
FOUNDED 1998

UTILITY IN

APPLICATIONS

2
74207281

-1 IS PRIME

 ISSN 2454-7395(online)

Journal of the Society of 
Statistics, Computer and Applications

https://ssca.org.in/journal.html
Volume 21, N0. 1, 2023 (New Series)

STATISTICS 
APPLICATIONS

AND



Rakhi Singh Ranjit Kumar Paul

Society of Statistics, Computer and Applications
Registered Office: I-1703, Chittaranjan Park, New Delhi- 110019, INDIA 
Mailing Address: B-133, Ground Floor, Chittaranjan Park, New Delhi-110019, INDIA 

Ex-Officio Members (By Designation)
Director General, Central Statistics Office, Government of India, New Delhi

Director,  ICAR-Indian Agricultural Statistics Research Institute, New Delhi 

Chair Editor, Statistics and Applications

Executive Editor, Statistics and Applications

Treasurer

Ashish Das

Aloke Lahiri Vishal DeoShibani Roy Choudhury

Joint Secretaries

K.J.S. Satyasai

 

B. Re. Victor Babu Parmil Kumar

S.A. Mir 

Piyush Kant Rai

Sapam Sobita Devi

Raosaheb V. Latpate
 

Manisha Pal

V.M. Chacko 

Rajni Jain

V. Srinivasa Rao

Renu Kaul

Mukesh Kumar

Vishnu Vardhan R.

Council Members

 

Secretary

D. Roy Choudhury

Foreign Secretary

Abhyuday Mandal

Vice Presidents

President
 
V.K. Gupta

Executive President

Rajender Parsad

Society of Statistics, Computer and Applications

Council and Office Bearers

Founder President

Late M.N. Das

Patrons

 
P.P. Yadav

 

Rahul Mukerjee
 

Pankaj Mittal

 

R.B. Barman

A.K. Nigam

 

Bikas Kumar Sinha

 

D.K. Ghosh 

 

A.C. Kulshreshtha

 

G.P. Samanta
 

R.C. Agrawal
 

Rajpal Singh

A. Dhandapani Manish Sharma

Ramana V. Davuluri

P. Venkatesan
 

Praggya Das

V.K. BhatiaS.D. Sharma



Statistics and Applications
 ISSN 2454-7395(online)

FOUNDED 1998

UTILITY IN

APPLICATIONS

2
74207281

-1 IS PRIME

Journal of the Society of 
Statistics, Computer and Applications

https://ssca.org.in/journal.html

Volume 21, No. 1, 2023 (New Series)





Chair Editor
V.K. Gupta, Former ICAR National Professor at IASRI, Library Avenue, Pusa, New Delhi -110012;
vkgupta_1751@yahoo.co.in

Executive Editor
Rajender Parsad, ICAR-IASRI, Library Avenue, Pusa, New Delhi - 110012; 
rajender1066@yahoo.co.in; rajender.parsad@icar.gov.in

Editors
Baidya Nath Mandal, Managing Editor, ICAR-Indian Agricultural Research Institute Gauria 
Karma, Hazaribagh-825405, Jharkhand; mandal.stat@gmail.com
R. Vishnu Vardhan, Managing Editor, Department of Statistics, Ramanujan School of 
Mathematical Sciences, Pondicherry University, Puducherry- 605 014; vrstatsguru@gmail.com
Jyoti Gangwani, Production Executive, Formerly at ICAR-IASRI, Library Avenue, New Delhi 
110012; jyoti0264@yahoo.co.in 

Associate Editors
Ajay Gupta, Wireless Sensornets Laboratory, Western Michigan University, Kalamazoo, MI- 
49008-5466, USA; ajay.gupta@wmich.edu
Ashish Das, 210-C, Department of Mathematics, Indian Institute of Technology Bombay, Mumbai -
400076; ashish@math.iitb.ac.in; ashishdas.das@gmail.com
D.S. Yadav, Institute of Engineering and Technology, Department of Computer Science and 
Engineering, Lucknow- 226021; dsyadav@ietlucknow.ac.in
Deepayan Sarkar, Indian Statistical Institute, Delhi Centre, 7 SJS Sansanwal Marg, New Delhi -
110016; deepayan.sarkar@gmail.com; deepayan@isid.ac.in
Feng Shun Chai, Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2,  
Nankang, Taipei -11529, Taiwan, R.O.C.; fschai@stat.sinica.edu.tw
Hanxiang Peng, Department of Mathematical Science, Purdue School of Science, Indiana 
University, Purdue University Indianapolis, LD224B USA; hpeng02@yahoo.com
Indranil Mukhopadhyay, Professor and Head, Human Genetics Unit, Indian Statistical Institute, 
Kolkata, India; indranilm100@gmail.com
J.P.S. Joorel, Director INFLIBNET, Centre Infocity, Gandhinagar -382007; 
jpsjoorel@gmail.com 
Janet Godolphin, Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK; 
j.godolphin@surrey.ac.uk
Jyotirmoy Sarkar, Department of Mathematical Sciences, Indiana University Purdue University, 
Indianapolis, IN 46202-3216 USA; jsarkar@iupui.edu
K. Muralidharan, Professor, Department of Statistics, faculty of Science, Maharajah Sayajirao 
University of Baroda, Vadodara; lmv_murali@yahoo.com
K. Srinivasa Rao, Professor, Department of Statistics, Andhra University, Visakhapatnam, Andhra 
Pradesh; ksraoau@gmail.com
Katarzyna Filipiak, Institute of Mathematics, Poznañ University of Technology Poland;  
katarzyna.filipiak@put.poznan.pl
M.N. Patel, Professor and Head, Department of Statistics, School of Sciences, Gujarat University,  
Ahmedabad - 380009; mnpatel.stat @gmail.com
M.R. Srinivasan, Department of Statistics, University of Madras, Chepauk, Chennai-600005;
 mrsrin8@gmail.com

Statistics and Applications
Volume 21, No. 1, 2023 (New Series)

Editorial Panel



Murari Singh, Formerly at International Centre for Agricultural Research in the Dry Areas, 
Amman, Jordan; mandrsingh2010@gmail.com
Nripes Kumar Mandal, Flat No. 5, 141/2B, South Sinthee Road, Kolkata-700050; 
mandalnk2001@yahoo.co.in
P. Venkatesan, Professor Computational Biology SRIHER, Chennai, Adviser, CMRF, Chennai;
 venkaticmr@gmail.com
Pritam Ranjan, Indian Institute of Management, Indore - 453556; MP, India; 
 pritam.ranjan@gmail.com
Ramana V. Davuluri, Department of Biomedical Informatics, Stony Brook University School of  
Medicine, Health Science Center Level 3, Room 043 Stony Brook, NY 11794-8322, USA;
ramana.davuluri@stonybrookmedicine.edu; ramana.davuluri@gmail.com
S. Ejaz Ahmed, Faculty of Mathematics and Science, Mathematics and Statistics, Brock University,  
ON L2S 3A1, Canada; sahmed5@brocku.ca
Sanjay Chaudhuri, Department of Statistics and Applied Probability, National University of  
Singapore, Singapore -117546; stasc@nus.edu.sg
Sat N. Gupta, Department of Mathematics and Statistics, 126 Petty Building, The University of 
North Carolina at Greensboro, Greensboro, NC -27412, USA; sngupta@uncg.edu
Saumyadipta Pyne, Health Analytics Network, and Department of  Statistics and Applied 
Probability, University of California Santa Barbara, USA; spyne@ucsb.edu, SPYNE@pitt.edu  
Snigdhansu Chatterjee, School of Statistics, University of Minnesota, Minneapolis, MN -55455, 
USA; chatt019@umn.edu
T.V. Ramanathan; Department of Statistics; Savitribai Phule Pune University, Pune;
madhavramanathan@gmail.com
Tapio Nummi, Faculty of Natural Sciences, Tampere University, Tampere Area, Finland;
tapio.nummi@tuni.fi
Tathagata Bandyopadhyay, Indian Institute of Management Ahmedabad, Gujarat;
tathagata.bandyopadhyay@gmail.com, tathagata@iima.ac.in
Tirupati Rao Padi, Department of Statistics, Ramanujan School of Mathematical Sciences, 
Pondicherry University, Puducherry; drtrpadi@gmail.com
V. Ramasubramanian, ICAR-IASRI, Library Avenue, PUSA, New Delhi – 110012;



CONTENTS 
 
Statistics and Applications ISSN 2454-7395 (online)  
Volume 21, No. 1, 2023 (New Series) 
 

1. Statistical Model for Brand Loyalty and Switching  
Kumaraswamy Kandukuri and Bhatracharyulu N. Ch. 

1-9 

2. Calibration Estimator in Two Stage Sampling  
Using Double Sampling Approach when Study Variable 
is Inversely Related to Auxiliary Variable  
Ankur Biswas, Kaustav Aditya, U.C. Sud and Pradip Basak 

11-22 

3. Regular Group Divisible Designs Using Symmetric 
Groups                                                                                                 
Shyam Saurabh and Kishore Sinha 

23-26 

4. New Intervention Based Exponential Model with Real 
Life Data Applicability                                               
Vilayat Ali Bhat and Sudesh Pundir	 

27-40 

5. Estimation of AUC of Mixture ROC Curve in the 
Presence of Measurement Errors                                        
G. Siva and R. Vishnu Vardhan	 

41-49 

6. Evaluating Batsman using Survival Analysis              
Parag Shah, R. D. Chaudhari and M. N. Patel	 

51-62 

7. Discrete Harris Extended Weibull Distribution and 
Applications                                                                
Sophia P. Thomas, Lishamol Tomy and K.K. Jose	 

63-79 

8. Nonparametric Prediction Intervals for Future Order 
Statistics and k-Record Values                                       
Laji Muraleedharan and Manoj Chacko	 

81-98 

9. Empirical Mode Decomposition Based Ensemble 
Hybrid Machine Learning Models for Agricultural 
Commodity Price Forecasting                                                  
Pankaj Das, Girish Kumar Jha and Achal Lama 

99-112 

10. Estimation of Area under the Multi-Class ROC for 
Non-Normal Data                                                              
Arunima S. Kannan and R. Vishnu Vardhan  

113-121 

11. Parameter Estimation of Generalized Exponential 
Distribution using Variations in Methods of Ranked Set 
Sampling                                                                                                          
Vyomesh Nandurbarkar and Ashok Shanubhogue  

123-141 

12. Statistical Modeling of Temperature in Krishna District 
using Copula Analysis                                                      
A. Rajini and C. Jayalakshmi 

143-159 

13. On the Bivariate Generalized Chen Distribution              
R. M. Mandouh  

161-177 



14. Properties of Partial Product Processes                         
Babu D., Sutha M., Neelakandan R. and Elumalai P.  

179-185 

15. Asymptotic Results for Generalized Runs in Higher 
Order Markov Chains                                                                 
Anuradha	 

187-205 

16. Randomized Response in Combination with Direct 
Response for Estimation of Incidence Parameters of 
Two Sensitive Qualitative Features                                                  
Opendra Singh                                                                          	 

207-215 

17. Conway-Maxwell Poisson Distribution: Some New 
Results and Minimum Variance Unbiased Estimation 
Jahnavi Merupula and V.S.Vaidyanathan	 

217-230 

18. Single Server Poisson Queueing Model with Additve 
Exponential Service Time Distribution                           
Ch. Ganapathi Swamy, K. Srinivasa Rao and S. Govinda Rao  

231-244 

19. The Direct Method for the Optimal Solution of a 
Transportation Problem 
Priyanka Malviya, Sushma Jain and Rina Agrawal 

245-249 

 



Corresponding Author: Kumaraswamy Kandukuri 

 E-mail: kumaraswami.kandukuri@gmail.com 

 

Statistics and Application {ISSN 2454-7395(online)} 

Volume 21, No. 1, 2023 (New Series), pp 1-9 

 

Statistical Model for Brand Loyalty and Switching  
 

Kumaraswamy Kandukuri and Bhatracharyulu N.Ch. 

Department of Statistics, University College of Science, Osmania University, Hyderabad – 7 
 

Received: 26 May 2021; Revised: 20 December 2021; Accepted: 01 January 2022 

 

Abstract 

 

Consumer’s decision on purchase of an item or brand depends on many factors. Some 

stochastic distributions and markov chain models were used to analyze the consumers’ 

purchase behavior. In this paper, a statistical linear model is constructed to study the repeated 

purchase behavior based on the performance measures of various brands. The proposed model 

will generate transformation matrix, which is used to estimate the repeat purchase of brands 

depending on polarized index and market share values. The model is also illustrated with a 

suitable example.  

 

Key words: Brand loyalty; Dirichlet model; Least squares estimate; Markov model; Repeat 

rate. 

 

1.  Introduction 
 

Scientifically, the customer choice behaviors can be broadly classified as the state of 

decisions and actions that influence the purchase pattern.  The buying pattern of consumers 

begins coherently with factors attitudes towards the brands in a particular product category, 

made up of various components attracting the preferred brand over all other brands. The study 

reflects how changes are in consumer attitudes incorporate the purchase behavior; changes in 

consumer’s attitudes with the various factors can be viewed in terms of probabilities.  

 

Lipstein (1965) constructed a statistical analytical model to study the consumer 

behavior on advertising effect in marketplace.  Colombo and Morrison (1989) focused on 

marketing strategies for brand switching model with classes of consumers: hardcore loyal and 

potential switchers.  Dirichlet probabilistic model used to study the behavior of consumer 

purchasing pattern of brand choice and purchase incidence in Abel et al. (1980), Bound (2009), 

and Rungie and Goodhardt (2004). 

 

2.  Statistical model for repeated purchase  
 

Definition 1 (Repeat rate): Let the purchase occasion is the event when a shopper 

makes a purchase from any one of the brand categories. The proportion of buyers of a particular 

brand at the last purchase occasion and also buys the same brand in the next purchase occasion. 

It is an intuitive measure of loyalty and it records how much a brand hangs onto its buyers. 
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Definition 2 (Market share): The market share of a brand is the proportion of total purchases 

of that particular brand to total purchases of all brands. 

 

Definition 3 (Polarized index): The brand Polarized index of a particular brand is defined as 

i = (i  – i)/ (1 – i). 

 

Definition 4 (Dirichlet model): The Dirichlet model is a probability distribution function that 

describes the distribution of consumer purchases of each brand within a product category over 

time. The data set is multivariate, contains numerous brands, and the model counts the number 

of transactions and is discrete and instructive, i.e., counts are integer type, non-negative 

because purchases are whole numbers. As a result, it cannot be non-negative. 

 

Notations:  

Total no. of purchases of ith brand is i. 

Total no. of purchases of all brands S = ii. 

Market share of ith brand is i = i / S.  

Repeat rate is i. 

Loyalty polarized index of brand ‘i’ is i. 

 

Inter relationships / properties of the Dirichlet model:  

1. i = i / S  

2. 0  i  1  

3.  ii =1. 

4. i = (i  – i)/ (1 – i) and   

5. 0  i   1 

 

To analyze consumer switching behaviors across various brands in a specific product 

category, a basic comprehensive intuitive model is necessary. The brand performance measures 

such as penetration, repeat rate, market share, and polarize index etc. are estimated using 

likelihood theory. 

 

Let us assume there are ‘k’ brands in the competitive environment for an item.  Let pij 

be the transition probability indicates the loyalty / disloyalty of customers.  When i = j, the pii 

denotes the loyalty probability for ith brand, i.e., who, after being convinced by market share 

pressure, sticks with the same brand and when i  j, the pij denotes disloyal customers who 

switch the brand i to j.  Let the brand loyalty polarized index for the ith brand be i and market 

share of the brand be i, where 0 i, i 1, and ii = 1 (i = 1, 2, …, k).  The transition 

probability matrix P = ((pij)) be the transition probability matrix defined in terms of polarized 

index i and market share j as  

 

pii =  i + (1 – i)j for i = j      (1) 

pij = (1 – i)j  for i   j. 

 

The repeated stationary purchase probabilities can be estimated using Chapman-

Kolmogorov equation which is presented below.  
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Theorem 1: The stationary probability for jth brand is j = Rj /  Rj where Rj = j / (1 – j), j 

is the polarized index and j is the market share of jth brand satisfying (1). 

 

Proof: Let i be the loyalty polarization index and let i be the market share of ith brand.  Let 

P be the transition probability matrix constructed using (1).  Let 0 =  be the initial 

probabilities for the brands.  

 

For j = 2 brands, we have the Chapman-Kolmogorov equation j = j-1. P 
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for j = 3 brands we have, 
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In general, it can be expressed for t = k brands       
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1
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3.  Analysis for the repeated purchase model  
 

1. The repeated rate is an intuitive measure for brand loyalty, the higher repeated rate 

indicates larger loyal customers. The polarization index is also a measure of loyalty and 

where the repeat rate is standardized for market share. 

2. When it is extended to ‘k’ brands, the stationary probabilities for jth brand are  

kj
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j j
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3. The empirical evidence indicated that brand loyalty transmits relatively slow and the 

market-share may change from purchase-to-purchase scenario.  It can be noted that that 
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brand loyalty is assumed to be constant over some time horizon and market share is 

time-dependent.  

4. The repeated purchase probabilities for the jth brand at time t = 1, 2, 3, …, M is  

 

yj,t  =  j yj,t-1 + j,t(1-j) yj,t-1 + j,t                (5) 
 

 

when all the brands are having equal loyalty j =  Then the least squares estimate of  

can be obtained as  
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It can be noted that, when   = 0, there is no loyalty i.e., when all the consumers switch 

frequently then yj,t = j,t, and when  = 1, there is complete loyalty i.e., when all 

consumers repeatedly purchase the same brand then yj,t = yj,t-1. 

5. Consider the two brand cases i.e., k = 2 in a competitive market environment. Then   
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The resulting normal equations are, 
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The resulting solution to the normal equations C = B, and  = C-1 B, where 

and,
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Example 1:  Let B1, B2, B3 and B4 are four competitive brands for an item in the market with 

loyalties, market shares and with transition probability matrix P are  
 

Table 1: Loyalty and market shares for brands 

 

 B1 B2 B3 B4 

Polarized Index (i) 0.30 0.20 0.50 0.60 

Market Share (i) 0.30 0.10 0.40 0.20 

 

The repeated purchase stationary probabilities are evaluated as  

 

j = [j / (1 – j)] /  [j / (1 – j)]. 

 

Table 2: Evaluation of repeated purchase stationary probabilities 

 

 B1 B2 B3 B4 

Polarized Index (i) 0.30 0.20 0.50 0.60 

Market Share (i) 0.30 0.10 0.40 0.20 

Rj = j / (1-j) 0.42857 0.125 0.8 0.5 

j= Rj/ Rj 0.2312 0.0675 0.4316 0.2697 

 

The loyalty transition probabilities pij can be evaluated  

 

p11 = 0.30 + (1-0.30).(0.30) = 0.51;  p22 = 0.20 + (1-0.20).(0.10) = 0.28;  

p33 = 0.50 + (1-0.50).(0.40) = 0.70;  p44 = 0.60 + (1-0.60).(0.20) = 0.68;  

 

The disloyalty transition probabilities pij can be evaluated  

 

p12 = (1-0.30).(0.10)=0.07;  p13 = (1-0.30).(0.40)=0.28;   p14 = (1-0.30).(0.20) = 0.14; 

p21 = (1-0.20).(0.30)=0.24;  p23 = (1-0.20).(0.40)=0.32;   p24 = (1-0.20).(0.20) = 0.16; 

p3 1= (1-0.50).(0.30)=0.15;  p32 = (1-0.50).(0.10)=0.05;   p34 = (1-0.50).(0.20) = 0.1; 

p41 = (1-0.60).(0.30)=0.12;  p4 2= (1-0.60).(0.10)=0.04;   p43 = (1-0.60).(0.40) = 0.16; 

 

The resulting transition matrix is  
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Figure 1: Markov diagram 

 

It can be noted and stated that the Markov property exhibits while switching from one 

brand to the other, a customer is keeping in his or her memory only the loyalty of the brand he 

was using just before using the current brand and not keeping in memory the loyalty of all 

previously used brands, all states (brands) are communicated, implying that brands are 

essential, that consumers observe repeated purchases and switching among brands, so the 

transition probability matrix is irreducible. The states of the transition probability matrix are 

recurrent and have a periodicity of 1. As a consequence, the Markov chain is an ergodic 

(regular) Markov chain, culminating in a unique stationary distribution. The expected first 

hitting times (the first arrival from starting one point to the other point after how many 

transitions or purchase occasion i.e., shifting one brand to the other after how many time 

transitions) for each state are  
 

Table 3:  Expected first hitting times 

 

B1 B2 B3 B4 

- 18.7143 4.0625 8.1964 

6.0 - 3.8839 8.0179 

6.75 19.2857 - 8.7679 

7.25 19.7857 5.1339 - 
 

Let  = [0.30 0.10 0.40 0.20] be the vector of initial brands purchase probabilities.  
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The subsequent repeat purchase frequency rates can be evaluated as follows: j = j-1. P. 

 

Table 4: The iterative repeated purchase stationary probabilities 

 

Iteration 1 2 3 4 

1 0.2610 0.0770 0.4280 0.2340 

2 0.2439 0.0706 0.4348 0.2508 

3 0.2366 0.0686 0.4353 0.2594 

4 0.2336 0.0679 0.4344 0.2641 

5 0.2323 0.0677 0.4335 0.2666 

6 0.2317 0.0675 0.4328 0.2680 

7 0.2315 0.0675 0.4323 0.2687 

8 0.2313 0.0675 0.4320 0.2692 

9 0.2313 0.0675 0.4318 0.2694 

10 0.2312 0.0674 0.4317 0.2696 

11 0.2312 0.0674 0.4317 0.2696 

12 0.2312 0.0674 0.4316 0.2697 

13 0.2312 0.0674 0.4316 0.2697 

14 0.2312 0.0674 0.4316 0.2697 
 

For the given initial brand shares, polarized Index and market shares of the four brands, 

and the subsequent stationary brand shares can be evaluated by successive application of 

Chapman Kolmogorov equation. The consumer’s’ propensity to choose a loyal brand in a long 

period of time with purchase probabilities attained with values as the equilibrium states 

together ]2697.0,4316.0,0674.0,2312.0[ (or alternatively the equilibrium purchase 

probabilities can be obtained from the theorem) i.e., the brand B3 is more likely to be repeatedly 

purchased with the probability 0.4316 among the other competitive brands in the market. In 

other words, the concentration of the repeated purchase of the brands is directly proportional 

to the steady state probabilities. (The higher the steady state probability value indicates more 

likely to be repeated purchases and vice-versa). 

 

4. Discussion 
 

The brand performance indicators of the Dirichlet model are used to construct a more 

detailed statistical model for the transition probability matrix. In brand switching and repeat 

purchase analysis, this model is used to investigate Markovian characteristics. The least square 

principle is used to estimate the transition model parameters. The stationary probabilities are 

derived for each state of the Markov chain and analysis is illustrated with an example.  
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Abstract 

 

The calibration approach is a popular technique for incorporating auxiliary 

information for estimation of population parameters in survey sampling. In general, the 

Calibration Approach assumes the availability of population-level auxiliary information. On 

the contrary, in large scale surveys, it is often the case that population-level data on auxiliary 

variable is not available, but it is relatively inexpensive to collect. In the present article, in 

case of non-availability of population-level relatively inexpensive data on auxiliary variable 

under two stage sampling, we developed product type calibration estimator of the finite 

population total using double sampling approach along with the sampling variance and 

variance estimator. The study variable is assumed to be inversely related with the auxiliary 

variable. Proposed product type calibration estimator was evaluated through a simulation 

study which showed that the proposed product type calibration estimator was performing 

efficiently over traditional Narain-Horvitz-Thompson type expansion estimator as well as 

product estimator of the finite population total in case of two stage sampling involving two 

phases at both the stages.  

 

Key words: Auxiliary information; Calibration; Design weights; Product estimator; 

Simulation; Double sampling. 

 

 

1. Introduction 

 

The calibration approach was originally suggested by Deville and Särndal (1992). It is 

a most widely used techniques combining auxiliary information for estimation of unknown 

finite population parameters of the character under study efficiently. In calibration approach, 

initial design weights would be converted to calibrated weights which is product of a 

calibration factor with the initial design weight. Following Deville and Särndal (1992), plenty 

of work has been carried out in the calibration estimation i.e. Singh et al. (1998, 1999), Wu 

and Sitter (2001), Sitter and Wu (2002), Kott (2006), Estevao and Särndal (2006), etc. (see 

Kim and Park (2010) and Särndal (2007) for comprehensive review of calibration approach).  

  

In various medium to large scale surveys, two stage sampling is followed since at 

most situations it is very often the case that the sampling frame is often unavailable or it 



12                                A. BISWAS, K. ADITYA, U. C. SUD AND P. BASAK                              [Vol. 21, No. 1 

could be too expensive to construct one. Under this sampling design, first, groups of elements 

are selected which are called as primary stage units (PSU) and, then, a sample of basic 

elements which are called as secondary stage units (SSU) are selected from each selected 

PSU. For example, in agricultural surveys, villages can be selected as PSU and farmers can 

be selected as SSU. Sukhatme et al. (1984) suggested several estimators of the finite 

population parameters using auxiliary information in two stage sampling. Särndal et al. 

(1992) considered three different situations concerning availability of complex auxiliary 

information under two stage sampling and discussed extensively on ratio and regression 

estimators under such situations. The calibration estimation under availability of complex 

auxiliary information under two stage sampling has been discussed by several authors such as 

Aditya et al. (2016a, 2016b), Mourya et al. (2016), Aditya et al. (2017), Basak et al. (2017), 

Salinas et al. (2018) and Biswas et al. (2020) etc.  

 

In surveys, it is often the case that there exist certain auxiliary variables which are 

inversely related to the character under study. For example, in household based surveys, the 

marketable surplus is inversely related to family consumption of seed, feed etc. In the past, 

the product estimator (Murthy, 1964) was used as an efficient alternative to the traditional 

estimators. In such a situation, the usual methodology for calibration estimation may not fit 

in. Sud et al. (2014 a, b) and Biswas et al. (2020) proposed calibration estimation procedures 

for finite population total under uni-stage equal probability sampling and two stage sampling 

respectively, when a character under study is inversely related to the available auxiliary 

variable. 

 

Generally, in calibration approach, it is assumed that population-level auxiliary 

information is available. On the contrary, population-level data on auxiliary variable is not 

available in practice, but relatively inexpensive to collect. Under this scenario, double 

sampling approach serves as a feasible solution for the estimation of finite population 

parameters. Double sampling has generated extensive research interests. For example Rao 

(1973), Hidiroglou et al. (2009), Haziza et al. (2011), Sinha et al. (2016), Arnab (2017), etc. 

In this present study, in case of non-availability of population-level relatively inexpensive 

data on auxiliary variable under two stage sampling, an attempt has been made to develop 

calibration estimation procedure for estimation of finite population total using double 

sampling approach when character under study is inversely related to the available auxiliary 

variable. In Section 2, we give a brief of the product type calibration estimators of finite 

population total under two stage sampling as proposed by Biswas et al. (2020). In Section 3, 

calibration estimators have been proposed in case of two stage sampling using double 

sampling approach when there was unavailability of population level auxiliary information at 

the SSU level and the character under study is inversely related to auxiliary variable. The 

statistical properties of the proposed estimators are studied empirically through a simulation 

study. Section 4 provides the technical details of the simulation study and simulation results. 

Concluding remarks are given in Section 5.   

 

2.  Calibration estimators under two stage sampling when character under study is 

inversely related to available auxiliary information 

 

In this section, first, we briefly describe two stage sampling design along with two 

different calibration estimators under two stage sampling under the assumption that the 

character under study is inversely related to available auxiliary information as proposed by 

Biswas et al. (2020).  
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Let, the finite population under consideration and the corresponding character under 

study is denoted by U and Y. Population U is grouped into N different PSUs such that 

 1,..., ,...,IU i N  and ith PSU consists of Mi SSUs such that  1,..., ,...,i iU k M , Ii U . 

Thus, we have 
1

N
ii
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N
ii

M M


 . Under two 

stage sampling, a sample of n PSUs ( Is ) is drawn from IU  at stage one. First and second 

order inclusion probabilities at the PSU level are ( )Ii IP i s   and ( , )Iij IP i j s  . A 

second stage sample ( is ) of mi SSUs is drawn from iU  provided, at the first stage, the ith PSU 

( iU ) is selected. First and second order inclusion probabilities at the SSU level are 

/ ( / )k i i IP k s i s    and / ( , / )kl i i IP k l s i s   . In the second stage of sampling, 

invariance and independence property is followed. The final sample of SSUs is denoted as, 

1

Is

i

i

s s



 . Let, iky  denotes the observation of the study variable from kth SSU in ith PSU and 

it is observed for all the sampled SSUs. The parameter of interest is the population total 

1 1 1

iM NN

y ik yi
i k i

t y t

  

   , where 

1

iM

yi ik
k

t y



 = ith PSU total. Usual Narain-Horvitz-Thompson 

estimator for population total is given by 

 /
1 1 1 1

ˆ
i im mn n

y Ii k i ik ik ik
i k i k

t a a y a y
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where, the design weights are given as 

/.ik Ii k ia a a , 1/ ,Ii Ii Ia i s      and / /1 ,k i k i ia k s     and Ii s . 

 

Biswas et al. (2020) proposed product type calibration estimators of population total 

for two situations under two stage sampling design as per Särndal et al. (1992) as mentioned 

below:  

 

Case 1: Population level complete auxiliary information is available at the SSU level. 

Case 2: Population level auxiliary information is available only for the selected Primary 

Stage Units (PSU). 

 

The product type calibration estimators of population total (Biswas et al., 2020) under 

these two cases of two stage sampling as stated above were given by 

1 1
1 1

1 1 1 1 1 1 1 1
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i i i im m M mn n N n
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1 1
2 / /

1 1

,
i iM m

ik k i ik k i ik i

k k

w a x a x k = 1, 2,..., m 
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 
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3.  Proposed calibration estimator using double sampling approach in both stages of 

two stage sampling 

 

The double sampling was first given by Neyman (1938) which is generally used when 

the information on auxiliary variable is lacking, but comparatively low-cost to obtain. 

Information on auxiliary variable shall be obtained by selecting a larger preliminary sample. 

Further, sub-sample is taken to observe the charater under study. In the present study, we 

have developed calibration estimators using double sampling approach in two stage sampling 

for the situations when of population level auxiliary information (xik) was unavailabile at SSU 

level. 

 

Biswas et al. (2020) developed product type calibration estimator under two stage 

sampling assuming the SSU level auxiliary variable is inversely related to the characteristics 

under study and 1

1 1

iMN

ik
i k

x
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  is already known. Under the present situation, it is assumed that a 

correct value of 1

1 1

iMN

ik
i k

x

 

  is unavailable since there was there was unavailability of 

population level auxiliary information (xik). We consider double sampling approach under 

this scenario. First, a large first phase sample ( 
Is ) of n  PSUs is selected from the population 

of N  PSUs ( IU ) following a sampling design (.)
Ip . The design weight for ith PSU is given 

by 1/Ii Iia   , where ( )Ii IP i s    is the known first phase first order inclusion 

probability of ith PSU.  Under SRSWOR, /Ii n N  . In the second stage of the first phase 

sampling, from each of the ith selected PSU, Ii s , a sub-sample ( is ) of im  SSUs is selected 

from Mi population SSUs (Ui) by a sampling design / (.)
Ik sp  . The design weight for kth SSU 

provided ith PSU is already selected can be given as / /1/k i k ia   , where 

/ ( / )k i i IP k s i s      is first phase inclusion probability of kth SSU and under SRSWOR it 

is given by / /k i i im M  . The observation on auxiliary variable xik is taken from the kth SSU 

in ith PSU.  

 

In the second phase, a smaller sub-sample ( Is ) of n  PSUs is drawn from 
Is  by a 

sampling design (.)Ip . The design weight of the ith PSU is / /1/
I IIi s Ii sa    , where 

/ ( / )
IIi s I IP i s s    is the second phase conditional inclusion probability of ith PSU, given 


Is , and under SRSWOR, / /

IIi s n n  . In the second stage of second phase sampling, from 

the ith selected PSU, ,Ii s  a smaller sub-sample is  of size mi SSUs is selected from im  first 

phase SSUs by a sampling design / (.)
Ik sp . The sampling weight for kth SSU is given by 
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/ , / ,1/
i ik s i k s ia    , where / , ( / , )

ik s i i i IP k s k s i s      is the second phase conditional 

inclusion probability of kth SSU and under SRSWOR it is given by / , /
ik s i i im m  . The 

observations on the character under study, yik, and auxiliary variable, xik, are taken from the 

kth sampled SSUs in ith selected PSU.  

 

In this study, an attempt has been made to improve the traditional design weighted 

Narain-Horvitz-Thompson (NHT) (Narain, 1951; Horvitz and Thompson, 1952) type 

expansion estimator for population total (ty) under two stage sampling following double 

sampling at both the stages which is given by 

/
1 1 1 1

ˆ
i im mn n

y Ii k i ik ik ik
i k i k

t a a y a y
   

     

where,    / / / /I iik Ii k i Ii i s k i k s ia a a a a a a     is the total sampling weight of kth SSU in ith 

selected PSU in the second phase sample, which reduces to i i i
ik

i i i

N n M m NM
a

n n m m nm

   
   

   
 

under SRSWOR at all stages and phases.  

  

Proposed calibration estimator of the population total (ty) in case of two stage 

sampling following double sampling approach is given by 

1 1

ˆ
imn

yCPd ikd ik

i k

t w y

 

  

where ikdw is the calibration weight under double sampling corresponding to the total 

sampling weight ika . 

 

We obtained calibration weights ikdw  by minimizing the Chi-square type distance 

function 
 

2

1 1

imn
ikd ik

ik iki k

w a

a q
 


 subject to the constraint 

1 1

1 1 1 1

i im mn n

ikd ik ik ik

i k i k

w x a x


 

   

  , 

where, /ik Ii k ia a a   . Using Lagrangian multiplier technique, the new calibrated weight is 

given by 

1 1

1 1 1 1 1

2

1 1

, .

i i

i

m mn n

ik ik ik ik

i k i k
ikd ik ik ik ik i Imn

ik ik ik

i k

a x a x

w a a q x k = 1, 2,..., m i s

a q x


 

    



 

 
  

 
    

 
 
 

 



 

Using the results of the Equation (4) in (3) and considering ik ikq x , we have, 

therefore, proved the following result. 

 

Theorem 1: Following double sampling approach under two stage sampling, the proposed 

product type calibration estimator of population total is given as 

(2) 

(3) 

(4) 



16                                A. BISWAS, K. ADITYA, U. C. SUD AND P. BASAK                              [Vol. 21, No. 1 

1

1 1 1 1

1 1 1

1 1

ˆ ,

i i

i

i

m mn n

ik ik ik ikmn
i k i k

yCPd ikd ik mn
i k

ik ik

i k

a y a x

t w y

a x




   

  

 

  
  

  
   

 
 
 
 

 





 

where, proposed calibration weights corresponding to respective design weights are  

1 1

1 1 1 1

, ,
i im mn n

ikd ik ik ik ik ik i I

i k i k

w a a x a x k = 1, 2,..., m i s


 

   

 
   

 
 
  . 

Corollary 1: Under SRSWOR at both the stages of two stage sampling, the proposed product 

type calibration estimator reduces to 

 

 1 1

1 1 1 1 1 1

ˆ
i i im m mn n n

i i i
yCPd ik ik ik

i i ii k k k i k

M M MN N N
t y x x

n m n m n m


 

     

    
    
     
    
      . 

 

Usual product estimator of two stage sampling using double sampling approach is 

given by 

1 1 1 1 1 1

ˆ
i i i

ik

m n mn n n
i i i

yPd ik ik x
i i ii k i k i k

M M MN N N
t y x

n m n n n m



     

    
    
     
    
      . 

 

The approximate sampling variance of the proposed estimator ˆ
yCPdt  is given by 

11

11

/ /
/

/ /1 1 1 1 1

1 1
2
1 /

/ /1 1 1 1 1

1
ˆ( )

1
                

i i
ji

i i

M MN N NEE k i l i
yCPd Iij kl i

Ii Ij Ii k i l ii j i k l

M MN N N
x jx i ik il

Iij kl i
Ii Ij Ii k i l ii j i k l

tt E E
AV t

tt x x
R

 
    

 
    



    

 

    

 

 
   

     
 

  

  

 

where, ( )Iij Iij Ii Ij        , / / / /       kl i kl i k i l i , 1
1

1

iM

ikx i
k

t x




  and 

1
1

1 1 1 1

i iM MN N

ik ik
i k i k

R y x

   

   
   
   
   
  . 

 

Under SRSWOR design at all the stages and phases, approximate variance of the 

proposed product type calibration estimator reduces to 

 1 1

1 1

2 2 2 2 2
1 1

2 2 2 2 2
1 1

1

1 1 1 1
ˆ( ) 2

1 1 1 1 1
2

yCPd by by
bx byx

N

i iy iy
ix iyxi i ii

AV t N S S R S R S
n N n n

M S S R S R S
nN m M m m

 

 



   
             

      
           

        


 

where,  

(5) 

(6) 

(7) 

(8) 

(9) 
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1
. . . ( 1) N. ( 1) . ( 1) .

1 1 1 1

1 1 1 1
, , , ,

i iM MN N

N i i i ik i i i ik
i ii k i k

Y M Y Y y X M X X x
N M N M


  

   

      

   1

222 2
. . ( 1) . ( 1) N.

1 1

1 1
, ,

1 1

N N

by i i N i i
bx

i i

S M Y Y S M X X
N N

  
 

   
 
 

    1

22
. . ( 1) . ( 1) N. .

1 1

1 1
, ,

1 1

iMN

i i N i i iy ik ibyx
ii k

S M Y Y M X X S y Y
N M

  
 

    
 
 

    11

2
2 1 1

( 1) . . ( 1) .
1 1

1 1
and .

1 1

i iM M

ik i ik i ik iiyxix i ii i

S x X S y Y x X
M M


 

 
 

    
 
   

 

Following Särndal et al. (1992), the estimator of variance of proposed product type 

calibration estimator can be written as 

11

11

/ /
/

/ /1 1 1 1 1

1 1
2
1 /

/ /1 1 1 1 1

ˆˆ 1ˆ ˆ( )

ˆˆ 1ˆ              


    

     

    

 

 
   

     
 

  

  

i i
ji

i i

m mn n nEE k i l i
yCPd Iij kl i

Ii Ij Ii k i l ii j i k l

m mn n n
x jx i ik il

Iij kl i
Ii Ij Ii k i l ii j i k l

tt e e
V t d d

tt x x
R d d

    

    

 

where,  1

1
1

1 / /
/1 1 1 1 1

ˆ ˆ,  
i i im m mn n

ik
Ii k i ik Ii k i ik x i

k ii k i k k

x
R a a y a a x t 




    

   
    
   
   
    


, 

( )  
 



Iij Ii Ij
Iij

Iij

d
  


  and  

/ / /
/

/

  
 


kl i k i l i

kl i
kl i

d
  


. 

 

Under SRSWOR design at all the stages and phases, it reduces to 

 1 1

1 1

2 2 2 2 2
1 1

2 2 2 2 2
1 1

1

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆˆ( ) 2

1 1 1 1 1ˆ ˆ ˆ ˆˆ ˆ2

yCPd by by
bx byx

n

i iy iy
ix iyxi i i ii

V t N S S R S R S
n N n n

M S S R S R S
nN m M n m

 

 



   
             

      
           

        


 

where,  
21 2

1 . .
1 1 1 1 1

1ˆˆ , ,
1

i im mn n n
i i

ik ik by i i n
i ii k i k i

M MN N
R y x S M y y

n m n m n



    

   
     
    
   
      

    11
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( 1) . ( 1) . . . ( 1) . ( 1) .

1 1

1 1ˆ ˆ, ,
1 1
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 
 
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 
 
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1

i im m n

ik i ik i i ik n i iiyx
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
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
  
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
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1
( 1) . ( 1) . ( 1) .

1 1

1 1
, .

im n

i ik n i i
i k i

x x x M x
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
  

 
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(10) 

(11) 
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4.       Simulation study 

 

In order to evaluate the statistical performance of proposed product type calibration 

estimators, a simulation study was carried out following double sampling approach in two 

stage sampling. SRSWOR is used for sample selection at both stages and the size of the PSU 

and the corresponding SSUs were assumed to be fixed. First, a finite population of 5000 units 

were generated in the similar way of Biswas et al. (2020). Let, number of PSU, N=50 and 

PSU size, Mi=100. The finite population was generated from the following model as 

 
1

0, 1,...,k k ky x e k M    

where, 0 1

N
ii

M M


 .  

 

The distribution of auxiliary variable was considered as normal distribution as 

~ (5,  1)kx N and the random errors, ek, 0  1,..., ,k M  are taken from normal distribution as 

2 1~ (0,  ).k ke N x   The value of β has been fixed as 20. Four different values for 
2  as 0.25, 

1.0, 2.0 and 5.0 are taken. In this way, four sets of population have been generated denoted 

by Set 1, 2, 3 and 4, with different values of correlation coefficient between Y and X as -0.91, 

-0.85, -0.78 and -0.64 respectively. Then, from each of the study population sets, we have 

selected a total of 10000 different samples of different sizes of double samples under two 

stage sampling were drawn from the populations sets as given below  

 

n' =10, m'i =20, n =4, mi =6 n' =10, m'i =25, n =4, mi =8 

n' =15, m'i =25, n =6, mi =8 n' =15, m'i =30, n =6, mi =10 

n' =20, m'i =30, n =8, mi =10 n' =20, m'i =40, n =8, mi =12 

n' =25, m'i =40, n =10, mi =12 n' =25, m'i =50, n =10, mi=15 
 

Developed product type calibration estimators as well as all other usual estimators of 

population total using double sampling approach under two stage sampling were evaluated 

based on two measures viz. percentage Relative Bias (%RB) and percentage Relative Root 

Mean Squared Error (%RRMSE) of any estimator of the population parameter θ as given by 
2

1 1

ˆ ˆ1 1ˆ ˆ( ) 100 ( ) 100.
S S

i i

i i

RB and RRMSE
S S 

    
      

   
 

   
 

 
 

where, ˆ
i  are the estimates of population parameter θ for the character under study obtained 

at ith sample in the simulation study. 

 

Table 1, 2, 3 and 4 present the results of the simulation study under population Set 1, 

2, 3 & 4 in terms of %RB and %RRMSE of the proposed product type calibration estimator 

( ˆ
yCPdt ) and usual NHT estimator ( ˆ

yt  ) and product estimator ( ˆ
yPdt ) of the population total 

under two stage sampling design using double sampling approach. These estimators have 

been calculated assuming that the complete auxiliary information (xik) was not available at the 

SSU level in the population and auxiliary variable is inversely related to the character under 

study. 

 

(12) 
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Table 1: Comparison of all the estimators with respect to %RB and %RRMSE under 

two stage sampling in case of population Set 1 having correlation coefficient (ρ) as -0.91 

using double sampling approach 

 

Sample size 

(  i in _m _n _m ) 

% RB  % RRMSE 

ˆ
y dt   ˆ

yCPdt  ˆ
yPdt   ˆ

y dt   ˆ
yCPdt  ˆ

yPdt  

10_20_4_6 0.014 -0.010 -0.152  4.896 1.963 2.559 

10_25_4_8 0.052 0.001 -0.092  4.261 1.723 2.256 

15_25_6_8 0.011 0.004 -0.083  3.532 1.402 1.839 

15_30_6_10 -0.005 -0.003 -0.058  3.101 1.248 1.639 

20_30_8_10 -0.005 0.007 -0.039  2.676 1.083 1.432 

20_40_8_12 0.019 0.009 -0.037  2.434 0.933 1.258 

25_40_10_12 -0.004 0.003 -0.027  2.178 0.811 1.117 

25_50_10_15 -0.022 -0.004 -0.033  1.950 0.716 0.996 

 

Table 2: Comparison of all the estimators with respect to %RB and %RRMSE under 

two stage sampling in case of population Set 2 having correlation coefficient (ρ) as -0.85 

using double sampling approach 

 

Sample size 

(  i in _m _n _m ) 

% RB  % RRMSE 

ˆ
y dt   ˆ

yCPdt  ˆ
yPdt   ˆ

y dt   ˆ
yCPdt  ˆ

yPdt  

10_20_4_6 0.058 0.026 -0.123  5.286 2.756 3.195 

10_25_4_8 0.109 0.048 -0.056  4.499 2.406 2.785 

15_25_6_8 -0.046 -0.047 -0.122  3.694 1.939 2.248 

15_30_6_10 -0.030 -0.011 -0.081  3.297 1.730 2.014 

20_30_8_10 -0.003 -0.027 -0.061  2.847 1.490 1.739 

20_40_8_12 0.021 0.035 -0.005  2.585 1.346 1.570 

25_40_10_12 -0.008 0.016 -0.017  2.313 1.173 1.386 

25_50_10_15 -0.041 -0.021 -0.045  2.065 1.040 1.219 

 

Table 3: Comparison of all the estimators with respect to %RB and %RRMSE under 

two stage sampling in case of population Set 3 having correlation coefficient (ρ) as -0.78 

using double sampling approach 

 

Sample size 

(  i in _m _n _m ) 

% RB  % RRMSE 

ˆ
y dt   ˆ

yCPdt  ˆ
yPdt   ˆ

y dt   ˆ
yCPdt  ˆ

yPdt  

10_20_4_6 -0.095 -0.008 -0.167  5.699 3.569 3.892 

10_25_4_8 -0.018 -0.002 -0.135  4.952 3.127 3.410 

15_25_6_8 0.002 -0.013 -0.087  4.012 2.506 2.743 

15_30_6_10 -0.020 0.021 -0.047  3.612 2.231 2.448 

20_30_8_10 0.025 -0.002 -0.042  3.095 1.945 2.137 

20_40_8_12 -0.031 -0.001 -0.054  2.853 1.762 1.930 

25_40_10_12 -0.016 0.001 -0.040  2.537 1.543 1.687 

25_50_10_15 0.012 0.006 -0.020  2.243 1.359 1.509 
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Table 4: Comparison of all the estimators with respect to %RB and %RRMSE under 

two stage sampling in case of population Set 4 having correlation coefficient (ρ) as -0.64 

using double sampling approach 

 

Sample size 

(  i in _m _n _m ) 

% RB  % RRMSE 

ˆ
y dt   ˆ

yCPdt  ˆ
yPdt   ˆ

y dt   ˆ
yCPdt  ˆ

yPdt  

10_20_4_6 0.048 0.080 -0.094  6.791 5.230 5.425 

10_25_4_8 -0.015 0.052 -0.083  5.971 4.612 4.791 

15_25_6_8 -0.019 -0.012 -0.100  4.786 3.679 3.804 

15_30_6_10 0.003 0.032 -0.030  4.228 3.293 3.422 

20_30_8_10 -0.020 -0.020 -0.083  3.745 2.884 2.988 

20_40_8_12 -0.031 0.001 -0.056  3.372 2.565 2.671 

25_40_10_12 0.001 -0.016 -0.049  2.991 2.275 2.367 

25_50_10_15 0.005 -0.009 -0.035  2.694 2.051 2.129 

 

From Table 1 it is notable that the proposed product type calibration estimator of the 

finite population total was giving consistently least amount %RB compared to their usual 

NHT and product estimator using double sampling approach for the Poulation Set 1 where 

correlation coefficient (ρ) was -0.91. Here, it is assumed that the auxiliary information was 

unavailable at SSU level and auxiliary variable is inversely related with the character under 

study. It was also seen that the proposed product type calibration estimator of the population 

total is always more efficient than the NHT and product estimators, since %RRMSE of the 

proposed product type calibration estimator is always least at different sample size 

combinations. It can also be seen that the %RRMSE of the proposed product type calibration 

estimator was decreasing with increase of sample sizes, thus, it provides a consistent 

estimator of the finite population total. Similar trend in simulation results can be observed in 

Table 2, 3 and 4, where Population Set 2, 3 and 4 are considered for simulation in which 

correlation coefficient (ρ) were -0.85, -0.78 and -0.64 respectively. Close look of Table 2, 3 

and 4  reveals that %RRMSE of the proposed product type calibration estimator was 

decreasing with the increase in the amount of negative correlation. 

 

5.  Conclusions and way forward 

 

In general, the Calibration Approach assumes the availability of population-level 

auxiliary information. On the contrary, in large scale surveys involving two stage sampling, it 

is often the case that population-level data on auxiliary variable is not available in practice, 

but relatively inexpensive to collect. In the present article, in case of non-availability of 

population-level relatively inexpensive data on auxiliary variable in two stage sampling, 

product type calibration estimator (Equation 5) of the finite population total has been 

proposed using double sampling approach when there exist inverse relation between auxiliary 

variable and chracter under study. In order to study the statistical performance of proposed 

product type calibration estimator as compared to existing estimators of population total of 

character under study, a simulation study was conducted. The simulation results also suggests 

that the proposed product type calibration estimators using double sampling approach in two 

stage sampling, performs better than usual Narain-Horvitz-Thompson estimator (Equation 2) 

and product estimator (Equation 7) of the finite population total with respect to %RB and 

%RRMSE. In future, investigation may be carried out to extent the work in case of different 

type of varying probability sampling schemes in oder to improve several well-known 
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estimators viz. Narain-Horvitz-Thompson estimator, Rao, Hartley and Cochran (1962) 

estimator etc.  
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Abstract  

Two regular group divisible designs with parameters: v = 30, b = 60, r = 8, k = 4, λ1 = 0, 

λ2 = 1, m = 5, n = 6 and v = 36, b = 90, r = 10, k = 4, λ1 = 0, λ2 = 1, m = n = 6 in the range of r, k ≤ 

10 are obtained from generalized Bhaskar Rao designs over a symmetric group of order 6.  

 

Key words: Regular group divisible designs; Generalized Bhaskar Rao designs; Symmetric 

groups. 

 

MSC: 62K10; 05B05 

 

1. Introduction 

Saurabh and Sinha (2021) obtained a new regular group divisible (RGD) design with 

parameters: v = b = 39, r = k = 9, λ1 = 0, λ2 = 2, m = 13, n = 3 by replacing the group entries of 

BGW (13, 9, 6; D3) by suitable permutation matrices of order 3. Here we have used the method 

of Gibbons and Mathon (1987) for the construction of group divisible designs. As a particular 

case we obtain two RGD designs with parameters: v = 30, b = 60, r = 8, k = 4, λ1 = 0, λ2 = 1, m = 

5, n = 6 and v = 36, b = 90, r = 10, k = 4, λ1 = 0, λ2 = 1, m = n = 6 in the range of r, k ≤ 10. These 

designs may be considered new as these are not found in the tables of Clatworthy (1973) and 

Sinha (1991) but included in Saurabh and Sinha (2021). 

A generalized Bhaskar Rao design GBRD (v, b, r, k, λ; G) over a group G is a v × b array 

with entries from 𝐺 ∪ {0}such that:  

 

1.  each row has exactly r group element entries;  

2.  each column has exactly k group element entries;  

3.  for each pair of distinct rows (𝑥1, 𝑥2, … , 𝑥𝑏) and (𝑦1, 𝑦2, … , 𝑦𝑏), the multi–set 

{𝑥𝑖𝑦𝑖
−1: 𝑖 = 1, 2, … , 𝑏; 𝑥𝑖 , 𝑦𝑖 ≠ 0} contains each group element exactly 𝜆 |𝐺|⁄  times.  

  A generalized Bhaskar Rao design GBRD (v, b, r, k, λ; G) with v = b and r = k is known 

as a balanced generalized Weighing matrix BGW (v, k, λ; G). 

A RGD design is an arrangement of v = mn elements in b blocks such that: 
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(i)  each block contains k (< v) distinct elements; 

(ii)  each element occurs r times; 

(iii)  the elements can be divided into m groups each of size n, any two distinct elements 

occurring together in λ1 blocks if they belong to the same group, and in λ2 blocks if they 

belong to the different groups; 

(iv)  r – λ1 > 0 and rk – vλ2 > 0. 

   

Let N be the incidence matrix of a RGD design then the structure of 𝐍𝐍𝑇 is given as: 

𝐍𝐍𝑇 = (𝑟 − 𝜆1)(𝐈𝑚 ⊗ 𝐈𝑛) + (𝜆1 − 𝜆2)(𝐈𝑚 ⊗ 𝐉𝑛) + 𝜆2(𝐉𝑚 ⊗ 𝐉𝑛) where A⊗B denotes the 

Kronecker product of two matrices A and B. For details on RGD designs, see Clatworthy (1973) 

and Saurabh et al. (2021).  

 

Notations: 𝐈𝑛 is the identity matrix of order n, 𝐉𝑣 is the 𝑣 × 𝑣 matrix all whose entries are 1 and 

𝐀𝑇 is the transpose of matrix A. Sn and Dn denote symmetric and dihedral groups with orders 𝑛! 
and  2𝑛 respectively. For n = 3, Sn is isomorphic to the dihedral group Dn. 

2.   Two new RGD designs in the range of r, k ≤ 10 

Gibbons and Mathon (1987) gave the following method for the construction of GD 

designs from GBRD (v, b, r, k, λ; G):  

Replacing the elements of a group G of order g by the corresponding g x g permutation 

matrices and 0 entry by g x g null matrix in GBRD (v, b, r, k, λ; G), we obtain a GD design with 

parameters: 𝑣∗ = 𝑣𝑔, 𝑏∗ = 𝑏𝑔, 𝑟∗ = 𝑟, 𝑘∗ = 𝑘, 𝜆1 = 0, 𝜆2 = 𝜆 𝑔⁄ ,𝑚 = 𝑣, 𝑛 = 𝑔.        (1) 

In the above method, Palmer and Seberry (1988) used permutation group of order 6 and 

dihedral groups of order 8 and 12 while Sarvate and Seberry (1998) used elementary abelian 

groups for the construction of GD designs.              

Following Palmer and Seberry (1988): The existence of a GBRD (v, b, r, k, λ; S3) implies 

the existence of a GD design with parameters: 

        𝑣∗ = 6𝑣, 𝑏∗ = 6𝑏, 𝑟∗ = 𝑟, 𝑘∗ = 𝑘, 𝜆1 = 0, 𝜆2 = 𝜆 6⁄ ,𝑚 = 𝑣, 𝑛 = 6.          (2) 

The above construction procedure may be generalized for any symmetric / dihedral 

groups but no series of GBRD (v, b, r, k, λ; Sn/ Dn) is available for n > 3. Using GBRD (5, 10, 8, 

4, 6; S3) and GBRD (6, 15, 10, 4, 6; S3) from Abel et al. (2004) in (2), we obtain the following 

RGD designs:  

Design 1: Consider a symmetric group 𝑆3 = 〈𝑟, 𝑠: 𝑟3 = 𝑠2 = 𝑒, 𝑠𝑟 = 𝑟2𝑠〉 =  {𝑒, 𝑟, 𝑟2, 𝑠, 𝑠𝑟, 𝑠𝑟2}.  

The following is a GBRD (5, 10, 8, 4, 6; S3): 
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𝐀 =

[
 
 
 
 
𝑒 𝑠 𝑟 0 𝑒 𝑒 𝑟2 𝑒 0 𝑟2𝑠
𝑒 𝑒 𝑠 𝑟 0 𝑟2𝑠 𝑒 𝑟2 𝑒 0
0 𝑒 𝑒 𝑠 𝑟 0 𝑟2𝑠 𝑒 𝑟2 𝑒
𝑟 0 𝑒 𝑒 𝑠 𝑒 0 𝑟2𝑠 𝑒 𝑟2

𝑠 𝑟 0 𝑒 𝑒 𝑟2 𝑒 0 𝑟2𝑠 𝑒 ]
 
 
 
 

. 

Replacing 0 by a null matrix of order 6 and the group elements 𝑒, 𝑟, 𝑟2, 𝑠, 𝑠𝑟 = 𝑟2𝑠, 𝑠𝑟2 = 𝑟𝑠 by 

 the 6 × 6 permutation matrices I6, 

(

  
 

0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0)

  
 

, 

(

  
 

0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0)

  
 

,  

(

  
 

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0)

  
 

, 

(

  
 

0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0)

  
 

, 

(

  
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0)

  
 

 respectively in A,  

we obtain a (0, 1) – matrix N of order 30 × 60. Then 𝐍𝐍𝑇 = circ (8𝐼6, 𝐽6, 𝐽6, 𝐽6, 𝐽6) = 8𝐈30 −
𝐈5 ⊗ 𝐉6 + 𝐉5 ⊗ 𝐉6. Also each column sum of N is 4. Hence N represents a RGD design with 

parameters: v = 30, b = 60, r = 8, k = 4, λ1 = 0, λ2 = 1, m = 5, n = 6. 

Design 2: Further consider the following GBRD (6, 15, 10, 4, 6; S3): 

𝐁 =

[
 
 
 
 
 
𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 0 0 0 0 0
𝑟𝑠 𝑠 𝑒 𝑟 𝑟2 𝑟2𝑠 0 0 𝑜 0 𝑒 𝑒 𝑒 𝑒 0
𝑟 𝑠 𝑟𝑠 0 0 0 𝑟2 𝑒 𝑟2𝑠 0 𝑠 𝑟2 𝑟 0 𝑒
𝑒 0 0 𝑟 𝑟𝑠 0 𝑟2 𝑠 0 𝑟2𝑠 𝑟2 𝑟2𝑠 0 𝑟 𝑟
0 𝑒 0 𝑟𝑠 0 𝑟2 𝑟2𝑠 0 𝑠 𝑟 𝑟2 0 𝑟 𝑒 𝑟2

0 0 𝑟 0 𝑠 𝑟2 0 𝑒 𝑟𝑠 𝑟2𝑠 0 𝑒 𝑠 𝑟2 𝑠 ]
 
 
 
 
 

. 

Replacing the group elements 𝑒, 𝑟, 𝑟2, 𝑠, 𝑠𝑟 = 𝑟2𝑠, 𝑠𝑟2 = 𝑟𝑠 by 6 × 6 matrices given as above 

and 0 by a null matrix of order 6 in B, we obtain a (0, 1) – matrix N of order 36 × 90. Then 

𝐍𝐍𝑇 = circ (10𝐈6, 𝐉6, 𝐉6, 𝐉6, 𝐉6, 𝐉6) = 10𝐈36 − 𝐈6 ⊗ 𝐉6 + 𝐉6 ⊗ 𝐉6. Also each column sum of N is 

4. Hence N represents a RGD design with parameters: v = 36, b = 90, r = 10, k = 4, λ1 = 0, λ2 = 1, 

m = n = 6. 
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Abstract
In this paper, the new extension of the extended Exponential model named inverted

intervened Exponential distribution has been proposed. To explore the model, the essen-
tial statistical properties have been presented in this study, the parametric estimation was
also carried out by using the method of maximum likelihood estimation (MLE) technique.
Moreover, the reliability characterization has been given which includes the mathematical
functions of the reliability, hazard rate, aging intensity, and mean residual life. Also, the
Rényi and Shannon entropy measures have been derived. Monte Carlo simulation study by
employing the acceptance-rejection algorithm was performed to judge the performance of
maximum likelihood estimates (MLEs) based on the calculated results of absolute average
bias (Abias) and mean square error (MSE) of the parametric estimates. Lastly, the model
applicability checkup was also done by analyzing real data set.

Key words: Intervened model; Entropy; Monte Carlo simulation; Model applicability.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

In literature, the traditional models such as Exponential, Normal, Rayleigh, Gamma,
Weibull, etc. are the basic fundamental models in statistical theory. From the past few
decades, many developments have been observed in the form of modifications and general-
izations to develop more flexible distributions for data analysis purposes. In history, one
could observe the most exploiting and frequently used distribution in the field of reliability
and survival analysis among them being the Exponential model for reference see Balakr-
ishnan (2019). However, the disadvantage of the Exponential model is meant due to the
constant hazard rate, as there arise situations where it is observed the model requirement
for increasing, decreasing, bath-tub shaped hazard rate situations as well, to model the fail-
ure data. In this context, the successful efforts of the researchers who developed different
types of models to cope with these situations to some extent. It gives a clear picture that ev-
ery new technique has added several types of flexible distributions in statistical theory. Since
a few years ago, a new concept intervention was introduced in the distribution theory, and it
was Shanmugam (1985) who made a noble attempt to develop a discrete intervention based
Poisson model, later which laid to a beginning new intervention-based model development in

Corresponding Author: Sudesh Pundir
E-mail: sudeshpundir19@gmail.com



28 VILAYAT ALI BHAT AND SUDESH PUNDIR [Vol. 21, No. 1

the statistical literature. A similar attempt on continuous Exponential distribution by Shan-
mugam et al. (2002) developed the intervened Exponential model (IvED), the outstanding
medical applications of the model motivated us to develop a new extension of the model
named as inverted intervened Exponential model (IIvD). The cumulative density function
(cdf) of the newly developed model along with its probability density function (pdf) are
given by:

FIIvD(y; Θ) =


ρe−(1−δy)/ρηy−e−(1−δy)/ηy

(ρ−1) ρ ̸= 1(
1−(δ−η)y

ηy

)
e−(1−δy)/ηy ρ = 1

(1)

and,

fIIvD(y; Θ) =


e−(1−δy)/ρηy−e−(1−δy)/ηy

(ρ−1)ηy2 ρ ̸= 1
(1−δy)
η2y3 e−(1−δy)/ηy ρ = 1

(2)

where 0 < y < 1
δ
, and the desired parametric space of the model is denoted by Θ =

{(ρ, δ, η) : ρ > 0, δ > 0, η > 0} containing η as the rate parameter, ρ being the intervention
parameter, and the parameter δ is treated as the truncation point of the model. Further, the
graphical illustration of the proposed model based on the desired set of parametric values
for pdf is shown below:

0 5 10 15 20 25 30 35 40

y

0

0.02

0.04

0.06

0.08

f(
y
)

(η, ρ, δ) = (0.004,03.11,0.025)

(η, ρ, δ) = (0.009,05.39,0.025)

(η, ρ, δ) = (0.005,14.51,0.025)

(η, ρ, δ) = (0.007,13.18,0.025)

Figure 1: PDF plot
It could be easily predicted from graphical behavior that different shapes for pdf are exhibited
on the selected set of parameters.

2. Statistical properties

We attempted in this section, to provide the mathematical derivation of the different
statistical properties that would help to understand the nature of IIvD. The mathematical
expressions of the obtained results include mean (µy), median (Md), and the variance (σ2

y)
of the model. The other results mentioned in subsections are the mean deviations, rth order
moment expressions about the origin, the mean, and the different generating functions for
moments. So, to begin this section, the mean of the distribution obtained is as follows:

µy = 1
ρ− 1

{
eδ/ρηΓ(0, δ/ρη) − eδ/ρΓ(0, δ/ρ)

}
(3)

The variance of the IIvD is given by,

σ2
y = 1

ρ(ρ− 1)η
{
eδ/ρηΓ(−1, δ/ρη) − eδ/ρΓ(−1, δ/ρ)

}
− (µy)2 (4)
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Now to find the median of IIvD mathematically, we make use of the definition of median as
given below: � 1/δ

Md

fIIvD(y; Θ)dy = 1/2

1
(ρ−1)η

� 1/δ

Md

{
e−(1−δy)/ρηy − e−(1−δy)/ηy

}
(1/y2)dy = 1/2

ρe(δMd−1)/ρηMd − e(δMd−1)/ηMd = (ρ− 1) /2
Note: Γ(c, t) =

� ∞
t
yc−1e−ydy is the upper incomplete gamma function.

2.1. Mean deviations

In statistics, two well-known measures that are used to measure the scatteredness
present among the data are called the mean deviations about the mean, and another one is
considered as mean deviations about the median. Henceforth, these two measures are rep-
resented by Dµy and DMd

respectively. The mathematical derivation for these two measures
is given in the following theorem.
Theorem 1: If a random variable (r.v.) Y ∼ IIvD(ρ, δ, η), then the derived expression for
Dµy and DMd

for the proposed model are as:

(i) Dµy =
{
µyFIIvD(µy) − eδ/ρη

(ρ− 1)ηΓ(0, 1/µyρη) + eδ/η

(ρ− 1)ηΓ(0, 1/µyη)
}

(ii) DMd
= (µy −Md) + 2

{
MdFIIvD(Md) − eδ/ρη

(ρ− 1)ηΓ(0, 1/Mdρη) + eδ/η

(ρ− 1)ηΓ(0, 1/Mdη)
}

Proof: (i) For, any r.v. Y the mean deviation about mean is given by

Dµy = 2
{
µyFIIvD(µy) −

� 1/δ

0
yfIIvD(y; Θ)dy

}

= 2
{
µyFIIvD(µy) −

� µy

0

e−(1−δy)/ρηy − e−(1−δy)/ηy

(ρ− 1)ηy dy

}

=
{
µyFIIvD(µy) − eδ/ρη

(ρ− 1)ηΓ(0, 1/µyρη) + eδ/η

(ρ− 1)ηΓ(0, 1/µyη)
}

Hence, completes proof for part first.

(ii) Again, for a continuous, and non-negative r.v., Y ∼ IIvD(ρ, δ, η), we can write the
mathematical expression for median deviation as,

DMd
= µy −Md + 2

{
MdFIIvD(Md) −

� Md

0
yfIIvD(y; Θ)dy

}

= (µy −Md) + 2
{
MdFIIvD(Md) −

� Md

0

e−(1−δy)/ρηy − e−(1−δy)/ηy

(ρ− 1)ηy dy

}

= (µy −Md) +
{
MdFIIvD(Md) − eδ/ρη

(ρ− 1)ηΓ(0, 1/Mdρη) + eδ/η

(ρ− 1)ηΓ(0, 1/Mdη)
}
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This completes proof for part (ii).

2.2. Moments and moments generating functions

Here in this subsection, we shall derive the expression for rth moments about the origin
and the moments about mean, and the generating functions for moments in the following
subsequent theorems,

Theorem 2: If Y be any non-negative r.v. possessing IIvD, then the moments about the
origin and the mean are given by:

(i) µ′
r = 1

(ρ− 1) ηr

{
eδ/ρη

ρr
Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)

}
, r = 1, 2...n.

(ii) µr = 1
(ρ− 1)

r∑
n=0

rCn
(−µ)r−n
ηn

{
eδ/ρη

ρn
Γ (1 − n, δ/ρη) − eδ/ηΓ (1 − n, δ/η)

}
; r = 1, 2...n.

Proof: (i) For a random variable Y ∼ IIvD(ρ, δ, η), the expression for rth moment about
origin is,

µ′
r = E(yr) = 1

(ρ− 1)η

� 1/δ

0
yr−2

{
e−(1−δy)/ρηy − e−(1−δy)/ηy

}
dy

= 1
(ρ− 1) ηr

{
eδ/ρη

ρr
Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)

}

where r = 0, 1, ..., n.
(ii) Again, for a random variable Y ∼ IIvD(ρ, δ, η), the expression for rth moment about
mean is

µr = E(y − µy)r = 1
(ρ− 1)η

� 1/δ

0
(y − µy)r

{
e−(1−δy)/ρηy − e−(1−δy)/ηy

}
y2 dy

= 1
(ρ− 1)

r∑
n=0

rCn
(−µ)r−n
ηn

{
eδ/ρη

ρn
Γ (1 − n, δ/ρη) − eδ/ηΓ (1 − n, δ/η)

}

where r = 0, 1, ..., n.

Theorem 3: If Y be any non-negative r.v. possessing IIvD, then the generating functions
for moments are given by:
(i)My(t) = 1

(ρ−1)η
∑∞
r=0

tr

ηrr!

{
eδ/ρη

ρr Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)
}
,is the moment generat-

ing function.
(ii)ϕy(t) = 1

(ρ−1)η
∑∞
r=0

tr

ηrr!

{
eδ/ρη

ρr Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)
}
, is the characteristic func-

tion.
(iii)Ky(t) = log

[
1

(ρ−1)η
∑∞
r=0

tr

ηrr!

{
eδ/ρη

ρr Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)
}]

, is the cumulant
generating function.
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Proof: (i) Let the r.v. Y ∼ IIvD(ρ, δ, η), then My(t) is derived by

My(t) = E(ety) =
� 1/δ

0
etyfIIvD(y; Θ)dy

= 1
(ρ− 1) η

∞∑
r=0

tr

ηrr!

{
eδ/ρη

ρr
Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)

}

(ii) To prove the characteristic function the same procedure has to be repeated that
we used to derive the moment generating function, but the only change is instead of t we
have to proceed with ιt.

(iii) Let the r.v. Y ∼ IIvD(ρ, δ, η), then Ky(t) is defined by

Ky(t) = log {My(t)}

= log
[

1
(ρ− 1) η

∞∑
r=0

tr

ηrr!

{
eδ/ρη

ρr
Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)

}]

3. Reliability properties

The probability measurement of any component or a system, that will not fail before
time t to perform its complete operation is called the reliability of the system. Mathemati-
cally, it is calculated as:

RIIvD(y; Θ) = Pr.(Y > y) = 1 − Pr.(Y ≤ y)

Thus, for a r.v. Y ∼ IIvD(ρ, δ, η) the derived reliability function is obtained as

RIIvD(y; Θ) =

 1 − ρe−(1−δy)/ρηy−e−(1−δy)/ηy

(ρ−1) ρ ̸= 1
1 −

(
1−(δ−η)y

ηy

)
e−(1−δy)/ηy ρ = 1

(5)

If ρ̂, δ̂ and η̂ are the MLEs, then by the in-variance property the reliability estimate are
given by

R̂IIvD(y; Θ̂) =


1 − ρ̂e−(1−δ̂y)/ρ̂η̂y−e−(1−δ̂y)/η̂y

(ρ̂−1) ρ ̸= 1

1 −
(

1−(δ̂−η̂)y
η̂y

)
e−(1−δ̂y)/η̂y ρ = 1

(6)

The hazard rate for IIvD, which we will denote by hIIvD(y) is the ratio of pdf and the
RIIvD(y) as given below:

hIIvD(y; Θ) = e−(1−δy)/ρηy − e−(1−δy)/ηy

ηy2 [(ρ− 1) − {ρe−(1−δy)/ρηy − e−(1−δy)/ηy}] (7)

The graphical plot of hazard function for different set of parametric values is shown in Figure
2.
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Figure 2: Hazard plot

The hazard rate in the reverse direction of time is called reverse hazard rate which we denote
by hrIIvD(y), this measure is obtained by taking the ratio of pdf and cdf and the obtained
expression is

hrIIvD(y; Θ) = e−(1−δy)/ρηy − e−(1−δy)/ηy

ηy2 [ρe−(1−δy)/ρηy − e−(1−δy)/ηy] (8)

The famous reliability measure called aging intensity (A.I) developed by Jiang et al. (2003)
are used for quantitative aging measurement purposes, as aging representation for the system
by uni-modal hazard rate is difficult because of its varying trends observed in the form of
constant, increasing and decreasing hazard rates. The A.I for a r.v. Y ∼ IIvD(ρ, δ, η),
denoted by Ly is give as

A.I = e−(1−δy)/ρηy − e−(1−δy)/ηy

ηy [log (ρ− 1) − log {ρe−(1−δy)/ρηy − e−(1−δy)/ηy}] [ρe−(1−δy)/ρηy − e−(1−δy)/ηy] (9)

3.1. Mean residual life function

The mean residual life (MRL) function having a variety of applications in differ-
ent branches of statistical and applied sciences, to define this measure, suppose a sys-
tem/component functions without fail up to time y ≥ 0, then the residual life is counted
as the working hours of the system beyond time y until it fails, and the conditional r.v.
Y − y|Y > y is used to define this measure Finkelstein (2008).
For non-negative r.v. Y ∼ IIvD(ρ, δ, η), the MRL function denoted by mIIvD(y,Θ) is derived
as

mIIvD(y; Θ) = E [Y − y|Y > y] = 1
RIIvD(y; Θ)

� 1/δ

y

RIIvD(y; Θ)dy.

= 1
(ρ− 1)RIIvD(y; Θ)

� 1/δ

y

{
(ρ− 1) − ρe(1−δy)/ρηy + e(1−δy)/ηy

}
dy.

= 1
(ρ−1)RIIvD(y;Θ)

{(ρ−ρeδ/ρη−eδ/η−1)(1−δy)
δ

−
(eδ/ρη+eδ/η) log(δy)

η
+

∑∞
r=2

(−1)r+2
r!ηr(1−r)(δr−1−y1−r)(ρ1−reδ/ρη−eδ/η)

}

4. Entropy measures

Entropy measurements are useful to determine, how much the random variable’s distri-
bution varies in terms of its level of variations, and the two important measures to address
this variation are given by Rényi entropy and Shannon entropy (Refer Rényi, A. (1961,
January) and Shannon (1948)).
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4.1. Reńyi entropy

The Rényi entropy metric for a non-negative r.v. Y ∼ IIvD(ρ, δ, η) of order ϑ is given
by

HR(ϑ) = 1
1 − ϑ

log
[� 1/δ

0
{fIIvD(y; Θ)}ϑ dy

]
; ϑ ≥ 0, ϑ ̸= 1 (10)

= 1
1 − ϑ

log
 1

(ρ− 1)ϑ ηϑ
ϑ∑
r=0

(
ϑ
r

)
(−1)r+2eψ

r!ψ2ϑ−1 Γ (2ϑ− 1, ψδ)


where ψ = (ρ−1)
ρη

(
r + ϑ

(ρ−1)

)
and fIIvD(y,Θ) is the pdf given in equation (2), when ρ ̸= 1.

4.2. Shannon entropy

In this subsection, we will derive the expression for Shannon measure of entropy for
a non-negative r.v. Y ∼ IIvD(ρ, δ, η), the derivation steps for this extend concept of Reńyi
entropy are given by

HIIvD(y) = −
� 1/δ

0
fIIvD(y; Θ) log {fIIvD(y; Θ)} dy.

Now, substitute the density function fIIvD(y; Θ), given in equation (2), when ρ ̸= 1, and
solve the integral we get

= ∑∞
r=1

ρB(r+ 1
(ρ−1) ,2)

r(ρ−1)2 + (ρ+1)
ρ

− 2 ∑∞
r=1

(−1)r+1ηr(ρr+1−1)Γ(r+1)
r(ρ−1)δr + ρB( 1

(ρ−1) ,2) log{(ρ−1)η}
(ρ−1)2 − 2 log δ

5. Order statistics

In the field of reliability, order statistics finds massive applications in life testing ex-
periments for understanding system characterization of system. Let a random sample of size
n be taken as Y = (y1, y2, ... ,yn) be drawn from IIvD(ρ, δ, η). Then the life of (n− i+ 1)
components out-of-n i.i.d systems based on ordered random sample y(1:n) ≤ y(2:n) ≤ ... ≤
y(n:n) are given by yi:n; (i = 1, 2, ..., n). Thus for IIvD(ρ, δ, η) the ith order statistics density
function of y(i:n); 1 ≤ i ≤ n are given as

fi:n(y,Θ) = M1[FIIvD(y)]i−1[1 − FIIvD(y)]n−ifIIvD(y). (11)
Also, the pdf of (i, j)th order statistics density for (y(i:n), y(j:n)); 1 ≤ i ≤ j ≤ n are as

fi:j:n(yi, yj) = M2[FIIvD(yi)]i−1[FIIvD(yj) − FIvD(yi)]j−i−1[1 − FIIvD(yj)]n−jfIIvD(yi)fIIvD(yj). (12)

where F (.), f(.) is the cdf, pdf of IIvD defined in (1) and (2), and the constants M1 and
M2 are given by

M1 = n!
(i−1)!(n−i)! and M2 = n!

(i−1)!(j−i−1)!(n−j)!

The smallest observation of ordered sample is called first-order statistic given by y(1) =
min.(y(1), y(2), ... ,y(n)), the largest observation is called the nth order statistic, and the
middle observation is called the median order given by ym+1
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5.1. Order statistic density function of IIvD

Let y(1), y(2), ... ,y(n) be i.i.d ordered random sample from IIvD then according to
equations (1) and (2) we can write the first order statistics density (f1:n(.)) on substituting
i = 1, in equation (11), the nth order statistics density (fn:n(.)) by substituting i = n in
equation (11) and the median order statistics density denoted by (fm+1:n(.));[m = n

2 ] are
given below:

f1:n(y) = n
[
1 − FIIvD(y(1))

]n−1
fIIvD(y(1))

f1:n(y) =
n

η(ρ− 1)ny2
(1)

[
(ρ− 1) −

{
ρe−(1−δy(1))/ρηy(1) − e−(1−δy(1))/ηy(1)

}]n−1 [
e−(1−δy(1))/ρηy(1) − e−(1−δy(1))/ηy(1)

]
(13)

Similarly,

fn:n(y) = n [FIIvD(y)]n−1 fIIvD(y(n))

fn:n(y) =
n

η(ρ− 1)ny2
(n)

[
ρe−(1−δy(n))/ρηy(n) − e−(1−δy(n))/ηy(n)

]n−1 [
e−(1−δy(n))/ρηy(n) − e−(1−δy(n))/ηy(n)

]
(14)

and,
fm+1:n(y) = (2m+ 1)!

(m!)2 [FIIvD(ȳ)]m [1 − FIIvD(ȳ)]m fIIvD(ȳ). (15)

5.2. Joint order statistics density of IIvD

The joint pdf of IIvD is obtained by using the pdf and cdf in (12) as shown below:

fi:j:n(y(i), y(j)) = M2

η2(ρ− 1)ny4

[
ρe−(1−δy(i))/ρηy(i) − e−(1−δy(i))/ηy(i)

]i−1

.
[{
ρe−(1−δy(i))/ρηy(i) − e−(1−δy(i))/ηy(i)

}
−

{
ρe−(1−δy(j))/ρηy(j) − e−(1−δy(j))/ηy(j)

}]j−i−1

.
[
(ρ− 1) −

{
ρe−(1−δy(j))/ρηy(j) − e−(1−δy(j))/ηy(j)

}]n−j [
e−(1−δy(i))/ρηy(i) − e−(1−δy(i))/ηy(i)

]
.

[
e−(1−δy(j))/ρηy(j) − e−(1−δy(j))/ηy(j)

]

6. Stochastic ordering

Stochastic ordering measurement for lifetime distributions has vital importance in re-
liability theory, nicely discussed by Shaked and Shantikumar (2007). Let the r.v.′s Y1 and
Y2 possessing the IIvD with pdf’s fY1(y), fY2(y), and cdf’s FY1(y), FY1(y) respectively. Then
one would say Y1 is smaller than Y2 according to the stochastic ordering measurements given
below:

[1] Stochastic order (Y1 ≤st Y2), if FY1(y) ≥ FY2(y) for all y.
[2] Hazard rate order (Y1 ≤hr Y2), if HY1(z) ≥ HY2(y) for all y.
[3] Mean residual life order (Y1 ≤MRL Y2), if mY1(y) ≥ mY2(y) for all y.
[4] Likelihood ratio order (Y1 ≤LR Y2), if f1(y)

f2(y) decreasing in y.
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Hence the following implication is revealed according to the above orderings
Y1 ≤LR Y2 ⇒ Y1 ≤hr Y2 ⇒ Y1 ≤MRL Y2 and Y1 ≤hr Y2 ⇒ Y1 ≤st Y2.
Following theorem illustrate likelihood ratio ordering for IIvD w.r.t the strongest likelihood.
Theorem 4: Let Y1 ∼ IIvD(δ1, ρ1, η1), and Y2 ∼ IIvD(δ2, ρ2, η2). If δ1 = δ2 = δ, (ρ1>ρ2) >
1, and (η1>η2) then (Y1 ≤lr Y2), (Y1 ≤st Y2), (Y1 ≤hr Y2), and (Y1 ≤MRL Y2).

Proof: To prove the result, the ratio of probability densities is

fY1(y; Θ1)
fY2(y; Θ2)

= (ρ2 − 1)η2

(ρ1 − 1)η1

{
e−(1−δ1y)/ρ1η1y − e−(1−δ1y)/η1y

}
{e−(1−δ2y)/ρ2η2y − e−(1−δ2y)/η2y}

Then,
d

dy
log

{
fY1(y; Θ1)
fY2(y; Θ2)

}
= [{η2B (A1 − ρ1A2)} − {η1A (B1 − ρ2B2)}]

y2AB

where, A =
{
e−(1−δ1y)/ρ1η1y − e−(1−δ1y)/η1y

}
, B =

{
e−(1−δ2y)/ρ2η2y − e−(1−δ2y)/η2y

}
,

A1 = e−(1−δ1y)/ρ1η1y, A2 = e−(1−δ1y)/η1y, B1 = e−(1−δ2y)/ρ2η2y, and B2 = e−(1−δ2y)/η2y.
Hence, If δ1 = δ2 = δ, (ρ1>ρ2), and (η1>η2) then d

dy
log

{
fY1 (y;Θ1)
fY2 (y;Θ2)

}
≤ 0, which implies that

(Y1 ≤lr Y2), (Y1 ≤st Y2), (Y1 ≤hr Y2), and (Y1 ≤MRL Y2).

7. Stress-strength reliability

In this section, we study system reliability estimation under stress strength modeling,
which possesses a cluster of applications, particularly in engineering statistics. Let Y1 be
the strength of the system subjected to stress Y2. The system fails, when Y2 > Y1 (stress
> strength), and functions smoothly, when Y1 > Y2 (stress < strength). Then the system
reliability is measured by using the formula R = Pr. (Y1 > Y2).
For two independent r.v.′s, Y1 ∼ IIvD(δ, ρ1, η1), and Y2 ∼ IIvD(δ, ρ2, η2), having the same
parameter δ. For the given, pdf of Y1 and cdf of Y2 the stress-strength reliability function R
is derived by

FIIvD(y; Θ2) = ρ2e
−(1−δy)/ρ2η2y − e−(1−δy)/η2y

(ρ2 − 1) ρ2 ̸= 1 (16)

and,

fIIvD(y; Θ1) = e−(1−δy)/ρ1η1y − e−(1−δy)/η1y

(ρ1 − 1)η1y2 ρ1 ̸= 1 (17)

Therefore, possible derived cases are given by:
Case (i): when ρ1 ̸= 1, and ρ2 ̸= 1.

R =
� 1/δ

0

{� y

0
fy2(y)dy

}
fy1(y)dy =

� 1/δ

0
FY2(y)fY1(y)dy

=
� 1/δ

0

{
ρ2e

−(1−δy)/ρ2η2y − e−(1−δy)/η2y

(ρ2 − 1)

} {
e−(1−δy)/ρ1η1y − e−(1−δy)/η1y

(ρ1 − 1)η1y2

}
dy

= η2
2

ρ2 − 1

{
ρ3

2
(ρ1η1 + ρ2η2) (η1 + ρ2η2)

− 1
(ρ1η1 + η2) (η1 + η2)

}
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Case (ii): when ρ1 ̸= 1, and ρ2 = 1.

R = η2

(ρ1 − 1)

{
ρ2

1η1

(ρ1η1 + η2)2 + ρ1

(ρ1η1 + η2)
− η1

(η1 + η2)2 − 1
}

Case (iii): when ρ1 = 1, and ρ2 ̸= 1.

R = η2
2

(ρ2 − 1)

{
ρ3

2

(η1 + ρ2η2)2 − 1
(η1 + η2)2

}

Case (iv): when ρ1 = 1, and ρ2 = 1.

R = η2
2 (3η1 + η2)
(η1 + η2)3

8. Estimation of the parameters

Let us consider a random sample of n observations, say y1, y2, ... ,yn drawn from IIvD
with desired defined parametric space Θ = (ρ, δ, η)T consisting k × 1 vector of parameters.
Then the completer data log-likelihood of the model when ρ ̸= 1 is given by

logL =
n∑
i=1

log
{
e−(1−δy)/ρηy − e−(1−δy)/ηy

}
− n log (ρ− 1) − n log(η) −

n∑
i=1

log(y2
i )

Let us take, V1 = e−(1−δy)/ρηy, and V2 = e−(1−δy)/ηy, then we re-write the above equation as

logL =
n∑
i=1

log {V1 − V2} − n log (ρ− 1) − n log(η) −
n∑
i=1

log(y2
i ) (18)

Now, the partial derivative for the above equation (18) with respect to the parameters ρ, δ,
and η are obtained as:

∂ logL
∂ρ

=
n∑
i=1

[1 − δyi]V1

[V1 − V2] ρ2ηyi
− n

(ρ− 1) (19)

∂ logL
∂δ

=
n∑
i=1

V1 − ρV2

ρη[V1 − V2]
− 0 − 0 (20)

∂ logL
∂η

=
n∑
i=1

(1 − δyi)[V1 − ρV2]
[V1 − V2] ρη2yi

− n

η
(21)

Equating the partial derivatives given in equations (19), (20), and (21) to zero, i,e ∂ logL
∂ρ

=
0, ∂ logL

∂δ
= 0, and ∂ logL

∂η
= 0, we get ρ̂, δ̂, and η̂ as the MLEs of the parameters space Θ =

{(ρ, δ, η) > 0}. Since the equation (19), (20) and (21) does not reveal the explicit solution,
to get the parametric solution of the equations, one can counter this situation by employing
the Newton Raphson algorithm. However, log-likelihood maximization could be done by
using nlm or optim function in R-software.
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The first-order derivatives of the log-likelihood equation of IIvD(ρ, δ, η) are defined in equa-
tions (19), (20), and, (21). The continuity of these partial derivatives reflects the second
order partial derivatives of the log-likelihood equation does exist. If we denote the MLEs of
the parametric space, Θ = {(ρ, δ, η) > 0} by Θ̂ =

{
(ρ̂, δ̂, η̂) > 0

}
, then the Fisher information

matrix is given by

I (Θ) = −E


∂2 logL
∂ρ2

∂2 logL
∂ρ∂δ

∂2 logL
∂ρ∂η

∂2 logL
∂δ∂ρ

∂2 logL
∂δ2

∂2 logL
∂δ∂η

∂2 logL
∂η∂ρ

∂2 logL
∂η∂δ

∂2 logL
∂η2

 (22)

The second order partial derivatives of I (Θ) are given by
∂2 log L

∂ρ2 =
n∑
i=1

(1 − δyi)2 [V1 − V2] V1 − (1 − δyi) V1 {2ρη [V1 − V2] yi + (1 − δyi) V1}
[(V1 − V2) ρ2ηyi]2

+ n

(ρ − 1)2 (23)

∂2 logL
∂δ2 =

n∑
i=1

[V1 − V2] [V1 − ρ2V2] − [V1 − ρV2]2

[(V1 − V2) ρη]2
(24)

∂2 logL
∂η2 =

n∑
i=1

(1 − δyi)2 [V1 − V2]
[
V1 − ρ2V2

]
− (1 − δyi) [V1 − ρV2] {2ρη [V1 − V2] yi + (1 − δyi) [V1 − ρV2]}

[(V1 − V2) ρη2yi]2
−

n

η2 (25)

∂2 logL
∂δ∂ρ

=
n∑
i=1

V1 [V1 − V2] {(1 − δyi) − ρηyi} − V1 [V1 − ρV2] (1 − δyi)
[(V1 − V2) η]2 ρ3yi

(26)

∂2 logL
∂η∂ρ

=
n∑
i=1

V1 [V1 − V2] (1 − δyi)2 − V1 (1 − δyi) {ρη [V1 − V2] yi + (1 − δyi) [V1 − ρ]}
[(V1 − V2) yi]2 (ρη)3 (27)

∂2 logL
∂η∂δ

=
n∑
i=1

η [V1 − V2] [V1 − ρ2V2] (1 − δyi) − [V1 − ρV2] {ρη2 [V1 − V2] yi − [V1 − ρV2]}
[(V1 − V2) ρη2]2 yi

(28)

It is difficult to obtain the expectation of second-order partial derivative expressions. Thus,
in this situation, one can use the alternative measure called observed Fisher information
matrix given by

I
(
Θ̂

)
= −


∂2 logL
∂ρ2

∂2 logL
∂ρ∂δ

∂2 logL
∂ρ∂η

∂2 logL
∂δ∂ρ

∂2 logL
∂δ2

∂2 logL
∂δ∂η

∂2 logL
∂η∂ρ

∂2 logL
∂η∂δ

∂2 logL
∂η2


(ρ,δ,η)=(ρ̂,δ̂,η̂)

(29)

The inverse of the observed Fisher information matrix I
(
Θ̂

)
, will give diagonal elements as

variances whereas the off-diagonal elements represents the co-variances of the matrix. The
approximate (1 − σ) 100% confidence intervals for all the three parameters of IIvD i,e ρ,
δ, and η are ρ̂ ± ψσ/2

√
V (ρ̂), δ̂ ± ψσ/2

√
V (δ̂), and η̂ ± ψσ/2

√
V (η̂) respectively. where,

V (ρ̂), V (δ̂), and V (η̂) are variances given in diagonal elements of I(Θ)−1 and the upper (σ/2)
percentile of a standard normal distribution is denoted by ψσ/2.



38 VILAYAT ALI BHAT AND SUDESH PUNDIR [Vol. 21, No. 1

9. Simulation

In this section, a Monte Carlo simulation study with 1000 repetitions has been per-
formed through R-software, to illustrate the theoretical findings of the proposed model. Since
data generation has been done by employing the acceptance-rejection algorithm due to the
complexity of the quantile function. The performance of the parametric space Θ with dif-
ferent sample sizes n = (25, 75, 125, 175, 250, 400) are checked by observing the calculated
AAbias and the MSE of the estimated parameters. The output result of the simulation are
summarized in Table 1, given below:

Table 1: Simulated results of parameters for different sample sizes

(δ, η, ρ) n
AAbias MSE

δ̂ η̂ ρ̂ δ̂ η̂ ρ̂

(0.53, 0.92, 0.94)

025 0.13926 0.36362 36.61545 0.01939 0.13222 1340.691
075 0.05185 0.25571 02.96885 0.00269 0.06539 08.81406
125 0.03573 0.22752 01.26163 0.00128 0.05177 01.59170
175 0.02620 0.20220 00.74678 0.00069 0.04088 00.55769
250 0.02049 0.18039 00.59632 0.00042 0.03254 00.35560
400 0.01488 0.16094 00.50596 0.00022 0.02590 00.25599

(1.53, 0.92, 1.04)

025 0.13811 0.32654 21.63234 0.01907 0.10663 467.9582
075 0.05757 0.21819 02.32618 0.00331 0.04761 05.41112
125 0.03954 0.19292 01.01383 0.00156 0.03722 01.02784
175 0.02690 0.16254 00.61841 0.00072 0.02642 00.38243
250 0.02142 0.13128 00.46323 0.00046 0.01724 00.21458
400 0.01614 0.12249 00.40460 0.00026 0.01500 00.16370

(0.53, 1.92, 0.94)

025 0.30424 0.77793 37.09144 0.09256 0.60518 1375.775
075 0.11171 0.52213 03.76642 0.01248 0.27262 14.18596
125 0.07156 0.44599 01.42634 0.00512 0.19891 02.03445
175 0.05285 0.39587 00.70007 0.00279 0.15671 00.49010
250 0.04294 0.36643 00.59156 0.00184 0.13427 00.34995
400 0.02577 0.31186 00.45712 0.00066 0.09726 00.20896

It is easily noticed in Table 1 while increasing the sample size the AAbias and MSE are
reducing. Hence, this admits the consistency property of the parametric space of our model.

10. Applications

This section is about the model applicability checkup on a real-life data basis. The data
set has been analyzed. In this study, the performance of newly developed IIvD is compared
with existing distributions like the Exponential distribution (ED), Inverse Exponential dis-
tribution (IED), generalized Exponential distribution (GED), and the generalized inverse
Exponential distribution (GIED). The best model is chosen having minimum value of
Akaike information criteria ( defined as, AIC = - 2 logL(y,Θ) + 2k ), Bayesian information
criteria ( defined as, BIC = - 2 logL(y,Θ) + k log(n) ), Hannan Quinn information criteria
(defined as, HQIC = - 2 logL(y,Θ) + 2k log[log(n)] ), and the goodness of fit tests, that
includes Cramér-von Mises (Cvm) test, Anderson Darling (An) test, Kolmogorov Smirnov
(KS) statistic respectively. The constant k denotes the number of parameters in the model.
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For a given real-life data set, the results of different information criteria, the goodness of
fit measures, and the p-value are reported in Table 2. The IIvD is compared with existing
models whose probability density functions are given by

ED = f(y; δ) = δe−δy (30)

IED = f(y; δ) = δ

y2 e
−δ/y (31)

GED = f(y; δ, η) = δηe−δy
(
1 − e−δy

)η−1
(32)

GIED = f(y; δ, η) = δη

y2 e
−δ/y

(
1 − e−δ/y

)η−1
(33)

The given data set is taken from the paper published by Ahmed M. A. (2021), which
represents the lifetime (in hours) of traditional lights, for 50 devices. The data are: 0.913,
0.786, 0.860, 0.904, 0.971, 0.616, 0.961, 0.789, 0.817, 0.722, 0.956, 0.835, 0.853, 0.692, 0.850,
0.677, 0.898, 0.965, 0.820, 0.964, 0.865, 0.947, 0.798, 0.746, 0.926, 0.709, 0.615, 0.747, 0.931,
0.913, 0.895, 0.745, 0.839, 0.766, 0.690, 0.531, 0.838, 0.846, 0.876, 0.817, 0.719, 0.907, 0.915,
0.879, 0.890, 0.865, 0.869, 0.772, 0.933, 0.875.

Table 2: Results of information measures and goodness of fit tests

Models
Part − I

δ̂ η̂ ρ̂ log L AIC BIC HQIC
IIvD 1.02014 0.02359 7.68817 50.175 -94.35043 -88.61436 -92.16610

GIED 7.68390 7145.98 - 45.414 -86.82726 -83.00322 -85.37104
GED 8.67100 838.120 - 34.645 -65.29067 -61.46663 -63.83445
IED 0.81630 - - -40.742 83.48415 85.39617 84.21226
ED 1.20440 - - -40.699 83.39836 85.31039 84.12647

Models
Part − II

δ̂ η̂ ρ̂ Cvm An KS p-value
IIvD 1.02014 0.02359 7.68817 0.02439 0.19464 0.05978 0.9941

GIED 7.68390 7145.98 - 0.09202 0.57741 0.11345 0.5405
GED 8.67100 838.120 - 0.34397 2.05467 0.16876 0.1159
IED 0.81630 - - 0.24371 1.47237 0.56858 1.82 × 10−14

ED 1.20440 - - 0.18330 1.11543 0.50322 2.01 × 10−11

From Table 2, it is well observed that the IIvD fits best as it has a minimum value for all
the information criteria ( AIC, BIC, and HQIC ) as well as the goodness of fit tests, and
a higher p-value.

11. Conclusion

This manuscript presents an intervention-based model called inverted intervened Ex-
ponential distribution. The graphical plots based on a different set of parameters for pdf
and hazard rate are shown, pdf having different shapes where the hazard rate function has
upside down and exponentially increasing shapes, that could be useful to model different
types of failure data. The essential statistical and reliability properties are derived. The
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parameters have been estimated by using the method of maximum likelihood estimation. A
Monte Carlo simulation study has been done, where it is observed that both bias and mean
square error for all the parameter decreases while increasing the sample size. The real-life
data set have been analyzed and it is predicted that the values of all the information mea-
sures and the different goodness of fit tests for the proposed distribution are very less, with
a higher p-value as compared to the existing models, which ensures the real-life applicability
of the model.
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Abstract
Receiver Operating Characteristic (ROC) curve is one of the widely used classification

tool and its applications can be seen in diversified fields of science and engineering. In this
work, we made an attempt to examine the influence of measurement errors on the AUC of a
mixture ROC curve. A bias corrected estimator is proposed and derived. The proposed work
is supported with real dataset and simulation studies and results show that the proposed bias
corrected estimator helps in correcting the AUC with minimum bias and minimum mean
square error.

Key words: Mixture ROC curve; Area under the curve; Measurement errors.

1. Introduction

Over the years, classification problems have gained a lot of attention in terms of theoret-
ical development and practical applications in various disciplines. To handle such problems,
one of the classification tool is the Receiver Operating Characteristic (ROC) curve, origi-
nated during World War II for analyzing the radar images. In diagnostic medicine, ROC
curve is widely used for evaluating the test’s performance and also useful in comparing diag-
nostic tests by means of Area under the Curve (AUC) and Sensitivities. It is a unit square
graphical plot between false positive rate (1-specificity) and true positive rate (sensitivity)
at various threshold values. The AUC of an ROC curve plays an important role in assess-
ing the performance of a diagnostic test(s) and also measures the ability of a biomarker to
distinguish between two groups.

Measurement error (ME) problems are among the oldest in the history of statistics and
can be of great practical and economic importance. It is the difference between a measured
quantity and its true value. In diagnostic medicine, markers are subject to substantial mea-
surement errors which may be attributed to instruments used in the laboratory, knowledge of
the technicians, biological variability, temporal changes in subjects, etc. Shear et al. (1987)
has taken the measurements of systolic and diastolic blood pressure on children’s, which
were used as forecasters of future hypertension. Carracio et al. (1995) has done a study on
the children to predict the presence or absence of bacterial menengitis using cerebrospinal
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fluid. Since the outcome of the test in identifying the menengitis is attributed to either lab-
oratory equipment or technician, which may lead to the phenomenon of observing errors in
the measured quantities. With the above two examples, it can be understood that in most
of the data collections which purely depend upon the laboratory equipments, technicians
etc. there are high chances of having errors in the measurements. For more examples on
ME, readers can look into Begg and Greene (1983), Begg and McNeil (1988), Berbaum et
al. (1989), Buonaccorsi (2010) and Fuller (2009).

In ROC analysis, the most popular one is the Bi-normal ROC model, where the two
populations assumed to follow normal distribution. The estimation of AUC and its measures
have been addressed by several authors and a few to mention are Hanley and McNeil (1982),
Faraggi and Reiser (2002), Zhou et al. (2009), Vishnu Vardhan and Sarma (2010). However,
when the data is exposed to measurement errors the estimation of AUC will be a problem of
interest. Because as the measurements are deviated from their true value, it leads to produce
spurious AUC. Hence, the AUC has to be corrected by means of an estimator. The seminal
work on providing an estimator to correct the AUC was addressed by Coffin and Sukhatme
(1996). They showed that in the presence of measurement errors, the AUC will be biased
downwards and also came out with a bias corrected estimator that corrects the AUC. In
similar lines, Faraggi (2000) and Reiser (2000) have worked on estimating the confidence
intervals for the AUC in the presence of measurement error. Tosteson et al. (2005) studied
the effect of measurement errors on AUC of an ROC curve by expressing the magnitude
of the measurement error as a ratio of two variances; graphical and simulated environment
were presented to show the effect of ME.

The above methodologies works well only when the knowledge on class labels is known.
Even though the class labels are known, in most of the practical situations we may get ob-
served with bi-modal or multi-model patterns within each known population. In such sce-
narios the existing binormal structure and correction of AUC in the presence of measurement
error may not feasible to execute.

In this work, we proposed a Mixture ROC model which takes into the account of a
possible mean differences between populations. Let us assume that two sub components are
identified in diseased population and defined as D1 and D2. Now, we take into the account
of the following possible mean differences such as µD1 −µH and µD2 −µD1 (µD2 ≥ µD1 ≥ µH)
and the same is shown in Figure 1. In Section 3, the same scenario is illustrated using OGTT
dataset.

In section 2, we present the methodology of mixture ROC curves and its correction in
measurement error. In section 3, a real dataset is considered to assess the performance of the
proposed methodology and in section 4, monte carlo simulations are performed to compare
the MSE of estimated and bias corrected estimator of the true AUC values. This has helped
to examine how the bias and MSE of the estimators are influenced by measurement errors
at different sample sizes.
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Figure 1: Hypothetically overlapping density curves of Healthy and Diseased
populations

2. Methodology

2.1. Mixture receiver operating characteristic curve with measurement error

Let us consider the data where the class labels of subjects are known. In most of the
cases, we directly start with developing a classifier rule. But there are chances of having
several subgroups in each of the known populations. For instance, consider the oral glucose
tolerance test (OGTT) data, where the subjects disease status is defined. However, on
investigating the diseased population, it resulted with a bi-modal pattern. This indicates
that there are two sub populations with in the diseased population (Figure 2).

Figure 2: (a) The overall density plot of OGTT, (b) Plot after identifying the
components in the OGTT data set.

Let us consider a binary classified data (Healthy, H and Diseased, D) where the D
population consists of two sub populations within it. The identification of two sub popula-
tions (D1 and D2) will be done through EM algorithm. Let µH , µD1 , µD2 and σ2

H , σ2
D1 , σ2

D2
are the means and variances of three populations, respectively.



44 G. SIVA AND R. VISHNU VARDHAN [Vol. 21, No. 1

The expressions for the False Positive Rate (1-specificity) and True Positive Rate (sen-
sitivity) in the mixture form is defined as

FPR = x(c) = λ1 x(c1) + λ2 x(c2) (1)

TPR = y(c) = λ1 y(c1) + λ2 y(c2) (2)
here, λ1 and λ2 are the mixing proportions; c1 and c2 are threshold values for the pairs
(D1, H) and (D2, D1).

By definition, we write

x(c1) = Φ
(

µH − c1

σH

)
; x(c2) = Φ

(
µD1 − c2

σD1

)
(3)

y(c1) = Φ
(

µD1 − c1

σD1

)
; y(c2) = Φ

(
µD2 − c2

σD2

)
(4)

The expressions for c1 and c2 will take the following form

c1 = µH − σHΦ−1[x(c1)] ; c2 = µD1 − σD2Φ−1[x(c2)] (5)

where Φ−1 is the inverse cumulative distribution function of normal. The mixture ROC
expression is derived by substituting (5) in (2) and is given in (6)

ROC = λ1

[
Φ
(

µD1 − µH

σD1

+ σH

σD1

Φ−1[x(c1)]
)]

+ λ2

[
Φ
(

µD2 − µD1

σD2

+ σD1

σD2

Φ−1[x(c2)]
)]

(6)

In general, if the diseased component has ‘p’ sub populations then (6) can be rewritten as

ROC(c) =
p∑

i=1
λi

[
Φ
(
Ai + Bi Φ−1[FPR]

)]
(7)

where
p∑

i=1
λi = 1; Ai = µi − µi−1

σi

; Bi = σi−1

σi

2.2. Corrected bias approximation

Let us define X1, X2, . . . , Xm
iid∼ N(µH , σ2

H) , Y1, Y2, . . . , Yn
iid∼ N(µD1 , σ2

D1) and
Z1, Z2, . . . , Zk

iid∼ N(µD2 , σ2
D2), then the AUC expression for mixture ROC curve is given as

mAUC = θ = λ1Φ
 µD1 − µH√

σ2
D1 + σ2

H

+ λ2Φ
 µD2 − µD1√

σ2
D2 + σ2

D1


If the observations in H, D1 and D2 are observed with measurement errors then we define

xi = Xi + ui, i = 1, 2, . . . , m; ui ∼ iid N(0, σ2
u)

yi = Yi + vj, j = 1, 2, . . . , n; vi ∼ iid N(0, σ2
v)
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zk = Zk + γk, k = 1, 2, . . . , l; γk ∼ iid N(0, σ2
γ)

we assume ui, vj, zk, Xi, Yj and Zk are all independent. The natural estimator of θ is
ˆmAUC = θ̂ = λ1 θ̂1 + λ2 θ̂2

where θ̂1 = Φ
 µ̂D1 − µ̂H√

s2
D1 + s2

H

 , θ̂2 = Φ
 µ̂D2 − µ̂D1√

s2
D2 + s2

D1


here s2

H , s2
D1 and s2

D2 are the sample variances. Using Taylor series expansion, it can be
shown that E(θ̂) = θ + O(1). Since, the observations are measured with errors, the resulting
area estimates i.e., AUC’s will be biased downward. By adopting the methodology of Coffin
and Sukhathme (1996), the expressions for θ̂1 and θ̂2 are

E(θ̂1) ≈ P (Y > X + δ1) =
� �

[1 − GY (s + t)]fX(s)fδ1(t)dtds

≈ θ1 − 1
2V ar(δ1)

�
gT

Y (s)fX(s)ds

E(θ̂2) ≈ P (Z > Y + δ2) =
� �

[1 − GZ(s + t)]fY (s)fδ2(t)dtds

≈ θ2 − 1
2V ar(δ2)

�
gT

Z(s)fY (s)ds

where δ1 = u − v ∼ N(0, σ2
u + σ2

v) and δ2 = v − γ ∼ N(0, σ2
v + σ2

γ), here GY (.), GZ(.)
are distribution functions of Y, Z and fδ1(.), fδ2(.) are density functions of δ1, δ2. Thus, the
approximate bias in using θ̂1 and θ̂2 to estimate θ will be

−B1 = −1
2V ar(δ1)

�
gT

Y (s)fX(s)ds

= −
1
2(σ2

u + σ2
v)√

2πτ 2
XY

(
µD1 − µH

τXY

)
exp

{
−1

2

(
µD1 − µH

τXY

)2
}

−B2 = −1
2V ar(δ2)

�
gT

Z(s)fY (s)ds

= −
1
2(σ2

v + σ2
γ)

√
2πτ 2

Y Z

(
µD2 − µD1

τY Z

)
exp

{
−1

2

(
µD2 − µD1

τY Z

)2
}

where τXY =
√

σ2
H + σ2

D1 , τY Z =
√

σ2
D1 + σ2

D2 , then the bias corrected estimator for θ in the
mixture form is defined as

mAUCcorr = θ∗ = λ1 θ∗
1 + λ2 θ∗

2 (8)

where θ∗
1 = θ̂1 + B̂1 and θ∗

2 = θ̂2 + B̂2. Using the unbiased estimates σ̂2
u, σ̂2

v and σ̂2
γ, the

estimated value of B1 and B2 will be

B̂1 = (σ̂2
u + σ̂2

v)
2
√

2π(s2
H + s2

D1
− σ̂2

u − σ̂2
v)

 µ̂D1 − µ̂H√
s2

H + s2
D1

− σ̂2
u − σ̂2

v

 exp

−1
2

(
µ̂D1 − µ̂H

s2
H + s2

D1
− σ̂2

u − σ̂2
v

)2


B̂2 =
(σ̂2

v + σ̂2
γ)

2
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The confidence intervals (CI) for corrected AUC measures are obtained using

m̂AUCcorr ± Z(1− α
2 ) S.E(m̂AUCcorr)

3. Real data set

The OGTT dataset (Lasko et al., 2005) consists of 21 samples of Healthy and a mixture
of Diseased individuals. In order to show the measurement error in the data, random error
observations are generated N(0, 1.2) and added to the original samples. This is done to
mimic the situation where the actual data is affected with ME.

Along with the accuracy measures, it’s bias and MSE’s are obtained and presented in
table (1). From the results, it is shown that by adding error observations to the original
data, the accuracy measure is affected and biased downwards (i.e., from θ = 0.94626 to
θ̂ = 0.91641). In such situation, the proposed bias corrected estimator helps in achieving
the true accuracy and which has minimum bias and minimum MSE when compared with
the estimated accuracy. The ROC curves are drawn for the original dataset (True ROC)

Table 1: Bias and MSE of estimated and corrected estimator of AUC of OGTT
dataset

θ̂ θ̂ME Bias MSE θ̂∗
Bias MSE

(True AUC) (Uncorrected AUC) (Corrected AUC)
Mixture ROC 0.94626 0.91641 -0.02985 0.00089 0.94061 -0.00565 0.00003

and after adding error observations to the data (ROC with ME). From Figure 3, it is clearly
seen that errors in measurement will affect the shape of the ROC curve and it is downwards
than the true ROC curve.

Figure 3: True and contaminated ROC (with ME) curves for OGTT dataset
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4. Simulation studies

Monte Carlo simulations are carried out to illustrate the behavior of the proposed bias
corrected estimator in the mixture ROC forms when the observations are measured with
error.

In Table 2, two sets of means and variances are considered along with the initial values
for mixing proportions. Set A and set B has unequal and equal variances, respectively. To
show the influence of measurement errors in the data, the error component, ϵ ∼ N(0, 1.9)
is added to set A and B & AUC’s are estimated (before and after correction). In each
population, random samples of size n = {25, 50, 100, 200} were generated using the parameter
values listed in Table 2.

Table 2: Considered parameters for simulation studies

Sets λ1 λ2 µH µD1 µD2 σH σD1 σD2

A 0.5 0.5 29.3 32.5 35.2 1.0 1.5 2.0
B 0.5 0.5 29.3 32.5 35.2 1.5 1.5 1.5

The estimated and bias corrected AUC values along with its bias and mean square
errors at various sample sizes are presented in Table 3.

Table 3: The Bias, MSE of the estimated and bias-corrected estimator of AUC

Sets θ̂ n θ̂ME Bias MSE θ̂∗
Bias MSE(CIL,CIU) (CIL,CIU)

A 0.91099

25 0.83777 -0.07322 0.01855 0.94898 0.03799 0.00144
(0.82228,0.85326) (0.92649,0.97146)

50 0.85403 -0.05696 0.01356 0.93654 0.02555 0.00065
(0.83667,0.87139) (0.91489,0.95820)

100 0.86416 -0.04683 0.01212 0.92650 0.01551 0.00024
(0.84844,0.87988) (0.90554,0.94746)

200 0.86922 -0.04177 0.01101 0.91561 0.00461 0.00002
(0.84916,0.88929) (0.88365,0.94756)

B 0.91673

25 0.83488 -0.08149 0.01508 0.93858 0.02221 0.00049
(0.81679,0.85298) (0.91483,0.96234)

50 0.86306 -0.03150 0.00917 0.93614 0.01977 0.00039
(0.84866,0.87746) (0.90054,0.97174)

100 0.87897 -0.05331 0.00819 0.92754 0.01117 0.00012
(0.86447,0.89347) (0.90604,0.94904)

200 0.88487 -0.03740 0.00682 0.90702 -0.00935 0.00009
(0.86705,0.90268) (0.87457,0.93947)
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From the results, it is understood that the area estimates (θ̂ME) are biased downward at
each sample size. Using the proposed mixture of bias corrected approximation, it is observed
that the bias corrected estimator of AUC’s (θ̂∗) are closer to the true AUC’s (θ̂) values and
has minimum MSE when compared with the estimated AUC’s (θ̂). Using the proposed
methodology of bias corrected approximation in mixture ROC, we can obtain the reliable
estimates of AUC’s in the presence of measurement errors.

Figure 4: The true and estimated ROC curves at various sample sizes

The graphical representation of the true mixture ROC curve and the estimated mixture
ROC curves (errors in the data) at various sample sizes is presented in Figure 4. From this
graphical ROC plots also it is understood that, the resulting area estimates are downward
in the presence of measurement errors.

5. Summary

In this paper, we made an attempt to address the problem of measurement errors in
estimating the AUC of mixture normal ROC model. A bias corrected approximation has
been defined in the mixture form. The methodology is supported by a OGTT dataset and
monte carlo simulation studies. Results indicates that the proposed bias corrected estimator
provides the corrected AUC’s and it will be closer to the true AUC values with minimum
bias and minimum MSE.
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Abstract
Batsman has always dominated the cricket arena. Lot of research has been done to

measure the performance of a batsman. The performance of a batsman has been usually
measured using batting average or strike rate. Some researchers have suggested a constant-
hazard model to obtain the probability of a batsman being dismissed on their current score.
There are studies that tries to examine the survival ability of batsman using a probabilistic
model. We propose generalized exponential distribution as the best fit to the runs scored by
a batsman. Survival probabilities and conditional survival probability of a batsman using
this distribution gives the more accurate chance of a batsman to survive on crease. We have
calculated these survival probabilities and conditional survival probabilities for ICC top 10
batsman against top cricket playing nation. This study can be used by team managements
to pick up the team, decide batting order as per the opponent team and match situation. It
can also be beneficial to the betting industry as individual batsman score can be predicted
using these survival probabilities.

Key words: Conditional survival probability exponential distribution; Generalized exponen-
tial distribution; Survival probability; Weibull distribution.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Cricket is becoming one of the most popular sports of the today’s world. Given the
data-rich nature of the sport, numerous studies have used metrics to measure the performance
of batsman, bowler, fielder and captain. During the past few years or more lot of work and
research papers have been published which measured the performance of the players and their
predictions. Many researchers have focussed their study on the most entertaining element
and key factor of cricket i.e., batting.

Rather than assessing runs scored relative to wickets lost or runs scored relative to overs
consumed, Beaudoin and Swartz (2003) and Lewis (2005) considered a natural benchmark
for batting in one-day cricket. They considered runs scored relative to resources consumed
where the Duckworth-Lewis concept of resources is the standard quantity that measures
the dual combination of wickets and overs. The use of stochastic dominance rules demon-
strated by Damodaran (2006) to analyse the batting performance of Indian cricketers in
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ODI cricket. Shah (2017) has defined a new batting and bowling measure. He has defined
batting average considering the quality of bowler he is facing and similarly bowling average
considering the quality of batsman he is bowling against. Shah and Patel (2018) have ranked
captains based on several parameters using Principal Component Analysis. Also, they have
included weighted average method to rank captains based on z score of performance of team,
individual performance of captain as batsman and bowler.

Elderton and Wood (1945) provided empirical evidence to support the claim that a
batsman’s scores could be modelled using a geometric progression. However, the geometric
assumption does not necessarily hold for all players due to its difficulty in fitting the in-
flated number of scores of 0 appearing in many players’ career records. To account for this,
Bracewell and Ruggiero (2009) proposed to model player batting scores using the ‘Ducks
n runs’distribution, using a beta distribution to model scores of zero, and a geometric to
describe the distribution of non-zero scores.

As fall of wickets leads to the loss of resources of the batting side, so stability of a
batsman on the pitch would help a team to win the match provided evidently, he should
have scored runs as quickly as possible. Thus, to know how much time a batsman can survive
or how many balls a batsman can face on the cricket pitch while batting might be very useful
to arrange the batting order of a team in 20-20 or ODI cricket based on the match situation.

Survival analysis provides the survival ability of an individual where the outcome vari-
able is the time until the occurrence of a particular event of interest. The survival time or
time to an event of interest can be measured in hours, months, years, etc., in which the ob-
jects or subjects are followed over a specified period of time to pinpoint the event of interest
occurs. It is widely used in medical, clinical trial, actuarial science, etc., but now a day the
application of survival analysis becomes very much useful in sport (especially in cricket).

Rather than model batting scores, Kimber and Hansford (1993) used nonparametric
models to derive a player’s hazard at a given score, estimating dismissal probabilities as a
batsman’s innings progresses. Estimating the hazard function allows us to observe how a
player’s dismissal probability (and therefore, their batting ability) varies over the course of
their innings. We know that batsmen were more likely to get out early in their innings,
due to the sparsity of data at higher scores these estimates quickly become unreliable and
the estimated hazard function jumps erratically between scores. Cai, Hyndman, and Wand
(2002) address this issue using a parametric smoother on the hazard function, however given
the underlying function is still a nonparametric estimator the problem of data sparsity still
remains an issue and continues to distort the hazard function at higher scores.

Das (2011) used product limit estimator to estimate the adjusted batting average of
some selected cricketers. He argues, it has been revealed from the past information that
batsmen have a variable risk of getting dismissed based on their current score in the innings.
Thus, he proposed to model the batsmen’s scores using generalized geometric distribution. A
similar problem was also addressed by van Staden (2010) developing a new batting criterion
named as ‘survival rate’. It is defined as the number of balls faced in all innings divided by
the number of completed innings.

So, in this paper, we have examined three distributions namely: exponential, Weibull
and generalised exponential for fitting the runs scored by the batsmen and found the gen-
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eralised exponential distribution as a best fit. Also, the batting average of a batsman is
compared with the mean of generalised exponential distribution, which almost comes out to
be close to each other.Using generalised exponential distribution, we have obtained survival
probabilities of the batsman. This probability will give the chance that a batsman remains
on the crease and scores particular runs. This survival probabilities can be used by team
managements or captains to decide the batting order as per the match situations and oppo-
sition team. We have also computed conditional probabilities for each batsman for surviving
for b runs given that he has survived for a runs. This will be useful to make prediction of
scores of the batsman and team scores during the live match.

2. Material and methods

Data of runs scored by batsmen up to April 2020 was taken from www.espncricinfo.com.
Also, the top teams and top batsmen as per International Cricket Council (ICC) ranking
for ODI of April 2020 are considered. In this paper, we first took the innings-by-innings
scores of ICC top 10 batsmen and fitted various distributions like exponential, Weibull and
generalised exponential using R programming language.

3. Results and discussion

From Table 1, it can be seen that generalised exponential distribution is the best fit
to the runs scored by the batsman as Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are least compared to other two exponential and Weibull dis-
tribution.

Table 1: Fitting three distributions on runs scored by top 10 batsmen

Exponential dist. Weibull dist. Generalised Exponential dist.
Batsman AIC BIC AIC BIC AIC BIC
Kohli 2035.28 2038.756 1939.482 1946.435 1900.618 1907.57
Rohit 1821.798 1825.178 1693.453 1700.212 1660.305 1667.064
Babar 621.0408 623.3174 621.5612 626.1145 617.4151 620.9684
Taylor 1729.64 1733.016 1673.154 1679.905 1648.36 1655.111
Du Plessis 1129.563 1132.476 1128.508 1134.333 1122.768 1128.594
Warner 1111.585 1114.381 1104.288 1109.879 1100.065 1105.656
Williamson 1265.706 1268.675 1257.981 1263.921 1244.698 1250.638
Root 1146.419 1149.339 1135.751 1141.591 1123.992 1129.832
Finch 1123.977 1126.78 1034.221 1039.829 998.7167 1004.325
De Kock 1105.748 1108.543 1093.063 1098.654 1082.108 1087.7

The actual batting average and average (mean) as per the generalised exponential
distribution were compared for all top batsmen. From Table 2, it can be seen that both
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averages were very close in majority of the batsmen. This again validates the suitability of
the generalised exponential distribution.

Table 2: Comparison of actual batting average with the mean and sd of runs
using generalised exponential distribution

Batsman Country Actual Bating Avg. Mean sd
Kohli India 59.33 65.54 95.42
Rohit India 49.27 53.73 81.80
Babar Pakistan 54.17 55.50 64.68
Taylor New Zealand 48.44 53.15 73.16
Du Plessis South Africa 47.47 48.66 56.05
Warner Australia 45.8 46.14 55.16
Williamson New Zealand 47.48 48.44 59.78
Root England 51.05 53.42 66.88
Finch Australia 41.02 40.68 64.72
De Kock South Africa 44.65 44.96 56.98

The probability density function and cumulative distribution function of generalised
exponential distribution is given by

f(x;α, λ) =
{
αλ(1 − e−λx)α−1e−λx, x > 0, α > 0, λ > 0;
0, Otherwise. (1)

and
F (x;α, λ) = (1 − e−λx)α (2)

Its mean and variance are given as:

µ = ψ(α + 1) − ψ(1)
λ

(3)

σ2 = ψ′(1) − ϕ′(α + 1)
λ2 (4)

where,
ψ(·) = diagamma function = d log Γ(·)

d(·)
and

ψ′(·) = trigamma function which is derivative of diagamma function.

Survival analysis is defined as a set of methods for analysing data where the outcome
variable is the time until the occurrence of a particular event of interest. The event could
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be death due to cancer, occurrence of a disease, relief from a severe back pain, etc., Let us
take an example to explain mathematical definition of survival function. Suppose the actual
survival time of an individual (say) t which can be regarded as the value of a variable T
(i.e., associated with the survival time). It can take any non-negative value. The different
values that T can take have a probability distribution, so the variable T can be considered
as a random variable. Now for the random variable T , the probability distribution function
of T can be defined as F (t) and it is given by

F (t) = P (T < t) =
� t

0
f(x) dx

which represents the probability that the survival time is less than some value t. Now the
survival function is defined as the probability that the survival time is greater than or equal
to t. Usually, it is denoted by S(t) and given by

S(t) = P (T ≥ t) = 1 −
� t

0
f(x) dx

The survival function for generalised exponential distribution is given by

S(t) = 1 − (1 − e−λx)α, t > 0. (5)

Therefore, the survival function can be used to represent the probability that an indi-
vidual survives from the time origin to sometime beyond t. The survival time or time to an
event of interest can be measured in days, weeks, years, etc., in which the objects or subjects
are followed over a specified period of time to pinpoint the event of interest occurs. Though
it’s uses in medical, clinical trial, actuarial science, etc., are hefty, but still the application
of survival analysis in sport (especially in cricket) is limited.

We have calculated the survival probability of ICC top 10 batsmen using equation
(5) and presented in Table 3 and its graph is shown in Fig. 1. We can say that Babar,
Virat, Rohit and Taylor have the high survival probability of getting good runs. This is
also depicted by their ICC rankings. Survival probabilities of Warner, du Plessis, de Kock
suggest that the probability decreases compared to other batsmen, which suggest that they
get a start but are unable to convert into big score. And Finch has the lowest probability
which says that he gets out early. Virat and Babar have highest probability of getting half
century. Similarly, Virat has the highest probability of scoring century among all other top
batsmen. This also suggests that Virat converts a good start into half century and century,
which is confirmed by the number of centuries he has scored.

Similarly, survival probability against world’s top teams as per ICC ranking April 2020
is calculated in Table 4. We can see that Virat’s survival chances at initial score and after
that are highest against South Africa and least against England. Rohit has highest initial
survival chances against England and lowest against South Africa. While the chance of
getting half-century or century is highest against Australia and England and lowest against
New Zealand. Babar has the lowest chance of scoring big score against India. This way we
can conclude about individual batsman scoring probabilities against specific teams. We can
identify that against which team batsman gets out early or scores big after the start.
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Table 3: Survival probabilities of ICC top 10 batsmen

Runs
Batsman 10 30 50 80 100

Virat 0.6694 0.4822 0.3738 0.2678 0.218

Rohit 0.6169 0.4262 0.3205 0.2209 0.1756

Babar 0.7616 0.527 0.3796 0.2384 0.1764

Taylor 0.6686 0.4582 0.3373 0.2234 0.1725

du Plessis 0.7458 0.4945 0.3411 0.2007 0.1422

Warner 0.718 0.4681 0.3206 0.1878 0.1328

Williamson 0.7101 0.4714 0.3306 0.2014 0.1465

Root 0.7188 0.4918 0.3557 0.227 0.1704

Finch 0.5524 0.3578 0.256 0.1649 0.1256

de Kock 0.6838 0.4438 0.3065 0.1824 0.1318

Figure 1: Graph of survival probabilities of ICC top 10 batsmen
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This survival probabilities of each batsman can be useful for team selection against
a particular team. It can also be useful to predict the individual batsman score and team
score in on-going match. Batting order can be decided by captains considering the match
situation and survival probabilities of batsmen.

Table 4: Survival probabilities of ICC top 10 against ICC top 7 teams

Batsman Runs India New Zealand Australia England South Africa Sri Lanka Pakistan

Virat 10 NA 0.6922 0.6747 0.5659 0.71 0.6923 0.5805
30 NA 0.4948 0.4672 0.3872 0.5238 0.5019 0.4067
50 NA 0.3784 0.3471 0.2914 0.412 0.3894 0.3123
80 NA 0.2647 0.233 0.2023 0.3 0.2785 0.223
100 NA 0.2118 0.1814 0.1619 0.2466 0.2263 0.1818

Rohit 10 NA 0.6955 0.6661 0.7502 0.5205 0.5369 0.6448
30 NA 0.3932 0.472 0.5134 0.3227 0.3851 0.4082
50 NA 0.2302 0.36 0.3669 0.2225 0.3044 0.3274
80 NA 0.1053 0.2519 0.2282 0.1361 0.2275 0.2198
100 NA 0.0629 0.2019 0.1679 0.1001 0.1914 0.1715

Babar 10 0.85 0.4554 0.9999 0.8866 0.9798 0.917 NA
30 0.4254 0.3163 0.8029 0.5676 0.7803 0.6785 NA
50 0.1839 0.2454 0.4339 0.3326 0.4531 0.4733 NA
80 0.0484 0.1798 0.1212 0.1406 0.0999 0.2635 NA
100 0.0195 0.1496 0.0478 0.0779 0.0218 0.1758 NA

Taylor 10 0.7133 NA 0.7744 0.6994 0.6835 0.4393 0.6253
30 0.4786 NA 0.4516 0.4744 0.4063 0.2903 0.4881
50 0.3393 NA 0.2613 0.3422 0.2539 0.2158 0.4115
80 0.2101 NA 0.1145 0.2184 0.1294 0.1489 0.3346
100 0.1545 NA 0.0659 0.1641 0.0834 0.1192 0.2967

du Plessis 10 0.8714 0.8572 0.8961 0.5054 NA 0.8521 0.918
30 0.62 0.5255 0.6295 0.2868 NA 0.5838 0.501
50 0.4309 0.3007 0.418 0.1813 NA 0.3922 0.2152
80 0.2456 0.1245 0.2171 0.0973 NA 0.213 0.0531
100 0.1678 0.0683 0.1385 0.0656 NA 0.1412 0.0204

Warner 10 0.7846 0.8116 NA 0.762 0.6217 0.7137 0.8632
30 0.5233 0.5315 NA 0.4007 0.4023 0.4211 0.5911
50 0.3564 0.3474 NA 0.2048 0.2825 0.257 0.3928
80 0.2032 0.1834 NA 0.0736 0.1753 0.1252 0.2082
100 0.1403 0.1197 NA 0.0371 0.1297 0.078 0.1355

Williamson 10 0.6784 NA 0.6155 0.7133 0.8075 0.608 0.8682
Continued on next page
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Table 4 – continued from previous page
Batsman Runs India New Zealand Australia England South Africa Sri Lanka Pakistan

30 0.4152 NA 0.395 0.4931 0.5323 0.3736 0.6086
50 0.269 NA 0.2756 0.3614 0.352 0.2494 0.4157
80 0.1453 NA 0.1693 0.236 0.1896 0.1433 0.2303
100 0.0975 NA 0.1246 0.1799 0.1257 0.1007 0.1544

Root 10 0.7811 0.89 0.5191 NA 0.9096 0.7101 0.6775
30 0.5495 0.6197 0.319 NA 0.6223 0.5051 0.4559
50 0.3999 0.4093 0.2183 NA 0.3891 0.3823 0.3283
80 0.2541 0.2116 0.1319 NA 0.1805 0.2624 0.2098
100 0.1893 0.1346 0.0964 NA 0.1061 0.2072 0.158

Finch 10 0.6064 0.3253 NA 0.4719 0.7489 0.783 0.5939
30 0.3993 0.1675 NA 0.3287 0.4254 0.4909 0.434
50 0.2855 0.1003 NA 0.2551 0.2425 0.3097 0.346
80 0.1844 0.0506 NA 0.1868 0.1046 0.1558 0.2606
100 0.14 0.0329 NA 0.1553 0.0597 0.0987 0.22

de Kock 10 0.9299 0.5633 0.5832 0.8564 NA 0.8404 0.467
30 0.6939 0.346 0.3389 0.6303 NA 0.5579 0.2943
50 0.4805 0.2338 0.2147 0.4641 NA 0.3628 0.2084
80 0.2611 0.1379 0.1141 0.2936 NA 0.1876 0.1335
100 0.1706 0.0989 0.0762 0.2164 NA 0.1204 0.1017

4. Conditional survival analysis

In this section we have considered the conditional survival probability of batsman.

Suppose that the batsman has survived at score a then the probability of surviving at
score b, b > a is called conditional survival probability.

Mathematically it is defined as

S(b|a) = P (X > b|X > a) = P (X > b)
P (X > a) .

In case of generalised exponential distribution, it is given by

S(b|a) = 1 − (1 − e−λb)α

1 − (1 − e−λa)α
(6)

Conditional survival probabilities using generalised exponential distribution are calcu-
lated using equation (6) for ICC top 10 batsmen as per ICC ranking April 2020 and given
in Table 5. This probability describes the ability of batsman to survive for some additional
scores during the on-going play. We can observe that when Virat scores 10 runs, the proba-
bility of scoring a century is highest among all the players. This shows that when Virat gets
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his eye set, the chance of converting it into big score is highest. The probability of scoring
a century once the batsmen has scored 50 runs is quite high for Rohit, followed closely by
Virat, Taylor, Finch and Root. This is also reflected in the number of centuries these bats-
men have scored. Once they spend some time on crease, they score high in the match. Low
probabilities for a batsman also reflect that the batsman throws away his wicket after getting
his eye set. This can be a good point for the coaches to guide the player to play long. These
probabilities will be more useful for predicting individual scores and team scores. This is
very important probabilities for the team and also for the betting industry.

Table 5: Conditional probabilities P (score > b/score > a) of ICC top 10 batsmen

Batsman a
b

10 30 50 80 100
Virat 10 1 0.7204 0.5584 0.4 0.3257

30 1 0.743 0.4987 0.3884
50 1 0.6711 0.5227
80 1 0.7789

Rohit 10 1 0.6908 0.5957 0.358 0.2846
30 1 0.752 0.5182 0.412
50 1 0.6891 0.5479
80 1 0.795

Babar 10 1 0.692 0.4984 0.313 0.2317
30 1 0.7202 0.4523 0.3348
50 1 0.628 0.4648
80 1 0.7401

Taylor 10 1 0.6827 0.5045 0.3342 0.258
30 1 0.7363 0.4877 0.3766
50 1 0.6624 0.5114
80 1 0.7722

du Plessis 10 1 0.663 0.4574 0.2691 0.1906
30 1 0.6899 0.4059 0.2875
50 1 0.5884 0.4168
80 1 0.7083

Warner 10 1 0.6519 0.4466 0.2615 0.185
30 1 0.685 0.4011 0.2837
50 1 0.5856 0.4142

Continued on next page
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Table 5 – continued from previous page

Batsman a
b

10 30 50 80 100

80 1 0.7074
Williamson 10 1 0.6638 0.4655 0.2836 0.2063

30 1 0.7014 0.4272 0.3107
50 1 0.6091 0.443
80 1 0.7273

Root 10 1 0.6842 0.4948 0.3158 0.2371
30 1 0.7232 0.4617 0.3466
50 1 0.6383 0.4792
80 1 0.7507

Finch 10 1 0.6478 0.4633 0.2985 0.2273
30 1 0.7153 0.4607 0.3509
50 1 0.6441 0.4906
80 1 0.7616

de Kock 10 1 0.649 0.4483 0.268 0.1927
30 1 0.6907 0.4129 0.2969
50 1 0.5978 0.4299
80 1 0.7192

We have also calculated conditional probabilities of ICC top 10 batsmen against ICC
top teams. These probabilities will evaluate the performance of a batsman against a partic-
ular team. In Table 6, we have presented conditional probabilities of 5 batsmen against top
5 teams for particular runs only.

From Table 6, we can see that Virat has the highest probability of scoring a half-
century or a century given that he scores 10 runs i.e. gets a start against South Africa
followed by New Zealand, England and Australia. Also, Virat has capability of converting
half-century into huge score like century is highest among all other batsmen. Rohit loves to
score big against Australia and then England compared to other countries once he gets the
start, which is reflected in the conditional probabilities. Babar loves to play against New
Zealand compared to other countries with more than 50% chance of making half-century or
even century from a start he gets. But he has the lowest probability of scoring against India.
So, even if he gets a start, he is not able to convert into big scores against India. Taylor’s
probabilities suggest that once he gets his eye on the ball, he loves to score big against
England and India. Du Plessis has the highest scoring probability against India compared
to other teams.
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Table 6: Conditional probabilities P (score > b|score > a) of top 5 batsmen against
top 5 teams

a b Country
Batsman

Virat Rohit Babar Taylor du Plessis
10 50 India NA NA 0.2163 0.4756 0.4945

New Zealand 0.5466 0.3309 0.5389 NA 0.3508
Australia 0.5145 0.5405 0.4352 0.3374 0.4665
England 0.515 0.4891 0.3751 0.4894 0.3588
South Africa 0.5802 0.3582 0.4624 0.3714 NA

10 100 India NA NA 0.023 0.2166 0.1926
New Zealand 0.306 0.0904 0.3285 NA 0.0797
Australia 0.2689 0.3031 0.0479 0.0151 0.1545
England 0.2861 0.2239 0.0879 0.2347 0.1297
South Africa 0.3473 0.1613 0.0223 0.122 NA

50 100 India NA NA 0.1062 0.4554 0.3895
New Zealand 0.5598 0.2733 0.6097 NA 0.2272
Australia 0.5227 0.5607 0.1101 0.2523 0.3312
England 0.5556 0.4577 0.2342 0.4796 0.3616
South Africa 0.5985 0.4504 0.0482 0.3284 NA

5. Conclusion

Survival probabilities and conditional probabilities using generalised exponential dis-
tribution gives more accurate chance of survival compared to exponential and Weibull dis-
tributions. These probabilities can be used as a new measure for evaluating batsman as
it gives the ability of a batsman to survive on crease. This is the measure that evaluates
batsman during the live match and at every run he scores. Conditional survival probabilities
can be advantageous to the team managements to decide the batting order or change it
during match depending on the match situations and the opponent team. From our study
we conclude that among all top batsmen, Virat and Rohit have higher survival rate and even
potential of making big scores like half-century and century.

6. Future Scope

This study can be applied for test match cricket and T20 cricket. It can be also be used
in football, hockey to calculate survival probabilities and conditional survival probabilities
of goals by a team or a goal-keeper. Also, various other multivariate techniques like logistic
regression, principal component analysis can be applied to the data.
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Abstract

In this paper, we introduce a new family called Discrete Harris Extended (DHE) family
of distributions and study its properties. It is shown that the new family is a generalization
of discrete Marshall-Olkin family of distributions. In particular, we study the discrete version
of Harris Extended Weibull distribution in detail. We give some selected special distributions
from DHE family. We derive some basic distributional properties such as probability gener-
ating function, moments, hazard rate and quantiles of the DHEW distribution. Estimation
of the parameters is done using maximum likelihood method and a simulation study is con-
ducted to verify the performance. By using the method of maximum likelihood estimation we
obtain the estimates of the proposed model parameters with respect to two discrete data sets.

Key words: Discrete Harris Extended Weibull distribution; Infinite divisibility; Marshall-
Olkin family of distributions; Maximum likelihood.

AMS Subject Classifications: 60E05, 62E15, 62F10

1. Introduction

In the literature, there are several methods to obtain a discrete distribution from a
continuous distribution: the discretization method based on the survival function (Naka-
gawa and Osaki, 1975), the discretization method based on an infinite series (Good, 1953;
Kulasekera and Tonkyn, 1992; Kemp, 1997), the discretization method based on the hazard
function (Stein, 1984), the compound two-phase method (Chakraborty, 2015), the discretiza-
tion method based on reverse hazard function (Ghosh et al., 2013), among many others.

The traditional discrete distributions (geometric, Poisson, etc.) have limited appli-
cability as models for reliability, failure times, counts, etc. This has led to the develop-
ment of new discrete distributions based on popular continuous models for reliability, failure
times, etc. Of these, the most popular is the discrete Weibull distribution which was in-
troduced by Nakagawa and Osaki (1975) and studied by Stein and Dattero (1984), and
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Khan et al.(1989). Gómez-Déniz (2010) developed a new generalization of the geometric
distribution using Marshall-Olkin scheme. Discrete modified Weibull distribution proposed
by Nooghabi et al. (2011) is the discrete analogue of the modified Weibull distribution in
Lai et al. (2003). Nekoukhou and Bidram (2015) proposed exponentiated discrete Weibull
distribution as a discrete analog of the exponentiated Weibull distribution of Mudholkar and
Srivastava (1993). Sandhya and Prasanth (2012, 2013) have considered generalisations of
geometric and discrete uniform distributions invoking the approach of Marshal and Olkin
(1997), while Sandhya and Prasanth (2016) has developed another generalisation of the dis-
crete uniform distribution by adding two parameters to it, generalizing the Marshal-Olkin
scheme itself. Recently, Jayakumar and Sankaran (2018) have introduced a new discrete
family of distributions using truncated discrete Mittag-Leffler distribution and studied its
properties.

In this paper, we identify some members of the DHE family of distributions using
the discretization method of Nakagawa and Osaki (1975). Our work mainly focuses on
the DHEW distribution. This distribution is generated by discretizing the Harris extended
Weibull (HEW) distribution of Batsidis and Lemonte (2014) with survival function (sf)

Ḡ(x) =
(

λe−k(ηx)β

1 − λ̄e−k(ηx)β

)1/k

(1)

The HEW probabiity density function (pdf) is given by

g(x) = λ1/kβηβ(x)β−1e−(ηx)β

[1 − λ̄e−k(ηx)β ]1+ 1
k

; x > 0, (λ, η, k, β) > 0, λ̄ = 1 − λ. (2)

Here, λ > 0, k > 0, and β > 0 are shape parameters, η > 0 is the scale parameter.

The HEW distribution has many applications specially in quality control and reliability;
see Jose et al. (2018). This distribution is a suitable competitor for gamma and Weibull
distributions. But, sometimes, it is impossible or inconvenient to measure the life length
of a device on a continuous scale. In practice, we come across situations where lifetimes
are recorded on a discrete scale. For example, on/off switching devices, bulb of photocopier
machine, to and fro motion of spring devices, etc., are some obvious such situations. In the
last two decades, standard discrete distributions like geometric and negative binomial have
been employed to model lifetime data. However, there is a need to find more flexible discrete
distributions to fit various types of data.

The rest of the paper is organized as follows. Discretization of continuous family
of distributions is discussed in Section 2. In Section 3, we introduce the DHE family of
distributions and study its properties. In Section 4, it is shown that the DHE family of
distributions is a rich class and identify some members of this family. Section 5 is devoted
to the study of various properties of the DHEW distribution. In Section 6, we discuss the
method of maximum likelihood estimation of parameters of the distribution and a simulation
study is conducted to verify the performance. Two real data sets are analyzed to illustrate
the suitability of the proposed model and the results are presented in Section 7. Concluding
remarks are given in the last section.
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2. Discretization of continuous family of distributions

The general approach of discretizing a continuous variable is to introduce the greatest
integer function of X namely, [X] (the greatest integer less than or equal to X till it reaches
the integer), in order to introduce grouping on a time axis.

Let the continuous failure time X has the sf, Q̄(x) = P (X > x) and Y = [X]; be the
discrete random variable obtained by grouping the continuous failure time into unit intervals,
then by Roy (2003) the probability mass function (pmf) of Y can be written as

P (Y = y) = P (y ≤ X < y + 1) = P (X > y) − P (X > y + 1)
= Q̄x(y) − Q̄x(y + 1), y = 0, 1, 2, ... (3)

where Q̄x(y) = P (X > y).

Using (3) many researchers have developed discrete distributions corresponding to ex-
isting continuous distributions. For more details refer Nakagawa and Osaki (1975), Kr-
ishna and Pundir (2009), Chakraborty and Chakravarty (2012), Seethalekshmi et al. (2016),
Gillariose et al. (2021).

3. Discrete Harris extended family of distributions

Let F (x) be the baseline cumulative distribution function (cdf) of a random variable
X and let F (x) be the survival function (sf) of a distribution. Then the Harris family has
the survival probabilities

Q̄(x) =
 λF̄ (x)k

1 − λ̄F̄ (x)k

1/k

(4)

Now the probability mass function (pmf) of the new family is

pY (x) = Q̄(x) − Q̄(x + 1)

= λ1/k

 F̄ (x)
[1 − λ̄F̄ (x)k]1/k

− F̄ (x + 1)
[1 − λ̄F̄ (x + 1)k]1/k

 , x = 0, 1, 2, ... (5)

where, λ, k > 0, λ̄ = 1 − λ. We denote this family of distribution by DHE(λ, k) family.
Note that , when k = 1, the distribution with pmf (5) reduces to discrete Marshall-Olkin
distribution discussed in Supanekar and Shirke (2015). Let R(x) be the hazard rate function
(hrf) of DHE family of the discrete random variable X, then

R(x) = pY (x)
Q̄(x)

= 1 − F̄ (x)[1 − λ̄F̄ (x + 1)k]1/k

F̄ (x)[1 − λ̄F̄ (x + 1)k]1/k
(6)
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3.1. Probability generating function, moments and quantiles

The probability generating function (pgf) of (5) is given by

PY (s) = 1 + λ1/k(s − 1)
∞∑

x=1
sx−1 F̄ (x)[

1 − λ̄F̄ (x)k
]1/k

(7)

Mean and Variance of the random variable X is given by

E(X) = λ1/k
∞∑

x=1

F̄ (x)[
1 − λ̄F̄ (x)k

]1/k
(8)

V (X) = λ1/k
∞∑

x=1
(2x − 1) F̄ (x)[

1 − λ̄F̄ (x)k
]1/k

−

λ1/k
∞∑

x=1

F̄ (x)[
1 − λ̄F̄ (x)k

]1/k


2

(9)

Quantiles qm and Median of DHE family are

qm =
[
F −1

(
1 − (1 − m)

(
λ + λ̄(1 − m)k

)−1/k
)

− 1
]

(10)

Median is given by
Median =

[
F −1

(
1 −

(
2kλ + λ̄

)−1/k
)

− 1
]

(11)

where[.] denote the integer part.

4. Some members of DHE family of distributions

In this section, we give some selected special distributions from DHE family. The
selected models are DHE exponential, DHE Uniform, DHE Fréchet, DHE Burr type XII,
DHE Lomax and DHE Lindley.

4.1. DHE exponential(DHEE) distribution

Consider the sf of exponential distribution with parameter θ is given by F̄ (x) = e−θx.
Let p = e−θ, 0 < p < 1. Then the probability mass function (pmf), survival function (sf),
hazard rate function (hrf) of the DHEE distribution using equation (5) are respectively given
by

px = λ1/kpx[
1 − λ̄pkx

]1/k
− λ1/kpx+1[

1 − λ̄px+1
]1/k

, x = 0, 1, 2, ...

Q̄(x) = λ1/kpx

[1 − λ̄pkx]1/k

R(x) = 1 − [1 − λ̄pkx]1/k

[1 − λ̄pk(x+1)]1/k
p

For k = 1, the distribution reduces to generalized geometric distribution obtained by dis-
cretizing the generalized exponential distribution of Marshall-Olkin (1997).
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4.2. DHE Uniform (DHEU) distribution

Let X ∼ U(0, a) follows Uniform distribution with parameter a. Then the sf of X
is given by F̄ (x) = 1 − x

a
. Then the pmf, sf, hrf of the DHEU distribution using (5) are

respectively given by

px = λ1/k(a − x)[
ak − λ̄(a − x)k

]1/k
− λ1/k(a − x − 1)[

ak − λ̄(a − x − 1)k
]1/k

, x = 1, 2, ..., a

Q̄(x) = λ1/k(a − x)[
ak − λ̄(a − x)k

]1/k

R(x) = 1 −
(a − x − 1)

[
ak − λ̄(a − x)k

]1/k

(a − x)
[
ak − λ̄(a − x − 1)k

]1/k

This distribution is obtained and studied by Prasanth and Sandhya (2016).

4.3. DHE Fréchet (DHEF) distribution

Consider the survival function of Fréchet distribution with parameter α and β is given
by F̄ (x) = 1 − e−( α

x
)β . Let p = e−αβ , 0 < p < 1. Then the pmf, sf, hrf of the DHEF

distribution using equation (5) are respectively given by

px = λ1/k(1 − p−( 1
x

)β )[
1 − λ̄1 − p−( 1

x
)β
]1/k

− λ1/k(1 − p−( 1
x+1 )β )[

1 − λ̄(1 − p−( 1
x+1 )β )

]1/k
, x = 0, 1, 2, ...

Q̄(x) = λ1/k(1 − p−( 1
x

)β )[
1 − λ̄1 − p−( 1

x
)β
]1/k

, x = 0, 1, 2, ...

R(x) = 1 −
(1 − p−( 1

x+1 )β )
[
1 − λ̄(1 − p−( 1

x
)β )
]1/k

(1 − p−( 1
x

)β )
[
1 − λ̄(1 − p−( 1

x+1 )β )
]1/k

4.4. DHE Burr type XII(DHEBXII) and Lomax (DHELX) distributions

Consider the survival function of Burr type III distribution with parameter c and b is
given by F̄ (x) = (1 + xc)−b. Let p = e−b, 0 < p < 1. Then the pmf, sf, hrf of the DHEBXII
distribution using equation (5) are respectively given by

px = λ1/kplog(1+xc)[
1 − λ̄pklog(1+xc)

]1/k
− λ1/kplog(1+(x+1)c)[

1 − λ̄pklog(1+(x+1)c)
]1/k

, x = 0, 1, 2, ...

Q̄(x) = λ1/kplog(1+xc)[
1 − λ̄pklog(1+xc)

]1/k
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Figure 1: pmf of discrete HE family of distributions
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R(x) =
plog(1+(x+1)c)

[
1 − λ̄pklog(1+xc)

]1/k

plog(1+xc)
[
1 − λ̄pklog(1+(x+1)c)

]1/k

When c = 1, the DHEBXII distribution becomes DHELX distribution.

4.5. DHE Lindley (DHEL) distribution

Consider the survival function of Lindley distribution with parameter θ is given by
F̄ (x) = 1+θ+θx

1+θ
e−θx. Then the pmf, sf, hrf of the DHEL distribution using equation (5) are

respectively given by

px = λ1/k(1 + θ + θx)e−θx

[(1 + θ)k − λ̄(1 + θ + θx)ke−kθx]1/k

− λ1/k(1 + θ + θ(x + 1))e−θ(x+1)

[(1 + θ)k − λ̄(1 + θ + θ(x + 1))ke−θk(x+1)]1/k
, x = 0, 1, 2, ...

where, (λ, k, θ) > 0

Q̄(x) = λ1/k(1 + θ + θx)e−θx

[(1 + θ)k − λ̄(1 + θ + θx)ke−kθx]1/k

R(x) = 1 − [(1 + θ)k − λ̄(1 + θ + θx)kekθx]1/k[1 + θ + θ(x + 1)]
[(1 + θ)k − λ̄(1 + θ + θ(x + 1))ke−kθ(x+1)]1/k[1 + θ + θx]

e−θ (12)

We can obtain discrete half-logistic, discrete half-normal and discrete Rayleigh distri-
bution as members of new family of distributions, defined in (5), by substituting respective
distribution function. In the next section, we study discrete HEW distribution in detail.
Figure 1 displays possible shapes of the selected discrete Harris extended models.

5. Discrete Harris extended Weibull(DHEW) distribution

The sf of Weibull distribution with scale parameter η and shape parameter β is given
by

F̄ (x) = e−(ηx)β ; x > 0, η > 0, β > 0

Let e−ηβ = p; 0 < p < 1. Hence the sf of the resulting discrete distribution is given by

Q̄(x) = λ1/kpxβ

[1 − λ̄pkxβ ]1/k
; x = 0, 1, 2, ... (13)

px = λ1/kpxβ[
1 − λ̄pkxβ

]1/k
− λ1/kp(x+1)β[

1 − λ̄p(x+1)β
]1/k

, x = 0, 1, 2, ...

We call the random variable X, with sf (13), as DHEW distribution with parameters
λ > 0,k > 0,0 < p < 1, β > 0 and denote it by DHEW (λ, k, p, β). Many properties of the
continuous HEW distribution also hold for DHEW (λ, k, p, β). Figure 2 displays possible
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Figure 2: pmf of DHEW distribution for various values of parameters
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shapes of the pmf of the DHEW distribution. The pmf can be increasing, decreasing and
upside-down bathtub shaped. The hazard rate is given by

R(x) = 1 − p(x+1)β [1 − λ̄pkxβ ]1/k

pxβ [1 − λ̄pk(x+1)β ]1/k
(14)

Figure 3 displays possible shapes of the hrf of DHEW distribution for selected values
of the parameters λ,k > 0,p and β > 0 respectively. Obviously, from figure it is clear that
the hrf can be increasing, decreasing, bathtub and upside-down bathtub shaped.

5.1. Special sub-models

Some discrete distributions that are special cases of DHEW distribution are:

(1) When k = 1, we obtain

px = λ[pxβ − p(x+1)β ]
[λ + (1 − λ)(1 − pxβ )][λ + (1 − λ)(1 − p(x+1)β )]

which is considered as the discrete version of Marshall-Olkin Weibull distribution.

(2) When λ = 1,k = 1, we obtain discrete Weibull distribution of Nakagawa and Os-
aki(1975).In addition β = 1 geometric distribution is achieved.

(3) If β = 2, then the pmf reduce to

P (X = x) = px = λ1/kpx2[
1 − λ̄pkx2

]1/k
− λ1/kp(x+1)2[

1 − λ̄p(x+1)2
]1/k

, x = 0, 1, 2, ...

which defines discrete version of Harris Extended Rayleigh distribution.

(4) If β = 2 and λ = 1,

px = λ[px2 − p(x+1)2 ]
[λ + (1 − λ)(1 − px2)][λ + (1 − λ)(1 − p(x+1)2)]

which is the discrete version of Marshall-Olkin Rayleigh distribution. Moreover with
k = 1, we get discrete Rayleigh distribution of Roy (2014).

5.2. Probability generating function, quantiles, mean and variance

The pgf of DHEW(λ, k, p, β) is given by

PX(s) = 1 + λ1/k(s − 1)
∞∑

x=1
sx−1 pxβ[

1 − λ̄pkxβ
]1/k
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Figure 3: hrf of DHEW distribution for various values parameters
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The mth quantile of DHEW distribution is denoted by qm and is given by

qm =
{

log p log[λ̄ + λ(1 − m)−k]
k

}1/β

− 1

In particular, the Median is

Median =
[

log p log(λ̄ + 2kλ)
k

]1/β

− 1

The expression for mean and variance of DHEW(λ, k, p, β) is given by

E(X) = λ1/k
∞∑

x=1

pxβ[
1 − λ̄pkxβ

]1/k
(15)

and

V (X) = λ1/k
∞∑

x=1
(2x − 1) pxβ[

1 − λ̄pkxβ
]1/k

−

λ1/k
∞∑

x=1

pxβ[
1 − λ̄pkxβ

]1/k


2

(16)

The mean and variance of a DHEW(λ, k, p, β) distribution for different values of pa-
rameters are calculated numerically in Table 1 using the expression (15) and (16). From the
Table 1, we can see that depending on the values of parameters, the mean of the distribution
can be equal, smaller or greater than the variance. Hence DHEW models are appropriate
for modelling both over and under dispersed data.

5.3. Infinite divisibility

According to Steutel and van Harn (2004, pp. 56) if px, x ∈ N0 is infinitely divisible,
then px < e−1 for all x ∈ N . However, e.g., in a DHEW(0.25, 0.15, 0.9, 2) distribution, we see
that p1 = 0.4493 > e−1 = 0.367. Therefore, in general, DHEW(λ, k, p, β) distribution is not
infinitely divisible. In addition, since the class of self decomposable and stable distributions,
in their discrete concept, are subclass of infinitely divisible distributions, we can conclude
that DHEW distribution can be neither self decomposable nor stable, in general.

6. Estimation

To apply the method of maximum likelihood for estimating λ, k, p and β assume that
X1, X2, ..., Xn is a random sample of size n from DHEW distribution. The log-likelihood
function is

L = n

k
logλ +

n∑
i=1

log

 pxβ
i

[1 − λ̄pkxβ
i ]

1/k
− p(xi+1)β

[1 − λ̄pk(xi+1)β ]1/k

 (17)

Hence, the likelihood equations are,

∂L

∂λ
= n

kλ
+

n∑
i=1

[Vλ,k,β(xi) − Vλ,k,β(xi + 1)]
kmλ,k,β(xi)

(18)
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Table 1: The mean(standard deviation) of DHEW for different parameters

p −→ 0.25 0.5 0.75
β ↓

k = 0.5 0.50 1.2787(1.2759) 2.555(5.3605) 11.3245(31.4465)
λ = 0.5 0.75 1.16958(0.5932) 1.70562(1.6561) 3.9703(5.5288)

3.50 1.1111(0.3141) 1.2992(0.4580) 1.5951(0.5143)
k = 0.5 0.50 2.2751(3.0416) 7.0255(12.4002) 37.9023(72.2195)
λ = 1.5 0.75 1.36(1.2370) 3.2516(3.2333) 9.2204(10.542)

3.50 1.1644(0.48) 1.61491(0.4883) 1.8937(0.4887)
k = 1 0.50 1.4074(1.6471) 3.1233(6.8603) 14.6716(40.145)

λ = 0.5 0.75 1.2357(0.7304) 1.8981(2.0028) 4.6081(6.6489)
3.50 1.1428(0.3498) 1.3335(0.4762) 1.6196(0.5244)

k = 1 0.50 2.0718(2.6700) 6.1911(10.918) 33.0475(6.3592)
λ = 1.5 0.75 1.5943(1.1210) 3.0204(2.9410) 8.4713(9.5965)

3.50 1.333(0.4713) 1.6005(0.4909) 1.8749(0.4721)
k = 3 1.00 1.3808 (0.7000) 2.1324(1.4620) 4.3543(3.5536)

λ = 1.5 2.00 1.2899(0.4634) 1.6347(0.6195) 2.2640(0.8981)
3.50 1.2854(0.4515) 1.5613(0.4970) 1.8496(0.4648)

∂L

∂k
= −n

k2λ
+

n∑
i=1

λ̄[Wλ,k,β(xi + 1) − Wλ,k,β(xi)]
mλ,k,β(xi)

(19)

∂L

∂β
=

n∑
i=1

λ̄logp[Uλ,k,β(xi + 1) − Uλ,k,β(xi)]
mλ,k,β(xi)

(20)

∂L

∂p
=

n∑
i=1

λ̄[(xi + 1)βVλ,k,β(xi + 1) − (xi)βVλ,k,β(xi)]
mλ,k,β(xi)

(21)

where,

mλ,k,β(x) = pxβ

[1 − λ̄pkxβ ]1/k
− p(x+1)β

[1 − λ̄pk(x+1)β ]1/k

Vλ,k,β(x) = pxβ

(
1

1 − λ̄pkxβ

) 1
k

−1

pkxβ

Wλ,k,β(x) = pxβ

(
1

1 − λ̄pkxβ

) 1
β

log

(
1

1 − λ̄pkxβ

)
pkxβ

log(pxβ )

Uλ,k,β(x) = pxβ

(
1

1 − λ̄pkxβ

) 1
k

−1

pkxβ

xβlogx +
(

1
1 − λ̄pkxβ

) 1
k

pxβ

xβlogx

The solutions of likelihood equations (18)-(21) provide the maximum likelihood estima-
tors (MLEs) of θ = (λ, k, p, β)T , say θ̂ = (λ̂, k̂, p̂, β̂)T , which can be obtained by a numerical
method such as the four variable Newton -Raphson type procedure.
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6.1. Simulation study

Here we study the performance of the MLEs of the model parameters of DHEW dis-
tribution using Monte Carlo simulation for various sample sizes and for selected parameter
values. We have taken the parameter values as λ= 1,β= 0.5, k= 0.2and p= 0.8 and gener-
ated random samples of size n = 30, 50 and 60 respectively. The MLEs of λ,β k and p are
determined by maximizing the log-likelihood function using the nlm package of R software
based on each generated samples. This simulation is repeated 1000 times and the average
estimates of bias and MSE are computed and presented in Table 2. It can be seen that, as
the sample size increases, the bias tends to zero and MSE decreases.

Table 2: Simulation results related to the paramters of the DHEW distribution

Sample size Estimates Average bias MSE
0.6079 -0.3920 0.9131
0.2916 -0.2083 0.1060

30 0.1193 -0.0806 0.0238
0.4630 -0.3369 0.2700
0.9081 -0.0918 0.0917
0.4548 -0.0451 0.0228

50 0.1828 -0.0171 0.0048
0.7273 -0.0726 0.0582
0.9990 -0.0009 0.0009
0.5004 0.0005 0.0002

60 0.2021 0.0021 0. 0043
0.8002 0.0002 3.8699e-05

7. Application

In this section, we illustrate the flexibility of the proposed distribution using two real
data sets. Maximum likelihood estimation is used to obtain the parameter estimates of the
models(using R software). We compare the fit of the DHEW distribution with the following
discrete life time distributions.

(a) Exponentiated discrete Weibull (EDW) distribution (Nekoukhou and Bidram 2015)
having pmf

P (X = x) = (1 − p(x+1)α

)β − (1 − pxα)β; 0 < p < 1, α > 0, β > 0, x = 0, 1, 2, ...

(b) The pmf of the discrete Gamma (DG) distribution, which has been used first by Yang
(1994) and recently considered by Chakraborty and Chakravarty (2012), is given by

P (X = x) = γ(α, β(x + 1)) − γ(α, βx)
Γ(α) , α > 0, β > 0

where,γ(α, x) =
� x

0 tα−1e−tdt denotes the incomplete gamma function.
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Table 3: Aarset data

Time of failure 0 1 2 3 6 7 11 12 18 21 32 36 40 45 46
No. of failures 2 5 1 1 1 1 1 1 5 1 1 1 1 1 1
Time of failure 47 50 55 60 63 67 72 75 79 82 83 84 85 86
No. of failures 1 1 1 1 2 4 1 1 1 2 1 3 5 2

Table 4: Fitted estimates for Aarset data

Distribution MLEs AIC K-S
DHEW (λ̂, k̂, β̂, p̂) = (2.9, 0.30, 0.1248, 0.0403) 484.777 0.1739
EDW (α̂, β̂, p̂) = (13.0059, 0.2517, 0.2675) 509.864 0.2194
DW (β̂, p̂) = (1.0228, 0.9805) 487.2202 0.1867

(c) A generalization of discrete Rayleigh (GDR) distribution of Roy (2004) having pmf

P (X = x) = (1 − p(x+1)2
)γ − (1 − px2)γ; 0 < p < 1, α > 0, x = 0, 1, 2, ...

(d) Discrete Weibull(DW) distribution (Nakagawa and Osaki 1975) having pmf

P (X = x) = pxα − p(x+1)α

; 0 < p < 1, α > 0, x = 0, 1, 2, ...

The values of the K-S (Kolmogrov- Smirnov) statistic and AIC (Akaike Information
Criterion with correction) are calculated for the four distributions in order to verify which
distribution fits better to the data. The better distribution corresponds to smaller values of
-log L, K-S statistic and AIC as well as larger p-value. Here, AIC = −2LogL + 2k, where,
L is the likelihood function evaluated at the maximum likelihood estimates, k is the number
of parameters and n is the sample size.

7.1. Discrete Aarset data

Aarset (1987) data consist of the failure times (in weeks) of 50 devices put on a life
test. The TTT (Total Time on Test) plot for this data shows that the hazard rate has a
bathtub-shape. The data set is given in Table 3.

The MLE of parameters of the models and the measures AIC and K-S statistic are
given in Table 4. From Table4, we can see that AIC, K-S statistic are smallest for DHEW
with AIC=484.77 and K-S statistic value=0.1739. Hence DHEW model gives a better fit to
the data.

7.2. Discrete Karlis and Xekalaki data

In this section, the DHEW model will be examined for a real data set which is given by
Karlis and Xekalaki (2001) on the numbers of fires in Greece for the period from 1 July 1998
to 31 August of the same year. This data set consists of 123 observations and are presented
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Table 5: Numbers of fires in Greece

Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 43
Frequency 16 13 14 9 11 13 8 4 9 6 3 4 6 4 1 1 1

Table 6: Fitted estimates for discrete Karlis and Xekalaki data

Distribution Estimated Parameters AIC K-S
DHEW (λ̂, k̂, β̂, p̂) = (8.5913, 0.9718, 0.6705, 0.4393) 693.5843 0.128
EDW (α̂, β̂, p̂) = (1.1573, 1.0511, 0.8449) 694.1897 0.1285
GDR (α̂, p̂) = (0.3934, 0.9924) 694.6178 0.1467
DG (α̂, β̂) = (0.7525, 0.1543) 749.7162 0.2683

in Table 5. Only fires in forest districts are considered. Bakouch et al. (2014) considered
these data to indicate the potentiality of discrete Lindley (DL) distribution in data modeling
and compared it with Poisson, geometric and discrete gamma (DG) distributions.

The MLEs of parameters of the models and the measures AIC and K-S statistic are
given in Table 6. The MLEs and K-S test statistic values of the DG distribution, given in
this table, are directly reported from Table 7 of Bakouch et al. (2014). From Table 6, we
can see that AIC, K-S statistic are smallest for DHEW with AIC=693.5843 and K-S statistic
value=0.128. Hence DHEW model gives a better fit to this data.

8. Conclusion

In this paper, we have introduced a new family of discrete Harris extended distributions.
This family is a generalization of discrete Marshall-Olkin family of distributions. We obtained
generalizations of discrete exponential, discrete uniform, discrete Weibull and many other
discrete distributions using this family. As an illustration, we have studied discrete Harris
extended Weibull distribution in detail. From the results presented here, it can be seen
that the generalized discrete Harris extended Weibull distribution introduced in this paper
appears to be more suitable for modeling many real data sets and is a better alternative to
some existing distributions.
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Abstract

In this paper, we obtain distribution-free prediction intervals for future order statistics
based on an observed sequence of k-record values. The Prediction intervals for future k-
record values based on observed order statistics and prediction intervals of future record
values based on observed k-record values are also derived in a similar manner. The coverage
probabilities of the derived intervals are exact and independent of the parent distribution.
Finally, two real data sets are used to illustrate the proposed methodologies developed in
this paper.
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1. Introduction

Let X1, X2, . . . , Xn be a random sample of size n arising from a population with abso-
lutely continuous cumulative distribution function (cdf) G(x) and probability density func-
tion (pdf) g(x). By arranging the random sample in an increasing order of magnitude as
X1:n ≤ X2:n ≤ · · · ≤ Xn:n, the order statistics of the sample can be obtained. The ith
order statistic of the sample X1, X2, . . . , Xn is then Xi:n. Order statistics have wide range
of applications in many fields including industry, reliability analysis and material strength.
For more discussions regarding the order statistics, one may refer to Arnold et al. (1992)
and David and Nagaraja (2003). One major application of order statistics in the study of
reliability of systems is the following. A system is called a k-out-of-m system if it consists
of m components and the system functions satisfactorily if at least k (≤ m) components
function. If the lifetimes of the components are independently distributed, then the lifetime
of the system coincides with that of the (m− k + 1) th order statistic of the lifetime of the
components. Thus, order statistics play a key role in studying the lifetimes of such systems.

The cdf of the ith order statistic Xi:n based on a random sample of size n from a
continuous population with cdf G(x) and pdf g(x) is given by (see, Arnold et al.,1992)

Fi:n(x) =
n∑

r=i

(
n

r

)
[G(x)]r

[
Ḡ(x)

]n−r
, −∞ < x < ∞. (1)
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The pdf corresponding to the cdf (1) is given by

fi:n(x) = 1
B(i, n− i+ 1) [G(x)]i−1

[
Ḡ(x)

]n−i
g(x), −∞ < x < ∞, (2)

where Ḡ = 1 −G and B (., .) denotes the complete beta function.

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (iid) random
variables with an absolutely continuous cdf G(x) and pdf g(x). If an observation Xj exceeds
all of its previous observations, that is, Xj > Xi for every i < j, then it is referred to as an
upper record value. Thus X1 is the first upper record value by definition. Similarly, the lower
record values can be defined. Many authors have studied the record values of iid random
variables as well as their features in the literature. Arnold et al. (1998), Ahsanullah (1995)
and the literature referenced therein can be used to have a more in-depth look at this topic.

Since Chandler (1952) brought up the idea of record values for the first time in the
literature, there has been a significant growth in the study of record values. Record values
have many statistical applications, such as modelling and inference involving data pertaining
to mining, sports, industry, seismology, life testing and so on. Interested Surveys are given in
Glick (1978), Gulati and Padgett (1994), Ahsanullah (1995), Arnold et al. (1998), Nagaraja
(1988) and the literature cited therein.

One of the challenges in dealing with problems involving inference with record data
is that the expected waiting time for consecutive records after the first is infinite. Such an
issue does not arise if we use the k-records proposed by Dziubdziela and Kopociński (1976).
We use the following formal definition of k-record values given by Arnold et al. (1998).

For a fixed positive integer k, the upper k-record times τn(k) and the upper k-record
values Un(k) are defined as follows.
Define τ1(k) = k and U1(k) = X1:k then for n > 1,

τn(k) = min
{
i : i > τn−1(k), Xi > Xτn−1(k)−k+1:τn−1(k)

}
.

Then the sequence of upper k-record values
{
Un(k), n ≥ 1

}
is defined as

Un(k) = Xτn(k)−k+1:τn(k) .

The cdf of the nth upper k-record value Un(k) for n ≥ 1 is given by (see, Arnold et al.,1998)

Fn(k)(x) = 1 −
[
Ḡ(x)

]k n−1∑
i=1

[
−k log Ḡ(x)

]i
i! , −∞ < x < ∞. (3)

The pdf corresponds to the cdf (3) is given by

fn(k)(x) = kn

Γ(n)
[
− log Ḡ(x)

]n−1 [
Ḡ(x)

]k−1
g(x), −∞ < x < ∞, (4)
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where Γ(·) denotes the complete gamma function. Similarly, we can define the lower k-record
values as well.

For a fixed positive integer k, the sequence of lower k-record times
{
τ ∗

n(k)

}
and lower

k-record value Ln(k) are defined as follows. Let
τ ∗

1(k) = k and L1(k) = Xk:k then for n > 1,

τ ∗
n(k) = min

{
j : j > τ ∗

n−1(k), Xj < Xk:τ∗
n−1(k)

}
.

Now the sequence of lower k-record values
{
Ln(k), n ≥ 1

}
is defined by

Ln(k) = Xk:τ∗
n(k)

.

Recently, the k-records data has shown an increased trend in problems involving statistical
inference and future event prediction. Chacko and Muraleedharan (2018) have obtained the
Bayesian and maximum likelihood estimators for the parameters of a generalized exponential
distribution based on k-record values. The same problem was discussed by Muraleedharan
and Chacko (2019) for Gompertz distribution. The recurrence relation for the single and
product moment of Gompertz distribution and its characterization based on k-records were
studied by Minimol and Thomas (2014). The Bayesian estimation of parameters for a Gum-
bel distribution and the one sample prediction of future k-record values under the Bayesian
frame work were studied by Malinowska and Szynal (2004). The best linear unbiased predic-
tor (BLUP) for future k-record value based on k-records arising from a normal distribution
was discussed by Chacko and Mary (2013) whereas the same problem for a generalized Pareto
distribution was discussed by Muraleedharan and Chacko (2022). Paul and Thomas (2015)
established some properties of upper k-record values which characterize the Weibull distri-
bution and has derived the BLUP for the model. Deheuvels and Nevzorov (1994) studied
the limiting behaviour of k-record values such as strong laws of large numbers, central limit
theorems, functional laws of the iterated logarithm and strong invariance principles etc.

In statistical inference, predicting future events based on the current knowledge is a
fundamental problem. It can be expressed in a variety of ways and in various settings. There
are two different sorts of prediction problems. The one sample prediction problem is that
the event to be predicted comes from the same sequence of events, whereas the two sample
prediction problem is when the event to be predicted comes from a different independent
sequence of events.

Several authors have considered prediction problem involving record values and order
statistics. Hsieh (1997) developed the explicit expression for the prediction intervals for
future Weibull order statistics. Al-Hussaini and Ahmad (2003) obtained the Bayesian pre-
diction bounds for future record values from a general class of distributions. Prediction of
distribution-free confidence intervals based on record values, order statistics and progres-
sively type II censored samples were extensively discussed by Ahmadi and Balakrishnan
(2005, 2008, 2010), Ahmadi et al. (2010) and Guilbaud (2004) respectively. In this pa-
per, we consider the two sample distribution-free prediction intervals for order statistics and
k-record values.

This paper is structured as follows. In Section 2, we use the observed k- record values to
derive the prediction intervals and the corresponding prediction coefficient for future order
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statistics. In Section 3, based on the observed order statistics, we obtain the prediction
intervals and its coefficient for the future k-record values. In Section 4, we consider the
interval prediction of future record values based on observed k-record values. In Section 5,
two real data sets are used to exemplify the proposed approaches presented in this paper
and finally some concluding remarks are made in Section 6.

2. Prediction of order statistics based on k-record values

In this section, we consider the two-sided prediction intervals for an order statistic from
the future sample based on the observed k-record values. Let

{
Ri(k), i ≥ 1

}
be a sequence of

observed upper (lower) k-record values arising from a population with absolutely continuous
cdf G(x). Suppose we are interested in obtaining an interval of the form

(
Rs(k), Rt(k)

)
,

1 ≤ s < t, for the rth order statistic Yr:n, 1 ≤ r ≤ n, of the future sample of size n arising
from the same population such that

P
(
Rs(k) ≤ Yr:n ≤ Rt(k)

)
= 1 − α.

Then the interval
(
Rs(k), Rt(k)

)
is called a 100 (1 − α) % prediction interval with prediction

coefficient (1 − α) for the future order statistic Yr:n. In this section, we derive such two-sided
prediction intervals for Yr:n with coverage probabilities that are free of the parent distribution
function G.

2.1. Prediction of order statistics based on upper k-record values

Let {Yi, i ≥ 1} be a sequence of iid random variables having an absolutely continuous
cdf G(x) and pdf g(x). In the following theorem, we establish the prediction intervals for
future order statistics based on the observed sequence of upper k-record values.

Theorem 1: Let
{
Ui(k), i ≥ 1

}
be a sequence of observed upper k-record values arising from

a population with absolutely continuous cdf G and pdf g. Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be
the order statistics from a future random sample of size n arising from the same cdf G.
Then

(
Us(k), Ut(k)

)
, for 1 ≤ s < t, is a prediction interval for the rth order statistic Yr:n, for

1 ≤ r ≤ n, whose coverage probability is free of G and is given by

α1(k) (s, t; r, n) = r

(
n

r

)
t−1∑
i=s

r−1∑
j=0

(
r − 1
j

)
(−1)j ki

(n+ k + j + 1 − r)i+1 . (5)

Proof: For a given real number v and for 1 ≤ s < t, we have

P
(
Us(k) ≤ v

)
= P

(
Us(k) ≤ v, Ut(k) < v

)
+ P

(
Us(k) ≤ v, Ut(k) ≥ v

)
= P

(
Ut(k) < v

)
+ P

(
Us(k) ≤ v ≤ Ut(k)

)
.

Hence
P
(
Us(k) ≤ v ≤ Ut(k)

)
= P

(
Us(k) ≤ v

)
− P

(
Ut(k) < v

)
. (6)
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By using (3), (6) can be expressed as

P
(
Us(k) ≤ v ≤ Ut(k)

)
=
[
Ḡ(v)

]k t−1∑
i=s

[
−k log Ḡ(v)

]i
i! . (7)

Now for 1 ≤ s < t, and using the conditioning arguments, we can write (7) as

α1(k) (s, t; r, n) = P
(
Us(k) ≤ Yr:n ≤ Ut(k)

)
=

∞�
−∞

P
(
Us(k) ≤ Yr:n ≤ Ut(k)|Yr:n = v

)
fr:n(v)dv

=
∞�

−∞

P
(
Us(k) ≤ v ≤ Ut(k)

)
fr:n(v)dv

=
t−1∑
i=s

n!
i! (r − 1)! (n− r)!

∞�
−∞

[
−k log Ḡ(v)

]i [
Ḡ(v)

]n+k−r
[G(v)]r−1

× g(v)dv. (8)

Taking y = −k log Ḡ(v) and applying the binomial expansion, (8) reduces to the following

α1(k) (s, t; r, n) = r

k

(
n

r

)
t−1∑
i=s

r−1∑
j=0

(−1)j

i!

(
r − 1
j

) ∞�

y=0

yi exp
[
−
(
n+ k + j + 1 − r

k

)
y

]
dy

= r

(
n

r

)
t−1∑
i=s

r−1∑
j=0

(
r − 1
j

)
(−1)j ki

(n+ k + j + 1 − r)i+1 . (9)

Hence the proof.

If n, r and the desired confidence level α0 are supplied, we can choose s and t so that
α1(k) (s, t; r, n) surpasses α0 . Since α1(k) (s, t; r, n) is a step function, the confidence coefficient
may not equal to α0 but may be set to a value somewhat higher than α0. Furthermore, the
choice of s and t is not unique. So, for a given confidence level α0, r and n, we would
like to construct a prediction interval whose expected length as short as possible among all
prediction intervals with the same level. First, notice that the two-sided prediction intervals
exist for a given α0, r and n if and only if, for large m,

P
(
U1(k) ≤ Yr:n ≤ Um(k)

)
≥ α0.

We have evaluated α1(k) (s, t; r, n) for n = 20, 30 and some selected values of (s, t) and r
for k = 2 and k = 3 and the values are presented in Table 1. It can be observed that the
prediction coefficient is increasing in r when the other parameters (s, t) and n are fixed and
achieves reasonable prediction coefficient value when r close to n. It is also observed that for
fixed n, r and k, the prediction coefficient α1(k) (s, t; r, n) is decreasing in s and increasing in
t.
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2.2. Prediction of order statistics based on lower k-record values

In this subsection, we consider the prediction intervals for future order statistics on the
basis of the observed lower k-record values. If Ln(k) denotes the nth lower k-record value,
then the cdf of Ln(k) is given by

F ∗
n(k)(x) = [G(x)]k

n−1∑
s=1

[−k logG(x)]s

s! , −∞ < x < ∞. (10)

The pdf corresponds to the cdf (10) is given by

f ∗
n(k)(x) = kn

Γ(n) [− logG(x)]n−1 [G(x)]k−1 g(x), −∞ < x < ∞. (11)

Now we can establish the following theorem for the interval prediction of future order statis-
tics based on the observed sequence of lower k-record values.

Theorem 2: Suppose the conditions of Theorem 1 hold and let
{
Li(k), i ≥ 1

}
be the se-

quence of observed lower k-record values emerging from the population. Then
(
Lt(k), Ls(k)

)
,

for 1 ≤ s < t, is a prediction interval for the rth order statistic Yr:n, for 1 ≤ r ≤ n, whose
prediction coefficient is free of G and is given by

α2(k) (s, t; r, n) = r

(
n

r

)
t−1∑
i=s

n−r∑
j=0

(
n− r

j

)
(−1)j ki

(r + k + j)i+1 . (12)

Proof: The proof is similar to that of Theorem 1 and thus omitted.

Remark 1: Since α2(k) (s, t; r, n) = α1(k) (s, t;n− r + 1, n), we can use Table 1 for evaluating
(12).

2.3. Prediction of order statistics based on upper and lower k-record values
jointly

In certain studies such as meteorological studies, the upper and lower k-record values
are observed simultaneously. In such studies, when predicting the order statistics from a
future sample, it is preferable to examine both the upper and lower k-record values together.

Theorem 3: Suppose the conditions of Theorem 1 hold; let Ls(k) and Ut(k) denote the sth
lower k-record and tth upper k-record values respectively. Then

(
 Ls(k), Ut(k)

)
is a prediction

interval for the rth order statistic Yr:n, for 1 ≤ r ≤ n, with coverage probability free of G
and is given by

α3(k) (s, t; r, n) = r

(
n

r

)s−1∑
i=0

n−r∑
j=0

(−1)j
(

n−r
j

)
ki

(j + k + r)i+1 +
t−1∑
i=0

r−1∑
j=0

(−1)j
(

r−1
j

)
ki

(n+ j + k + 1 − r)i+1

− 1. (13)

Proof: For a fixed real number v and 1 ≤ s < t, we can express

P
(
Ls(k) ≤ v ≤ Ut(k)

)
= [G(v)]k

s−1∑
i=0

[−k logG(v)]i

i! +
[
Ḡ(v)

]k t−1∑
i=0

[
−k log Ḡ(v)

]i
i! − 1. (14)
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Now for 1 ≤ s < t, and using the conditioning arguments, we can write (14) as

α3(k) (s, t; r, n) = P
(
Ls(k) ≤ Yr:n ≤ Ut(k)

)
=

∞�
−∞

P
(
Us(k) ≤ Yr:n ≤ Ut(k)|Yr:n = v

)
fr:n(v)dv

=
∞�

−∞

P
(
Us(k) ≤ v ≤ Ut(k)

)
fr:n(v)dv

=
s−1∑
i=1

n!
i! (n− r)! (r − 1)!

∞�
−∞

[−k logG(v)]i
[
Ḡ(v)

]n−r
[G(v)]k+r−1 g(v)dv

+
t−1∑
i=1

n!
i! (n− r)! (r − 1)!

∞�
−∞

[
−k log Ḡ(v)

]i [
Ḡ(v)

]k+n−r
[G(v)]r−1 g(v)dv − 1

= r

(
n

r

)
s−1∑
i=1

n−r∑
j=0

(−1)j
(

n−r
j

)
i!k

∞�

y=0

yi
(
e− y

k

)j+k+r
dy + r

(
n

r

)
t−1∑
i=1

r−1∑
j=0

(−1)j
(

r−1
j

)
i!k

×
∞�

z=0

zi
(
e− z

k

)n+j+k+1−r
dz − 1

= r

(
n

r

)t−1∑
i=0

r−1∑
j=0

(−1)j
(

n−r
j

)
ki

(j + k + r)i+1 +
t−1∑
i=0

r−1∑
j=0

(−1)j
(

r−1
j

)
ki

(n+ j + k + 1 − r)i+1

− 1.

Hence the proof.

Table 2 provides the values of α3(k) (s, t; r, n) for n = 10, 20 and 30 and some selected
values of (s, t) and r for k = 2 and k = 3. We can see that the prediction coefficient improves
when the intervals are constructed upper and lower k-record values jointly. It is also observed
that for fixed n, r and k, the prediction coefficient α3(k) (s, t; r, n) is non-decreasing in s and
t.

3. Prediction of future k-record values based on order statistics

Suppose we are interested in obtaining an interval for the rth future k-record value Rr(k)
(upper or lower) based on the observed order statistics of size n of the form (Xs:n, Xt:n) , 1 ≤
s < t ≤ n, such that

P
(
Xs:n ≤ Rr(k) ≤ Xt:n

)
= 1 − α.

Then we refer the interval (Xs:n, Xt:n) as a 100 (1 − α) % prediction interval with prediction
coefficient (1 − α) for the rth future k- record value Rr(k). In this section, we derive such two-
sided prediction intervals with coverage probabilities being free of the parent distribution.
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3.1. Prediction of upper k- record values based on order statistics

In this subsection, we wish to predict the rth future upper k-record value Ur(k) based
on the observed order statistics.

Theorem 4: Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be the observed order statstics arising from a
random sample of size n from a population with absolutely continuous cdf G and pdf g
respectively. Then (Ys:n, Yt:n), for 1 ≤ s < t ≤ n, is a prediction interval for the rth future
upper k-record value Ur(k) arising from the same population whose coverage probability is
free of G and is given by

α4(k) (s, t; r, n) =
t−1∑
i=s

i∑
j=0

(
n

i

)(
i

j

)
(−1)j kr

(n+ j + k − i)r . (15)

Proof: For any real number v and 1 ≤ s < t ≤ n, by using (1), we obtain the following

P (Ys:n ≤ v ≤ Yt:n) =
t−1∑
i=s

(
n

i

)
[G(v)]i

[
Ḡ(v)

]n−i
. (16)

Now for 1 ≤ s < t ≤ n, and using the conditioning arguments, we can write
α4(k) (s, t; r, n) = P

(
Ys:n ≤ Ur(k) ≤ Yt:n

)
=

∞�
−∞

P
(
Xs:n ≤ v ≤ Xt:n|Ur(k) = v

)
fr(k)(v)dv

=
∞�

−∞

P (Xs:n ≤ v ≤ Xt:n) fr(k)(v)dv

=
t−1∑
i=s

(
n

i

)
kr

(r − 1)!

∞�
−∞

[
− log Ḡ(v)

]r−1 [
Ḡ(v)

]n+k−i−1
[G(v)]i g(v)dv

=
t−1∑
i=s

i∑
j=0

(
n

i

)(
i

j

)
kr (−1)j

(r − 1)!

∞�
−∞

yr−1 exp [− (n+ j + k − i) y] dy

=
t−1∑
i=s

i∑
j=0

(
n

i

)(
i

j

)
(−1)j kr

(n+ j + k − i)r .

Hence the proof.

For a given confidence level α0 and specified r, we would like to construct prediction
interval whose expected length as short as possible among all prediction intervals with the
same confidence level. First observe that, for a given α0 and r, the two-sided prediction
interval exists if and only if

P
(
X1:n ≤ Ur(k) ≤ Xn:n

)
≥ α0.

Table 3 represents the values of α4(k) (s, n; r, n) for n = 10, 20, 30, 35 and 40 and some selected
values of s and r for k = 2 and k = 3. We can observe that α4(k) (s, n; r, n) is decreasing in
r and s but improves with n and k.
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3.2. Prediction of lower k-record values based on order statistics

For predicting lower k-record values, we consider an interval (Xs:n, Xt:n), for 1 ≤ s <
t ≤ n, based on the observed order statistics. Analogous to the result presented for upper
k-record values, we obtain the following theorem.

Theorem 5: Suppose the conditions of Theorem 4 hold; then (Ys:n, Yt:n), for 1 ≤ s < t ≤ n,
is a prediction interval for the rth future lower k-record value Lr(k) arising from the same
population whose coverage probability is free of G and is given by

α5(k) (s, t; r, n) =
t−1∑
i=s

n−i∑
j=0

(
n

i

)(
n− i

j

)
(−1)j kr

(i+ j + k)r . (17)

Proof: Proof is similar to that of Theorem 4 and hence omitted.

Remark 2: Note that if

α4(k) (s, t; r, n) =
t−1∑
i=s

(
n

i

)
ψk (i, j, r;n)

then
α5(k) (s, t; r, n) =

t−1∑
i=s

(
n

i

)
ψk (n− i, j, r;n) ,

where
ψk (i, j, r;n) =

i∑
j=0

(
i

j

)
(−1)j kr

(n+ j + k − i)r . (18)

Thus we can use Table 3 for evaluating (17) by making a simple modification.

4. Prediction of future record values based on k-record values

Let
{
Ri(k), i ≥ 1

}
be a sequence of observed k-record values arising from a population

with absolutely continuous cdf G(x). Suppose we are interested in obtaining an interval for
the rth future record value Rr of the form

(
Rm(k), Rn(k)

)
, 1 ≤ m < n, such that

P
(
Rn(k) ≤ Rr ≤ Rn(k)

)
= 1 − α.

Then we refer the interval
(
Rm(k), Rn(k)

)
as a 100 (1 − α) % prediction interval with pre-

diction coefficient (1 − α) for the future record value Rr. In this section, we derive such
two-sided prediction intervals for Rr with coverage probabilities being free of the parent
distribution G.

4.1. Prediction of future upper record values based on upper k-record values

In this subsection, we wish to predict the rth future upper record value based on the
observed sequence of upper k-record values.
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Theorem 6: Let
{
Ui(k), i ≥ 1

}
be a sequence of observed upper k- record values arising

from a population with absolutely continuous cdf G. Then
(
Us(k), Ut(k)

)
, for 1 ≤ s < t, is a

prediction interval for the rth future upper record value Ur arising from the same population
with the corresponding prediction coefficient is given by

α6(k) (s, t; r) =
t−1∑
j=s

(
j + r − 1

j

)
kj

(1 + k)j+r . (19)

Proof: For a given real number v and for 1 ≤ s < t, we can express

P
(
Us(k) ≤ v ≤ Ut(k)

)
=
[
Ḡ(v)

]k t−1∑
j=s

[
−k log Ḡ(v)

]j
j! . (20)

Now for s < t, and using the conditioning arguments, we can write (20) as

α6(k) (s, t; r) = P
(
Us(k) ≤ Ur ≤ Ut(k)

)
=

∞�
−∞

P
(
Us(k) ≤ Ur ≤ Ut(k)|Ur = v

)
fr(1)(v)dv

=
∞�

−∞

P
(
Us(k) ≤ v ≤ Ut(k)

)
fr(1)(v)dv

=
t−1∑
j=s

1
j! (r − 1)!

∞�
−∞

[
−k log Ḡ(v)

]j [
− log Ḡ(v)

]r−1 [
Ḡ(v)

]k
g(v)dv

=
t−1∑
j=s

(
j + r − 1

j

)
kj

(1 + k)j+r .

Hence the proof.

LetW denote a negative binomial random variable counting the number of trials needed
to get rth success where the success probability p = 1/ (k + 1). Then, the expression in (19)
can be viewed as the probability that the rth success occurs between sth and t − 1 trials;
that is, it represents P (s ≤ W < t), and hence α6(k) (s, t; r) can be directly computed from
negative binomial cdf using common statistical packages.

4.2. Prediction of future lower record values based on lower k-record values

In this section, we construct the prediction intervals for future lower record value based
on the observed sequence lower k- record values. Analogous to the result presented for upper
record values, we obtain the following theorem.

Theorem 7: Suppose the conditions of Theorem 6 hold, let
{
Ln(k), n ≥ 1

}
be a sequence of

observed lower k-record values arising from a population. Then
(
Lt(k), Ls(k)

)
, for 1 ≤ s < t, is

a prediction interval for the rth future lower record value Lr arising from the same population
with the corresponding prediction coefficient is given by (19).
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Proof: Proof is similar to that of Theorem 6 and hence omitted.

4.3. Prediction of upper record value based on lower and upper k-record values
jointly

There are some situations wherein upper and lower k-record values are observed jointly,
just as in the case of weather data. In these cases, it would be better to consider the upper
and lower k-record values jointly to predict the future upper record value of a future sample.

Theorem 8: Let
{
Li(k), i ≥ 1

}
and

{
Ui(k), i ≥ 1

}
respectively denote the observed sequences

of lower and upper k-record values arising from a population with absolutely continuous cdf
G. Then

(
Ls(k), Ut(k)

)
, for 1 ≤ s < t, is a prediction interval for the rth future upper

record value Ur of the future random sample arising from the same population with the
corresponding prediction coefficient, denoted by α7(k) (s, t; r, n) being free of G; it can be
expressed as

α7(k) (s, t; r) =
s−1∑
j=1

θk (j, r)
j! (r − 1)! + α6(k) (0, t; r) − 1, (21)

where

θk (j, r) =
1�

0

yk (−k log y)j [− log (1 − y)]r−1 dy (22)

and α6(k) (0, t, r) is defined by (19).

Proof: For a given real number v and for 1 ≤ s < t, we obtain
P
(
Ls(k) ≤ v ≤ Ut(k)

)
= P

(
Ls(k) ≤ v

)
− P

(
Ut(k) ≤ v

)
=

s−1∑
j=0

[−k logG(v)]j

j! [G(v)]k +
t−1∑
j=0

[
−k log Ḡ(v)

]j
j!

[
Ḡ(v)

]k
− 1.

(23)
Now for 1 ≤ s < t, and using the conditioning arguments, we can write (23) as

α7(k) (s, t; r) = P
(
Ls(k) ≤ Ur ≤ Ut(k)

)
=

∞�
−∞

P
(
Ls(k) ≤ Ur ≤ Ut(k)|Ur = v

)
gr(v)dv

=
∞�

−∞

P
(
Ls(k) ≤ v ≤ Ut(k)

)
gr(v)dv

=
s−1∑
j=0

1
j! (r − 1)!

∞�
−∞

[−k logG(v)]j
[
− log Ḡ(v)

]r−1
[G(v)]k g(v)dv

+
t−1∑
j=0

1
j! (r − 1)!

∞�
−∞

[
−k log Ḡ(v)

]j [
− log Ḡ

]r−1 [
Ḡ(v)

]k
g(v)dv − 1. (24)
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Taking y = G(v) in the first integral and z = −k log Ḡ(v) in the second integral of (24) and
then evaluating, we obtain

α7(k) (s, t; r) =
s−1∑
j=0

θk (j, r)
j! (r − 1)! +

t−1∑
j=0

kj

(1 + k)j+r

(
j + r − 1

j

)
− 1, (25)

where θk (j, r) is defined in (22). Therefore the prediction interval for the rth upper record
value Ur from the future sequence is

(
Ls(k), Ut(k)

)
whose prediction coefficient is free of the

parent distribution G and is given by

α7(k) (s, t; r) =
s−1∑
j=1

θk (j, r)
j! (r − 1)! + α6(k) (0, t; r) − 1. (26)

Hence the proof.

Tables 4 and 5 represent the values of α7(k) (s, t; r) when r = 1 and r = 2 for k = 2 and
k = 3 with 1 ≤ s ≤ 7 and 4 ≤ t ≤ 7.

5. Illustration using real data

Example 1: We use the data set given in Arnold et al.(1998, pp.49-50) which represent
the average July temparatures (in degrees centigrade) of Neuenberg, Switzerland, during
the period 1864-1993, and extract the 2 - record values to illustrate the prediction methods
described for predicting future order statistics. Ahmadi and Balakrishnan (2011) used the
same data set for predicting future order statistics based on observed ordinary record values.
The first order autocorrelation for the data set at the first three lags are 0.022, -0.007 and
-0.076 respectively. This small amount of autocorrelation shows that the data is independent
in nature. The upper and lower 2 - record values extracted from the data set are obtained
as given below.

m 1 2 3 4 5 6 7 8 9 10
Um(2) 19.0 19.7 20.1 21.0 21.4 21.7 22 22.1 22.3 22
Lm(2) 20.1 19 18.4 17.4 17.2 16.2 15.8 15.6 - -

Based on the observed upper and lower 2-record values and by using Table 2, we obtain
the prediction intervals of future order statistics with prediction coefficient at least 90% for
n = 10, 20 and 30 are presented in the following table.

(n, r) (s, t) (Ls, Ut) α3(2) (s, t; r, n) (n, r) (s, t) (Ls, Ut) α3(2) (s, t; r, n)
(10, 6) (5, 7) (17.2, 22) 0.9705 (20, 15) (4, 5) (17.4, 21.4) 0.9456
(10, 8) (3, 8) (18.4, 22.1) 0.9279 (30, 10) (7, 4) (15.8, 21) 0.9726
(20, 5) (7, 4) (15.8, 21) 0.9433 (30, 20) (8, 7) (15.6, 22) 0.9900

When comparing the results in Table 2 to those of Ahmadi and Balakrishnan (2010),
we see that when upper and lower record values are evaluated jointly, the interval prediction
coefficient increases with lower values of k.
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Example 2: Consider the amount of annual rainfall at Los Angeles Civic Centre (LACC)
during 1900-2000. Then by Ahmadi and Balakrishnan (2011), the order statistics corre-
sponding to the data set is given by

r 1 2 3 4 5 6 7 8 9 10
Y ear 1960 1958 1923 1971 1975 1947 1989 1986 1969 1963
Yr:n 4.85 5.58 6.67 7.17 7.21 7.22 7.35 7.66 7.74 7.93
r 20 30 50 70 80 90 95 98 99 100
Y ear 1980 1941 1928 1926 1921 1937 1992 1982 1940 1977
Yr:n 8.96 11.10 12.66 18.03 19.66 23.43 27.36 31.28 32.76 33.44

By using Table 3, we obtain the prediction intervals of future k-record values with prediction
coefficient at least 90% for k = 2 and k = 3 are presented in the following table.

(n, r) s (Ys:n, Yn:n) α4(2) (s, n; r, n) (n, r) s (Ys:n, Yn:n) α4(3) (s, n; r, n)
(35, 4) 6 (7.21, 33.44) 0.9204 (20, 4) 6 (7.21, 33.44) 0.9331
(35, 4) 8 (7.66, 33.44) 0.9185 (40, 5) 10 (7.93, 33.44) 0.9733
(40, 4) 10 (7.93, 33.44) 0.9288 (40, 6) 20 (8.96, 33.44) 0.9273

Ahmadi and Balakrishnan (2010) also used the same data set for constructing prediction
intervals for future ordinary record values.

6. Conclusion

In this paper, we derived the distribution-free prediction intervals for order statistics
and record values based on observed k-record values, as well as for future k-record values
based on observed order statistics. The coverage probabilities of these intervals are exact and
independent of the parent distribution. The proposed method can be extended to develop
outer and inner prediction intervals for future k-record intervals.
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Table 1: The values of α1(k) (s, t; r, n) for n = 20 and 30 and some selected
values of s, t and r when k = 2 and k = 3

n r s
k = 2 k = 3
t t

4 6 8 10 4 6 8 10

20

5
1 0.4061 0.4111 0.4113 0.4113 0.5208 0.5381 0.5392 0.5392
2 0.1103 0.1152 0.1154 0.1154 0.1902 0.2075 0.2086 0.2086
3 0.0210 0.0260 0.0261 0.0261 0.0478 0.0651 0.0661 0.0662

10
1 0.6562 0.7089 0.7139 0.7143 0.6789 0.8104 0.8349 0.8381
2 0.3204 0.3732 0.3782 0.3785 0.4104 0.5419 0.5664 0.5697
3 0.1028 0.1556 0.1606 0.1609 0.1644 0.2958 0.3203 0.3236

12
1 0.6895 0.7894 0.8036 0.8051 0.6274 0.8358 0.8936 0.9049
2 0.3927 0.4926 0.5068 0.5083 0.4277 0.6362 0.6939 0.7052
3 0.1468 0.2467 0.2609 0.2624 0.1951 0.4036 0.4613 0.4726

15
1 0.6327 0.8414 0.8971 0.9074 0.4378 0.7435 0.8969 0.9501
2 0.4331 0.6418 0.6975 0.7078 0.3413 0.6471 0.8004 0.8537
3 0.1978 0.4065 0.4622 0.4725 0.1837 0.4894 0.6428 0.6960

17
1 0.5013 0.7894 0.9112 0.9468 0.2635 0.5639 0.7937 0.9152
2 0.3794 0.6676 0.7893 0.8249 0.2199 0.5204 0.7502 0.8717
3 0.1961 0.4842 0.6059 0.6415 0.1305 0.4309 0.6607 0.7822

19
1 0.2795 0.5792 0.8001 0.9151 0.0959 0.2817 0.5125 0.7129
2 0.2313 0.5309 0.7518 0.8668 0.0847 0.2705 0.5014 0.7017
3 0.1354 0.4351 0.6560 0.7710 0.0552 0.2410 0.4718 0.6722

20
1 0.1384 0.3555 0.5859 0.7633 0.0342 0.1238 0.2729 0.4487
2 0.1195 0.3365 0.5669 0.7443 0.0309 0.1206 0.2697 0.4455
3 0.0749 0.2919 0.5223 0.6998 0.0211 0.1108 0.2599 0.4357

30

20
1 0.6908 0.8379 0.8637 0.8667 0.5546 0.8264 0.9214 0.9433
2 0.4366 0.5836 0.6095 0.6124 0.4117 0.6835 0.7785 0.8004
3 0.1806 0.3277 0.3535 0.3565 0.2065 0.4783 0.5733 0.5952

22
1 0.6498 0.8527 0.9008 0.9083 0.4523 0.7661 0.9125 0.9574
2 0.4449 0.6477 0.6959 0.7034 0.3553 0.6691 0.8155 0.8604
3 0.2017 0.4045 0.4527 0.4602 0.1920 0.5059 0.6523 0.6972

24
1 0.5727 0.8359 0.9219 0.9402 0.3323 0.6591 0.8652 0.9505
2 0.4213 0.6846 0.7705 0.7889 0.2741 0.6009 0.8070 0.8923
3 0.2086 0.4718 0.5578 0.5762 0.1590 0.4858 0.6918 0.7771

26
1 0.4538 0.7676 0.9131 0.9575 0.2069 0.4992 0.7545 0.9013
2 0.3565 0.6703 0.8158 0.8602 0.1781 0.4704 0.7257 0.8725
3 0.1926 0.5064 0.6519 0.6963 0.1105 0.4029 0.6581 0.8049

28
1 0.2900 0.6077 0.8312 0.9363 0.0936 0.2907 0.5402 0.7506
2 0.2423 0.5599 0.7834 0.8885 0.0837 0.2807 0.5303 0.7407
3 0.1433 0.4609 0.6844 0.7895 0.0556 0.2526 0.5022 0.7126

29
1 0.1930 0.4699 0.7216 0.8770 0.0489 0.1777 0.3804 0.5949
2 0.1661 0.4429 0.6947 0.8501 0.0445 0.1733 0.3760 0.5905
3 0.1031 0.3800 0.6317 0.7872 0.0306 0.1594 0.3621 0.5766

30
1 0.0911 0.2718 0.4982 0.6964 0.0166 0.0730 0.1877 0.3465
2 0.0808 0.2615 0.4879 0.6861 0.0154 0.0718 0.1864 0.3452
3 0.0529 0.2336 0.4601 0.6582 0.0109 0.0674 0.1820 0.3408
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Table 2: The values of α3(k) (s, t; r, n) for n = 10, 20 and 30 and some selected
values of s, t and r when k = 2 and k = 3

n r s
k = 2 k = 3
t t

4 5 6 7 8 4 5 6 7 8

10

2
2 0.1569 0.1601 0.1607 0.1609 0.1609 0.0060 0.0156 0.0184 0.0192 0.0194
3 0.3220 0.3252 0.3259 0.3260 0.3260 0.0296 0.0392 0.0420 0.0428 0.0430
5 0.6527 0.6559 0.6565 0.6567 0.6567 0.0861 0.0957 0.0985 0.0993 0.0995

4
2 0.3701 0.3909 0.3974 0.3992 0.3998 0.0192 0.0693 0.0905 0.0990 0.1022
3 0.6046 0.6253 0.6318 0.6337 0.6342 0.0976 0.1477 0.1689 0.1774 0.1806
5 0.8715 0.8922 0.8987 0.9006 0.9011 0.2125 0.2625 0.2838 0.2922 0.2955

6
2 0.5279 0.5942 0.6237 0.6357 0.6403 0.0215 0.1390 0.2090 0.2475 0.2674
3 0.7275 0.7938 0.8232 0.8353 0.8399 0.1432 0.2606 0.3307 0.3692 0.3891
5 0.8627 0.9290 0.9585 0.9705 0.9752 0.2525 0.3699 0.4400 0.4785 0.4983

8
2 0.5219 0.6563 0.7419 0.7915 0.8183 0.4357 0.1488 0.2772 0.3743 0.4427
3 0.6315 0.7659 0.8514 0.9010 0.9279 0.1007 0.2551 0.3835 0.4806 0.5490
5 0.6742 0.8086 0.8941 0.9437 0.9705 0.1562 0.3106 0.4389 0.5361 0.6044

20

2
2 0.0609 0.0612 0.0612 0.0612 0.0612 0.0012 0.0024 0.0025 0.0026 0.0026
3 0.1571 0.1571 0.1571 0.1571 0.1571 0.0062 0.0074 0.0076 0.0076 0.0076
4 0.2921 0.2925 0.2925 0.2925 0.2925 0.0146 0.0158 0.0158 0.0160 0.0160

5
3 0.4351 0.4393 0.4400 0.4402 0.4402 0.0446 0.0583 0.0619 0.0627 0.0629
5 0.7902 0.7944 0.7952 0.7953 0.7954 0.1282 0.1419 0.1455 0.1463 0.1465
7 0.9433 0.9475 0.9483 0.9484 0.9485 0.1851 0.1989 0.2035 0.2033 0.2035

7
3 0.5882 0.6006 0.6035 0.6041 0.6043 0.0865 0.1218 0.1336 0.1372 0.1382
5 0.8847 0.8970 0.9000 0.9006 0.9007 0.2058 0.2411 0.2529 0.2565 0.2575
9 0.9818 0.9942 0.9971 0.9977 0.9979 0.2770 0.3123 0.3241 0.3277 0.3288

12
5 0.8730 0.9437 0.9729 0.9836 0.9871 0.2707 0.4027 0.4792 0.5185 0.5369
7 0.8836 0.9543 0.9835 0.9942 0.9977 0.2896 0.4216 0.4981 0.5374 0.5558

10 0.8843 0.9550 0.9842 0.9949 0.9984 0.2919 0.4239 0.5004 0.5397 0.5581

15
4 0.8749 0.9456 0.9747 0.9854 0.9890 0.1641 0.3349 0.4699 0.5639 0.6232
8 0.8843 0.9550 0.9842 0.9949 0.9984 0.1836 0.3544 0.4894 0.5834 0.6427

12 0.8843 0.9550 0.9842 0.9949 0.9985 0.1837 0.3545 0.4894 0.5835 0.6428

18
5 0.4278 0.5981 0.7388 0.8414 0.9091 0.0376 0.1602 0.2960 0.4284 0.5450

10 0.4279 0.5982 0.7389 0.8415 0.9093 0.0381 0.1608 0.2966 0.4289 0.5455
17 0.4279 0.5982 0.7389 0.8415 0.9093 0.0381 0.1608 0.2966 0.4289 0.5455

30

10
2 0.3290 0.3388 0.3408 0.3412 0.3413 0.0170 0.0469 0.0558 0.0582 0.0588
5 0.8889 0.8987 0.9007 0.9011 0.9011 0.2015 0.2314 0.2403 0.2427 0.2433
7 0.9726 0.9824 0.9844 0.9848 0.9848 0.2598 0.2897 0.2986 0.3010 0.3016

15
5 0.9200 0.9594 0.9718 0.9753 0.9761 0.2872 0.3792 0.4210 0.4377 0.4438

10 0.9435 0.9829 0.9954 0.9988 0.9997 0.3243 0.4163 0.4581 0.4748 0.4809
12 0.9435 0.9829 0.9954 0.9988 0.9997 0.3245 0.4165 0.4583 0.4750 0.4810

20
8 0.8240 0.9243 0.9710 0.9900 0.9968 0.2520 0.4155 0.5239 0.5865 0.6188

15 0.8240 0.9243 0.9710 0.9900 0.9969 0.2522 0.4156 0.5240 0.5867 0.6190
18 0.8240 0.9243 0.9710 0.9900 0.9969 0.2522 0.4156 0.5240 0.5867 0.6190

25 10 0.5611 0.7324 0.8524 0.9254 0.9651 0.0860 0.2460 0.4026 0.5357 0.6366
15 0.5611 0.7324 0.8524 0.9254 0.9651 0.0860 0.2460 0.4026 0.5357 0.6366
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Table 3: The values of α4(k) (s, n; r, n) for n = 10, 20, 30, 35 and 40 and some selected
values of s and r when k = 2 and k = 3

n s
k = 2 k = 3
r r

4 5 6 7 8 4 5 6 7 8

10
2 0.7280 0.6016 0.4758 0.3633 0.2696 0.8841 0.8211 0.7369 0.6432 0.5481
4 0.7022 0.5934 0.4734 0.3626 0.2694 0.8128 0.7902 0.7245 0.6384 0.5464
6 0.6169 0.5537 0.4567 0.3561 0.2670 0.6337 0.6785 0.6616 0.6056 0.5302
8 0.4093 0.4141 0.3732 0.3102 0.2433 0.3332 0.4150 0.4564 0.4590 0.4321

20

2 0.8569 0.7563 0.6402 0.5212 0.4098 0.9639 0.9286 0.8756 0.8070 0.7265
4 0.8547 0.7560 0.6401 0.5212 0.4098 0.9558 0.9268 0.8752 0.8069 0.7265
6 0.8478 0.7545 0.6398 0.5211 0.4098 0.9331 0.9196 0.8732 0.8064 0.7264
8 0.8315 0.7497 0.6386 0.5209 0.4097 0.8860 0.9003 0.8663 0.8041 0.7257
10 0.7992 0.7379 0.6349 0.5158 0.4094 0.8057 0.8587 0.8475 0.7965 0.7229
15 0.5808 0.6128 0.5725 0.4918 0.3978 0.4346 0.5691 0.6508 0.6761 0.6550
18 0.2852 0.3546 0.3791 0.3627 0.3191 0.1463 0.2325 0.3151 0.3787 0.4149

30

2 0.9068 0.8272 0.7262 0.6135 0.4998 0.9829 0.9618 0.9268 0.8766 0.8122
4 0.9063 0.8272 0.7262 0.6135 0.4998 0.9809 0.9615 0.9267 0.8766 0.8122
6 0.9048 0.8270 0.7262 0.6135 0.4998 0.9753 0.9603 0.9265 0.8766 0.8122
8 0.9013 0.8263 0.7261 0.6134 0.4997 0.9631 0.9570 0.9257 0.8764 0.8121
10 0.8946 0.8248 0.7257 0.6134 0.4997 0.9413 0.9498 0.9236 0.8759 0.8120
15 0.8504 0.8102 0.7216 0.6123 0.4995 0.8239 0.8945 0.9012 0.8677 0.8093
20 0.7307 0.7515 0.6971 0.6033 0.4965 0.5902 0.7323 0.8056 0.8181 0.7860
25 0.4680 0.5596 0.5786 0.5389 0.4649 0.2628 0.4014 0.5230 0.6059 0.6423

35

2 0.9215 0.8499 0.7556 0.6470 0.5341 0.9873 0.9704 0.9411 0.8976 0.8397
4 0.9213 0.8499 0.7556 0.6470 0.5341 0.9862 0.9702 0.9411 0.8976 0.8397
6 0.9204 0.8498 0.7556 0.6470 0.5341 0.9829 0.9696 0.9410 0.8976 0.8397
8 0.9185 0.8495 0.7556 0.6470 0.5341 0.9758 0.9680 0.9407 0.8975 0.8397
10 0.9148 0.8488 0.7555 0.6469 0.5341 0.9630 0.9644 0.9398 0.8973 0.8397
15 0.8909 0.8422 0.7539 0.6466 0.5341 0.8920 0.9364 0.9303 0.8945 0.8389
25 0.6871 0.7394 0.7093 0.6294 0.5280 0.5020 0.6622 0.7642 0.8047 0.7946
30 0.4219 0.5289 0.5689 0.5476 0.4852 0.2107 0.3405 0.4663 0.5639 0.6202

40

2 0.9327 0.8679 0.7795 0.6750 0.5636 0.9998 0.9767 0.9515 0.9135 0.8613
4 0.9323 0.8679 0.7795 0.6750 0.5636 0.9998 0.9767 0.9514 0.9135 0.8613
6 0.9318 0.8678 0.7795 0.6750 0.5636 0.9998 0.9762 0.9514 0.9135 0.8613
8 0.9308 0.8676 0.7795 0.6750 0.5636 0.9965 0.9753 0.9512 0.9135 0.8613
10 0.9288 0.8672 0.7795 0.6750 0.5636 0.9887 0.9733 0.9508 0.9134 0.8612
15 0.9142 0.8639 0.7788 0.6748 0.5636 0.9458 0.9582 0.9464 0.9122 0.8610
20 0.8771 0.8516 0.7754 0.6740 0.5634 0.8442 0.9108 0.9273 0.9055 0.8588
25 0.7965 0.8152 0.7615 0.6694 0.5621 0.6762 0.8014 0.8677 0.8772 0.8468
30 0.6437 0.7216 0.7137 0.6482 0.5537 0.4360 0.5966 0.7189 0.7830 0.7937
35 0.3823 0.4991 0.5557 0.5506 0.4999 0.1718 0.2916 0.4166 0.5231 0.5943
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Table 4: Values of α7(k) (s, t; 1) for 1 ≤ s ≤ 7 and 4 ≤ t ≤ 7

s
k = 2 k = 3
t t

4 5 6 7 4 5 6 7
1 0.1358 0.2016 0.2455 0.2748 0.0035 0.0527 0.1121 0.1565
2 0.3580 0.4239 0.4678 0.4970 0.1911 0.2402 0.2995 0.3440
3 0.5062 0.5720 0.6159 0.6452 0.3317 0.3808 0.4401 0.4846
4 0.6049 0.6707 0.7146 0.7339 0.4372 0.4862 0.5456 0.5901
5 0.6708 0.7366 0.7805 0.8098 0.5163 0.5654 0.6247 0.6692
6 0.7147 0.7805 0.8244 0.8537 0.5756 0.6247 0.6840 0.7285
7 0.7439 0.8098 0.8537 0.8829 0.6201 0.6692 0.7285 0.7730

Table 5: Values of α7(k) (s, t; 2) for 1 ≤ s ≤ 7 and 4 ≤ t ≤ 7

s
k = 2 k = 3
t t

4 5 6 7 4 5 6 7
1 0.1502 0.2599 0.3477 0.4160 0.0011 0.0018 0.0759 0.1538
2 0.3684 0.4781 0.5659 0.6342 0.1126 0.2115 0.3005 0.3784
3 0.4605 0.5702 0.6580 0.7263 0.2262 0.3251 0.4141 0.4919
4 0.5019 0.6117 0.6994 0.7678 0.2873 0.3862 0.4752 0.5530
5 0.5213 0.6310 0.7188 0.7871 0.3213 0.4201 0.5091 0.5870
6 0.5304 0.6401 0.7279 0.7963 0.3405 0.4393 0.5284 0.6062
7 0.5349 0.6446 0.7323 0.8006 0.3516 0.4505 0.5395 0.6173
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Abstract 

Agricultural commodity price is very volatile in nature due to its nonlinearity and 

nonstationary character. The volatility behaviour of the commodity price creates a lot of problems 

for both producer and consumer. The steady forecast of the price may reduce the problems and 

increase the profit for the stakeholders. In this study, an ensemble hybrid machine learning model 

based on empirical mode decomposition (EMD) has been proposed to forecast the commodity 

price. EMD decomposes the nonstationary and nonlinear price series into different stationary 

intrinsic mode functions (IMF) and a final residue. Then Machine learning techniques like 

Artificial neural network (ANN) and Support vector regression (SVR) were used to forecast each 

of the decomposed components. Finally, all the forecasted values of the decomposed components 

were aggregated to produce the final forecast. Two R modules were developed for the application 

of the proposed methodology. The proposed methodology has been applied to the monthly 

wholesale price index of vegetables. The results indicated that the ensemble hybrid machine 

learning model based on empirical mode decomposition has superior performance compared to 

generic models. 

Key words:  Agricultural commodity price; Machine learning; Empirical mode decomposition; 

Nonlinearity; Nonstationary; Artificial neural network; Support vector regression. 

  

1. Introduction 

The scientific and effective forecasting method is helpful to correctly guide producers and 

policy makers to match the supply and demand of the agricultural production and facilitate the 

decision-making process of the government. Agricultural price forecasting is not an easy task due 

to its dependency on many extraneous factors. Nonlinearity and nonstationary behaviour of data 

series are crucial problems in the agricultural price forecasting. Agricultural commodity prices are 

volatile in nature due to seasonality, inelastic demand, production uncertainty etc. Traditionally, 

time series forecasting has been dominated by linear methods like ARIMA (Box and Jenkins, 

1970) and nonlinear models such as SETAR, STAR, etc. because they are well understood and 

effective in many situations. These traditional methods suffer from some limitations, such as linear 

models focusing on linear relationships, fixed temporal dependence etc. and nonlinear models 

mailto:pankaj.iasri@gmail.com
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require the specific nonlinear relation of data generating process to be known a priori. Zhang et al. 

(1998) demonstrated that traditional methods requiring the time series data to be stable or stable 

after being differentiated. On the other hand, Machine learning (ML) models with their flexible 

functional designs and powerful self-learning capabilities have recently become a great alternative 

for time series data forecasting. Machine learning techniques like Artificial Neural Network 

(ANN) and Support Vector Machine (SVM) become popular to handle the nonlinearity problem 

in the dataset (Qin and Chiang, 2019). Darbellay and Slama (2000) highlighted that ANN which 

is non-linear, nonparametric and data driven self-adaptive method, is most suitable for forecasting 

agricultural price series which is inherently noisy and nonlinear in nature. Levis and Papageorgiou 

(2005) clarified the numerous advantages of SVR for nonlinear times series forecasting. Lu et al. 

(2009) demonstrated the generalization characteristics of SVR for finding a unique solution. An et 

al. (2012) reported that empirical mode decomposition (EMD) can reveal the hidden pattern and 

trends of time series which can effectively assist in designing forecasting models for various 

applications. Sugiyama and Kawanabe (2012) stated the inability of ML techniques to counter the 

nonstationarity behaviour of a dataset. Huang et al. (1998) pointed out how EMD is capable to 

deal with the problem of inherent nonstationarity or nonlinearity in a time series dataset. EMD has 

the power to isolate the high fluctuating data into respective smaller frequency components 

(Mumtaz et al., 2019). EMD also has the capability to reduce the influence of nonlinear 

characteristics of the stock series (Xuan et al., 2020) 

It has been observed in the literature that a single model is not sufficient to deal with 

complex real-world systems such as agricultural price data which contains unknown mixed 

patterns. Besides, inherent non-stationarity and nonlinearity behaviour of price series create 

problems in robust forecasting (Taylor and Kingsman, 1978). ML algorithms are compatible and 

efficient to deal with nonlinear problems (Bishop, 1995). To handle non-stationarity features, the 

inputs for machine learning models need to be properly pre-processed (Wang et al., 2017). 

Therefore, some multi-resolution analysis techniques are widely used in many forecasting 

problems. In view of these factors, there is an ever-increasing need of using hybrid models to 

improve the accuracy of predictions. In order to improve forecast accuracy, hybridization is a good 

idea because it can capture various patterns in the data concurrently. Hybrid models, combining 

the benefits of different models, are suggested to achieve better prediction and the decomposition 

approaches such as EMD enhance the performance of hybrid models (Mo et al., 2020). These 

studies led to the development of novel hybrid models which are more robust as they often 

compliment the advantages of the individual technique involved and improve the forecasting 

accuracy. In this study, novel hybrid models have been proposed by combining EMD and ML 

algorithms like ANN and SVR to deal with nonlinearity and non-stationarity problems in a time 

series data. EMD counters with non-stationarity of a time series data by decomposing into several 

stationary components which is nonlinear in nature. Further ANN and SVR models have been used 

to forecast these nonlinear decomposed components. We have used monthly wholesale price index 

of vegetables for practical evaluation and compared the proposed model with other models, 

including hybrid and individual models. 

 The remaining portion of the paper is organized as follows. Section 2 deals with the 

methodology. The data and results of the experiment are explained in the third section. The final 

section concludes the paper. 
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2. Materials and methods 

 

2.1.  Empirical mode decomposition (EMD) 

 

The empirical mode decomposition method was introduced by Huang et al. in 1998. It 

assumes that the data have many coexisting oscillatory modes of significantly distinct frequencies 

and these modes superimpose on each other and form an observable time series. EMD decomposes 

original nonstationary and nonlinear data into a finite and small number of independent sub-series 

(including intrinsic mode functions and a final residue). Intrinsic Mode Function (IMF) is the finite 

additive oscillatory component decomposed by EMD. For example, let ty  be a time series (TS) 

dataset at time t consisting of high frequency part and low frequency part. After first 

decomposition, original time series data results into first IMF and the residue. The decomposed TS 

takes the following form: 

(1) (1)t t ty d r                                                                                     (1) 

where dt(1) = high frequency part i.e. IMF and rt(1) = low frequency part i.e. residue. EMD 

algorithm iterates over the slow oscillation component considered as a new signal. In the next 

iteration, the residue rt(1) will be treated as new signal for EMD decomposition. 

After second decomposition, 

                   (1) (2) (2)t t tr d r   

Let us assume that yt has been decomposed into k numbers of IMFs and final residues after the 

EMD decomposition process completes. Then, ty can be expressed as follows: 

 
1

( )
k

t t

i

y d i R


                                                                                          (2) 

Hence, original time series data = sum of IMFs + final residue (R). The stepwise EMD algorithm 

procedure is mentioned below: 

 

 

 

 

All these steps come under the first iteration in the shifting process for ty . The shifting 

process continues till we obtain an IMF. The point of termination of a sifting process is called 

stopping point  𝑘 and the iteration is called 𝑘𝑡ℎ iteration. The stopping criteria of an iteration is the 

standard deviation () between two IMF (d) values.  The predefined threshold value ranges 
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between 0.2 to 0.3 (Huang et al., 1998). When the  value lies between 0.2 to 0.3, the iteration 

should stop. The threshold value is calculated using the given expression: 

2

2
0

( ( ( 1) ( ))
Threshold value

( ( 1)

T
t t

l t

d l k d lk

d l k

  
  

 
                                               (3) 

2.2. Artificial neural network (ANN) model 

Artificial neural network is a non-linear, data driven self-adaptive approach as opposed to 

the traditional model based methods (Jha and Sinha, 2014). ANN can identify and learn correlated 

patterns between input data sets and corresponding target values. ANN imitates the learning 

process of the human brain and can process problems involving non-linear and complex data even 

if the data are imprecise and noisy. Thus, it is ideally suited for modelling of agricultural data 

which are known to be complex and often non-linear. Haykin (1999) stated mathematically that a 

neuron k can be defined by the following equations: 

 
1

m

k kj j

j

u w x


                                                                                                    (4) 

            ( )k k ky u b                                                                                               (5) 

 Here bias (bk), has the effect of increasing or lowering the net input of the activation function. 

1 2,  ,  ...,  mx x x are the inputs; 
1 2,,  . . .,  k k kmw w w are the weights of the neuron k; ku is the linear 

combiner output due to input variables; φ(.) is the activation function; ky is the output of the 

neuron, kjw the weight attached to the connection from  jth hidden node to the output node. The 

backpropagation algorithm can be implemented under the following components: 

1. Data should contain input-output pair ( , )i ix y , where 
1 1{ , ,..., }i t d t d tx y y y    the input, d is a 

user-defined parameter, which corresponds to the number of previous time-steps and 

i ty y  is the desired output. For T data of 1 1{( , ),..., ( , )}T TX x y x y  . 

2. Need a feedforward neural network. Let the parameters of the network be denoted by . 

The parameters of interest in backpropagation are the weights k

ijw , node j in layer 𝑙𝑘 and 

node i in layer 𝑙𝑘−1 and bias 
k

ib the bias for node i in layer 𝑙𝑘. 

 Error function 2

1

1
ˆ( , ) ( )

2

T

t t

t

E X y y
T




  ; where ˆ
ty  are the computed output of the network 

on input tx  and ty  is the target value for input-output pair ( , )i ix y . 

 In the present study, Logistic function was used as an activation function and resilient 

backpropagation algorithm was used to adjust the weights in the multi-layered feed-forward 

network. 

2.3.  Support vector regression (SVR) model 

 Vapnik (1998) introduced support vector regression model by incorporating a loss function. 

SVR fits linear regression in the outer space through mapping input vectors into a high dimensional 
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space. In the present study, a modified SVR model named least squares support vector regression 

(LS-SVR) proposed by Suykens et al. (2002) has been used. LS-SVR model focuses on set of 

linear equations instead of a quadratic programming problem in SVR model. 

LS-SVR model is represented as: 

( )Ty w x b                                                                                                    (6) 

with Tx R  and  , mapping function tnnR R to high dimensional feature space, bias b and error 

e. For a given training set 1{ , }T

t t tx y  , optimization problem becomes as follows: 

                 2

{ , , }

1

1 1
min ( , )

2 2

T
T

w e b t

t

J w e w w e


                                                                  (7) 

where ( )t

t t te y w x b   is the fitting errors, subject to equality constraints 

( )T

t t ty w x b e   ; t= 1, 2,…,T.                                                                      (8) 

This is a form of ridge regression. Now incorporating Lagrange multiplier 𝛼𝑡 
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t t t t
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                                               (9) 

with following conditions of optimality 
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Solution will be 
1

00 1

1

T b

yI  
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with      1 1,..., ,1 1,...,1 , ,...,T Ty y y      . By applying Mercer’s condition 

' ' ' '

1 1 1 1

1
( , ) ( ) ( ) ( )( ) ( , )

2
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where d = scalar vector of x, ( , )t uK x x  is the kernel function. 

The final LS-SVR model can be written as: 

1

( ) ( , )
T

t t

t

y x K x x b


                                                                                                 (13) 

In the present study, least squares SVR model with Radial basis function (RBF) kernel was 

used for nonlinear mapping of dataset. 

2.4.  Proposed ensemble hybrid model 

 Ensemble method is a machine learning approach which combines multiple base models to 

produce an optimal predictive model. The proposed EMD-SVR/ANN consists of three steps 
depicted in Figure 1. In the first step, original nonlinear and nonstationary dataset is decomposed 

into a finite and often small numbers of independent sub-series by EMD technique. This sub-series 

contain k intrinsic mode functions (IMFs) and a final residue. Secondly, these IMFs and residue is 

modelled and predicted through ANN or SVR. Then, all the forecasted values of the IMFs and 

residue are summed up to produce ensemble forecast for the original series. The prediction model 

of ANN (Equation 5) and SVR (Equation 13) were used with decomposed components as inputs. 

The input lags were selected based on Akaike information criterion (AIC) and Bayesian 

information criterion (BIC).  

  

 
 

Figure 1: EMD based ensemble hybrid machine learning model for a dataset 

 

2.5.  Assessment of the fitted models 

 

 The fitted models were assessed using the performance measures like root mean squared 

error (RMSE), mean absolute deviation (MAD), mean absolute percentage error (MAPE) and 

maximum error (ME). These performance measures can be expressed as follows: 
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where ty  and ˆ
ty  are the actual value and predicted value of response variable and T is the number 

of data points. For comparing the forecasting performance, the DM (Diebold and Mariano, 1995) 

test was used. 

3. Results and discussion 

The complete analysis of the present study was done using RStudio. For analysis, two R 

packages i.e. EMDANNhybrid (Das et al., 2021) and EMDSVRhybrid (Das et al., 2021) have been 

developed and are available in CRAN repository. Considering the time dependency of 

observations, the data was divided into training and testing set for all models. 

3.1.  Data source 
 

 In the present study, monthly price index of vegetables was used to evaluate the performance 

of the proposed EMD-ANN and EMD-SVR models. The dataset was obtained from the Office of 

the Economic Advisor, Ministry of Commerce, Government of India (https://eaindustry.nic.in/). 

Figure 2 illustrates the monthly data of wholesale price index (WPI) of vegetables (January 2005 

to November 2020) containing 191 data points. The descriptive statistics, stationarity test and 

normality of sample data were presented in Table 1. The statistics obtained through Augmented 

Dickey-Fuller (ADF) and Phillips-Perron (PP) test were insignificant i.e. null hypothesis of the 

unit root test cannot be refused. It indicated that the given dataset was nonstationary. Jarque-Bera 

test (Table 1) indicated the nonnormality of data.  

Table 1: The descriptive statistics, stationarity and normality tests of data 

Descriptive statistics Stationarity test Normality test 

Numbers of 

observations  

191 Augmented Dickey-

Fuller test  

(p value) 

Phillips-

Perron test  

(p value) 

Jarque-Bera 

test 

(p value) 

Maximum 284.90  

0.23 

 

0.30 

 

<0.01 Minimum  43.70 

Mean 121.97 

Standard deviation 52.17 

Skewness 0.64 

Kurtosis -0.12 

 

 Brock-Dechert-Scheinkman (Brock et al., 1996) test was used in the dataset for checking the 

nonlinearity of data. The results of the BDS test (Table 2) indicated that the test statistics were far 



106                   PANKAJ DAS, GIRISH KUMAR JHA AND ACHAL LAMA                   [Vol. 21, No. 1 

bigger than the critical values. It provided a piece of evidence to reject the null hypothesis that the 

price series is linearly dependent. The results obtained from various tests revealed that the monthly 

vegetables WPI dataset is nonlinear and nonstationary in nature. These characteristics of the 

dataset enabled us to implement and evaluate the performance of the proposed EMD-ANN/SVR 

models with existing individual models. 

 

Figure 2: Time plot of vegetables monthly price index (2004-05=100) 

Table 2: Results of Brock- Dechert-Scheinkman (BDS) test 

Embedding dimension Conclusion 

2 3 

Statistics Probability Statistics Probability  

Nonlinear 102.75 ˂ 0.001 172.21 ˂ 0.001 

54.88 ˂ 0.001 68.12 ˂ 0.001 

40.38 ˂ 0.001 42.96 ˂ 0.001 

37.68 ˂ 0.001 37.17 ˂ 0.001 

 

3.2. EMD decomposition 

 

 The EMD, as an adaptive decomposition technique is quite effective in extracting 

characteristic information from nonlinear and nonstationary time series. EMD methodology has 

been employed to decompose the series. Firstly, EMD algorithm finds the local extreme values 

(i.e. maxima and minima) from the dataset. Local extrema are the points where slope sign is 

changed. The envelopes are the curve that passing through the local extrema. The curves passing 

through the local minima and local maxima are known as upper envelope and lower envelope 

respectively. Mean envelope are the curves that is passing through mean values of local maxima 

and minima. The whole process of EMD decomposition has been visualized in Figure A.1. The 

figure gives an idea of how the EMD algorithm finds the envelopes and residue from a dataset. In 

the given figure red line and blue line indicates the upper and lower envelope respectively. The 

mean envelope and the residue are denoted using black and green lines in Figure A.1. The original 

series has been decomposed into four IMFs and one final residue using EMD (Figure A.2). It has 
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been observed that the frequencies and amplitudes of IMFs were different and independent from 

each other. Thus, the different hidden oscillatory modes in the original datasets were separated by 

EMD. Each decomposed IMF contains certain characteristics of the dataset which needs to be 

modelled and forecasted using appropriate model. 

 

 After decomposition, it is pertinent to check the stationarity of IMFs and residue. The results 

(Table 3) of the test indicated that all IMFs were stationary, but the final residue was nonstationary 

because it contains the remaining portion of the data that cannot be decomposed by the EMD 

algorithm. As stationarity is one of the important assumptions for forecasting, hence, the 

nonstationary residue as such cannot be used in forecasting. The residue was transformed into 

stationary by first differencing. The stationary decomposed parts i.e. IMFs and the differenced 

residue were used for forecasting. 

 

Table 3: Unit root test of decomposed components of vegetables WPI dataset 

 

Components Augmented Dickey-

Fuller test (p-value) 

Augmented Dickey-

Fuller test (p-value) 

Remarks 

IMF1 <0.01 <0.01 Stationary 

IMF2 <0.01 <0.01 Stationary 

IMF3 <0.01 <0.01 Stationary 

IMF4 <0.01 <0.01 Stationary 

Residue 0.14 0.14 Nonstationary 

 

3.3.  ANN training and forecasting 

ANN model was employed to different IMFs and final residue for forecasting purpose as it 

is capable of handling nonlinear and complex data. For this purpose, the EMDANNhybrid R-

Package has been developed and used for analysis. Backpropagation training algorithm was used 

for ANN fitting. In practice, ANN with a small number of parameters namely input lags and hidden 

nodes often perform better for out of sample forecasting. This may be because over-fitting is a 

common problem in case of neural network models with a large number of parameters. In this 

study, we varied input lags and hidden nodes from one to five. ANN model with three input lags 

and four hidden nodes was found to be the most suitable model for the given dataset in terms of 

accuracy criterion. The other parameters like the maximum number of iterations for the neural 

network was fixed at 200. We averaged the results of 26 neural networks for getting the final 

output. The number of neural networks to be averaged was selected based on the minimum error 

criterion. We tried averaging 10 to 50 neural networks and obtained the best result on 26 number 

of neural networks. In our study, 80% of data as training set and the remaining 20% as testing set 

were used. 

3.4.  SVR training and forecasting 

Similarly, the SVR model was also fitted to different IMFs and final residue. The each 

component (IMFs and residue) was modelled and forecasted using the EMDSVRhybrid R-package, 

developed under this study. The SVR model was preferred over other machine learning algorithms 

due to its capability to handle nonlinear systems as well as its suitability for a small sample size. 
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For employing the SVR model, we divided the dataset into training and testing sets. The training 

set is used for model building purposes whereas, the testing set allows us to understand the 

generalization ability of the developed model. In this study, we have used 80% of the data as a 

training set and the remaining 20% as a testing set. The developed SVR model for each 

decomposed component (IMFs and residue) was used to forecast the respective components. Then 

all the forecasted values of IMFs and residue were summed up to get an ensemble forecast of the 

data. Radial Basis Function (RBF), polynomial, linear and sigmoid kernel functions were 

implemented in SVR model fitting. The best result was obtained using the RBF kernel function. 

To overcome the problem of overfitting, 10-fold cross-validation was also done. 

3.5.  Performance comparison of fitted models 

The performance (in-sample and out-sample) of the EMD-ANN and EMD-SVR model was 

compared with the individual ANN and SVR model (Table 4 and 5) with forecasting horizon of 

six months.  Both the in-sample and out-sample performance of EMD-SVR was relatively superior 

as compared to other competing models. EMD based ANN and SVR models outperformed the 

individual models like ANN and SVR. The reason behind the poor performance of singular ANN 

and SVR models can be attributed mainly to the fact that these models could not handle the 

nonstationary behaviour of the given dataset. On the other hand, the hybrid models EMD-ANN 

and EMD-SVR performed better due to the ability to capture both nonlinearity and nonstationarity 

patterns of the dataset. 

Table 4: In-sample performance of fitted models 

 ANN SVR EMD-ANN EMD-SVR 

RMSE 10.68 28.25 5.13 3.15 

MAPE 5.22 0.21 0.04 0.03 

MAD 6.67 20.84 4.36 2.71 

ME 0.87 98.19 19.63 15.76 

 

Table 5: Out-sample performance of fitted models 

 ANN SVR EMD-ANN EMD-SVR 

RMSE 44.39 54.39 25.36 23.69 

MAPE 0.26 0.24 0.15 0.10 

MAD 41.33 44.80 23.12 17.12 

ME 69.81 115.83 67.23 68.74 

 

Further DM test was employed to assess the accuracy of the EMD-SVR model compared to 

the EMD-ANN model. The null hypothesis of the DM test was that both models have the same 

accuracy.  Results of Table 6 clearly indicated that the EMD-SVR model was superior to the EMD-

ANN model in terms of all the criteria. The test also indicated that the forecasting performance of 

both EMD-ANN and EMD-SVR gave better results compared to the individual ANN and SVR 

models. The novelty of the proposed ensemble approach is that it can handle nonlinear and 

nonstationary data which is difficult for the existing time series methods. Our empirical findings 
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suggest that the proposed EMD-SVR and EMD-ANN models can be considered as an alternative 

tool for volatile agricultural price series forecasting. 

Table 6: Results of Diebold-Mariano (DM) test 

Hypothesis DM value p value Remarks 

H0: The accuracy of both EMD-

SVR and EMD-ANN is same. 

H1:  The accuracy of EMD-SVR 

is superior to  EMD-ANN. 

5.48 <0.01 The accuracy of EMD-SVR is 

superior to  EMD-ANN. 

H0: The accuracy of both EMD-

SVR and SVR is same. 

H1:  The accuracy of EMD-SVR 

is superior to SVR. 

3.02 <0.01 The accuracy of EMD-SVR is 

superior to SVR. 

H0: The accuracy of both EMD-

ANN and ANN is same. 

H1:  The accuracy of EMD-ANN 

is superior ANN. 

6.23 <0.01 The accuracy of EMD-ANN is 

superior ANN. 

 

4. Conclusion 

 In this study, EMD based hybrid machine learning models for forecasting have been 

proposed to deal with inherent nonlinearity and non-stationarity behaviour in a time series dataset. 

Single models fail to capture both aforementioned characteristics in a dataset. To deal with these 

problems, one decomposition technique namely EMD and two machine learning algorithms i.e. 

ANN and SVR were combined to formulate two hybrid models. The hybrid models, EMD-ANN 

and EMD-SVR are capable to deal with the nonlinearity and non-stationarity in a dataset. The 

performance of hybrid models was also evaluated with a real dataset. The empirical results clearly 

demonstrated the superior forecast accuracy of the proposed hybrid models (EMD-ANN and 

EMD-SVR) as compared to the individual ANN and SVR model. 
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Figure A.1: EMD process in the monthly vegetables WPI dataset 
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Figure A.2: Decomposed components of monthly vegetables WPI dataset 
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Abstract
In modelling ROC curves, there are several bi-distributional ROC models available in

the literature. These are developed in the context of normal and non-normal data patterns
and in the framework of binary classification. However, in most of the practical data at
hand may exhibit multi-model patterns or it may be of multi-class, then the existing bi-
distributional ROC forms are not viable to apply and fit the curve. So, in this paper,
we made an attempt to address the above mentioned situations using finite mixtures. We
proposed a mixture Exponential ROC model and its measures like AUC, FPR, TPR and
optimal cut-offs are derived. The methodology is supported with simulated and real data
sets.

Key words: Area under the curve; Exponential distributions; Finite mixture; ROC curve.
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1. Introduction

The Receiver Operating Characteristic (ROC) curve is a classification tool that is
widely used in the field of diagnostic medicine. Classification of individuals into one of the
predefined groups/populations will be based on a cut-off. For a given value of cut-off, one can
define the pair of true-positive rates (TPRs) and false-positive rates (FPRs), using these the
ROC curve is constructed. The summary measure of ROC, which assesses the performance
of a particular diagnostic test, is the area under the curve (AUC) whose value lies between
0 and 1. Higher the AUC value, the better the diagnostic test’s performance.

The initial work on the distributional approach to model the ROC curve was by Green
et al. (1966) where data is assumed to follow the gaussian distribution. In later years,
Dorfman and Alf (1968) gave the maximum likelihood estimates for the binormal ROC
curve. Metz (1978) gave a detailed explanation about the basic principles of ROC curve
and its measures. Estimation of the parameters of the binormal model was of prime focus
by many researchers. Goddard and Hindberg (1990) proposed a ROC model that meets
the criterion of non-normal data, namely the Bi-logistic ROC model. Farraggi and Reiser
(2002) provided the parametric and non-parametric approach of estimating the AUC of the
ROC curve. Over the years, many researchers have attempted to develop Bi-distributional
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ROC curves; a few to mention are the Bi-Generalized Exponential ROC model by Hussain
(2011), Vardhan et al. (2012) on Bi-Exponential and Bi-Weibull ROC model, Bi-Gamma
ROC model by Hussain (2012). A detailed review of several bi-distributional ROC models
was made by Balaswamy and Vishnu (2016).

In classification, one of the main issues is that in most of the data sets, we do not have
the information about the group membership; there, we need to use appropriate statistical
methods to figure out the homogeneous subsets. We can make the graphical depiction of
unsupervised data, and it may exhibit unimodal or multi-model patterns that exist in the
data. One of the most widely used methodologies that helps to sum up the multi-model
patterns accompanied by their respective weights in the form of convex combination is the
Finite Mixture Models (FMM). The general expression of the finite mixture distribution is
given in equation (1).

g(x) =
k∑

i=1
πifi(x) (1)

where, πi’s are the mixture proportions or mixture weights such that πi > 0 ; ∑k
i=1 πi = 1

and fi’s are component distributions ; i = 1, 2, ..k.

The seminal work on mixture models using crabs data was by Pearson (1894) and a
detailed study on mixture models was given by Lindsay (1995). Over the years, the practi-
cal applicability of FMM branched out to various fields like remote sensing, environmental
studies, diagnostic medicine, survival analysis, social and psychological science (Peel and
MacLahlan, 2000). But, most of the works reported in the literature were based on the
normal distribution. However, there are several practical instances where data may not
follow the normal distribution. In such situations, the existing normal mixture models do
not support, hence there is a need to have mixture models for non-normal data. Here a
brief review on Mixture Exponential is presented. Mendenhall and Hader (1958) estimated
the parameters of mixed exponentially distributed failure time distribution. Jewell (1982)
gives a detailed explanation of the mixture of exponential distributions and gives a practical
algorithm for the maximum likelihood estimate. Wang and Wang (2014) proposed an EM
Algorithm for the finite mixture of exponential distribution models. Literature has many
applications with the use of mixture exponential distributions, recently, Polymenis (2020)
used mixture of exponential distributions for assessing hazard rates from COVID-19.

This paper provides an approach to classify the non-normal data with hidden popula-
tions. Here it is assumed that the population follows a mixture of exponential distribution
and derived the Mixture Exponential ROC and its measures. The rest of the paper is or-
ganized as follows. Section 2 discusses the proposed Mixture Exponential ROC. Section
3 provides numerical illustrations of the proposed methodology with simulated as well as
real-life data sets. Section 4 concludes the paper with the summary.

2. Mixture exponential ROC

Let us assume that healthy population, H ∼ exp(θ0) and diseased population has
two sub populations/mixture of populations of D1 and D2 such that, D1 ∼ exp(θ1) and
D2 ∼ exp(θ2). Then the expressions for intrinsic measures of Mixture Exponential ROC
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(mixExp ROC) are defined as FPR of mixExp ROC (mixFPR) is given as

mixFPR = π1FPR1 + π2FPR2 (2)

where
FPR1 = P (S > t1 | H) ; FPR2 = P (S > t2 | D1)
FPR1 = x(t1) = e−θ0t1 ; FPR2 = x(t2) = e−θ1t2 (3)

where πi’s are mixing proportions/weights, t1 and t2 are the respective cut-off values for the
classification of (H, D1) and (D1, D2) respectively. Here FPR1, FPR2 are the false positive
rate values of H and D1 populations & D1 and D2 populations respectively. From equation
(3) we can write t1 and t2 as

t1 = − log(x(t1))
θ0

; t2 = − log(x(t2))
θ1

(4)

TPR of mixExp ROC (mixTPR) is given as

mixTPR = π1TPR1 + π2TPR2 (5)

where
TPR1 = P (S > t1 | D1) ; TPR2 = P (S > t2 | D2)
TPR1 = y(t1) = e−θ1t1 ; TPR2 = y(t2) = e−θ2t2 (6)

Here, TPR1, TPR2 are the true positive rate values of H and D1 populations & D1 and D2
populations respectively. Substituting equation (4) in (6) we will get the mixture exponential
ROC curve which be written as

mixROC = π1ROC1 + π2ROC2 (7)

ROC1 = x(t1)
θ1
θ0 ; ROC2 = x(t2)

θ2
θ1 (8)

By equating the pdf’s of the distributions, the optimal cut-off can be obtained as

t1 = logθ1 − logθ0

θ1 − θ0
; t2 = logθ2 − logθ1

θ2 − θ1
(9)

accuracy can be expressed notationally as

mixAUC =
� 1

0
mixROC(t)dt = π1

θ0

θ0 + θ1
+ π2

θ1

θ1 + θ2
(10)

Youden’s J index (Youden, 1950) is another way of summarising the performance of a
diagnostic test.

Youden’s J index is defined as

J = (TPR − FPR) (11)
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then maximum Youden’s index is reported as

J = max(t) (TPR(t) − FPR(t)) (12)

where t denotes the classification threshold for which J is maximal. From the above equation,
the optimal threshold can be estimated at the maximum Youden’s Index value, since, the
maximum distance between the curve and the chance line can be used to identify the optimal
threshold and will be unique in nature. This optimal threshold classifies the individuals
with a better accuracy and further it can be used to assign the status of the unspecified
subjects/individuals. A value of J=1 sures that there are no false positives or false negatives,
i.e. the test is perfect.

3. Numerical illustrations

3.1. Simulated data

Simulation studies are carried out at various parameter combinations by considering
equal mixture weights. Using the parameters values given in Table 1, random samples are
generated for n = (25, 50, 100, 200).

Table 1: Initial parameters

Case π1 π2 θ0 θ1 θ2

I 0.5 0.5 0.4 0.1 0.01
II 0.5 0.5 0.4 0.2 0.05
III 0.5 0.5 0.4 0.25 0.1
IV 0.5 0.5 0.4 0.4 0.4

The results pertaining to each case at every sample size in Table 2 and respective ROC
curves are depicted in Figure 1. The parameter values are chosen in such a way that they
exhibit worst and moderate classification scenarios. The estimation of parameters of the
mixture distribution is carried out using EM algorithm in R software. It is a known fact
that as higher the AUC, minimum will be the overlapping region, in turn giving out better
percentage of correct classification. The estimated values of t1 and t2 are the optimal one,
which are derived using the Youden’s J. The interpretation of t1 and t2 goes like this:

Let S be the values/samples generated using each parameter combination

The individual will be classified as =


H, if S ≤ t1
D1, if t1 < S ≤ t2
D2, if S > t2

To have a better understanding of t1 and t2, FPR and TPR, let us consider an instance
under case I from Table 2. For n=100, the t̂1 = 4.60711; t̂2 = 25.43069; ̂mixFPR = 0.12541;
̂mixTPR = 0.70705 and Ĵ = 0.58164 results ̂mixAUC = 0.85340. This means to that an
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individual will be classified in the following manner

The individual will be classified as =


H, if S ≤ 4.60711
D1, if 4.60711 < S ≤ 25.43069
D2, if S > 25.43069

Table 2: ROC curve estimates for simulated data

Case n π̂1 π̂2 t̂1 t̂2 Ĵ ̂mixFPR ̂mixTPR ̂mixAUC

F̂PR1 F̂PR2 T̂PR1 T̂PR2 ÂUC1 ÂUC2

25 0.50213 0.49787 4.56913 25.23253 0.57538 0.13001 0.70539 0.85036
0.16142 0.08043 0.62848 0.77137 0.79547 0.90595

I 50 0.49731 0.50269 4.59730 25.44494 0.58133 0.12534 0.70667 0.85318
0.15910 0.07838 0.62913 0.77283 0.79784 0.90766

100 0.49938 0.50062 4.60711 25.43069 0.58164 0.12541 0.70705 0.85340
0.15871 0.07795 0.62899 0.77323 0.79837 0.90821

200 0.49976 0.50024 4.61104 25.45291 0.58233 0.12478 0.70710 0.85378
0.15800 0.07801 0.62933 0.77331 0.79917 0.90832

25 0.53123 0.46877 3.42247 9.14696 0.34870 0.21594 0.56464 0.72485
0.25757 0.15880 0.50218 0.63186 0.66176 0.79887

II 50 0.50817 0.49183 3.41111 9.14908 0.35861 0.20937 0.56798 0.73139
0.24995 0.15892 0.50140 0.63015 0.66688 0.79854

100 0.50680 0.49320 3.46106 9.23796 0.35864 0.20821 0.56685 0.73169
0.25005 0.15837 0.50063 0.62916 0.66671 0.79866

200 0.49881 0.50119 3.46938 9.24755 0.36089 0.20754 0.56843 0.73312
0.24999 0.15823 0.50041 0.62900 0.66676 0.79885

25 0.53521 0.46479 3.08832 6.03442 0.23997 0.26023 0.50021 0.65824
0.31259 0.21777 0.48196 0.54426 0.61200 0.71325

III 50 0.52410 0.47590 3.11203 6.04253 0.24393 0.25670 0.50063 0.66124
0.29402 0.21777 0.46093 0.54316 0.61165 0.71320

100 0.51487 0.48513 3.13166 6.11228 0.24513 0.25448 0.49960 0.66246
0.28625 0.21780 0.45799 0.54262 0.61539 0.71332

200 0.51262 0.48738 3.12554 6.10010 0.24725 0.25349 0.50073 0.66390
0.28586 0.21708 0.45705 0.54311 0.61515 0.71427

25 0.56482 0.43518 2.47823 2.48022 0.02424 0.56973 0.59397 0.49789
0.58665 0.59789 0.62503 0.63822 0.49900 0.50069

IV 50 0.54976 0.45024 2.47846 2.48475 0.01853 0.55706 0.57559 0.49997
0.61440 0.58862 0.64271 0.61674 0.49925 0.49956

100 0.53953 0.46047 2.47643 2.48859 0.01319 0.57909 0.59228 0.49943
0.62699 0.61702 0.64770 0.63862 0.49972 0.50064

200 0.55491 0.44509 2.48864 2.49903 0.01036 0.57716 0.58752 0.50036
0.63807 0.62109 0.65242 0.63512 0.49983 0.50025

The cut-offs t̂1 and t̂2, are able to provide an F̂PR of 12.54% and T̂PR of 70.70%.
So, if there are 100 samples in the data, these two cut-offs will be able to detect the true



118 ARUNIMA S. KANNAN AND R. VISHNU VARDHAN [Vol. 21, No. 1

positives upto 70% and with a wrong classification of around 12%. In total, the accuracy of
t̂1 and t̂2 is around 85%. In similar lines, the other combinations can be interpreted. From
Figure 1, it is clear that the area under the curve is decreasing from case I to case IV, which
is indicating that the accuracy of the classification is decreasing from case I to case IV. The
curve of case IV is close to the diagonal line, results the worst classification.
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Figure 1: mixExp ROC curves of simulated data sets

3.2. Real data

The real data set represent the survival times of 121 patients with breast cancer ob-
tained from a large hospital in a period from 1929 to 1938 (Lee and Wang, 2003). This data
set has recently been studied by Yang et al. (2021). The p-value for K-S test for exponential
distribution for this data is 0.06024 (Test statistic, D = 0.12031), which indicates that the
data follows exponential distribution. We have θ0 = 0.4, θ1 = 0.0280 and θ2 = 0.0202. The
estimated measures of mixExp ROC curve is given in Table 3 and respective ROC curve is
depicted in Figure 2. As the curve is observed between the chance line and the left top corner
and also connecting to the AUC= 0.7355, this indicates a moderate amount of classification
with cut-offs t̂1 and t̂2.

From Table 3, t̂1 = 20.24715; t̂2 = 46.32893; ̂mixFPR = 0.24871; ̂mixTPR = 0.6628
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Table 3: mixExp ROC curve estimates of breast cancer data

π̂1 π̂2 t̂1 t̂2 Ĵ ̂mixFPR ̂mixTPR ̂mixAUC

F̂PR1 F̂PR2 T̂PR1 T̂PR2 ÂUC1 ÂUC2

0.49918 0.50018 20.24715 46.32893 0.24908 0.24871 0.6628 0.7355
0.04951 0.3493 0.8418 0.3865 0.9458 0.5253

and results ̂mixAUC = 0.7355. This means that an individual will be classified as follows.

The individual will be classified as =


low survival rate, if S ≤ 20.24715
moderate survival rate, if 20.24715 < S ≤ 46.32893
high survival rate, if S > 46.32893

The cut-offs t̂1 and t̂2, are able to provide false positive rate of 24.87% and true positive
rate of 66.28%. In total, the accuracy is around 73.55%, which indicates of a moderate
classification. Further, 100 bootstrap samples are generated from the breast cancer data.
The bootstrap estimates of important measures and their confidence intervals are reported
in Table 4. The mixROC curves are also drawn for all the bootstrap samples and is shown in
Figure 3. The curves clearly depict a moderate classification. From Table 4, it is observed
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Figure 2: mixExp ROC Curve
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Figure 3: mixExp ROC Curves for 100 bootstrap samples
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Table 4: Bootstrap estimates of breast cancer data

Bootstrap ̂mixFPRboot
̂mixTPRboot Ĵboot

̂mixAUCboot

Estimates 0.248375 0.647383 0.399009 0.7230622
Variance 0.000271 0.000207 0.000309 0.000160269

95% Lower limit 0.2375 0.635805 0.388395 0.7164525
95% Upper limit 0.257676 0.658599 0.41017 0.730174

that the cut-offs provide reasonably low FPR = 0.248375 (0.2375, 0.257676) and a good
level of TPR = 0.647383 (0.635805, 0.658599). This means that if there are 100 subjects
then the cut-offs will be able to detect the class/status of around 65 subjects correctly,
providing an accuracy of 0.7230 (0.7164525, 0.730174). Upon conducting 100 bootstraps
and constructing the 95% confidence interval the outcomes revealed an observation that the
width of the confidence interval is shorter indicating consistent estimates. Further the results
of the bootstrap matches closely to the results in Table 3.

4. Summary

In this paper, we proposed an ROC model that follows exponential distribution with
multi-class classification. Here we considered situation like (i) if we come across multi-model
patterns in the diseased population and (ii) if there are more than two categories in the
data. The proposed model addresses the above two situations and is dealt using the concept
of finite mixtures. The model so constructed is named as Mixture Exponential ROC Curve.
The measures such as mixAUC, mixFPR, mixTPR and optimal cut-offs are derived and
supported with numerical illustrations. With respect to simulations, we tried to present
the behaviour of the proposed ROC model by constructing the worst and moderate cases.
Further the numerical illustrations is extended with breast cancer dataset. It is noticed that
there were two sub populations in the diseased population. The overall AUC is observed to
be 73.5 and optimal thresholds are 20.24 and 46.32. To summarize the work, and mixture
exponential ROC model is proposed, and for the non-normal and multi-class data this model
can be applied.
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Abstract
In this study, we estimate the parameters of the generalized exponential distribution

using moving extreme ranked set sampling (MERSS) and ranked set sampling (RSS). Under
both sampling schemes, we obtain expressions for likelihood functions and derive maximum
likelihood equations and the Fisher information matrices. We numerically compute the
ML estimates. We compare these estimates with estimates obtained by simple random
sampling(SRS) and ranked set sampling using mean square error. Based on simulation
studies, we demonstrate that the RSS scheme is more efficient for small set sizes than MERSS
and SRS for shape and scale parameters.
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1. Ranked set sampling

When sampling environmental and ecological data, there may be situations in which it
is difficult to measure (or quantify) a selected unit with appropriate accuracy, but ranking a
few selected units based on the characteristic of interest can be simple. As an example, if one
wishes to estimate the mean height of trees, then measuring the height of the sampled trees
might be challenging, but there are relatively easy methods to rank small sets of trees based
on eye observation of their heights. Rank set sampling (RSS) was developed by McIntyre
(1952) as an improvement on random sampling in situations such as these, where some
ranking of units may be simple.

A ranked set sample is obtained by randomly selecting m2 units from an infinite
population. These units are then partitioned randomly into m equal samples of m units
each. The units in the sample are ranked by judgment or visual inspection or by cheap
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(low cost) way, or by using auxiliary variables but without actual measurements. The unit
with the lowest rank is measured for variable X of interest and the remaining units are
discarded; the second sample of m units is ranked without actual measurements. As a result,
the second-lowest unit in this set is measured for variable X of interest, while the rest are
discarded. Once the largest unit in the last sample of size m has been measured, the entire
procedure is repeated h times, yielding n = mh measured units from m2h selected units.
Compared to a simple random sample, this ranked set sample also represents the entire
population and is spread throughout the population.

When sampling units are selected without replacement, the estimation of population
mean using RSS, and comparison of RSS estimate to SRS estimate, are discussed in Patil
et al. (1994).

There are different modifications of the methods of RSS available in the literature.
Al-Odat and Al-Saleh (2001) introduced the concept of varied size RSS, which is known as
moving extreme ranked set sampling. The described scheme is as given below.

1.1. Moving extreme ranked set sampling

Step 1. Select m simple random samples of size 1, 2, 3, . . . ,m respectively.

Step 2. Order the sampling units of each of the samples by eye or by some other
relatively inexpensive method, without actual measurements.

Step 3. Measure accurately the maximum order observation from the first set, the
maximum order observation from the second set. The process continues in
this way until the maximum order observation from the last mth sample is
measured.

Step 4. Repeat the Step 1. to Step 3. and then measure the minimum order observation
instead maximum order observation.

Step 5. The prcedure described above is one cycle.The entire cycle can be repeated h
times to obtain a MERSS of size n = 2mh

Hence, this scheme is more simple to implement than RSS. Recently Wangxue et al.
(2019), has implemented the MERSS scheme to estimate parameters of Pareto distribution,
and He et al. (2021) has implemented the MERSS scheme to estimate parameters of log-
logistic distribution and Chen et al. (2021) discussed estimation of location parameter using
maximum likelihood under MERSS scheme.

2. Generalized exponential distribution

Consider a continuous random variable X which follows two-parameter generalized
exponential distribution having cumulative distribution function and probability diensity
function respectively as,

H(x;α, β) = (1 − e−βx)α, α, β, x > 0 (1)
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and
h(x;α, β) = αβ(1 − e−βx)α−1e−βx α, β, x > 0. (2)

Here α is the shape parameter, and β is the scale parameter.

As seen in (1), the distribution is of the type [F (·)]α where F (·) is a cumulative
distribution function of exponential distribution with scale parameter β. The distribution (1)
is introduced and studied in detail by Gupta and Kundu (1999). According to Gupta and
Kundu (2001), while fitting distribution for positive lifetime data, the generalized exponential
distribution is used as an alternative to the two-parameter Weibull distribution and two
parameter gamma distribution.
The mean and variance of the distribution with density function given in (2) are

E(X) = 1
β

(ψ(α + 1) − ψ(1)) (3)

and
V (X) = − 1

β2 (ψ′(α + 1) − ψ′(1)), (4)

where ψ(·) is the digamma function and ψ′(·) is the derivative of ψ(·). The skewness
and kurtosis both are independent of the scale parameter and they are decreasing function of
the shape parameter α.

Consider the transformation Y = βX in (2) so that the probability density function of
Y is

f(y;α) = α(1 − e−y)α−1e−y, y > 0 (5)
Let Y1, Y2, . . . , Yn be a random sample on Y . Then the pdf of rth order statistic Yr:n, (r =
1, 2, . . . , n) is

fr:n(y) = 1
B(r, n− r + 1)F

r−1(y) [1 − F (y)]n−r f(y), (6)

where B(p, q) = Γ(p)Γ(q)
Γ(p+ q) , p > 0, q > 0.

fr:n(y) = 1
B(r, n− r + 1)

∑n−r

i=0 (−1)i

(
n− r

i

)
α
[
1 − e−y

](r+i)α−1
e−y,

= 1
B(r, n− r + 1)

∑n−r

i=0 (−1)i

(
n− r

i

)
α(r + i) [1 − e−y](r+i)α−1

r + i
e−y,

= 1
B(r, n− r + 1)

∑n−r

i=0

(−1)i
(

n−r
i

)
r + i

f(y;α(r + i)).
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For r = 1, 2, . . . , n, the first order and second order moments are

E(Yr:n) = 1
B(r, n− r + 1)

∑n−r

i=0

(−1)i
(

n−r
i

)
r + i

[−ψ(1) + ψ(α(r + i) + 1)]

= 1
B(r, n− r + 1)

∑n−r

i=0

(−1)i
(

n−r
i

)
r + i

[γ + ψ(α(r + i) + 1)] (7)

and

E(Y 2
r:n) = 1

B(r, n− r + 1)
∑n−r

i=0

(−1)i
(

n−r
i

)
r + i

{[
ψ((r + i)α + 1) + γ

]2
−ψ′((r + i)α + 1) + π2/6

}
, (8)

where γ = −ψ(1) = 0.577215 . . . and ψ′(1) = π2/6.

Our discussion assumes that the sampling units are ranked without error for the
characteristic of interest. In section (3) we discuss the estimation of shape and scale
parameters of distribution given in (1) using MERSS scheme. In section (4) we discuss
estimation of shape and scale parameters given in (1) using RSS scheme. Section (6) presents
our findings.

3. The MERSS sample

Let Xj(11), Xj(21), Xj(22), Xj(31), Xj(32), Xj(33), . . . Xj(m1), Xj(m2), . . . , Xj(mm) and
X ′

j(11), X
′
j(21), X

′
j(22), X

′
j(31), X

′
j(32), X

′
j(33), . . . X

′
j(m1), X

′
j(m2), . . . , X

′
j(mm) be independent ran-

dom variables all having the same distribution given in (1) at cycle j = 1, 2, . . . , h In
the case of perfect ranking, for j = 1,
X1(1:1) = max{X1(11)},
X1(2:2) = max{X1(21), X1(22)},
X1(3:3) = max{X1(31), X1(32), X1(33)}, . . . ,
X1(i:i) = max{X1(i1), X1(i2), . . . , X1(ii)} ,
denote the i−th order statistic from random sample of size i, i = 1, 2, . . . ,m for cycle 1 and
X ′

1(1:1) = min{X ′
1(11)},

X ′
1(1:2) = min{X ′

1(21), X
′
1(22)},

X ′
1(1:3) = min{X ′

1(31), X
′
1(32), X

′
1(33)}, . . . ,

X ′
1(1:i) = min{X ′

1(i1), X
′
1(i2), . . . , X

′
1(ii)}

denote the first order statistic from random sample of size i, i = 1, 2, . . . ,m for cycle 1.
Considering {X1(1:1), X1(2:2), X1(3:3), . . . , X1(m:m)} as MERSSMaximum , and
{X ′

1(1:1), X
′
1(1:2), X1(1:3), . . . , X

′
1(1:m)}as MERSSMinimum, the MERSS sample (Cycle 1) of size

2m is{
X1(1:1), X1(2:2), X1(3:3), . . . , X1(m:m);X ′

1(1:1), X
′
1(1:2), X

′
1(1:3), . . . , X

′
1(1:m)

}

For simplicity let uji represents the observed values of Xj(i:i) and vji represents the
observed values of X ′

j(1:i), then the probability density functions of
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MERSSmaximum and MERSSminimum respectively are

fXj(i:i)(uji) = i [H(uji)]i−1 h(uji)

= i
[
(1 − e−βuji)α

]i−1
αβ

(
1 − e−βuji

)α−1
e−βuji

= αβi
(
1 − e−βuji

)iα−1
e−βuji (9)

and

fX′
j(1:i)

(vji) = i [1 −H(vji)]i−1 h(vji)

= i
[
1 − (1 − e−βvji)α

]i−1
αβ

(
1 − e−βvji

)α−1
e−βvji

= αβi
(
1 − e−βvji

)α−1 [
1 − (1 − e−βvji)α

]i−1
e−βvji (10)

From (7) and (8), the first order and second order moments are,

µj(i:i) = E{Xj(i:i)} = 1
β

[ψ(iα + 1) + γ] (11)

µ2
j(i:i) = E{X2

j(i:i)} = 1
β2

[
{ψ(iα + 1) + γ}2 − ψ′(iα + 1) + π2/6

]
(12)

µ2
j(1:i) = E{X ′2

j(1:i)} = 1
β2 i

∑i−1
k=0

(−1)k
(

i−1
k

)
k + 1

{
[ψ((k + 1)α + 1) + γ]2

−ψ′((k + 1)α + 1) + π2/6
}

(13)

µ2
j(1:i) = E{X ′2

j(1:i)} = 1
β2 i

∑i−1
k=0

(−1)k
(

i−1
k

)
k + 1

{
[ψ((k + 1)α + 1) + γ]2

−ψ′((k + 1)α + 1) + π2/6
}

(14)

3.1. Likelihood function

The likelihood function for MERSSminimum is,

LMERSS,minimum =
h∏

j=1

m∏
i=1

fX′
j(1:i)

(vji)

=
h∏

j=1

m∏
i=1

αβi
(
1 − e−βvji

)α−1 [
1 − (1 − e−βvji)α

]i−1
e−βvji
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and the likelihood function for MERSSmaximum is,

LMERSS,maximum =
h∏

j=1

m∏
i=1

fXj(i:i)(uji)

=
h∏

j=1

m∏
i=1

αβi
(
1 − e−βuji

)iα−1
e−βuji

Thereforethe likelihood function under the scheme of MERSS is,

LMERSS =
h∏

j=1

m∏
i=1

{
fX′

j(1:i)
(vji)

}{
fXj(i:i)(uji)

}

=
h∏

j=1

m∏
i=1

[
αβi

(
1 − e−βvji

)α−1 {
1 − (1 − e−βvji)α

}i−1
e−βvji

]
[
αβi

(
1 − e−βuji

)iα−1
e−βuji

]
and log-likelihood,
logLMERSS

=
h∑

j=1

m∑
i=1

[
log

{
fX′

j(1:i)
(vji)

}
+ log

{
fXj(i:i)(uji)

}]

=
h∑

j=1

m∑
i=1

[
log

{
αβi

(
1 − e−βvji

)α−1 {
1 − (1 − e−βvji)α

}i−1
e−βvji

}

+ log
{
αβi

(
1 − e−βuji

)iα−1
e−βuji

}]

=
h∑

j=1

m∑
i=1

[{
log i+ (α− 1) log

(
1 − e−βvji

)
+ (i− 1) log

(
1 − (1 − e−βvji)α

)
− βvji} +

{
log i+ (iα− 1) log

(
1 − e−βuji

)
− βuji

}]
+ C (15)

where C = 2mh {logα + log β}

3.2. ML estimates

Differentiating (15) with respect to α we get,

∂logLMERSS

∂α
= 2mh

α
+

h∑
j=1

m∑
i=1

log
(
1 − e−βvji

)1 − i
(
1 − e−βvji

)α

1 − (1 − e−βvji)α


+
{
ilog

(
1 − e−βuji

)}]
(16)
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Differentiating (15) with respect to β we get,
∂ logLMERSS

∂β

= 2mh
β

+
h∑

j=1

m∑
i=1

vji

 e−βvji

(1 − e−βvji)
(α− 1) − (iα− 1)

(
1 − e−βvji

)α

(1 − (1 − e−βvji)α) − 1


−uji

{
(iα− 1)e−βuji

(1 − e−βuji) − 1
}]

(17)

We observe that the equations (16) and (17) can not be solved simultaneously to get closed
form solution for α and β. Therefore, we solve numerically these equations simulataneously
using R software (Henningsen and Toomet (2011)).

3.3. The observed Fisher information

Differentiating (16) with respect to α we get

∂2logLMERSS

∂α2 = −2mh
α2 −

h∑
j=1

m∑
i=1

(i− 1)(1 − e−βvji)α
{
log(1 − e−βvji)

}2

(1 − (1 − e−βvji)α)2

 (18)

Differentiating (17) with respect to β we get

∂2 logLMERSS

∂β2 = −2mh
β2 +

h∑
j=1

m∑
i=1

{ e−βvjivji

(1 − e−βvji)

}2

(α− 1) − (αi(i+ 1) − α− 1)
(
1 − e−βvji

)α

(1 − (1 − e−βvji)α)2


−
{

(iα− 1)e−βujiu2
ji

(1 − e−βuji)2

}]
(19)

and differentiating (16) with respect to β we get

∂2logLMERSS

∂α∂β
=

h∑
j=1

m∑
i=1

[{
e−βvjivji

1 − e−βvji

}
1 − i

(
1 − e−βvji

)α

1 − (1 − e−βvji)α −
α(i− 1)

(
1 − e−βvji

)α
log

(
1 − e−βvji

)
(1 − (1 − e−βvji)α)2


−
{
i
e−βujiuji

1 − e−βuji

}]
(20)

We can compute numerically the elements of the observed Fisher information matrix and
Variance -Covariance matrix for θ = (α, β)
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I(θ̂) =


−∂2logLMERSS

∂α2 −∂2logLMERSS

∂α∂β

−∂2logLMERSS

∂β∂α
−∂2 logLMERSS

∂β2


(α̂,β̂)

and I−1(θ̂) respectively.

3.4. Fisher information

In this section, we obtain the Fisher information under the MERSS scheme. Following
Azzalini (1996), the sample based on MERSSmaximum and sample based on MERSSminimum
are independent, therefore under certain regularity conditions the Fisher Information of
MERSS scheme is given by

IMERSS(α, β) = IMERSS,maximum(α, β) + IMERSS,minimum(α, β) (21)

The components of matrix IMERSS,maximum(α, β) are[
I11 I12

I21 I22

]
.

Where,

I11 = −E
[
∂2logLMERSS,max

∂α2

]
= hm

α2 (22)

I22 = −E
[
∂2 logLMERSS,max

∂β2

]

= hm

β2 +
h∑

j=1

m∑
i=1

(iα)(iα− 1)
β2

[∑∞
k=0(−1)k

(
iα− 3
k

)
2

(k + 2)3

]
(23)

I21 = −E
[
∂2logLMERSS,max

∂β∂α

]

= −α

β

h∑
j=1

m∑
i=1

i2
[∑∞

k=0(−1)k

(
iα− 2
k

)
2

(k + 2)2

]
(24)

The components of matrix IMERSS,minimum(α, β) =
[
I ′

11 I ′
12

I ′
21 I ′

22

]
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Case: i = 2

I ′
11 = −E

[
∂2logLMERSS,min

∂α2

]

= h

α2

[
1 − 4

∞∑
k=0

(−1)k 1
(k + 2)3

]
(25)

I ′
22 = −E

[
∂2logLMERSS,min

∂β2

]

= h

β2 + 2hα(α− 1)
β2

1
(α− 2)

[
{ψ(α− 1) − ψ(1)}2 − {ψ′(α− 1) − ψ′(1)}

]
− 1

2(α− 1)
[
{ψ(2α− 1) − ψ(1)}2 − {ψ′(2α− 1) − ψ′(1)}

]
− 1

(α− 1)
[
{ψ(α) − ψ(1)}2 − {ψ′(α) − ψ′(1)}

]
− 1

(2α− 1)
[
{ψ(2α) − ψ(1)}2 − {ψ′(2α) − ψ′(1)}

]
+ 2h [αE ′

1 − E ′
2] , (26)

where

E ′
1 = 2α

∞∑
k=0

[
1

α(k + 2) − 2
(
{ψ(α(k + 2) − 1) − ψ(1)}2 − {ψ′(α(k + 2) − 1)−

ψ′(1)}) − 2
α(k + 2) − 1

(
{ψ(α(k + 2)) − ψ(1)}2 − {ψ′(α(k + 2)) − ψ′(1)}

)
+ 1
α(k + 2)

(
{ψ(α(k + 2)) − ψ(1)}2 − {ψ′(α(k + 2)) − ψ′(1)}

)]

E ′
2 = 2α

2α− 1
[
{ψ(2α) − ψ(1)}2 − {ψ′(2α) − ψ′(1)}

]
−
[
{ψ(2α + 1) − ψ(1)}2 − {ψ′(2α + 1) − ψ′(1)}

]

I ′
12 = −E

[
∂2logLMERSS,min

∂β∂α

]
= −h [E ′

3 − {E ′
4 + E ′

5}]



132 VYOMESH NANDURBARKAR AND ASHOK SHANUBHOGUE [Vol. 21, No. 1

Where

E ′
3 = 2α

α− 1 ({ψ(α) − ψ(1)}) − 2α
2α− 1 ({ψ(2α) − ψ(1)}) − µj(1:2)

E ′
4 = 2α

2α− 1 ({ψ(2α) − ψ(1)}) − ({ψ(2α + 1) − ψ(1)})

E ′
5 = 2α2

β

∞∑
l=1

∞∑
k=0

1
l

[
1

(α(k + 2) + l)2 − 1
(α(k + 2) + l − 1)2

]

Case: i = 3

I ′
11 = −E

[
∂2logLMERSS,min

∂α2

]

= 5h
2α2

(27)

I ′
22 = −E

[
∂2logLMERSS,min

∂β2

]

= h

β2 + 3hα(α− 1)
β2

1
(α− 1)

[
{ψ(α) − ψ(1)}2 − {ψ′(α) − ψ′(1)}

]
− 2

(2α− 1)
[
{ψ(2α) − ψ(1)}2 − {ψ′(2α) − ψ′(1)}

]
− 1

(3α− 1)
[
{ψ(3α) − ψ(1)}2 − {ψ′(3α) − ψ′(1)}

]
−
[
{ψ(α + 1) − ψ(1)}2 − {ψ′(α + 1) − ψ′(1)}

]
+ 1
α

[
{ψ(2α + 1) − ψ(1)}2 {ψ′(2α + 1) − ψ′(1)}

]
− 1

3α
[
{ψ(3α + 1) − ψ(1)}2 {ψ′(3α + 1) − ψ′(1)}

]
+ 2h [αE ′

1 − E ′
2] ,

(28)
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where

E ′
1 = 3α

β2

[ 1
2α− 2

[
{ψ(2α− 1) − ψ(1)}2 − {ψ′(2α− 1) − ψ′(1)}

]
− 2

2α− 1
[
{ψ(2α) − ψ(1)}2 − {ψ′(2α) − ψ′(1)}

]
+ 1

2α
[
{ψ(2α + 1) − ψ(1)}2 − {ψ′(2α + 1) − ψ′(1)}

]]
E ′

2 = 3α
β2

[ 1
2α− 2

[
{ψ(2α− 1) − ψ(1)}2 − {ψ′(2α− 1) − ψ′(1)}

]
− 1

3α− 2
[
{ψ(3α− 1) − ψ(1)}2 − {ψ′(3α− 1) − ψ′(1)}

]
− 1

2α− 1
[
{ψ(2α) − ψ(1)}2 − {ψ′(2α) − ψ′(1)}

]
+ 1

3α− 1
[
{ψ(3α) − ψ(1)}2 − {ψ′(3α) − ψ′(1)}

]]

I ′
12 = −E

[
∂2logLMERSS,min

∂β∂α

]
= −2h [E ′

3 − {E ′
4 + E ′

5}] ,

where

E ′
3 = 3α

β

[ 1
α− 1 [{ψ(α) − ψ(1)}] − 2

2α− 1 [{ψ(2α) − ψ(1)}]

+ 1
3α− 1 [{ψ(3α) − ψ(1)}] − µj(1:3)

]

E ′
4 = 3α

β

[ 1
2α− 1 [{ψ(2α) − ψ(1)}] − 1

3α− 1 [{ψ(3α) − ψ(1)}]

− 1
2α [{ψ(2α + 1) − ψ(1)}] + [{ψ(3α) − ψ(1)}]

]

E ′
5 = 3α2

β

∞∑
l=1

1
l

[
1

(2α + l)2 − 1
(2α + l − 1)2

]
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In general,

I ′
11 = −E

[
∂2logLMERSS,min

∂α2

]

= hm

α2 +
h∑

j=1

m∑
i=4

i(i− 1)
α2

i−3∑
k=0

(−1)k

(
i− 3
k

)
2

(k + 2)3

(29)

I ′
22 = −E

[
∂2logLMERSS,min

∂β2

]

= hm

β2 +
h∑

j=1

m∑
i=4

iα(α− 1)
β2

i−1∑
k=0

(−1)k

(
i− 1
k

)
1

(α(k + 1) − 2)
[
{ψ(α(k + 1) − 1) − ψ(1)}2

− {ψ′(α(k + 1) − 1) − ψ′(1)}]

− 1
(α(k + 1) − 1)

[
{ψ(α(k + 1)) − ψ(1)}2

− {ψ′(α(k + 1)) − ψ′(1)}]

− (i− 1)α
h∑

j=1

m∑
i=1

[αE ′
1 − E ′

2] (30)

I ′
12 = −E

[
∂2logLMERSS,min

∂β∂α

]

= −
h∑

j=1

m∑
i=4

[E ′
3 − (i− 1) {E ′

4 + E ′
5}] (31)

where

E ′
1 = iα

β2

i−3∑
k=0

(−1)k

(
i− 3
k

)[
1

α(k + 2) − 1 {ψ(α(k + 2)) − ψ(1)}2

− {ψ′(α(k + 2)) − ψ′(1)} + 2
α(k + 2) {ψ(α(k + 2) + 1) − ψ(1)}2

− {ψ′(α(k + 2) + 1) − ψ′(1)} + 1
α(k + 2) + 1 {ψ(α(k + 2) + 2)

−ψ(1)}2 − {ψ′(α(k + 2) + 2) − ψ′(1)}
]
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E ′
2 = iα

β2

i−2∑
k=0

(−1)k

(
i− 2
k

)[
1

α(k + 2) − 1 {ψ(α(k + 2)) − ψ(1)}2

− {ψ′(α(k + 2)) − ψ′(1)} + 1
α(k + 2) {ψ(α(k + 2) + 1) − ψ(1)}2

− {ψ′(α(k + 2) + 1) − ψ′(1)}]

E ′
3 = iα

β

i−1∑
k=0

(−1)k

(
i− 1
k

)
ψ(α(k + 1)) − ψ(1)

α(k + 1) − 1 − µj(1:i)

E ′
4 = iα

β

i−2∑
k=0

(−1)k

(
i− 2
k

)[
ψ(α(k + 2)) − ψ(1)

α(k + 2) − 1 − ψ(α(k + 2) + 1) − ψ(1)
α(k + 2)

]

E ′
5 = iα2

β

∞∑
l=1

i−3∑
k=0

(−1)k

(
i− 3
k

)
1
l

[
1

(α(k + 2) + l)2 − 1
(α(k + 2) + l − 1)2

]

We note that above expectations exist for α > 2 as ψ(·) and ψ′(·) exist and finite.

4. Ranked set sample

Let Xj1, Xj2, . . . , Xjm, Xj(m+1), Xj(m+2), . . . , Xjm2 be independent random variables
having the same distribution given in (1) of cycle j = 1, 2, . . . , h. Then from i-th set
{Xj((i−1)m+1), Xj((i−1)m+2)j,
. . . , Xj(im)}, Xji(i:m), i = 1, 2, . . . ,m denote i−th order statistic assuming error free rankings.
Let xji denote observed value of Xji(i:m), then the pdf of i-th order statistic,

fXji(i:m)(xji) = 1
B(i,m− i+ 1)F

i−1(xji)(1 − F (xji))m−if(xji)

= 1
B(i,m− i+ 1)

(
(1 − e−βxji)α

)i−1 (
1 − (1 − e−βxji)α

)m−i

αβ(1 − e−βxji)α−1e−βxji , α > 0, β > 0 (32)

From (7) and (8) the first order and second order moments of Xji(i:m) respectively are
µji(i:m) = E{Xji(i:m)} = 1

β
E{Y(i:m)}, and µ2

ji(i:m) = E{X2
ji(i:m)} = 1

β2E{Y 2
(i:m)}. Then the

log-likelihood function is

logLRSS(α, β) =
h∑

j=1

m∑
i=1

log fXji(i:m)(xji)

= C4 +mh(logα + log β)

+
h∑

j=1

m∑
i=1

{
(iα− 1) log

(
1 − e−βxji

)
+(m− i) log

(
1 − (1 − e−βxji)α

)
− βxji

}
,

(33)



136 VYOMESH NANDURBARKAR AND ASHOK SHANUBHOGUE [Vol. 21, No. 1

where C4 = mh log
(

1
B(i,m− i+ 1)

)
.

4.1. The likelihood equations

Differentiating (33) with respect to α

∂logLRSS(α, β)
∂α

= mh

α
+

h∑
j=1

m∑
i=1

log(1 − e−βxji)
{
i−m(1 − e−βxji)
(1 − (1 − e−βxji)α)

}
(34)

Differentiating (33) with respect to β

∂logLRSS(α, β)
∂β

= mh

β
+

h∑
j=1

m∑
i=1

xji

[
e−βxji

(1 − e−βxji)

{
i−m(1 − e−βxji)α

1 − (1 − e−βxji)α
− 1

}
− 1

]
(35)

We observe that the equations (34) and (35) can not be solved simultaneously to get a closed-
form solution for α and β. Therefore, we solve numerically these equations simulataneously
using R software (Henningsen and Toomet (2011)).

Differentiating (34) with respect to α

∂2logLRSS(α, β)
∂α2 = −mh

α2 −
h∑

j=1

m∑
i=1


(m− i)(1 − e−βxji)

(
log(1 − e−βxji)

)2

(1 − (1 − e−βxji)α)2

 (36)

Differentiating (35) with respect to β

∂2logLRSS(α, β)
∂β2 = −mh

β2 −
h∑

j=1

m∑
i=1

x2
ji

e−βxji

(1 − e−βxji)2

[{
i−m(1 − e−βxji)α

1 − (1 − e−βxji)α
− 1

}

+e−βxji
α(m+ i)(1 − e−βxji)α

(1 − (1 − e−βxji)α)2

]
(37)

and differentiating (34) with respect to β

∂2logLRSS(α, β)
∂α∂β

=
h∑

j=1

m∑
i=1

xjie
−βxji

(1 − e−βxji)

[{
i−m(1 − e−βxji)α

(1 − (1 − e−βxji)α)

}

−α(m− i)(1 − e−βxji)α log(1 − e−βxji)
(1 − (1 − e−βxji)α)2

]
(38)

We can numerically compute elements of the observed Fisher information matrix,

I(θ̂) =


−∂2logLRSS(α, β)

∂α2 −∂2logLRSS(α, β)
∂α∂β

−∂2logLRSS(α, β)
∂β∂α

−∂2 logLRSS(α, β)
∂β2


(α̂,β̂)

and variance-covariance matrix I−1(θ̂)
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5. Comparing information of MERSS and RSS schemes

In this section, we compare the information of MERSS and RSS schemes respectively to
estimate shape and scale parameters . Let α̂RSS, β̂RSS and α̂MERSS, β̂MERSS are the estimates
of shape and scale parameters under RSS and MERSS schemes respectively. Assuming
α̂RSS

α̂MERSS
→ 1 and β̂RSS

β̂MERSS
→ 1 then,

RSS:

Iα(RSS) = mh

α2 +
h∑

j=1

m∑
i=1

(m− i)
B(i,m− i+ 1)α2

m−i−2∑
k=0

(−1)k

(
m− i− 2

k

)
2

(k + i+ 1)3 (39)

Iβ(RSS) = mh

β2 + (iα− 1)
h∑

j=1

m∑
i=1

α

B(i,m− i+ 1)β2

m−i∑
s=0

(−1)s

(
m− i

s

)
×

∞∑
k=0

(−1)k

(
(i+ s)α− 3

k

)
2

(k + 2)3

+ α(m− i)
 α2

B(i,m− i+ 1)β2

m−i−2∑
s=0

(−1)s

(
m− i− 2

s

)
×

∞∑
k=0

(−1)k

(
(i+ s+ 1)α− 3

k

)
2

(k + 3)3

− α

B(i,m− i+ 1)β2

m−i−1∑
s=0

(−1)s

(
m− i− 1

s

)
×

∞∑
k=0

(−1)k

(
(i+ s+ 1)α− 3

k

)
2

(k + 2)3

 (40)

MERSS:

Iα(MERSS) = 2hm
α2 +

h∑
j=1

m∑
i=1

i(i− 1)
α2

i−3∑
k=0

(−1)k

(
i− 3
k

)
2

(k + 2)3 (41)

and Iβ(MERSS) is obtained in section (3.4). We note that Iβ(MERSS) exists and finite
for α > 2.

The computations are,
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When sample size of RSS is 2mh and sample size of MERSS is 2mh, then

For (m = 3)

Iα(RSS) = h

[
12.6553
α2 + 60

α2

∞∑
k=0

1
(k + 6)3

]
= 13.6390h

α2

Iβ(RSS) = h
36.47049

β2 , Iβ(MERSS) = h
207.6518

β2 α = 2.5

Iβ(RSS) = h
42.74969

β2 , Iβ(MERSS) = h
97.40603

β2 α = 3.0

For(m = 4)

Iα(RSS) = h

[
158.0665

α2 + 112
α2

∞∑
k=0

1
(k + 8)3

]
= 159.0577h

α2

Iβ(RSS) = h
65.12496

β2 , Iβ(MERSS) = h
287.7424

β2 α = 2.5

Iβ(RSS) = h
76.34466

β2 , Iβ(MERSS) = h
147.3634

β2 α = 3.0

[
Iα(RSS)

Iα(MERSS)

]
m=3

= 1.6416,
[

Iα(RSS)
Iα(MERSS)

]
m=4

= 12.8073

For α = 2.5 [
Iβ(RSS)

Iβ(MERSS)

]
m=3

= 0.17563,
[

Iα(RSS)
Iα(MERSS)

]
m=4

= 0.22633

For α = 3.0 [
Iβ(RSS)

Iβ(MERSS)

]
m=3

= 0.43888,
[

Iα(RSS)
Iα(MERSS)

]
m=4

= 0.51807

We note that information for the shape parameter under the scheme of the RSS is greater
than information for the shape parameter under the scheme of MERSS, and information for
the scale parameter under the scheme of MERSS is greater than information for the scale
parameter under the scheme of RSS.

5.1. Simulated output

In this section, we generate 100000 random numbers from the generalized exponential
distribution given in (1) using known values of parameters (α, β) taking α = 0.8, α = 1.2, α =
1.6, α = 1.8, α = 2.2, α = 3.8 and β = 0.25. At each cycle we obtain MERSS sample, by
selecting m2 + m units, SRS sample, by selecting 2m units, and RSS sample, by selecting



2023] GENERALIZED EXPONENTIAL DISTRIBUTION 139

4m2 units. The ML estimates (α̂, β̂) are calculated numerically and the comparisons are
determined by the mean squared error of estimates, when sample size of SRS, MERSS and
RSS are equal to 2mh respectively. We define the efficiency of sampling scheme as,

ESampling1,Sampling2(α̂) = MSE(α̂)Sampling2

MSE(α̂)Sampling1

and

ESampling1,Sampling2(β̂) = MSE(β̂)Sampling2

MSE(β̂)Sampling1

6. Conclusion

1. In this paper, we estimate the parameters of the generalized exponential distribution
using moving extreme ranked sampling, ranked set sampling, and simple random
sampling. Then we compared the estimates using the mean squared errors of the
estimates.

2. From the simulation study, it is found that under the RSS scheme we get smaller
MSE as compared to MSE obtained for the MERSS scheme and SRS scheme for
both shape and scale parameters. (Annexure Table A2)
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ANNEXURE

Table A1: Biases and MSE’s of ML estimates of shape and scale parameters

Sampling (m,h) (α, β) α̂ MSE(α̂) Bias(α̂) β̂ MSE(β̂) Bias(β̂)
SRS (3,3) (0.8,0.25) 0.9487606 0.1736299 0.1487606 0.2956023 0.0133619 0.0456023
RSS 0.8817586 0.0584896 0.0817586 0.2733177 0.0055097 0.0233177
MERSS 0.7964535 0.0717147 -0.0035465 0.2423628 0.0071007 -0.0076372
SRS (3,3) (1.2,0.25) 1.445111 0.4235251 0.2451109 0.2874173 0.0102904 0.0374173
RSS 1.336743 0.1457796 0.1367427 0.2681817 0.0039607 0.0181817
MERSS 1.202511 0.1835160 0.0025113 0.2452994 0.0062704 -0.0047006
SRS (3,3) (1.6,0.25) 2.022529 1.1205389 0.4225288 0.2816831 0.0075248 0.0316831
RSS 1.806412 0.3668359 0.2064123 0.2668984 0.0036996 0.0168984
MERSS 1.634325 0.5443902 0.0343248 0.2458775 0.0057707 -0.0041225
SRS (3,3) (1.8,0.25) 2.320982 2.1188691 0.5209824 0.2832089 0.0086354 0.0332089
RSS 1.994951 0.4090394 0.1949514 0.2623048 0.0028807 0.0123048
MERSS 1.797398 0.5843733 -0.0026018 0.2401457 0.0046996 -0.0098543
SRS (3,3) (2.2,0.25) 2.741057 2.1544205 0.5410568 0.2753242 0.0061387 0.0253242
RSS 2.505455 0.7952925 0.3054547 0.2648720 0.0029338 0.0148720
MERSS 2.167485 0.8985339 -0.0325153 0.2383081 0.0046774 -0.0116919
SRS (3,3) (3.8,0.25) 5.034128 10.224889 1.2341283 0.2764764 0.0054923 0.0264764
RSS 4.414143 3.255205 0.6141435 0.2632917 0.0024231 0.0132917
MERSS 3.895133 4.580507 0.0951328 0.2400658 0.0040669 -0.0099342
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Table A1(Continued): Biases and MSE’s of ML estimates of shape and scale
parameters

Sampling (m,h) (α, β) α̂ MSE(α̂) Bias(α̂) β̂ MSE(β̂) Bias(β̂)
SRS (4,2) (0.8,0.25) 0.9653919 0.1879596 0.1653919 0.2988921 0.0166438 0.0488921
RSS 0.8787682 0.0488045 0.0787682 0.2753540 0.0054171 0.0253540
MERSS 0.7710374 0.0690403 -0.0289626 0.2380351 0.0083744 -0.0119649
SRS (4,2) (1.2,0.25) 1.523014 0.5874794 0.3230142 0.2970299 0.0125121 0.0470299
RSS 1.312745 0.1347717 0.1127447 0.2664989 0.0038060 0.0164989
MERSS 1.172552 0.1804458 -0.0274481 0.2371569 0.0060172 -0.0128431
SRS (4,2) (1.6,0.25) 1.990566 1.0587583 0.3905659 0.2806856 0.0085753 0.0306856
RSS 1.786667 0.3209858 0.1866674 0.2664005 0.0033632 0.0164005
MERSS 1.556896 0.4012962 -0.0431041 0.2366258 0.0056646 -0.0133742
SRS (4,2) (1.8,0.25) 2.300448 1.5793808 0.5004485 0.2871264 0.0087790 0.0371264
RSS 2.033651 0.4139100 0.2336511 0.2685046 0.0033391 0.0185046
MERSS 1.761394 0.6294839 -0.0386061 0.2354936 0.0057293 -0.0145064
SRS (4,2) (2.2,0.25) 2.840629 3.684262 0.6406294 0.2808774 0.0070519 0.0308774
RSS 2.427666 0.690291 0.2276657 0.2619086 0.0028063 0.0119086
MERSS 2.190393 1.325949 -0.0096071 0.2392440 0.0054996 -0.0107560
SRS (4,2) (3.8,0.25) 5.512445 30.686737 1.7124454 0.2776625 0.0069002 0.0276625
RSS 4.361663 2.803481 0.5616628 0.2609717 0.0022263 0.0109717
MERSS 3.758171 4.772074 -0.0418289 0.2353198 0.0043514 -0.0146802

Table A2: Efficiency of estimators of shape and scale parameters under MERSS
and RSS schemes

(α,β) (m,h) EMERSS,SRS(α̂) EMERSS,SRS(β̂) ERSS,MERSS(α̂) ERSS,MERSS(β̂) ERSS,SRS(α̂) ERSS,SRS(β̂)
(0.8,0.25) (3,3) 2.421120 1.881772 1.226110 1.288763 2.968560 2.425159

(4,2) 2.722462 1.987462 1.414630 1.545919 3.851276 3.072456
(1.2,0.25) (3,3) 2.307837 1.641107 1.258859 1.583154 2.905243 2.598127

(4,2) 3.255711 2.079389 1.338900 1.580977 4.359071 3.287467
(1.6,0.25) (3,3) 2.058338 1.303967 1.484016 1.559817 3.054605 2.033950

(4,2) 2.638346 1.513840 1.250199 1.684289 3.298458 2.549744
(1.8,0.25) (3,3) 3.625883 1.837476 1.428648 1.631409 5.180110 2.997674

(4,2) 2.509009 1.532299 1.520823 1.715822 3.815759 2.629152
(2.2,0.25) (3,3) 2.397706 1.312417 1.129816 1.594315 2.708966 2.092406

(4,2) 2.778585 1.282257 1.920855 1.959733 5.337259 2.512882
(3.8,0.25) (3,3) 2.232261 1.350488 1.407133 1.678387 3.141089 2.266642

(4,2) 6.430482 1.585743 1.702196 1.954543 10.945941 3.099403
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Abstract 

Examining the relationship between temperature and precipitation in the Krishna 

district and forecast temperature is the purpose of study. Krishna is a district in Andhra 

Pradesh Plateau region, and it was chosen because it is a densely populated area with 

significant towns and ports. The district's climate is tropical, with sweltering summers and 

mild winters. From 1901 to 2019, data was obtained from the Indian Meteorological 

Department in Pune. Data from 1901 to 1996 was used for training, while data from 1997 to 

2019 was used for testing. Through Copula analysis, a model is built keeping in view the 

relationship between Temperature and Precipitation. The Mean Absolute Percentage Error 

(MAPE) and Normalized Root Mean Square Error (NRMSE) for the best model in Krishna 

were determined to be 0.03 and 3.823 for the month of May, which has the highest 

temperature and precipitation dependency when compared to other months. A similar 

analysis is carried out for the months in which dependence is significant. It is found that five 

months interdependency coefficient is insignificant. The data was analyzed using R-software, 

and IBM SPSS statistics version 25 and the results were interpreted. The best Copula does 

not have to be the same for different datasets. Based on AIC and BIC criteria, the best Copula 

for Krishna was Gaussians Copula for the month of April and July, Rotated Gumbel 90 

Copula for the month of May and September, Rotated Tawn type 2 270 Copula for the month 

of June, Rotated Gumbel 270 Copula for the month of August and Rotated Clayton 90 

Copula for the month of October. Temperature simulated data was found to be very close to 

testing results. This article examines how Copula modelling can be used to predict 

temperature, which helps in planning agriculture and trading commodities. So far, this type of 

analysis and model fitting is not found in the literature for Krishna district in Andhra Pradesh. 

The temperature in this location may be accurately predicted using our fitted models. 

 

Key words: Temperature; Precipitation; Copula analysis; Mean absolute percentage error; 

AIC; BIC. 

 

1. Introduction 

 

 The atmospheric conditions like temperature, air pressure and moisture vary from one 

place to another. Due to changes in the climate, it is tough to predict drought and heavy rains 

at any time in any corner. Weather forecasts are essential warnings as they help protect life 

and wealth. Forecasted Temperature helps in planning agriculture and trading of 
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commodities. Temperature is a critical parameter in farming varieties of vegetables, fruits 

and pulses. Hence, there is a need to carry out continuous research on the influencing factors 

(Temperature and Precipitation) to meet the demand for an increased population. It has been 

established in the literature of research studies that Temperature and Precipitation have a 

deep interdependency. 

  

 Some research has been conducted in this direction. Dzupire et al.  (2020), have used 

Copula analysis to identify interdependency patterns between Temperature and Precipitation. 

Lazoglou and Anagnostopoulou (2019) developed a joint distribution for the above two 

factors using Copula in the Mediterranean region. Similar studies have been carried out by 

Bezak et al.(2018) in Slovenia et al. (2020) in China, and Shaukat et al. (2020) in Pakistan. 

Mesbahzadeh et al. (2019) modelled Temperature and Precipitation for the Arid region using 

Copula analysis. In their study, Pandey et al. (2018) modelled interdependency between 

Rainfall and Temperature using Copula. This study was carried out in Agartala (humid 

region) and Bikaner (Arid region). Zscheischler et al. (2017), have inferred from their study 

that environmental change, Precipitation and Temperature are the significant factors that 

affect the nature of vulnerability influencing harvest. Crop yields are firmly vulnerable to 

outrageous atmospheres like a dry spell, floods, and warmth waves. Vergara et al. (2008) 

have examined how catastrophe risk modelling can be used in agriculture as a planning tool 

to predict the frequency and severity of future weather-related catastrophic events, allowing 

crop insurance firms and policymakers to better prepare for the financial effect of natural 

disasters. Zhang and Singh (2007) analyzed hydrology for examining the random factors 

dependence structure modelled independently by marginal distribution individually; Copula 

approach has been broadly utilized. Olesen and Bindi (2002) discussed and analyzed 

Temperature and Precipitation influence the duration of expanding season and plant creation 

(leaf territory and the photosynthetic productivity), respectively. A lot of literature is 

available on the impacts of Temperature and Precipitation on crop output. Therefore, we can 

understand the correlation between Precipitation and Temperature that keeps changing in 

different time periods. Nelsen (2007) demonstrated the factors between dependence 

structures Copulas are intended based on uniform marginal values.  

 

 These studies tried to forecast rainfall in humid, arid and Mediterranean 

environments. According to a literature survey, there were few pieces of research on the 

Plateau region and no temperature predictions using Copula analysis were provided. Our 

study aims to develop a bi-variate model for monthly average Temperature and Precipitation 

that can be used to simulate Temperature in the selected regions (Krishna district of Andhra 

Pradesh, which is a Plateau region). Copula analysis was shown to be the most appropriate 

methodology in this direction. The study's goal is to develop a Copula model that can be used 

to estimate Temperature in a specific region. 

 

2. Data and methodology 
 

 The study used historical monthly average temperature and monthly average 

precipitation for 119 years, covering the period from 1901 to 2019, collected by the Indian 

Meteorological Department for the Krishna district. This district is chosen because it is a 

densely populated area with significant towns and ports. The district's climate is tropical, 

with extremely hot summers and mild winters. 
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2.1. Copula methodology 

 

 To work with Copulas, one must be familiar with probability and quantile 

transformations. As the present work is carried out with the help of packages, a detailed 

discussion on the hidden procedures is not presented in detail. A brief description is given for 

the sake of the reader. 

 

Quantile transform: If U~U(0, 1) has a standard uniform distribution, then 𝑃(𝐹−1(𝑈) ≤ 𝑥) =
𝐹(𝑥) it denotes the generalized inverse. 

 

Probability transform: If X has distribution function F with continuous univariate distribution 

function, then 𝐹(𝑥)~𝑈(0,1). 

 

 Sklar's theorem is a valuable theorem in a Copula environment. It claims that if F has a 

joint distribution with marginals, then there exists a unique Copula C such that for all 

𝑥1, 𝑥2, … … , 𝑥𝑑 ∈ 𝑅  𝐹(𝑥1, 𝑥2, … … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … … 𝐹𝑑(𝑥𝑑)). 
 

 Co-monotonicity and Counter-monotonicity Copulas are two essential Copulas. The 

terms Co-monotonicity and Counter-monotonicity refer to perfect positive and negative 

dependence, respectively. Intuitively, if a Copula exists and has neither positive nor negative 

dependence structures, it must be somewhere in the middle. Therefore, every Copula 

𝐶(𝑢1, 𝑢2, … … 𝑢𝑑) has bounds: 

 

 𝑚𝑎𝑥(∑ 𝑢𝑖 + 1 − 𝑑, 0𝑑
𝑖=1 ) ≤ 𝐶(𝑢) ≤ 𝑚𝑖𝑛(𝑢1, 𝑢2, … … 𝑢𝑑) 

 

and is called Frechet bounds for Copula. As a result, the Frechet upper bound Copula is 

comonotonicity, while the Frechet Lower bound Copula is counter-monotonicity. 

Fundamental Copulas identify three sorts of dependent structures; definitions of implicit and 

explicit Copulas are another method of viewing Copulas. Sklar's theorem is used to extract 

implicit Copulas from well-known multivariate distributions, but they don't have to result in 

closed-form expressions. Explicit Copulas, in contrast to implicit Copulas, form closed-form 

expressions and have Yield Copulas as mathematical structures. 

 

2.2. Bivariate Copula 

 

We limit ourselves to the bivariate situation in this study and highlight the significant 

properties of d-dimensional Copulas that are relevant to the current work. We have, 

  𝐶 ∶  [0, 1]2  → [0, 1], (𝑢, 𝑣) = 𝐶(𝑢, 𝑣) 

with properties 

 

1. For all 𝑢, 𝑣 ∈  [0, 1]it holds: 

𝐶(𝑢 , 0) = 𝐶(0, 𝑣) = 0 𝑎𝑛𝑑 𝐶(𝑢, 1) =  𝑢 𝑎𝑛𝑑 𝐶(1, 𝑣) =  𝑣 
 

2. For all 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈  [0, 1] with 𝑢1 ≤ 𝑢2 𝑎𝑛𝑑 𝑣1 ≤  𝑣2 it holds: 
𝐶(𝑢2, 𝑣2) −  𝐶(𝑢2, 𝑣1) −  𝐶(𝑢1, 𝑣2) + 𝐶(𝑢1, 𝑣1)  ≥ 0 
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is called a bivariate Copula function. 

 

 Let X and Y denote temperature and precipitation, which are continuous in nature, with 

CDF (Cumulative distribution function) 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥)and 𝐺𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) 

respectively.    

 By the definition of Sklar (1973), the joint probability function is given by 

𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) =  𝐶(𝐹(𝑥), 𝐹(𝑦)) 

where C is an unique function and is known as Copula i.e., C(u, v) = P(U ≤ u, V ≤ v) is the 

distribution of (U,V) = (F(X), G(Y)) whose marginal distributions are U[0,1]. As contended 

by Joe (1997) and Nelsen (2007), C portrays the dependence between (X, Y). In literature, 

many Copula families are accessible whose parameters control the intensity of dependence of 

the variables (X, Y). 

  

 Once the parameters of different Copula are estimated, selecting the Copula which can 

represent the structure of dependency between the interested variables is very important. Few 

criteria like Aldrian and Black Information Criteria, are available in the literature to identify 

the best Copula. Information criteria are received here because they can portray the tradeoff 

between bias (precision) and variance (intricacy) in model development. To measure the 

relative goodness of fit of a statistical model we use the Akaike information criterion (AIC). 

It is defined as 

AIC = 2k – 2 ln(L) 

 

here k is the Copula parameters; L is the optimized value of the likelihood function of the 

Copula. 

  

 The Bayesian information criterion (BIC) was evolved by Schwarz using Bayesian 

formalism. It is defined as 
BIC = −2 ln(L) + k ln(N) 

here N represents the sample size. 

 

3. Analysis 

 

A.  Descriptive statistics of temperature and precipitation 

 

 The Krishna district's climate is tropical consisting of sweltering summers and mild 

winters. A clear seasonal cycle has been observed considering the monthly mean 

Temperature in Krishna from 1901 to 2019, as shown in Figure 1. Similarly, it is observed 

that there is a seasonal cycle in the monthly Precipitation in Krishna from 1901 to 2019. 

Figure 2 displays the average monthly precipitation. Table 1 exhibits the Descriptive statistics 

of Precipitation. 

 

 

 

 

 

 

 



2023] MODELING OF TEMPERATURE USING COPULA 147 

 

 

 
 

Figure 1: Mean Temperature in Krishna, Andhra Pradesh from 1901 to 2019 
 

 

 
 

Figure 2: Mean Precipitation (month wise) in Krishna, Andhra Pradesh from 1901 to 

2019 
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Table 1: Descriptive statistics of mean temperature and mean precipitation in 

Krishna from 1901 to 2019 

 

Month 

Temperature in Degree Celsius Precipitation in mm 

Min Max Mean Skewness Kurtosis Min Max Mean Skewness Kurtosis 

Jan 21.53 25.43 23.55 0.12 –0.60 0.00 88.10 3.81 6.17 49.40 

Feb 23.50 27.88 25.42 0.33 –0.40 0.00 87.20 6.48 3.31 14.06 

Mar 25.95 29.83 27.82 0.17 –0.66 0.00 133.30 6.69 5.15 31.18 

Apr 28.71 32.48 30.47 0.24 –0.11 0.00 64.20 13.89 1.45 1.58 

May 30.12 34.90 32.56 0.12 –0.02 0.00 322.67 46.59 2.84 11.57 

Jun 28.91 34.35 31.28 0.47 0.54 21.26 270.67 102.31 0.91 0.69 

Jul 27.17 32.38 29.04 1.15 1.83 36.25 355.00 160.77 0.60 0.25 

Aug 27.29 31.13 28.58 0.88 1.16 35.52 415.80 157.66 1.16 2.06 

Sep 23.68 30.45 28.34 –1.09 6.76 40.30 478.71 156.25 1.18 2.52 

Oct 26.28 29.65 27.39 0.99 0.97 9.39 459.49 152.17 0.87 0.94 

Nov 23.25 27.90 25.09 0.61 0.01 0.00 393.89 75.31 1.46 2.20 

Dec 21.18 26.00 23.48 0.52 –0.22 0.00 159.10 14.14 2.96 10.74 

 

B.  The association between precipitation and temperature in Krishna district 

 

As the sample data shows a non-Gaussian distribution, the Kendall’s tau correlation 

coefficient is utilized to ascertain the relationship between a month to month Temperature 

and Precipitation. A negative association has been observed between Precipitation and 

Temperature during April – October (at the 5% significant level), as given in Table 2. 

 

Table 2:  Correlation analysis between temperature and precipitation in Krishna     

(1901 to 2019) 

  

 January February March April May June 

Kendal's Correlation 

Coefficient 
0.147 0.022 – 0.112 – 0.305 – 0.342 – 0.285 

p - Value 0.124 0.736 0.082 0.001 0.001 0.001 

 July August September October November December 

Kendal's Correlation 

Coefficient 
– 0.232 – 0.173 – 0.289 –0.178 –0.035 0.07 

p - Value 0.001 0.005 0.001 0.004 0.577 0.271 

C.  Estimation of parameters 
 

 Initially, a suitable distribution was fitted to Temperature and Precipitation data using 

R-Software. The best fitted distributions and their parameter estimates are found using this 

software. Minimum values of AIC and BIC criteria indicate the best fitted distribution. Chi-
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Square test is used to determine a variable is likely to come from specified distribution or not. 

The Maximum Likelihood technique is utilized to estimate the parameters of the best fitted 

distribution. Table 3 presents the obtained results of Temperature and Precipitation in 

Krishna. From Table 3, we can observe that all p-values are greater than 0.05 (5% level of 

significance) that is large p-values indicate that we can accept the null hypothesis and 

conclude that data was drawn from a population with the specified distribution. 

 

Table 3:   Temperature and precipitation parameters estimates 

 

Mont

h  

Temperature Precipitation 

Distribution 
Para

meter 
Estimate p - Value AIC  BIC  Distribution 

Para

meter 
Estimate 

p - 

Value 
AIC  BIC  

Apr Normal 

μ 30.265 

0.432 186.47 
191.4

9 
Exponential μ 14.541 0.945 671.20 673.71 

σ 0.659 

May Normal 

μ 32.34 

0.064 247.32 
252.4

3 
Exponential μ 47.142 0.075 624.10 926.65 

σ 0.871 

Jun Logistic 

μ 31.079 

0.166 259.82 
264.9

5 
Gamma 

μ 96.733 

0.062 996.89 
1002.0

2 
σ 0.515 σ 0.478 

Jul Normal 

μ 28.776 

0.278 188.34 
193.4

7 
Gamma 

μ 154.48 

0.097 
1054.6

5 

1059.7

8 
σ 0.632 σ 0.393 

Aug 
Reverse 

Gumbel 

μ 28.112 

0.131 161.00 
166.1

3 
Gamma 

μ 147.78 

0.068 
1062.2

5 

1067.3

8 
σ 0.481 σ 0.433 

Sep 
Reverse 
Gumbel 

μ 27.927 

0.072 156.59 
161.7

2 
Inverse 

Gaussian 

μ 155.5 

0.826 
1070.3

3 
1075.4

5 
σ 0.469 σ 0.037 

Oct Normal 

μ 27.137 

0.305 124.65 
129.7

8 
Weibull 

μ 171.84 

0.071 
1125.1

7 
1130.3 

σ 0.453 σ 1.754 

  

 The empirical density function, a simple modification and improvement of the usual 

histogram, is defined, and its properties are studied. A CDF is the Cumulative Distribution 

Function. The CDF essentially allows you to plot a feature of the data in order from least to 

greatest and see the whole feature as if it is distributed across the data set. 

 Probability plots are the best way to determine whether the data follow a particular 

distribution. If data follow the straight line on the graph, the distribution fits the data. The Q-

Q plot (Quantile – Quantile plot) and P–P plot (Probability–Probability plot) are graphical 

tools used to determine how well a given data set fits a specific probability distribution that 

we are testing. Q-Q plot and P–P plot are used to assess how closely two datasets agree, 

where the two cumulative distribution functions are plotted against each other. If the data 

points fall along the straight line, we can conclude the data follow that specified distribution. 
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 The graphs from Figure 3 display the frequency curve, cumulative frequency curve, 

Q-Q and P-P Plots of best fitted distribution of temperature. 

 

 

Figure 3(a): Fitted normal distribution of    Figure 3(b): Fitted normal distribution of 

April        May 

 

 

 

Figure 3(c): Fitted normal distribution Figure 3(d): Fitted normal distribution  

of June                                    of July   
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Figure 3(e): Fitted Reverse Gumbel Figure 3(f): Fitted Reverse Gumbel                 

distribution of August               distribution of September 

 

Figure 3(g): Fitted normal distribution of October 

Q-Q plots and P-P plots pertaining to precipitation have been shown in Figure 4 

 

 

Figure 4(a): Fitted Exponential distribution Figure 4(b): Fitted Exponential distribution 

of April                                                               of May 
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Figure 4(c): Fitted Gamma distribution   Figure 4(d): Fitted Gamma distribution of      

of June       July 

 

 

Figure 4(e): Fitted Gamma distribution         Figure 4(f): Fitted Inverse Gaussian                

of August                                                            distribution of September 

 

 
 

Figure 4(g): Fitted Weibull distribution of October 
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 The graphs shown in Figures 3 and 4 indicate that the fitted distributions of 

Temperature and Precipitation of the Krishna district are very close to the observed data in 

each month. 

 

 

D.  Identification of bi-variate Copula  

 

 Using these fitted best distributions as Marginal distributions, we find a best fitted 

joint distribution, for each month, using Copula Analysis Technique, to estimate and forecast 

the Temperature. Maximum Likelihood Estimation is utilized to find parameter(s) estimates 

of fitted best Bi-variate Copula distribution. The best Copula distribution is determined using 

the minimum AIC and BIC criteria. 

 

Table 4: Copula distribution parameter estimates 

Month 

Bivariate Copula 

Distribution Parameter AIC BIC MAPE RMSE NRMSE 

April Gaussians θ =–0.472 –18.019 –15.508 0.026 0.962 3.178 

May 
Rotated Gumbel 90 

degrees 
θ =–1.573 –30.998 –28.444 0.03 1.236 3.823 

June 
Rotated Tawn type 2 

270 degrees 

θ =–1.925 
–27.879 –22.75 0.035 1.392 4.477 

ω1 = 0.539 

July 
Gaussian θ = –0.532 –26.528 –23.963 0.026 0.955 3.317 

August 
Rotated Gumbel 270 

degrees 
θ =–1.570 –32.369 –29.805 0.024 0.830 2.924 

September 
Rotated Gumbel 90 

degrees 
θ =–1.626 –35.227 –32.663 0.024 0.873 3.097 

October 
Rotated Clayton 90 

degrees 
θ =–0.450 –7.529 –4.965 0.02 0.674 2.485 

  

The error of estimation is calculated by using Mean Absolute Percentage Error 

(MAPE), Root Mean Square Error (RMSE) and Normalized Root Mean Square Error 

(NRMSE) has been presented in Table 4. The above table indicates that MAPE, RMSE and 

NRMSE are less than 5% for all the months. It is observed that in Krishna the average 

MAPE, RMSE and NRMSE for all months under consideration are 0.026, 0.989 and 3.329 

respectively. It is implied that the variation in the observed Temperature data can be 

explained by these models with approximately 97.4% accuracy. Further, Table 5 shows that 

there is a similar relation between estimated values of Temperature and Precipitation as 

exhibited by the observed data. 
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Table 5:  Relation between temperature and precipitation 

 

Month Apr May Jun July Aug Sep Oct 

Observed data 

relation 
– 0.305 – 0.342 – 0.285 – 0.232 – 0.173 – 0.289 – 0.178 

Estimated data 

relation 
– 0.318 – 0.445 – 0.317 – 0.261 – 0.215 – 0.371 – 0.213 

 

4. Prediction 

 

 The MAPE, RMSE and NRMSE values being less than 5% indicates that the fitted 

best Bi-Variate Copula can be used for estimation and/or prediction of Temperature. 

Therefore, Temperature values for the Krishna district are estimated using Gaussian for the 

months of April and July, Rotated Gumbel 90 degrees for the months of May and September, 

Rotated Tawn type 2 270 degrees for the month of June, Rotated Gumbel 270 degrees for the 

month of August and Rotated Clayton 90 degree for the month of October Copula 

distributions for training as well as testing data sets.  

  

 Figure 5 presents the observed and predicted values for the testing period. 

 

 

     Figure 5(a): Krishna test data of April          Figure 5(b): Krishna test data of May 

 

 

      Figure 5(c): Krishna test data of June          Figure 5(d): Krishna test data of July 
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   Figure 5(e): Krishna test data of August      Figure 5(f): Krishna test data of  

          September 

 

 

Figure 5(g): Krishna test data of October 

 The above graphs show that using the best fitted Copula distribution of April to 

October there is a reasonably good agreement in the patterns between observed and predicted 

Temperature values. 

 

5. Conclusion 

 

In this study, we have followed a novel approach to predict Temperature for Krishna 

district in Andhra Pradesh from April to October, by using Copula analysis. After the 

complete analysis, we could draw the following conclusions. 

 

 Using 80% of the collected data, initially, we identified the best fitted Probability 

distributions to the variables Temperature and Precipitation, separately. These distributions, 

in general, are different for different districts and months. The Probability density functions 

of these distributions are listed in Annexure 1. 

  

 Using the above identified best component distributions, we could identify the best 

fitted Joint Copula model that could predict month-wise Temperature for Krishna district in 
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Andhra Pradesh from April to October. As the climatic conditions change from region to 

region, the identified best Copula models are not the same for all the months in this district. 

The Probability density functions of best fitted Joint Copula distribution are listed in 

Annexure 2. 

  

 In order to establish the model adequacy of the best fitted Copulas, we computed AIC, 

BIC, MAPE, RMSE and NRMSE for the Krishna district from April to October, where ever 

the dependency is significant. It is observed that all the values of AIC and BIC are the least, 

all the values of MAPE are less than 5% and all the values of NRMSE are less than or around 

5%. This establishes that the fitted models are adequate.  

  

 As the fitted models are adequate, using them we forecasted the values of Temperature 

for the time points in the testing data period. In the Krishna district, for all the months (where 

ever models are fitted), we could find a close agreement between observed and forecasted 

testing data.  

  

 Hence, it can be concluded that the identified best Copula models can be used for the 

prediction of future data points. Forecasted Temperature helps in planning agriculture and 

trading of commodities. This forecasting helps in deciding whether a crop has to be irrigated 

or not, should use fertilizers and whether it is a right time to complete harvesting etc. 
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ANNEXURE 1 

Density functions of the identified best fitted component (Temperature and 

Precipitation) distribution 

 

Normal distribution 

Normal distribution is a two-parameter distribution function and the parameterization 

of the normal distribution given in the function is 

 

𝑓(𝑥/𝜇, 𝜎) = 
1

√2𝜋𝜎
𝑒𝑥𝑝 (

−1

2
(

𝑥−𝜇

𝜎
)

2

) ; where -∞ < x <∞,  -∞ < μ < ∞ and σ > 0 

Here μ and σ are mean and standard deviation of the distribution respectively. 

Reverse Gumbel distribution 

For positive skewed data the suitable distribution is Reverse Gumbel distribution. The 

probability density function of Reverse Gumbel distribution is 

  𝑓(𝑥/𝜇, 𝜎)  =  
1

𝜎
𝑒𝑥𝑝 [− (

𝑥−𝜇

𝜎
) − 𝑒𝑥𝑝 (− (

𝑥−𝜇

𝜎
))] ;  

where -∞ < x <∞,  -∞ < μ < ∞ and   σ > 0 

Here μ and σ are mean and standard deviation of the distribution respectively. 

Logistic distribution 

The Logistic distribution is suitable for moderate kurtosis data. The probability density 

function is given by 

  

𝑓(𝑥/ 𝜇, 𝜎)  =  
1

𝜎
[𝑒𝑥𝑝 (− (

𝑥 − 𝜇

𝜎
))] [1 + 𝑒𝑥𝑝 (− (

𝑥 − 𝜇

𝜎
))]

−2

 

where -∞ < x <∞,  -∞ < μ < ∞ and σ > 0. 
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Weibull distribution 

 Weibull distribution is a two-parameter distribution function and the parameterization 

of the Weibull distribution given in the function is 

   𝑓(𝑥 / 𝜇, 𝜎)   =  
𝜎𝑥𝜎−1

𝜇𝜎 𝑒𝑥𝑝 (−
𝑥

𝜇
)

𝜎

; where x > 0, μ > 0 and σ > 0 

Here μ and σ are mean and standard deviation of the distribution respectively. 

Exponential distribution 

Exponential distribution is a one parameter distribution function and the 

parameterization of the Exponential distribution given in the function is 

 𝑓(𝑥/𝜇)  =  
1

𝜇
𝑒𝑥𝑝 (−

𝑥

𝜇
) ; Where x > 0, μ > 0 

Here μ is mean of the distribution respectively. 

Gamma distribution 

Gamma distribution is a one parameter distribution function and the parameterization 

of the Gamma distribution given in the function is       

 𝑓(𝑥/𝜇, 𝜎)  =  
1

(𝜎2𝜇)1 𝜎2⁄

𝑥
(1

𝜎2⁄ )−1
𝑒𝑥𝑝(𝜎2𝜇)

𝛾(1
𝜎2⁄ )

 ;  

where x > 0, μ > 0 and σ > 0, μ and σ are mean and standard deviation of the distribution 

respectively. 

Inverse Gaussian distribution 

 Inverse Gaussian distribution pdf is, 

 𝑓(𝑥/ 𝜇, 𝜎) =  
1

√2𝜋𝜎2𝑦3
𝑒𝑥𝑝 [−

1

2𝜇2𝜎2𝑦
(𝑥 − 𝜇)2] 

for 𝑥 > 0, 𝜇 > 0 and σ > 0. 

 

  ANNEXURE 2 

Density functions of identified best joint Copula distribution 

Gaussian Copula 

 Gaussian Copula is defined as, 

   𝐶(𝑢, 𝑣) =  
1

√(1−𝜃2)
 𝑒

(
𝜃2(𝑢2+𝑣2)−2𝜃𝑢𝑣

2 (1− 𝜃2)
)
 

where, – 1< θ < 1 



2023] MODELING OF TEMPERATURE USING COPULA 159 

 

Here, the Gaussian Copula parameter θ is given by 𝜃 = 𝑆𝑖𝑛 [
𝜋

2
  𝜏]   

 

Tawn Copula 

 The Tawn Copula is defined as   

   𝐶(𝑢, 𝑣) =  (𝑢, 𝑣)𝐴(𝛼) ; with 𝛼 =  
𝑙𝑛(𝑢)

𝑙𝑛(𝑢𝑣)
 

The Pickand function of Tawn Copula is given by 

𝐴(𝑡) =  (1 − 𝜔2)(1 − 𝑡) + (1 − 𝜔1)𝑡 + [(𝜃1(1 − 𝑡))
𝛼

+ (𝜃2 𝑡)𝛼]
1

𝜃⁄
 

where, t ∈ [0,1], 0 ≤ω1, ω2 ≤ 1 and θ∈ [0,∞), the Tawn type 1 and type 2  refers to ω1 = 1 or 

ω2 = 1 

Here, θ and ω1 are the two parameters of Tawn Type 2 Copula, ω2 = 1, and the Parameter θ 

is given by 𝜏 = 1 − 𝜃−1 . 

  𝜆𝑢 = 𝜔1 +  1 −  (𝜔1
𝜃 +  1)

1

𝜃   or  𝜆𝑢 = 𝜔2 +  1 − (𝜔2
𝜃 +  1)

1

𝜃 

where Rotated 270 Copula means, 

    𝐶270(𝑢, 𝑣) = 𝐶(𝑣, 1 − 𝑢) 

Rotated Gumble Copula 

 Rotated Gumble Copula is defined as, 

   𝐶(𝑢, 𝑣) = 𝑒
(−[(− 𝑙𝑛 𝑢)𝜃+ (− 𝑙𝑛 𝑣)𝜃]

1
𝜃)

 

Here, the Gumbel parameter θ (≥1) is given by 𝜃 =  
1

1− 𝜏
  and  is the correlation between the 

variables. Here Rotated 270 Copula means, 

   𝐶90(𝑢, 𝑣) = 𝐶(1 − 𝑢, 𝑣) 

 

Clayton Copula 

 Clayton Copula is defined as, 

   𝐶(𝑢, 𝑣) = 𝑚𝑎𝑥 ((𝑢−𝜃 +  𝑣−𝜃 −  1)
−

1

𝜃 , 0) 

Here, the Clayton Copula parameter θ is given by 𝜏 =  
𝜃

𝜃+2
   and θ∈ [-1, ∞) 

where Rotated 90 Copula means,  

    𝐶90(𝑢, 𝑣) = 𝐶(1 − 𝑢, 𝑣) 
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Abstract
A new model of bivariate distributions is presented in this paper. The model introduced

here is of the Marshall–Olkin type. The joint survival function, the joint probability density
function and the joint hazard function of the bivariate generalized Chen (BGCh) distribution
are obtained. The maximum likelihood and Bayesian methods are used to estimate the
unknown parameters of the BGCh distribution. Numerical methods are required to calculate
the desired estimates.
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1. Introduction

A suitable parametric model is often of interest in the analysis of survival data, as it
provides insight into the characteristics of the failure times and hazard functions that may
not be available with non-parametric methods. The Weibull distribution is one of the most
commonly used families for modeling such data. However, only monotonically increasing
and decreasing hazard functions can be generated from the classic two-parameter Weibull
distribution. As such this two-parameter model is inadequate when the true hazard shape is
of bathtub nature. Models with bathtub-shaped hazard rate are needed in reliability analysis
and decision making when the complete life cycle of the system is to be modeled. Many
authors have proposed models with bathtub-shaped failure rates. For example, Smith and
Bain (1975) proposed the exponential power distribution. Mudholkar and Srivastava (1993)
suggested the exponentiated Weibull distribution. Chen (2000) provided a two-parameter
lifetime distribution with bathtub shape or increasing failure function, now known as Chen
distribution. Xie et al. (2002) modified the Chen distribution to include a scale parameter
named modified Weibull extension and also referred to as the generalized Chen distribution.
They discussed the parameters’ estimation using maximum likelihood method. For more
generalizations and modifications of Weibull distribution, see Murthy et al. (2004) and
Pham and Lai (2007).

Bivariate lifetime data arise frequently in many practical problems and in these sit-
uations it is important to consider different bivariate models that could be used to model
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such bivariate lifetime data. There are a number of papers dealing with bivariate models
of type of Marshal-Olkin. For example, Sarhan and Balakrishnan (2007) introduced a bi-
variate distribution using exponential and generalized exponential distributions, now known
as Sarhan-Balakrishnan bivariate (SBBV) distribution. Although, they derived several in-
teresting properties of this distribution, the marginal distributions of SBBV distribution
are not in known forms. Kundu et al. (2012) modified the SBBV distribution to include
a scale parameter and discussed the estimation of parameters using maximum likelihood
method. Kundu and Gupta followed the idea using the generalized exponential to introduce
the bivariate generalized exponential (BVGE) distribution so that the marginal distributions
are generalized exponential distributions. They derived several interesting properties of this
distribution and discussed the maximum likelihood estimation of the unknown parameters.
Also, they re-analyzed a real data set that was analyzed by Meintanis (2007) and concluded
that the BVGE distribution provides a better fit than the bivariate Marshall-Olkin distri-
bution. Sarhan (2019) noted that none of the marginal distributions of the SBBV and the
BVGE provide a bathtub shape of the hazard function and this lack of the bathtub property
limits the application of these distributions. Thus he introduced a new bivariate distribution
named the bivariate generalized Rayleigh (BVGR) distribution. The BVGR distribution has
generalized Rayleigh marginal distributions. The hazard rate functions of the marginals of
the BVGR can be either increasing or decreasing or bathtub shaped, and with this prop-
erty the BVGR distribution has wider applicability than other distributions. Sarhan (2019)
investigated several interesting properties of this distribution and estimated the unknown
parameters by using the maximum likelihood and Bayes methods. Many authors discussed
the Marshal-Olkin idea for different distributions; see for example; El-Gohary et al. (2015),
Kundu and Gupta (2017), Azizi et al. (2019), Muhammed (2019) and others.

Using the idea of Marshal-Olkin, we propose a new bivariate generalized Chen (BGCh)
distribution. The BGCh distribution has generalized Chen marginal distributions. The joint
survival function, the joint probability density function and the joint hazard function of the
BGCh distribution are obtained. The maximum likelihood and Bayesian methods are used
to estimate the unknown parameters of the BGCh distribution. Numerical methods are
required to calculate these estimates.

2. The bivariate generalized Chen distribution

In this section, we define a new bivariate distribution, shortly denoted by BGCh. We
start with the joint survival function of the distribution and then we derive the corresponding
joint probability density function.

2.1. The joint survival function

Chen (2000) introduced a two-parameter lifetime distribution with either bathtub-
shaped or increasing failure rate with the survival function

SCh(t) = exp(λ(1 − e(t)β )), t ≥ 0, λ and β > 0.

and the corresponding probability density function

fCh(t) = λβ(t)β−1exp((t)β + λ(1 − e(t)β )), t ≥ 0, λ and β > 0.
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Xie et al. (2002) modified the Chen distribution to include a scale parameter named the
generalized Chen distribution. The survival function of the univariate generalized Chen
(GCh) distribution is

SGCh(t) = exp(λα(1 − e(t/α)β )), t ≥ 0, λ, α and β > 0. (1)

with probability density function (pdf)

fGCh(t) = λβ(t/α)β−1exp((t/α)β + λα(1 − e(t/α)β )), t ≥ 0, λ, α and β > 0. (2)

Now, suppose that Tj, j = 1, 2, 3 are independent random variables with Ti having GCh
distributions with scale parameters α, and λj, j = 1, 2, 3 and shape parameter β; i.e. Ti ∼
GCh(α, β, λj), j = 1, 2, 3. Define Xi = min(Ti, T3), i = 1, 2. Then one can say that the vector
(X1, X2) follows the bivariate generalized Chen distribution with scale parameters α,and
λj, j = 1, 2, 3 and shape parameter β. We will denote it by BGCh(α, β, λ1, λ2, λ3) and to
simplify we write λ123 = λ1 + λ2 + λ3 and λi3 = λi + λ3, i = 1, 2.

Theorem 1: Let (X1, X2) follows BGCh(α, β, λ1, λ2, λ3), then the joint survival function of
(X1, X2) for x1 > 0, x2 > 0, is

SX1,X2(x1, x2) = P (X1 > x1, X2 > X2)
= P (T1 > x1, T2 > x2, T3 > x3)

=
3∏

i=1
exp(λiα(1 − e(xi/α)β )),

(3)

where x3 = max{x1, x2}.
Also, the joint survival function of (X1, X2) can be written as

SX1,X2(x1, x2) =
3∏

i=1
SGCh(xi; α, β, λi)

=


SGCh(x1; α, β, λ1)SGCh(x2; α, β, λ23) if x1 < x2

SGCh(x2; α, β, λ2)SGCh(x1; α, β, λ13) if x2 < x1

SGCh(x; α, β, λ123) if x1 = x2 = x.

(4)

2.2. The joint probability density function

The following theorem gives the joint probability density function of the BGCh distri-
bution.

Theorem 2: Let (X1, X2) follows BGCh(α, β, λ1, λ2, λ3 ), then the joint pdf of (X1, X2)
takes the form

fX1,X2(x1, x2) =


f1(x1, x2) if 0 < x1 < x2 < ∞
f2(x1, x2) if 0 < x2 < x1 < ∞
f3(x) if 0 < x1 = x2 = x < ∞.

(5)

where

f1(x1, x2) = λ1λ23β
2(x1/α)(β−1)(x2/α)(β−1)e(x1/α)β+(x2/α)β

eλ1α(1−e(x1/α)β)+λ23α(1−e(x2/α)β))

= fGCh(x1; α, β, λ1)fGCh(x2; α, β, λ23),
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f2(x1, x2) = λ13λ2β
2(x1/α)(β−1)(x2/α)(β−1)e(x1/α)β+(x2/α)β

eλ13α(1−e(x1/α)β )+λ2α(1−e(x2/α)β )

= fGCh(x1; α, β, λ13)fGCh(x2; α, β, λ2),
and

f3(x) = λ3β(x/α)(β−1)e(x/α)β

eλ123α(1−e(x/α)β )

= λ3

λ123
fGCh(x; α, β, λ123).

Proof: The forms of f1(., .) and f2(., .) can be obtained simply by differentiating
SX1,X2(x1, x2) in (4) with respect to x1 and x2 for x1 < x2 and x2 < x1, respectively. The
form of f3(x) can not obtained in the same way but it can be derived by using the following
identity:

� ∞

0

� x2

0
f1(x1, x2)dx1dx2 +

� ∞

0

� x1

0
f2(x1, x2)dx2dx1 +

� ∞

0
f3(x)dx = 1

which completes the proof of the theorem.

Proposition 1: Let (X1, X2) follows BCh(β, λ1, λ2, λ3), then the joint pdf of (X1, X2) takes
the form

gX1,X2(x1, x2) =


g1(x1, x2) if 0 < x1 < x2 < ∞
g2(x1, x2) if 0 < x2 < x1 < ∞
g3(x) if 0 < x1 = x2 = x < ∞.

(6)

where
g1(x1, x2) = λ1λ23β

2(x1)(β−1)(x2)(β−1)e(x1)β+(x2)β

eλ1(1−e(x1)β )+λ23(1−e(x2)β )

= gCh(x1; β, λ1)gCh(x2; β, λ23),

g2(x1, x2) = λ13λ2β
2(x1)(β−1)(x2)(β−1)e(x1)β+(x2)β

eλ13(1−e(x1)β )+λ2(1−e(x2)β )

= gCh(x1; β, λ13)gCh(x2; β, λ2),
and

g3(x) = λ3β(x)(β−1)e(x)β

eλ123(1−e(x)β )

= λ3

λ123
gCh(x; β, λ123).

Proof: The result is obtained immediately from Theorem 2 upon setting α = 1.

The BGCh distribution has both a singular part and an absolutely continuous part
similar to Marshal-Olkin’s bivariate exponential distribution, Sarhan and Balakrishnan bi-
variate distribution, the bivariate generalized exponential introduced by Kundu and Gupta
(2009) and the bivariate generalized Rayleigh distribution provided by Sarhan (2019). The
function fX1,X2 (., .) may be considered to be a density function for the BGCh distribution
if it is understood that the first two terms are densities with respect to two-dimensional
Lebesgue measure and the third term is a density function with respect to one dimensional
Lebesgue measure, see Bemis et al. (1972). It is well known that although in one dimension
the practical use of a distribution with this property is unusual, but they do arise quite
naturally in higher dimensions, see Marshal and Olkin (1967).
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In many practical situations it may happen that X1 and X2 both are continuous random
variables, but X1 = X2 has a positive probability. The BGCh distribution may be used as
a competing risk model or a shock model similar to the bivariate Marshall-Olkin model.
Marshal and Olkin (1967) has examples in this connection.. The following theorem provides
the explicit forms of the absolute continuous and the singular parts of the BGCh distribution.

Theorem 3: If (X1, X2) follows BGCh(α, β, λ1, λ2, λ3), then

SX1,X2(x1, x2) = λ3

λ123
Ss(x1, x2) + λ12

λ123
Sa(x1, x2).

For x = max(x1, x2) we get,
Ss(x1, x2) = eλ123α(1−e(x)β ),

and
Sa(x1, x2) = λ123

λ12

3∏
i=1

eλiα(1−e(xi/α)β ) − λ3

λ12
eλ123α(1−e(x)β ),

here Ss(., .) and Sa(., .) are the singular and the absolutely continuous parts, respectively.

Proof: The joint survival function SX1,X2(x1, x2) can be written as

SX1,X2(x1, x2) = P (X1 > x1, X2 > x2|A)P (A) + P (X1 > x1, X2 > x2|Á)P (Á)

Let A = {T3 < T1} ∩ {T3 < T2} ≡ {X1 = X2}, therefore

P (A) =
� ∞

0
λ3β(x/α)(β−1)e(x/α)β

eλ123α(1−e(x/α)β )dx = λ3

λ123

and
Ss(x1, x2) = P (X1 > x1, X2 > x2|A)

= λ123

λ3

� ∞

0
λ3β(x/α)(β−1)e(x/α)β

eλ123α(1−e(x/α)β )dx

= eλ123α(1−e(x/α)β ).

Once P (A) and Ss(x1, x2) are obtained, the function Sa(x1, x2) can be obtained by
subtraction.

Different shapes of the joint pdf and corresponding contours for different sets of pa-
rameters values are provided in Figure 1.
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Set (1): (λ1, λ2, λ3, β, α)=(2,2,2,2,1)

Set (2): (λ1, λ2, λ3, β, α)=(0.5,0.5,1,1.5,1)

Figure 1: The joint probability density function of the BGCh distribution and
corresponding contour

2.3. The joint hazard rate function

Using the relation between the joint pdf of (X1, X2) and the joint survival function of
(X1, X2), one can obtain the joint hazard rate function of (X1, X2) according to the relation

hX1,X2(x1, x2) = fX1,X2(x1, x2)
SX1,X2(x1, x2)

.

Here we use the forms (4) and (6) to obtain the joint hazard rate function. In Figure 2 we
provide the surface plots of the joint hazard rate function and corresponding contours for
different values of the parameters.

3. Statistical properties

3.1. Marginal distributions

One can easily verify that the marginal distribution of Xi, i = 1, 2, follows GCh(β, α, λi).
For this, we first derive the marginal survival function of Xi, say SXi

(x), as follows
SXi

(x) = P (Xi > x) = P (min(Ti, T3) > x) = P (Ti > x, T3 > x)
and since Ti, i = 1, 2 and T3 are independent random variables, then

SXi
(x) = P (Ti > x)P (T3 > x) = SXi

(x; β, α, λi3) = eλi3α(1−e(x/α)β ) (7)
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Set (1): (λ1, λ2, λ3, β, α)=(2,2,2,2,1)

Set (2): (λ1, λ2, λ3, β, α)=(0.2,0.2,0.8,0.8,1)

Figure 2: The joint hazard rate function of the BGCh distribution and corre-
sponding contour

Using (7), the marginal pdf of Xi is

fXi
(x) = λi3β(x/α)(β−1)e(x/α)β

eλi3α(1−e(x/α)β)), (8)

and the marginal hazard rate function (hrf) of Xi is

hXi
(x) = λi3β(x/α)(β−1)e(x/α)β

. (9)

Xie et al. (2002) noted that the hrf depends only on the shape parameter β and they
observed that: when β > 1, the hrf has an increasing shape and when β < 1, the hrf has
a bathtub shape. Shapes of the pdf and hrf of Xi for different values of β, α and λi3 are
provided in Figure 3 . Also, Xie et al. (2002) showed that the GCh distribution can be
used in modeling bathtub-shaped failure rate univariate lifetime data. Hence, we expect the
BGCh distribution can be used in modeling bathtub-shaped failure rate bivariate lifetime
data.

3.2. Conditional distributions

Having obtained the marginal pdf of X1 and X2, one can derive the conditional proba-
bility density function. The following theorem provides the conditional pdf of X1 given X2 =
x2, say fX1|X2(x1|x2).

Theorem 4: If (X1, X2) follows BGCh(β, α, λ1, λ2, λ3), then the conditional pdf of X1 given
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Figure 3: The probability density and hazard rate functions of the marginal
distribution of X1

X2 = x2 is

fX1|X2(x1, x2) =


f1(x1|x2) if x1 < x2

f2(x1|x2) if x2 < x1

f3(x1|x2) if x1 = x2 = x,

(10)

where

f1(x1|x2) = λ1β(x1/α)(β−1)e(x1/α)β

eλ1α(1−e(x1/α)β),

f2(x1|x2) = (λ12λ2)/λ23β(x1/α)(β−1)e(x1/α)β

eα(λ13(1−e(x1/α)β )−λ3(1−e(x2/α)β )), and

f3(x1|x2) = λ3/λ23e
λ1α(1−e(x/α)β ).

Proof: The results of this theorem are easily derived using the definition of conditional
probability and the results of Theorem 2 and the form (8). Figure 4 shows some plots of the
conditional pdf’s of X1 given X2 = x2 for different values of x2(x2 = 0.5, 1, 2) and different
values of parameters.

Similarly, the conditional pdf of X2 given X1 = x1 can be obtained in a similar manner
as above. Also, one can note that if α = 1, the conditional pdf in the case of BCh distribution
can be obtained.
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Figure 4: The conditional probability density function of X1 given X2 = x2 at
different sets of the parameters

4. Parameters’ estimation

Suppose that {(X11, X21), (X12, X22), . . . , (X1n, X2n)} is a random sample from BGCh
(λ1, λ2, λ3, β, α). The likelihood function for this sample is

L(data; θ) =
n∏

i=1
f1(x1i, x2i)I(x1i<x2i)f2(x1i, x2i)I(x1i>x2i)f3(x1i, x2i)I(x1i=x2i), (11)

where I(A) is an indicator function that is equal to 1 if A is true and 0 otherwise and
θ = (λ1, λ2, λ3, β, α). Substituting (5) in (11) and taking the natural logarithm, we obtain
the log-likelihood function as

LL =
n∑

i=1
I(x1i < x2i){ln(λ1) + ln(λ23) + 2ln(β) + (β − 1)ln(x1i/α) + ln(x2i/α) + (x1i/α)β

+ (x2i/α)β + λ1(1 − e(x1i/α)β ) + (λ23)(1 − e(x2i/α)β ))}
+ I(x1i > x2i){ln(λ2) + ln(λ13) + 2ln(β) + (β − 1)(ln(x1i/α) + ln(x2i/α) + (x1i/α)β

+ (x2i/α)β + λ2(1 − e(x2i/α)β ) + (λ13)(1 − e(x1i/α)β )}
+ I(x2i = x1i){ln(λ3) + ln(β) + (β − 1)ln(x1i/α) + (x1i/α)β + (λ123)(1 − e(x1i/α)β )}.

(12)
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4.1. Maximum likelihood estimation

Here we use maximum likelihood method to estimate the unknown parameters of the
BGCh distribution. For fixed α, the likelihood equations are

∂LL
∂λ1

= n1

λ1
+ n2

λ13
+

n∑
i=1

I(x1i < x2i)(1 − e(x1i/α)β ) = 0,

∂LL
∂λ2

= n1

λ23
+ n2

λ2
+

n∑
i=1

I(x1i > x2i)(1 − e(x2i/α)β ) = 0,

∂LL
∂λ3

= n1

λ23
+ n2

λ13
+ n3

λ3
+

n∑
i=1

{I(x1i < x2i)(1 − e(x2i/α)β )

+ {I(x1i > x2i) + I(x1i = x2i)}(1 − e(x1i/α)β )} = 0,

and
∂LL
∂β

=
n∑

i=1
I(x1i < x2i){2/β + ln(x1i/α) + ln(x2i/α) + (x1i/α)βln(x1i/α)(1 − λ1e

(x1i/α)β )

+ (x2i/α)βln(x2i/α)(1 − λ23)e(x2i/α)β }
+ I(x1i > x2i){2/β + ln(x1i/α) + ln(x2i/α) + (x1i/α)βln(x1i/α)(1 − λ13e

(x1i/α)β )
+ (x2i/α)βln(x2i/α)(1 − λ2)e(x2i/α)β )}
+ I(x2i = x1i){1/β + ln(x1i/α) + (x1i/α)βln(x1i/α)(1 − λ123e

(x1i/α)β )} = 0,
(13)

where n1 = ∑n
i=1 I(x1i < x2i) , n2 = ∑n

i=1 I(x1i > x2i), and n3 = ∑n
i=1 I(x1i = x2i).

The likelihood equations (13) do not have a closed-form solution, so a numerical technique
must be used to find the maximum likelihood estimates (mles) of λ1, λ2, λ3, and β. The
likelihood equations may have multiple roots, Small et al. (2000) discussed this problem
using the Hessian matrix. They showed that the likelihood equations have a unique root
when the Hessian matrix of the log-likelihood is negative definite for all value of θ. This
relies on maximizing the log-likelihood function. The Hessian matrix is written as

T (θ) =


LLλ1λ1 LLλ1λ2 LLλ1λ3 LLλ1β

LLλ2λ1 LLλ2λ2 LLλ2λ3 LLλ2β

LLλ3λ1 LLλ3λ2 LLλ3λ3 LLλ3β

LLβλ1 LLβλ2 LLβλ3 LLββ


where LLθiθj

= ∂2LL
∂θi∂θj

is the second partial derivative of the log-likelihood function with re-
spect to the components θi and θj of θ and T (θ̂) is the Hessian matrix computed at θ = θ̂.

Large-sample confidence intervals: Under regularity conditions, the mles of the pa-
rameters λ1, λ2, λ3, and β are asymptotically normally distributed with means equal to the
true values of these parameters and variances given by the inverse of the information matrix.
One can approximate the expected values of the second-order derivatives of logarithms of
likelihood function with the maximum likelihood estimates of the parameters as given in
Cohen (1965). That is, using normality property of mles, one can construct the asymptotic
confidence interval for each parameter.
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4.2. Bayes estimation

Now, we discuss the Bayesian estimation of the unknown parameters of the BGCh
distribution. For fixed α, let the four parameters θ = (λ1, λ2, λ3, β) are independent random
variables and follow the gamma prior distribution. That is, the joint prior pdf of θ is

g0(θ) ∝ λ
(a1−1)
1 λ

(a2−1)
2 λ

(a3−1)
3 β(a4−1)e(−b1λ1−b2λ2−b3λ3−b4β), λ1, λ2, λ3, β > 0, (14)

where all the hyperparameters ai and bi, i = 1, 2, 3, 4 are assumed to be positive and known.
The log-prior density function is

g0(θ) ∝
3∑

i=1
(ai − 1)ln(λi) + (a4 − 1)ln(β) −

3∑
i=1

biλi − b4β. (15)

Using (12) and (15) and applying Bayes theorem, the joint posterior probability density
function of θ, given data, is

g(θ|data) = 1
K

exp(LL + g0(θ)), (16)

where K is the normalizing constant. Bayes estimators of the unknown parameters and/or
of any function of the unknown parameters, say w(θ), can be obtained as follows

ŵ(data) =
� ∞

0

� ∞
0

� ∞
0

� ∞
0 w(θ)exp(LL + g0(θ))dλ1dλ2dλ3dβ� ∞

0

� ∞
0

� ∞
0

� ∞
0 exp(LL + g0(θ))dλ1dλ2dλ3dβ

. (17)

Formula (17) involves a ratio of two multidimentional integrals and does not have analytical
solution. Thus, some approximation methods were suggested to approximate these integrals
and calculate the ratio of the integrals such as the methods discussed by Lindley (1980) and
Tierney and Kadane (1986). These methods work well for low dimensions. In this paper
we will use Markov Chain Monte Carlo (MCMC) method that work well in the case of high
dimensions, see Gelman et al. (2003). MCMC method generates random draws from the
joint posterior distribution by generating draws from an arbitrary distribution (proposal
distribution) that easy to simulate from then apply an accept-reject method. Here, we
use multivariate normal as a proposal distribution. The following steps can be followed to
generate random draws from the joint posterior distribution (16):

1. Specify the size of the random draws we wish to generate, say m.

2. Choose an initial value of θ, say θ(0).

3. For i = 1, 2, . . . , m, repeated the following steps:

(a) Generate θ∗ from the multivariate normal with mean θ(i−1) and variance-covariance
Σ.

(b) Compute the ratio κ = min{1, g(θ∗|data)
g(θ(i−1)|data)

}.

(c) Generate a random value from uniform distribution on (0, 1).
(d) If κ ≥ put θ(i) = θ∗, otherwise put θ(i) = θ(i−1).
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Discarding the early m0 number of burn-in draws and using the remaining m − m0, θ(m0+1),
θ(m0+2), . . . , θ(m), as the chosen draws from the joint posterior distribution, the Bayes esti-
mate of θj is

θ̂j =
m−m0∑

i=m0+1

θ
(i)
j

m − m0
, j = 1, 2, 3, 4.

Furthermore, for 0 < ν < 1, one can obtain the lower and upper bounds of the 100(1 − ν)%
Bayesian probability interval of θj via (ν/2)100th and (1 − ν/2)100th percentiles of the
sequence of the m − m0 draws; θ(m0+1), θ(m0+2), . . . , θ(m).

5. Simulation results and applications

In this section, some simulation results and the analysis of a data set are presented.

5.1. Simulation results

In this section, we provide the following steps to generate a random sample of the
BGCh distribution:

1. Generate u1, u2 and u3 from uniform (0, 1).

2. Compute t1 = α(ln(1 − ln(1−u1)
λ1α

)1/β, t1 = α(ln(1 − ln(1−u2)
λ2α

)1/β and
t3 = α(ln(1 − ln(1−u3)

λ3α
)1/β.

3. Obtain x1 = min(t1, t3) and x2 = min(t2, t3).

To obtain some simulation results for samples size (n=100) and for different parameter
values, we consider three different sets of parameter values namely: (i) λ1 = λ2 = λ3 = β =
1, (ii) λ1 = λ2 = λ3 = 2, β = 1, and (iii) λ1 = 0.5, λ2 = 0.5, λ3 = 1, β = 1.5. We replicate
the process 1000 times and report the average estimates and the root mean square errors
(RMSEs) in Table 1. Also, we compute the Bayes estimates of the unknown parameters as
mentioned in the previous section with assuming uniform priors. We simulate 10000 runs
and replicate the process 1000 times. The average estimates and the RMSEs are also listed
in Table 1 and one can note that results of Bayes estimates are better than mles.

5.2. Applications

In this section we present the analysis of a data set to discuss how the proposed
distribution can be used in practice. This data represents the UEFA Champion’s League
Data and it was analyzed in Meintanis (2007) using the Marshall-Olkin exponential model
(MO) and by Kundu and Gupta (2009) using the bivariate generalized exponential (BVGE)
model, then by Sarhan (2019) using the bivariate generalized Rayleigh (BVGR) model.
Kundu and Gupta (2009) reported that the BVGE model fits the data better than MO
model and Sarhan (2019) reported that the BVGR model fits the data better than both the
MO and the BVGE models. Here, we use the BCh model to reanalyze the same data and
compare it with the three models; the MO, the BVGE and the BVGR but first we have
fitted Ch(β, λ) model to the marginal and the minimum of the two marginals. The mles of



2023] BIVARIATE GENERALIZED CHEN DISTRIBUTION 173

Table 1: The mles and the Bayes estimates and their RMSEs (in paren-
theses) of the parameters

Parameter value Method β λ1 λ2 λ3

MLE 1.3834 2.6776 1.3080 1.5323
(0.4243) (1.6961) (0.3732) (0.5492)

(1.0, 1.0, 1.0, 1.0) Bayes 1.3429 1.4783 1.2716 1.4297
(0.3609) (0.4788) (0.2993) (0.4316)

MLE 2.9372 5.0508 2.8083 1.5604
(1.9725) (3.0754) (0.8590) (0.4518)

(1.0, 2.0, 2.0, 2.0) Bayes 2.3606 2.4705 2.3693 1.3772
(1.3661) (0.4714) (0.3867) (0.6247)

MLE 1.7625 4.3562 1.5935 1.4858
(0.4276) (3.8752) (1.1251) (0.4916)

(1.5, 0.5, 0.5, 1.0) Bayes 0.9269 0.9891 1.3696 1.3696
(0.5764) (0.4892) (0.8753) (0.3736)

the unknown parameters, the Kolmogorov-Smirnov (K-S) distances between the empirical
distribution function (EDF) and the fitted distribution function and the associated p values
are reported in Table 2. Based on the p values, one can observe that Chen distribution may
be used to fit X1, X2 and min(X1, X2).

Table 2: The mles of the parameters, the K-S test statistics
and associated p-values

Variable mle K-S p-value
X1 β̂ = 0.403, λ̂ = 0.010 0.013 0.572
X2 β̂ = 0.379, λ̂ = 0.184 0.106 0.804
min(X1, X2) β̂ = 0.389, λ̂ = 0.019 0.094 0.899

Now, to test whether BCh distribution fits the data or not, we use the two-dimensional
Kolomogorov-Sminrov test of goodness of fit as proposed by Peacock (1983). Using the
computational environmental R peacock package, we obtain the value of test statistic as
0.2712 with p value 0.6482. Based on the p value, we cannot reject the null hypothesiss that
the data came from the BCh distribution at 0.05 level of significance. For more details about
multivariate Kolomogorov-Sminrov test of goodness of fit see Justel et al. (1997).

Hence, we have used the BCh model to analyze the bivariate data set. We use R to
get mles of the unknown parameters. Table 3 shows the mles of the unknown parameters
of the proposed distribution together with the values of the log-likelihood values and the
Akaike information criterion (AIC=-2 LL+2k,k is the number of estimated parameters; see
Akaike, 1974). The AIC suggests that the BCh distribution provides a better fit than the
three models; the MO, the BVGE and the BVGR.

To indicate that a unique root for the likelihood equations exist. We use the estimates

λ̂1, λ̂2, λ̂3 and β̂ obtained with respect to the given bivariate data set. These estimates
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Table 3: The mles of the parameters, the log-likelihood values and AIC values

Model mle L AIC
MO λ̂1 = 0.012, λ̂2 = 0.014, λ̂3 = 0.022, -339.006 684.012
BVGE α̂1 = 1.351, α̂2 = 0.465, α̂3 = 1.153, β̂ = 0.039 -296.935 601.870
BVGR α̂1 = 0.492, α̂2 = 0.166, α̂3 = 0.410, λ̂ = 0.020 -293.357 594.714
BCh λ̂1 = 0.026, ˆlambda2 = 0.055, λ̂3 = 0.048, β̂ = 1.020 0.094 0.899

are obtained using nlm R package which minimize the negative of the log-likelihood function.
We obtain T (θ̂) as follows:


0.0424 −1.63E − 0710−7 9.8070 6.0055

− 33.114 2.0183 8.427
− − 46.709 11.059
− − − 104.0074


The eigen values of this matrix are -103.6646, -42.8617, -31.9991 and -2.2724. This indicates
that T (θ̂) is negative definite. Then according to Small et al. (2000), the likelihood equations
has a unique root. For more details see Thomas and Jose (2021).

For Bayesian computations, we obtain the Bayes estimates of the unknown parameters
based on the uniform priors and the gamma priors. In the case of the gamma priors, we
assume that all hyperparameters equal and equal to 0.5. For the two cases, the proposal
distribution is multinormal with variance covariance matrix and the choice of its value de-
pends on the acceptance rate which is assumed such that the acceptance rate (number of
accepted runs out of total runs) increases. Here, we simulate 10000 runs from the joint
posterior distribution of the four parameters and the early 20% of the runs were discarded.
The trace plots of the draws are plotted in Figures 5 and 6 after discarding the early 2000
draws (burn-in period). Tables 4-5 list the posterior descriptive summaries of interest such
as the posterior mean, median, standard deviation and the 95% Bayesian credible intervals.

Table 4: Summary results for the posterior parameters in the case of gamma
priors (the acceptance rate is 38.18%)

Parameter Mean Median Standard deviation 95% credible intervals
λ1 0.0837 0.0754 0.0408 (0.0533, 0.1053)
λ2 0.5379 0.5278 0.1352 (0.4347, 0.6332)
λ3 0.1707 0.1604 0.0620 (0.1274, 0.2031)
β 0.2114 0.2114 0.0168 (0.1995, 0.2227)

6. Conclusion

In this paper, the bivariate generalized Chen distribution (BGCh) is proposed as a
new bivariate lifetime distribution. The BGCh distribution is of Marshal-Olkin type whose
marginal are generalized Chen distributions. One can observe that the BGCh distribution is
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Table 5: Summary results for the posterior parameters in the case of
uniform priors (the acceptance rate is 54.83%)

Parameter Mean Median Standard deviation 95% credible intervals
λ1 0.1137 0.1042 0.0533 (0.0756, 0.1401)
λ2 0.6255 0.6134 0.1575 (0.5175, 0.7273)
λ3 0.2227 0.2167 0.0779 (0.1657, 0.2697)
β 0.2019 0.2015 0.0171 (0.1900, 0.2127)

Figure 5: The trace plot of the random draws from the joint posterior distribu-
tion in the case of gamma priors

a singular distribution and has an absolute continuous and a singular part. Some statistical
properties are investigated. The estimation of the parameters has been approached by max-
imum likelihood and Bayesian methods. For Bayesian method, we used the MCMC method.
Numerical methods are required to calculate the desired estimates. One real data set is
analyzed using the BCh distribution which showed a better fit than the MO, the BVGE and
the BVGR distributions.
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Figure 6: The trace plot of the random draws from the joint posterior distribu-
tion in the case of uniform priors
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Abstract

The partial product process is a sequence of non-negative random variables X1, X2, X3, ...
such that the distribution function of X1 is F (x) and the distribution function of Xi+1 is
F (βix) (i = 1, 2, 3, ...) where βi > 0 are constants and βi = β0β1β2...βi−1. It is a mono-
tone process. In this paper, the probabilistic properties of the partial product process
are studied and some limit theorems are also established.

Key words: Geometric process; Partial product process; Renewal process.

AMS Subject Classifications: 60K10, 90B25

1. Introduction

The mathematical theory of reliability has put forth a great effort to issues of life-
testing, machine support, replacement, order statistics, and so on. The maintenance
problems are concerned about the circumstance that emerges about the reduction of the
productivity level of items or breakdown. The problem of replacement is to recognize
the best policy which enables determination of ideal replacement time that is generally
economical. One of the most interesting and critical topics to study in reliability is the
study of maintenance problems.

A common assumption in the initial period of studying maintenance issues is that
repair is perfect, a repairable framework after the repair is as good as new. This assump-
tion clearly has the effect of a natal way. In practice, most repairable systems deteriorate
because of the combined wear and tear impact. Barlow (1960) thusly presented a minimal
repair model in which a system after the repair has the same failure rate and effective age
as it was when it failed. Brown(1983) proposes an imperfect repair model, in which the
repair is perfect with likelihood p, and the repair is minimal with a probability of 1 − p.

Deteriorating systems have a different problem as the one portrayed above. For
instance, in machine maintenance problems, after every repair, the working time of a
machine will end up shorter and shorter, so the absolute working time or the existence
of the machine must be limited. However, in perspective on the aging and aggregate
wear, the repair time will turn out to be longer and tend to increase so that at the end
the machine is non-repairable. Therefore, there is need to consider a repair replacement
model for deteriorating systems, the progressive survival times are diminishing, while the
consecutive repair times are expanding.

Lam (1988) first presented a Geometric Process Repair model to model a deterio-
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rating system with the above characteristics.

Definition 1: The sequence {Xn, n = 1, 2, 3, . . .} of non negative independent random
variables is called a geometric process, if the distribution function of Xn is given by
F (an−1x) for n = 1, 2, 3, . . ., where a(> 0) is a constant.

In Geometric process, the operating times and repair times of a system are uniformly
decreasing. But practically, it is not uniform. To overcome this, the partial product
process was introduced by Babu et. al (2018).

Definition 2: Let {Xn, n = 1, 2, ...} be a sequence of non-negative independent random
variables and let F (x) be the distribution function of X1. Then {Xn, n = 1, 2, ...} is called
a partial product process, if the distribution function of Xi+1 is F (βix) (i = 1, 2, ...)
where βi > 0 are constants and βi = β0β1β2...βi−1.

By induction, it is clear that for real βi (i = 1, 2, ...), βi = β0
2i−1 . Thus, the distri-

bution function of Xi+1 is F
(
β0

2i−1
x
)

for i = 1, 2, ... .

The remainder of this paper are structured as follows. In section 2, some proba-
bilistic properties of the partial product process are studied and in section 3, some limit
theorems are established.

2. Probabilistic properties of partial product process

Let F and f be the distribution function and density function of X1 respectively,
and denote E (X1) = λ and V ar (X1) = σ2.

Then for i = 1, 2, ..., we have

E (Xi+1) = λ

β2i−1
0

and

V ar (Xi+1) = σ2

β2i

0
.

Thus, β0, λ and σ2 are three important parameters of partial product process.

Note that when F (0) < 1, then λ > 0.

Define S0 = 0 and

Sn =
n∑

i=1
Xi

Let Fn = σ (X1, X2, ..., Xn) be the σ- algebra generated by {Xi, i = 1, 2, ..., n}.

Theorem 1: If β0 > 1, then {Sn, n = 1, 2, ...} is a nonnegative submartingale with
respect to Fn = σ (X1, X2, ..., Xn).

Proof: Obviously, {Sn, n = 1, 2, ...} is a sequence of increasing non-negative random
variables with

E [Sn+1|Fn] = Sn + E [Xn+1] ⩾ Sn (1)
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Also,

Sup
n⩾0

E [|Sn|] = lim
n→∞

E [Sn]

= lim
n→∞

E

[
n∑

i=1
Xi

]

= lim
n→∞

n∑
i=1

E (Xi)

= lim
n→∞

[
λ +

n∑
i=2

λ

β0
2i−2

]

= λ

1 +
∞∑

i=2

(
1
β0

)2i−2 < ∞, (2)

where equation (2) is due to the fact that the series
∞∑

i=2

(
1

β0

)2i−2

is convergent by comparing
with geometric series if 1

β0
< 1.

Theorem 2: If β0 > 1, there exists a random variable S such that

Sn
a.s.−−→ S as n → ∞.

Proof: By Theorem 1 and Martingale Convergence Theorem(Ross, 1996), we have
Sn

a.s.−−→ S as n → ∞.

Theorem 3: If β0 > 1, {Sn, n = 1, 2, ...} has a unique decomposition such that

Sn = Ln − An (3)

where {Ln, n = 1, 2, ...} is a martingle, {An, n = 1, 2, ...} is decreasing with A1 = 0 and
An ∈ Fn−1.

Proof: Let L1 = S1 and A1 = 0. For n ⩾ 2, define

Ln = Ln−1 + (Sn − E [Sn|Fn−1]) , (4)

An = An−1 + (Sn−1 − E [Sn|Fn−1]) . (5)
From equations (4) and (5), we have

Ln − An =
n∑

i=2
(Si − Si−1) + S1 − A1 = Sn

and (3) follows. It is easy to check {Ln, n = 1, 2, ...} and {An, n = 1, 2, ...} satisfy the
requirements. Next, we need to prove such a decomposition is unique.

Suppose Sn = Ln
′ − An

′ is another decomposition. Then,

Ln − Ln
′ = An − An

′

Since A1 = A1
′ = 0, it is clear that L1 = L1

′. Also as L2 − L2
′ = A2 − A2

′ ∈ F1,, we have

L2 − L2
′ = E [L2 − L2

′|F1] = L1 − L1
′ = 0.

This implies that L2 = L2
′. Then, by induction, we can prove that Ln = Ln

′ and hence
An = An

′. Thus the uniqueness is proved.
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Theorem 4: If β0 > 1, then {Sn, n = 1, 2, ...} has a unique Riesz decomposition such
that

Sn = Yn + Zn (6)

where {Yn, n = 1, 2, ...} is a non-negative martingale and {Zn, n = 1, 2, ...} is a non-
positive submartingale with lim

n→∞
E [Zn] = 0.

Proof: From equation (2),

lim
n→∞

E [Sn] = λ

1 +
∞∑

i=2

(
1
β0

)2i−2 < ∞.

Thus the proof is complete by Riesz decomposition theorem(Ross, 1996).

Theorem 5: If β0 > 1, then {Sn, n = 1, 2, ...} has a Krickeberg decomposition such that

Sn = Ln − Mn

where {Ln, n = 1, 2, ...} is a non-positive submartingale and {Mn, n = 1, 2, ...} is a non-
positive martingale. Moreover, such a decomposition has the maximality such that for
any other decomposition Sn = Ln

′ − Mn
′ where Ln

′ , Mn
′ are nonpositive submartingale

and nonpositive martingale respectively, then

Ln ≥ Ln
′ and Mn ≥ Mn

′

Proof: Note that,

Sup
n

E
[
Sn

+
]

= Sup
n

E [Sn] = λ

1 +
∞∑

i=2

(
1
β0

)2i−2 < ∞.

Thus the proof is complete by Krickeberg decomposition(Ross, 1996).

3. Limit theorems for partial product process

In renewal process, Wald’s equation plays a key role. The following theorem is a
generalization of the Wald’s equation to a partial product process, it is called as Wald’s
equation for partial product process.

Theorem 6 (Wald’s equation for partial product process): Suppose that {Xn, n = 1, 2, ...}
forms a partial product process with E [X1] = λ < ∞, then for t > 0, we have

E
[
SN(t)+1

]
= λE

1 +
N(t)+1∑

n=2

1
β0

2n−2

 , (7)

where N(t) is the counting process which represents the number of occurrences of an
event up to time t.
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Proof: Let IA be the indicator function of event A. Then I{Sn−1≤t} = I{N(t)+1≥n} and Xn

are independent. Accordingly, for t > 0, we have

E
[
SN(t)+1

]
= E

N(t)+1∑
n=1

Xn



=
∞∑

n=1
E
[
XnI{N(t)+1≥n}

]

=
∞∑

n=1
E [Xn] P (N (t) + 1 ≥ n) (8)

= λE

1 +
N(t)+1∑

n=2

1
β0

2n−2

 .

Corollary 1:

E
[
SN(t)+1

]


> λ [E (N (t)) + 1], 0 < β0 < 1

= λ [E (N (t)) + 1], β0 = 1

< λ [E (N (t)) + 1], β0 > 1.

Proof: Let β0 > 1. Then,

1
β0

< 1 ⇒ E

1 +
N(t)+1∑

n=2

1
β0

2n−2

 < E

1 +
N(t)+1∑

n=2
(1)


⇒ λE

1 +
N(t)+1∑

n=2

1
β0

2n−2

 < λE [N (t) + 1]

⇒ E
[
SN(t)+1

]
< λ [E (N (t)) + 1] (by theorem 6).

Similarly, we can prove that E
[
SN(t)+1

]
> λ [E (N (t)) + 1] if β0 < 1. For β0 = 1, the

result is trivial.

Note that if β0 = 1, the partial product process reduces to a renewal process, while
corollary 1 gives E

[
SN(t)+1

]
= λ [E (N (t)) + 1]. This is Wald’s equation for the renewal

process.

Theorem 7: If a stochastic process {Xn, n = 1, 2, 3, ...} is a partial product process, then

(1) lim
t→∞

1
t
E
[
SN(t)+1

]
= 0 if β0 > 1.

(2) lim
t→∞

1
t
E
[
SN(t)+1

]
= 1 if β0 = 1.
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Proof: Let β0 > 1. Then from equation (8), we have

lim
t→∞

E
[
SN(t)+1

]
= lim

t→∞

∞∑
n=1

E [Xn] P (N (t) + 1 ≥ n)

=
∞∑

n=1
E [Xn] P (Sn < ∞)

=
∞∑

n=1
E [Xn] (1)

= λ

(
1 +

∞∑
n=2

1
β0

2n−2

)
< ∞.

Thus,
lim
t→∞

1
t
E
[
SN(t)+1

]
= 0.

This completes the proof of part (1).

Now, assume that β0 = 1. Then,

lim
t→∞

1
t
E
[
SN(t)+1

]
= lim

t→∞

λ

t
[E (N (t)) + 1]

= λ lim
t→∞

[
E (N (t))

t

]

= λ × 1
λ

= 1, (9)

where (9) due to Elementary Renewal Theorem. This completes the proof of part (2) and
theorem.

4. Conclusion

In this paper, some limit theorems and probability properties of the partial product
process are established. Since it is monotone process, it can be applied to the maintenance
model for a deteriorating system.
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Abstract
Consider an mth order Markov chain {Xj : j ≥ −m + 1} taking values in {0, 1}. Fix

k ≥ 1 and r ≥ 0. A r-look-back run of length k, is defined as a run of 1’s, provided that
there are at least r trials in between the ending point of the current run and the ending
point of the previous occurrence of the r-look-back run of length k. The r-look-back run
of length k encompasses the non-overlapping counting, the overlapping counting as well as
the l-overlapping counting for 0 ≤ l ≤ k − 1 (defined by Aki and Hirano (2000)). We show
that the waiting time for the nth occurrence of the r-look-back run of length k converges
in distribution to an extended Poisson distribution under the assumption that the model
exhibits a strong propensity towards success. This generalizes similar results on l-overlapping
runs of length k obtained under the Markov dependent set-up. We obtain a central limit
theorem for the number of r-look-back runs of length k till the nth trial. Further, we show
that the rate of convergence in the central limit theorem is at least a fractional power of
n with a logarithmic correction factor. We support our findings on the rate of convergence
with some simulation results.

Key words: Success runs; Waiting time; Markov chain; Extended Poisson distribution; Cen-
tral limit theorem; Rate of convergence.

AMS Subject Classifications: 60C05, 60E05, 60F05

1. Introduction

Let {Xi : i ≥ 1} be a sequence of {0, 1}-valued random variables. Here Xn stands
for the outcome of an experiment at the n-th trial and 1 and 0 imply success and failure
respectively of the experiment. A run of length k is an occurrence of k (≥ 1) consecutive
1’s. In the literature, there are several schemes of counting runs of length k; two of the most
commonly used ones are (a) Non-overlapping counting and (b) Overlapping counting. In the
non-overlapping counting scheme a trial can contribute to only one possible run, while in
the overlapping counting scheme a trial can contribute towards the counting of more than
one run. Another method of l-overlapping counting has been introduced by Aki and Hirano
(2000) where they allow an overlap of at most l successes between two consecutive runs of
length k where 0 ≤ l < k. It is easy to observe that when l = 0 and l = k − 1, this definition
is equivalent to the non-overlapping counting and the overlapping counting respectively. Han
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and Aki (2000) have extended this counting scheme to the case where l assumes negative
values. For l < 0, there is at least |l| trials difference between the two runs of length k.

In this paper, we consider a new scheme of counting runs of length k. We will refer
to this new scheme of counting as look-back counting. Let r ≥ 0 be a fixed number. In
the r-look-back counting scheme, the starting points (hence the ending points) of the two
consecutive runs of length k should be separated by at least r trials in between, i.e., a new
run of length k can be counted only after r trials have elapsed since the starting point of
the last counted run. Suppose that we are at the trial i such that it is a starting point of
a run of length k, i.e., Xi = Xi+1 = . . . = Xi+k−1 = 1. Now, suppose that i′ is the trial
where the last enumerated r-look-back run of length k started. In order to enumerate the
run starting at the ith trial as a r-look-back run, we must have i − i′ > r. The definition
of r-look-back run of length k, encompasses the above definitions of overlapping runs and
non-overlapping runs, in the sense that when r = 0 and r = k − 1, the r-look-back run of
length k matches exactly with the overlapping counting and the non-overlapping counting
respectively. Moreover, the l-overlapping run of length k can be identified as a r-look-back
run of length k with l = k − r − 1 for 0 ≤ l ≤ k − 1. However, when l assumes negative
values the definitions do not match. To illustrate this, we quote the example from Han and
Aki (2000):

1111011000111111110000111.

In this example, for k = 3 and r = 3, we see that there are four 3-look-back runs of length 3
starting at trials 1, 11, 15 and 23, while there are only three (−1)-overlapping runs of length
3, starting at 1, 11 and 15. This is because the number of remaining trials (0 here) after the
last run of length k starting at trial 23, is less than |l|, in the l-overlapping counting of runs
of length k (for l < 0), such a run cannot be counted (see Han and Aki (2000)). But, in
the look-back counting scheme, we do not put such a restriction. This will be clear from the
mathematical definition given in the next section.

Practical usage of this scheme of counting can be illustrated from the following ex-
amples. In many counters for detection of cosmic rays and α-particles, the counter records
a hit (detection of a particle) whenever the frequency recorded lies in a particular region
(depending on the particle under detection). We refer to the detection of the particle as a
success, while the non-detection is regarded as a failure. However, if particles are detected
for k(≥ 1) successive time points, the counter loses its power and is locked; hence it cannot
record anything in the next r − k + 1 (r > k − 1) time points. The number of r-look-
back runs of length k is exactly the number of times the instrument loses its power and is
locked. Another example is seen in the congestion model of computer networks, where a
network receives packets of information from other networks and sends information back to
the originating network. Each of these processes consumes certain processing resource. If
the network receives packets at k consecutive time points, all its resources are spent in pro-
cessing the information received; as a result it can not receive any information for the next
r − k + 1 (r > k − 1) time points. In one of the models of computer networking, the packets
are rejected for these time points and are required to be re-sent by the originating network
at a later time point. This situation is called the congestion of the network. Here also, the
number of r-look-back runs of length k is exactly the number of times congestion occurs. In
a drug administration model, observations are taken every hour for the presence or absence
(success or failure) of a particular symptom, say, fever exceeding a specified temperature.
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If we observe the presence of the symptom for k consecutive points (hours), a drug has to
be administered; however, as is the case with most drugs, once the drug is administered,
we have to wait for r-hours for the next administration of the drug with r < k. But the
process of the observation for the presence or absence of the symptom is continued as ever.
In such a case, the number of administrations of the drug until time point n, is the number
of r-look-back runs of length k up to time n. In the first two examples, we have r > k − 1
while in the last example 0 ≤ r ≤ k − 1.

The theory of runs plays a vital role in diverse fields of statistics, such as, non-
parametric inference, statistical quality control, reliability theory etc.. Runs and run-related
statistics have engaged researchers since the time of De Moivre (see Feller (1968)). In recent
years, this field has seen tremendous growth, with researchers contributing to the theory
as well as their practical applications to various disciplines. Systematic study of the the-
ory of distributions of non-overlapping runs was initiated by Feller (1968). Feller studied
the distribution of the number of non-overlapping runs up to the n-th trial and obtained
its asymptotic distribution using the renewal theory techniques where the underlying trials
were i.i.d. Bernoulli random variables. Aki (1985), Hirano (1986), Philippou and Makri
(1986) etc. studied various run-statistics based on the non-overlapping counting of runs.
Ling (1988) obtained the distribution of the number of overlapping runs of length k for a se-
quence of n i.i.d. Bernoulli trials. Aki and Hirano (1988), Godbole (1990, 1992) also studied
the properties of the distribution of the number of overlapping runs up to time n. Hirano
et al. (1991) obtained the probability generating function of the number of overlapping
runs and also obtained the asymptotic distribution. Several generalization of the underlying
model has also been considered (see Aki and Hirano (1995), Fu and Koutras (1994), Koutras
(1996), Uchida and Aki (1995), Uchida (1998) and references therein). The waiting time
distributions for the occurrence of runs of various types has been studied extensively by
several authors (see, for example, Koutras (1996), Aki, Balakrishnan and Mohanty (1996),
Balasubramanian, Viveros and Balakrishnan (1993) and references therein). Uchida (1998)
has also investigated the waiting time problems for patterns under mth order Markov set
up. Makri and Psillakis (2015) also studied l-overlapping runs of successes of length k and
obtained recurrence relations for probability mass functions for the case of Bernoulli trials
ordered in line as well as in circle. For a more detailed account on the theory of runs and
its applications, we refer the reader to Balakrishnan and Koutras (2002) and Makri and
Psillakis (2015).

In this paper, we assume that the underlying trials form a mth order homogeneous
Markov chain. We study the waiting time of the nth occurrence of the r-look-back run of
length k. We show that under the assumption of the model exhibiting a strong propensity
towards success, i.e., the probability of getting success converges to 1 in a certain sense, the
waiting time for the nth occurrence of r-look-back run of length k converges to a compound
Poisson distribution as n → ∞. This result generalises the results of Inoue and Aki (2003)
where they considered that the underlying trials are from a homogeneous Markov chain
(m = 1). Also, we show that the number of r-look-back runs of length k till the nth trial,
suitably normalised, converges to a normal distribution when the underlying process is an
mth order homogeneous Markov chain. Further, we obtain the (uniform) rate of convergence
of the central limit theorem (Berry Essen type result). This result shows that the convergence
rate is at least a fraction power of n with a logarithmic correction factor.
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In the next section we give the formal definitions and the statement of results. The third
section is devoted to showing the convergence of waiting times, while in the fourth section
we obtain the rate of convergence results. In the final section, we demonstrate simulation
results where the underlying trials are from a homogeneous Markov chain (m = 1) exhibiting
the rate of convergence.

2. Definitions and statement of theorem

Let X−m+1, X−m+2, . . . , X0, X1, . . . be a sequence of stationary mth order {0, 1}-valued
Markov chain. It is assumed that the values of X−m+1, X−m+2, . . . , X0 are known, i.e., we
are given the initial condition {X0 = x0, X−1 = x1, . . . , X−m+1 = xm−1}, xi ∈ {0, 1}, i =
−m + 1, . . . , −1, 0.

Define Nl := {0, 1, . . . , 2l − 1} for any l ≥ 0. It is clear that {0, 1}l and Nl can be
identified by the mapping (x0, x1, . . . , xl−1) −→ ∑l−1

j=0 2jxj. Thus, we will represent the initial
condition by taking x ∈ Nm = {0, 1, . . . , 2m − 1} where x = ∑m−1

j=0 2jxj.

We define, for any n ≥ 0,

px := P(Xn+1 = 1|Xn = x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1). (1)

Consequently, qx := P(Xn+1 = 0|Xn = x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) = 1 − px. We
assume that 0 < px < 1 for all x ∈ Nm. Define two functions fl, gl : Nl → Nl as

fl(x) := 2x + 1 (mod 2l) and gl(x) := 2x (mod 2l).

Note that, fm(x), gm(x) can be interpreted as the two possible states which can be reached
from the state x in a single step, provided we obtain a success, failure respectively in the
next trial.

Let Ri(k, r) be the indicator of the event that a r-look-back run of length k is completed
at the ith trial. In order that Ri(k, r) = 1, we must have Ri−1(k, r) = Ri−2(k, r) = . . . =
Ri−r(k, r) = 0. Thus, the formal definition of Ri(k, r) can be given inductively as follows:

Definition 1: Set Ri(k, r) = 0 for i ≤ k − 1 and for any i ≥ k, define

Ri(k, r) :=
r∏

j=1
(1 − Ri−j(k, r))

i∏
j=i−k+1

Xj. (2)

When r = 0, the first product should be interpreted as 1. If Ri(k, r) = 1, we say that
a r-look-back run of length k has been recorded at the ith trial (i.e., ending at trial i). Define

Nn,k,r :=
n∑

i=1
Ri(k, r) =

n∑
i=k

Ri(k, r)

as the number of r-look-back runs of length k till the nth trial. A sequence of stopping times
is defined as follows: set τ0(k, r) = 0 and for n ≥ 1,

τn(k, r) := inf{i > τn−1(k, r) : Ni,k,r = n}. (3)



2023] GENERALIZED RUNS 191

Note, τn(k, r) is the waiting time for the nth occurrence of r-look-back run of length k.

In the sequel, we say that a random variable ξ is of Poisson type with multiplicity p
and parameter α, denoted by ξ ∼ Poi(p, α), if

P(ξ = pt) = exp(−α)αt

t! for t = 0, 1, . . . . (4)

Note that, when p = 1 it is the usual Poisson distribution. Following Aki (1985), we say that
a random variable ξ follows an extended Poisson distribution of order k with parameters
(α1, α2, . . . , αk), if its p. g. f. is given by,

ϕ(z; α1, α2, . . . , αk) = exp
(
−

k∑
j=1

αj +
k∑

j=1
αjz

j
)
.

It should be noted that if ξ follows an extended Poisson distribution of order k with param-
eters (α1, α2, . . . , αk), then it can be represented as

ξ
d=

k∑
j=1

ξj

where {ξj : 1 ≤ j ≤ k} are independent and ξj ∼ Poi(j, αj).

The assumption, we impose on our model, is that the system has a strong tendency
towards success. We formalize this by stating that, for x ∈ Nm, px (as a function of n)
converges to 1 in such a way that

n(1 − px) → λx as n → ∞ where λx > 0 is a positive constant. (5)

Our first theorem is:

Theorem 1: For any initial condition x ∈ Nm, if the condition (5) holds, we have

(i) τn(k, r) − (k − r − 1) − n(r + 1) ⇒
r∑

i=0
ξ

(1)
i when k ≥ r + 1

(ii) τn(k, r) − k − (n − 1)(r + 1) ⇒
k−1∑
i=0

ξ
(2)
i when k < r + 1

where
{
ξ

(1)
i : i = 0, 1, . . . , r

}
are independent random variables with ξ

(1)
i ∼ Poi(k + i −

r, λ2m−1) for i = 0, 1, . . . , r while
{
ξ

(2)
i : i = 0, 1, . . . , k−1

}
are independent random variables

with ξ
(2)
i ∼ Poi(i + 1, λ2m−1) for i = 0, 1, . . . , k − 1.

From the above, when 0 ≤ r ≤ k −1, the limiting distribution, ∑r
i=0 ξ

(1)
i , follows an ex-

tended Poisson distribution of order k with parameters (
k−r−1︷ ︸︸ ︷

0, 0, . . . , 0,

r+1︷ ︸︸ ︷
λ2m−1, λ2m−1, . . . , λ2m−1)

and when r ≥ k, ∑k−1
i=0 ξ

(2)
i follows an extended Poisson distribution of order k with pa-

rameters (
k︷ ︸︸ ︷

λ2m−1, λ2m−1, . . . , λ2m−1). Inoue and Aki (2003) have obtained a similar result for
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l-overlapping counting under the Markov chain (m = 1) set-up. It should be noted that,
Inoue and Aki (2003) have counted the run of length k as a l-overlapping run (for l < 0) even
when the remaining number of trials after the run is completed, is less than |l|. Therefore,
it matches with our counting scheme with r = k − 1 + (−l) and hence their results can be
deduced as a special case from our result. However, even if we follow the definition of Han
and Aki (2000), a similar result can be established following our method.

Further, we establish a central limit theorem for Nn,k,r and study the rate of convergence
in the central limit theorem under the mth order Markov chain set-up. Let σ2

n = Var(Nn,k,r).
We show that

Theorem 2: For any r ≥ 0 and k ≥ 1, we have

sup
t∈R

∣∣∣∣P(Nn,k,r − E(Nn,k,r) ≤ tσn

)
− Φ(t)

∣∣∣∣ = O(n−2/11 log n)

where O(f(n)) is a function g(n) such that |g(n)/f(n)| remains bounded as n → ∞ and Φ(·)
is the distribution function of the standard normal distribution.

Since n−2/11 log n → 0 as n → ∞, we obtain the standard central limit theorem from
Theorem 2. Further, this result gives the uniform rate at which the normalised variable
Nn,k,r converges to normality. Since the number of l-overlapping runs of length k up to the
nth trial is at most one less than Nn,k,r, where r = k − l − 1, exactly same results will hold
for the number of l-overlapping runs of length k up to the nth trial.

3. Convergence of waiting time

In this section, we prove Theorem 1. We require the following lemmas on weak con-
vergence of discrete random variables. The first lemma is an easy consequence of the Port-
manteau Theorem (Billingsley (1968) p.p. 11) and the fact that all the random variables
involved are discrete in nature; hence we omit its proof.

Lemma 1: If {ξn : n ≥ 1} and ξ are random variables taking values in N = {0, 1, . . . } such
that for each t ≥ 0

lim inf
n→∞

P(ξn = t) ≥ P(ξ = t),
then ξn ⇒ ξ.

Lemma 2: Suppose that {ξn : n ≥ 0} and {ξ
(1)
i : 1 ≤ i ≤ p1} and {ξ

(2)
i : 1 ≤ i ≤

p2} are random variables taking values in N and {ξ
(1)
1 , ξ

(1)
2 , . . . , ξ(1)

p1 , ξ
(2)
1 , ξ

(2)
2 , . . . , ξ(2)

p2 } are
independent. Suppose that, for each n ≥ 1 and t ≥ 0,

{
At

n(u1, u2, . . . , up1 , v1, v2, . . . , vp2) :

ui ≥ 0 for 1 ≤ i ≤ p1, vi ≥ 0 for 1 ≤ i ≤ p2 and ∑p1
i=1 ui = t

}
is a collection of disjoint events,

such that

lim inf
n→∞

P
(
ξn = t, At

n(u1, u2, . . . , up1 , v1, v2, . . . , vp2)
)

≥
p1∏

i=1
P(ξ(1)

i = ui)
p2∏

i=1
P(ξ(2)

i = vi).

Then
ξn ⇒

p1∑
i=1

ξ
(1)
i .
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Note that, we require p1 ≥ 1 but p2 ≥ 0. In one of our applications, we will take p2 = 0.

Proof: Clearly, for any fixed t ∈ N,

P
( p1∑

i=1
ξ

(1)
i = t

)
=

∑
u1,...,up1 ∈N
v1,...,vp2 ∈N∑p1

i=1 ui=t

p1∏
i=1

P(ξ(1)
i = ui)

p2∏
i=1

P(ξ(2)
i = vi).

Fix any ϵ > 0 and choose J so large that

∑
u1,...,up1 ∈N
v1,...,vp2 ∈N∑p1

i=1 ui=t

p1∏
i=1

P(ξ(1)
i = ui)

p2∏
i=1

P(ξ(2)
i = vi) −

∑
0≤u1,...,up1 ≤J
0≤v1,...,vp2 ≤J∑p1

i=1 ui=t

p1∏
i=1

P(ξ(1)
i = ui)

p2∏
i=1

P(ξ(2)
i = vi) < ϵ.

Thus, we have,

lim inf
n→∞

P(ξn = t)

≥ lim inf
n→∞

∑
u1,...,up1 ∈N
v1,...,vp2 ∈N∑p1

i=1 ui=t

P(ξn = t, At
n(u1, u2, . . . , up1 , v1, v2, . . . , vp2))

≥ lim inf
n→∞

∑
0≤u1,...,up1 ≤J
0≤v1,...,vp2 ≤J∑p1

i=1 ui=t

P(ξn = t, At
n(u1, u2, . . . , up1 , v1, v2, . . . , vp2))

≥
∑

0≤u1,...,up1 ≤J
0≤v1,...,vp2 ≤J∑p1

i=1 ui=t

lim inf
n→∞

P(ξn = t, At
n(u1, u2, . . . , up1 , v1, v2, . . . , vp2))

≥
∑

0≤u1,...,up1 ≤J
0≤v1,...,vp2 ≤J∑p1

i=1 ui=t

p1∏
i=1

P(ξ(1)
i = ui)

p2∏
i=1

P(ξ(2)
i = vi)

≥ P
( p1∑

i=1
ξ

(1)
i = t

)
− ϵ.

Since ϵ > 0 is arbitrary, by Lemma 1, the result follows.

In the next lemma, we derive a lower bound of a particular event, defined below. This
lower bound will be used in proving Theorem 1.

Definition 2: For any K ≥ m, define Aα
γ (K) as the collection of all strings consisting of 0’s

and 1’s, of length γ and having exactly α 0’s, such that

(a) the number of 1’s before the first occurrence of 0 is at least K,

(b) the number of 1’s after the last occurrence of 0 is at least K,
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(c) the number of 1’s between any two occurrences of 0’s is at least K.

For the initial condition x ∈ Nm, the probability of observing any given string s ∈
Aα

γ (K) is given by:

δm(γ, α, x) := hm(x)
(

hm(2m − 2)
)α(

1 − p2m−1

)α(
p2m−1

)γ−m−α(m+1)
(6)

where hm(x) := ∏m−1
j=0 pfj

m(x) where f 0
m(x) := x and f j+1

m (x) := fm(f j
m(x)) for x ∈ Nm.

For a string s ∈ Aα
γ (K), let β0 be the number of 1’s before the first occurrence of 0, βα

be the number of 1’s after the last occurrence of 0 and βi be the number of 1’s between the
ith and (i + 1)th occurrences of 0 for i = 1, 2, . . . , α − 1.

• Case r ≤ k − 1: Define

β′
i := (βi − (k − r − 1)) mod (r + 1) for i = 0, 1, . . . , α.

Clearly 0 ≤ β′
i ≤ r. Set S

(1)
j (s) := #

{
i : β′

i = j
}

for j = 0, 1, . . . , r, then ∑r
j=0 S

(1)
j (s) =

α. Define the event

Bγ(K, u0, u1, . . . , ur) :=
{
s ∈ Aα

γ (K) : S
(1)
j (s) = uj for j = 0, 1, . . . , r

}
.

So, we must have α = ∑r
j=0 uj.

• Case r ≥ k: Define
β′

0 := β0 mod (r + 1).

Having specified β′
0, β′

1, . . . , β′
i, define

β′
i+1 :=

βi+1 mod (r + 1) if β′
i < k(

βi+1 − (r − β′
i)
)

mod (r + 1) if β′
i ≥ k.

Set S
(2)
j (s) := #

{
i : β′

i = j
}

for j = 0, 1, . . . , r. Here also, ∑r
i=0 S

(2)
j (s) = α. Define the

event

Cγ(K, u0, . . . , uk−1, v0, . . . , vr−k) :=
{
s ∈ Aα

γ (K) : S
(2)
j (s) = uj for j = 0, 1, . . . , k − 1

and S
(2)
j (s) = vj−k for j = k, k + 1, . . . , r

}
.

Here, we must have α = ∑k−1
j=0 uj +∑r−k

j=0 vj.

The following lemma gives a lower bound of the probability of the events defined above.
When r ≤ k − 1, we choose K = K(r) = (k − r − 1) + t0(r + 1) where t0 ≥ 1 is so large that
K ≥ m. When r ≥ k, we choose K = K(r) = t0(r + 1) so that t0(r + 1) ≥ m.
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Lemma 3: (a) For r ≤ k − 1 and given non-negative integers u0, u1, . . . , ur and n such that
n ≥ t0(1 +∑r

i=0 ui), define γ(n) = (k − r − 1) + n(r + 1) +∑r
i=0 ui(k + i − r). Then for any

x ∈ Nm, we have

Px

(
Bγ(n)(K, u0, u1, . . . , ur)

)
≥ δm

(
γ(n),

r∑
i=0

ui, x
)(n − t0(1 +∑r

i=0 ui) +∑r
i=0 ui

)
!∏r

i=0 ui!
(
n − t0(1 +∑r

i=0 ui)
)
!

. (7)

(b) For r > k − 1 and given non-negative integers u0, u1, . . . , uk−1, v0, v1, . . . , vr−k and
n such that n ≥ t0 + t0

∑k−1
i=0 ui + (1 + t0)

∑r−k
i=0 vi + 1, define γ(n) = k + (n − 1)(r + 1) +∑k−1

i=0 ui(i + 1). Then for any x ∈ Nm, we have

Px

(
Cγ(n)(K, u0 . . . , uk−1, v0, . . . , vr−k)

)
≥ δm

(
γ(n),

k−1∑
i=0

ui +
r−k∑
i=0

vi, x
)

×

(
n − 1 − (t0 + t0

∑k−1
i=0 ui + (1 + t0)

∑r−k
i=0 vi) +∑k−1

i=0 ui +∑r−k
i=0 vi

)
!∏k−1

i=0 ui!
∏r−k

i=0 vi!
(
n − 1 − (t0 + t0

∑k−1
i=0 ui + (t0 + 1)∑r−k

i=0 vi)
)
!

. (8)

Proof: As we have noted, the probability of any string is independent of the positions
of the 0’s and is given by (6). So, by multiplying this with the number of strings in
Bγ(n)(K, u0, . . . , ur) and Cγ(n)(K, u0, . . . , uk−1, v0, . . . , vk−r) respectively, we get the proba-
bility of the respective events. Now we describe a method for obtaining a lower bound of
the number of strings in the respective events.

(a) We define r + 2 objects as follows: O0 = 0 11 · · · 1︸ ︷︷ ︸
K

, O1 = 10 11 · · · 1︸ ︷︷ ︸
K

, . . . , Or =

1 · · · 1︸ ︷︷ ︸
r

0 11 · · · 1︸ ︷︷ ︸
K

and Or+1 = 1 · · · 1︸ ︷︷ ︸
r+1

.

First, we put K 1’s in the beginning of the string. Next we distribute ui objects of type
Oi for i = 0, 1, . . . , r and (n − t0(1 +∑r

i=0 ui)) objects of type Or+1 in any way we like. It is
evident, from the construction of the objects, that any arrangement given above will result
in a string in Bγ(n)(K, u0, . . . , ur). Thus the number of arrangements of the above objects
will provide a lower bound of the number of strings in Bγ(n)(K, u0, . . . , ur). The number of
arrangements is given by (n − t0(1 + ∑r

i=0 ui) + ∑r
i=0 ui)!/

(∏r
i=0 ui!(n − t0(1 + ∑r

i=0 ui))!
)
.

This proves part (a).

(b) Here we define the objects as follows: O0 = 0 11 · · · 1︸ ︷︷ ︸
K

, O1 = 10 11 · · · 1︸ ︷︷ ︸
K

, . . . , Ok−1

= 1 · · · 1︸ ︷︷ ︸
k−1

0 11 · · · 1︸ ︷︷ ︸
K

, Ok = 1 · · · 1︸ ︷︷ ︸
k

0 1 · · · 1︸ ︷︷ ︸
r−k

11 · · · 1︸ ︷︷ ︸
K

, Ok+1 = 1 · · · 1︸ ︷︷ ︸
k

10 1 · · · 1︸ ︷︷ ︸
r−1−k

11 · · · 1︸ ︷︷ ︸
K

, . . . , Or =

1 · · · 1︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
r−k

0 11 · · · 1︸ ︷︷ ︸
K

and Or+1 = 1 · · · 1︸ ︷︷ ︸
r+1

.

First, we put K 1’s in the beginning of the string. Now, we distribute ui objects
of type Oi for i = 0, 1, . . . , k − 1 and vi objects of type Ok+i for i = 0, 1, . . . , r − k and
(n − 1 − (t0 + t0

∑k−1
i=0 ui + (1 + t0)

∑r−k
i=0 vi)) objects of type Or+1. Again, it is evident

from the construction of the objects that any arrangement of the objects will result in a
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string in Cγ(n)(K, u0, . . . , uk−1, v0, . . . , vr−k). Thus a lower bound of the number of strings
in Cγ(n)(K, u0, . . . , uk−1, v0, . . . , vr−k) is obtained by counting the number of such possible
arrangements, which is given by (n − 1 − (t0 + t0

∑k−1
i=0 ui + (1 + t0)

∑r−k
i=0 vi) + ∑k−1

i=0 ui +∑r−k
i=0 vi)!/(∏k−1

i=0 ui!
∏r−k

i=0 vi!(n − 1 − (t0 + t0
∑k−1

i=0 ui + (t0 + 1)∑r−k
i=0 vi))!).

Now we are in a position to prove the Theorem 1.

Proof: (a) Fix any t ≥ 0. We consider the collection of events
{

Bγ(n)(K, u0, u1, . . . , ur) :

ui ≥ 0, t = ∑r
i=0 ui(k + i − r)

}
. Clearly, these events are disjoint. By Lemma 2, it is enough

to show that for any x ∈ Nm,

lim inf
n→∞

Px

(
τn(k, r) − (k − r − 1) − n(r + 1) = t, Bγ(n)(K, u0, u1, . . . , ur)

)
≥

r∏
i=0

exp(−λ2m−1)(λ2m−1)ui

ui!
.

It is clear that if ω ∈ Bγ(n)(K, u0, u1, . . . , ur), τn(k, r) = (k − r − 1) + n(r + 1) +∑r
i=0 ui(k + i − r) = (k − r − 1) + n(r + 1) + t and γ(n) = (k − r − 1) + n(r + 1) + t. Thus,{
τn(k, r) − (k − r − 1) − n(r + 1) = t, Bγ(n)(K, u0, u1, . . . , ur)

}
= Bγ(n)(K, u0, u1, . . . , ur). So,

by part (a) of Lemma 3, we have

Px

(
τn(k, r) − (k − r − 1) − n(r + 1) = t, Bγ(n)(K, u0, u1, . . . , ur)

)
≥ δm

(
γ(n),

r∑
i=0

ui, x
)(n − t0(1 +∑r

i=0 ui) +∑r
i=0 ui

)
!∏r

i=0 ui!
(
n − t0(1 +∑r

i=0 ui)
)
!

=
(

1 − p2m−1

)(
∑r

i=0 ui)(
p2m−1

)n(r+1)(
1 + o(1)

)
× n(

∑r

i=0 ui)∏r
i=0 ui!

(
1 + o(1)

)

→
r∏

i=0

exp(−λ2m−1)(λ2m−1)ui

ui!
as n → ∞.

This establishes part (a).

For part (b), fix any t ≥ 0. Consider the collection of events
{

Cγ(n)(K, u0, u1, . . . ,

uk−1, v0, v1, . . . , vr−k) : ui, vi ≥ 0, t = ∑k−1
i=0 ui(i + 1)

}
. Again these events are disjoint.

Further, we have
{

τn(k, r)−k−(n−1)(r+1) = t, Cγ(n)(K, u0, u1, . . . , uk−1, v0, v1, . . . , vr−k)
}

=
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Cγ(n)(K, u0, u1, . . . , uk−1, v0, v1, . . . , vr−k). Therefore, by part (b) of Lemma 3, we have

Px

(
τn(k, r) − k − (n − 1)(r + 1) = t, Cγ(n)(K, u0, . . . , uk−1, v0, . . . , vr−k)

)
≥

(
n − 1 − (t0 + t0

∑k−1
i=0 ui + (1 + t0)

∑r−k
i=0 vi) +∑k−1

i=0 ui +∑r−k
i=0 vi

)
!∏k−1

i=0 ui!
∏r−k

i=0 vi!
(
n − 1 − (t0 + t0

∑k−1
i=0 ui + (t0 + 1)∑r−k

i=0 vi)
)
!

× δm

(
γ(n),

k−1∑
i=0

ui +
r−k∑
i=0

vi, x
)

=
(

1 − p2m−1

)(
∑k−1

i=0 ui+
∑r−k

i=0 vi)(
p2m−1

)n(r+1)(
1 + o(1)

)

× n(
∑k−1

i=0 ui+
∑r−k

i=0 vi)∏k−1
i=0 ui!

∏r−k
i=0 vi!

(
1 + o(1)

)

→
k−1∏
i=0

exp(−λ2m−1)(λ2m−1)ui

ui!

r−k∏
i=0

exp(−λ2m−1)(λ2m−1)vi

vi!
as n → ∞.

This, by Lemma 2, completes the proof of the Theorem.

Remark 1: Since the limiting distribution is independent of the initial condition, we can
assume any distribution on the initial conditions. Suppose that µ is the probability distribu-
tion on {0, 1}m. As we have already discussed, µ can be identified as a probability measure
on Nm by the mapping (x0, x1, . . . , xm−1) → x = ∑m−1

j=0 2jxj where each xi ∈ {0, 1}. Let
Pµ be the probability measure governing the Markov chain with initial distribution µ. From
theorem 1, we can easily conclude that, under Pµ

(a) τn(k, r) − (k − r − 1) − n(r + 1) ⇒
r∑

i=0
ξ

(1)
i when r ≤ k − 1

(b) τn(k, r) − k − (n − 1)(r + 1) ⇒
k−1∑
i=0

ξ
(2)
i when r > k − 1

by first conditioning on x ∈ Nm and then summing over all possible values of x ∈ Nm. The
random variables, ξ

(1)
i and ξ

(2)
i are as defined in the Theorem 1.

4. Central limit theorem

In this section, we prove the central limit theorem for Nn,k,r and obtain the uniform rate
of convergence for the central limit theorem. The result can be generalized for a wider class
of processes; however we concentrate only on the mth order Markov chain set-up described
in this paper.

We define two new sequences of random variables: the first one, Yn, captures the
sequence of 1’s observed in last k trials (going back from trial n) and the second one, Zn,
keeps track whether the end point of the last r-look-back run of length k is within r trials
(going back) from the trial n. Both these random variables assume values in finite sets.
Further, the random vector (Yn, Zn) jointly form a homogeneous Markov chain taking values
in a finite set (for sufficiently large n). Next, we translate the description of r-look-back
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runs of length k, from the original random variables {Xn} to the new set of random vectors
{(Yn, Zn)}. Further, the newly defined Markov chain will be a irreducible chain; hence will
satisfy the properties of ϕ-mixing sequence. This allows us to apply the central limit theorem
and the rate of convergence results for the ϕ-mixing sequence to this case to yield Theorem
2.

Define s = max(k, m). Set X−m = X−m−1 = · · · = X−s+1 = 0 provided s > m. Define
a sequence of random variables Yn as follows:

Yn =
s−1∑
j=0

2jXn−j

for n ≥ 1. Since Xi ∈ {0, 1} for all i, Yn assumes values in the set Ns. It is clear that Yn

captures the last s observations {Xn, Xn−1, . . . , Xn−s+1}. Indeed, from the binary expansion
of Yn, one can easily retrieve the values of Xn’s.

Since the sequence of random variables Xn is stationary and form a mth order Markov
chain, we have that the random variables {Yi : i ≥ 0} form a homogeneous Markov chain with
initial distribution δx, where δx is the Dirac measure at x ∈ Nm, and transition probabilities
given by

P(Yn+1 = y1|Yn = y0) =


pθm(y0) if y1 = fs(y0)
1 − pθm(y0) if y1 = gs(y0)
0 otherwise

where θm : Ns → Nm is given by θm(x) = x (mod 2m).

Let N ′
r = {0, 1, 2, . . . , 2r−1}. Now, we define another sequence of random variables

{Zn} taking values in the set N ′
r. Set Zn = 0 for n < k. For n ≥ k, we define

Zn =
{

2Zn−1 (mod 2r) if Zn−1 > 0
1{Yn (mod 2k) = 2k − 1} otherwise

where 1{Yn (mod 2k) = 2k−1} is the indicator variable for the event {Yn (mod 2k) = 2k−1}.

Now, for all n ≥ s, the joint distribution of (Yn, Zn) is Markovian since Yn is Markovian
and independent of {Zi : i ≤ n − 1} and the value of Zn depends only on the values of Zn−1
and Yn. The transition probabilities are easy to compute: for y0, y1 ∈ Ns, z0, z1 ∈ N ′

r, we
have

P
(
(Yn+1, Zn+1) = (y1, z1) | (Yn, Zn) = (y0, z0)

)
= P

(
Zn+1 = z1|Yn+1 = y1, (Yn, Zn) = (y0, z0)

)
P
(
Yn+1 = y1|(Yn, Zn) = (y0, z0)

)
= P

(
Zn+1 = z1|Yn+1 = y1, Zn = z0

)
P
(
Yn+1 = y1|Yn = y0

)
.

Note that P
(
Zn+1 = z1|Yn+1 = y1, Zn = z0

)
is a deterministic function taking values in

{0, 1}. We also assume that px > 0 for all x ∈ Nm. Therefore we can conclude that
the sequence of random variables {(Yn, Zn) : n ≥ s} is a homogeneous Markov chain with
transition probabilities specified by the above formula. However, not all states of Ns × N ′

r
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are feasible for the Markov chain {(Yn, Zn) : n ≥ s}. For example, the state (0, 1) can never
be reached. Therefore, we need to restrict our attention to a smaller set.

Let S be the collection of all the feasible states, i.e., all states of Ns × N ′
r which can

be reached by this Markov chain. Formally, we define S := {(y, z) : (0, 0) ; (y, z)} where
(y1, z1) ; (y2, z2) implies that (y2, z2) can be reached from (y1, z1) (in the usual Markov
chain sense). Since 1 > px > 0 for all x ∈ Nm, it is easy to see that if (0, 0) ; (y, z), then
(y, z) ; (0, 0). Therefore, if we restrict our attention to the set S, we get an irreducible
Markov chain. More formally, define the following stopping time:

τS := inf{n ≥ 1 : (Yn, Zn) ∈ S}. (9)

Now, the process after the stopping time, i.e., {(Yn, Zn) : n ≥ τS + 1}, using the
strong Markov property, is a homogeneous, irreducible Markov chain with state space S
with transition probabilities as specified. The initial distribution of this chain is given by
the distribution of the random variable (YτS

, ZτS
) starting from x ∈ Nm i.e., the measure

µ(x) on S ⊆ Ns × N ′
r where

µ(x)({y, z}) = P((YτS
= y, ZτS

= z)|Y0 = x) for (y, z) ∈ S.

Further, observe that τS ≤ s almost surely. Indeed, suppose that (y, z) is any possible value of
(Ys, Zs) which has been obtained through the observations X1 = x1, X2 = x2, . . . , Xs = xs.
Now, for any n ≥ τS with Yn = 0 and Zn = 0, the probability of the event {Xn+1 =
x1, Xn+2 = x2, . . . , Xn+s = xs} is positive. Clearly, in that case, Yn+s = y and Zn+s = z.
Therefore, (y, z) ∈ S which implies that (Ys, Zs) ∈ S.

Note that Ri(k, r) = 1 if and only if Zi = 1 for any i ≥ 1. Therefore, we may define
Ri(k, r) = 1{Zi = 1} for i ≥ 1. Now, we claim that {Ri(k, r) : i ≥ τS + 1} is a ϕ-mixing
sequence. Since {(Yi, Zi) : i ≥ τS +1} is an irreducible homogeneous Markov chain with finite
state space, it is a ϕ-mixing sequence with mixing coefficients given by ϕn = Cρn for n ≥ 1
where C > 0 and 0 < ρ < 1 are constants. Since, Ri(k, r) is function of Zi only, the same
mixing coefficients will satisfy the mixing condition for the sequence {Ri(k, r) : i ≥ τS + 1}.

However, note here that {Ri(k, r) : i ≥ τS + 1} need not be a stationary sequence
of random variables. Babu, Ghosh and Singh (1978) have studied the convergence rates of
central limit theorem for non-stationary ϕ-mixing sequences. We state theorem 1 of Babu,
Ghosh and Singh (1978) here for the sake of completeness.

Theorem 3: (Babu, Ghosh and Singh) For a ϕ-mixing sequence {Xn}, let Sn = ∑n
i=1 Xi,

σ2
n = Var(Sn) and Fn(t) = P(Sn ≤ tσn). Suppose that

E(Xn) = 0 for all n ≥ 1, (10)
∞∑

n=1
ϕ1/2

n < ∞, (11)

inf
n≥1

n−1/2σn > 0, (12)

and for some c > 0 and M > 1

E(|Xn|2+c) < M, for all n ≥ 1. (13)
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Then,
sup
t∈R

| Fn(t) − Φ(t) |= O(n−γ(c) log n)

where γ(c) = 2c⋆/(6 + 5c⋆) and c⋆ = min(1, c).

We will use the above result to prove the Theorem 2. Let us define, for i ≥ τS + 1,

R′
i(k, r) = Ri(k, r) − E(Ri(k, r))

as the centred sequence of random variables. It is clear that the conditions (10), (11) and
(13) of above result holds with c = 1. Since c = 1, we have that γ(c) = 2/11. To prove (12)
we proceed as follows:

Define a sequence of stopping times in the following way: ζ0 := inf{n > τS : (Yn, Zn) =
0} and for i ≥ 1, set ζi := inf{n > ζi−1 : (Yn, Zn) = 0}. Further define a sequence of random
variables, U0 := ∑ζ0

j=τS+1 R′
j(k, r) and for i ≥ 1, Ui := ∑ζi

j=ζi−1+1 R′
j(k, r). In the following

lemma, we prove independence of the collection of random variables {Ui : i ≥ 0}.

Lemma 4: The collection of random variables {Ut : t ≥ 0} are independent. Further,
{Ut : t ≥ 1} are identically distributed.

We will proceed to prove theorem 2 assuming the result of Lemma 4 and prove this
lemma in the end. Define, N(n) := inf{t : ζt > n}. Next we need the following result

Lemma 5:
Var(∑n

j=τS+1 R′
j(k, r))

n
→ C1 as n → ∞

where C1 > 0 is a constant.

Proof: Let us define N ′
n,k,r = ∑ζN(n)

j=τS+1 R′
j(k, r) = U0 +∑N(n)

j=1 Uj. Thus, we have,

E(N ′
n,k,r) = E(U0) + E(

N(n)∑
j=1

Uj) = E(U0) + E(N(n))E(U1)

Var(N ′
n,k,r) = Var(U0 +

N(n)∑
j=1

Uj)

= Var(U0) + E(N(n))Var(U1) + Var(N(n))E(U2
1 ).

The stop times {ζt : t ≥ 0} represent the visits of the Markov chain to the state (0, 0).
Thus it is a renewal event. So, N(n) represents the number of renewals till time n − τS.
Since τS ≤ s, we have

E(N(n))
n

→ C2 and Var(N(n))
n

→ C3 as n → ∞

where C2, C3 > 0 (see Feller (1968)). Thus, we have that

Var(N ′
n,k,r)

n
→ C4 for some constant C4 > 0. (14)
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Now, we have,∣∣∣∣∣∣Var(
n∑

j=τS+1
R′

j(k, r)) − Var(N ′
n,k,r)

∣∣∣∣∣∣
≤ Var

 ζN(n)∑
j=n+1

R′
j(k, r)

+ 2
∣∣∣∣∣∣Cov

 ζN(n)∑
j=n+1

R′
j(k, r), N ′

n,k,r

∣∣∣∣∣∣
≤ 4E(ζ2

1 ) + 2
Var

 ζN(n)∑
j=n+1

R′
j(k, r)

Var
(
N ′

n,k,r

)1/2

≤ C5n
1/2

for some constant C5 > 0. This coupled with (14) proves the Lemma.

Now, we are in a position to prove the Theorem 2.

Proof: For n > s, we have that

Nn,k,r − E(Nn,k,r)√
Var(Nn,k,r)

=
∑τS

i=k R′
i(k, r)√

Var(Nn,k,r)
+
∑τS+n

i=τS+1 R′
i(k, r)√

Var(Nn,k,r)
−
∑τS+n

i=n+1 R′
i(k, r)√

Var(Nn,k,r)

=
∑τS

i=k R′
i(k, r)√

Var(Nn,k,r)
+

∑τS+n
i=τS+1 R′

i(k, r)√
Var(∑τS+n

i=τS+1 R′
i(k, r))

×

√
Var(∑τS+n

i=τS+1 R′
i(k, r))√

Var(Nn,k,r)
−
∑τS+n

i=n+1 R′
i(k, r)√

Var(Nn,k,r)

= E1 + E2 + E3 +
∑τS+n

i=τS+1 R′
i(k, r)√

Var(∑τS+n
i=τS+1 R′

i(k, r))

where

E1 =
∑τS

i=k R′
i(k, r)√

Var(Nn,k,r)

E2 = −
∑τS+n

i=n+1 R′
i(k, r)√

Var(Nn,k,r)

E3 =
(σ′

n

σn

− 1
) ∑τS+n

i=τS+1 R′
i(k, r)√

Var(∑τS+n
i=τS+1 R′

i(k, r))

with σ2
n = Var(Nn,k,r) and (σ′

n)2 = Var(∑τS+n
i=τS+1 R′

i(k, r)).

First, using Lemma 5, we show that

n−1/2σ′
n → C6 as n → ∞
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where C6 > 0 is a constant. Indeed, we have∣∣∣(σ′
n)2 − Var(N ′

n,k,r)
∣∣∣

≤ Var(
τS+n∑

j=n+1
R′

i(k, r)) + 2
∣∣∣∣∣∣Cov(

τS+n∑
j=n+1

R′
i(k, r), N ′

n,k,r)
∣∣∣∣∣∣

≤ C7n
1/2

using Lemma 5 and the fact that τS ≤ s. This implies the condition (12) of Babu, Ghosh
and Singh (1978) is satisfied. Hence, using their result, we have

sup
t∈R

∣∣∣∣∣∣P
 τS+n∑

i=τS+1
R′

i(k, r) ≤ tσ′
n

− Φ(t)
∣∣∣∣∣∣ = O(n−2/11 log n). (15)

To conclude the result of the Theorem 2, we need to show that for some K > 0,

P(|E1 + E2 + E3| > Kn−2/11 log n) = O(n−2/11 log n).

Note that, using a similar argument as above, we get

σ2
n

n
→ C8 as n → ∞

where C8 > 0. Thus, we have, for constants C9 and C10, |E1| ≤ C9n
−1/2 and |E2| ≤ C10n

−1/2.
Finally, again using similar arguments, |σ′

n/σn −1| ≤ C11n
−1/2. Thus, for n sufficiently large,

we have,

P(|E1 + E2 + E3| > Kn−2/11 log n)
≤ P(|E3| > K ′n−2/11 log n)

≤ P

∣∣∣∣∣∣
∑τS+n

i=τS+1 R′
i(k, r)√

Var(∑τS+n
i=τS+1 R′

i(k, r))

∣∣∣∣∣∣ > K ′′n1/2−2/11 log n


≤ Φ(K ′′n1/2−2/11 log n) + 2 sup

t∈R

∣∣∣∣∣∣Φ(t) − P

 ∑τS+n
i=τS+1 R′

i(k, r)√
Var(∑τS+n

i=τS+1 R′
i(k, r))

≤ t

∣∣∣∣∣∣
= O(n−2/11 log n)

using (15) and property of the normal distribution function, where K ′, K ′′ are positive con-
stants. This proves the theorem.

Now, we prove the Lemma 4.

Proof: It is clear, from the definition of U0, that U0 is determined by the process {(Yj, Zj) :
τS + 1 ≤ j ≤ ζ0}, i.e., U0 is a Fζ0 = σ((Yj, Zj) : τS + 1 ≤ j ≤ ζ0) measurable random
variable. Further, for i ≥ 1, the random variable Ui is determined by the process {(Yj, Zj) :
j > ζi−1 + 1}. Therefore, the sequence of random variables {Ui : i ≥ 1} are measurable
with respect to the sigma algebra generated by {(Yj, Zj) : j ≥ ζ0 + 1} = Fζ0+. Now, the
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conditional distribution of the process {(Yj, Zj) : j ≥ ζ0 + 1}, given the process up to time
ζ0(Fζ0), using the strong Markov property, is same as that of {(Yj, Zj) : j ≥ 0} with the
initial condition that (Y0, Z0) = (0, 0). Therefore, it is independent of the process up to time
ζ0. Hence, it is independent of the random variables which are measurable with respect to
the process {(Yj, Zj) : j ≤ ζ0}. Thus, U0 is independent of {Ui : i ≥ 1}. Now this argument
can be carried out inductively to prove the result. Further, the distribution {Ui : i ≥ 1}
depends only on the initial condition (Yζ0 , Zζ0) = (0, 0) and transition matrix of the Markov
chain. Since, for any i ≥ 1, the sequence {Uj : j ≥ i} will have the same initial condition
((Yζi−1 , Zζi−1) = (0, 0)) and the same transition probabilities, we have that {Ui : i ≥ 1}
are identically distributed. However, the initial condition of the sequence {Ui : i ≥ 0} is
given by the distribution of (YτS

, ZτS
). There is no reason to expect that, (YτS

, ZτS
) = (0, 0).

Therefore, U0 may have a different distribution.

5. Simulation results

In this section, we provide some simulation results exhibiting the goodness of the
approximation in the central limit theorem. These results have been obtained for a Markov
chain, with the transition matrix P given by

P =
(

0.6 0.4
0.2 0.8

)
.

Simulation has been performed for n number of trials where n = 50, 100, 500 and 1000.
For k = 4 and r = 2, the values of Nn,4,2 have been computed. For each choice of n, the
experiment is repeated 10000 times and then the mean and the variance of Nn,4,2 have been
obtained. Normalizing these 10000 observations, cumulative probability histograms have
been drawn for a grid of 0.1 using the computer package GNU PLOT. The smoothed version
of the histogram have been plotted using bezier smoothing algorithm. From the following
plots, it is indeed evident that the smoothed version of the cumulative probability histogram
is a good approximation of the normal probability distribution function (Φ(x)) even for value
of n as small as 50.
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(a) n = 50
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(b) n = 100

Further, we support the findings by illustrating the simulated values of the maximum
difference between Φ(x) and P(Nn,k,r − E(Nn,k,r) ≤ σnx) for −3.0 ≤ x ≤ 3.0 and for various



204 ANURADHA [Vol. 21, No. 1
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(c) n = 500

Φ(x)

Cumulative
Probability
Histogram

Cumulative
Probability
(smoothed)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3 -2 -1 0 1 2 3

(d) n = 1000

choices of (k, r) and n in Table 1. Here the underlying sequence of random variables consti-
tute a Markov chain with transition probabilities p01 = 0.4 and p11 = 0.8. The table 1 shows
a nice decay of the maximum difference as n grows.

Table 1

Sample k = 4 k = 5 k = 5 k = 6 k = 6 k = 7 k = 8
size (n) r = 2 r = 7 r = 0 r = 5 r = 8 r = 3 r = 2

50 0.081278 0.164263 0.060424 0.132263 0.172504 0.127723 0.148725
75 0.064522 0.134955 0.056294 0.118998 0.140559 0.107202 0.105870
100 0.050815 0.117124 0.052313 0.092598 0.123940 0.091438 0.093857
125 0.045183 0.099382 0.041538 0.074459 0.107547 0.082336 0.085319
150 0.038893 0.083109 0.039858 0.069004 0.090610 0.060012 0.076902
200 0.036554 0.075693 0.028927 0.067591 0.088099 0.059561 0.062446
300 0.028691 0.061773 0.025912 0.047239 0.066568 0.047434 0.044028
400 0.020599 0.049510 0.019476 0.041114 0.060933 0.035864 0.035205
500 0.019384 0.047328 0.018392 0.039172 0.054056 0.024733 0.025782
1000 0.008500 0.032516 0.009471 0.022737 0.035285 0.022301 0.009905
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Abstract
We consider a situation wherein we are dealing with two sensitive qualitative features

(SQlFs) say Q∗
1 and Q∗

2 with respective incidence proportions/parameters P ∗
1 and P ∗

2 [both
unknown]. In a given sample of n respondents, some respondents will be comfortable with
Q∗

1; some will be comfortable with Q∗
2; some respondents will be comfortable with both the

features while some others will not be comfortable with either of the two. Here ‘comfortable’
refers to the situation wherein the respondent is agreeable to provide ‘direct (yet, truthful)
response’ to the sensitive feature under consideration. Therefore, there are 4 obvious cate-
gories of respondents in a random sample of any reasonable size. The same categorization
holds in the entire population of respondents in an analogous manner. Our objective is to
provide unbiased estimates for the incidence parameters of the two categories, based on data
[of responses from all the four types of respondents] accrued from a survey.

Key words: Qualitative features; Sensitive features; Direct response; Randomized response;
Population proportion; Binary response; Designing the survey; Combination of estimates.

1. Introduction

In sample survey, the study variable may be sensitive in nature; as for example, it
may be related to “addiction” to a drug, being a “habitual gambler”, having a history of
“abortion”, “extramarital affairs” and the like. For such items of information, generally, the
respondents may be reluctant to provide “Direct” and yet “Truthful” responses. It is also
possible that a fraction of the respondents are quite ’comfortable’ with such questions and
are agreeable to respond truthfully without any social embarrassment. For two such sensitive
features, naturally, there are 4 types of respondent-categories, as explained in the abstract.

As is well-known, Warner (1965) introduced “Randomized Response Techniques [RRTs]”
to address such questions of eliciting information on sensitive qualitative features. In 2015,
there was world-wide celebration of “Fifty Years of RRT” and Handbook of Statistics, Vol-
ume 34 was published. Research continues in this fascinating area of survey sampling - theory
and applications - dealing with sensitive issues. We refer to the books / book chapters on
RRT by Fox and Tracy (1986), Chaudhuri and Mukerjee (1988), Hedayat and Sinha (1991),
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Email: sopendra@manipuruniv.ac.in



208 OPENDRA SALAM [Vol. 21, No. 1

Chaudhuri (2011), Chaudhuri and Christofides (2013), and Mukherjee et al. (2018). For the
work in this paper, we refer to (i) Nandy, Marcovitz and Sinha (2015), (ii) Sinha (2017),
(iii) Nandy and Sinha (2020) and (iv) Salam and Sinha (2020). This last reference will be
mainly used in the present study.

We contemplate a situation wherein we are dealing with two sensitive qualitative fea-
tures [SQlFs] Q∗

1 and Q∗
2, with corresponding incidence proportions P ∗

1 and P ∗
2 respectively

in the population as a whole. However, a fraction of the sampled respondents are known to
be ‘comfortable’ with ‘Direct Response’ to one or the other or both of the SQlFs Our aim
is to unbiasedly estimate both these proportions P ∗

1 and P ∗
2 , based on the complete survey

data.

Naturally, we have 4 different categories of responding units in the population of size
N , as also in a randomly drawn sample of reasonably adequate size n. Without any loss
of generality, we may start with the following table of classification of the population of N
respondents.

Table 1: 2-Way classification of respondents

Type Comfortable with Q∗
2 Uncomfortable with Q∗

2 Total size
Comfortable with Q∗

1 N(C, C) N(C, NC) N(C, .)
Uncomfortable with Q∗

1 N(NC, C) N(NC, NC) N(NC, .)
Total N(., C) N(., NC) N(., .)

In case of sample respondents, we use the obvious notations

n(C, C), n(C, NC), n(NC, C), n(NC, NC)

for the sample frequencies in the respective different categories. Under simple random sam-
pling without replacement, it may be assumed that the sample counts in different categories
are proportional to the respective population counts. Henceforth, we will assume simple
random sampling of the respondents in each category.

It transpires that for respondents in the Category (C, C), we may freely address the
two questions Q∗

1 and Q∗
2, independent of one another, and extract truthful responses from

each of the sampled respondents. Again, for the Category (C, NC) [respectively, (NC, C)],
only the question Q∗

1 [resp., Q∗
2] can be put forward directly and truthful responses may be

extracted from the relevant respondents. The other question has to be handled by taking
recourse to an RRT. For the Category (NC, NC), we must adopt some kind of RRT for
simultaneous estimation of the underlying parameters. For this latest kind of subpopulation
of respondent categories, we may take recourse to the procedures studied in recent years.
Vide Salam and Sinha (2020), for example.

Remark 1: As a general principle, for unbiased estimation of a population proportion π [of
“Yes” responses] based on the available responses on a binary [Yes/No] response feature, it
is well-known that the sample proportion p [of ‘Yes’ responses] is an unbiased estimate for
the corresponding population proportion π. Moreover, in order to combine information on
the common proportion π arising out of different/disjoint independent samples, we collect
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head-counts of all the ‘Yes’ responses from different sources together and divide it by the
total count of respondents. Recall the formula p̂ =

∑
i

xi∑
i

ni
.

Remark 2: From the nature of the sampled respondents in three of the four categories, it
transpires that RRT provides estimate(s) of the desired proportion(s) involving the sensitive
feature(s). From there, we work out estimate(s) of the number of respondents in the relevant
‘yes’ category of the sensitive feature. Recall p̂i = xi/ni from the ith source so that xi = nip̂i.
Then we go by the technique of combination of evidences from different sources, as explained
in Remark [1].

The rest of the paper is organized as follows. In Section 2, we briefly outline the
general approach for tackling the problem stated above. Then, in Section 3, we consider an
illustrative example to work out all the essential details. Finally, in Section 4, we provide
some concluding remarks.

2. General approach for analysis of data

We refer to the general description of the 4 categories of respondents as laid down in
Section 1.

Set NP ∗
i = N∗

i , i = 1, 2 and, further, consider the natural and obvious decomposition
of N∗

i as

N∗
i = N∗

i (C, C) + N∗
i (C, NC) + N∗

i (NC, C) + N∗
i (NC, NC), i = 1, 2.

We also express the above quantities - quite meaningfully - as

N∗
1 = N∗

1 (C, .) + N∗
1 (NC, C) + N∗

1 (NC, NC); N∗
2 = N∗

2 (., C) + N∗
2 (C, NC) + N∗

2 (NC, NC).

Note that both the quantities N∗
1 (C, .) and N∗

2 (., C) are amenable to unbiased esti-
mation by direct questionnaire method. For N∗

1 (C, .) = N∗
1 (C, C) + N∗

1 (C, NC) population
units, in view of simple random sampling, we know (i) the number of “Yes” respondents
among n∗

1(C, C) sampled respondents wrt the Category Q∗
1 and also (ii) the number of “Yes”

respondents among n∗
1(C, NC) sampled respondents wrt the Category Q∗

1. Likewise, we have
direct “Yes” responses for Q∗

2 from n∗
2(C, C) respondents randomly sampled from N∗

2 (C, C)
respondents in the reference subpopulation and also, we have direct “Yes” responses for Q∗

2
from n∗

2(NC, C) respondents randomly sampled from N∗
2 (NC, C) respondents in the refer-

ence subpopulation.

These four separate count estimates of “Yes” categories are the ingredients for arriving
at final estimates of P ∗

1 and P ∗
2 .

For unbiased estimation of N∗
1 (NC, C) or of N∗

2 (C, NC), we can follow the technique
as in Section 2 [Subsections 2.1, 2.2 and 2.3] of Salam and Sinha (2020) - appropriately
adjusted for our purpose- for unbiased estimation of the corresponding proportions i.e.,
P ∗

1 (NC, C) = N∗
1 (NC,C)

N1(NC,C) and P ∗
2 (C, NC) = N∗

2 (C,NC)
N2(C,NC) . Finally, for unbiased estimation of

N∗
1 (NC, NC) and N∗

2 (NC, NC), we refer to Subsection 2.4 of Salam-Sinha (2020) paper
which provides formulae for simultaneous unbiased estimation of the underlying population
proportions.
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3. Worked out example

We consider a large population of N = 30, 000 respondents - broadly classified in the
4 categories as

N(C, C) = 2000, N(C, NC) = 3000, N(NC, C) = 2000, N(NC, NC) = 23000.

This information is a priori available to the investigating agency. In a random sample
of n = 3000 respondents, the stratified sample sizes under proportional allocation are taken
as [200, 300, 200, 2300].

(i) Data Type : (C, C) Simple and direct implementation of the questionnaire yields: For
Q∗

1, freq. count of “Yes” = 85; for Q∗
2, it is 56.

(ii) Data Type :(C, NC) (a) Direct implementation of Q∗
1 yields : Freq. Count of “Yes” =

114.
(b) Implementation of technique adopted in Subsection 2.2 of Salam-Sinha (2020) paper
yields: P̂ ∗

2 (C, NC) = 0.35.

(iii) Data Type :(NC, C) (a) Implementation of technique adopted in Subsection 2.2 of
Salam-Sinha (2020) paper (Annexure 1) yields: P̂ ∗

1 (NC, C) = 0.38. (b) Direct imple-
mentation of Q∗

2 yields: Freq. Count of ”Yes” = 94.

(iv) Data Type :(NC, NC) (a) Implementation of technique adopted in Subsection 2.4 of
Salam-Sinha (2020) paper yields: P̂ ∗

1 (NC, NC) = 0.42.
(b) Implementation of technique adopted in Subsection 2.4 of Salam-Sinha (2020) paper
yields: P̂ ∗

2 (NC, NC) = 0.33.

Remark 3: The reader will find repeated use of a result from Salam-Sinha(20202) paper.
One referee has suggested that it would be instructional to explain the methodology from
that paper. Not to obscure the essential steps of reasoning, we will proceed through the
following steps, using critical close arguments as in Salam-Sinha (2020) paper. For ready
reference we reproduce the techniques and computations from the cited paper.

Now we are in a position to provide (unbiased) estimates for P ∗
1 and P ∗

2 .

We display all the four source information on each of the two sensitive features in the
following table.

Table 2: 2-Way classification of observed / estimated number of “Yes” responses
for the two features

Type Comfortable with Q∗
2 Uncomfortable with Q∗

2 Total Figures for (Q∗
1)

Comfortable with Q∗
1 (85/200, 56/200) (114/300, 105/300) (199/500)

Uncomfortable with Q∗
1 (76/200, 94/200) (966/2300, 759/2300) (1042/2500)

Total Figures for (Q∗
2) (150/400) (864/2600) (1241/3000, 1014/3000)

For the respondents who are comfortable with Q∗
1 we may use the notation N1(C, C)

and N1(C, NC) to denote the corresponding frequency counts with respect to Q∗
1 . On the
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other hand for those who are not comfortable with Q∗
1 we have to use RRT technique to

estimate the proportions and hence the frequency counts in the two categories corresponding
to (NC,C) and (NC,NC) have to be estimated indirectly. That is where Salam-Sinha (2020)
technique has been used. Likewise we can use an analogous notation for cases involving Q∗

2.

We may thus conclude that

N∗
1 (C, C) = 85; N∗

1 (C, NC) = 114;

N̂∗
1 (NC, C) = 76; N̂∗

1 (NC, NC) = 966.

Therefore, P ∗
1 = (85 + 114 + 76 + 966)/3000 = 1241/300 = 41.37 per cent. Likewise,

for estimation of P ∗
2 , we proceed similarly and derive an estimate as P ∗

2 = 1014/3000 =
33.80 per cent. Based on combined evidence of sample data covering both ‘C’, ‘NC’ for Q∗

1
and Q∗

2, our estimation procedure produces estimates of proportions of Q∗
1 and Q∗

2 and we
end up with Q̂∗

1 = 0.41 and Q̂∗
2 = 0.34 respectively.

4. Conclusion

For two Sensitive Qualitative Features along with a provision for Optional Randomiza-
tion for either or both, we have considered a blend of the Randomised Response Technique
and Direct Response Technique to estimate the two incidence parameters from a complex
pattern of respondents’ response profiles. Simple Random Sample of a reasonably large size
is assumed to be available. For three or more Sensitive Qualitative Features with this kind
of Optional Randomization for one or two or more of such features, it would be an interest-
ing topic by itself to estimate all the incidence proportions. This seems to be a non-trivial
generalization of our approach. Again, even for two such sensitive features with provision(s)
for optional randomization, multi-category response profiles would be worth studying.
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APPENDIX

In 1965, Warner introduced a Randomized Response Technique/Methodology (RRT/
RRM) and Raghavarao and Federer (1979) introduced a novel technique/methodology termed
Block Total Response Technique/Methodology [BTRT/BTRM] to increase the degree of pro-
tection of confidentiality of the respondent’s response. The technique is elaborated below.

Consider a collection of v Regular [Non-sensitive] Qualitative Features (RQlFs) [Q1, Q2,
. . . , Qv] and one Sensitive Qualitative Feature (SQlF) Q∗. Let b be the number of blocks
(i.e., sets of questions), each containing k (distinct) RQlFs and the SQlF Q∗. Each RQlF is
replicated r times in the entire collection of b blocks and there is one block B0 containing
all RQlFs. Thus, there are k + 1 QlFs for each block and (b + 1) blocks. The respondents
in the sample are split into (b+1) sets of size n∗, n∗, . . . ., n∗, n0 such that n = (bn∗ + n0).
That is, each of the b blocks received n∗ respondents and block B0 received n0 respondents.
A block of questions (which contains k NSBFs and the single SBF Q∗) is presented to each
respondent. The respondent is to provide only the Block Total Response (BTR) in terms of
the overall score (i.e., only the total number of yes answers) without divulging any response
to any specific Qs – be it NSBF or SBF. It is believed that this BTR Technique [BTRT] will
adequately protect the privacy of the respondent, and hence, the correct response to the SBF
will emerge. BTRT is an alternative method of RRT to increase respondent’s anonymity and
enable estimation of the parameter (i.e., proportion of yes respondents in the population)
involving sensitive binary feature. We know from BTRT that, in every block [B1toBb] we
utilize only k of the v NSBFs, while the rest (v − k) NSBFs are left unutilized. When k is
small, respondents may feel uncomfortable responding truthfully since responding to Q∗ is
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compulsory in each of the b blocks. Nandy and Sinha (2020) extended the above technique
by bringing variations in the block compositions as:

1. List of k ‘must respond’ NSBFs are kept in Part A.

2. Remaining (v − k) NSBFs and Q∗ (SBF) are all kept in Part B.
A respondent is to choose one question from (v −k +1) questions in part B and mix with the
questions in Part A and supply BTR without divulging the identity of the question selected
from Part B. Salam-Sinha (2020) introduced a purely random choice from both parts A and
B as is explained below.

Suppose there are k1 RQlFs in Part A and k2 = v−k1 +1 RQlFs, including the sensitive
question Q∗ in Part B. Arrangement of k1 RQlFs in Part A is the same as above. Respondent
is to blend randomly selected s1 RQlFs from k1 RQlFs and s2 from k2 = v − k1 + 1 RQlFs
including the sensitive question Q∗ and supply the BTR of (s1 +s2) RQlFs possibly including
the sensitive question without divulging any information about the selected questions. Let
π1 and π2 denote the inclusion probabilities of ith unit [i = 1, 2, . . . , k1] RQlFs from Part A
and inclusion probability of ith RQlFs [i = 1, 2, . . . , (v − k1 + 1)] from Part B [including Q∗]
respectively. Therefore, every question in Parts A and B have an equal chance of inclusion
viz., π1 = s1/k1, π2 = s2/k2 respectively.

We have
x̄1 =

k1∑
i=1

pi(s1/k1) + P ∗(s2/k2) + (∆ −
k1∑

i=1
pi)(s2/k2).

And, summing over all the b blocks, we derive the single estimating equation for P ∗ as

b∑
i=1

x̄i = r∆(s1/k1) + bP ∗(s2/k2) + (b − r)∆(s2/k2).

Therefore, the population proportion P ∗ of the sensitive qualitative question can be
estimated by using the formula

P̂ ∗ =
∑b

i=1 x̄i − (s1/k1)2∆ − (b − r)∆ × (s2/k2)
b(s2/k2)

.

Note ∆ = ∑10
i=1 pi and ∆̂ = x̄0 which stands for the sample mean of BTRs of the n0

respondents in the block B0.

Example

Suppose we have design parameters i.e., b = 5, v = 10, k = 4, r = 2 and n = 300
respondents. we randomly split them into 6 sets, taking n∗ = 50 and n0 = 50. We adopt the
same block compositions as are displayed above. We have k1 = k = 4 and we select s1 = 3
RQlFs from part A and we also select s2 = 3 from part B. In order to implement the above
scheme for Block 1, for example, we prepare a set of 11 identical cards of the same shape
[square, say] and size. At the back of the cards, we write the numbers 1, 2, . . . , 10 and the
symbol (∗) one card for each. The procedure is : A respondent belonging to Block 1 is to
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draw three cards at random from the collection of first 4 cards [1 to 4]. Note that this is as
good as selecting one card at random and discarding the same, and thereby, taking the rest
at hand! Out of the remaining 7 cards, the respondent has to select any 3. Thus he/she
will have a collection of 6 cards altogether from the two sets. Next, he/she will respond
truthfully to all the 6 binary [1 − 0] features selected and arrive at the Block Total Response
and only the BTR score is supposed to be reported – without divulging any details. Note
that the respondent may / may not have chosen the SBF (Q∗). Of course, he/she must
respond truthfully and provide the BTR score – even if this has been selected. Likewise, we
prepare 11 cards for use of the respondents in Block 2 and so on. Of course, each time we
study the block composition before using the cards to form two designated sets. For the last
block B0, we do not need any cards. All NSBFs are compulsory. Having implemented the
data-gathering tools, we end up with ‘raw’ scores of each of the 300 respondents – classified
into 6 distinct groups. In each group, we calculate the group average of the scores and these
are called ‘summary statistics’. Assume that at the end we end up with the following results:

Table 1: Example : Summary statistics

Block Total score No. of respondents Average score
1 128 50 2.56
2 136 50 2.72
3 146 50 2.92
4 125 50 2.50
5 115 50 2.30
6 220 50 4.40

Following Nandy and Sinha (2020), we may prepare the following table.
Table 2: Data analysis : Theory

Block Sample size Expected block average (EBA) Average Score
1 (B1) n∗ EBA(1) x̄1
2 (B2) n∗ EBA(2) x̄2
3 (B3) n∗ EBA(3) x̄3
4 (B4) n∗ EBA(4) x̄4
5 (B5) n∗ EBA(5) x̄5
6 (B0) n0 ∆ x̄0

In the above,

EBA(1) = [(3/4)(p1 + p2 + p3 + p4) + (3/7)[P ∗ + (∆ − p1 − p2 − p3 − p4)],

EBA(2) = [(3/4)(p5 + p6 + p7 + p8) + (3/7)[P ∗ + (∆ − p5 − p6 − p7 − p8)],
EBA(3) = [(3/4)(p9 + p10 + p1 + p2) + (3/7)[P ∗ + (∆ − p1 − p2 − p9 − p10)],
EBA(4) = [(3/4)(p3 + p4 + p5 + p6) + (3/7)[P ∗ + (∆ − p3 − p4 − p5 − p6)],

EBA(5) = [(3/4)(p7 + p8 + p9 + p10) + (3/7)[P ∗ + (∆ − p7 − p8 − p9 − p10)],
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EBA(6) = ∆ =
10∑

i=1
pi.

Summing over all the first five block means, we obtain the estimating equation :

5∑
i=1

x̄i = (3/4)2∆ + (3/7)5P ∗ + (3/7) × 3∆

x̄0 (Sample mean of BTRs of the n0 respondents in the block B0) = 4.40

Replacing ∆ by its estimate x̄0 and derive.

P̂ ∗ = [
5∑

i=1
x̄i − (39/14)x̄0] × (7/15) = 0.35.

An estimate of the population proportion P ∗ of the sensitive qualitative question is 0.35.
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Abstract
Probability distributions for count data have potential applications in medical, epi-

demiological, and actuarial studies. Conway-Maxwell Poisson (CMP) distribution is a two-
parameter Poisson distribution that can handle over- and under-dispersed data. In this
paper, some new results on the distributional properties of CMP distribution are presented.
Also, minimum variance unbiased (MVU) estimator of the location parameter is derived
using the complete sufficient statistic. The primary advantage of the MVU estimator is that
it has a closed-form expression, unlike other existing estimators. An approximate expres-
sion for the variance of the MVU estimator is obtained, and the performance of the MVU
estimator is compared with that of the ML estimator in terms of relative efficiency through
simulated and real-life datasets.

Key words: CMP distribution; Generalized hypergeometric series; Minimum variance unbi-
ased estimation; Power series family; Relative efficiency; Sufficient statistic.
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1. Introduction

Poisson distribution is often a natural choice among researchers to model count data.
However, its applicability is restricted to situations where there is equi-dispersion of data, i.e.,
the mean is equal to the variance. Often, in reality, count data are over- or under-dispersed.
For example, data on the word lengths in a dictionary or the number of infected spots in
the leaves of a plant is under-dispersed. Alternative distributions to Poisson are available
in the literature to model over- or under-dispersed data. These include mixtures of Poisson,
weighted Poisson and generalized Poisson distributions. However, these distributions have
more parameters and involve mathematical intricacies which limit their usage. For exam-
ple, the generalized Poisson distribution does not model under-dispersion effectively due to
parameter constraints. Hence, probability models having fewer parameters that can address
the problem of over- or under-dispersion are of interest to study both from a theoretical and
application perspective.

A two-parameter Poisson distribution capable of handling over- and under-dispersion
is Conway-Maxwell Poisson (CMP) distribution introduced by Conway and Maxwell (1961).
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The probability mass function (pmf) of CMP distribution is

P (X = x) = λx

(x!)ν

1
Z(λ, ν) , x = 0, 1, 2, . . . , λ > 0, ν ≥ 0 (1)

where

Z(λ, ν) =
∞∑

j=0

λj

(j!)ν

is the normalizing constant. Here, λ denotes the location parameter and ν denotes the
dispersion parameter that captures the degree of over- or under-dispersion. The CMP distri-
bution is over-dispersed for ν < 1, under-dispersed for ν > 1, and equi-dispersed for ν = 1.
The pmf is not defined for ν = 0 and λ ≥ 1.

Shmueli et al. (2005) have revisited this distribution to study its properties. A review
of CMP distribution, its characterizations and applications can be found in Sellers et al.
(2012). There has been an increased interest in research about extensions and generalizations
of CMP distribution in the recent past. Cordeiro et al. (2012) introduced exponential-CMP
distribution as a lifetime distribution by compounding an exponential distribution with a
CMP distribution and explored its properties. Chakraborty and Imoto (2016) proposed a
flexible four-parameter extension of CMP distribution, which encompasses Conway-Maxwell
negative binomial and generalized CMP distributions, and also derived its properties. Roy et
al. (2020) developed Conway-Maxwell negative hypergeometric distribution as a modification
to negative hypergeometric distribution along with its characterizations.

Although some extensions and characterizations of CMP distribution are available,
properties in terms of differential equation involving recurrent probabilities have not yet been
addressed. Such properties are available for popular discrete distributions, see, for example,
Boswell and Patil (1973), and the same is discussed for CMP distribution in this paper.
Also, a new representation of the CMP distribution in terms of generalized hypergeometric
series is given.

From an inferential point of view, existing estimators of the parameters do not have
closed-form expressions and have to be computed using iterative methods. Since the CMP
distribution belongs to the exponential family of distributions, in the present work, minimum
variance unbiased (MVU) estimation of the location parameter is carried out using the
distribution of the complete sufficient statistic. Also, an approximate expression for the
variance of the estimator is obtained. The merit of using the proposed MVU estimator is
highlighted through numerical illustration.

The paper is organized as follows. In Section 2, some properties of CMP distribution
are listed, and two new results involving recurrent probabilities and probability generating
function (pgf) are presented. The methodology to obtain MVU estimator of the location
parameter is explained in Section 3. Numerical illustration to compare the performance
of the MVU estimation with likelihood estimation in terms of mean absolute bias (MAB)
and relative efficiency (RE) is provided in Section 4 through simulated and real-life data.
Concluding remarks are given in Section 5.
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2. Distributional properties

As mentioned in Section 1, CMP distribution can model both over- and under-dispersed
data. CMP distribution encapsulates well-known distributions, including Poisson distribu-
tion (ν = 1), geometric distribution (ν = 0, λ < 1), and Bernoulli distribution (ν → ∞).
From equation (1), based on n independent and identically distributed (iid) samples on X,
it can be seen that CMP distribution belongs to the exponential family of distributions.
Also, CMP distribution is a member of the two-parameter power series family of distributions
with pgf of the form

PX(z) = Z (λz, ν)
Z(λ, ν) (2)

The pgf of CMP distribution can be expressed in terms of generalized hypergeometric series
as (See Nadarajah, 2009)

PX(z) = 0Fν−1(; 1, . . . , 1; λz)
0Fν−1(; 1, . . . , 1; λ) (3)

Comparing equations (2) and (3), we get

Z(λ, ν) = 0Fν−1(; 1, . . . , 1; λ) (4)

Using the pgf, the expected value and variance of X can be obtained as

E(X) = λ
∂

∂λ
log(Z(λ, ν)) (5)

and
V (X) = λ

∂

∂λ

[
λ

∂

∂λ
log(Z(λ, ν))

]

For further properties and characterizations of CMP distribution, one may refer to Nadarajah
(2009), Daly and Gaunt (2016) and Li et al. (2019). In the sequel, two new results on CMP
distribution are presented.

2.1. Recurrence relationship of probabilities

Boswell and Patil (1973) have shown that any discrete distribution can be characterized
in terms of differential equations involving its parameters. For example, Poisson distribution
with mean λ satisfy the following recurrence relationship, namely,

dpx

dλ
= px−1 − px

where px is the pmf of the Poisson distribution. A similar recurrence relationship for CMP
distribution is obtained below.

Result 1: Let px denote the pmf of CMP distribution. Then

∂px

∂λ
= 1

xν−1 px−1 − E(X)
λ

px
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Proof: Partially differentiating the pmf in equation (1) with respect to λ, we get,

∂px

∂λ
=

xλx−1Z(λ, ν) − λx ∂

∂λ
Z(λ, ν)

(x!)νZ2(λ, ν)

Note that ∂

∂λ
log(Z(λ, ν)) = 1

Z(λ, ν)
∂

∂λ
Z(λ, ν). Thus

∂px

∂λ
= xλx−1

(x!)νZ(λ, ν) −
λx ∂

∂λ
log(Z(λ, ν))

(x!)νZ(λ, ν)

= 1
xν−1

λx−1

((x − 1)!)νZ(λ, ν) − λx

(x!)νZ(λ, ν)
∂

∂λ
log(Z(λ, ν)) (6)

Using equations (1) and (5) in equation (6), we get,
∂px

∂λ
= 1

xν−1 px−1 − E(X)
λ

px

An illustration of the computation of the probabilities using the recurrence relation for
the parameter choice (λ, ν) = (1.2, 0.5) is shown below. To carry out the recursive process,
the values of P (X = 0) and E(X) need to be computed. P (X = 0) is computed by sub-
stituting x = 0 in equation (1) and E(X) is computed from equation (5) using com.mean()
function available in compoisson package in R. The values are found to be 0.2096 and
1.992285, respectively. The successive probabilities are computed using the recurrence rela-
tion

px = λ

E(X)

[
1

xν−1 px−1 − ∂px

∂λ

]
, x = 1, 2, . . .

and are tabulated below for x = 1, 2, 3, 4.

Table 1: Recurrence probabilities for (λ, ν) = (1.2, 0.5)

x ∂px

∂λ
px

0 - 0.2096
1 0.0962 0.2511
2 0.0020 0.2127
3 0.1246 0.1468
4 0.1487 0.0872

2.2. CMP as Generalized Hypergeometric distribution

A discrete random variable X with pmf

P (X = k) = C
λk

k! γk[(a); (c)], k = 0, 1, 2, . . . (7)
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is said to belong to generalized hypergeometric family of distributions, provided its pgf can
be expressed in terms of generalized hypergeometric series as (See Dacey, 1972)

PX(z) = CpFq[(a); (c); λz] (8)

Here C denotes the normalizing constant and

γk[(a); (c)] = Γ[(a + k); (c + k)]
Γ[(a); (c)]

with
Γ[(a); (c)] = Γ(a1)Γ(a2) . . . Γ(ap)

Γ(c1)Γ(c2) . . . Γ(cq)

Result 2: CMP distribution belongs to the generalized hypergeometric family of distribu-
tions.

Proof: Let pFq[(a); (c); t] denote the generalized hypergeometric series where a = (a1, a2, . . . , ap)
and c = (c1, c2, . . . , cq). The pgf of CMP distribution given in equation (3) is obtained by
taking p = 0, q = ν − 1 and c = (1, 1, . . . , 1). Comparing equation (3) with equation (8), we
get,

P (X = k) = 1
0Fν−1(; 1, . . . , 1; λ)

λk

k! γk[; (1, . . . , 1)]

= 1
Z(λ, ν)

λk

k!
Γ[; (1 + k)]

Γ[; (1)] (using equation (4))

= 1
Z(λ, ν)

λk

k!

 1
Γ(1 + k) . . . Γ(1 + k)︸ ︷︷ ︸

(ν − 1) terms


 1

Γ(1) . . . Γ(1)︸ ︷︷ ︸
(ν − 1) terms


−1

= 1
Z(λ, ν)

λk

k!
1

(k!)ν−1

= 1
Z(λ, ν)

λk

(k!)ν

which is the pmf of the CMP distribution. Hence the result.

3. Minimum variance unbiased estimation

In this section, we propose a minimum variance unbiased estimator for the location
parameter λ of the CMP distribution when ν is known. For fixed ν, CMP distribution
belongs to the one-parameter power series family of distributions.
From Roy and Mitra (1957), the pmf of the complete sufficient statistic T of one-parameter
power series family of distributions with parameter θ is given by

P (T = t) = A(t, n)θt

[c(θ)]n (9)



222 JAHNAVI MERUPULA AND V.S.VAIDYANATHAN [Vol. 21, No. 1

Accordingly, the MVU estimator of θr, r = 1, 2, . . ., denoted by δ(t, r) is

δ(t, r) =


0, if t < r
A(t − r, n)

A(t, n) , if t ≥ r
(10)

Since CMP distribution belongs to the exponential family of distributions, for fixed ν,∑n
i=1 Xi is a complete sufficient statistic for λ. The pmf of T = ∑n

i=1 Xi is given by (Sellers
et al., 2017)

P (T = t) = P (t) = λt

(t!)ν [Z(λ, ν)]n
∑

x1,x2,...,xn
x1+x2+...+xn=t

(
t

x1 . . . xn

)ν

, t = 0, 1, . . . (11)

Comparing equation (11) with equation (9), it can be seen that

A(t, n) = 1
(t!)ν

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1 . . . xn

)ν

(12)

Using equation (12) in equation (10) with r = 1, the MVU estimator of λ, namely, δ(t, 1) =
δ(t) (say) is obtained as

δ(t) =



0, if t < 1

∑
x1,x2,...,xn

x1+x2+...+xn=t−1

(
t−1

x1...xn

)ν

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1...xn

)ν tν , if t ≥ 1.

(13)

To verify that δ(t) is indeed an unbiased estimator of λ, we proceed as follows.

Consider the ratio of consecutive probabilities of T, namely,

P (t − 1)
P (t) = tν

λ

∑
x1,x2,...,xn

x1+x2+...+xn=t−1

(
t−1

x1...xn

)ν

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1...xn

)ν (14)

Using equation (14) in equation (13) and taking expectation, we get,

E[δ(t)] = E

[
P (t − 1)

P (t) λ

]

= λ
∞∑

t=1

P (t − 1)
P (t) P (t)

= λ
∞∑

t=1
P (t − 1)

= λ
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Thus, δ(t) is an unbiased estimator of λ.

An alternate expression for δ(t) can be obtained by using the approximation for the
sums of powers of multinomial coefficients given below.

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1 . . . xn

)ν

≃ nνt

√
Knν

(πt)(n−1)(ν−1) , (15)

where
Knν = nn(ν−1)

ν(n−1)2(n−1)(ν−1) .

From equation (13), an approximate expression for δ(t) is

δ(t) ≃ tν

nν

√(
t

t − 1

)(ν−1)(n−1)
, t > 1. (16)

An approximate expression for the variance of δ(t) in equation (16) is obtained as follows.
Consider

V [δ(t)] = E[δ2(t)] − (E[δ(t)])2

≃ E

[
t2ν

n2ν

(
t

t − 1

)(ν−1)(n−1)]
− λ2

=
[ ∞∑

t=2

t2ν

n2ν

(
t

t − 1

)(ν−1)(n−1)
P (t)

]
− λ2

=

 ∞∑
t=2

t2ν

n2ν

(
t

t − 1

)(ν−1)(n−1) λt

(t!)ν(Z(λ, ν))n

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1 . . . xn

)ν
− λ2

= 1
n2ν(Z(λ, ν))n

∞∑
t=2

t2ν
(

t

t − 1

)(ν−1)(n−1) λt

(t!)ν

nνt

(
nn(ν−1)

(2πt)(n−1)(ν−1)νn−1

)1/2− λ2

(using equation (15))

= 1
n2ν(Z(λ, ν))n

(
nn(ν−1)

2π(n−1)(ν−1)νn−1

)1/2 ∞∑
t=2

nνtλtt2ν

(t!)ν

( 1
t − 1

)(n−1)(ν−1)
− λ2.

4. Comparison of MVU and likelihood estimation

In this section, the performance of the MVU estimator of λ is compared with that of
the maximum likelihood (ML) estimator through MAB and RE using simulated and real-life
datasets. The likelihood function based on n iid observations, namely, x⃗ = (x1, x2, . . . , xn)
on X having CMP distribution is given by

L(λ; ν, x⃗) = λ
∑n

i=1 xi

n∏
i=1

(xi!)−ν [Z(λ, ν)]−n

Since Z(λ, ν) involve an infinite sum, a closed form expression for the likelihood estimator
of λ, namely, λ̂ML cannot be obtained. However, an estimate of λ̂ML, can be obtained using
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Newton-Raphson method. COMPoissonReg package in R contains functions to compute the
ML estimates. The RE of δ(t) with respect to λ̂ML is defined as

RE(δ(t), λ̂ML) = V [λ̂ML]
V [δ(t)]

A value of RE more than one imply that V [δ(t)] is less than V [λ̂ML], suggesting that δ(t)
is efficient than λ̂ML. However, V [λ̂ML] does not have a closed-form expression. Therefore,
we make use of bootstrap approach to compute the RE values. The method to compute RE
using bootstrap samples is given in the following steps.

1. Generate a random sample n∗ of size n from CMP distribution for fixed λ and ν.

2. Draw B bootstrap samples each of size n with replacement from n∗.

3. For each bootstrap sample, compute δ(t) and λ̂ML. Denote these values as δ[b](t), λ̂
[b]
ML,

b = 1, 2, . . . , B.

4. Using the B bootstrap estimates of δ(t) and λ̂ML, calculate v(δ(t)) and v(λ̂ML) defined
respectively as

v(δ(t)) = 1
B − 1

B∑
b=1

(
δ[b](t) − δ∗(t)

)2

where

δ∗(t) = 1
B

B∑
b=1

δ[b](t)

and

v(λ̂ML) = 1
B − 1

B∑
b=1

(
λ̂

[b]
ML − λ̂∗

ML

)2

where

λ̂∗
ML = 1

B

B∑
b=1

λ̂
[b]
ML

5. RE based on bootstrap samples is computed as the ratio of v(λ̂ML) to v(δ(t))

4.1. Simulation study

A simulation study is carried out to examine the behaviour of the ML and MVU
estimates by computing the MAB and RE. Random samples of sizes n = 25, 50 are generated
from the CMP distribution by fixing the parameters λ and ν as below.

• Case 1: ν = 0.2, λ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}

• Case 2: ν = 2.0, λ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
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The COMPoissonReg package in R (Kimberly et al., 2019) is used to generate the sample
observations. Case 1 corresponds to over-dispersed counts and Case 2 to under-dispersed
counts. Based on the simulated observations, δ[b](t), λ̂

[b]
ML and RE are computed using the

bootstrap procedure given in steps 1 to 5 of the previous section taking B = 200. To
find λ̂

[b]
ML, the in-built function glm.cmp() available in COMPoissonReg package is used. To

understand the fluctuations in the above values when the sample observations change, the
procedure is repeated for 100 runs. One run of the bootstrap procedure will yield a value for
the RE, v(λ̂ML) and v(δ(t)). Based on the B bootstrap estimates in each run, MAB of the
estimators are computed. MAB of the bootstrap estimator L of the parameter θ is defined
as MAB = 1

B

∑B
b=1 |L[b] − θ|. The summary statistics of the MAB values under case 1 and

2 for n = 25 and 50 are presented in Table 2.

Table 2: Summary statistics (min, 25th quantile, median, mean, 75th quantile, max) of
MAB values of λ̂ML and δ(t) under case 1 and case 2 for n = 25 and 50

Case 1
ν=0.2

λ Estimator n = 25 n = 50

0.5 λ̂ML (0.0750, 0.1404,0.1829,0.2504,0.2831,1.1164) (0.0582,0.1006,0.1207,0.1460,0.1636,0.4210)
δ(t) (0.0680,0.0960,0.1196,0.1319,0.1578,0.2877) (0.0558,0.0730,0.0900,0.1097,0.1379,0.2413)

1.0 λ̂ML (0.1680, 0.2274,0.2870,0.4468,0.5143,1.7551) (0.1221,0.1546,0.1831,0.2734,0.2631,2.2928)
δ(t) (0.0421,0.0679,0.0802,0.0900,0.1166,0.1743) (0.0327,0.0506,0.0734,0.0771,0.0947,0.1727)

1.5 λ̂ML (0.0421,0.0679,0.0802,0.0900,0.1166,0.1743) (0.1343,0.1952,0.2439,0.3188,0.3358,1.3648)
δ(t) (0.0288,0.0381,0.0467,0.0519,0.0599,0.1357) (0.0204,0.0290,0.0340,0.0390,0.0439,0.0986)

2.0 λ̂ML (0.2569,0.4035,0.5755,1.1046,1.0828,10.7535) (0.1773,0.2574,0.3040,0.4520,0.5003,1.9523)
δ(t) (0.0187,0.0256,0.0293,0.0335,0.0348,0.0987) (0.0135,0.0190,0.0220,0.0247,0.0269,0.0753)

2.5 λ̂ML (0.4173,0.6163,0.8842,1.9223,2.0632,24.4187) (0.0530,0.0950,0.1145,0.1581,0.1869,0.7314)
δ(t) (0.0141,0.0186,0.0225,0.0252,0.0278,0.0625) (0.0585,0.0739,0.0916,0.1069,0.1297,0.2484)

3.0 λ̂ML (0.5448,1.0515,1.5072,3.8200,3.2055,67.8926) (0.4440,0.6244,0.8051,1.1763,1.4477,5.2907)
δ(t) (0.0092,0.0141,0.0176,0.0205,0.0245,0.0563) (0.0078,0.0101,0.0126,0.0144,0.0175,0.0341)

Case 2
ν=2.0

λ Estimator n = 25 n = 50

0.5 λ̂ML (0.0750,0.1404,0.1829,0.2504,0.2831,1.1164) (0.0582,0.1006,0.1207,0.1460,0.1637,0.4210)
δ(t) (0.0680,0.0960,0.1196,0.1319,0.1578,0.2877) (0.0558,0.0730,0.0901,0.1097,0.1379,0.2413)

1.0 λ̂ML (0.0000,0.0000,0.0000,9.7e+05,1.0000,9.7e+07) (0.2016,0.2394,0.2754,0.3733,0.4210,1.3105)
δ(t) (0.1378,0.1953,0.2286,0.2703,0.3053,1.2498) (0.1218,0.1505,0.1869,0.2168,0.2527,0.7250)

1.5 λ̂ML (0.0000,1.0000,1.0000,1.3e+06,1.0000,7.3e+07) (0.3160,0.3915,0.4694,0.5979,0.6645,2.0552)
δ(t) (0.1686,0.2887,0.3404,0.3877,0.4182,1.0897) (0.1683,0.2167,0.2513,0.2860,0.3255,0.6965)

2.0 λ̂ML (1.0000,1.0000,1.0000,3.3e+06,3.0000, 1.1e+08) (0.4564,0.5459,0.6823,1.0315,1.1313,7.3437)
δ(t) (0.2765,0.3927,0.4420,0.5051,0.5440,1.4926) (0.1950,0.2934,0.3349,0.3841,0.4470,0.9988)

2.5 λ̂ML (1.0000,1.0000,2.0000,3.8e+06,2.3e+05,9.5e+07) (0.5956,0.7449,0.8666,1.6464,1.7517,10.5577)
δ(t) (0.3069,0.4858,0.5898,0.6579,0.7665,1.3116) (0.2547,0.3283,0.3813,0.4420,0.5051,1.1666)

3.0 λ̂ML (1.0000,2.0000,4.0000,6.8e+06,6.8e+05,2.1e+08) (1.0000, 1.0000,1.0000,4.2e+05,3.0000,4.2e+07)
δ(t) (0.4241,0.5499,0.6534,0.7568,0.8361,2.5188) (0.2375,0.3989,0.4527,0.5337,0.6380,1.4019)

The boxplots of MAB values under both the cases for n = 50 are given in Table 3. It
is observed from the plots and the summary statistics that the MAB values corresponding
to MVU estimator are comparatively small and less dispersed than that of ML estimator
under both the cases. Also, the presence of extreme values in the plots corresponding to
the ML estimator indicate that the likelihood approach at times over or under estimates the
parameter. The line plots displayed in Table 4 correspond to the variances of the ML and
MVU estimates based on bootstrap samples for 100 runs. The x-axis in the plots denote the
runs and the y-axis denote the variances of the estimates.
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Table 3: Boxplots of MABs of λ̂ML and δ(t) for n = 50
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Table 4: Plots of variances of λ̂ML and δ(t) for n = 50

It can be observed from the plots that the estimates of δ(t) are less dispersed compared
to λ̂ML. Also, it is observed that the variances of the ML estimates are large when compared
to that of MVU estimates. In particular, for ν = 2 and λ = 3, the variance is found to be
much larger than 2e+17 in some runs. However, the corresponding variances of the MVU
estimates are very close to zero for all the runs.
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For each of the cases, RE value is computed and the proportion of RE values greater
than one in the 100 runs are obtained for n = 25 and 50 respectively. The proportions are
given in Tables 5 and 6.

Table 5: Proportion of RE values greater than one for Case 1

λ 0.5 1.0 1.5 2.0 2.5 3.0
n = 25 0.86 0.99 1.00 1.00 1.00 1.00
n = 50 0.88 0.99 0.99 1.00 0.86 1.00

Table 6: Proportion of RE values greater than one for Case 2

λ 0.5 1.0 1.5 2.0 2.5 3.0
n = 25 0.79 0.94 0.98 1.00 0.98 0.97
n = 50 0.88 0.96 0.98 0.99 0.99 0.99

As seen from Tables 5 and 6, the proportion of times RE values greater than one
is more than 0.8, at times closer to 1, for both the cases indicating δ(t) yields estimates
having smaller variance than λ̂ML. Thus, the simulation results indicate that the proposed
MVU estimator is better than the ML in terms of MAB and variance for both over- and
under-dispersed data.

4.2. Real-life illustration

As an application of the proposed estimation method to real-life data, we consider the
article publishing dataset given in Long (1997). The data relates to the number of articles
(X) published by Ph.D. biochemists (B). The dataset is as given in Table 7.

Table 7: Article publication data

X 0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
B 275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

The data is tested for equi-dispersion using dispersiontest() in AER package in
R and the results indicate that the data is over-dispersed (p-value is 1.44e-06, dispersion
index is 2.1889). Hence, Poisson distribution is not a suitable choice to model the data
and therefore it can be modelled using CMP distribution. The dispersion parameter ν is
estimated using the method of moments and is found to be ν̂ = 0.1249. The estimate of
the location parameter of λ is obtained using the proposed MVU estimator δ(t) and the ML
estimator by fixing ν = 0.1249. The MVU and the ML estimates are found to be 0.8248 and
0.7809, respectively. To compute the sample variances of the estimates, bootstrap samples
each of size n = 915 are replicated for B = 200 times from the data set. The corresponding
sample variances are found to be 0.0001304 and 0.0021546. The plot of the observed and
the expected frequencies from CMP distribution using δ(t), λ̂ML and ν = 0.1249 is shown
in Figure 1. The corresponding residual (difference of the observed and expected frequency)
plots are also presented. From the plots, it can be observed that both the estimators provide
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similar fits. However, the variance of the MVU estimator of λ is smaller than that of the
ML estimator suggesting that MVU estimation is efficient.
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Figure 1: Observed (■) and expected (□) frequencies of CMP distribution with (a)
MVU estimate of λ and (b) ML estimate of λ with the corresponding residual plots

5. Concluding remarks

The method of MVU estimation of the location parameter of CMP distribution pro-
posed in this paper is simple and easy to compute. Unlike the existing estimators available
in the literature, the proposed MVU estimator has a closed-form expression and does not
require iterative procedures for computation. The estimator is based on the distribution of
the complete sufficient statistic of the parameter. Application of the proposed estimator to
simulated and real-life data reveals that the resulting estimates are less biased and efficient.
Unlike the ML estimator, the proposed MVU estimator does not over or under estimate
the parameter. However, to implement the proposed method, the value of the dispersion
parameter ν should be known. In case it is not available, the same can be estimated using
the ratio of the sample mean to the sample variance or by the method of moments.
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Abstract
A stochastic process associated with queuing system is specified by the knowledge of

(i) Arrival process (ii) Queue discipline (iii) Service process. Among these three, the service
process is more important since it can be controlled by the operators of the system. A long
with many other assumptions, it is customary to consider that the inter service time are
Exponential. A generalization of it is Erlangian service time in which it is assumed that
there are k-phase of service and each have identically distributed as Negative Exponential
Distribution. But in many practical situations the service times are not identical. Hence in
this paper we consider a queueing system with Poisson arrival having component of additive
exponential service times. Using the probability generating function the system size distri-
bution is derived. The system behaviour analyzed by deriving the system characteristics like,
average number of customer in the system, the variability of system size, etc,. The waiting
time distribution of the system is also derived. The sensitivity of the model with respect
to the parameter is analyzed. It is observed that the system performance is influenced by
the service time distribution parameters. This model includes M/M/1, M/E/1 models as
particular cases for specific or timely value of parameters.

Key words: Queueing system; Erlangian service time; Additive exponential service times;
Negative Exponential Distribution; M/M/1; M/E/1; Sensitivity analysis.

1. Introduction

In many of the queuing models it is customary to consider that the inter service times
follows exponential distribution. In many practical situations the exponential assumption
concerning service times being distributed may be rather limiting on its utility. In particular,
in computer communications the service time of request is sum of two random variables
namely, (1) entering (key in) time and (2) processing time. Each of these service times are
exponentially distributed with different parameters say and as result of it the inter-service
time between two customers follows an additive exponential distribution. Very little work
has been observed regarding queueing models with additive exponential distribution. Hence,
in this paper, we develop and analysis a single server queueing model with Poisson arrivals
having additive exponential service times distribution.

Corresponding Author: S. Govinda Rao
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In this section, we briefly review some of the contributions in queueing models with
non exponential service time in order to highlight the present work in its right perspective.
Kendall (1951) used the concept of regeneration point by suitable choice of regeneration
points and extracts. This method is known as embedded Markov chains. This method
pioneered the M/G/1 queueing models. Keillson and Koharian (1960) developed the supple-
mentary variable technique for analyzing the M/G/1 queueing model. This technique is very
popular in analyzing the non-Markovian queueing models. Heymans (1968) considered the
economic behavior of an M/G/1 queueing system that operates under the cost structure, a
server start-up cost, a server shut-down cost, a cost per unit time when the server is busy and
a holding cost per unit time spent in the system for each customer. The author proved that
for a single server queue, there is a stationary optimal operating policy. Levy and Yechiah
(1975) considered the utilization of idle time of the server in a M/G/1 for some additional
work in a secondary queue. Two types of vacation policies viz., M/G/1/Vs and M/G/1/Vm
with exhaustive service are also studied.

Bohm (1992) considered an M/G/1 queueing model with N-policy operating. The
server start up only if a queue of a prescribed length was built up. For this model, the time
dependent distribution of the queue length is given by renewal arguments without resorting to
integral transform techniques. Movaghar (1998) studied a queueing system where customers
have strict deadlines until the beginning of their service. An analytical method is given for
the analysis of a class of such queues, namely, M(n)/M/m/{rm FCFS} + {rm G} models.
The principal measure of performance is the probability measure induced by the offered
waiting time.

Hisashi and Brian (2001) studied the loss models in the traffic engineering of tra-
ditional telephone exchanges. These models were generalized to the loss networks, which
provide models for resource-sharing in multi-service telecommunication networks. The au-
thors introduced a generalized class of models, queueing-loss networks, which captures both
queueing and loss aspects of a system. Choudhury et. al. (2004) considered an Mx/M/1
queueing model under a threshold policy with vacation process, where the server takes a
sequence of vacations, till the server returns to find at least some prespecified number of
customers (threshold) observed after each grand vacation.

EI-Paoumy (2008) derived the analytical solution of the queue: Mx/M/2/N for batch
arrival system with balking, reneging and two heterogeneous servers. A modified queue
discipline is used with a more general condition. The steady-state probabilities and measures
of effectiveness are derived. El-Paoumy and Ismail (2009) studied Mx/Ek/I/N with balking
and reneging queueing model in which, (i) Units arrive in batches of random size with the
inter arrival times of batches following negative exponential distribution. (ii) The queue
discipline is FCFS, it being assumed that the batches are pre-ordered for service purpose.
(iii) The service time distribution is Erlangian with K stages. Recurrence relations connecting
the various probabilities are derived. Measures of effectiveness as L and Lq are deducted and
some special cases are presented.

Fralix and Zwart (2010) studied a conjecture “the distribution of the number of jobs
in the system of a symmetric M/G/1 queue at a fixed time is independent of the service
discipline if the system starts empty”. Their arguments are based on a time-reversal argument
for regenerative processes. Down et. al. (2011) discussed the dynamic server control in a
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two-class service system with abandonments. Two models are considered. In the first case,
rewards are received upon service completion, and there are no abandonment costs (other
than the lost opportunity to gain rewards). In the second, holding costs per customer
per unit time are accrued, and each abandonment involves a fixed cost. Both cases are
considered under the discounted or average reward/cost criterion. Chydzinski and Adamczyk
(2019) studied Queues with the dropping function and general service time Firstly, a stability
condition, more general than the well-known ρ < 1, is proven. Secondly, the formulas for
the queue size distribution, loss ratio and mean duration of the busy period, are derived.
Thirdly, numerical examples are given, including optimizations of the shape of the dropping
function with regard to the combined cost of the queue size and loss ratio.

Dudin et.al. (2021) studied the single-server multi-class queue with unreliable service,
batch correlated arrivals, customers impatience, and dynamical change of priorities. Using
the embedded Markov chain technique the probability generating function of the system
size distribution under steady state condition is derived. The system performance of like the
probability of system emptiness, the average no of customers in the system and in the queue,
the variance of the number of customers in the system, Laplace transformation of waiting
time distribution of the customers in the system, the average waiting time of the customers
in the system and queue ,the variance of the waiting time distribution etc., are derived. The
sensitivity of the model with respect to parameters is studied through numerical illustration.
This model includes the M/M/1 model when 1/θ1 → 0 this also includes M/E2/1 model if
θ2 → θ1.

Additive exponential service time distribution

The additive exponential distribution was introduced as a sum of two different expo-
nential variates. The general procedure for obtaining the probability distribution function for
two independent different exponential random variables is through Jacobian transformation
or inverse theorem of characteristic functions. This distribution also includes exponential if
one of the parameters tends to zero. Consider two univariate continues random variables T1
and T2 which follow Exponential distributions with parameters θ1 and θ2 respectively. Then
the addition of these two random variables T = T1 + T2 is having an Additive exponential
distribution with probability density function

f(t) =

(
e

−
(

t
θ1

)
− e

−
(

t
θ2

))
θ1 − θ2

θ1 > θ2 > 0; t > 0

Properties of additive exponential distribution

i) If θ1 → θ2 then the above probability density function gives Gamma distribution with
parameters θ2 as θ1 → θ2

ii) The cumulative distribution of the additive exponential distribution is,

=

(
e

−
(

t
θ1

)
− e

−
(

t
θ2

))
θ1 − θ2

θ1 > θ2 > 0; t > 0
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iii) The mean of the distribution is,

Mean = θ1 + θ2

iv) The variance of the distribution is given by,

µ2 = (θ2
1 + θ2

2)

v) Moment generating function of the distribution is given by,

Mt(x) = 1
(1 − tθ1)(1 − tθ2)

vi) Characteristic function of the distribution is given by,

ϕt(x) = 1
(1 − itθ1)(1 − itθ2)

vii) The rth raw moment of the distribution is,

µ′
r =

� ∞

0
tr.b(t).dt = r!

θ1 − θ2

(
θr+1

1 − θr+1
2

)

viii) The rth cumulant of the distribution is,

kr = (r − 1)!
θ1 − θ2

(
θr+1

1 − θr+1
2

)

ix) The first four central moments of this distribution are,

µ1 = 0, µ2 = (θ2
1 + θ2

2), µ3 = 2(θ3
1 + θ3

2), µ4 = 9θ4
1 + 6θ2

1θ2
2 + 9θ4

2

x) The skewness of the distribution is,

= 4(θ3
1 + θ3

2)2

(θ2
1 + θ2

2)3

This distribution is positively skewed distribution.

xi) The kurtosis of the distribution is,

= 9 − 12 (θ1θ2)2

(θ2
1 + θ2

2)
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2. Single server poisson queueing model with additive exponential service
time distribution

In this section, a single server infinite capacity Poisson queueing system having FIFO
discipline in which the arrivals follows a Poisson process with parameter λ is considered.
It is also assumed that the inter-service times follows an additive exponential service time
distribution with parameters θ1 and θ2. The probability density function of inter-service
times is,

f(t) =

(
e

−
(

t
θ1

)
− e

−
(

t
θ2

))
θ1 − θ2

θ1 > θ2 > 0; t > 0 (1)

Following the heauristic arguments of Gross and Harris (1974) the queueing model
is analyzed. The embedded stochastic process X(ti),where, X denotes the number in the
system and t1, t2, t3. . . ,are the successive times of completion of service. Since, ti is the
completion time of the ith customer, then X(ti) is the number of customers the ith customer
leaves behind as he departs. Since, the state space is discrete, Xi represents the number of
customers remaining in the system as the ith customer departs. Then for all n > 0 one can
have.

Xn+1 =
{

Xn − 1 + An+1 ; Xn ≥ 1
An+1 ; Xn = 0

(2)

where Xn is the number in the stem at the nth departure point and An+1 is the number of
customers who arrived during the service time, Sn+1 of the (n + 1)th customer.

The random variable Sn+1 by assumption is independent of previous service times and
the length of the queue, since arrivals are Poissonian, the ransom variable An+1 depends only
on S and not on the queue or on the time of service initiation. Then,

P{A = a} =
� ∞

0
P{A = a|S = t}dB(t) (3)

and P{A = a|S = t} = e−λt(λt)a

a! (4)

so that,

P{Xn+1 = j|Xn = i} = P{A = j − i + 1}

=


� ∞

0
e−λt(λt)(j−i+1)

(j − i + 1)! dB(t) ; (j ≥ i − 1, i ≥ 1)

0 ; (j ≥ i − 1, i ≥ 1)

(5)

If a departing customer leaves an empty system, the system state remains zero until
an arrival comes. Thus the transition probabilities for the case i=0 are identical to those for
i=1. Let pij denote the probability that the system size immediately after a departure point
is j given that the system size after previous departure was i. kn is the probability that there
are n arrivals during a service time t.
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Then,

pij = Pr {system size immediately after a departure point j | system size after
previous departure was i}

= P{Xn+1=j | Xn=i }

Pij =
� ∞

0

e
−t

(
λ+ 1

θ1

)
− e

−t

(
λ+ 1

θ2

)
θ1 − θ2

 (λt)(j−i+1)

(j − i + 1)! dt; j ≥ i − 1, i ≥ 1 (6)

Therefore, kn = P{n arrivals during the service time S=t}

kn = λn

θ1 − θ2

(
θ1

(θ1λ + 1)

)n+1

− λn

θ1 − θ2

(
θ2

(θ2λ + 1)

)n+1

(7)

Therefore,

p = [pij] =


k0 k1 k2 . . .
k0 k1 k2 . . .
0 k0 k1 . . .
0 0 k0 . . .

. . . . . . . . . . . .

 (8)

Assuming that the system is in steady state, and pij= πj, then,

p = π0ki +
i+1∑
j=1

πiki−j+1 (i = 0, 1, 2, ....) (9)

where, πj is the probability of j customers in the system at departure point after steady state
is reached.
Let

K(z) =
∞∑

n=0
kiz

i (10)

π(z) =
∞∑

n=0
πiz

i (|z| ≤ 1) (11)

are generating functions of πn and kn respectively.
Hence,

K(z) =
∞∑

i=0

λi

θ1 − θ2

(
θ1

(θ1λ + 1)

)i+1

zi −
∞∑

i=0

λi

θ1 − θ2

(
θ2

(θ2λ + 1)

)i+1

zi (12)

After simplification, we get

K(z) = θ1

(θ1 − θ2)(1 + θ1λ(1 − z)) − θ2

(θ1 − θ2)(1 + θ2λ(1 − z)) (13)
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Therefore, the probability generating function of system size distribution for the M/G/1
model under consideration as,

π(z) = (1 − K ′(z))(1 − z)K(z)
K(z) − z) (14)

Differentiating the equation (13) with respect to z and taking z=1 we get

dK(z)
dz

=
[(

θ1

θ1 − θ2

)(
θ1λ

(1 + θ1λ(1 − z))2

)
−
(

θ2

θ1 − θ2)

)(
θ2λ

(1 + θ2λ(1 − z))2

)]
/z=1

This implies,
ρ = K ′(z)/z=1 = λ(θ1 + θ2) (15)

Substituting equations (13) and (15) in equation (14) we get,

π(z) =

(1 − ρ)(1 − z)
(θ1 − θ2)

[
θ1

1 + θ1λ(1 − z) − θ2

1 + θ2λ(1 − z)

]
[(

1
(θ1 − θ2)

)[
θ1

1 + θ1λ(1 − z) − θ2

1 + θ2λ(1 − z)

]
− z

] (16)

3. System characteristics

In this section we derive and analyze the performance of the queueing model. The
probability that there are n customers in the system at any arbitrary time is, coefficient of
zn,

pn = A

n/2∑
j=0

B(n − j)C(j) − p
(n/2)−1∑

j=0
B(n − j − 1)C(j)

 , where n is even

pn = A

(n+1/2)∑
j=0

B(n − j)C(j) − p
(n−1/2)∑

j=0
B(n − j − 1)C(j)

 , where n is odd

From the equation (16) the probability generating function of the number of customers in
system is

π(z) =

(1 − ρ)(1 − z)
(θ1 − θ2)

[
θ1

1 + θ1λ(1 − z) − θ2

1 + θ2λ(1 − z)

]
[(

1
(θ1 − θ2)

)[
θ1

1 + θ1λ(1 − z) − θ2

1 + θ2λ(1 − z)

]
− z

] (17)

Expending equation (1) and collecting the constant terms we get the probability that the
system is empty as

P0 = 1 − λ(θ1 + θ2) (18)
The average number of customers in the system can be obtained as,

Ls =
[

d

dz
[π(z)]

]
z=1
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Differentiating equation (2) and using L-Hospital rule, we get,

Ls =
[

[ρ − θλ2]
[1 − ρ]

]

θ1θ2 = θ, λ(θ1 + θ2) = ρ (19)
The average number of customers in the queue is

Lq = Ls − ρ

Lq = ρ2 − θλ2

1 − ρ
(20)

The variance of the number of customers in the system is given by,

Vs = E(N2 − N) + E(N) − (E(N))2

= [π′′(z) + π′(z) − [π′(z)]2]
(21)

Differentiating equation (1) with respect to z and using L-Hospital rule, we get the variance
of the number of customers in the system as

V (N) = ρ − θλ2(3 + ρ − θλ2)
(1 − ρ)2 (22)

4. Waiting time distribution

In this section we derive the waiting time distribution of the single server Poisson
arrival queueing model with additive exponential inter-service time distribution. Consider
the queue discipline of the system as FIFO, following the heauristic arguments of Gross and
Harris (1974) for the M/G/1 model, we derive the Laplace transformation of the waiting
time distribution.

Let B∗(s) be the Laplace Transformation of the inter-service time distribution and
W ∗(s) be the Laplace transformation of the waiting time distribution. Then we have,

B∗(s) = 1
(sθ1 + 1)(sθ2 + 1)

we have
K(z) = θ1

(θ1 − θ2)(1 + θ1λ(1 − z)) − θ2

(θ1 − θ2)(1 + θ2λ(1 − z))
Therefore,

K(z) = B∗(λ − λz) (23)
The Laplace transformation of waiting time distribution is

W ∗[λ(1 − z)] = [1 − K ′(1)](1 − z)B∗(λ(1 − z))
B∗(λ(1 − z)) − z

(24)

where, K ′(1) is as given in equation (15)
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Writing λ(1 − z) = s, we get z = 1 − s
λ

Therefore,

W ∗(s) = [1 − K ′(1)]sB∗(s)
s − λ(1 − B∗(s)) (25)

From the convolution property of transformation,

W ∗(s) = W ∗
q (s).B∗(s) (26)

where, T is the waiting time of the customer in the system and Tqis the time waiting time of
a customer in the queue and S is the service time of the customer and T = Tq +S. Therefore,

W ∗
q = [1 − K ′(1)]s

s − λ(1 − B∗(s)) (27)

The mean waiting time of a customer in the queue is,

Wq =
d

(
W ∗

q (s)
)

ds


s=0

d

ds

[
W ∗

q (s)
[1 − K ′(1)]

]
= s − λ + λB∗(s) − s[1 + λB∗(s)]

s − λ[1 − B∗(s)]]2 (28)

substituting the values of B∗(s) in equation (28) and using L-Hospital rule, we get the
random waiting time of a customer in the queue as

Wq = 1
λ

[
[θλ2 − ρ]
[1 − ρ]

]
(29)

The waiting time of the customers in system is,

Ws = Wq + ρ, where,ρ = λ(θ1 + θ2)

Therefore,

Ws = θλ2 − ρ + ρλ(1 − ρ)
(1 − ρ) (30)

The variance of the waiting time of customer in the queue is,

V (Wq) = Vq =
(

d2 (W ∗(s))
ds2

)
s=0

− [Wq]2 (31)

Therefore,

Vq = ρ3(2 − ρ) − 2ρθλ2(4 − ρ) − 3θ2λ4

λ2(1 − ρ)2 (32)



240 CH. G. SWAMY, K. S. RAO AND S. GOVINDA RAO [Vol. 21, No. 1

Table 1: Values of P0 and (1 − P0) for different values of λ, 1/θ1 and 1/θ2

λ 1/θ1 1/θ2 P0 1 − P0
2 11 11 0.636 0.364
2 11 13 0.664 0.336
2 11 15 0.685 0.315
2 11 17 0.701 0.299
2 11 19 0.713 0.287
4 11 15 0.273 0.727
4 13 15 0.329 0.671
4 15 15 0.370 0.630
4 17 15 0.401 0.599
4 19 15 0.426 0.574
1 15 15 0.867 0.133
2 15 15 0.733 0.267
3 15 15 0.600 0.400
4 15 15 0.467 0.533
5 15 15 0.333 0.667

5. Sensitivity analysis

In this section, the performance of the queueing mode is discussed through a numer-
ical illustrations. Different values of the parameter are considered for the given value of
λ=1,2,3,4,5, 1/θ1=11,13,15,17,19 and 1/θ2=11,13,15,17,19. The probability that the system
is empty and the probability the service is busy are computed and presented in Table 1.The
relation between the parameters and probability of the idleness are shown in the figure 1.

From Table 1, it is observed that the probability of emptiness is highly influenced by

Figure 1: Relation between probability of emptiness and input parameters
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the model parameters. As the mean arrival rate λ varies from 1 to 5, the probability that
the emptiness in the system is decreasing from 0.867 to 0.333 when other parameters are
fixed at 1/θ1=15 and 1/θ2=15. The service time parameter 1/θ1 increases from 11 to 19,
the probability that the emptiness in the system increasing from 0.273 to 0.426 when other
parameter are fixed at λ = 4 and 1/θ2 = 15. The service time parameter 1/θ2 increases from
11 to 19, the probability that the system is empty is in the system increasing from 0.636 to
0.713 when other parameter are fixed at λ = 2 and 1/θ1 = 11.

For different values of the parameter the average number of customers in the system,
average number of customers in the queue and the variance of the number of customers in
the system are computed and presented in Table 2.The relation between the parameters and
the performance measures in the figure 2. From Table 2, it is observed that the performance
measures of the queueing model are significantly influenced by the parameters of the model.
As the mean arrival rate λ varies from 1 to 5, the average number of customers in the system
is increasing. The same phenomenon is observed with respective the average number of
customers in the queue for the given values of the other parameters.

When the parameter 1/θ1 increases from 11 to 19, the average number of customers in
the system is decreasing from 2.182 to 1.169 for fixed values of λ=4, 1/θ2 =15. Similarly the
value of average number of customers in the queue is decreasing from 1.937 to 0.773. It is
observed that as λ increases the variance of the number of customers in system is increasing
from given values of the other parameters when 1/θ1 is increasing the variance of the number
of the customers in system is decreasing for fixed values of the other parameters. When 1/θ2
is increasing the variance of the number of the customers in system is decreasing for fixed
values of the other parameters.

For the different values of parameters the values of the average waiting time of customer
in system, the average waiting time of customer in queue, the variance of the waiting of the
customer in the queue are computed and given the Table 3. The relation between the

Table 2: Values of Ls,Lq and Vs for different values of λ, 1/θ1 and 1/θ2

λ 1/θ1 1/θ2 Ls Lq Vs

2 11 11 0.519 0.207 0.626
2 11 13 0.463 0.169 0.551
2 11 15 0.425 0.145 0.502
2 11 17 0.397 0.128 0.467
2 11 19 0.376 0.115 0.442
4 11 15 2.182 1.937 3.387
4 13 15 1.702 1.369 2.528
4 15 15 1.443 1.073 2.105
4 17 15 1.280 0.893 1.855
4 19 15 1.169 0.773 1.690
1 15 15 0.149 0.020 0.159
2 15 15 0.339 0.097 0.338
3 15 15 0.600 0.266 0.738
4 15 15 0.990 0.609 1.318
5 15 15 1.667 1.332 2.444
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Figure 2: Relation between probability of emptiness and input parameters

parameters and the performance measures in the figure 3.

From the table 3 it is observed that the model parameters have a significant influence
on the waiting time of the customer in the system and the queue. As the mean arrival rate
λ is increasing then the average waiting time of the customer in the queue and the average

Table 3: Values of Ws,Wq and Vq for different values of λ, 1/θ1 and 1/θ2

λ 1/θ1 1/θ2 Ws Wq Vq

2 11 11 0.442 0.078 0.025
2 11 13 0.399 0.064 0.018
2 11 15 0.370 0.005 0.015
2 11 17 0.348 0.049 0.012
2 11 19 0.331 0.044 0.011
4 11 15 1.091 0.364 0.220
4 13 15 0.929 0.258 0.124
4 15 15 0.833 0.203 0.085
4 17 15 0.769 0.170 0.064
4 19 15 0.732 0.149 0.052
1 15 15 0.149 0.015 0.003
2 15 15 0.303 0.036 0.008
3 15 15 0.467 0.067 0.016
4 15 15 0.648 0.114 0.033
5 15 15 0.867 0.200 0.076
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Figure 3: Relation between Ws, Wq and input parameters

waiting time of customer in the system are increasing when the other parameters remain
fixed. It is observed that as the parameter 1/θ1 is increasing from 11 to 19, the average
waiting time of the customer in the system and the average waiting time of the customer in
the queue are decreasing from 1.091 to 0.732 and 0.364 to 0.149 respectively, for fixed values
of other parameters. It is observed that as the parameter 1/θ2 is increasing from 11 to 19,
the average waiting time of the customer in the system and the average waiting time of the
customer in the queue are decreasing from 0.442 to 0.331 and 0.078 to 0.044 respectively,
for fixed values of other parameters. It is further observed that when the mean arrival rate
λ increases the variance of the waiting time of a customer in the system is increasing when
other parameters remain fixed.

6. Conclusion

Developed and analyzed a single sever queueing model with Additive exponential ser-
vice time distribution having Poisson arrivals. Here it is assumed that the queue discipline
is FIFO. Using the embedded Markov technique the probability generating function of the
queue size distribution under steady state condition is derived. The performance measures
of the model like, the average number of customers in the system, the average number of
customers in the queue, the probability of emptiness of the system, the probability that the
server is busy, the variance of the number of the customers in system, the Laplace transfor-
mation of the waiting time distribution of a customer in the system, the average waiting time
of a customer in the system, the average waiting time of customer in the queue, the variance
of the waiting time of the customers are derived explicitly. The effect of the variation of the
input parameter of the model on the performance measures is studied through numerical
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analysis. It is observed that the model parameter has significant influence on the average
number of customers in the system and the average waiting time of a customer in the system
and in the queue. This model also includes the M/M/I and M/E2/I models as particular
cases for limiting values of the parameters.

This model includes several of the earlier models as particular cases for specific or
limiting values of the the parameters

If 1/θ1 → 0 then this includes M/M/1 queueing model
If θ1 → θ2 → 0 then this includes M/E2/1 queueing model

The performance measures of both Exponential and Additive exponential distributions were
differ.
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Abstract 
 

In this paper we discuss a new approach for solving both balanced and unbalanced 

transportation problem. The algorithm for proposed method discussed in this paper gives an 

initial as well as either optimal solution or near to optimal solution. Some numerical 

examples have been given to show the efficiency of the proposed method. Then results of the 

new approach are compared with the MODI method and we found that the proposed method 

gives either minimum or same optimal cost as compared to MODI’s method and that too, in 

less iteration. 

 

Key words: Balanced and unbalanced Transportation Problem; Basic feasible solution; 

Optimal solution; MODI method. 

 
 

1. Introduction 

Transportation Problem (TP) is one of the subclasses of Linear Programming 

Problems in which the objective is to transport various quantities of a single homogeneous 

commodity that are initially stored at various origins to different destinations in such a way 

that the total transportation cost is minimum. To achieve this objective, we must know the 

amount and location of available supplies and the quantities demanded. Also, we know the 

unit transportation cost of the commodity to be transported from various origins to 

destinations. 

 

It was first studied by Hitchcock (1941) and then separately by Koopmans (1947) and 

finally placed in the framework of linear programming and solved by simplex method by 

Dantzig (1951). Since then, improved methods of solutions have been developed and the 

range of application has been steadily widened. It is now accepted as one of the important 

analytical and planning tools in business and industry. Several sorts of methods have been 

established for finding the optimal solution. Among them, some methods directly attain the 

optimal solution namely Zero Suffix Method, ASM-Method, etc. Also, it can be said that 

these methods obtain an optimal solution without disturbing degeneracy condition. They also 

require least iterations to reach optimality compared to the existing methods available in the 

literature. The degeneracy problem is also avoided by these methods. Recently, Pandian and 

Sudhakar proposed two different methods in 2010 and 2012 respectively for finding an 

optimal solution directly. However, the study on alternate optimal solutions is clearly limited 

in the literature of transportation except for Sudhakar, Arunnsankar and Karpagam (2012) 

mailto:deepriyanka_13@yahoo.com
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who suggested a new approach for finding an optimal solution for transportation problems. 

Here we are proposing an easier approach for finding an optimal solution directly of the 

transportation problem as compared to MODI’s method. Also, the proposed method is having 

lesser number of iterations and having easy arithmetical calculations.  

 

2. Methodology 

It is a simple and efficient method to obtain an optimal solution of transportation 

problem directly. The steps of the method are given below: 

Step 1:  Construct the transportation matrix from given transportation problem.  

Step 2:  Determine the smallest cost in the cost matrix of the transportation table. Let it be cij. 

Step 3:  Subtract the selected least cost cij from all the remaining cost in the matrix.  

Step 4:  Compare the minimum of supply or demand whichever is minimal then allocate the 

minimum supply or demand at the place of minimum value of related row or 

column. Let the minimum of supply (or demand) corresponds to ith row (or jth 

column). Let cij be the smallest cost in the ith row (or jth column). Allocate xij = min 

(ai, bj) in the (i, j)th cell. If tie occurs at the place of minimum value in supply or 

demand, then allocate at the maximum of supply or demand is observed. 

Step 5:  After performing Step 4, delete the ith row (or jth column) for further allocation 

where supply from a given source is depleted (or the demand for a given destination 

is satisfied).  

Step 6:  Repeat Step 4 and Step 5 for the reduced transportation table until all the demands 

are satisfied, and all the supplies are exhausted. 

3. Numerical Problem 

Problem 1: Consider the following cost minimizing transportation problem (balanced case): 

 

 D1 D2 D3 D4 Supply 

S1 13 18 30 8 8 

S2 55 20 25 40 10 

S3 30 6 50 10 11 

Demand 4 7 6 12 Total = 29 

 

 D1 D2 D3 D4 Supply 

S1 7 12 24 2 8 

S2 49 14 19 34 10 

S3 24 0 44 4 11 

Demand 4 7 6 12 Total = 29 

 

Following allocations are obtained by applying the proposed method: 

 

 D1 D2 D3 D4 Supply 

S1 4   4 8 

S2  4 6  10 

S3  3  8 11 

Demand 4 7 6 12 Total = 29 
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The Total cost from these allocations is 412 units. 

 

Problem 2: Consider the following cost minimizing transportation problem (balanced case): 
 

 D1 D2 D3 Supply 

S1 11 9 6 40 

S2 12 14 11 50 

S3 10 8 10 40 

Demand 55 45 30 Total = 130 

 
 

 D1 D2 D3 Supply 

S1 5 3 0 40 

S2 6 8 5 50 

S3 4 2 4 40 

Demand 55 45 30 Total = 130 

 

Following allocations are obtained by applying the proposed method: 
 

 D1 D2 D3 Supply 

S1  10 30 40 

S2 50   50 

S3 5 35  40 

Demand 55 45 30 Total = 130 

 

The Total cost from these allocations is 1200 units. 

 

Problem 3: Consider the following cost minimizing transportation problem (unbalanced 

case): 
 

             Warehouse→ 

Plants W1 W2 W3 Supply 

A 28 17 26 500 

B 19 12 16 300 

Demand 250 250 500  

 

Warehouse→ 

Plants W1 W2 W3 Supply 

A 28 17 26 500 

B 19 12 16 300 

C 0 0 0 200 

Demand 250 250 500 Total=1000 

 

Following allocations are obtained by applying the proposed method: 
 

              Warehouse→ 

Plants W1 W2 W3 Supply 

A 50 250 200 500 

B   300 300 

C 200   200 

Demand 250 250 500 Total = 1000 
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The Total cost from these allocations is 15650 units. 

 

Problem 4: Consider the following cost minimizing transportation problem (Degeneracy 

case): 

 

 D1 D2 D3 D4 Supply 

S1 3 7 6 4 5 

S2 2 4 3 2 2 

S3 4 3 8 5 3 

Demand 3 3 2 2 Total = 10 

 

 D1 D2 D3 D4 Supply 

S1 1 5 4 2 5 

S2 0 2 1 0 2 

S3 2 1 6 3 3 

Demand 3 3 2 2 Total = 10 

 

Following allocations are obtained by applying the proposed method: 
 

 D1 D2 D3 D4 Supply 

S1 3   2 5 

S2   2 ε1 2 

S3 ε2 3   3 

Demand 3 3 2 2 Total=10 

 

Total transportation cost = (3 × 3) + (2 × 4) + (2 ×3) + (ε1× 2) + (ε2 × 4) + (3 × 3)  

                                        = 32 + 2ε1 + 4ε2 

                                        = 32 as ε1→0 and ε2→0 

 

The total transportation cost is 32 units. 

4. Results and Comparison 

Comparison of total cost of Transportation Problem of above examples between 

MODI method and proposed method is: 

 

Problem# Type of Problem  Problem 

Dimension 

MODI’s Method Proposed 

Method 

1 Balanced  3×4 412 412 

2 Balanced  3×3 1320 1200 

3 Unbalanced  2×3 15700 15650 

4 Degeneracy  4×3 32 32 

 

5. Conclusion 

In this paper, a simple and more efficient method is determined to solve both the 

balanced and unbalanced transportation problem. Also, the proposed method gives an optimal 

transportation cost directly without solving the Initial Basic Feasible Solution. The new 

approach finds an optimal cost of the transportation problem in a very short time-period and 
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having lesser computations as compared to MODI method. Also, the problem of degeneracy 

can be handled by this proposed method. Thus, our study clearly shows that the new 

approach is more efficient and reliable for getting an optimal solution of various types of 

transportation problems as compared to the well-known existing methods present in the 

literature. 

 

Finally, the proposed method presented in this paper claims its wide application in 

solving transportation problems of higher order matrices. 
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