent with established findings in the literature. Although gene–gene in-
teractions were not statistically significant, SNP–SNP correlations, quantified via Euclidean
distances between case and control groups, provided plausible explanations for discrepancies
between our identified disease-predisposing loci (DPLs) and those reported in earlier studies.

Importantly, the Bayesian framework produced interpretable results despite the lim-
ited sample size of 200 individuals, underscoring the utility of hierarchical modeling with
informative priors and the efficiency of the employed MCMC algorithms.

4. A general model for gene-gene and gene-environment interactions based
on hierarchies of Dirichlet processes

As discussed in Section 3, gene–gene interactions alone are insufficient to explain the
etiology of most complex diseases. Similarly, examining environmental factors in isolation
from genetic variation is inadequate; biomedical evidence underscores the pivotal role of
gene–environment interactions in elucidating complex disease mechanisms. Given the ab-
sence of a simple, additive relationship between genetic and environmental influences, linear
or additive models commonly used to date are inadequate for modeling these interactions.

In Section 3, we introduced a Bayesian semiparametric model for case–control geno-
type data, employing Dirichlet process-based finite mixtures at the subject level. A hier-
archical matrix-normal dependence structure linked these mixtures to capture correlations
among genes under environmental influence. However, a potential limitation of this frame-
work arises from its induced covariance structure: for individual i, the relevant gene–gene
covariance matrix is σ̃iiA, where A is a common gene–gene interaction matrix (in the ab-
sence of environmental variables) and σ̃ii = σii + ϕ, with σii denoting the i-th diagonal
element of a symmetric positive-definite matrix unrelated to environmental variables, and
ϕ ≥ 0 representing the effect of the environmental covariate E. This formulation assumes
that environmental exposures modify gene–gene interactions in an identical manner across
all individuals, which may be unrealistic when the magnitude and nature of exposure vary.

To address this limitation, we propose a Bayesian nonparametric framework for mod-
eling joint gene–gene and gene–environment interactions, as developed in Bhattacharya
(2019) (see also Bhattacharya and Bhattacharya (2024)). Like the earlier model, individual
genotype distributions are represented via Dirichlet process-based finite mixtures; however,
in place of the matrix-normal dependence structure, we introduce a hierarchy of Dirich-
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let processes that flexibly captures nonparametric dependencies among genes induced by
environmental covariates, case–control status, and inter-individual heterogeneity. This hier-
archical construction overcomes the restrictive assumptions of the matrix-normal approach
described in Section 3. Although conceptually related to the hierarchical Dirichlet process
(HDP) of Teh et al. (2006), our model introduces an additional level of hierarchy, enhancing
flexibility.

For computation, we develop a highly parallelizable MCMC algorithm that inte-
grates modern parallel computing resources with Gibbs sampling, retrospective sampling,
and Transformation-based MCMC (TMCMC). The Bayesian hypothesis testing procedures
from our earlier framework are extended to this enriched setting.

Letting s = 1, 2 denote the two chromosomes, we define ys
ijkr = 1 and 0 to indicate

the presence and absence, respectively, of the minor allele for the i-th individual in group
k ∈ {0, 1} (with k = 1 denoting the case group), at the r-th locus of the j-th gene, for
i = 1, . . . , Nk; r = 1, . . . , Lj; and j = 1, . . . , J . Let N = N0 + N1, and let Ei denote a vector
of environmental variables associated with individual i.

Again, before describing the components of the model in detail, we first present the
schematic diagram in Figure 3.

Environmental covariates Ei

Individual DP: Gijk

log αG,ik = µG + β⊤
GEik

Gene DP: G0,jk

log αG0,k = µG0 + β⊤
G0Ēk

Group DP: Hk

log αH = µH + β⊤
H

¯̄E

Base: pmijkr ∼ Beta(ν1, ν2)

Figure 3: Schematic representation of the hierarchical Dirichlet process (HDP)
model for gene-gene and gene-environment interactions



162 DURBA BHATTACHARYA AND SOURABH BHATTACHARYA [SPL. PROC.

This fully nonparametric framework models dependencies across individuals, genes,
and groups through a three-level hierarchy of Dirichlet processes. Environmental covariates
influence the precision parameters at each level, allowing flexible, individualized represen-
tation of interaction structures. The base distribution is a Beta prior on allele frequencies.
This hierarchy enables rich modeling of stratification and interaction while maintaining com-
putational scalability.

4.1. Summary of the MI data analysis with the HDP model

Our analysis of the MI dataset revealed a strong effect of the sex variable, consistent
with the findings in Section 3. Our hypothesis tests indicated no significant marginal effects
of individual genes, in agreement with Section 3 where only weak marginal effects were
observed.

Most notably, even though gene-gene correlations were generally weak, again consis-
tent with Section 3 and Lucas et al. (2012), our tests detected that two genes, AP006216.10
and C6orf106, exhibited broad, beneficial interactions with other genes that may help com-
bat the disease. Furthermore, in the only subgroup for which all gene-gene interactions were
found to be insignificant was the male cases. Hence, our results lend statistical support to
the widely held belief that males may be more susceptible to heart attacks than females.

4.2. Summary and future directions

This work presents a unified Bayesian nonparametric framework for analyzing gene–
gene and gene–environment interactions in case–control studies. The proposed approach
is designed to accommodate multiple layers of uncertainty, a feature that distinguishes it
from many existing methods that prioritize computational feasibility for large-scale datasets.
Such differences in objectives necessarily lead to different performance criteria, making direct
comparisons with standard approaches inappropriate. Both the simulated and real datasets
analyzed here exhibit multiple subpopulations. While methods such as principal component
analysis can infer subpopulation structure, most approaches require the number of subpop-
ulations to be fixed a priori, which can lead to misestimation and inflated false positives
Bhattacharjee et al. (2010). Since genetic interactions may differ across subpopulations,
such errors can bias inference. Our method explicitly models this uncertainty, in contrast
to De Iorio et al. (2015b) and De Iorio et al. (2015a), which do not address gene–gene or
gene–environment interactions.

Existing approaches generally test only for the presence of interactions without quan-
tifying their strength, whereas our framework enables classification of genes by the magni-
tude of their interactions. Many standard methods rely on heuristic definitions of main and
interaction effects, for example, kernel-based methods Larson and Schaid (2013), Kullback–
Leibler divergence Wan et al. (2010), entropy-based information gain Li et al. (2015), or
genotype categories Yi et al. (2011), which can yield results sensitive to the chosen defini-
tion. In contrast, our framework models interactions using established statistical principles.
Furthermore, most current models analyze pairwise SNP–SNP interactions via logistic re-
gression, neglecting genes as functional units and lacking scalability to higher-order inter-
actions. Two-stage approaches such as BOOST and Bayesian methods like BEAM or EpiBN
operate only at the SNP level and overlook gene-level modeling Niel et al. (2015). Our
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unified Bayesian approach simultaneously models uncertainties in both gene- and SNP-level
interactions within a coherent probabilistic structure. Finally, the simulation datasets used
to validate our method were generated under logistic models, which form the basis for most
competing approaches. Given that our framework is nonparametric and fundamentally dis-
tinct from logistic regression, such simulation settings do not allow for direct performance
comparisons.

The proposed methodology addresses several key challenges in genetic association
studies, including population stratification, uncertainty in subgroup structure, and the joint
modeling of genetic effects at both the SNP and gene levels. The model incorporates com-
plex dependency structures through hierarchical Dirichlet process mixtures, and Bayesian
hypothesis testing procedures are introduced to assess interaction significance and identify
disease-predisposing loci. Computationally, the framework is highly scalable, leveraging par-
allelization, Gibbs sampling, and Transformation-based MCMC to efficiently analyze high-
dimensional genomic data. Simulation studies and application to a myocardial infarction
dataset demonstrated the accuracy, robustness, and interpretability of the approach, yield-
ing results consistent with established findings while also uncovering novel patterns, including
sex-specific susceptibility.

The flexibility of the proposed model allows for natural extensions to incorporate
additional biological complexities, such as dynamic environmental effects or longitudinal
data. Future work may extend the framework to handle time-to-event outcomes and in-
tegrate multi-omics data. Overall, this study demonstrates how Dirichlet process-based
Bayesian nonparametric methods can advance the analysis of complex diseases by providing
a principled, flexible, and computationally efficient alternative to traditional GWAS analy-
ses, thereby contributing to a deeper understanding of the genetic architecture underlying
complex traits.
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Abstract

The present study employed regression techniques such as Ordinary Least Squares
(OLS), Ridge, and Lasso regression to analyse maize production data in relation to weather
parameters from the subtropical region of Jammu. The models were evaluated across var-
ious training and testing splits based on performance metrics including Mean Squared Er-
ror (MSE), Root Mean Squared Error (RMSE), Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC). Among the models, the Lasso regression demonstrated
the best overall performance with the lowest AIC (47.37) and BIC (50.76) values, indicating
superior model fit and simplicity. The optimal regularisation parameter (α = 0.126) and
having minimum MSE, thus ensuring a well-balanced trade-off between model complexity
and predictive accuracy. The Lasso regression model successfully identified key predictors
influencing maize production, with maximum temperature and area being the most influen-
tial variables, followed by sunshine hours and relative humidity in the evening. Rainfall and
minimum temperature were found to have minimal or no impact. Therefore, the proposed
Lasso regression model, with its optimal alpha value and refined feature selection, serves as
a robust and interpretable tool for predicting maize production in the subtropical region of
Jammu.

Key words: Maize; Regularizations; Penalized regression; Weather; MSE.

1. Introduction

Statistical modelling tools can sometimes produce suitable models quite fast. The
researchers used statistical models as baseline predictive models to assess the performance
of advanced methods, even for situations where more adaptable machine-learning techniques
(such regularization techniques and neural networks) can ultimately produce better results.
The term regression was first introduced by a British anthropologist and meteorologist Sir
Francis Galton (1886) in a paper entitled “Regression towards Mediocrity in Hereditary
Stature”. Since the regression analysis has emerged as a powerful statistical tool. With
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the enhanced application of statistics in economics, industry, agriculture, social sciences,
biology, medical sciences, psychology and education. According to Tibshirani (1996), the
ordinary least square (OLS) estimates of the regression parameter in general have low bias
but large variance and often have poor performance in both prediction and interpretation
when the assumptions violated such as residual normality, homoscedasticity, independence,
and linearity and the estimates may become skewed or undependable, especially when there
are outliers and many correlations between the predictor variables. The prediction accuracy
can sometimes be improved either by shrinking of some coefficient towards zero or by al-
lowing a little bias to reduce the variance of the parameter estimates and predicted value.
The outcomes of a linear regression can be severely distorted by outliers, which can result
in incorrect interpretations and poor prediction accuracy. High correlation across predictor
variables can lead to multicollinearity, which alters the variance of coefficient estimates and
makes it challenging to isolate the impact of each predictor on the response variable. These
problems may make yield projections less reliable and consider for exploring different mod-
eling approaches. Penalized regression models like lasso and ridge regression have become
effective alternatives for ordinary linear regression. By include a penalty term in the loss
function, these models introduce regularization approaches that assist reduce the impact of
outliers and multicollinearity. Through the efficient selection of important characteristics
and the reduction of overfitting, this method not only increases model stability but also
improves predictive performance.

One of the most adaptable developing crops, maize (Zea mays L.), has a wide range
of modification under various agro-climatic situations. Maize has the largest genetic yield
potential of all the cereals, it is referred to as the ”Queen of cereals” worldwide. It is grown
on roughly 150 million ha in about 160 nations, where there is a greater variety of soil,
climate, biodiversity, and management techniques. This increases global grain production
by 36 percent (782 million tonnes) Kiran et al. (2018).The maize crop is susceptible to the
fluctuations of rainfall distribution as a whole. In Jammu and Kashmir, maize is widely
planted in the kandi, karewa, and plain regions. It does well in loamy to sandy loam soils.
Additionally, maize varieties that thrive in colder hilly and mountainous regions have been
produced. In all such areas where the summer is long enough to support its cultivation and
where frost does not arrive too early, it can be grown. When it is growing and developing, it
needs a temperature of around 30°C, and when it is ripening, it needs a temperature of at
least 20°C. A fertile, deeply tilled soil is necessary for maize. The soil is prepared in advance
of the sowing season, which is April to May on the Jammu plain and May to June in the
Kashmir valley, the kandi, and the state’s mountainous regions. There are ten districts in
the Jammu area of the UT of Jammu and Kashmir, maize is grown in almost all the districts
of the Jammu region. In terms of production, the districts of Rajouri (110.20 thousand MT),
Udhampur (70.11 thousand MT), and Poonch (69.59 thousand MT) have the largest concen-
tration of maize. (Digest of Statistics, 2023-24). Jorvekar et al. (2024) conducted a study
to evaluate and compare the performance of different regression models for agriculture crop
yield prediction on the basis historical crop yield data, weather parameters and pesticides
data features from various agricultural regions. Various regression models, including Linear
Regression (LR), K Nearest neighbor Regression (KNR), Support Vector Regression (SVR),
Decision Tree Regression (DTR), Random Forest Regression (RFR), Gradient Boosting Re-
gression (GBR),Linear Model Lasso Regression, Elastic net Regression, Ridge Regression
to predict crop yields for various crops. This study involved evaluating the performance
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of these regression models based on several performance.Krishnadoss and Ramasmy (2024)
used various machine learning models for crop yield prediction to make dynamic pre mon-
soon decisions. The input variables precipitation, temperature, evaporation, wind speed,
and chemical use influence crop yield estimations. Jasrotia et al. forecast the production of
walnut for Jammu and Kashmir using Time series models. Holt linear exponential Smooth-
ing and Autoregressive Integrated Moving Average (ARIMA) model have been applied and
it shows that ARIMA(1,2,1) is appropriate model for forecasting on the basis of minimum
value of information criterion as compared to other models. Based on the forecast provided
by the proposed model, there is a projected 56.69 percent increase in walnut production for
the year 2035 with respect to 2022. Gupta et al. compared classification techniques through
statistical as well as artificial neural network models for the primary data related to 140
rice genotypes from the trial laid in SKUAST, Jammu on the basis of maturity. And, the
characters like yield per plant, number of days for 50 percent flowering, number of days
for full flowering, plant height, number of effective tillers per plant, panicle length, grain
length, grain width and ratio of grain length and grain width acts as supporting variables
for classification.

2. Material and methods

The study was undertaken based on secondary data related to area and production
of maize from three decades with effect from 1992 to 2023, 31 years of subtropical region of
Jammu.To assess the performance of the model, different proportions of training and testing
data were utilized related to 31 years of data of different parameters. The data pertains to
weather-based components such as; Maximum temperature, minimum temperature, Rain-
fall, Relative humidity morning, Relative humidity evening and sunshine (hrs.) were also
collected from digest of statistics published by Directorate of Economics and Statistics, UT
Administration of Jammu and Kashmir and Agro-metrological unit of SKUAST-Jammu. In
order to estimate the relation and prediction of maize production of Jammu division through
weather parameters the following statistical models are applied for handling the problem of
overfitting and challenges of influential observations in the data.

2.1. The least square method

The least square method used in regression is relatively straightforward. Imagine a
scatterplot of data points that form a linear trend. An OLS linear regression procedure
builds a line of best fit that would serve as the most accurate way of depicting the spread
of the data points with a single line. The least squares property states that the line fit in
the OLS method will have the smallest value of the summed squared deviations of each data
point from the line.

2.2. Penalized regression models

The two most common techniques are ridge regression given by Hoerl and Kennard
(1970). and lasso regression Tibshirani (1996). The predictor variables are all kept in the
model through penalized regression techniques, but the regression coefficients are regularized
by reducing them to zero or a value equal to zero. Shrinkage or regularization methods are
other names for penalized regression.
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(i) Ridge regression model

Ridge regression shrinks the regression coefficients, so that variables, with a minor
contribution to the outcome, have their coefficients close to zero. The shrinkage of the
coefficients is achieved by penalizing the regression model with a penalty term called L2-
norm, which is the sum of the squared coefficients. Mathematical form of ridge regression
model is:

min




n∑

i=1

(
yi − β0 −

p∑

i=1
βjxij

)2

+ α2∥βj∥




where y is the dependent variable, x is the covariate, β is the corresponding coefficient, and
α2 represents the L2 norm penalty. The amount of the penalty can be fine-tuned using a
constant called Alpha (α). Selecting a good value for α is critical. When α = 0, the penalty
term has no effect, and ridge regression will produce the classical least square coefficients.
However, as α increases to infinity, the impact of the shrinkage penalty grows, and the ridge
regression coefficients will get close to zero.

(ii) Least absolute shrinkage selection operator (LASSO)

It shrinks the regression coefficients toward zero by penalizing the regression model
with a penalty term called L1-norm, which is the sum of the absolute coefficients. In the
case of lasso regression, the penalty has the effect of forcing some of the coefficient estimates,
with a minor contribution to the model, to be exactly equal to zero. This means that lasso
can be also seen as an alternative to the subset selection methods for performing variable
selection in order to reduce the complexity of the model. As in ridge regression, selecting a
good value of α for the lasso is critical. One obvious advantage of lasso regression over ridge
regression is that it produces simpler and more interpretable models that incorporate only
a reduced set of predictors. The mathematical model of the of the LASSO Regression is

min




n∑

i=1

(
yi − β0 −

p∑

i=1
βjxij

)2

+ α1∥β∥




where y is the dependent variable, x is the covariate, β is the corresponding coefficient,
and α1 represents the L1 norm penalty. However, neither ridge regression nor the lasso will
universally dominate the other. Generally, lasso might perform better in a situation where
some of the predictors have large coefficients, and the remaining predictors have very small
coefficients. The penalized model is trained using a different subset of the data observations,
called the training set and rest is used as testing set. The performance of the proposed model
i.e. OLS, RR and Lasso checked through the MSE, RMSE, AIC and BIC.

(a) Mean squared error (MSE)

The Mean Squared Error (MSE) measures how close a regression line is to a set of
data points. It is a risk function corresponding to the expected value of the squared error
loss. The Mean Squared Error is calculated as:

MSE = 1
n

n∑

i=1
(yi − ŷi)2
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where, n is sample size, actual is the actual data value and forecast the predicted data value

(b) Root mean squared error (RMSE)

RMSE is employed while assessing models. If we have a sample of n observations
y(Y i, i = 1, 2..., n), and n matching model predictions y, then RMSE is defined as the
square root of the mean squared error (MSE), which is provided by

RMSE =
√√√√ 1

n

n∑

i=1
(yi − ŷi)2

(c) Akaike’s information criterion (AIC)

An important statistic for identifying and assessing statistical models is AIC. The
likelihood function, L, and the number of hyperparameters estimated from the model, n, are
used to determine this criterion, which was proposed by Akaike in 1979. Its is calculated as
AIC = −2logL+2n where, L is the value of the likelihood and n is the number of estimated
parameters.

(d) Bayesian information criterion (BIC)

The criterion was proposed by Schwarz (1978) using Bayesian likelihood maximiza-
tion. Schwarz further demonstrated the BIC’s validity by showing that it is independent of
prior distribution. SBIC = −2logL + nlogT , where T is the total number of observations,
is the formula for the BIC. The fitted model performs better when these data have a lower
value.

3. Results and discussion

In this study, regression techniques like Ordinary Least Squares (OLS), Ridge, and
Lasso regression were applied to the data of maize production with whether parameters
from the subtropical region of Jammu. The subtropical region of Jammu shows moderate
variability in maize cultivation as shown in table 1 with an average area of 21.15 thousand
hectares and production of 38.74 thousand metric tonnes. Climatic conditions remain fairly
stable, with average minimum and maximum temperatures of 16.32°C and 28.96°C, respec-
tively. Rainfall displays notable variation, averaging 1240.30 mm with a high coefficient of
variation (16.16%).

The normality tests conducted for the Jammu (subtropical) region revealed mixed
results across variables as shown in table 2. Area and minimum temperature show slight
deviations from normality as per Shapiro-Wilk and Anderson-Darling tests. Sunshine hours
significantly deviate from normality across all three tests, indicating strong non-normal dis-
tribution. Production, rainfall, and relative humidity (morning) largely follow a normal
distribution with high p-value. These findings suggest that while most climatic variables are
normally distributed, sunshine data requires transformation or non-parametric handling in
statistical modeling.

To evaluate the model performance, the dataset was divided into different training



172 MANISH SHARMA, AMANDEEP VERMA, NISHANT JASROTIA, ET AL. [SPL. PROC.

Table 1: Descriptive statistics for subtropical region of Jammu

Variable Minimum Maximum Average SD CV (%)
Area (000 hectares) 15.71 25.03 21.15 2.63 12.43
Production (000 MT) 23.70 48.24 38.74 5.32 13.73
Minimum Temperature (◦C) 15.15 17.22 16.32 0.57 3.51
Maximum Temperature (◦C) 28.00 29.96 28.96 0.58 2.00
Rainfall (mm) 769.14 1730.12 1240.30 200.48 16.16
Sunshine (hrs.) 4.36 6.79 6.14 0.40 6.54
Relative Humidity Morning (%) 74.98 87.74 80.76 2.48 3.08
Relative Humidity Evening (%) 43.05 55.04 49.98 2.81 5.54

Table 2: Test of normality for area, production, and different weather parame-
ters for subtropical region of Jammu using Shapiro-Wilk (S-W ), Kolmogorov-
Smirnov (K-S), and Anderson-Darling (A-D) tests

Variable Shapiro-Wilk (S-W ) Kolmogorov-Smirnov (K-S) Anderson-Darling (A-D)
Statistic p-value Statistic p-value Statistic p-value

Area (000 hectare) 0.93 0.05 0.76 0.60 0.78∗ 0.04
Production (000 MT) 0.96 0.41 0.54 0.93 0.31 0.52
Minimum Temperature 0.93∗ 0.04 0.89 0.41 0.86∗ 0.02
Maximum Temperature 0.96 0.25 0.77 0.59 0.35 0.46
Total Rainfall (mm) 0.99 0.99 0.36 1.00 0.16 0.94
Relative Humidity (Morning) 0.97 0.54 0.65 0.79 0.37 0.41
Relative Humidity (Evening) 0.93 0.08 1.13 0.16 0.85∗ 0.02
Sunshine (hrs.) 0.69∗∗ 0.00 1.56∗∗ 0.01 2.85∗∗ 0.00
Sunshine (hrs.) 0.70∗∗ 0.00 1.56∗ 0.01 2.86∗∗ 0.00

and testing ratios: 80:20, 70:30, and 60:40. Here, the first value shows the percentage of data
used for training the model, and the second value indicates the percentage used for testing.
The basis for choosing the optimal ratio is obtaining the lowest MSE and RMSE for testing
datasets. These evaluation criteria are essential because they provide insight on the model’s
accuracy and precision and capacity for generalization

The examination of various training and testing data splits for the OLS regression
model determined that the 60:40 ratio is the optimal option for the subtropical region of
Jammu, as shown in table 3. This ratio showed the best performance of the model on
unknown data, yielding the lowest testing MSE (15.72) and RMSE (3.96) as compared to
training MSE (16.36) and RMSE (4.04). The 80:20 ratio had the greatest testing MSE (21.43)
and RMSE (4.63) than training MSE (13.87) and RMSE (3.72), indicating overfitting even
though it displayed the lowest training error. When it came to testing MSE and RMSE,
the 60:40 ratio performed better than the 70:30 ratio having testing MSE(17.45) and RMSE
(4.18). Therefore, the 60:40 ratio is selected for the model and optimal option for the RR
model in the subtropical area of Jammu, according to the criterion of choosing the ratio with
the smallest testing MSE and RMSE. Its training MSE (16.38) and RMSE (4.05) and testing
MSE (15.61) and RMSE (3.95) were the lowest, demonstrating the best model performance
and generalization. The 80:20 ratio exhibited the highest testing MSE (19.29) and RMSE
(4.39), indicating overfitting, despite having the lowest training MSE (14.54) and RMSE
(3.81). The 70:30 ratios show overfitting having lower training MSE (14.75), RMSE (3.84)
and higher testing MSE (16.84) and RMSE (4.10). The selected ratio is the best option
for reducing errors on the testing dataset and promising improved generalization because
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Table 3: The MSE, RMSE, AIC and BIC of regression models for subtropical
region of Jammu w.r.t different ratios for training and testing datasets

Model Statistics 60:40 70:30 80:20
Training Testing Training Testing Training Testing

OLS
MSE 16.36 15.72 14.58 17.45 13.87 21.43
RMSE 4.04 3.96 3.82 4.18 3.72 4.63
AIC 64.31 49.81 70.27 42.60 77.11 35.45
BIC 70.54 53.77 77.58 44.71 85.36 35.08

Ridge regression
MSE 16.38 15.61 14.75 16.84 14.54 19.29
RMSE 4.05 3.95 3.84 4.10 3.81 4.39
AIC 66.34 51.72 72.52 44.23 80.25 36.72
BIC 73.46 56.24 80.77 46.66 89.67 36.28

Lasso regression
MSE 16.67 15.19 15.09 16.54 14.57 18.20
RMSE 4.08 3.90 3.89 4.07 3.82 4.27
AIC 62.65 47.37 70.99 42.06 76.30 32.31
BIC 67.99 50.76 78.30 44.18 83.37 31.98

it shows a good trade-off between training and testing errors. The selcted ratio is the best
option for the lasso regression model based on the criterion of choosing the ratio with the
smallest testing MSE and RMSE for subtropical region of Jammu. Its testing MSE (15.19)
and RMSE (3.90) were the lowest, in comparison to training MSE (16.67) and RMSE (4.08)
which demonstrating the best model performance and generalization. The testing MSE
(18.20) and RMSE (4.27) of the 80:20 ratio was reasonably high than training MSE (14.57)
and RMSE (3.82), and showing overfitting. The 70:30 ratio performed poorer than the 60:40
ratio as it also shows overfitting having lower training MSE (15.09) and RMSE (3.89) and
higher testing MSE (16.54) and RMSE (4.07). As a result, the common ratio selected was
the best option for minimizing testing MSE and RMSE, and indicating strong generalisation
with reduced overfitting for all the models.

AIC, BIC, and coefficient values based on the OLS, RR, and LR models analysis
utilizing the selected ratio for the subtropical region of Jammu are shown in table 4, With
an AIC (49.81) and a BIC (53.77) for OLS regression, 51.72 and a BIC (56.24) for RR, and
the lowest AIC (47.37) and a BIC (50.76) for lasso regression, these results were obtained.
Lasso showed the smallest testing AIC and BIC, suggesting superior model performance and
generalization, the LR model is chosen as the best-performing model for predicting maize
production in the subtropical region.

The variation in the coefficients of several meteorological variables with different
log(alpha) values in a Lasso regression model is illustrated in fig. 1. The coefficients are
displayed on the y-axis, and log(alpha) values are represented on the x-axis. The significance
of each meteorological variable in the model is indicated by the line that corresponds to it.
The optimal alpha value (0.126), is selected to minimize the mean squared error, which can be
observed by the dashed line. The coefficients for every variable are visible at this ideal alpha,
emphasizing their relative significance. The most important variables are found using this
optimum alpha value in the Lasso regression, producing a more precise and understandable
model.

The relationship between the log of the regularization parameter (alpha) and the mean
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Table 4: Regression coefficient estimates of different parameters for subtropical
region of Jammu with respect to OLS, ridge and lasso regression models

Parameters OLS Ridge regression Lasso regression
Intercept -143.53 -90.48 -51.66
Area (X1) 1.02∗ 1.01∗ 1.03∗

Max temp. (X2) 3.92∗ 3.46∗ 2.58∗

Min temp. (X3) 0.18 0.03 0
Rainfall (X4) 0.00 0.00 0.0001∗

RH (morning) (X5) -0.24 -0.30 -0.35
RH (evening) (X6) 0.36∗ 0.35∗ 0.29∗

Sunshine (hrs.) (X7) 1.70∗ 1.35∗ 0.30∗

R2 0.70
AIC 49.81 51.72 47.37
BIC 53.77 56.24 50.76

squared error (MSE) in a lasso regression model is depicted in fig. 2. The x-axis represents
log(alpha) values, and the y-axis shows the MSE. The dotted line indicates how MSE varies
with different log(alpha) values, and the red dot marks the best alpha value (0.126), which
minimizes the MSE. At this optimal alpha, the model achieves the best balance between
bias and variance, resulting in the lowest prediction error. Thus, model is proposed at best
alpha (0.126) and Lasso model describes the effect of various features on the target variable
is shown in the fig. 3. The coefficients for each attribute are shown by the bars, and larger
values denote greater significance. Maximum temperature (2.58*) is the most significant
predictor, with the largest positive coefficient; area (1.03*) comes in second. While relative
humidity morning (0.35) has a slight negative influence, features like sunshine (0.30*) and
relative humidity evening (0.29*) have moderately good effects. The coefficients for rainfall
(0.0001*) are almost zero, suggesting that they have little effect. whereas, coefficient for
minimum temperature is reduced to zero indicating lesser effect on production than other
variables. The optimum alpha value, which minimizes prediction error while setting some
coefficients to zero, strikes a compromise between model complexity and accuracy when
determining these coefficients.

Figure 1: The curve for lasso trace of coefficients w.r.t log alpha
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Figure 2: Plot between mean squared error and log alpha

Figure 3: Plot for coefficients of lasso regression

4. Conclusion

Lasso regression outperformed OLS and Ridge models, offering the best predictive
accuracy and simplicity, with the lowest AIC (47.37) and BIC (50.76) values. Key pre-
dictors identified by the Lasso model were maximum temperature and area, followed by
sunshine hours and evening relative humidity; rainfall and minimum temperature had neg-
ligible influence. The model offers a reliable and interpretable framework for forecasting
maize production, supporting data-driven agricultural planning in the subtropical region of
Jammu.

Thus, proposed penalized (Lasso) regression model for maize production prediction
is:

y = −51.66 + 1.03 · Area + 2.58 · MAXT + 0.29 · RH(Evening) + 0.30 · Sunshine (hrs). (1)
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