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Preface 

The Society of Statistics, Computer and Applications (SSCA) was founded in 1998 with a 
goal to provide a platform for promotion and dissemination of research in Statistics, blended 
with information technology, among both theoretical and applied statisticians, who have keen 
interest in the applications of Statistics to varied fields like agriculture, biological sciences, 
medical sciences, financial statistics, and industrial statistics. Since then, the Society has been 
performing several activities and promoting development of theoretical and applied research 
work in Statistics and Informatics.  

One of the major activities of SSCA is to organise national/international conferences annually 
across the length and breadth of the country. SSCA also brings out a journal called Statistics 
and Applications. This is an open access journal and is available at the website of the Society 
(www.ssca.org.in). The full-length papers can be viewed and downloaded free of cost. 
Besides bringing out regular volumes of the journal, special volumes on emerging thematic 
areas of global/national importance are also brought out.  

The twenty-second Annual Conference of the SSCA was organised during 02-04 January 
2020 at the Department of Statistics, Savitribai Phule Pune University, Pune, Maharashtra. 
The theme of the conference was Importance of Statistics in Emerging Global Scenario 
(ISEGS 2020). The conference was academically enriching with important and significant 
presentations made by scientists of international repute and eminence. Among the many 
technical sessions organised, were Professor C.R. Rao Birth Centenary Lecture Session, 
participated by renowned international and national statisticians  and a session on Financial 
Statistics, in which renowned statisticians and leading practitioners from National Bank for 
Agriculture and Rural Development, Symbiosis Institute of Management Studies, Pune, 
Savitri Phule Pune University and Reserve Bank of India made presentations.    

The Executive Council of the SSCA decided to bring out “Special Proceedings” of the 
conference covering some important selected talks including those presented in the Financial 
Statistics session. The selection of authors was made based upon the contents as presented 
during the conference. The Executive Council of the Society nominated V.K. Gupta, Baidya 
Nath Mandal, Rajender Parsad, Hukum Chandra, Ranjit Kumar Paul, K.J.S. Satyasai and 
Dipak Roy Choudhury as Guest Editors for bringing out these special proceedings. The Guest 
Editors finalised the names of authors to be invited to submit their full paper, based upon 
their presentation during the conference, for the Special Proceedings. 

Distinguished speakers shortlisted for making contributions to the special proceedings were 
invited to submit their research papers for possible inclusion in the special proceedings. After 
the usual review process, 16 research papers were accepted for publication and are included 
in the special proceedings. We would like to express our sincere thanks to all the authors for 
responding to our request and submitting their research for publication in these special 
proceedings in time. The reviewers have also made a very big contribution by way of 
finishing the review process in a short span of time and it is a pleasure to thank each one of 
them individually. We would like to place on record our gratitude to all members and office 



bearers of the Executive Council of SSCA for their support. We would also like to express 
our sincerest thanks to Prof. T.V. Ramanathan, Dr. V.K. Gedam, and Dr. R.V. Latpate for 
organising the Conference.  

Guest Editors   

V.K. Gupta 
Baidya Nath Mandal  

Rajender Parsad 
Hukum Chandra 

Ranjit Kumar Paul 
K.J.S. Satyasai 

Dipak Roy Choudhury 
 

New Delhi 
September 2020 
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Abstract

Frailty models are used in the survival analysis to account for the unobserved heterogeneity
in individual risks to disease and death. To analyze the bivariate data on related survival times, the
shared frailty models were suggested. Shared frailty models are used despite their limitations. To
overcome their disadvantages correlated frailty models may be used. In this paper, we introduce
the inverse Gaussian correlated frailty models.

Key words: Vivariate survival; Copula; Correlated inverse Gaussian frailty; Cross-ration function;
Hazard rate.

1. Introduction

The frailty model is a random effect model for time to event data which is an extension of
the Cox’s proportional hazards model. Shared frailty models are the most commonly used frailty
models in literature, where individuals in the same cluster share a common frailty. Frailty models
(Vaupel et al. 1979) are used in the survival analysis to account for the unobserved heterogeneity
in the individual risks to disease and death. The frailty model is usually modeled as an unobserved
random variable acting multiplicatively on the baseline hazard function. Hanagal and Dabade
(2013), Hanagal and Bhambure (2015, 2016) and Hanagal and Pandey (2014a, 2014b, 2015a,
2015b, 2016, 2017a) analyzed kidney infection data and Australian twin data using shared gamma
and inverse Gaussian frailty models with different baseline distributions for the multiplicative
model. Hanagal and Sharma (2013, 2015a, 2015b, 2015c) analyzed acute leukemia data, kidney
infection data and diabetic retinopathy data using shared gamma and inverse Gaussian frailty
models for the multiplicative model. Hanagal and Bhambure (2014) developed shared inverse
Gaussian frailty model based on the reversed hazard rate for Australian twin data. Hanagal et
al.(2017) discussed correlated gamma frailty models for bivariate survival data to analyze kidney
infection data and Hanagal and Pandey (2017b) proposed correlated gamma frailty models for
bivariate survival data based on reversed hazard rate for Australian twin data. Hanagal (2017) gave
extensive literature review on different shared frailty models.

Corresponding Author: David D. Hanagal
E-mail: david.hanagal@gmail.com
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In a univariate frailty model, let a continuous random variable T be a lifetime of an individual
and the random variable Z be frailty variable. The conditional hazard function for a given frailty
variable, Z = z at time t > 0 is,

h(t | z) = zh0(t)e
Xβ, (1)

where h0(t) is a baseline hazard function at time t > 0, X is a row vector of covariates, and β is a
column vector of regression coefficients. The conditional survival function for given frailty at time
t > 0 is,

S(t | z) = e−
∫ t
0 h(x|z)dx = e−zH0(t)eXβ

, (2)

where H0(t) is the cumulative baseline hazard function at time t > 0. Integrating over the range of
frailty variable Z having density fZ(z), we get the marginal survival function as,

S(t) =

∫ ∞
0

S(t | z)fZ(z)dz

=

∫ ∞
0

e−zH0(t)eXβ

fZ(z)dz

= LZ(H0(t)e
Xβ), (3)

where LZ(.) is the Laplace transformation of the distribution of Z. Once we get the survival
function at time t > 0, of life time random variable for an individual, we can obtain probability
structure and make their inferences based on it.

Shared frailty explains correlation’s between subjects within clusters. However, it does have
some limitations. Firstly, it forces the unobserved factors to be the same within the cluster, which
may not always reflect reality. For example, at times it may be inappropriate to assume that all
partners in a cluster share all their unobserved risk factors. Secondly, the dependence between
survival times within the cluster is based on marginal distributions of survival times. However,
when covariates are present in a proportional hazards model with gamma distributed frailty the
dependence parameter and the population heterogeneity are confounded (Clayton and Cuzick,
1985). This implies that the joint distribution can be identified from the marginal distributions
(Hougaard, 1986). Thirdly, in most cases, a one-dimensional frailty can only induce positive
association within the cluster. However, there are some situations in which the survival times for
subjects within the same cluster are negatively associated. For example, in the Stanford Heart
Transplantation Study, generally the longer an individual must wait for an available heart, the
shorter he or she is likely to survive after the transplantation. Therefore, the waiting time and the
survival time afterwards may be negatively associated.

To avoid these limitations, correlated frailty models are being developed for the analysis of
multivariate failure time data, in which associated random variables are used to characterize the
frailty effect for each cluster. Correlated frailty models provide not only variance parameters of
the frailties as in shared frailty models, but they also contain additional parameter for modeling
the correlation between frailties in each group. Frequently one is interested in construction of
a bivariate extension of some univariate family distributions (e.g., gamma). For example, for
the purpose of genetic analysis of frailty one might be interested in estimation of correlation
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of frailty. It turns out that it is possible to carry out such extension for the class of infinitely-
divisible distributions (Iachine 1995a, 1995b). In this case an additional parameter representing
the correlation coefficient of the bivariate frailty distribution is introduced.

2. Inverse Gaussian Frailty

The gamma distribution is most commonly used frailty distribution because of its
mathematical convenience. Another choice is the inverse Gaussian distribution. The inverse
Gaussian makes the population homogeneous with time, whereas for gamma the relative
heterogeneity is constant (Hougaard, 1984). Duchateau and Janssen (2008) fit the inverse
Gaussian (IG) frailty model with Weibull hazard to the udder quarter infection data. The IG
distribution has a unimodal density and is a member of the exponential family. While its shape
resembles that of other skewed density functions, such as lognormal and gamma, it provides much
flexibility in modeling. Furthermore, there are many striking similarities between the statistics
derived from this distribution and those of the normal; see Chhikara and Folks (1986). These
properties make it potentially attractive for modeling purposes with survival data. The models
derived above are bases on the assumption that a common random effect acts multiplicatively on
the hazard rate function.

Alternative to the gamma distribution, Hougaard (1984) introduced the inverse Gaussian as
a frailty distribution. It provides much flexibility in modeling, when early occurrences of failures
are dominant in a life time distribution and its failure rate is expected to be non-monotonic. In such
situations, the inverse Gaussian distribution might provide a suitable choice for the lifetime model.
Also inverse Gaussian is almost an increasing failure rate distribution when it is slightly skewed
and hence is also applicable to describe lifetime distribution which is not dominated by early
failures. Secondly, for the inverse Gaussian distribution, the surviving population becomes more
homogeneous with respect to time, where as for gamma distribution the relative heterogeneity
is constant. The inverse Gaussian distribution has shape resembles the other skewed density
functions, such as log-normal and gamma. These properties of inverse Gaussian distribution
motivate us to use inverse Gaussian as frailty distribution. The inverse Gaussian distribution
has a history dating back to 1915 when Schrodinger and Smoluchowski presented independent
derivations of the density of the first passage time distribution of Brownian motion with positive
drift. Villman et al., (1990) have studied the histomorphometrical analysis of the influence of
soft diet on masticatory muscle development in the muscular dystrophic mouse. The muscle fibre
size distributions were fitted by an inverse Gaussian law. Barndorff-Nielsen (1994) considers a
finite tree whose edges are endowed with random resistances, and shows that, subject to suitable
restrictions on the parameters, if the resistances are either inverse Gaussian or reciprocal inverse
Gaussian random variables, then the overall resistance of the tree follows a reciprocal inverse
Gaussian law. Gacula and Kubala (1975) have analyzed shelf life of several products using the IG
law and found to be a good fit. For more real life applications (see Seshadri, 1999).

Consider a continuous random variable Z follows inverse Gaussian distribution with
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parameters µ and σ2 then density function of Z is,

fZ(z) =


[

1

2πσ2

] 1
2

z−
3
2 e

(z−µ)2

2zσ2µ2 ; z > 0, µ > 0, σ2 > 0

0 ; otherwise,

(4)

and the Laplace transform is,

LZ(s) = exp

[
1

µσ2
−
(

1

σ4µ2
+

2s

σ2

) 1
2

]
. (5)

The mean and variance of frailty variable are E(Z) = µ and V (Z) = µ3σ2. For identifiability, we
assume Z has expected value equal to one i.e. µ = 1. Under this restriction, the density function
and the Laplace transformation of the inverse Gaussian distribution reduces to,

fZ(z) =


[

1

2πσ2

] 1
2

z−
3
2 e

(z−1)2

2zσ2 ; z > 0, σ2 > 0

0 ; otherwise,

(6)

and the Laplace transform is,

LZ(s) = exp

[
1− (1 + 2σ2s)

1
2

σ2

]
, (7)

with variance of Z as σ2. The frailty variable Z is degenerate at Z = 1 when σ2 tends to zero. Let
T1 and T2 be failure times of the pair of individuals like kidney, lungs, eyes or any paired organ of
an individual or lifetimes of twins. The unconditional bivariate distribution function of lifetimes
T1 and T2 with inverse Gaussian frailty is,

LZ(H1(t1) +H2(t2)) = exp

[
1− (1 + 2θ(H1(t1) +H2(t2)))

1
2

θ

]
= S(t1, t2) (8)

where H1(t1) and H2(t2) are the cumulative baseline hazard functions of the lifetime T1 and T2
respectively. Clayton (1978) define cross-ratio function as,

θ∗(t1, t2) =

∂2S(t1,t2)
∂t1∂t2

S(t1, t2)
∂S(t1,t2)
∂t1

∂S(t1,t2)
∂t2

The cross ratio function of inverse Gaussian frailty is,

θ∗(t1, t2) = 1 +
1

1
θ
− ln(S(t1, t2))

The highest value is obtained at the start and equals 1 + θ, and goes to one as the survival function
goes to zero. It is decreasing function of t1, t2.
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The joint bivariate survival functions in (8) can be expressed in terms of survival copula as
(see Nelsen (2006) for details)

C(u, v) = exp

{
1− [(1− θ log u)2 + (1− θ log v)2 − 1]

1
2

θ

}

where u = ST1(·) and v = ST2(·). This is a new copula and not appeared in the earlier
literature.

3. Correlated Frailty

The correlated frailty model is the second important concept in the area of multivariate
frailty models. It is a natural extension of the shared frailty approach on the one hand, and of the
univariate frailty model on the other. In the correlated frailty model, the frailties of individuals in
a cluster are correlated but not necessarily shared. It enables the inclusion of additional correlation
parameters, which then allows the addressing of questions about associations between event times.
Furthermore, associations are no longer forced to be the same for all pairs of individuals in a
cluster. This makes the model especially appropriate for situations where the association between
event times is of special interest, for example, genetic studies of event times in families. The
conditional survival function in the bivariate case (here without observed covariates) looks like

S(t1, t2|Z1, Z2) = S1(t1|Z1)S2(t2|Z2) = e−Z1H01(t1)e−Z2H02(t2), (9)

where Z1 and Z2 are two correlated frailties. The distribution of the random vector (Z1, Z2)
needs to be specified and determines the association structure of the event times in the model.
Integrating the above bivariate survival function over Z1 and Z2, we get unconditional bivariate
survival function as

S(t1, t2) = EZ1,Z2 [e
−Z1H01(t1)e−Z2H02(t2)] (10)

where (Z1, Z2) has some known bivariate frailty distribution.

Consider some bivariate event times – for example, the lifetimes of twins, or age at onset of a
disease in spouses, time to blindness in the left and right eye, or time to failure in the left and right
kidney of patients. In the (bivariate) correlated frailty model, the frailty of each individual in a
pair is defined by a measure of relative risk, that is, exactly as it was defined in the univariate case.
For two individuals in a pair, frailties are not necessarily the same, as they are in the shared frailty
model. We are assuming that the frailties are acting multiplicatively on the baseline hazard function
(proportional hazards model) and that the observations in a pair are conditionally independent,
given the frailties. Hence, the hazard of the individual i(i = 1, 2) in pair j(i = j, ..., n) has the
form

h(t|Xij, Zij) = Zijh0i(t)e
β′Xij , (11)

where t denotes age or time, Xij is a vector of observed covariates, β is a vector of regression
parameters describing the effect of the covariates Xij , h0i(.) are baseline hazard functions, and
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Zij are frailties. Bivariate correlated frailty models are characterized by the joint distribution of
a two-dimensional vector of frailties (Z1j, Z2j). If the two frailties are independent, the resulting
lifetimes are independent, and no clustering is present in the model. If the two frailties are equal,
the shared frailty model is obtained as a special case of the correlated frailty model with correlation
one between the frailties (Wienke(2011)).

In order to derive a marginal likelihood function, the assumption of conditional independence
of lifespans, given the frailty, is used. Let δij be a censoring indicator for individual i(i = 1, 2) in
pair j(j = 1, ..., n). Indicator δij is 1 if the individual has experienced the event of interest, and 0
otherwise. According to (2.2), the conditional survival function of the ith individual in the jth pair
is

S(t|Xij, Zij) = e−ZijH0i(t)eβ
′Xij , (12)

with H0i(t) denoting the cumulative baseline hazard function. The contribution of individual i(i =
1, 2) in pair j(j = 1, ..., n) to the conditional likelihood is given by[

Zijh0i(t)e
β′Xij

]δij
eZijH0i(tij)eβ

′Xij , (13)

where tij stands for observation time of individual i from pair j. Assuming the conditional
independence of lifespans, given the frailty, and integrating out the frailty, we obtain the marginal
likelihood function

n∏
j=1

∫
R×

∫
R

[
u1jh01(t1j)e

β′X1j

]δ1j
eu1jH01(t1j)eβ

′X1j

[
u2jh02(t2j)e

β′X2j

]δ2j
eu2jH02(t2j)eβ

′X2jf(z1j, z2j)dz1jdz2j (14)

where f(., .) is the probability density function of the corresponding frailty distribution. All these
formulas can be easily extended to the multivariate case, but need a specification of the correlation
structure between individuals in a cluster in terms of the multivariate density function, which
complicates analysis. For more details see (Hanagal(2011, 2019) and Wienke(2011)).

4. Correlated Inverse Gaussian Frailty Model

Let Z be an infinitely divisible frailty variable with Laplace transformation LZ(s) and ρ ∈
[0, 1], then there exist random variables Z1, Z2 each with univariate Laplace transform LZ(s) such
that the Laplace transform of Z1, Z2 is given by:

L(s1, s2) = LρZ(s1 + s2)L
1−ρ
Z (s1)L

1−ρ
Z (s2) (15)

If Z has a variance the Corr(Z1, Z2) = ρ.
The respective bivariate survival model is identifiable under mild regularity conditions on Z
provided that ρ > 0. The case ρ = 1 is known as the shared frailty model.

The above equation can be extended to multivariate case (ρ > 0) as below.

L(s1, s2, ...., sk) = LρZ(s1, s2, ...., sk)L
1−ρ
Z (s1)....L

1−ρ
Z (sk).
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The case ρ = 1 leads to shared frailty. If ρ = 0, Z1, ....Zk are mutually independent.

Let Zi be the inverse Gaussian distributed with mean 1, variance σ2, and Laplace transform

L(si, σ
2) = exp[

1− (1 + 2σ2si)
1
2

σ2
] (16)

The bivariate Laplace transform for the correlated inverse Gaussian frailty model is given by

L(s1, s2, σ
2, ρ) = exp

[
ρ
1− (1 + 2σ2(s1 + s2))

1
2

σ2

]
exp

[
(1− ρ)1− (1 + 2σ2s1)

1
2

σ2

]

exp

[
(1− ρ)1− (1 + 2σ2s2)

1
2

σ2

]
(17)

where Corr(Z1, Z2) = ρ.
The correlated frailty model with inverse Gaussian frailty distribution is characterized by the
bivariate survival function of the form:

S(t,t2j) = exp

[
ρ
1− (1 + 2σ2ηj(H1(t1j) +H2(t2j)))

1
2

σ2

]
exp

[
(1− ρ)1− (1 + 2σ2ηjH1(t1j))

1
2

σ2

]

exp

[
(1− ρ)1− (1 + 2σ2ηjH2(t2j))

1
2

σ2

]
(18)

where H01(t1j) and H02(t2j) are the cumulative baseline hazard functions of the life time random
variables T1j and T2j respectively.

According to different assumptions on the baseline distributions we get different correlated
inverse Gaussian frailty models.

5. Likelihood Specification and Bayesian Estimation of Parameters

Suppose there are n individuals under study, whose first and second observed failure
times are represented by (t1j, t2j). Let c1j and c2j be the observed censoring times for the jth

individual (j = 1, 2, 3, ..., n) for first and second recurrence times respectively. We also assume
that independence between the censoring time and the life-times of individuals.

The contribution of the bivariate life time random variable of the jth individual in likelihood
function is given by,

Lj(t1j, t2j) =


f1(t1j, t2j), t1j < c1j, t2j < c2j,
f2(t1j, c2j), t1j < c1j, t2j > c2j,
f3(c1j, t2j), t1j > c1j, t2j < c2j,
f4(c1j, c2j), t1j > c1j, t2j > c2j.

and the likelihood function is,

L(ψ,β, θ) =

n1∏
j=1

f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)

n3∏
j=1

f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (19)
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where θ, ψ and β are respectively the frailty parameter (σ1, σ2, ρ), the vector of baseline
parameters and the vector of regression coefficients.

The counts n1, n2, n3 and n4 are the number of individuals for which first and second failure
times (t1j, t2j) lie in the ranges t1j < c1j, t2j < c2j; t1j < c1j, t2j > c2j; t1j > c1j, t2j < c2j and
t1j > c1j, t2j > c2j respectively and

f1(t1j, t2j) =
∂2S(t1j, t2j)

∂t1j∂t2j

f2(t1j, c2j) =
∂S(t1j, c2j)

∂t1j

f3(c1j, t2j) =
∂S(c1j, t2j)

∂t2j
and f4(c1j, c2j) = S(c1j, c2j) (20)

Usually maximum likelihood estimators can be used to estimate the parameters invloved in
the model. Unfortunately computing the maximum likelihood estimators (MLEs) involves solving
a fourteen dimensional optimization problem for Model I and Model III and eleven dimensional
optimization problem for Model II and Model IV. As the method of maximum likelihood fails
to estimate the parameters due to convergence problem in the iterative procedure, so we use the
Bayesian approach. The traditional maximum likelihood approach to estimation is commonly
used in survival analysis, but it can encounter difficulties with frailty models. Moreover, standard
maximum likelihood based inference methods may not be suitable for small sample sizes or
situations in which there is heavy censoring (see Kheiri et al. (2007)). Thus, in our problem a
Bayesian approach, which does not suffer from these difficulties, is a natural one, even though it is
relatively computationally intensive

To estimate parameters of the model, the Bayesian approach is now popularly used, because
computation of the Bayesian analysis become feasible due to advances in computing technology
[for more details on Bayesian estimation of the parameters and data analysis based on correlated
inverse Gaussian frailty model, see Hanagal and Pandey, 2020].
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Abstract  

It is well known that the occurrence of earthquake is likely to increase another earthquake 
or the number (or sequence) of aftershocks in the nearby space and time. Similarly, prior to the 
next major earthquake, pre-seismic foreshocks are expected to occur in the focal region. Thus, it 
may be of interest for seismologists to study the pattern of sequence of foreshocks and 
aftershocks for prediction of earthquake. To investigate this problem with the help of quantitative 
information like, magnitude of earthquake, latitude, longitude, time etc., it might be possible to 
develop statistical models for the definition and detection of the occurrence of earthquake and 
sequence of aftershocks. The point process models are most frequently used to model such time 
to event data. In the time to event data, because of their temporal context, the point process 
models are also referred to as temporal point process models. Some of the frequently used 
models are Self-Exciting point process models, Epidemic Type Aftershock-Sequences models, 
stress release model etc. In this paper, we review various other models specific to temporal 
events like earthquake and other situations.  

Key words: Ground intensity function; Trigger function; Self-exciting point process; Marked 
point process; ETAS models; Stress release model (SRM). 

1.  Introduction 

In variety of applications, like, occurrence of crime events, posts or likes or clicks on social 
media, occurrence of earthquakes and its aftershocks, trading in financial markets etc., we come 
across the sequence of events which are asynchronous in nature, unlike the time series in which 
the observations are taken at regular time intervals. The time points at which such events of 
interest occur are also known as temporal points and such data can carry some important relevant 
information other than the temporal points.  

 
Some examples are: 

1. In study of crime patterns, an act of violence by an individual or a group might provoke or 
stimulate counter attacks by another group of individuals; where the temporal events are 
the times when violence by one gang took place and relevant information may be the 
retaliatory attacks by rivalry gang, the locations, the race of victims etc.  

2. One post on social media is followed by number of related posts or one video is repeatedly 
watched by number of viewers; here the temporal events are time of post or video and 
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relevant information may be number of likes or number of times it is watched or tagged, 
number of positive or negative comments, the geographic location of the respondents etc. 

3. In market research, the sales of a product might get a jump following repeated 
advertisements; where the temporal events are the time of purchase of a pre specified 
consumer product and the relevant information may be the impact of television 
advertisements of the product, income, size of the household etc. 

4. In medical context, a targeted treatment like chemotherapy can impact the diseased cells; 
the temporal events in this case may be the time points at which the patient is given a dose 
of chemotherapy and relevant information may be the dose, the effects (or side effects) etc. 

5. In earthquake modeling, an earthquake of higher magnitude might induce more aftershocks 
as compared to that with a smaller magnitude; the temporal events in this case may be the 
time points at which earthquakes and major aftershocks (of magnitude beyond some 
predefined intensity) occur and the relevant information may be longitude and latitude of 
the location, magnitude of the aftershock etc.  

6. In financial markets, when the stock prices are very much volatile or fluctuating (ultra-high 
frequency); the time points at which the prices rise or decline by a predefined number may 
be considered to be temporal points and the relevant information may be the factors like 
international crude oil price, political situation or stability of the country, some event 
which has international relevance or concerns etc. 

 

In general, temporal events may be either statistically independent, following a Poisson 
process, or temporally correlated. The term “event dependence” captures the idea that an initial 
event can increase or decrease the likelihood of subsequent events in the future. Point processes 
are often found to be appropriate for modeling a series of asynchronous events occurring at 
points in time (Ascher and Feigngold, 1984) and are also useful for modeling some peculiar 
pattern of the events observed in time. Among the few examples cited above, we focused on the 
earthquake data from the perspective of statistical modeling and analysis.    

 
The behavior of the temporal point process may be described with the help of the 

conditional intensity function, conditional on the history of the process over time. The 
conditional intensity function proposes the probability of occurrence of the subsequent event in 
the upcoming instance of time given the history of the past events until the present event. Thus it 
represents the rate for the occurrence of a new event, conditioned on the history of the process up 
to time t, say, ℋ" =	 {𝑡' ∶ 	 𝑡' < 𝑡}, as 

𝜆(𝑡) = lim
12→4

5[7([","9	12])	|ℋ<]
12

                                   (1) 
                
where 𝑁[… ] is the number of events occurring in (𝑡, 𝑡 + 	Δt).  

The Nonhomogeneous Poisson process (NHPP) models are the most frequently used 
models to represent the temporal events. The NHPP models are models for reliability growth due 
to the nature of their intensity function which is a compromise between ‘as good as new’ and ‘as 
bad as old’ models [Duane (1964), Bassin (1969, 1973), Cox and Lewis (1966), Lewis (1970, 
1972)]. At times we come across the temporal events with branching structure wherein the 
occurrence of an event of one type increases the chance of occurrence of similar kind of event in 
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future. For example, each earthquake gives rise to aftershock activity in the neighboring areas 
depending upon the magnitude of the earthquake. Hawkes (1971) proposed a process to model 
such a branching structure of temporal events which was named Self-Exciting Point Process 
(SEPP) which implemented the idea that an earthquake can trigger aftershocks. As it can be 
observed from historical data on earthquakes, it is obvious to observe that the earthquakes with 
high intensity induces more aftershocks as compared to those with low intensity, that is, the 
earthquake and its aftershock sequence shows an epidemic behavioral pattern. Ogata (1988) 
developed a point process model to model such an epidemic behavior of earthquakes and named 
it Epidemic Type Aftershock Sequences (ETAS) model which is an extension of SEPP model.  

                                                                                                                     
Another point process model that is specifically defined to model the earthquake 

occurrences is a ‘stress release model’ (SRM) proposed by Knopoff (1971) and Vere-Jones 
(1978). The SRM is considered to be a stochastic version of the so-called ‘elastic rebound 
theory’. It considers the increased pressure in an area and the pressure released during an 
earthquake over a period of time. It is possible to measure the probability of earthquake 
occurrence using the conditional intensity function of the SRM.  

 
 Also the historical data of various earthquakes demonstrates that the high intensity 

earthquakes are normally followed by high intensity earthquakes in surrounding area and this 
resists the aftershocks. The interactions among such affected areas have influence on time and 
intensity of earthquake occurrences in the presence of stress movement. Bebbington and Harte 
(2001) proposed Linked Stress Release Model (Linked SRM) to model temporal events which exhibits 
such a characteristic.  

 
Hawkes and Oakes (1974) defined cluster point process assuming that, at every point in 

temporal point process on (0, ∞), a cluster of activities starts. This point can be interpreted as the 
first arrival time of a point process which triggers a random stream of events of the similar types. 
This model exhibits chain ladder type of characteristic which may be used to forecast the total 
number of events and the time of occurrence of events in the future course of time. Vere-Jones 
and Davies (1966) and Vere-Jones (1970) proposed trigger models which assumes that a series 
of primary events (say, main shocks) is distributed completely randomly in time and each of 
these primary events are capable of generating a series of secondary events (say, aftershocks).  

 
Sometimes the temporal events might be just one of the components of the complex model 

which is carrying much more information apart from just the time of occurrence of events under 
study. This additional information may themselves have a stochastic structure and stochastic 
dependency.  Daley and Vere-Jones (2003) classified such temporal point processes as marked 
point processes (MPP) or marked temporal point processes (MTPP). The behavior of the MTPP 
may also be described with the help of the conditional intensity function, conditional on the 
history of the process over time, having two components: the ground intensity function and the 
mark distribution. The ground intensity function describes the rate of occurrence of events with 
respect to time and the mark distribution describes the behavior of other variables (referred to as 
marks), that are associated with the event, and will also be usually dependent on the history of 
the occurrence of events.  

The remaining part of this paper is organized this way: Section 2 offers various models and 
its technical descriptions. The likelihood estimation and related inferences are presented in 
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Section 3, followed by data analysis in Section 4. The Section 5 concludes with some useful 
discussion including the limitations. 

2.  Models and Descriptions  

In case of earthquake occurrences, it can be commonly observed that an earthquake with 
very high magnitude is usually followed by a sequence of aftershocks and some of the 
aftershocks themselves may also be of such a high magnitude that they might have aftershocks 
caused by them. Obviously, both the frequency and magnitude diminish over a period of time, or 
with respect to space (distance from epicenter) etc. Also prior to a major earthquake or 
aftershock, pre-seismic activities and foreshocks might take place. But foreshocks are not very 
easy to identify as compared to aftershocks. Some researchers made attempts to study pre-
seismic quiescence and the gaps between two major earthquakes of aftershocks. On the other 
hand, some researchers were of the opinion that the pre-seismic quiescence and the gaps are 
nothing but the result of decaying activity of aftershocks which were followed by the last major 
shock and so they are not of much importance to be studied. Thus, most of the studies focus on 
the main shocks and their aftershock sequences. In the context of earthquake studies, we consider 
the time points at which the main shock or major aftershocks occur as temporal points, or 
equivalently, the times of occurrence of main shocks or major aftershocks as temporal events.  
 

2.1.  NHPP models 

In general, temporal events may be statistically independent or temporally correlated. Let 
𝑁B𝑡', 𝑡CD represents the number of events occurring between time 𝑡' and	𝑡C and let 
(𝑡E, 𝑡F), (𝑡G, 𝑡H),… , (𝑡IJE, 𝑡I) be the disjoint sets where 𝑡E < 	 𝑡F 	≤ 	… 	≤ 	 𝑡IJE < 	 𝑡I  are times of 
occurrence of temporal events, then 𝑁 will be a Poisson process, if each of  
𝑁(𝑡E, 𝑡F), 𝑁(𝑡G, 𝑡H),… , 𝑁(𝑡IJE, 𝑡I) have a Poisson distribution and are independent, that is, 
𝐶𝑜𝑣[𝑁(𝑡E, 𝑡F),𝑁(𝑡F, 𝑡G)] = 0	for	any	𝑡E < 	 𝑡F < 	 𝑡G. A Poisson process always has a 
deterministic conditional intensity 𝜆(𝑡). If it is stationary, then 𝜆(𝑡) is constant and the process is 
known as homogeneous Poisson process (HPP); otherwise the process is known as NHPP. 

 
NHPP with a power-law intensity function is a frequently used model for temporal point 

process. According to the magnitude of the power law, one can ascertain whether the rate of 
occurrence of an event is decreasing, constant or increasing function of time. Crow (1974) 
proposed a model for which system failure times are assumed to occur according to a time 
dependent Poisson process with a Weibull intensity function of the form, 

  𝜆(𝑡) = 	 V
W
	X"
W
Y
VJE

, where 𝜃 > 0	𝑎𝑛𝑑	𝛽 > 0.                                  (2) 

Such a model is referred to as the Weibull Process or Power Law Process (PLP) and is used to 
model reliability growth. Another useful NHPP model was proposed was proposed by Cox and 
Lewis (1966) with intensity function of the form 𝜆(𝑡) = 	 𝑒a9	V	",		which is referred to as Log-
Linear Process (LLP). This kind of models work well for any temporal event data exhibiting 
stationary characteristics in the long run.   
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2.2.  Self-exciting point process models 

When the temporal events are correlated, an initial event can increase or decrease the 
chances of occurrence of similar events in future.  Hawkes (1971) introduced the self-exciting 
process as a point process for which 𝐶𝑜𝑣[𝑁(𝑡E, 𝑡F),𝑁(𝑡F, 𝑡G)] > 0	for	any	𝑡E < 	 𝑡F < 	 𝑡G.	 This 
means that if an event occurs, another event becomes more likely to occur in time and space 
(Hawkes and Oakes (1974), Daley and Vere-Jones (2003)). Hawkes (1971) defined the self-
exciting process with an intensity function has the form: 

  𝜆(𝑡) = 	𝜈 +	∫ 𝑔(𝑡 − 𝑠)"
4 	𝑑𝑁(𝑠) = 	𝜈 + 𝑘4 ∑ 	𝑔(𝑡 − 𝑡I)"jk"                                        (3) 

 
where 𝜈 > 0 is a baseline intensity or the background rate of events which is assumed to be 
constant in time and the second term describes the self-exciting part of the process having two 
components 𝑘4 and 𝑔; 𝑘4 reflects the magnitude of self-excitation and the function 𝑔 measures 
the influence of an event on the intensity process or density at which self-excitation is triggered. 
For the earthquake study, the pre-seismic activities may be considered as the baseline intensity 𝜈;  
intensity of the main shock which triggers the aftershocks may be considered as the magnitude of 
self-exciting part, that is 𝑘4 and 𝑔 is the density function at which self-excitation is triggered. It 
is assumed that 𝑔(𝑥) 	≥ 0	for	all	𝑥	 ≥ 0, 𝑔(𝑥) = 0	for	𝑥 < 0, and ∫ 𝑔(𝑢)"

4 	𝑑𝑢 < 1, where 𝑡 is 
the time up to which the events are observed. Many forms of 𝑔(𝑡) have been proposed and 
studied in literature, and in most of the cases, the choices and importance of the density depends 
on the situations and contexts. Egesdal et. al. (2010) considered 𝑔 as an exponential distribution 
in their study, and they considered the intensity function having the form 

  𝜆(𝑡) = 	𝜇 + 𝑘4 ∑ 	𝑤	𝑒r	("sJ")"sk"                                       (4)  

This intensity function describes the rate at which events occur over time, and is not only 
influenced by the current time, but also by the events that have occurred before the current time. 
The current events subsequently decrease over time exponentially. While studying earthquake 
and its aftershocks, similar pattern is likely to be observed and therefore it might be reasonable to 
consider the above form of intensity function while using SEPP to model earthquake 
occurrences.  

 
2.3.  ETAS model  

The models with intensity function as proposed in SEPP were considered by Ogata (1988) 
for modeling the data regarding earthquake and its aftershocks, where it was assumed that the 
earthquake aftershock sequences can be modeled like an epidemic, that is, the earthquakes with 
larger magnitudes might have a sequence of more aftershocks in a given interval of time and also 
it may continue for a longer time after the main shock. He named such models as Epidemic Type 
Aftershock-Sequences (ETAS) models. Ogata (1988) studied various statistical models for the 
standard activity of sequence of earthquakes and compared them using likelihood methods. He 
proposed Epidemic-Type models with reference to the age-dependent birth and death process 
introduced by Kendall (1949), in which only the births or events are allowed to occur at a 
constant rate per unit time according to Poisson process and with each birth or event (with 
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reference to earthquake study, main shock) there is associated a cluster of subsidiary events (say, 
aftershocks) formed by the births of all of the descendants of all generations of the immigrant 
(Hawkes and Oakes, 1974). Thus one of the differences between the epidemic-type model and 
the trigger model is that the trigger model assumes only the first generation offspring whereas 
the epidemic-type model assumes that each event has the possibility of possessing offspring. 
Ogata (1988) in his study proved that the epidemic-type models that include the effect of 
magnitude of earthquake give a better fit to the data than any of the trigger models (considered in 
a restricted form).  

 
These models can be constructed by assuming two activities associated with each 

occurrence of an earthquake, background events and aftershock events. It is assumed that the 
background events occur independently according to a stationary Poisson process 𝜇(𝑥, 𝑦), with 
magnitudes distributed independently of 𝜇 and each occurrence of an earthquake increases the 
risk of aftershocks. Also, it is reasonable to assume that the increased risk of aftershocks also 
spreads in the neighboring locations in space and time according to the kernel  𝑔(𝑡).  

Ogata (1988) considered the model (4) with (𝑡) = 	 u
("9v)w

 , as defined by the modified 
Omori formula (Utsu, 1961), where 𝐾, 𝑐 and 𝑝 are parameters, 𝑡 is the time since occurrence of 
shock. The number 𝐾 depends on the lower bound of the magnitude of aftershocks counted in 
𝑁(𝑡), whereas 𝑐 and 𝑝 are known to be independent of the choice of lower bound. The epidemic-
type model is defined in terms of the conditional intensity rate, or seismic risk as a  function of 
time, based on the following assumptions: (a) the background seismic activity is generated 
according to a stationary Poisson process with a constant hazard rate (b) each shock has a risk of 
stimulating aftershocks in proportion of the quantity 𝑒V{, where M is the magnitude of the main 
shock, and (c) the hazard rate of aftershocks decreases with time according to the modified 
Omori law, u

("9v)w
. 

Ogata (1985, 1988, 1989) demonstrated that the ordinary seismic activity of a wide region 
can be described in terms of the conditional intensity by the superposition of a constant rate for 
background seismicity and the modified Omori functions of any shocks i which occurred at time 
𝑡', in such a way that 

  𝜆(𝑡	|	ℋ") = 	𝜇 +	∑ us
("J"s9	v	)w"sk"                                                             (5) 

 

where 𝜇 is the rate of occurrence of the background seismic activity. The sum ∑ 	"sk" is taken for 
all shocks i which occurred before time t, and the parameter 𝐾' for each shock i contributes to the 
size of the corresponding aftershock. More importantly the parameter 𝐾' is dependent on the 
magnitude 𝑀' of the aftershock as well as the cut-off or threshold magnitude 𝑀4 of the data set 
according to the exponential function form 

  𝐾' = 𝐴	𝑒a({sJ{~	)                                                                       (6) 
 

Above form is based on the empirical formula obtained by Utsu and Seki (1955) regarding 
the linear relation between the logarithms of aftershock areas and the magnitudes M of the main 
shock. It suggests that the number N of aftershocks with magnitudes over a threshold 𝑀4 for a 
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fixed time span can be roughly estimated as proportional to 𝑒𝑥𝑝B𝛼	(𝑀 −	𝑀4)D for a constant 𝛼. 
Model (5) with (6) for the ordinary seismicity in terms of the rate of occurrence of aftershocks is 
an ETAS model with ℋ" = 	 {(𝑡', 𝑀');	𝑡' < 𝑡} as the history of occurrence times {𝑡'} up to time 𝑡 
and their corresponding magnitudes	{𝑀'}, with intensity function 

 
  𝜆(𝑡	|	ℋ") = 	𝜇 + 	𝐴∑ 𝑒a({sJ{~)"sk" X v

"J"s9	v
Y
�
                             (7)  

 
The ETAS model assumes that the aftershocks are generated as events occurring according 

to Poisson process with rate µ. The parameters (𝜇, A, 𝛼, c, p) are all positive, 𝑡' is the time of 
occurrence of the ith event with magnitude 𝑀' and 𝑀4 is a threshold magnitude of aftershocks 
considered in the study. The term 𝑒a({sJ{~) conveys the meaning that the main shock or 
aftershock with larger magnitude raise the intensity of occurrence of aftershocks more, and the 
term X v

"J"s9	v
Y
�
 determines the length (time) till which the aftershock sequence will continue to 

occur. There will have to be put certain constraints on parameters, otherwise the aftershock 
sequence (epidemic) could explode and never die out. The parameters 𝛼 and p characterizes the 
temporal pattern of seismicity. The parameter p represents the rate at which the aftershock 
sequence decays, and the parameter 𝛼 represents the vulnerability of magnitude of an earthquake 
in generating the aftershocks. Ogata (1987) also proved that the swarm-type activity has a 
smaller value of 𝛼, that is, a small 𝛼 value indicates the presence of main shock and aftershock 
activity whereas the larger value of 𝛼 indicates that there are only few large aftershocks or 
magnitude of main shock is much larger than the maximum magnitude of aftershocks. Thus it 
can be said that 𝛼JE represents the average time until a next aftershock occurs. 

The appropriate selection of parameter values is very crucial part of the modeling process. 
The distance in space and time over which the risk of main shocks or aftershocks spreads, the 
number of aftershocks, the dependence of the increased risk of aftershocks on magnitude size of 
main shock, etc. can have great impact on the power of a point process model in predicting the 
space and time of next major earthquake.  

 
2.4.  Stress release models 

The elastic rebound theory proposed by Reid (1910) is a classical model for earthquake 
mechanisms which postulates that elastic stress in a seismically active region accumulates due to 
movement of tectonic plates, and is released when the stress exceeds the strength of the medium. 
Thus this theory suggests that a large earthquake should be followed by a period of quiescence 
(passive period), whereas in reality a strong earthquake can be followed by a period of activation 
(another earthquake of comparable magnitude). This elastic stress within a region can be 
extracted by collecting various kinds of information but obtaining the information regarding the 
temporal variations of seismic activity might be the more suitable approach as it is expected to 
reflect directly the nature of earthquake generating stress. Vere-Jones (1978) proposed the stress 
release model as a stochastic version of the elastic rebound theory, incorporating the 
deterministic stress build-up within a region and its stochastic release through earthquakes, by 
developing the stochastic model for the occurrence of sequence of main shocks which was 
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proposed by Knopoff (1971). Many researchers applied stress release model to analyze several 
historical earthquakes, particularly to identify statistically distinct regions to which different 
stress models can be applied. One of the most interesting finding from these studies is that large 
earthquakes are often found to be followed by large earthquakes quite distant from the first. This 
seems consistent with a general consensus that the earthquakes taking place in the Earth’s crust 
forms a tightly linked, near-critical process that exhibits the self-similarity, long-range 
correlation and power-law distributions. Thus it can be considered that there exists a class of 
models exhibiting self-organized criticality due to competition between local strengthening and 
weakening through interactions.  
 

Suppose  𝜌 is the loading rate which describes stress accumulation caused by large-scale 
tectonic plate movement, which is assumed to be constant and positive and 𝑋(0) is the initial 
pressure, which is assumed to be positive. The stress is released when it exceeds the energy limit 
of plate strength in the form of earthquakes. Stress will increase linearly with the loading rate 𝜌 
at time 𝑡 with initial stress 𝑋(0) and thus the following equation can be obtained, 

 
  𝑋(𝑡) = 	𝑋(0) + 	𝜌𝑡                                                                                                      (8) 

 
Let 𝑡' and 𝑆' be the time and stress released, respectively, at the time of occurrence of 

event 𝑖; 𝑖 = 1, 2,… , 𝑛 where 𝑛 is the number of events occurred in the time interval (0, 𝑡) under 
consideration. The value of stress 𝑆' is correlated with the corresponding magnitude which is 
proportional to the seismic energy which is released during the occurrence of earthquake. Then 
the accumulated stress released by all events in the period (0, 𝑡) can be expressed as 𝑆(𝑡) =
		∑ 𝑆'';	"sk" . An important variable in the stress release model is the level of stress in a certain area 
which controls the occurrence of an earthquake. The stress level at time 𝑡 increases 
deterministically and decreases stochastically due to an earthquake. Therefore the stress released 
at time 𝑡, 𝑋(𝑡), is the difference between the accumulated stress that increases linearly with the 
loading rate 𝜌 and the accumulated stress that is released in the period (0, 𝑡), that is, 

 
  𝑋(𝑡) = 	𝑋(0) + 	𝜌	𝑡 − 𝑆(𝑡)                                                                                            (9) 

This is referred to as a Stress Release Model. 

 

Further, the conditional intensity function of the above model can be obtained through its 
hazard function, say Ψ(𝑥), which denotes the probability of occurrence of an earthquake in the 
time interval (𝑡, 𝑡 + 	Δ𝑡). Assuming that the hazard function is having an exponential form   

                                                        
  Ψ(𝑥) = exp(𝛼 + 	𝛽𝑥) ; 	𝛼	 ∈ 𝑅, 𝛽	 ≥ 0                                                                          (10)      

where the parameter 𝛼 describes the initial stress value and parameter 𝛽 describes the 
combination of strength and heterogeneity of the earth’s crust in the area. Using equation (10), 
the conditional intensity function of the stress release model with the history ℋ" =
	{(𝑡',𝑀');	𝑡' < 𝑡} is defined as  

 

   𝜆(𝑡	|	ℋ") = 	ΨBX(t)D = 	 𝑒𝑥𝑝B𝛼 + 	𝛽	(𝑋(0) + 	𝜌	𝑡 − 𝑆(𝑡)	)D                                              (11) 
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Taking  𝛼 + 	𝛽	𝑋(0) = 𝑎, 𝛽	𝜌 = 𝑏 and 1 𝜌� = 𝑐, equation (11) reduces to  

   𝜆(𝑡	|	ℋ") = 	 𝑒𝑥𝑝B𝑎 + 	𝑏	(	𝑡 − 𝑐	𝑆(𝑡)	)D                                                                                (12)                        
 

2.5. Linked stress release model  

Apart from aftershocks, large events are often followed by large events quite distant from 
the first. On the other hand, very large events can resist occurrence of subsequent events or 
aftershocks on the same or other fault lines. Thus, interaction among areas can influence the time 
and magnitude of earthquake occurrence. Also, the regional stress itself evolves over centuries in 
the area which might be the result of the cumulative effects of all previous earthquakes and 
changes in tectonic loading. But the presence of stress movement and interaction among areas 
has not been incorporated in stress release model. The omission of this interaction between areas 
might underestimate the activity by the time and magnitude-predictable stress release model. 
These shortcomings of stress release model motivated its extension to include interactions among 
areas, by means of stress transfer and reduction and were named as Linked stress release model 
[Lu et al. (1999), Bebbington and Harte (2001)].  

 
Zheng and Vere-Jones (1994) found that large geographical regions give better fits to the 

stress release model when broken down into subunits, and further noted some hints of clustering 
relating to some form of action at a distance, i.e. stress transfer and interaction. Thus, the 
multivariate extension to the stress release model was proposed as a linked stress release model 
by defining the evolution of stress 𝑋'(𝑡) in the ith region as 

 

  𝑋'(𝑡) 	= 	𝑋'(0) +	𝜌'	𝑡 −	∑ 𝜃'CC 	𝑆(C)(𝑡)                        (13) 

	
where 𝑆(C)(𝑡) is the accumulated stress release in region j over the period (0, 𝑡), and the 
coefficient 𝜃'C  measures the fixed proportion of stress drop, initiated in region j, which is 
transferred to region i. Here, 𝜃'C  may be positive or negative, resulting in damping or excitation 
respectively. It is convenient to set 𝜃'' = 1 for all 𝑖 while ignoring aftershocks. If 𝜃'C = 0 for all 
𝑖	 ≠ 𝑗, the model is reduced to an independent combination of simple forms as that of stress 
release model. Then the point process conditional intensity function of the linked stress release 
model will be of the form 
 
  𝜆'(𝑡) = 	Ψ	B𝑋'(𝑡)D = 𝑒𝑥𝑝 X𝛼' +	𝛽'	B𝑋'(0) +	𝜌'𝑡	 − 	∑ 𝜃'CC 	𝑆(C)(𝑡)DY             (14) 

 
for each region 𝑖, where 𝛼', 𝛽', 𝜌' and 𝜃'C  are the parameters to be estimated. The above form of 
intensity function can be re-parameterized as  
 
  𝜆'(𝑡) = 	𝑒𝑥𝑝B𝑎' +	𝑏'B𝑡 −	∑ 𝑐'CC 	𝑆(C)(𝑡)D	D                                                                 (15) 

 

with 𝑎' = 	𝛼' +	𝛽'	𝑋'(0), 𝑏' = 	𝛽'	𝜌' and 𝑐'C = 	
𝜃'C

𝜌'�  . 
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2.6.  Marked point processes 

The conditional intensity function of a point process, conditional on the past history of the 
temporal events, describes the instantaneous Poisson rate. Suppose we consider the events that 
are occurring in two-dimensional space, for example longitude and latitude in case of study 
regarding earthquakes, according to time. Then the history up to but not including time 𝑡 of 
events may be denoted by ℋ" and may be defined as ℋ" = 	 {(𝑡', 𝑥', 𝑦')	for	all	i	for	which	𝑡' <
𝑡}. Here 𝑡' is the time of occurrence of the ith event and (𝑥', 𝑦') is its spatial location, that is, 
longitude and latitude of the location of main shock or aftershock. Then the conditional intensity 
function as described in (1) may be written as                                        

 
  𝜆(𝑡, 𝑥, 𝑦	|	ℋ") = lim

�,�,�→4

E
���

		𝑃�N���(𝑡, 𝑥, 𝑦) > 0	|	ℋ"�                                                        (16) 

 
where N���(𝑡, 𝑥, 𝑦) is the number of aftershocks occurring in the space [𝑡, 𝑡 + 	𝛿) × [𝑥, 𝑥 + 	ξ) × 
[𝑦, 𝑦 + 	η). As stated in section 1, the conditional intensity function of the marked point process 
should have two components, the ground intensity function which describes the rate at which the 
aftershocks occur over time and the history of main shock or aftershocks which occurred before 
the current time and mark distribution. Let N�(𝑡)	be the number of aftershocks in time interval 
[𝑡, 𝑡 + 	𝛿), then the ground intensity function for the marked point process can be defined as 

  𝜆 B𝑡, 𝜃	|	ℋ"D = lim
¡→4

E
¡
	𝑃[N�(𝑡) > 0	|	ℋ"]                                                          (17) 

 
where 𝜃 = (𝜃E, 𝜃F, … , 𝜃¢) ∈ Θ¤ are the parameters. 𝜆 B𝑡, 𝜃	|	ℋ"D can also be simply denoted as 
𝜆 (𝑡	|	ℋ"). Suppose the mark distribution of the variables 𝑥 (univariate or multivariate) 
considered as marks may be denoted as 𝑓(𝑥	|	ℋ"). Then the conditional intensity function of the 
marked point process may be considered to have form 

  𝜆(𝑡, 𝑥|	ℋ") = 	 𝜆 (𝑡	|	ℋ")	𝑓(𝑥	|	ℋ")                                                                                      (18) 

In the next section, we consider the estimation of model parameters in a couple of models 
described above. 

 
3.  Likelihood Functions and Parameter Estimation 

The likelihood function for the temporal point process models where the conditional 
intensity function is a function of time only, can be derived in the following manner: Let 𝜏 be the 
time of the occurrence of the last event before time t, 𝐹(𝑡	|ℋ¨	) = 𝑃{𝑇	 ≥ 𝑡	|	ℋ¨} denote the 
conditional distribution of the time of occurrence of the next event after time t and 𝑓(𝑡	|ℋ¨	) be 
the corresponding conditional density function. Then 

𝜆(𝑡	|	ℋ¨) = 	
𝑓(𝑡	|ℋ¨	)

1 − 𝐹(𝑡	|ℋ¨	)	
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Solving the differential equation,  

𝐹(𝑡	|ℋ¨	) = 1 − 𝑒𝑥𝑝ª−	«𝜆(𝑢	|	ℋ¨)	𝑑𝑢
"

¨

¬, 

hence  

𝑓(𝑡	|ℋ¨	) = 𝜆(𝑡	|	ℋ¨)	𝑒𝑥𝑝ª−	« 𝜆(𝑢	|	ℋ¨)	𝑑𝑢
"

¨

¬ 

 

Let … < 𝑡JF < 	 𝑡JE	 < 𝑡4	 < 	𝑇E	 < 	 𝑡E	 < 	 𝑡F	 < ⋯ < 	 𝑡® < 	𝑇F	 < 	 𝑡®9E < 	 𝑡®9F	 < ⋯, 
where 𝑡'	; 𝑖 ∈ ℤ are times of occurrence of main shock or aftershocks, and those main shock or 
aftershock events which occurs within the time interval  [𝑇E	, 𝑇F	] are explicitly included in the 
likelihood. The events which occurred before time 𝑇E	, if any, are included in the history of the 
process. Then the log likelihood function of such models will be 

log𝐿 = 	 ² 𝑙𝑜𝑔
':µ¶	·"s	·µ̧ 		

𝜆B𝑡'	|	ℋ"sD 	− « 𝜆(𝑡	|	ℋ")	𝑑𝑡

µ̧ 	

µ¶	

 

The likelihood function for the marked point process models for which the conditional 
intensity function is as defined in (18), can be derived similarly as above and will be of the form 
 

log𝐿 = 	 ² 𝑙𝑜𝑔
':	"s	∈	𝒯	

𝜆B𝑡', 𝑥', 𝑦'	|	ℋ"sD 	− 	« « «𝜆(𝑡, 𝑥, 𝑦	|ℋ")
	

𝒳

	

𝒴

	

𝒯

	𝑑𝑥	𝑑𝑦	𝑑𝑡 

where 𝒯 ⊆	ℝ9 is a time interval and 𝒳 and 𝒴 are the domains of 𝑥	and 𝑦, respectively which 
represents the mark variables (for example, longitudes and latitudes in the earthquake study). 
This process can also be extended to have more than two mark variables and in that case the log 
likelihood function can be considered as 

log𝐿 = 	 ² 𝑙𝑜𝑔
':	"s	∈	𝒯	

𝜆B𝑡', 𝑥'	|	ℋ"sD 	− 	« «𝜆B𝑡, 𝑥	|ℋ"D
	

𝒳

	

𝒯

	𝑑𝑥	𝑑𝑡 

 
where 𝑥 is a multivariate variable referring the mark variables. The general form of the log 
likelihood function of a marked point process can be expressed as 

log𝐿 = 	 ² 𝑙𝑜𝑔
':	"s	∈	𝒯	

𝜆 B𝑡'	|	ℋ"sD 	− 	« 𝜆 (𝑡	|ℋ"	)
	

𝒯

𝑑𝑡 +	 ² log 𝑓B𝑥'	|	ℋ"sD
':	"s	∈	𝒯	

 

 

In different studies the mark density 𝑓B𝑥	|	ℋ2D is taken as exponential or gamma or 
Weibull etc. The model parameters can be estimated using the method of maximum likelihood 
(MLE), by obtaining the system of likelihood equations simultaneously by differentiating the log 
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likelihood function with respect to the parameters to be estimated and equating those equations 
to zero. The system of likelihood equations for the models discussed in this study does not 
possess the explicit solution and therefore a suitable iterative method for nonlinear optimization 
may have to be adopted for solving them.  

4.  Data Analysis 

As an illustration, we consider the data of Kathmandu earthquake happened in the year 
2015. The deadly earthquake of magnitude 7.9 measured on Richter scale, shook Nepal and sent 
tremors through Indian subcontinent, on April 25, 2015 at 11:56 (Nepalese time). The Complete 
description about the data, data set, and many inference-based studies on this data are available 
in Shah et al. (2019). The model check and validation were carried out using information 
functions like: Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC). 
Goodness-of-fit tests based on power law intensity and exponential intensity failed to fit the data. 
Therefore, we have fitted marked temporal process models with ETAS and SEP models as the 
ground intensity functions, considering marks as the magnitudes of earthquakes or aftershocks 
with intensity more than 5. In both the cases, the underlying distribution is assumed as Gamma. 
The summary of estimates is presented in Table 1.  

Table 1. Parameter Estimates for Gamma model 

Ground intensity function 

ETAS SEP 

Parameters Estimates Parameters Estimates 

𝜇 0.001 𝜇 0.028 

𝐴 0.048 𝑘4 2.800 

𝛼 1.963 𝑤 0.067 

𝑐 0.769 𝜃 0.400 

𝑝 1.305 𝛽 2.700 

𝜃 2.519 log 𝐿 -339.770 

𝛽 0.169 AIC 689.540 

log 𝐿 -193.860 BIC 699.570 

AIC 401.720   

BIC 415.769   
  

5.  Conclusions and Future Directions 

Temporal data are very sensitive to the assumptions underlying the situation. So one has to 
attempt to fit different models satisfying the history of events and the event occurrence 
mechanism, and then choose the best one. Among various competing models it might be possible 
that some other model still exists which provides the better fit to the data than the models which 
have already considered. Thus, it is logical to check whether the major features of the given data 
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are captured and reproduced by the assumed models. Graphical procedures are developed for 
intensifying the features of the data that deviate from the model, if any, as follows: If  𝜆¾ (𝑡	|	ℋ¨) 
is the estimated ground intensity function which is fitted on the given data, after obtaining the 
MLEs of parameters of the temporal point process, then the transformed time points may be 
assumed to follow a stationary Poisson process with rate one. Thus if 𝑡'; 𝑖 = 1, 2,… , 𝑛 are the 
event times, then the sequence of transformed times 𝜏' will be 𝜏' = 	∫ 𝜆¾ (𝑡	|	ℋ¨)	dt

"s
4 . A 

deviation from a property of {𝜏'} from that which is expected from a stationary Poisson process 
implies the existence of a corresponding feature of the data {𝑡'} that is not captured by the 
underlying model. The intensity 𝜆¾ (𝑡	|	ℋ¨) represents a model for prediction, whereas the 
transformed data {𝜏'} may be regarded as "noise" or "residuals" of the point process data {𝑡'}. 
This sequence of {𝜏'} is referred to as the residual process by Ogata (1988). This is under 
investigation.  

To check the goodness of fit of the model, the event number  𝑖 can be plotted versus the 
transformed time 𝜏'. The plotted points should approximately follow a straight line. Significant 
departure from the straight line indicates a weakness in the model. Moreover, the slope of the 
line less than one implies that the transformed times 𝜏' are too small indicating that the fitted 
ground intensity function 𝜆¾ (𝑡	|	ℋ¨) is too small, and the slope of the line greater than one 
implies that  𝜆¾ (𝑡	|	ℋ¨) is too large. The changing pattern of ground intensity function is also an 
eye opener for understanding the seismological fluctuations of the occurrence. This is also under 
investigation. Although challenges are many, with the computing power of complex models, this 
issue can be resolved. 
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Abstract 
 

This paper describes small area estimation (SAE) method that incorporates the 
sampling information when estimating small area proportions. This method is applied 
to estimate the incidence of food insecurity in different districts of rural areas of the 
state of Uttar Pradesh in India by linking data from the 2011-12 Household Consumer 
Expenditure Survey collected by the National Sample Survey Office of India and the 
2011 Population Census. A map showing district level inequalities in the distribution 
of food insecure households in Uttar Pradesh is also produced which provides an 
important information for analysis of spatial distribution of food insecurity in the 
state. 

 
Key words: Food insecurity; SDG; Small area estimation; Precise, Representative.  
 
1. Introduction 

 
The food security is one of the highest priority of the Government of India to 

achieve the Sustainable Development Goal 2. In India, the Household Consumer 
Expenditure Survey (HCES) data collected by National Sample Survey Office 
(NSSO), Ministry of Statistics and Program Implementation, Government of India is 
used to generate the estimates of food insecurity indicators at state and national level 
for both rural and urban sectors separately. In spite of high importance, the estimates 
of food insecurity indicators are not available at local area or lower administrative 
unit (e.g. district) level in the country. Policy planners, researchers, government and 
public agencies are more and more interested in obtaining statistical summaries for 
smaller domains called small areas, created by cross classifying demographic and 
geographic variables such as small geographic areas (e.g. districts) or small 
demographic groups (e.g. age-sex groups, land category, social groups) or a cross 
classification of both. However, the sample sizes for such small areas in the existing 
large scale survey data (e.g. HCES in India) may be very small or even zero. The SAE 
methodology provides a viable and cost effective solution this problem of small 
sample sizes (Rao and Molina, 2015). The SAE methods produce reliable estimates 
for small areas with small sample sizes by borrowing strength from data of other 
areas, other time periods or both. 
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The SAE methods are generally based on model-based methods. The idea is to 
use statistical models to link the variable of interest with auxiliary information, e.g. 
Census and Administrative data, for the small areas to define model-based estimators 
for these areas. Based on the level of auxiliary information available, the models used 
in SAE are categorized as area level or unit level. Area-level modelling is typically 
used when unit-level data are unavailable, or, as is often the case, where model 
covariates (e.g. census variables) are only available in aggregate form. The Fay–
Herriot model (Fay and Herriot, 1979) is a widely used area level model in SAE that 
assumes area-specific survey estimates are available, and that these follow an area 
level linear mixed model with area random effects, Chandra (2013) and Chandra et al 
(2015). Standard SAE methods based on linear mixed models for continuous data can 
produce inefficient and sometime invalid estimates when the variable of interest is 
binary. If the variable of interest is binary and the target of inference is a small area 
proportion (e.g. for estimating food insecurity proportions), then the generalized 
linear mixed model with logit link function, also referred as the logistic linear mixed 
model (LLMM)) is generally used. An empirical plug-in predictor (EPP) under a 
LLMM is commonly used for the estimation of small area proportions, see for 
example, Chandra et al. (2012), Rao and Molina (2015) and references therein, 
although it is not the most efficient predictor under that model. An alternative to EPP 
is the empirical best predictor (EBP, Jiang, 2003). This predictor does not have a 
closed form and can only be computed via numerical approximation. This is generally 
not straightforward, and so national statistical agencies favour computation of an 
approximation like the EP.  

 
In this context, when only area level data are available, an area level version of 

a LLMM is used for SAE, see for example, Johnson et al. (2010), Chandra et al. 
(2011), Chandra et al. (2017), Chandra et al. (2018), Anjoy et al. (2020). Unlike the 
Fay-Herriot model, this approach implicitly assumes simple random sampling with 
replacement within each area and ignores the survey weights. Unfortunately, this has 
the potential to seriously bias the estimates if the small area samples are seriously 
unbalanced with respect to key population characteristics, and consequently use of the 
survey weights appears to be inevitable for if one wishes to generate representative 
small area estimates. Chandra et al. (2019) deliberated the idea of Korn and Graubard 
(1998) and model the survey weighted estimates as binomial proportions, with an 
“effective sample size” chosen to match the binomial variance to the sampling 
variance of the estimates. Using the effective sample size rather than the actual 
sample size allows for the varying information in each area under complex sampling. 
This article considers Chandra et al. (2019) approach to model survey weighted small 
area proportions under a LLMM and attempts to produce the district level estimates of 
proportion of food insecurity (also refers as food insecurity prevalence or incidence of 
food insecurity) for rural areas of Uttar Pradesh. Throughout this article, proportion of 
food insecurity, food insecurity prevalence and incidence of food insecurity will be 
used interchangeably. The state of Uttar Pradesh is the most populous state in the 
country and accounts for about 16.16 percent of India’s population. It covers 
243,290 square km, equal to 6.88% of the total area of the country. The analysis is 
restricted to rural areas of Uttar Pradesh because about 78% of the population of the 
State live in rural areas according to 2011 Population Census. 

 
Rest of the article is organized as follows. Next Section describes the data from 

the 2011-12 HCES of the NSSO and the 2011 Population Census that will be used to 
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estimate the district-wise proportion of household food insecurity for rural areas of 
Uttar Pradesh. Section 3 presents the SAE methodology. The empirical results and a 
map showing district-level inequalities in the distribution of food insecurity in rural 
Uttar Pradesh along with various diagnostic measures are reported in Section 4. 
Finally, Section 5 provides concluding remarks. 

 
2. Data and Model Specification 

 
This section introduces the basic sources of the data, i.e. the 2011-12 HCES of 

the NSSO for rural areas of Uttar Pradesh and the 2011 Population Census, used in 
SAE application reported in this paper. Data obtained from these sources are then 
used to estimate the proportion of food insecurity (or incidence of food insecurity) at 
district level in Uttar Pradesh. The NSSO conducts nationwide HCE surveys at 
regular intervals as part of its “rounds”, with the duration of each round normally 
being a year. The surveys are conducted through interviews of a representative sample 
of households selected randomly through a suitable sampling design and covering 
almost the entire geographical area of the country. The sampling design used in the 
2011-12 HCES is stratified multi-stage random sampling with districts as strata, 
villages as first stage units and households as second stage units. Although, these 
surveys provide reliable and representative state and national level estimates, they 
cannot be used directly to produce reliable estimates at the district level due to small 
sample sizes. Although district is a very important domain of the planning process in 
India, there are no surveys aimed at producing estimates at this level. The lack of 
robust and reliable outcome measures at the district level puts constraints on the 
design of targeted interventions and policy development. In the 2011-12 HCES, a 
total of 5916 households from the 71 districts of rural areas of Uttar Pradesh were 
surveyed. The district sample sizes ranged from 32 to 128 with average of 83. It is 
evident that these district level sample sizes are relatively small, with an average 
sampling fraction of 0.0002 (see Table 1). Due to this sample size limitation, it is 
challenging to generate reliable district level direct estimates with associated standard 
errors from this survey (Rao and Molina, 2015 and Chandra et al., 2011). This paper 
addresses this small sample size issue in the 2011-12 HCES data for producing 
district level estimates by adopting SAE approach and using auxiliary information 
from the 2011 Population Census to strengthen the limited sample data from the 
districts.  

 
Table 1: Summary of sample size, number of food insecure households in sample 
(sample count) and sampling fraction in 2011 HCES data 

Features Minimum Maximum Average Total 
Sample size 32 128 83 5915 
Sample count  10 111 53 3778 
Sampling fraction 0.00015 0.00032 0.00023 0.01647 

 
The target variable Y at the unit (household) level in the 2011-12 HCES survey 

data file is binary, corresponding to whether a household is food insecure (household 
consuming less than 2400 Kcal per day) or not. Average dietary energy intake per 
person per day in rural India is 2400 kilocalorie (Kcal), as defined by the Ministry of 
Health and Family Welfare, Government of India. The target is to estimate the 
proportion of rural households that are not getting satisfactory proportion of calories 
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consistently at small area level, also referred to as the incidence of food insecurity or 
proportion of household food insecurity. 

  
As noted above, the auxiliary variables used in this analysis are taken from the 

2011 Population Census of India. These auxiliary variables are only available as 
counts at district level, and so SAE methods based on area level small area models 
must be employed to derive the small area estimates. There are nearly 30 such 
auxiliary variables that are available for use in SAE analysis. We, therefore, carried 
out an exploratory data analysis to choose few auxiliary variables to determine 
appropriate covariates for SAE modelling. We also employed Principal Component 
Analysis (PCA) to derive composite scores for some selected groups of variables.  In 
particular, we did PCA separately on two groups of variables, all measured at district 
level and identified as S1 and S2 below. The first group (S1) consisted of the 
proportions of main workers by gender, proportions of main cultivators by gender and 
proportions of main agricultural labourers by gender. The first principal component 
(S11) for this first group explained 44% of the variability in the S1 group, while 
adding the second component (S12) increased explained variability to 69%. The 
second group (S2) consisted of proportions of marginal cultivator by gender and 
proportions of marginal agriculture labourers by gender. The first principal 
component (S21) for this second group explained 52% of the variability in the S2 
group, while adding the second component (S22) increased explained variability to 
90%.  

 
We fitted a generalised linear model using direct estimates of proportions of 

food insecure households as the response variable and the four principal component 
scores S11, S12, S21, S22 and few other selected auxiliary variables from the 2011 
Population Census as potential covariates. The final selected model included five 
covariates namely proportional scheduled caste population (SC), literacy rate (Lit), 
proportion of working population (WP), index for main worker population (S11) and 
index for marginal worker population (S21), with Akaike Information Criterion (AIC) 
value of 636.34. For this model, null deviance is 430.88 on 70 degrees of freedom and 
including the five independent has decreased the deviance to 294.72 on 65 degrees of 
freedom, a significant reduction in deviance. The residual deviance has reduced by 
136.16 with a loss of five degrees of freedom. We use Hosmer Lemeshow goodness 
of fit test to examine the fitted model (i.e. model fits depends on the difference 
between the model and the observed data). The p-value of Hosmer Lemeshow 
goodness is 0.9987. This indicates that model appears to fit well because we have no 
significant difference between the model and the observed data (i.e. the p-value is 
above 0.05). In this fitted model it can be noted that SC, Lit, WP, S11 
influence proportion of food insecure households positively, while S21 has a slightly 
negative effect. Further, the coefficients of SC (–1.3741), Lit (–1.10334), WP (–
5.0617), S11 (–0.385) and S21 (0.3123) are significant (p <0.001).  This final model 
was then used to produce district wise estimates of food insecurity.  
 
3. Small Area Estimation Methodology  

 
Let us assume that a finite population U of size N consists of  non-

overlapping and mutually exclusive small areas (or areas), and a sample s of size n is 
drawn from this population using a probability sampling method. We use a subscript d 

D
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to index quantities belonging to small area d. Let  and  be the population and 

sample of sizes  and  in area d, respectively such that , 

, and . We use subscript s and r respectively to 

denote quantities related to sample and non-sample parts of the population. Let  
denotes the value of the variable of interest for unit i  in area d. The 
variable of interest, with values , is binary (e.g.,  if household i in small 
area d is food insecure and 0 otherwise), and the aim is to estimate the small area 
population count, , or equivalently the small area proportion, 

, in area d. The standard direct estimator (denoted by Direct) for  is 

, where  is the survey weight for unit i in area d. 

The estimate of variance of direct estimator is 

 Under simple random 

sampling (SRS), , and , where  

denotes the sample count in area d. Similarly,  denotes the non-sample 

count in area d. If the sampling design is informative, this SRS-based version of 
Direct may be biased. If we ignore the sampling design, the sample count  in area 
d can be assumed to follow a Binomial distribution with parameters  and , i.e. 

. Similarly, for the non-sample count, . 
Further,  and  are assumed to be independent binomial variables with  being 
a common success probability. This leads to  and 

.  
 

Let  be the k-vector of covariates for area d from available from secondary 
data sources. Following Johnson et al. (2010), Chandra et al. (2011) and Anjoy et al. 
(2020), the model linking the probability  with the covariates  is the logistic 
linear mixed model (LLMM) of form 

 

,     (1) 
 

with . Here  is the k-

vector of regression coefficients and  is the area-specific random effect that capture 
the area dissimilarities. We assume that  is independent and normally distributed 
with mean zero and variance . The total population counts can be written as 

, where , the sample count is known whereas , the non-sample 
count, is unknown. Under (1), a plug-in empirical predictor (EPP) of  in area d is 
  

.     (2) 
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An estimate of the corresponding proportion in area d is .  It is 

obvious that in order to compute the small area estimates by equation (2), we require 
estimates of the unknown parameters  and . We use an iterative 
procedure that combines the Penalized Quasi-Likelihood estimation of  and with 
REML estimation of  to estimate unknown parameters.   

 
The model (1) is based on unweighted sample counts, and hence it assumes that 

sampling within areas is non-informative given the values of the contextual variables 
and the random area effects. The EPP predictor based on (2) therefore ignores the 
complex survey design used in HCES data. But, the sampling design used in HCES is 
informative. The precision of an estimate from a complex sample can be higher than 
for a simple random sample, because of the better use of population data through a 
representative sample drawn using a suitable sampling design. Following Chandra et 
al. (2019), we model the survey weighted probability estimate for an area as a 
binomial proportion, with an “effective sample size” that equates the resulting 
binomial variance to the actual sampling variance of the survey weighted direct 
estimate for the area. Hence, in our analysis we replaced the “actual sample size” and 
the “actual sample count” with the “effective sample size” and the “effective sample 
count” respectively. The mean squared error (MSE) estimation is followed from 
Chandra et al. (2019).  
 
4. Results and Discussions 

 
In this Section we first examine if sampling design in HCES sample data is 

informative. The sampling design is called informative design if the distribution in 
the sample is different from the distribution in the population. Such sampling design 
is also referred as non-ignorable design. The sampling design used in survey data 
collected must be incorporated in making the valid analytic inference about the 
population. For this purpose, we compute the effective sample sizes and the effective 
sample counts for the HCES data. Readers are suggested to refer Chandra et al. 
(2019) for details about calculation of the effective sample sizes and the effective 
sample counts.  

 

    
Figure 1: Effective sample size versus observed sample size (left) and effective 

sample count versus observed sample count (right) in 2011 HCES data  
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d d dp N y-=

b 1( ,..., )T
Du u=u

b u
2
us



SPL. PROC.] SMALL AREA ESTIMATION OF FOOD INSECURITY INCIDENCE  31 

 
Figure 1 plots the effective sample sizes against the observed sample sizes (left 

side) and the effective sample counts against the observed sample counts (right side). 
It is evident from Figure 1 that the effective sample size is smaller than the observed 
sample sizes in almost all the districts. Similarly, the effective sample counts is lower 
than the observed sample counts. This indicates that the sampling design results in a 
loss in information, when compared with simple random sampling, in all the districts.  

 
Figure 2 presents the district-wise survey weighted and unweighted direct 

estimates of proportion of household food insecurity. It can be seen from Figure 2 that 
the unweighted direct estimates underestimate the proportion of food insecurity, in 
majority of the districts. These examples are evident that the sampling design is 
informative and therefore must be accounted in SAE. Following the idea of Korn and 
Graubard (1998) and Chandra et al. (2019), we use the effective sample sizes in 
replace of observed sample sizes to incorporate the sampling design of HCES data.  

 

 
Figure 2: District-wise survey weighted direct estimates versus unweighted direct 

estimates of proportion of food insecure households 
 

The estimates of proportion of food insecurity (or incidence of food insecurity) 
at district level for rural areas in the state of Uttar Pradesh is generated from the EPP 
method described in Section 3 using 5 significant covariates described in Section 2.  
Here we assume a binomial specification for the “effective” district level sample 
counts of food insecurity. Some important diagnostics measures are now discussed to 
examine the assumptions of the underlying models, and to validate the empirical 
performances of the EPP method. Generally, two types of diagnostics measures are 
advised in SAE applications. These are (i) the model diagnostics, and (ii) the 
diagnostics for the small area estimates. See Brown et al. (2001). The model 
diagnostics are applied to verify model assumptions. The other diagnostics are used to 
validate reliability of the model-based small area estimates of incidence of food 
insecurity generated by the EPP method. In LLMM (1) the random specific effects are 
assumed to have a normal distribution with mean zero and fixed variance. If the 
model assumptions are satisfied then the district level residuals are expected to be 
randomly distributed around zero. Histogram and normal probability (q-q) plot can be 
used to examine the normality assumption. Figure 3 shows the histogram (left plot), 
the normal probability (q-q) plot (centre plot) and the distribution of the district-level 
residuals (right plot). We also use the Shapiro-Wilk test (implemented using the 
shapiro.test() function in R) to examine the normality of the district random effects. 
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The Shapiro-Wilk test with p-value lower than 0.05 indicate that the data deviate from 
normality. Here, the value of Shapiro-Wilk test statistics is 0.988 with 71 degree of 
freedom and p-value 0.746.  In Figure 3, the district level residuals appear to be 
randomly distributed around zero. Further, histogram and the q-q plot also provide 
evidence in support of the normality assumption. The Shapiro-Wilk p-value is larger 
than 0.05 and hence, the district random effects are likely to be normally distributed. 

 
Following Chandra et al. (2011) and Brown et al. (2001), we use three 

commonly used measures for assessing the validity and the reliability of the model-
based estimates generated by the EPP: the bias diagnostic, the percent coefficient of 
variation (CV) diagnostic and the 95 percent confidence interval diagnostic. The first 
diagnostics assesses the validity and last two assess the improved precision of the 
model based small area estimates. We also implemented a calibration diagnostic 
where the EPP estimates are aggregated to higher level and compared with direct 
estimates at this level. The bias diagnostic is based on following idea. The direct 
estimates are unbiased estimates of the population values of interest (i.e. true values), 
their regression on the true values should be linear and correspond to the identity line. 
If model-based small area estimates are close to these true values the regression of the 
direct estimates on these model-based estimates should be similar. We therefore plot 
direct estimates (y-axis) vs. model-based small area estimates (x-axis) and we looked 
for divergence of the fitted least squares regression line from the line of equality.  

 

   
 
Figure 3: Histograms (left plot), normal q-q plots (centre plot) and distributions 

of the district-level residuals (right plot) 
 

Figure 4 provides a bias diagnostic plot, defined by plotting direct estimates (Y 
axis) against corresponding small area estimates generated by the EPP (X-axis) and 
testing for divergence of the fitted least squares regression line (dashed line) from the 
line of equality,  i.e. Y = X line (solid line). The bias diagnostic plot in Figure 4 clearly 
indicate that the EPP estimates are less extreme when compared to the direct 
estimates, demonstrating the typical SAE outcome of shrinking more extreme values 
towards the average. The value of R2 for the fitted regression line between the direct 
estimates and the EPP estimates is 95.6 per cent. The bias diagnostics indicates that 
the estimates generated by the EPP appear to be consistent with the direct estimates.  
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Figure 4: Bias diagnostic plot with y = x line (solid) and regression line (dotted) 

for proportion of food insecurity for rural areas in Uttar Pradesh: EPP 
estimates versus direct survey estimates. 

 
We now illustrate the second set of diagnostics to assess the extent to which the 

EPP estimates improve in precision compared to the direct estimates. The percent 
coefficient of variation (CV) is the estimated sampling standard error as a percentage 
of the estimate. Small area estimates with large CVs are considered unreliable. Table 
2 provides a summary of CVs of the direct estimates and the EPP estimates. Figure 5 
presents the District-wise values of CV for the direct and EPP methods. In one of the 
71 districts, smaller CV (2.16%) of direct estimate is due to extreme value of 
proportion. Sample size and sample count for this district are 64 and 58 respectively 
while and direct estimate of proportion of food insecurity is 0.967. Note that the 
effective sample size and effective sample count for this districts are 25 and 24 
respectively. In Table 2, we therefore presented the summary based on 70 districts 
(excluding one district extreme value of proportion). In further discussion we refer 
summary based on 70 districts only. The CVs of the direct estimates are larger than 
the EPP estimates.  

 
Table 2: Summary of area distributions of percentage coefficients of variation 

(CV, %) for the direct and EPP methods applied to HCES data 

Values 
Summary of 71 Districts Summary of 70 Districts 

Direct EPP Direct EPP 
Minimum 2.16 5.12 5.53 5.12 
Q1 8.97 7.90 9.06 7.99 
Mean 14.41 10.60 14.59 10.65 
Median 12.31 9.56 12.38 9.56 
Q3 12.31 9.56 12.38 9.56 
Maximum 45.52 24.29 45.52 24.29 

 
Table 2 and Figure 5 show that direct estimates of incidence food insecurity are 

unstable with CVs that vary from 5.53 to 45.52 % with average of 14.59 %. In 
contrast, the CV values of EPP range from 5.12 to 24.29% with average of 10.65%. 
The relative performance of the EPP as compared to the direct survey estimates 
improve with decreasing district specific observed sample sizes. The estimates 
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computed from the EPP are more reliable and provide a better indication of food 
insecurity incidence. The district-wise plot of the 95 % confidence intervals (CIs) 
generated by direct and EPP methods are displayed in Figure 6, which shows that the 
95% CIs for the direct estimates are wider than the 95% CIs for the EPP.  

 

 
Figure 5: District-wise percentage coefficient of variation (CV, %) for the direct 

(dotted line, o) and EPP (solid line, •) estimates for the food insecurity 
prevalence  in Uttar Pradesh 

 

 
Figure 6: District-wise 95 percentage nominal confidence interval (95% CI) for 

the direct (solid line) and EPP (thin line) methods. Direct (dotted 
point) and EPP estimates (dash point) for the food insecurity 
prevalence in Uttar Pradesh are shown in the 95% CI  

 
We inspect the aggregation property of the model-based district-level estimates 

generated by EPP at higher (e.g. State or Region) level. Let  and  denote the 
estimate of proportion of household food insecurity and population size for district d. 
The state-level estimate of the proportion of food insecure households is calculated as 

. The state of Uttar Pradesh is divided into Central, Eastern, 
Western and Southern regions, and calibration properties has been examined for these 
regions. State and regional level estimates of the proportion of food insecurity 
generated by the EPP is reported in Table 3. Comparing these with the corresponding 
direct estimates we see that the EPP estimates are very close to the direct estimates at 
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state level as well in each of the four regions. In Figure 7 we present a map showing 
the estimates of proportion of food insecurity in different districts in rural areas of 
Uttar Pradesh produced by the EPP method. This map provides the district-wise 
degree of inequality with respect to distribution of extent of food insecurity in rural 
areas of Uttar Pradesh. This map is supplemented by the results set out in Table 4, 
where we report the district-wise estimates along with CVs and 95 % confidence 
intervals generated by direct and EPP. The results indicate an east-west divide in the 
distribution of food insecurity. For example, in the western part of Uttar Pradesh there 
are many districts with low level of incidence of food insecurity. Similarly, in the 
eastern part and in the Bundelkhand region (north-east) we see districts with high 
incidence of food insecurity. This should prove useful for policy planners and 
administrators aiming to take effective financial and administrative decisions. 
 
Table 3: Aggregated level estimates of incidence of food insecurity generated by 

direct and EPP method in different regions in Uttar Pradesh. 

Estimator State Central Eastern Southern Western 
Direct 0.644 0.557 0.698 0.431 0.649 
EPP 0.646 0.565 0.695 0.455 0.650 

 
 

 
Figure 7: EPP estimates showing the spatial distribution of incidence of food 

insecurity by District in Uttar Pradesh 
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Table 4: Direct and EPP estimates along with 95 % confidence interval (95% CI) 
and percentage coefficient of variation (CV) of the incidence of food 
insecurity by District in rural areas of Uttar Pradesh  

District 

Direct EPP 
 

Estimate 
95 % CI   

Estimate 
95 % CI  

CV Lower Upper CV Lower Upper 
Saharanpur 0.641 0.488 0.794 11.90 0.637 0.514 0.760 9.65 
Muzaffarnagar 0.696 0.575 0.817 8.72 0.685 0.578 0.792 7.79 
Bijnor 0.667 0.523 0.811 10.81 0.675 0.559 0.791 8.59 
Moradabad 0.664 0.545 0.783 8.98 0.679 0.576 0.782 7.58 
Rampur 0.681 0.512 0.850 12.44 0.714 0.590 0.838 8.69 
Jyotiba Phule Nr 0.700 0.537 0.863 11.67 0.685 0.558 0.812 9.26 
Meerut 0.452 0.275 0.629 19.62 0.505 0.367 0.643 13.63 
Baghpat 0.480 0.191 0.769 30.12 0.538 0.363 0.713 16.29 
Ghaziabad 0.843 0.727 0.959 6.90 0.762 0.647 0.877 7.55 
Gautam B. Nr 0.486 0.232 0.740 26.17 0.553 0.389 0.717 14.87 
Bulandshahr  0.611 0.480 0.742 10.70 0.595 0.482 0.708 9.46 
Aligarh 0.516 0.337 0.695 17.37 0.551 0.414 0.688 12.42 
Hathras 0.356 0.165 0.547 26.82 0.429 0.287 0.571 16.53 
Mathura 0.685 0.514 0.856 12.45 0.666 0.539 0.793 9.56 
Agra 0.844 0.743 0.945 5.97 0.786 0.687 0.885 6.28 
Firozabad 0.698 0.519 0.877 12.83 0.679 0.550 0.808 9.51 
Etah 0.777 0.643 0.911 8.59 0.718 0.593 0.843 8.73 
Mainpuri 0.967 0.925 1.009 2.16 0.811 0.698 0.924 6.96 
Budaun 0.701 0.543 0.859 11.29 0.705 0.579 0.831 8.94 
Bareilly 0.585 0.427 0.743 13.50 0.627 0.500 0.754 10.12 
Pilibhit 0.842 0.733 0.951 6.46 0.776 0.659 0.893 7.54 
Shahjahanpur 0.673 0.502 0.844 12.72 0.668 0.540 0.796 9.56 
Kheri 0.465 0.306 0.624 17.12 0.506 0.376 0.636 12.82 
Sitapur 0.483 0.345 0.621 14.25 0.519 0.400 0.638 11.50 
Hardoi 0.626 0.496 0.756 10.35 0.627 0.512 0.742 9.18 
Unnao 0.608 0.452 0.764 12.85 0.588 0.462 0.714 10.68 
Lucknow 0.639 0.472 0.806 13.04 0.646 0.515 0.777 10.16 
Rae Bareli 0.647 0.527 0.767 9.30 0.637 0.531 0.743 8.32 
Farrukhabad 0.649 0.443 0.855 15.89 0.665 0.524 0.806 10.63 
Kannauj 0.776 0.625 0.927 9.71 0.700 0.563 0.837 9.76 
Etawah 0.279 0.105 0.453 31.22 0.401 0.252 0.550 18.63 
Auraiya 0.659 0.495 0.823 12.45 0.647 0.514 0.780 10.31 
Kanpur Dehat 0.483 0.265 0.701 22.60 0.506 0.354 0.658 14.99 
Kanpur Nagar 0.646 0.459 0.833 14.51 0.600 0.458 0.742 11.83 
Jalaun  0.550 0.368 0.732 16.57 0.529 0.392 0.666 12.96 
Jhansi 0.217 0.083 0.351 30.96 0.272 0.152 0.392 22.12 
Lalitpur 0.271 0.059 0.483 39.19 0.355 0.189 0.521 23.35 
Hamirpur 0.399 0.095 0.703 38.16 0.427 0.244 0.610 21.44 
Mahoba 0.282 0.025 0.539 45.52 0.364 0.187 0.541 24.29 
Banda 0.727 0.539 0.915 12.96 0.678 0.542 0.814 10.04 
Chitrakoot 0.432 0.165 0.699 30.95 0.481 0.310 0.652 17.82 
Fatehpur 0.489 0.345 0.633 14.76 0.486 0.364 0.608 12.52 
Pratapgarh 0.887 0.789 0.985 5.53 0.828 0.743 0.913 5.12 
Kaushambi 0.896 0.769 1.023 7.10 0.800 0.697 0.903 6.43 
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Allahabad  0.621 0.468 0.774 12.31 0.623 0.505 0.741 9.48 
BaraBanki 0.674 0.499 0.849 12.95 0.637 0.507 0.767 10.20 
Faizabad 0.584 0.356 0.812 19.49 0.610 0.463 0.757 12.05 
Ambedkar Nr 0.701 0.578 0.824 8.74 0.690 0.585 0.795 7.63 
Sultanpur 0.650 0.529 0.771 9.35 0.662 0.558 0.766 7.88 
Bahraich 0.740 0.583 0.897 10.60 0.739 0.622 0.856 7.93 
Shrawasti 0.819 0.672 0.966 8.96 0.768 0.642 0.894 8.19 
Balrampur 0.616 0.405 0.827 17.14 0.644 0.496 0.792 11.49 
Gonda 0.866 0.770 0.962 5.56 0.810 0.720 0.900 5.56 
Siddharthnagar 0.839 0.735 0.943 6.17 0.800 0.705 0.895 5.93 
Basti 0.839 0.737 0.941 6.05 0.791 0.695 0.887 6.05 
Sant Kabir Nr 0.823 0.697 0.949 7.68 0.799 0.699 0.899 6.23 
Mahrajganj 0.708 0.558 0.858 10.60 0.707 0.590 0.824 8.27 
Gorakhpur 0.787 0.690 0.884 6.19 0.783 0.692 0.874 5.81 
Kushinagar 0.696 0.573 0.819 8.87 0.727 0.620 0.834 7.37 
Deoria 0.790 0.664 0.916 7.98 0.788 0.687 0.889 6.40 
Azamgarh 0.593 0.470 0.716 10.41 0.626 0.518 0.734 8.65 
Mau 0.634 0.457 0.811 13.98 0.665 0.531 0.799 10.10 
Ballia 0.414 0.242 0.586 20.77 0.517 0.377 0.657 13.58 
Jaunpur 0.650 0.522 0.778 9.84 0.661 0.550 0.772 8.37 
Ghazipur 0.609 0.482 0.736 10.43 0.629 0.520 0.738 8.63 
Chandauli 0.650 0.476 0.824 13.40 0.660 0.531 0.789 9.75 
Varanasi 0.596 0.456 0.736 11.71 0.610 0.492 0.728 9.66 
Bhadohi 0.827 0.686 0.968 8.50 0.785 0.679 0.891 6.76 
Mirzapur 0.588 0.453 0.723 11.50 0.604 0.489 0.719 9.54 
Sonbhadra 0.629 0.466 0.792 12.94 0.632 0.501 0.763 10.36 
Kanshiram Nr 0.395 0.173 0.617 28.14 0.528 0.358 0.698 16.06 
Nr- Nagar 
 
5. Concluding Remarks  

 
In this paper we outlined a plug-in empirical predictor (EPP) for small area 

proportions and employed for estimating the district-wise incidence of food insecurity 
in rural areas of the state of Uttar Pradesh using the 2011-12 HCES data collected by 
the NSSO of India. The auxiliary variables used in this analysis were taken from the 
2011 Population Census. The effective sample sizes in place of the observed sample 
sizes were used to account for sampling design information of the 2011-12 HCES. 
The use of survey information through effective sample size leads to better 
representative and realistic estimates of incidence of food insecurity. The empirical 
results were also evaluated through several diagnostic measures and showed that the 
model-based SAE method defined by EPP provide significant gains in efficiency for 
generating district level estimates of proportion of food insecurity. Spatial map 
produced from the estimates generated by the EPP provides an evidence of inequality 
in distribution of incidence food insecurity across different districts in Uttar Pradesh. 
Availability of reliable district level estimates can definitely be useful for various 
Departments and Ministries in Government of India as well as International 
organizations for their policy research and strategic planning. These estimates will 
also be useful for budget allocation and to target welfare interventions by identifying 
the districts/regions with high food insecurity incidence. This application clearly 
demonstrates the advantage of using SAE technique to cope up the small sample size 
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problem in producing the cost effective and reliable disaggregate level estimates and 
confidence intervals from existing survey data by combining auxiliary information 
from different published sources with direct survey estimates.  
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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a technology for studying how our
brains respond to mental stimuli. It is interesting to note the potential developments of linear
models in the study of ‘design sequences’ employed for fMRI studies. At the design stage, one
is interested in developing a sequence of mental stimuli for collecting data in order to render
information about some ‘unknown’ yet ‘meaningful’ parameters under an assumed statistical
model. The simplest such model incorporates linear relation between ‘mean response’ and
the ‘parameters’ describing the effects of the stimuli, applied at regularly spaced time points
during the study period. In this paper, we introduce the linear model and discuss estimation
issues. In the process, we take up a study of relative performances of comparable design
sequences.

Key words: fMRI, Linear model; h-Parameters; Estimability; Information matrix; General-
ized variance; Average variance; Design issues.

1. Introduction

It is interesting to note that Statistics and Applications published, in as early as
2008, an article dealing with “event- related functional magnetic resonance imaging
. . . ”. In fMRI studies, the brain functions of the experimental subjects are captured through
response profiles at a number of instances. Each subject experiences onset of a stimulus at an
instant if the stimulus is ‘active’ [denoted by code ‘1’] at that instant; otherwise, the subject
is at ‘resting state’ [denoted by code ‘0’] at that instant. Each instant is defined as a compact
duration of ‘4 seconds’. At any instant, the brain voxel captures the cumulative effects of a
fixed (but unknown) parameter θ and other model parameters, known as h-parameters at the
current instant as well as at each of the immediate past ordered (K−1) instants - for some K
- whenever there has been an onset of active stimulus at any of these instances. The reader
familiar with the concept of ‘carry-over effects’ in the context of Repeated Measurement
Designs [RMDs] or Cross-Over Designs will find a similarity in the model description. [Vide
Shah and Sinha (1989)]. We will also mention about ‘circular models’ and for that we refer
to Kunert (1984).

An anonymous referee has aptly pointed out another related piece of work by Maus
et al. (2010).
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A more general scenario exhibits itself in terms of different stages of activation of the
brain stimuli, rather than just being ‘active’ - as coded by ‘1’ in the above. We refer to Kao
et al. (2008) for this and related considerations.

Below we introduce the linear (mean) model as has been described in the literature.
There is a ‘design sequence’ in the form of a collection of 1s and 0s of, say length n. We
denote it by Dn. As for example, for n = 8, the following describes an 8-point design:
D8 = [0, 1, 1, 0, 1, 1, 0, 1]. The implementation of the suggested design D8 is described below.
For any n, Dn is very much like D8. The linear model to be described below is developed
as a ’circular’ model - a well-known consideration in the context of RMDs or Cross-Over
Designs. Vide Kunert (1984) or Shah and Sinha (1989). To visualize a circular model, the
same sequence (describing D8) is used as a ’dummy’ sequence and this is described as follows:

< 0, 1, 1, 0, 1, 1, 0, 1 > → [0, 1, 1, 0, 1, 1, 0, 1]
Dummy Sequence followed by Data-generating Sequence

There are 8 data/time points and as such we observe y1 to y8 corresponding to the
8 time points in the data-generating sequence [0, 1, 1, 0, 1, 1, 0, 1] - going from left to right.
In the terminology of RMDs or Cross-Over Designs, for the first time point, the ‘direct
effect’ [denoted by h1] is to be captured along with the ’carry-over effects’ [h2, h3, ....] of the
preceding time points as described in the Dummy Sequence - from right to left. Althrough, at
each data point, only if the stimulus is active [denoted by 1], the corresponding h-parameter
will be present in the mean model. Moreover, for n data/time points, we can incorporate
at the most n ‘parameters’- including the fixed parameter θ. This implies that we can
incorporate in the model at the most (n − 1) h-parameters. Otherwise/estimability issues
creep in. In terms of K, it means that we assume - to start with - that K ≤ (n− 1).

We start with the following Table 1 describing the linear (mean) model underlying the
design D8. We assume K = 7. For clarity, we explain the derivation of the mean model for
y1. The co-efficients to be attached to the regression parameters i.e., h-parameters [h1 to h7]
in the expression for the mean model corresponding to y1 are: (0, 1, 0, 1, 1, 0). This is seen
as follows. In the data-generating sequence, extreme left-hand coefficient (0) is attached to
h1; then the coefficients in the dummy sequence are taken successively from right to left for
attachment to h2 to h7. There are 6 h-parameters (in addition to h1), and hence 6 of the
coefficients are selected in the order from right to left in the dummy sequence. That gives
the coefficients for h2 to h7 in the order (1, 0, 1, 1, 0, 1). Hence the mean model for y1 is given
by θ + h2 + h4 + h5 + h7. Likewise, for y2, the coefficients start from the second member
from the left of the data-generating sequence and proceeds along the left direction, cutting
across the dummy-sequence and covers a total of 7 coefficients. The coefficients are thus
(1, 0, 1, 0, 1, 1, 0). All these are displayed in Table 1. Note that in Table 1, the h-parameters
are listed in the reverse order.

Remark 1: It may be noted that the linear mean model developed above has similarity with
one in the set-up of ’biased spring balance weighing designs’. Vide Raghavarao (1971) or
Shah and Sinha (1989). It follows that θ-parameter represents the bias component in spring
balance weighing design context. The co-efficient matrix X = ((xij)) consists of 0s and 1s.
However, the X- matrix is shown in the reverse order. Multiplication by a permutation
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Table 1: Linear Model with positional carry-over effects in terms of h-parameters

S1. No. h7 h6 h5 h4 h3 h2 h1 y Mean Model
1 1 0 1 1 0 1 0 y1 θ + h2 + h4 + h5 + h7
2 0 1 1 0 1 0 1 y2 θ + h1 + h3 + h5 + h6
3 1 1 0 1 0 1 1 y3 θ + h1 + h2 + h4 + h6 + h7
4 1 0 1 0 1 1 0 y4 θ + h2 + h3 + h5 + h7
5 0 1 0 1 1 0 1 y5 θ +h1 + h3 + h4 + h6
6 1 0 1 1 0 1 1 y6 θ + h1 + h2 + h4 + h5 + h7
7 0 1 1 0 1 1 0 y7 θ +h2 + h3 + h5 + h6
8 1 1 0 1 1 0 1 y8 θ + h1 + h3 + h4 + h6 + h7

matrix P will bring it to the right/standard order. Finally, the linear model (Y,X(∗)β, σ2I)
is obtained as usual where X(∗) = (1,PX) and β=(θ, h1, h2, ...)’. It is assumed that the
errors are, as usual, uncorrelated with zero means and equal variances.

Remark 2: We must note that a ‘circular model’ has been explicitly used in Table 1. The
dummy - sequence is derived from the data - generating sequence on which the circular model
is built. Another implication is that the columns h1,h2, .... are circular in nature. That is, the
columns of the matrix X are circular in nature. For a non- circular design/model, the carry
- over effects are dependent on the nature of 1s and 0s - for each incoming unit/patient-at
the two ends of the design sequence.

At times, the number of h-parameters may be specified and it may happen that there
are K∗[< K] h-parameters in the model. In that case, the understanding is that the initial
set of K∗ h-parameters viz. h1, h2, . . . , hK∗ are important and the rest can be ignored from
the mean model. For K∗ = 4, the model expectations of successive responses corresponding
to the above design would be:

θ + h2 + h4, θ + h1 + h3, θ + h1 + h2 + h4, θ + h2 + h3, θ + h1 + h3 + h4,

θ + h1 + h2 + h4, θ + h2 + h3, θ + h1 + h3 + h4.

Note that the above design with n = 8 instances [for experimentation] generates more
number of observations when only K∗ = 4 h-parameters are assumed to be present. In such
a situation, we might curtail the experiment from D8 to D5 since there are 5 parameters,
including the common/fixed parameter θ. Use of D5 : [0, 1, 1, 0, 1] provides for the mean
model the expressions:

θ + h2 + h4, θ + h1 + h3, θ + h1 + h2 + h4, θ + h2 + h3, θ + h1 + h3 + h4.

On the other hand, use of Dalt.5 : [1, 1, 0, 1, 1] provides for the mean model the expressions:

θ + h1 + h2 + h3, θ + h1 + h2 + h3 + h4, θ + h2 + h3 + h4, θ + h1 + h3 + h4, θ + h1 + h2 + h4.

Note that in both the cases, we have taken due consideration of circular nature of
the sequence in working out the mean models. A natural question would be to search out
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the difference, if any, between the two D5 designs. Popular optimality criteria rest on the
computation of the ‘information matrix’ for the h-parameters - based on the Gauss-Markov
Model, assuming homoscedastic errors with mean 0 and variance σ2. Minimization of the
generalized variance [computed as reciprocal of the determinant of the information matrix]
is an acceptable criterion for choice of the best design. This is the so-called D-optimality
Criterion [Vide Shah and Sinha (1989)]. We will take up this comparative study in the next
section.

2. Linear Estimation of Model Parameters

Since the linear model involves a fixed parameter (θ), for a given number of observations
n, we can incorporate a maximal set of (n − 1) h-parameters. That is, we can develop the
full model with θ and additional (n − 1) h-parameters. Naturally, the response vector Y
of dimension n × 1 will come under the standard Gauss-Markov Linear Model mentioned
earlier. However, estimability of the h-parameters or of θ are not necessarily guaranteed for
all choices of the design sequence.

We have already introduced the ‘design matrix’ X(∗) = (1,PX) and the underlying pa-
rameters β=(θ, h1, h2, ...)’. For a given design Dn, when there are K[≤ (n−1)] h-parameters
viz., h1, h2, . . . , hK in the model, the h-parameters are all estimable iff Rank (X(∗)) = 1+K
where X(∗) is based on K column vectors corresponding to the K h-parameters, in addition
to the column vector 1. The ’if’ part is easy to see. On the other hand, if all the h-parameters
are estimable, θ is trivially so based on any single observation and hence the rank condition
is satisfied.

In the above example, for K = 7, it can be seen that the design D8 ensures estimability
of all the model parameters. Explicit expressions for the estimates of h-parameters are shown
below. For θ, expression for its estimator follows readily.

h1 : y6 − y1; h2 : −y1 − y2 + y6 + y7; h3 : −y1 − y2 − y3 + y6 + y7 + y8;

h4 : −y2−y3−y4+y6+y7+y8; h5 : −y3−y4−y5+y6+y7+y8; h6 : −y4−y5+y7+y8;h7 : −y5+y8.

This suggests that X(∗) is a full rank square matrix of order 8. Hence, all its column vectors
are linearly independent. Therefore, for all values of K∗, the number of non-negligible h-
parameters, the above design sequence D8 provides unbiased estimates for each one of them.
This holds for all 1 ≤ K∗ ≤ K = 7.

At this stage, we may as well resolve two more cases. For K∗ = 4, we may check
the acceptability of the two D5 design sequences listed above: D5 : [0, 1, 1, 0, 1] and Dalt.5 :
[1, 1, 0, 1, 1]. It turns out that both are acceptable from estimability point of view. It would
be interesting to make a comparison of their performances with respect to, say, D-optimality
criterion. Necessary computations are shown below.

I(β) = [(5, 3, 3, 3, 3), (3, 3, 1, 2, 2), (3, 1, 3, 1, 2), (3, 2, 1, 3, 1), (3, 2, 2, 1, 3)].

I(h) = [(6,−4, 1, 1), (−4, 6,−4, 1), (1,−4, 6,−4), (1, 1,−4, 6)], Det(I) = 125.
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Ialt(β) = [(5, 4, 4, 4, 4), (4, 4, 3, 3, 3), (4, 3, 4, 3, 3), (4, 3, 3, 4, 3), (4, 3, 3, 3, 4)].

Ialt(h) = [(4,−1,−1,−1), (−1, 4,−1,−1), (−1,−1, 4,−1), (−1,−1,−1, 4)], Det(Ialt) = 125.

It thus turns out that the two design sequences provide identical generalized variance
of the estimates of h-parameters. We will return to this comparison later again in Remark
3.

3. Choice of Dn for given n and K∗

In the context of fMRI study, assume that it is a priori known that, for some K∗, h1,h2,
. . ., hK∗ are the only h-parameters present in the mean model. Therefore, we need n ≥
(1 + K∗) design points and the choice of Dn must be such that the formation of X enables
one to ensure rank condition. For a chosen n, it is obvious that there are a large number
of design sequences of length n-comprising of 1s and 0s. This count is 2n. It is easy to
note that the two extreme sequences (1, 1, . . . , 1) and (0, 0, . . . , 0) are inadmissible. In other
words, no patient can be in resting phase or in active phase althrough the time duration of
the experiment for collection of data. Generally, a mixture of the two phases is called for.

Below we examine the status of a special “Design Sequence [DS]” of length n. Consider
the design sequence Dn: [1, 1, 0,. . . , 0, 0] which gives rise to [ 1, 1, 0, . . . , 0, 0] dummy
sequence followed by [ 1, 1, 0, . . . , 0, 0] data-gathering sequence.

Therefore, model expectations of the resulting responses ys are given by: [θ + h1, θ +
h1 + h2, θ + h2 + h3, . . . , θ + h(n−2) + h(n−1), θ + h(n−1)], assuming that there are (n − 1)
h-parameters in the model. It is interesting to note the following:

(i) For n = 4, K = 3, the joint information matrix is singular. (ii) For n = 5, K = 4,
the joint information matrix is non - singular. (iii) For n = 6, K = 5, the joint information
matrix is singular. (iv) For n = 7, K = 6, the joint information matrix is again non -
singular

It turns out that for all n (even) ≥ 4, K = (n − 1), the joint information matrix
is singular while for all n (odd) ≥ 5, K = (n − 1), the joint information matrix is non-
singular. Let us fix n = 8, K = 7 so that DS8 = [1,1, 0, 0, 0, 0, 0, 0] is not admissible.
What if we replace the extreme right- end code 0 by 1? We are asking about the status of
DS∗

8 = [1, 1, 0, 0, 0, 0, 0, 1]. It follows that the 8× 8 joint information matrix is given by

[(8, 3, 3, 3, 3, 3, 3, 3); (3, 3, 2, 1, 0, 0, 0, 1); (3, 1, 3, 2, 1, 0, 0, 0); . . . , (3, 1, 0, 0, 0, 1, 2, 3)].

and it is of full rank.

Therefore, it pays off to change exactly one code in the above.

For n odd, each member of the above series of design sequences provides estimates of
all the relevant h-parameters. For n = 7, K = 6, it follows that

V (ĥ2) = 2σ2, V (ĥ4) = 4σ2, V (ĥ6) = 6σ2,
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while
V (ĥ1) = 6σ2, V (ĥ3) = 4σ2, V (ĥ5) = 2σ2.

Again, for n = 9, K = 8, we obtain

V (ĥ2) = 2σ2, V (ĥ4) = 4σ2, V (ĥ6) = 6σ2, V (ĥ8) = 8σ2,

while
V (ĥ1) = 8σ2, V (ĥ3) = 6σ2, V (ĥ5) = 4σ2, V (ĥ7) = 2σ2.

These expressions suggest general form of the variances of estimates of the h-parameters.
For specified (n,K), we can also work out the variance-covariance matrix of the estimates of
the h-parameters. For the choice n = 7, K = 6, we derive the form of the variance-covariance
matrix as given below.

[(6, 1, 4, 3, 2, 5), (−, 2, 0, 2, 0, 2), (−,−, 4, 1, 2, 3),

(−,−,−, 4, 0, 4), (−,−,−,−, 2, 1), (−,−,−,−,−, 6)].

4. Comparison of Design Sequences

When we address this problem for design sequences of the same length n, there are
effectively 2n − 2 such comparable sequences - barring the two extremes [all 0s and all 1’s].
Actual number of admissible sequences may be much smaller - depending on the number K
of non-negligible h-parameters. Anyway, such a comparison of two admissible sequences may
rest on, say the criterion of smaller average variance or smaller generalized variance of the
estimated h-parameters. Below we take up the case of a saturated model with n = 7, K = 6
and compare all available admissible design sequences. Note that we have already studied
one such admissible design sequence in the above. In this case there are 27−2 = 126 possible
design sequences of length 7 each-barring the two inadmissible extreme allocations (viz., all
1’s and all 0’s). These design sequences can be classified into distinct types as follows.

TypeI : (i) [1, 0, 0, 0, 0, 0, 0]; (ii) [1, 1, 0, 0, 0, 0, 0]; (iii) [1, 1, 1, 0, 0, 0, 0]; (iv) [1, 1, 1, 1, 0, 0, 0];

TypeI continued : (v) [1, 1, 1, 1, 1, 0, 0]; (vi) 1, 1, 1, 1, 1, 1, 0]
and all their cyclic permutations-covering 42 design sequences;

TypeII : (i) [1, 0, 1, 0, 0, 0, 0]; (ii) [1, 0, 0, 1, 0, 0, 0]

and all their cyclic permutations involving 2 non-consecutive 1’s-covering 14 design se-
quences;

TypeIII : (i) [1, 1, 0, 1, 0, 0, 0]− replicated twice; (ii) [1, 1, 0, 0, 1, 0, 0]; (iii) [1, 0, 1, 0, 1, 0, 0]

and all their cyclic permutations involving 3 non-consecutive 1’s-covering 28 design se-
quences;

TypeIV : (i) [1, 1, 1, 0, 1, 0, 0]− replicated twice; (ii) [1, 1, 0, 1, 1, 0, 0]; (iii) [1, 1, 0, 1, 0, 1, 0]
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and all their cyclic permutations involving 4 non-consecutive 1’s-covering 28 design se-
quences;

TypeV : (i) [1, 1, 1, 1, 0, 1, 0]; (ii) [1, 1, 1, 0, 1, 1, 0]

and all their cyclic permutations involving 5 non-consecutive 1’s-covering 14 design se-
quences.

Routine computations can be done to ascertain respective status of each of the de-
sign sequences listed above for any specified value of K-the number of non-negligible h-
parameters. Below we show the detailed analysis of the design sequences of Type I.

Table 2: Type I(i): Coefficients of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 0 0 0 0 0 0 1 1
h1 1 0 0 0 0 0 -1 2
h2 0 1 0 0 0 0 -1 2
h3 0 0 1 0 0 0 -1 2
h4 0 0 0 1 0 0 -1 2
h5 0 0 0 0 1 0 -1 2
h6 0 0 0 0 0 1 -1 2

Table 3: Type I(ii) : Coefficients of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 -1 1 -1 1 -1 1 7
h1 0 1 -1 1 -1 1 -1 6
h2 -1 1 0 0 0 0 0 2
h3 0 0 0 1 -1 1 -1 4
h4 -1 1 -1 1 0 0 0 4
h5 0 0 0 0 0 1 -1 2
h6 -1 1 -1 1 -1 1 0 6

Table 4: Type I(iii): Coefficient of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 -2 1 1 -2 1 13
h1 0 0 1 -1 0 1 -1 4
h2 -1 0 1 0 -1 1 0 4
h3 0 -1 1 0 0 0 0 2
h4 0 0 0 0 0 1 -1 2
h5 -1 0 1 -1 0 1 0 4
h6 0 -1 1 0 -1 1 0 4
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Table 5: Type I(iv): Coefficient of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ -1 -1 3 -1 -1 -1 3 23
h1 1 0 -1 1 0 0 -1 4
h2 0 1 -1 0 1 0 -1 4
h3 0 0 0 0 0 1 -1 2
h4 0 0 -1 1 0 0 0 2
h5 1 0 -1 0 1 0 -1 4
h6 0 1 -1 0 0 1 -1 4

Table 6: Type I(v): Coefficient of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ -2 3 -2 3 -2 -2 3 43
h1 0 0 1 -1 1 -1 0 4
h2 0 0 0 0 0 1 -1 2
h3 0 -1 1 -1 1 0 0 4
h4 1 -1 0 0 0 1 -1 4
h5 0 0 0 -1 1 0 0 2
h6 1 -1 1 -1 0 1 -1 6

Table 7: Type I(vi): Coefficient of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 1 1 1 -5 1 31
h1 0 0 0 0 0 1 -1 2
h2 -1 0 0 0 0 1 0 2
h3 0 -1 0 0 0 1 0 2
h4 0 0 -1 0 0 1 0 2
h5 0 0 0 -1 0 1 0 2
h6 0 0 0 0 -1 1 0 2

To summarize the performances of the above design sequences of Type I, we find that
in terms of average variance of the estimates of the h-parameters,

(i) = (vi) < (iii) = (iv) < (v) < (ii).
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Table 8: Type II(i): Coefficients of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ -1 1 1 -1 -1 1 1 7
h1 1 -1 0 1 0 -1 0 4
h2 1 0 -1 1 1 -1 -1 6
h3 0 0 0 0 1 0 -1 2
h4 0 -1 0 1 0 0 0 2
h5 1 -1 -1 1 1 -1 0 6
h6 1 0 -1 0 1 0 -1 4

Table 9: Type II(ii): Coefficients of estimates of h-parameters and their variances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 1 -1 -1 -1 1 7
h1 0 0 0 1 0 0 -1 2
h2 -1 0 0 1 1 0 -1 4
h3 -1 -1 0 1 1 1 -1 6
h4 -1 -1 -1 1 1 1 0 6
h5 0 -1 -1 0 1 1 0 4
h6 0 0 -1 0 0 1 0 2

Table 10: Type III(i): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
2θ 2 -1 2 -1 -1 -1 2 4
2h1 0 1 -1 1 0 0 -1 1
2h2 -1 1 0 0 1 0 -1 1
2h3 -1 0 0 1 0 1 -1 1
2h4 -1 0 -1 1 1 0 0 1
2h5 0 0 -1 0 1 1 -1 1
2h6 -1 1 -1 0 0 1 0 1

We have completed computations of ĥs along with their variances for all the effectively
sixteen (16) competing design sequences. We may now display the totals of variances across
all competitors.

TypeI(i) 12; TypeI(ii) 24; TypeI(iii) 20; TypeI(iv) 20; TypeI(v) 22; TypeI(vi) 12

TypeII(i) 24; TypeII(ii) 24

TypeIII(i) 6; TypeIII(ii) 20; TypeIII(iii) 20

TypeIV (i) 6; TypeIV (ii) 20; TypeIV (iii) 20

TypeV (i) 24; TypeV (ii) 24
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Table 11: Type III(ii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 -2 1 -2 1 1 13
h1 0 0 1 -1 1 -1 0 4
h2 0 0 1 0 0 0 -1 2
h3 -1 0 1 0 1 -1 0 4
h4 0 -1 1 0 1 0 -1 4
h5 -1 0 0 0 1 0 0 2
h6 0 -1 1 -1 1 0 0 4

Table 12: Type III(iii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 1 1 -1 -1 1 13
h1 0 0 0 0 1 0 -1 2
h2 -1 0 0 0 1 1 -1 4
h3 -1 0 1 0 1 -1 0 4
h4 0 -1 -1 0 1 1 0 4
h5 0 0 -1 -1 1 1 0 4
h6 0 0 0 -1 0 1 0 2

Table 13: Type IV(i): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 1 1 -1 1 -1 -1 1 7

2h1 0 0 1 -1 1 0 -1 1
2h2 -1 0 1 0 0 1 -1 1
2h3 -1 -1 1 0 1 0 0 1
2h4 0 -1 0 0 1 1 -1 1
2h5 -1 0 0 -1 1 1 0 1
2h6 0 -1 1 -1 0 1 0 1

In conclusion, we find that the design sequences TypeIII (i) : [1, 1, 0, 1, 0, 0, 0] and
TypeIV (i) : [1, 1, 1, 0, 1, 0, 0] are, together with their cyclic permutations, most efficient
with respect to the average variance criterion. It is again readily observed that for both
these designs, pair- wise covariance terms of the estimates of the h-parameters are all equal
and it is the same for both. Therefore, as such, the two competing sequences are information-
equivalent !

Our task will not be complete unless we discuss one more pertinent observation in this
context. The above comparison may not be ‘fair’ since the design sequences are based on
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Table 14: Type IV(ii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 3 -1 3 -1 -1 -1 -1 23
h1 -1 1 -1 1 0 0 0 4
h2 -1 0 0 0 1 0 0 2
h3 -1 0 -1 1 0 1 0 4
h4 -1 0 -1 0 1 1 0 4
h5 0 0 -1 0 0 1 0 2
h6 -1 1 -1 0 0 0 1 4

Table 15: Type IV(iii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 3 -1 -1 -1 -1 -1 3 23
h1 0 1 0 0 0 0 -1 2
h2 -1 1 1 0 0 0 -1 4
h3 -1 0 1 1 0 0 -1 4
h4 -1 0 0 1 1 0 -1 4
h5 -1 0 0 0 1 1 -1 4
h6 -1 0 0 0 0 1 0 2

Table 16: Type V(i): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 3 3 -2 -2 3 -2 -2 43
h1 -1 0 1 0 -1 1 0 4
h2 -1 -1 1 1 -1 0 1 6
h3 0 -1 0 1 0 0 0 2
h4 -1 0 0 0 0 1 0 2
h5 -1 -1 1 0 -1 1 1 6
h6 0 -1 0 1 -1 0 1 4

unequal number of 1s. Note that every sequence comprises of 1s and 0s and the understand-
ing is that a 0-phase corresponds to ‘idle’ phase while a 1-phase is ‘active’. So the number
of active phases should also be considered while examining relative performances. We may
apply the usual concept of “Efficiency” and work out “Efficiency per active phase”. For a
single parameter, efficiency is directly related to and measured by [Fisher] Information. For
K = 6 h-parameters, we can compute the average variance of the estimates and multiply it
by the number of 1s and minimize this quantity. If we are guided by this consideration, we
find that the design sequence TypeIII (i) : [1, 1, 0, 1, 0, 0, 0] is the best of all! We can argue
that this is also the best with respect to generalized variance criterion as well.
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Table 17: Type V(ii): Coefficients of estimates of h-parameters and their vari-
ances

parameter / coefficient y1 y2 y3 y4 y5 y6 y7 Variance coefficient
θ 3 3 -2 -2 -2 -2 3 43
h1 0 0 1 0 0 0 -1 2
h2 -1 0 1 1 0 0 -1 4
h3 -1 -1 1 1 1 0 -1 6
h4 -1 -1 0 1 1 1 -1 6
h5 -1 -1 0 0 -1 -1 0 4
h6 0 -1 0 0 0 1 0 2

Remark 3: At the end of Section 2, we had introduced two design sequences D5 and Dalt. 5
for the case of n = 5, K∗ = 4. We also observed that the two sequences possess the same
generalized variance. However, it can be seen that the alternative sequence provides smaller
average variance. Now we note that whereas in D5 the number of active phases used was
3, in the alternative design this number was 4. As in the above, we borrow the concept of
“Efficiency per observation” while this time we define the “Efficiency” as reciprocal of the
generalized variance, raised to the power 1/4 since there are 4 h-parameters. Otherwise,
we can also use the reciprocal of the average variance. Adjusting for the difference in the
number of active phases, we conclude that (i) D5 is better than Dalt. 5 under the generalized
variance criterion, while (ii) alternative sequence is better under average variance criterion.
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Abstract
Under the assumption that the lifetime and repair time of a one unit system is bivari-

ate exponential, measures of system performance such as system reliability, MTBF, point
availability and steady state availability are obtained. Further, a 100(1 − α)% asymptotic
confidence interval for steady state availability of the system is derived.

Key words: Bivariate exponential distribution; CAN estimator; One unit system; Slutsky
theorem; Steady state availability.

AMS Subject Classifications: 60K10, 60F05

1. Introduction

Analysis of one unit repairable system has received considerable attention and has been
extensively studied by several researchers in the past. A system is said to be one unit system if
it is made up of only one component or it has a single crucial component whose failure causes
the system to fail (Barlow and Hunter, 1961). If the lifetime density and repair time density
of the unit are assumed to be arbitrary, then one may obtain highly formal expressions for
the probability distributions and other quantities of interest. These expressions are rarely
suitable for numerical computations. In most of the cases, analytically explicit expressions
are obtained only under negative exponential distributional assumptions. PH distribution
introduced by Neuts (1975) is more general in the sense that Erlang distribution and negative
exponential distribution are only particular cases of continuous PH distribution and this
distribution can be used to describe the lifetimes or repair times of a unit when it is non-
exponential. Chandrasekhar and Natarajan (2000) have obtained several measures of system
performance of a complex one unit system assuming that the lifetime and repair time of the
unit has PH distribution with different representations.

Generally speaking, the failure time and repair time are assumed to be independent
random variables. However, this assumption of independence need not hold good always.
For example, a component that fails frequently has to be thoroughly examined for defects
before it is put back into the system so as to prevent future failures, thereby increasing its
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repair time. Thus the repair time and lifetime (failure time) are dependent on each other.
Hence, both from theoretical and application perspective, analysing reliability models with
dependent structure will be of much use. In the past, a number of bivariate exponential
distributions have been proposed and studied well in the literature to describe the lifetimes
of two unit systems. But the bivariate exponential distribution proposed by Marshall and
Olkin (1967) is widely used among researchers because of its properties. An attempt is made
in this paper to derive performance measures of one unit system under the assumption that
the lifetime and repair time of the unit are governed by Marshall-Olkin bivariate exponential
distribution. Also, point and interval estimation of steady state availability of the system is
carried out.

2. Model (One Unit System With Dependent Structure)

The system description and assumptions involved are given below:

The system under consideration consists of only one unit with dependent structure and
when it fails, it is taken up for repair instantaneously. Let T and R denote respectively the
lifetime and repair time of the failed unit. Since the lifetime and repair time is assumed to be
dependent, Marshall-Olkin bivariate exponential distribution for T and R with the survival
function given by

F̄ (t, r) = e−[λ1t+λ2r+λ3max(t,r)], t, r > 0;λ1, λ2 > 0, λ3 ≥ 0 (1)

is considered. see Marshall and Olkin (1967).

The stochastic process underlying the behaviour of the system is an alternating renewal
process. At time t = 0, the unit just begins to operate. It should be noted that

• The lifetime T and repair time R are exponential random variables each with param-
eters (λ1 + λ3) and (λ2 + λ3) respectively.

• E(T ) = 1
(λ1+λ3) and E(R) = 1

(λ2+λ3) .

• V (T ) = 1
(λ1+λ3)2 and V (R) = 1

(λ2+λ3)2 .

• The covariance between T and R is given by
Cov(T,R) = λ3

(λ1+λ2+λ3)(λ1+λ3)(λ2+λ3) .

• T and R are independent if and only if λ3 = 0.

3. Operating Characteristics of The System

In this section, various measures of performance that describe the operating character-
istics of the system are discussed. To analyse the system, we note that at any given time
t, the system will be found in any one of the following mutually exclusive and exhaustive
states namely, state 0: the unit is operating (online) and state 1: the unit is under repair.
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Here state 0 denotes the system upstate and state 1 denotes the system down state. Let
X(t) denote the state of the system (unit) at time t. Clearly, {X(t), t ≥ 0} is a continuous
time Markov process with the state space given by E = {0, 1}. Since bivariate Marshall
and Olkin distribution satisfy the bivariate lack of memory property and its marginal distri-
butions are exponential, it follows that {X(t), t ≥ 0} is a Markov process with infinitesimal
generator Q given by

Q =
( 0 1

0 −(λ1 + λ3) (λ1 + λ3)
1 (λ2 + λ3) −(λ2 + λ3)

)
. (2)

Let pi(t) = P [X(t) = i], i = 0, 1 represent the probability that the system is in state i
at time t with the initial condition p0(0) = 1.

3.1. System reliability

Since system reliability R(t) is the probability of failure free operation of the system in
the time interval (0, t] and the marginal distribution of T is exponential with mean (λ1 +λ3),
an expression for R(t) can be readily obtained as

R(t) = e−(λ1+λ3). (3)

Also, the system Mean Time Before Failure (MTBF) is given by

MTBF =
∫ ∞

0
R(t)dt = 1

(λ1 + λ3) . (4)

3.2. Point and steady state availability of the system

The system availability A(t) is the probability that the system operates within the
tolerances at a given instant of time t and is obtained as follows:

From the infinitesimal generator given in (2), the following system of differential –
difference equations are obtained.

dp0(t)dt = −(λ1 + λ3)p0(t) + (λ2 + λ3)p1(t) (5)

dp1(t)dt = (λ1 + λ3)p0(t)− (λ2 + λ3)p1(t) (6)

Let Li(s) be the Laplace transformation of pi(t), i = 0, 1. Taking Laplace transforms on
both the sides of the above differential-difference equations and solving for Li(s), i = 0, 1
and inverting, we get pi(t), i = 0, 1 as follows:

P0(t) = (λ2 + λ3)
[(λ2 + λ3) + (λ1 + λ3)] + (λ1 + λ3)

[(λ2 + λ3) + (λ1 + λ3)]e
−[(λ2+λ3)+(λ1+λ3)]t (7)

P1(t) = (λ1 + λ3)
[(λ2 + λ3) + (λ1 + λ3)] −

(λ1 + λ3)
[(λ2 + λ3) + (λ1 + λ3)]e

−[(λ2+λ3)+(λ1+λ3)]t (8)
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Hence, the point availability of the system is given by A(t) = p0(t). The system steady state
availability is the expected fractional amount of time in a continuum of operating time that
the system is in upstate and is given by

A∞ = lim
t→∞

A(t) = (λ2 + λ3)
[(λ1 + λ3) + (λ2 + λ3)] . (9)

In the next section, point and interval estimation of the steady state availability of the
system is carried out.

4. Point and Interval Estimation of A∞

Let (Y1i, Y2i), i = 1, 2, ..., n be a random sample of size n from a bivariate exponential
population with the survival function given by (1). Here Y1 denote the lifetime of the unit and
Y2 denote the repair time of the unit upon failure. Let Ȳ1 and Ȳ2 denote the corresponding
sample means.

4.1. Point estimator of A∞

It can be established that Ȳ1 and Ȳ2 are the moment estimators of 1
(λ1+λ3) and 1

(λ2+λ3)
respectively. Writing θ1 = 1

(λ1+λ3) and θ2 = 1
(λ2+λ3) , A∞ of the system given in (9) reduces to

A∞ = θ1

θ1 + θ2
. (10)

Hence, a point (moment) estimator of the steady state availability A∞ of the system is given
by

Â∞ = Ȳ1

Ȳ1 + Ȳ2
. (11)

It may be noted that Â∞ given in (11) is a real valued differentiable function in Ȳ1 and Ȳ2.
Applying multivariate central limit theorem, it is readily seen that√
n[(Ȳ1, Ȳ2)− (θ1, θ2)] d−→ N2(0,Σ) as n→∞, where the dispersion matrix Σ is given by

Σ =


Ȳ1 Ȳ2

Ȳ1 θ2
1

λ3θ2
1θ

2
2

θ1+θ2−λ3θ1θ2

Ȳ2
λ3θ2

1θ
2
2

θ1+θ2−λ3θ1θ2
θ2

2

 (12)

Applying the results in Chapter 6 of Rao (2009), we have
√
n(Â∞ − A∞) d−→ N(0, σ2(θ)), where θ = (θ1, θ2) and

σ2(θ) =
2∑
i=1

θ2
i

(
∂A∞
∂θi

)2

+ 2λ3θ
2
1θ

2
2

θ1 + θ2 − λ3θ1θ2

(
∂A∞
∂θ1

)(
∂A∞
∂θ2

)
. (13)

The expressions for the partial derivatives are obtained as

∂A∞
∂θ1

= θ2

(θ1 + θ2)2



SPL. PROC.] INFERENCE ON SYSTEMS WITH DEPENDENT STRUCTURE 57

and
∂A∞
∂θ2

= −θ1

(θ1 + θ2)2 .

By substituting the partial derivatives in (13) and simplifying, we get

σ2(θ) = 2θ2
1θ

2
2

(θ1 + θ2)4 −
2λ3θ

2
1θ

2
2

(θ1 + θ2)4(θ1 + θ2 − λ3θ1θ2) . (14)

Thus, Â∞ is a consistent and asymptotic normal (CAN) estimator of A∞.

4.2. Interval estimation of A∞

Let σ̂2 be an estimator of σ2(θ) obtained by replacing θ by its consistent estimator
namely, θ̂ = (Ȳ1, Ȳ2). Since σ2(θ) is a continuous function of θ, σ̂2 is a consistent estimator
of σ2(θ) i.e., σ̂2 p−→ σ2(θ) as n→∞. Thus, applying Slutsky theorem, we get,

√
n(Â∞ − A∞)√

σ̂2

d−→ N(0, 1).

Hence, for α ∈ (0, 1), we have

P

−Zα
2
<

√
n(Â∞ − A∞)√

σ̂2
< Zα

2

 = (1− α)

where Zα
2

denote the upper (α2 )th percentile point of the standard normal distribution. Thus,
a 100(1−α)% confidence interval for the steady state availability A∞ of the system is given
by Â∞ ± Zα

2

√
σ̂2

n
, where σ̂2 is obtained from (14).

5. Conclusion

Inferential aspects of performance measures within the framework of reliability models
with dependent structure is less addressed in statistical literature. The present article has
focused on point and interval estimation of system reliability and steady state availability
of a one unit system assuming the lifetime and repair time to be modelled by bivariate
Marshall-Olkin distribution. Such models can be applied in reliability studies involving elec-
trical devices like, for example, water pumps used in commercial, agricultural and domestic
activities, ceiling fans, wherein lifetime and repair time of the motor are dependant. The
methodology adapted can be applied to models involving more than one component by using
multivariate Marshall-Olkin distribution for modelling the dependency. Interested readers
are encouraged to go through Yadavalli et al. (2017), Vaidyanathan and Chandrasekhar
(2018) and the references cited therein.
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Abstract

The present paper is based on the framework of a classification tool namely, Multivari-
ate Receiver Operating Characteristic (MROC) curve, which is modelled to provide a better
classification. In general, there are certain properties where the proposed ROC curve has to
satisfy, violating any of such property leads to inappropriate conclusions about the classifier.
In this paper, a straight forward approach is presented to explain the nature of ‘Proper’ and
‘Improper’ ROC curves. The methodology is supported with both simulated and real data
sets.

Key words: MROC curve; AUC, Improper MROC curve; Inflection point; Crossing point.
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1. Introduction

Over the past seven to eight decades, the problem of detecting/identifying one’s behav-
ior and allocating them into one of the population gained lot of attention. Such work was
majorly observed and initially related in the fields of Experimental Psychology and Signal
Detection Theory (Tanner and Swets, 1954, Green and Swets, 1966). However, with the
involvement of statistical essentials, this area branched to diversified fields of Science and
Technology, namely Diagnostic Medicine, Banking, Finance and many more (Lusted, 1971,
Krzanowski and Hand, 2009). All these come under the hub of classification tools/techniques
(Statistical Decision Theory). The practice of allocation or separation is based on certain
characteristics of univariate or multivariate in nature.

Initial application of this was in Medicine and used majorly to identify the individual’s
health status by defining an optimal threshold for a biomarker observed in the case of
that particular disease. The first parametric ROC is the Binormal ROC Curve where the
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variable under study for two independent populations (healthy/diseased or signal/noise)
follow Normal distributions (Green and Swets, 1966). The important properties of ROC
curve are:

(i) y = h(x) is the mathematical model of the ROC curve, where y denotes the true
positive rate and x denotes the false positive rate. The curve is a monotonic increasing
function in the positive quadrant, lying between y = 0 at x = 0 and y = 1 at x = 1.

(ii) The ROC curve is unaltered if the classification scores undergo a strictly increasing
transformation.

(iii) The slope of the ROC curve (likelihood ratio of ROC curve) at threshold value ‘c’ is
always positive and given by

dy

dx
= P (U > c|1)
P (U > c|0)

When dealing with practical problems, we often come across the presence or involve-
ment of several variables to have a classifier rule for a better classification. Su and Liu
(1993), Reiser and Ferragi (1997), Schisterman et al. (2004), Liu et al. (2005), Yuan and
Ghosh (2008), Chang and Park (2009) and Sameera et al. (2016) are a few to cite among
those who proposed an extension of univariate ROC model to multivariate. However the
present work is based upon the Multivariate ROC (MROC) model proposed by Sameera et
al. (2016), as they showed that this model works better than the model proposed by Su
and Liu (1993) and their model is applicable to data where the covariance structures of two
populations can be proportional or non-proportional. As mentioned about the properties of
the ROC curve, the most important one to verify is its concavity i.e., slope of the ROC curve
is always positive. Now the question that arises is, what happens if a curve is not satisfying
the concavity property? If the curve violates this property, it might affect the accuracy of
the test as well as the optimal cutoff point defined for that particular test. Mathematically,
a meaningful decision variable should be an increasing function of the likelihood ratio (Pepe,
2003) and such MROC curve is said to be “Proper”. A function whose first derivative is
decreasing throughout an open interval is called concave in that interval, and a function
whose first derivative is increasing throughout an open interval is called convex in that in-
terval. Since the slope of an MROC curve for a continuous decision variable is equal to the
likelihood ratio at the corresponding threshold, it follows that the slope of a MROC curve
decreases as the false positive rate (FPR) increases, that is, a MROC curve will be concave
everywhere (0 ≤ FPR ≤ 1). If the decision variable is not an increasing function of the
likelihood function, then its model and corresponding MROC curve are said to be improper.

2. Illustration of Improper MROC (iMROC) Curve

Consider the following example which illustrates the Indian Liver Patients (ILP) dataset
for which the MROC curve has been drawn and depicted in Figure 1. The fitted MROC
curve seems to be proper but when observed keenly; the improperness of the curve can be
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witnessed. In such situation, the usual MROC curve methodology might not project the
true accuracy of a test and will not be used for future classification. Figure 1 visualizes the
two crucial points namely, Crossing Reference line ((t0) or Crossing Point) and Inflection
Reference line ((t1) or Inflection Point). Figure 1 shows the corresponding fitted MROC
curve; note that there is a visible ‘dip’ in the curve crossing the chance line near the upper
right hand corner of the unit square plot. In Figure 1, MROC curve crosses the chance
line at the point (1-Specificity, Sensitivity) = (0.96, 0.96), shown by the intersection of the
“crossing” reference line with the MROC curve. Furthermore, this MROC curve is con-
cave for FPR < 0.76, but is convex for FPR > 0.76. Therefore, the MROC curve which
separates the concave and convex portions of the curve is called the “Inflection Point (t1)”.
Similarly, the MROC curve which crosses the chance line at the point where FPR=TPR is
called the “Chance line crossing point or Crossing Point (t0)”. From Figure 1, though the

Figure 1: Improper MROC curve for ILP dataset

dip of the curve is visible i.e. the MROC curve is not concave everywhere, it is not possible
to identify the inflection point visually. Even in the case of improper MROC curves, it is not
that easy to identify the point where the curve changes from concave to convex. In order to
deal with this situation, the ways to measure the improperness of an MROC curve is shown
in subsequent sections with the help of real and simulated data sets.

2.1. MROC curve

Let U0 and U0 ∈ U be the vectors of test scores of two independent multivariate normal
populations with mean vectors µ0, µ1 and co-variance matrices Σ0 and Σ1 with m and n
sample sizes respectively.

Ui ∼MVN(µi,Σi); i = 0, 1
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f(X|µi,Σi) = 1
(2Π) p

2 |Σi|
N
2
e
−1
2 (X − µi)′Σ−1

i (X − µi)

Let x(c) denote the false positive rate (FPR) and y(c) denote the true positive rate (TPR)
where ‘c’ is the threshold value. The expressions for FPR, TPR are

FPR = x(c) = P (U > c|0) = 1− Φ
 c− b′µ0√

(b′Σ0b)

 (1)

TPR = y(c) = P (U > c|1) = Φ
 b′µ1 − c√

(b′Σ1b)

 (2)

where b(6= 0) be a k × 1 vector. The threshold value thus obtained using (1) is given as

c = b′µ0 +
√

(b′Σ0b)Φ−1(1− x) (3)
where Φ−1(.) is the inverse function of Φ(.)

substituting (3) in (2) implies that

TPR = y(c) = Φ
b′(µ1 − µ0)−

√
(b′Σ0b)Φ−1(1− x)√

(b′Σ1b)

 (4)

which is the form of Multivariate ROC model (Sameera et al., 2016)

The AUC of MROC curve is

AUC = Φ

 b′(µ1 − µ0)√
(b′(Σ0 + Σ1)−1b

 (5)

2.2. Crossing point

In order to verify whether the generated ROC curve is ‘proper’ or ‘improper’, Bal-
aswamy et al. (2020) came out with two measures namely crossing point and inflection
point. The mathematical framework of these measures are adopted here to maintain the
continuity of explanation about proper vs improper ROC curves. Let ‘c’ denote threshold
to a chance line crossing FPR, then

P (U > c|0) = P (U > c|1)

⇒ Φ
 c− b′µ0√

(b′Σ0b)

 = Φ
 c− b′µ1√

(b′Σ1b)


on further simplification, the expression for c0 crossing threshold is

c0 =
(b′µ0)

√
(b′Σ1b)− (b′µ1)

√
(b′Σ0b)√

(b′Σ1b)−
√

(b′Σ0b)
(6)
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Let t0 denote the chance line crossing FPR corresponding to c0. Then

t0 = P (U > c0|0) = 1− Φ
 c0 − b′µ0√

(b′Σ0b)


on substituting (6) in the above expression, we obtain the expression for crossing point as,

t0 = Φ
 b′µ1 − b′µ0√

(b′Σ1b)−
√

(b′Σ0b)

 (7)

Uniqueness of t0 follows from the uniqueness of c0.

2.3. Inflection point

The slope of ROC curve is twice differentiable. From basic calculus results concerning
concave functions it follows that the MROC curve is concave (convex) over an open interval
if its second derivative is negative (positive) throughout the interval (0, 1). The approach
is to show that the second derivative of the MROC curve is negative throughout (0, t1) and
positive throughout (t1, 1) if v < 1, and positive throughout (0, t1) and negative throughout
(t1, 1) if v > 1.

Let t denote an FPR with corresponding threshold c. The derivative of the MROC
curve evaluated at t is equal to the likelihood ratio evaluated at c, i.e.,

∂ROC(t)
∂t

= LR(c)

i.e., at t = t0
∂ROC(t)

∂t
/t = t0 = LR(c0)

it follows, using the chain rule, that

∂2ROC(t)
∂2t

= ∂LR(c)
∂c

∂c

∂t
(8)

since,

t = P (U > c|0) = 1− P (U < c|0) = 1− Φ
 c0 − b′µ0√

(b′Σ0b)


then t is a strictly decreasing function of c and

∂c

∂t
= − 1√

(b′Σ0b)
ϕ

 c0 − b′µ0√
(b′Σ0b)


therefore, the equation (8) can be rewritten as,

∂2ROC(t)
∂2t

= ∂LR(c)
∂c

− 1√
(b′Σ0b)

ϕ

 c0 − b′µ0√
(b′Σ0b)

−1

(9)
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Since ϕ
(

c0−b′µ0√
(b′Σ0b)

)
> 0, it follows from Equation (9) that the second derivative of the

MROC curve and the derivative of the likelihood ratio have opposites signs when evaluated
at t and c, respectively (Balaswamy et al., 2020).

The threshold value at the inflection point is given by

c1 = (b′Σ1b)(b′µ0)− (b′Σ0b)(b′µ1)
(b′Σ1b)− (b′Σ0b)

(10)

then the corresponding FPR is

t1 = 1− Φ
 c1 − b′µ0√

(b′Σ0b)


on substituting c1 in the above equation, the FPR at the corresponding c1 is given by

t1 = 1− Φ

{

(b′Σ1b)(b′µ0)−(b′Σ0b)(b′µ1)
(b′Σ1b)−(b′Σ0b)

}
− b′µ0√

(b′Σ0b)

 (11)

on further simplification, the FPR value at the inflection point is as follows

t1 = Φ
(b′µ1 − b′µ0)

√
(b′Σ0b)

(b′Σ1b)− (b′Σ0b)

 (12)

Since the derivative of the log likelihood ratio will have opposite sign of the second
derivative of the MROC curve evaluated at the corresponding FPR and thresholds less than
c1 correspond to FPRs greater than t1 and vice versa, the FPR value

t1 = Φ
(b′µ1 − b′µ0)

√
(b′Σ0b)

(b′Σ1b)− (b′Σ0b)


is the unique inflection point FPR and

c1 = (b′Σ1b)(b′µ0)− (b′Σ0b)(b′µ1)
(b′Σ1b)− (b′Σ0b)

is its corresponding inflection point threshold.

3. Results and Discussion

3.1. Proper MROC curve

In order to explain the concept of Proper MROC curve, the Statlog (heart) data taken
from UCI repository is used. The heart dataset consists of 270 samples of which 120 (44.4%)
are diagnosed with presence of heart disease and 150 (55.6%) with absence of heart dis-
ease. The parameters age, sex (Male: 183, 67.78% & Female: 87, 32.22%), chest pain type
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(4 nominal values), resting blood pressure, serum cholesterol, fasting blood sugar, resting
electrocardiographic (ECG) results (0, 1&2), maximum heart rate achieved, exercise induced
angina, oldpeak, the slope of the peak exercise ST segment, number of major vessels (0-3)
colored by fluoroscopy and thal (normal, fixed defect & reversible defect) are considered for
diagnosis. MROC curve is fitted and it corresponding linear combination is

U = −0.022 ∗ Age+ 1.323 ∗ Sex+ 0.829 ∗ Chestpaintype+ 0.019 ∗Restingbloodpressure
+ 0.005 ∗ SerumCholesterol − 0.724 ∗ Fastingbloodsugar

+ 0.358 ∗RestingECGresults− 0.025 ∗Maximumheartrate

+ 1.091 ∗ Exerciseinducedangina+ 0.424 ∗Oldpeak + 0.534 ∗ thal
+ 0.398 ∗ SlopeofthepeakexerciseSTsegment+ 1.269 ∗Numberofmajorvessels

This linear combination helps us to know the status of a new individual basing on the
U value. From the results, the curve is found to be proper by satisfying the property of
monotonic likelihood ratio of MROC curve, hence it is a Proper MROC curve and the figure
is depicted in Figure 2.

Figure 2: Proper MROC curve for Heart dataset
The optimal threshold value for identifying heart disease in an individual when the

above mentioned characteristics studied is 7.27 with accuracy (AUC) of 93.7%. If score
obtained for a new patient U is greater than 7.27, the individual will be allocated to heart
disease group. The obtained threshold is observed to have 86.2% of sensitivity and 13.8%
of 1-specificity (false positive rate). This means that the threshold is able to identify the
true status of individual in a sensible manner with 86.2% by allowing 13.8% of false positive
cases. This features out that the performance of the threshold has to be improved in such a
way that the percentage of false positive rate can be minimized.
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3.2. Improper MROC (iMROC) curve

The concept of iMROC curve is supported with the help of simulation studies as well
as real datasets. The degree of improperness is also measured with the help of crossing point
and inflection point and the results are reported along with the figures.

3.2.1. Simulation study

Two sets of multivariate normal random numbers are generated with mean vectors and
covariance matrices (Table 1) for various samples sizes 25, 50, 100 and 300 respectively.

Table 1: Mean Vectors and Covariance Matrices of Simulation Studies

µD µH ΣD ΣH

1

0.8606
1.68

5.1302


0.8059

1.5812
4.7992


0.0084 0.0057 0.1221

0.0057 0.1183 0.0601
0.1221 0.0601 2.3087


0.0046 0.0001 0.0561

0.0001 0.1274 0.0037
0.0561 0.0037 0.7628


2

0.7305
1.39

3.6302


0.7057

1.2811
3.5992


0.0084 0.0057 0.1221

0.0057 0.1183 0.0601
0.1221 0.0601 2.3087


0.0046 0.0001 0.0561

0.0001 0.1274 0.0037
0.0561 0.0037 0.7628


The accuracy and intrinsic measures along with the linear combinations obtained for

the simulated data sets are reported in Table 2.
Table 2: Measures of MROC curve for two sets of simulations at four different
sample sizes

Simulation Samples c AUC TPR FPR Linear combination

I

25 2.1928 0.5817 0.5591 0.4408 2.95 ∗X1 + 0.50 ∗X2 - 0.12 ∗X3
50 4.4107 0.6323 0.5979 0.4020 6.01 ∗X1 - 0.10 ∗X2 - 0.07 ∗X3
100 9.8698 0.6754 0.6444 0.3555 1627 ∗X1 + 0.62 ∗X2 - 0.90 ∗X3
300 18.5639 0.7003 0.6640 0.3359 29.69 ∗X1 + 0.99 ∗X2 - 1.53 ∗X3

II

25 -1.6330 0.5713 0.5543 0.4456 -2.93 ∗X1 + 0.51 ∗X2 - 0.07 ∗X3
50 2.0133 0.6109 0.5811 0.4188 3.62 ∗X1 + 1.05 ∗X2 - 0.53 ∗X3
100 4.3673 0.6493 0.6111 0.3888 5.37 ∗X1 + 0.84 ∗X2 - 0.16 ∗X3
300 2.5782 0.6519 0.5943 0.4056 3.35 ∗X1 + 1.16 ∗X2 - 0.23 ∗X3

Here, an observation made is that as the sample size increases the accuracy (AUC) is
also slightly improving even though the expressions for the intrinsic measures FPR, TPR
and the accuracy measure AUC are free from the sample size. This means that, there is
slight deviation in the accuracy as the curve deviates from cancavity to convexity (Figure
3 and 4). Therefore, iMROC curve is not able to provide the maximum extent of correct
classification with less misclassification rate due to the shift in the magnitude of the curve.

3.2.2. Real datasets

In order to demonstrate the iMROC curve, MCA and ILP datasets are used. Further,
ILP dataset has been split according to gender of the patients. Of which, ILP male dataset
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Figure 3: iMROC curves for Simulation datasets at different sample sizes with
25 and 50

has a form of Improper ROC curve and the same dataset has been chosen for demonstration
purpose.

ILP Male dataset (Ramana et al., 2012)

The intrinsic measures TPR and FPR, summary measure AUC and optimal cut point
are computed using equations (1) to (5). The AUC observed is 0.7495 which provides
moderate classification, TPR and FPR are 0.6992 and 0.3008 respectively at the optimal
cutpoint c = 1.5372. The best linear combination is given by

UILP = 0.0172 ∗ Age–0.0556 ∗ TB + 0.3133 ∗DB + 0.0005 ∗ Alkphos–0.0104 ∗ sgpt
+ 0.0074 ∗ sgot− 0.4164 ∗ TP + 0.6726 ∗ ALB–1.1341 ∗ A.G

If the test score is greater than optimal cutoff i.e., 1.5372 the individual is classified
as diseased, otherwise healthy. The iMROC curve is drawn and depicted in the Figure
(5). From Figure (5), it is clear that the fitted MROC curve crosses the chance line and is
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Figure 4: iMROC curves for Simulation datasets at different sample sizes with
100 and 300

moving towards the top right corner of the unit square plot, which generates an improper
MROC curve. Using the proposed methodology, the inflection point (t1) and chance line
cross reference points (t0) are obtained and are highlighted in the Figure (5). MROC curve
is concave for FPR < 0.5221, but is convex for FPR > 0.5221. Due to this improperness,
the true accuracy of the classifier cannot be obtained. Further, such contaminated AUC will
mislead the interpretation and decision making too.

MCA dataset (Vishnu Vardhan et al.. 2015)

The neonatal dataset consists of two procedures: MCA and CPR used to check the
blood flow from the womb of the mother to the baby for identifying the growth of the
baby. Three indices were measured namely pulsatility index (PI), resistivity index (RI) and
Systolic/Diastolic (S/D) ratio in all the procedures. The intrinsic measures TPR and FPR,
summary measure AUC and optimal cut point are computed using equation (1) to (5). The
AUC observed is 0.6253, which provides moderate classification, TPR and FPR are 0.5968
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Figure 5: iMROC curve for ILP Male dataset

and 0.4032 at the optimal cutpoint c = −3.1749. The best linear combination is given by

UMCA = −10.6711 ∗MCA.RI + 0.0226 ∗MCA.PI + 1.1733 ∗MCA.SD

The above linear combination can be used for identifying the status of new individual.
If the test score is greater than optimal cutoff i.e., -3.1749 the individual is classified as
diseased, otherwise healthy.

Further, the MROC curve is drawn and depicted in Figure (6). From Figure (6), it is
clear that the fitted MROC curve crosses the chance line and moves towards the top right
corner of the unit square plot, which leads to an improper MROC curve. In this illustration
also, it is shown that not all ROC curves that gets generated for the classification data is
a “Proper” one and before fitting and computing the measures of ROC curve, one has to
verify whether the data is satisfying the three properties or not. Doing so, we can overcome
the misuse of the technique and misleading conclusions out of it.

4. Conclusion

In this paper, main focus was on establishing the fact that not all ROC curves that are
generated through data will be “Proper”, i.e. that they possesses the monotonic property.
So, there is a need to have some mechanism to verify whether an ROC curve so obtained is
proper or improper. To address this, crossing point and inflection point are defined, which
work on concavity and convexity nature of the ROC curve. To have a better understanding
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Figure 6: iMROC curve for MCA dataset

of these crossing and inflection points, simulations were carried out for different sample sizes
and parameter combinations. Also support of real data sets is also taken. On the whole, the
message emerging from this study is that before interpreting the outcomes of ROC curves,
it is essential to check whether the curve is proper or improper. If the curve is satisfying
the desirable properties then one can proceed for using the classifier for future classification,
and if the curve is improper then it is not a better way to use the classifier anymore. So,
here it is quite essential to work on a procedure that helps in correcting the ROC curve and
making it to have the monotonicity.
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Abstract
Passive investing has been on the rise in global markets for the last four decades

now. It constitutes 45% of U.S. stock based funds up from 25% in just a decade. The
prominent reason is the exorbitant costs of active management which are more often than
not unjustified by their performance in relation to benchmark index. Passive management
mitigates this issue by closely tracking the benchmark index with minimum transaction costs
and management fees.

Although there has been expansive research on passive investing in developed markets
like the U.S. capital market, the issue has been covered in marginal detail in emerging markets
like that of India. Index tracking is at the heart of passive investing and this paper aims to
discern the efficacy of our method of construction of an index tracker in the Indian market
while focusing on NIFTY50 index. We employed lowess smoothing method and subsequently
the partial correlation to create a tracker with subset of the 50 stocks that constitute the
benchmark. Further, we quantified the effects that changing rebalancing frequency and
number of constituent stocks in the tracker had on the tracking error and transaction costs
and suggested optimal trackers.

Key words: Passive Investing; Lowess Smoothing; Transaction Costs; Tracking Error.

AMS Subject Classifications: 60G50, 05C81

1. Introduction

Active investing has been around since the inception of modern money and capital
markets. It is build on the philosophy that one can get better returns than market on an
average if the organisation or person allocating the capital is skilled enough to exploit the
inefficiencies which are assumed to be present in the market.

Passive investing on the other hand assumes that markets are efficient and the best
returns that one can get are by investing capital in the portfolio which mimics market com-
position. This philosophy has gained prominence mainly because majority of active portfolio
managers have a track record that trails market returns when taken over a sufficiently large
period like 10-20 yrs. This empirical evidence coupled with the fact that passive investing
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is simple and has lower transaction charges has led to capital’s exodus from active portfolio
management into passive portfolio management. Although passive investing can have many
forms, index investing is the most common. It entails building a portfolio which mimics
a major benchmark index in the market and hence gives an investor returns in line with
the broader market which is the essence of passive investment. This strategy has mini-
mum buy/sell operations and hence reduces market friction which reduces the returns of an
investor over the long term.

There are various methods to track an index, simplest being full replication of an in-
dex. This method gives minimum tracking error but incurs explicit and implicit trading
costs which makes it the costliest strategy. Second method can be optimization based on
mean/variance analysis (Roll (1992)). This is a solution which holds fewer stocks than full
replication but still doesn’t compromise much on the tracking error. However, studies (Fo-
cardi and Fabozzi (2004)) note that the noise can dominate the correlations of stocks which
renders variance/covariance unreliable. This stems from the fact that high dimensional co-
variance matrices cannot be estimated consistently. Nakayama and Yokouchi (2018) propose
a method that picks constituent stocks for a tracker based on the similarities they have to
benchmark index. In turn, these similarities are arrived at by calculating distances of time
series trends which are derived from decomposing original series using lowess smoothing.This
does not yield appreciable results due to two factors. The first being the residual time series
left after lowess decomposition and second being the high correlation between the stocks
that constituted the tracker. To improve tracking performance, they propose a similarity-
balanced approach in which different groups are formed based on ranks generated from the
similarity approach and representative stocks are taken from each group.

We have built upon this method by utilizing iterative confounding variable approach to
overcome the correlation issue instead of similarity-balanced approach. This method works
in this case because the number of data points far exceed the number of constituent stocks
and hence the variance-covariance matrix has eigenvalues different from those stipulated by
random matrix theory distribution (Focardi and Fabozzi (2004)). Unfortunately, we were
not able to find any study of similar kind done for the Indian market which left us with no
reference or comparison source for the results we got.

This paper proceeds as follows. Section 2 describes the data used for the study. Section
3 expounds the methodology starting with lowess smoothening continuing on to the use of
partial correlation and how the transaction costs were calculated. Section 4 presents the
results we obtained for our index-tracking portfolio , the transaction costs incurred and the
best optimal combination of rebalancing window and number of constituent stocks for our
tracker. Section 6 concludes and presents scope for further research.

2. Data

Daily closing price adjusted for dividend, bonus and splits has been taken with starting
date at 01/06/2008 and ending date at 01/06/2018 for the 50 constituent stocks and the
NIFTY50 index. The data was retrieved from yahoo finance website. Below is the snippet
of the raw data and processed data in which we combined the adjusted close data of all the
stocks and discarded other data columns.
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Figure 1: Left: raw data for a stock ; Right: pre-processed data for all stocks

3. Methodology

3.1. Lowess smoothing of the raw data

We have taken the data of all the stocks and the index in the time frame marked out
in section 2. We have applied Lowess smoothing as proposed by Cleveland (1979); used
by Shibata and Miura (1997) as well as Nakayama and Yokouchi (2018). Lowess smoothes
values by applying locally weighted linear regression with weights determined by the distance
of data points from the point selected for smoothing. It is a non-parametric method of
smoothing the data which assumes no prior assumptions about economic cycles or specific
models.

We have decomposed the price time series data into components of long term trends
and short term trends. The long term trend was obtained by smoothing the normalised price
time series of all the constituents and the index. Short term trends were then obtained by
smoothing residuals from the long term smoothing. The residual after second smoothing
was weakly-stationary. We have kept one year as the time frame for long term trends and
1 month as the time frame for short term trends. Figure 1 illustrates such break-up for the
NIFTY50 index.

3.2. Tracker construction using partial correlation

Nakayama and Yokouchi (2018) used similarity between constituent stocks and the
index to rank stocks; out of which the top few were selected to construct a tracker. This
was unlike the previous studies which used similarity between the constituent stocks to form
clusters (Focardi and Fabozzi (2004), Dose and Cincotti (2005)) or which used integration
( Thomaidis (2013), Papantonis (2016)) for index tracking. However, they were not able to
beat the results obtained by clustering techniques through the similarity approach. Hence,
they developed similarity-balanced approach to tackle the issue of correlation between the
constituent stocks and now were able to provide better returns than the similarity approach.
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Figure 2: Lowess smoothing and subsequent decomposition of NIFTY50

In our paper, we have incorporated the operational features of similarity-balanced
approach by computing inter-day percentage change data for both long term and short term
trends and then using partial correlation between the percentage change data of index and
the constituent stocks to rank the stocks and construct an index based on this ranking. We
implemented this procedure separately between long term trends of stocks & the index and
between short term trends of stocks & the index. Two different rankings and subsequently
two different trackers were obtained using this methodology. This technique allowed us to
eliminate confounding bias but in a statistical fashion rather than heuristic fashion.

We have assigned equal weight to all the constituents of a tracker. On rebalancing,
the partial correlation is again calculated in a similar manner as stated before and some
constituents are replaced but the total capital at that point is again redistributed equally
among all the new constituents and old constituents which still remain. Finally, we have
compared and suggested winning tracker on the basis of reduction of tracking error and
transaction costs. Tracking error in our context is defined as the difference in percentage
change between benchmark index and the tracker after every rebalancing window. Transac-
tion cost’s definition and calculation will be detailed in the next sub-section. We have used
three parameters to control the values of costs and tracking error - number of stocks in the
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tracker, rebalancing frequency and composition of hybrid long-short tracker.

3.3. Transaction costs

Transaction costs play the biggest role in determining the real returns that an index
can provide. We aim to minimize the transaction costs which we will assume to have both
a proportional and fixed component for every trade (Jha and Srivastava (2013), Kellerer
et.al (2000), Nakayama and Yokouchi (2018)). Let p denote the per rupee transaction cost,
f denote the fixed cost per transaction, n denote the number of stocks in the tracker, Ri

denote the return on stock i (value at end of rebalancing period/value at the beginning of
it), MAD be mean absolute deviation, turnover be the ratio of number of stocks replaced at
rebalancing point to the total number of stocks in the tracker, j be the set of stocks that will
be replaced at rebalancing point and l be the total number of these replaced stocks. Then
the proportional and fixed costs will be given as follows with detailed derivation attached in
the appendix.

Costproportional = pMAD(Ri) + 2p(turnover)[1
l

∑
j min(Rj, R̄)]

Costfixed = 2fl + f(n− l)

4. Results

4.1. Number of stocks in tracker

We have taken 2 years as the training period for construction of all the trackers in this
and the ensuing sub-sections. Tables 1 and 2 show the results obtained when we varied the
number of stocks in the 2 different categories of trackers - obtained by using short trends
and long trends respectively with Quarterly rebalancing window.

Table 1: Effect of no. of stocks on short-trend tracker

No. of Average Average Iter. ≤ 1% Iter. ≥ 4% OU Ratio
Stocks Turnover Rebalancing Cost Tracking error Tracking error

5 0.29 0.25% 31% 38% 1.67
10 0.28 0.37% 28% 28% 1.46
15 0.26 0.49% 19% 34% 3
20 0.22 0.58% 22% 28% 3
25 0.18 0.67% 16% 28% 3
30 0.14 0.75% 16% 31% 2.56
35 0.09 0.82% 31% 09% 0.6
40 0.05 0.87% 16% 25% 3
45 0.01 0.93% 16% 19% 2.56



78 DIVYASHISH CHOUDHARY AND RITUPARNA SEN [2020

Table 2: Effect of no. of stocks on long-trend tracker

No. of Average Average Iter. ≤ 1% Iter. ≥ 4% OU Ratio
Stocks Turnover Rebalancing Cost Tracking error Tracking error

5 0.61 0.39% 16% 28% 1.29
10 0.58 0.54% 34% 22% 1.46
15 0.48 0.63% 19% 16% 1.29
20 0.38 0.70% 34% 16% 1.91
25 0.29 0.77% 22% 09% 2.56
30 0.25 0.85% 31% 06% 3
35 0.18 0.90% 31% 09% 2.2
40 0.11 0.94% 31% 09% 1.91
45 0.02 0.94% 19% 19% 2.56

Definitions for the columns in tables 1 and 2 : −

No. of stocks - Number of stocks in the tracker.
Average Turnover - Average of the proportion of stocks that were replaced by another set of
stocks in the tracker.
Average Rebalancing Cost - Average cost in percentage terms to rebalance the tracker. The
calculation includes both the proportional and fixed costs which are calculated based on the
formulae in section 3. Hence, low value value of this parameter is favourable.
Iter. ≤ 1% Tracking error - Proportion of tracking iteration in percentage terms which had a
tracking error of 1% or less including the cases of both excess and under returns as compared
to the index. Hence, high value of this parameter is favorable.
Iter. ≥ 4% Tracking error - Proportion of tracking iteration in percentage terms which had
a tracking error of 4% or more including the cases of both excess and under returns as
compared to the index. Hence, low value of this parameter is favourable.
OU Ratio - This parameter gives the ratio of iterations in which tracker outperformed the
benchmark to the iterations in which tracker underperformed the benchmark. Hence, higher
OU value the better.

Results show that the cost of rebalancing goes up with increase in the number of
stocks in the tracker owing to increasing fixed charges with increasing number of stocks in
the tracker which have to be replaced and others which have to be re-balanced. Further,
we note that tracking error does not follow a strictly increasing or decreasing trend with
the number of stock. Finally, the tracking error favours the number of stocks in the 20 -30
range. We can assert this as the tracking error efficiency saturates beyond 30 stocks (also
evident in figure 3) barring the case of 35 stocks in short tracker (but this tracker suffers
from a poor OU ratio). Further, for less than 20 stocks, the tracking error is high which is
not duly compensated with low transaction costs.
Therefore, we will be considering trackers with 20, 25 or 30 stocks in them for constructing
the index.
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4.2. Rebalancing frequency

Table 3 and 4 show the results obtained when we varied the rebalancing frequency for
short and long trend trackers taking 20, 25 and 30 stocks in them.

Table 3: Effect of rebalancing frequency on short-trend tracker

No. of Rebal. Annual Iter. ≤ 1% Iter. ≥ 4% OU Ratio
Stocks Frequency. Rebal. Cost Tracking error Tracking error

20

Monthly 6% 47% 0% 1.72
Bi-Monthly 3.24% 22% 16% 3.08
Quarterly 2.32% 22% 28% 3

Half-Yearly 1.36% 06% 38% 7
Yearly 0.79% 12% 75% 7

25

Monthly 6.96% 51% 0% 2.50
Bi-Monthly 3.78% 18% 12% 2.77
Quarterly 2.68% 16% 28% 3

Half-Yearly 1.52% 06% 44% 4.33
Yearly 0.85% 12% 88% 7

30

Monthly 8.04% 56% 01% 2.06
Bi-Monthly 4.32% 31% 12% 2.27
Quarterly 3.00% 16% 31% 2.56

Half-Yearly 1.66% 12% 05% 4.33
Yearly 0.89% 12% 75% 7

Table 4: Effect of rebalancing frequency on long-trend tracker

No. of Rebal. Annual Iter. ≤ 1% Iter. ≥ 4% OU Ratio
Stocks Frequency. Rebal. Cost Tracking error Tracking error

20

Monthly 7.68% 59% 01% 1.13
Bi-Monthly 4.08% 41% 06% 2.5
Quarterly 2.80% 34% 16% 1.91

Half-Yearly 1.48% 25% 38% 3
Yearly 0.79% 12% 38% 7

25

Monthly 8.64% 58% 01% 1.09
Bi-Monthly 4.56% 37% 04% 2.77
Quarterly 3.08% 22% 09% 2.56

Half-Yearly 1.6% 31% 44% 1.67
Yearly 0.86% 25% 50% 7

30

Monthly 9.72% 66% 01% 1.39
Bi-Monthly 5.1% 39% 04% 2.50
Quarterly 3.40% 31% 06% 3

Half-Yearly 1.94% 31% 38% 2.2
Yearly 0.94% 12% 50% 7
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We observe that although monthly rebalancing gives us extremely favorable results
in terms of tracking error, it does incur exorbitant annual transaction costs which makes
it undesirable and hence this frequency cannot be used. Moreover, half-yearly and yearly
rebalancing are on the other end of the spectrum where they provide lower transaction costs
but their tracking error is large and hence these frequencies too cannot be used.
Bi-monthly and Quarterly rebalancing acceptably balance between costs and tracking error.
Quarterly rebalancing offers an edge in costs while bi-monthly rebalancing gives us better
results in tracking error.

4.3. Proportion of long/short tracker in composite tracker

Table 5 shows the results obtained for different combinations of number of stocks taken
to construct long-short composite tracker for 20, 25 and 30 stocks in total with bi-monthly
and quarterly rebalancing window.
We observe that as the contribution of short tracker increases in the composite tracker, we
get lower transaction charges but tracking error increases at the same time. The vice-versa
is true for the contribution of long tracker in the composite tracker. Figure 3 depicts the
relationship between transaction costs and the tracking error based on table 5. We infer
that there is again no strict mono-directional relationship between the two which leads to
multiple trackers being optimal for our purpose.
Figure 4 depicts the performance of four trackers which are optimal trackers marked in
boldface in table 5.s

Figure 3: Left: bi-monthly rebalancing; Right: quarterly rebalancing
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Table 5: Effect of tracker composition on long-short tracker with bi-monthly
rebalancing

Rebal. No. of Composition Annual Iter. ≤ 1% Iter. ≥ 4% OU
Freq. Stocks Rebal. Cost Tracking error Tracking error Ratio

Bi-Monthly

20

s = 0, l = 20 4.08% 41% 06% 2.5
s = 5, l = 15 6.78% 31% 04% 1.58
s = 10, l = 10 4.98% 39% 14% 1.45
s = 15, l = 5 4.02% 31% 20% 1.58
s = 20, l = 0 3.24% 22% 16% 3.08

25

s = 0, l = 25 4.56% 37% 04% 2.77
s = 5, l = 20 7.56% 27% 02% 2.27

s = 10, l = 15 6.00% 47% 10% 1.88
s = 15, l = 10 5.28% 43% 10% 1.72

s = 20, l = 5 4.44% 29% 12% 2.06
s = 25, l = 0 3.78% 18% 12% 2.77

30

s = 0, l = 30 5.10% 39% 04% 2.5
s = 5, l = 25 8.22% 39% 02% 2.5
s = 10, l = 20 6.72% 45% 08% 3.45
s = 15, l = 15 6.24% 33% 10% 1.88
s = 20, l = 10 5.64% 39% 06% 2.27
s = 25, l = 5 4.92% 29% 06% 3.08
s = 30, l = 0 4.32% 31% 12% 2.27

Quarterly

20

s = 0, l = 20 2.80% 34% 16% 1.91
s = 5, l = 15 4.72% 25% 12% 1.29

s = 10, l = 10 3.52% 41% 22% 1.91
s = 15, l = 5 2.88% 19% 25% 3
s = 20, l = 0 2.32% 22% 28% 3

25

s = 0, l = 25 3.08% 22% 09% 2.56
s = 5, l = 20 5.28% 28% 19% 2.56

s = 10, l = 15 4.20% 28% 12% 2.2
s = 15, l = 10 3.72% 28% 19% 3.57
s = 20, l = 5 3.20% 22% 22% 3
s = 25, l = 0 2.68% 16% 28% 3

30

s = 0, l = 30 3.40% 31% 06% 3
s = 5, l = 25 5.56% 28% 09% 3.57
s = 10, l = 20 4.72% 34% 16% 4.33
s = 15, l = 15 4.36% 25% 12% 3
s = 20, l = 10 4.00% 38% 12% 4.33
s = 25, l = 5 3.48% 16% 25% 3.57
s = 30, l = 0 3.00% 16% 31% 2.56



82 DIVYASHISH CHOUDHARY AND RITUPARNA SEN [2020

Figure 4: Performance of optimal trackers with bi-monthly and quarterly rebal-
ancing
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5. Conclusion

In this study, we proposed a method to track NIFTY50 which is one of the most rep-
resentative benchmark of Indian capital markets covering over 65% of market capitalisation.
We observed that we have multiple parameters at our disposal to enhance the performance
of tracker. We also characterised the trade-offs involved in the process.

Further work can involve taking other benchmark indices of Indian capital markets viz.
BSE Sensex etc. and implementing the aforementioned methodology on them to find the
bandwidth of this procedure. Further work can also be done on dynamic weight adjustment
of stocks in the tracker based on their performance in the previous iterations.
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APPENDIX

1. Calculation of proportional component of transaction cost

In calculation of the transaction charges per unit of capital. Assume the following :-
n - number of stocks in tracker.
l - number of stocks to be dropped/added after rebalancing window
1
n

- Initial investment in each stock.
Xi - Final value of the investment in stock i.
Ri - Return on stock i (Xi

1
n

).∑n
i=1 Xi - Total value of investment at the end of rebalancing window.

p - proportional rebalancing cost per unit MAD - Mean Absolute Deviation

Now, the amount that should be present in each stock after the rebalancing period is :-∑n

i=1 Xi

n
= X̄

Hence, transaction cost will be given as:-
Cost = p

∑n
i=1 |Xi − X̄| = pnMAD(Xi)

But we will have to reduce from this value the contribution of those stocks which will be
replaced after the transaction period. Therefore,

Cost = pnMAD(Xi)−
∑

j |Xj − X̄|, where j denotes the set of stocks to be dropped

Further, we add the transaction cost of dropping those stocks and adding new stocks to the
portfolio.

Cost of dropping = p
∑

j Xj

Cost of adding = p
∑l

1 X̄

Hence, total proportional cost is given by :-

Cost = pnMAD(Xi)−
∑

j |Xj − X̄|+ p
∑

j(Xj + X̄)
= pnMAD(Xi) + 2p

∑
j min(Xj, X̄) by identity (a + b− |a− b| = 2min(a, b))

= pMAD(Ri) + 2p( l
n
)(1

l

∑
j min(Rj, R̄))

= pMAD(Ri) + 2p(turnover)(1
l

∑
j min(Rj, R̄))
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Abstract
Over the last two decades, the advancement in computing power has led to a significant

rise in the usage of computer simulators (or simulation models) for real-life applications where
data collection via physical observation or experimentation is infeasible or too expensive. For
complex real-life processes, realistic accurate simulation models are also time-consuming to
run, and subsequently, statistical surrogate models are often used to emulate the simulator
outputs. In this article, we will discuss a surrogate model for emulating dynamic simulator
outputs (i.e., a simulator which yields time series response).

For a scalar-valued deterministic simulator, Gaussian process model was first intro-
duced as a statistical surrogate, which is till date the most popular emulator in the computer
experiment literature. For a dynamic simulator, this article presents a singular value decom-
position (SVD) based Gaussian process (GP) model for the emulation. We will also present
an efficient approach for estimating the inverse solution from a dynamic computer model,
where the objective is to find the optimal set of inputs that produces outputs matching the
target response as close as possible. This is also referred to as the calibration of the computer
simulation model. The performance of this innovative approach will be demonstrated via
several simulated examples and a real-life application.

Key words: Computer experiments; Expected improvement; Gaussian process regression;
Inverse problem; Saddlepoint approximation.

1. Introduction

When the physical processes are too expensive to observe and experiment with, math-
ematical models are often used to mimic the underlying phenomena. These mathematical
models are coded/implemented via some software programming language like C, C++, Java,
R, Python, etc. The experimentation with such computer codes are referred to as computer
experiments. There is a plethora of real-life examples of computer simulators that range
from pharmaceutical industry, aviation sector, cosmology, manufacturing, agriculture, re-
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newable energy, etc. We start with briefly presenting a few real-life applications of computer
simulators.

Application 1. The data collection for the impact assessment of a car crash due to
different types of collision on passengers sitting in the front and back row is really expensive.
Though crash testing is a must in some countries, it is not done everywhere and certainly
not thoroughly. A popular cheaper alternative is to use simulation models for detailed
experimentation. Figure 1 depicts a car-crash experimentation process.

Figure 1: Impact assessment of a car-crash via both physical and computer
experiments.

Application 2. Harnessing tidal energy by putting in-stream turbines is an exciting and
yet a challenging problem for a variety of researchers around the globe. The Bay of Fundy,
located between New Brunswick and Nova Scotia, Canada is world famous for its high tides.
In some regions of the Bay of Fundy, the difference in the water level between high tide and
low tide can be as much as 17 meters (see Figure 2). The incredible energy in these tides
has significant potential for extracting tidal power (Karsten et al., 2008).

Figure 2: The map of Nova Scotia focussing on the Bay of Fundy. Hopewell
Rocks and a port near Wolfville with high tide and low tide.

Preliminary analyses revealed that one can safely extract gigawatts of power by putting
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a host of in-stream tidal turbines in the Minas Passage - a narrow passage in the Bay of
Fundy where the tidal currents are strongest (see Figure 3). One of the interesting research
questions is where exactly should the turbines be placed. Identification of the optimal
locations cannot be done via physical experimentation, and we must rely of good computer
model based experiments. Currently, researchers have been studying different aspects of the
problem using versions of the Finite-Volume Coastal Ocean Model (FVCOM). Details of
FVCOM can be found in Chen et al. (2006).

Figure 3: Turbine placement in the Minas Passage.

Application 3. European red mites (ERM) infests on apple leaves and diminish the
quality of crop, which inflicts heavy financial loss in the apple industry (see Figure 4).
Therefore, the monitoring and subsequent intervention of ERM population dynamics is of
vital importance for apple orchards management.

Figure 4: European Red Mites (ERM) infesting on apple leaves.

It is worth noting that data collection for different stages of ERM population, eggs,
juveniles and adults, would require counting the number of mites, on randomly sampled
orchards, trees, branches and leaves, using a magnifying glass over a period of time. This is
undoubtedly expensive (see black solid curve in Figure 5 for a field data). Alternatively, one
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can use a computer simulator to mimic the population growth of the three stages. The two-
delay blowfly (TDB) model (Teismann et al. (2009)) simulates ERM population dynamics
under predator-prey interactions via numerically solving the Nicholson’s blowfly differential
equation (Gurney et al. (1980)). One of the prime objectives here includes the calibration of
this simulator to mimic the reality as much as possible. The TDB model takes eleven input
variables (e.g., death rates for different stages, fecundity, hatching time, survival rates, and
so on) and returns the time series (at 28 time points) of ERM population evolution at three
stages, i.e., eggs, juveniles and adults (see Ranjan et al. (2016) for details). Figure 5 shows
the model output at five randomly chosen input points.
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Figure 5: TDB outputs for a few randomly chosen inputs (coloured curved), and
the field data (in solid black).

In this article, we first review the popular statistical surrogate called the GP model for
emulating the simulator response (Sacks et al., 1989). Subsequently, we discuss the singular
value decomposition (SVD) based GP surrogate for emulating the dynamic computer simu-
lator outputs (Higdon et al., 2008; Zhang et al., 2018). Then we focus on the inverse problem
for dynamic computer models - which was the key objective of our motivating application
from the apple farming industry. This part of the methodology requires a quick recap of
the popular expected improvement (EI) based sequential design approach for calibrating
the deterministic, expensive to evaluate, scalar-valued simulator outputs (Jones et al., 1998;
Ranjan et al., 2008; Bingham et al., 2014), and then present a generalization for dynamic
simulators (Zhang et al., 2019). Finally, we compare the performance of this innovative
method with the naive approach for several test functions and the TDB model.

2. Statistical Surrogates

The choice of statistical metamodel varies with the characteristics of the computer sim-
ulator. For instance, if the output is scalar/vector/functional, the process is stationary/non-
stationary, deterministic/stochastic, input space is convex/non-convex, inputs are continu-
ous/discrete, etc. We first present the most popular surrogate model called GP model for
scalar-valued deterministic simulator, and then outline an extension of this GP model for
dynamic simulators.
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2.1. Scalar-valued simulator

Let the training data consist of d-dimensional input and 1-dimensional output, denoted
by xi = (xi1, xi2, . . . , xid) and yi = y(xi), respectively. Then, the GP model is written as

yi = µ+ z(xi), i = 1, 2, . . . , n, (1)

where µ is the overall mean, and {z(x), x ∈ [0, 1]d} ∼ GP (0, σ2
zR(, )) with E(z(x)) = 0,

V ar(z(x)) = σ2
z , and Cov(z(xi), z(xj)) = σ2

zR(xi, xj) where R(, ) is a positive definite cor-
relation function. That is, Y = (y1, y2, . . . , yn)T ∼ MVN(µ1n, σ2

zRn), where 1n is an n × 1
vector of all 1’s, and Rn is an n × n correlation matrix with (i, j)-th element given by
R(xi, xj) (see Sacks et al. (1989); Santner et al. (2003); Rasmussen and Williams (2006) for
more details).

The model described in (1) is typically fitted by either maximizing the likelihood or
via Bayesian algorithms like Markov chain Monte Carlo (MCMC). As a result, the predicted
response ŷ(x0) is the same as the conditional mean:

E(y(x0)|Y ) = µ+ r(x0)TR−1
n (Y − 1nµ), (2)

and the associate prediction uncertainty estimate (denoted by s2(x0)) can be quantified by
the conditional variance:

V ar(y(x0)|Y ) = σ2
z(1− rT (x0)R−1

n r(x0)). (3)

The most crucial component of such a GP model is the spatial correlation structure,
R(, ), which dictates the ‘smoothness’ of the interpolator that passes through the observa-
tions. By definition, any positive definite correlation structure would suffice, but the most
popular choice is the power-exponential correlation family given by

R(xi, xj) =
d∏

k=1
exp{−θk|xik − xjk|pk}, (4)

where θk and pk controls the wiggliness of the surrogate in the k-th coordinate. A special
case with pk = 2 for all k = 1, 2, ..., d, represents the most popular Gaussian correlation also
known as radial basis kernel in Machine Learning literature.

The parameter estimation for µ, σ2
z and θ is often a computationally intensive optimiza-

tion problem. There are a number of R packages that can provide the GP model fitting, for
example, mlegp, GPfit, DiceKriging, tgp, RobustGaSP and SAVE (Dancik, 2013; MacDon-
ald et al., 2015; Roustant et al., 2012; Gramacy, 2007; Gu et al., 2016; Palomo et al., 2015).
These R packages are somewhat different in terms of computational efficiency and stability.
For the reason of stability, we use the R package GPfit in this article. The GP model can
be fitted using the following code:

GPmodel = GPfit::GP_fit(X, Y, corr = list(type="exponential", power=2))
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The GPfit object GPmodel contains the parameter estimates, which can be further
passed on for generating the predictions along with uncertainty estimates on a test set.
For example, suppose the simulator output is generated by a one-dimensional test function
f(x) = log(x + 0.1) + sin(5πx), and the input points {x1, ..., x7} are randomly generated
as per a space-filling Latin hypercube design method (McKay et al., 1979). Then, Figure 6
shows the fitted surrogate, prediction uncertainty and the true simulator response curves.
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Figure 6: GP regression: The response is generated using the one-dimensional
test function f(x) = log(x + 0.1) + sin(5πx). black solid curve shows the true
simulator response, blue dashed curve presents the fitted surrogate and the gray
region depicts the uncertainty band.

2.2. Dynamic simulator

A simulator that produces time-series/functional response is referred to as the dynamic
computer model. Experimentation via dynamic simulators arise in various applications, for
example, rainfall-runoff model (Conti et al., 2009), vehicle suspension system (Bayarri et al.,
2007), and the population growth model for European red mites (Zhang et al., 2018) briefly
outlined in Section 1.

The time-series structure in the response makes the emulation substantially more chal-
lenging as compared to the standard GP model. Recently, a few attempts have been made
in this regard. For example, Liu and West (2009) and Farah et al. (2014) proposed time
varying autoregressive (TVAR) models. Another clever approach is to represent the time
series outputs as linear combinations of a fixed set of basis such as singular vectors (Higdon
et al., 2008) and wavelet basis (Bayarri et al., 2007). Zhang et al. (2018) developed an empir-
ical Bayesian approach for the singular value decomposition (SVD) based methodology and
generalized it further for large-scale data. We briefly discuss the basic version of SVD-based
GP model by Higdon et al. (2008).
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Let the simulator inputs and outputs be stored in the N×q matrix X = [x1, . . . ,xN ]T ,
and L×N matrix and Y = [y(x1), . . . ,y(xN)], respectively. Then the SVD of Y gives

Y = UDV T ,

where U = [u1, . . . ,uk] is an L × k column-orthogonal matrix, D = diag(d1, . . . , dk) is a
k × k diagonal matrix of singular values sorted in decreasing order, V is an N × k column-
orthogonal matrix of right singular vectors, and k = min{N,L}. Then the simulator response
is modelled as

y(x) =
p∑
i=1

ci(x)bi + ε, (5)

where x ∈ Rq, and bi = diui ∈ RL, for i = 1, . . . , p represent the orthogonal basis.
The coefficients ci’s in (5) are assumed to be independent Gaussian processes, i.e., ci ∼
GP(0, σ2

iKi(·, ·;θi)) for i = 1, . . . , p, where Ki’s are correlation functions. We use the popu-
lar Gaussian correlation (4) for K(x1,x2;θi). The residual term ε in (5) is assumed to be
independent N (0, σ2

L). The number of significant singular values, p, in (5), is determined
empirically by the cumulative percentage criterion p = min{m : (∑m

i=1 di)/(
∑k
i=1 di) > γ},

where γ is a threshold of the explained variation. With carefully chosen priors, the maximum
a posteriori (MAP) method gives closed form predictor along with the uncertainty estimates.
We follow the empirical Bayesian implementation by Zhang et al. (2018).

R library called DynamicGP (Zhang et al., 2020) provides user-friendly functions for
quick usage. The most important function is svdGP, and its usage is illustrated as follows:

svdGP(design, resp, frac=0.95, nthread=1, clutype="PSOCK", ...)

where design is the input design matrix, resp is the output response matrix, frac specifies
γ = 95%, and nthread and clutype controls the parallelization of the implementation. See
Zhang et al. (2020) for details on the implementation.

Suppose the time-series valued response is generated using the following test function
(Forrester et al., 2008) with three-dimensional inputs,

f(x, t) = (x1t− 2)2 sin(x2t− x3), (6)

where x = (x1, x2, x3)T ∈ [4, 10]× [4, 20]× [1, 7], and t ∈ [1, 2] is on a 200-point equidistant
time-grid. Figure 7 illustrates the implementation, by first fitting the svdGP model to a
training set of 20 input points randomly generated via maximin Latin hypercube design
in the three-dimensional hyper-rectangle [4, 10] × [4, 20] × [1, 7], and then predicting the
time-series valued simulator output using svdGP() function.

From Figure 7, it is clear that the fitted surrogate model predictions are reasonable
approximations of the simulator outputs at the design points. We fitted svdGP model using
the default settings of DynamicGP package. Of course, one can play around with other
arguments to obtain better (more accurate) predictions.
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Figure 7: Model prediction for six randomly chosen inputs. Each panel shows
the true simulator response (black solid curve), the mean predicted svdGP fit
(dashed red curve), and the uncertainty bounds (blue dotted curves).

3. Calibration / Inverse Problem

Calibration of computer simulation models is typically one of the key objectives of
computer experiments. For instance, the overall intent of the TDB model application was to
ensure that the simulator outputs were as realistic as the observed physical response. This
notion of calibration is also referred to as the inverse problem, i.e., the estimation of the
set of inputs that yield a pre-specified process value (also called the contour / iso-surface /
threshold estimation). Mathematically, the objective is to

find x ∈ χ, s.t. y(x) ≈ ξ, or, equivalently, minimize
x∈χ

‖ξ − y(x)‖,

where y(x) is the simulator response, ξ is pre-defined target to be estimated, and the objective
is to estimate S(ξ) = {x ∈ χ : y(x) ≈ ξ}.

Since realistic simulators of complex processes are often computationally expensive,
the number of evaluations of the computer simulator is limited which subsequently makes
the inverse problem a lot more challenging. A popular efficient strategy in such a situation
is to use sequential design approach which starts with an initial design and adds one point
or a batch of points at-a-time iteratively until a tolerance based stopping criterion is met or
a pre-specified budget is exhausted. The steps are summarized as follows.

• Step 1. Choose an initial design of run size n0. Let n = n0.

• Step 2. Build a statistical surrogate model with {(xi, yi), i = 1, . . . , n}.

• Step 3. Choose the next design point xn+1 by optimizing a merit-based criterion. Run
the simulator at xn+1 and obtain yn+1.
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• Step 4. Let n = n + 1 and repeat Steps 2 and 3 until it reaches the budget (N) or
satisfies the stopping criterion.

3.1. Calibration of a scalar-valued simulator

Obviously, c = 1 is a terrible choice for the player. For then, she must also choose
k = 1 toss (since there is no opportunity to toss after capturing one node with the first toss);
and she will earn 10, 2, 1, 11 nickels with probability 1/4 each. Therefore, per play she will
pay 51 cents; she will earn, on average, 5(10 + 2 + 1 + 11)/4 = 30 cents; and lose 21 cents—a
whopping 41.2% loss!

Suppose that the simulator produces a scalar-valued response, and the objective is to
estimate ξ = a. Ranjan et al. (2008) developed an expected improvement (EI) criterion (for
Step 3) under the GP model in Step 2. The idea is to choose xn+1 by maximizing

E(I(x)) =
∫ v2(x)

v1(x)
[ε2(x)− (t− a)2]φ

(
t− ŷ(x)
s(x)

)
dt

= [ε(x)2 − (ŷ(x)− a)2 − s2(x)](Φ(u2)− Φ(u1)) + s2(x)(u2φ(u2)− u1φ(u1))
+2(ŷ(x)− a)s(x)(φ(u2)− φ(u1)), (7)

where u1 = [a − ε(x) − ŷ(x)]/s(x), u2 = [a + ε(x) − ŷ(x)]/s(x), φ(·) and Φ(·) are the
probability density function and the cumulative distribution function of a standard normal
random variable, respectively, and ε(x) = αs(x) for a positive constant α. Ranjan et al.
(2008) used α = 1.96 which is in-sync with 95% confidence interval under the normality
assumption of the responses. This criterion is simply obtained by computing the expectation
of a carefully designed improvement function I(x) = ε2(x) −min

{
(y(x) − a)2, ε2(x)

}
with

respect to the predictive distribution y(x) ∼ N(ŷ(x), s2(x)).

Figure 8 depicts a quick illustration of the contour estimation procedure via the EI
criterion for a simulator response generated by a two-dimensional test function.

Figure 8: Contour estimation for a two-dimensional test function, y(x1, x2) =
(1 + (x1 + x2 + 1))(3 + 12x1x2) at the target a = 300, with n0 = 20 and N = 30.
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3.2. Calibration of a dynamic simulator

When we discuss the estimation of the inverse solution for a dynamic computer model,
the problem becomes lot more complicated. Note that the target is now a time series,
ξ = {ξ1, ..., ξL}, and the equality or approximation of y(x) and ξ have to be formulated more
carefully. For a quick reference, the objective of the TDB model application is to find the
set of inputs that would produce model outputs closer to the black solid curve shown in
Figure 5. An intuitive definition of the inverse problem is to find

x∗ = argmin
x∈χ

δ(x), where δ(x) = ‖ξ − y(x)‖2
2.

3.2.1. A naive approach

Ranjan et al. (2016) suggested treating the mean discrepancy between the model out-
put and the target, ω(x) =

√
δ(x)/L, as the scalarized simulator output, then use a GP

to emulate ω(x), and adopt the EI-criterion in Jones et al. (1998) for finding the global
minimum.

Suppose we consider the following three-dimensional test function with inputs x =
(x1, x2, x3) ∈ [0, 1]3 to generate the time-series response,

g(x, t) =
sin

(
10πt(2x3)

)
(1 + 2x1)t + |t− 1|(2+4x2), (8)

where the true field data correspond to x0 = (0.5, 0.5, 0.5). Figure 9 shows the true field
data (solid red curve) and a few simulator outputs (blue dotted curves).

Figure 9: A few computer model outputs and the true data for a three-
dimensional test function based dynamic simulator.

Figure 10 shows the implementation of this naive approach for finding the inverse
solution using n0 = 20 and N = 50.

It turns out that the final estimate of xopt is (0.4827, 0.4979, 0.4991). Though the in-
verse solution obtained is quite good, there are several theoretical oversights. For instance,
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(a) Running estimate of ωmin (b) Final inverse solution

Figure 10: Naive approach for solving the inverse problem for a 3-dimensional
test function based dynamic simulator.

no efforts are made in Ranjan et al. (2016) for modeling the dynamic computer simulators.

3.2.2. Zhang et al. (2019) approach

Given that the main objective is to efficiently minimize δ(x) = ‖ξ − y(x)‖2
2, Zhang

et al. (2019) follows the sequential design framework in Jones et al. (1998) for finding the
global minimum, and define the improvement function as

I(x) =
(
δmin − δ(x)

)
+
, (9)

where (u)+ = max{0, u} for u ∈ R and δmin = min{δ(xi), i = 1, 2, ..., n}. The corresponding
EI criterion would look like

E[I(x)] = E
[(
δmin − δ(x)

)
+

∣∣∣∣Y ], (10)

where the expectation is taken with respect to the predictive distribution of δ(x) given
Y . The distribution of δ(x) is not GP, which differentiates this EI with the standard
minimization problem in Jones et al. (1998).

The SVD-based GP surrogate model in Section 2.2 presents the distribution of y(x)
given Y , but not the distribution of δ(x) given Y . Zhang et al. (2019) used the saddlepoint
approximation method to evaluate (10). The method begins by finding a solution of the
derivative equation,

κ
(1)
δ (s) = δmin, (11)

where κ(1)
δ (s) is the first order derivative of the cumulant generating function of δ(x) with

respect to s. Of course there is no closed form solution of (11)), and they used Broyden’s
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method (Broyden, 1965) implemented in the R package nleqslv (Hasselman, 2010) for nu-
merically solving (11). Let s0 be the solution of (11), then, for s0 > 0, s0 < 0, s0 = 0, Zhang
et al. (2019) derived three expressions of saEI (saddlepoint approximation of the expected
improvement) which require numerical calculations. The R package DynamicGP (Zhang
et al., 2020) contains built-in function called saEI which facilitates easy computation of this
criterion for choosing follow-up design points.

4. Examples and Applications

In this section, we present a few examples to illustrate the performance comparison
of saEI approach with other competitors like the naive method outlined in Section 3.2.1.
We used a realistic example (TDB model) and some test functions for generating dynamic
computer simulator outputs. The performance is measured via ‖x∗ − x̂∗‖ and

Dξ = ‖ξ − y(x̂∗)‖2
2

‖ξ − ξ̄1L‖2
2
,

where x∗ is the truth corresponding to the target response ξ, x̂∗ is the estimated optimal
inverse solution, ξ̄ = ∑L

i=1 ξti/L, and 1L is an L-dimensional vector of ones.

Example 4 of Zhang et al. (2019): Suppose the outputs of the dynamic simulator obey

yt(x) = exp(3x1t+ t) cos(6x2t+ 2t− 8x3 − 6), (12)

where x = (x1, x2, x3)T ∈ [0, 1]3 and t ∈ [0, 1] is on a 200-point equidistant time-grid
(Harari and Steinberg, 2014). The input producing the target (or, equivalently, the field
observation) is randomly generated as x∗ = [0.522, 0.950, 0.427]T . Here, the initial design
is of size n0 = 18, and N − n0 = 36 points were chosen sequentially one at-a-time as per
the individual design criterion (e.g., using saEI(x)). Figure 11 summarizes the simulation
results over 50 replications.

Example 5 of Zhang et al. (2019): The environmental model by Bliznyuk et al. (2008)
simulates a pollutant spill at two locations (0 and L) caused by a chemical accident. The
simulator outputs are generated using the following model that captures concentration at
space-time point (s, t),

yt(x) = C(s, t;M,D,L, τ)

= M√
Dt

exp
(
−s2

4Dt

)
+ M√

D(t− τ)
exp

(
− (s− L)2

4D(t− τ)

)
I(τ < t), (13)

where x = (M,D,L, τ, s)T , M denotes the mass of pollutant spilled at each location, D is
the diffusion rate in the chemical channel, and 0 and τ are the time of the two spills. The
input domain is x ∈ [7, 13]× [0.02, 0.12]× [0.01, 3]× [30.01, 30.304]× [0, 3], and t ∈ [35.3, 95]
lies on a regular 200-point equidistant time-grid. In this example, the randomly chosen input
that produces the field observation is x∗ = [9.640, 0.059, 1.445, 30.277, 2.520]T . Zhang et al.
(2019) used a 30-point initial design and 60 follow-up points to estimate the inverse solution.
Figure 12 summarizes the results of 50 simulations.
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Figure 11: Performance comparison of saEI with SL2 (discussed in Section 3.2.1)
and LR method (Pratola et al., 2013). The dynamic responses are generated
using a test function from Harari and Steinberg (2014). See Example 4 of Zhang
et al. (2019) for details.

LR SL2 saEI

−
3.

5
−

3.
0

−
2.

5
−

2.
0

lo
g(

D
ξ)

LR SL2 saEI

0.
4

0.
6

0.
8

1.
0

1.
2

||x
*−

x o
pt

||

Figure 12: Performance comparison of saEI with SL2 (discussed in Section 3.2.1)
and LR method (Pratola et al., 2013). The dynamic responses are generated
using a test function from Bliznyuk et al. (2008). See Example 5 of Zhang et al.
(2019) for details.

TDB example (Section 4.3 of Zhang et al. (2019)): The target response corresponds
to the average count of juvenile population over a 28-day sample during 156-th to 257-th
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Julian days (the period during which the apple farming takes place in the Annapolis Valley,
Canada). The data was collected twice a week at regular intervals. The version of TDB
model used here assumed the following six input variables:

• µ4 – adult death rate,

• β – maximum fecundity (eggs laid per day),

• ν – non-linear crowding parameter,

• τ1 – first delay - hatching time of summer eggs,

• τ2 – second delay - time to maturation of recently hatched eggs,

• Season – average number of days on which adults switch to laying winter eggs.

The performance comparison of the three methods in solving the inverse problem are
illustrated in Figure 13. Zhang et al. (2019) used n0 = 36 and nnew = 72 for finding the
inverse solution.
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Figure 13: TDB example (Section 4.3 of Zhang et al. (2019)): (a) The field
observation of the juvenile ERM population evolution and the located simulator
outputs that match the field observation produced by the three sequential design
methods. (b) The traces of the log(Dξ) criterion values of the 72 iterations for
the three methods.

On average, the saEI approach clearly outperforms both the competitors (LR by Pra-
tola et al. (2013) and SL2 by Ranjan et al. (2016)) at least with respect to the examples
applications considered here.
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5. Concluding Remarks

In this article, we presented the popular statistical metamodel called the GP model
for emulating scalar-valued deterministic simulator outputs. This was further generalized to
SVD-based GP model for efficient emulation of the dynamic computer simulator response.
We also discussed the inverse problem for both scalar and dynamic response simulators that
are expensive to evaluate. Several test functions and real-life examples are presented to
demonstrate the performance of the methodologies. We also highlight the freely available
R libraries for easy implementation of these methodologies. This is particularly helpful for
practitioners and young researchers in this area.

There are numerous active research problems in this area such as uncertainty quan-
tification, design and analysis of spatio-temporal simulator data, stochastic simulator data,
and in particular how to analyze BIG data coming from computer simulation models.
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Abstract
We solve an unsolved problem posed in Sarkar (2020), which proposed a reward-earning

binary random walk game on a parity dial whose twelve nodes, when read clockwise, are
labeled as (1, 11, 3, 9, 5, 7, 6, 8, 4, 10, 2, 0). Starting from Node 0, at each step the player
tosses a fair coin and moves one step clockwise (if heads) or counterclockwise (if tails). The
player pays 25c + k cents if she intends to capture c nodes and toss the coin k times. When
the c non-zero nodes are captured or when the k tosses are over the game ends; and the
player earns as many nickels as the sum of the labels of the captured nodes. The player’s
objective is to determine (c, k) to minimize the expected percentage loss.

Here we consider a more complex game in which the player is offered several options
for a partial refund on each unused toss on payment of an additional upfront overhead fee.
Which partial refund offer should she choose? Having chosen the refund option, how should
she determine (c, k) to minimize the expected percentage loss?

Under partial refund offers, the player may choose a higher c and a higher k compared
to those in the no refund scenario. The optimal choice is discovered through computer
simulation, leaving open the theoretical development. Lessons learned from such games
empower all parties engaged in the marketplace to determine when to intervene and how to
make decisions to benefit from an opportunity and/or prevent a catastrophe.

Key words: Bernoulli variable; Reward random walk; Stopping time; Guaranteed refund.

AMS Subject Classifications: 60G50, 05C81

1. Introduction

It ought to be a common knowledge that when a casino offers you a game of chance and
you agree to play, on average you should expect to lose money: For otherwise, the Casino
would simply toss the game out. You willingly accept this anticipated loss in exchange
for deriving some entertainment pleasure and experiencing the excitement of winning a big
windfall (although that would happen only rarely). The casino must make money even after
paying windfalls, costs, staff salaries, subsidies and taxes. The lure of a game is irresistible
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when the game appears to be in favor of the player for then the casino can entice more players
play it more often, and earn more profit for itself. The casino, of course, knows the exact
long run prospects of each game it offers. Sarkar (2020) proposed and analyzed such a game,
but left as unsolved a more realistic, and more complex, problem of how to choose among
several refund policies. Here we take up that generalized problem and discover the optimal
choice for the player.

Both the original game and the generalized game serve as models for entrepreneurial
decisions and consumer choices. In repeated plays of the game, the optimal choice for each
party may be discovered by utilizing the theory of stochastic processes. We direct interested
readers to Ross (1996) and Medhi (1982) to encounter the general theory of stochastic
processes, to Lovasz (1993) to learn about random walks on graphs, and to Maiti and Sarkar
(2019) to study symmetric random walks on paths and cycles. However, to communicate
better with researchers outside mathematical sciences, here we rely on computer simulations
to discover the optimal choices. Lessons learned from the game will empower all parties
engaged in the marketplace to determine when and how to intervene in order to maximally
benefit from an opportunity and/or prevent a catastrophe.

In Section 2, we describe the original game proposed in Sarkar (2020) and summarize
the optimal choice for the player. In Section 3, we describe the modified game and an
expedited search algorithm to conduct the simulation study. In Section 4, we study each
refund option and discover the optimal choice of (c, k) through simulation. Section 5 gives
the properties of the optimal game within the optimal refund option. Section 6 translates the
lessons learnt from this generalized game of reward-earning binary random walk to decision
making in the marketplace.

All computations are done using the freeware R, and codes are given in the Annexure.

2. The Original Game

Figure 1: The usual dial of a clock and the parity dial

On a circle there are twelve nodes labeled (1, 11, 3, 9, 5, 7, 6, 8, 4, 10, 2, 0) going clockwise,
as shown in Figure 1. The labels are obtained from the usual dial of a clock by changing
the top node from 12 to 0 and by interchanging nodes within pairs (2, 11), (4, 9), and (6, 7).
Thus, all odd values are on the right half while all even values are on the left half of the dial.
Hence, this dial is called the parity dial.
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To understand the nature and properties of a binary random walk on any dial, we refer
the interested reader to Sarkar (2006). If this random walk also produces earned rewards
when a specific node is visited it becomes a reward-earning random walk. Such a reward-
earning binary random walk on the parity dial studied in Sarkar (2020): A player pays an
admission price of 25c + k cents, where c is the number of nodes she intends to visit and
capture and k is the number of times she wishes to toss a fair coin. The player begins at
Node 0. After each toss, the player moves one step clockwise if the outcome is heads (with
probability half), or one step counterclockwise if the outcome is tails; and she captures a
node on the first visit to it. The game ends as soon as either c nodes (other than Node 0)
are captured or k tosses are over. Then the player will earn as many nickels as the sum of
the labels of the captured nodes. How should the player determine c and k?

The choice of c = 1 is immediately ruled out because then the player must choose
k = 1, and pay 26 cents per play. She will earn either one or two nickels with probability
half each, or on average, (5 + 10)/2 = 7.5 cents. Therefore, she will lose 18.5 cents—a
whopping 71.2% loss! Next, for c = 2, Sarkar (2020) proves that the optimal choice of k is
6; and in that case, the player stands to lose about 11.7 cents or 21% of her wager of 56
cents. Thereafter, for 3 ≤ c ≤ 11, he obtains the optimal k via simulation (based on 105

iterations). We summarize his results in Table 1.

Table 1: For the game with no refund, the optimal k’s for each 3 ≤ c ≤ 11,
determine the optimal choice of (c, k) as (6, 28) with an expected loss of 9.69%
(marked by a †).

cents
c k price E[rew] E[loss] E[%loss]
3 10 85 70.13 14.87 17.50
4 16 116 102.27 13.73 11.84
5 22 147 131.53 15.47 10.53
† 6 28 178 160.76 17.24 † 9.69

7 36 211 189.72 21.28 10.09
8 44 244 220.29 23.71 9.72
9 54 279 248.65 30.35 10.88

10 64 314 279.96 34.04 10.84
11 72 347 304.72 42.28 12.18

Based on Table 1, we learn that the gambler’s best choice game is (c = 6, k = 28); and
with this choice, she faces a 9.69% expected loss. A gambler with a tolerance limit of 10%
loss can play this game. The only other choice within her tolerance limit is (c = 8, k = 44)
with a 9.72% loss. It is somewhat perplexing that (c = 7, k = 36) results in a higher expected
loss of 10.09% than either (c = 6, k = 28) or (c = 8, k = 44). But this can be explained by
noting that the node labels an odd distance away from Node 0 are typically smaller than
node labels at an even distance.
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3. The Generalized Game with Refund Options

To understand the need and the nature of the generalized game, let me paraphrase
a very productive conversation I had with one attentive listener when I gave a talk on the
above-stated original game at the 2020 Pune Conference of the SSCA. During high tea after
the conference ended, among other things, this compassionate (to a gambler who would play
this game) and extravagantly helpful (to me) gentleman spoke to me thus:

“When the gambler captures c nodes, she is happy. But wouldn’t she feel poorly
about forfeiting all the unused tosses she already has paid for?”

“Indeed, she would. That is the very essence of the decision-making problem in
choosing both c and k optimally. Having chosen a c, if the gambler picks too small a
k, she will likely not have captured all c nodes when she has tossed k times. On the
other hand, if she picks too large a k, by the time she has captured c nodes she would
have many unused tosses which she would forfeit. She must choose k cautiously.”

“You mentioned offering a guaranteed refund in exchange for the unused tosses. If
you refund a full penny for every unused toss, the game surely becomes more attractive
to the player. It may even become favorable to the gambler! Is that something the
Gambling House will allow?”

“A guaranteed refund does not mean a full refund. If it did, then the gambler would
simply pay for k = 1000 (or a large number thereabouts) knowing that there is no risk
of losing the excess payment. She would recover it all as soon as she captures c nodes,
which will happen with almost certainty. For all practical purposes, one can think as if
the player pays 25c at the start of the game and then pays one penny before each toss
until c nodes are captured, requiring a random number of tosses Kc. Alternatively,
the payment of 25c + Kc can be determined when the game ends. In either case, the
problem changes to choosing c alone. Furthermore, the Gambling House will likely
charge the player an upfront fee to purchase this option to get a 100% refund.”

I had not calculated the optimal c under the full refund scenario with or without any
fee since a 100% refund option was not on my mind prior to this conversation. Therefore,
I could not talk about the optimal choice of c, except to say that it is likely to be an even
number 6 or more, and to reiterate that that is not what I meant by a guaranteed refund.

For the benefit of my readers, I have since then carried out that missing simulation. R
codes are given in the Annexure. Table 2 summarizes the expected percentage loss for various
choices of c under 100% refund at overhead fees 0, 5, 10, . . . , 30 cents. I should point out that
in this scenario, the (random) number of tosses is not right truncated by a predetermined k
as in the original game; hence, the price paid is genuinely random (and it is determined when
the game ends with c nodes captured). Hence, the expected percentage loss is calculated
only after the game ends using the formula

E[%loss]= 100 × E[loss] + overhead fee
E[price] + overhead fee

Bear in mind that the very definition of expected loss has changed! One could pretend
as if 100 extra tosses are paid for and the extra payment is recovered as refund, in which
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Table 2: Determining optimal c (marked by a ∗) under a 100% refund option
bought upfront on payment of some overhead fee

cents E[%loss] when overhead fee is (in cents)
c E[price] E[rew] E[loss] 0 5 10 15 20 25 30
3 81.00 72.51 8.48 10.48 15.67 20.31 24.46 28.20 31.58 34.67
4 110.02 105.97 4.05 3.68 7.87 11.71 15.24 18.50 21.52 24.31
5 139.99 137.51 2.48 1.77 5.16 8.32 11.28 14.05 16.66 19.11
6 171.03 170.02 1.01 0.59 3.41 6.08 8.61 11.00 13.27 15.43
7 202.94 201.24 1.71 0.84 3.23 5.50 7.67 9.74 11.72 13.61
8 235.90 235.06 0.83 ∗0.35 ∗2.42 ∗4.40 6.31 8.14 9.90 11.59
9 270.10 265.52 4.58 1.70 3.48 5.21 6.87 8.47 10.02 11.52

10 305.01 299.98 5.03 1.65 3.24 4.77 ∗6.26 ∗7.70 ∗9.10 ∗10.46
11 341.19 330.00 11.19 3.28 4.68 6.03 7.35 8.64 9.88 11.10

case the percentage loss can be reduced artificially, since the denominator increases by 100
but the numerator remains the same. More extremely, if 1000 tosses are paid for then the
percentage loss is driven down to almost zero! Notwithstanding, to compare different values
of c, invoking monotonic relation, our adopted definition of expected percentage loss works
just fine. For the 100% refund option with an overhead fee of 14 cents or less (details are
not shown), the best choice is c = 8 (and a very large k), but for a fee of 15 cents or more, it
is c = 10. As anticipated, as the overhead fee increases, so does the player’s percentage loss.

An astute reader can anticipate how our post-conference conversation ended:

”If not a 100% refund of the price of the unused tosses, what then do you mean by
a guaranteed refund?”

”A guaranteed refund means a percentage of the purchase price of the unused tosses
will be refunded if the player had bought this option by paying an additional overhead
fee at the very outset of the game. For instance, in the original game, the guaranteed
refund is 0% for an overhead fee of 0 cents: The gambler gets nothing back on the
unused tosses; and pays no extra fee. The Gambling House could offer several options:
(1) 50% refund for a fee of 5 cents; (2) 60% refund for a fee of 7 cents; (3) 70% refund
for a fee of 10 cents; (4) 80% refund for a fee of 15 cents. In each case, we would
ask what is the optimum choice of (c, k)? When we answer these questions, we can
determine which of the four offers of guaranteed percentage refund is optimum.”

In this paper, I will answer the optimal choices in the modified game that offers a
partial refund of unused tosses for a modest fee upfront. A player who was intending to
play the original (c = 6, k = 28) game, when offered the modified game with partial refund,
has some incentive to pay for a few extra tosses at the outset in hope of improving her
chance of capturing all c = 6 nodes; and yet should she capture them early, she can recover
a percentage of her wager. What should be her best choice now? If this offer were available
at no overhead fee, the player would lower her expected percentage loss below that in the
original game (where it was 9.69%). But the presence of an overhead fee makes it challenging
to anticipate the expected percentage loss without studying the process in more details.
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Moreover, the offer of a partial refund may cause the player to rethink how many nodes
she should set out to capture. This paper is devoted to answering the optimal choice among
the four percentage refunds—50%, 60%, 70%, 80%—with associated overhead fees 5, 7, 10,
15 cents, respectively—and the corresponding optimal choice of (c, k).

4. Optimal Games Under Different Percentage Refunds

Suppose that the Gambling House offers the gambler for an upfront payment of 5 cents,
a 50% refund on the purchase price of all unused tosses by the time the player captures c
nodes. How should the player determine (c, k)? We leave to the reader to check that, as it
was in the original game, choosing c = 1 or c = 2 is not good for the gambler.

Proceeding in a routine manner, for every fixed 3 ≤ c ≤ 11, one can simulate the
expected loss for various choices of k ≥ c. However, a smarter search algorithm can be
implemented: Sarkar (2020) argued that for each contemplated c, the player is better off
choosing an even k ≥ c. Roughly speaking, this is because on the parity dial nodes at an
odd distance away from Node 0 have smaller labels compared to nodes at an even distance
away. Below we exhibit the simulation results for the choice of c = 8, and 50 ≤ k ≤ 60,
demonstrating that indeed k ought to be chosen an even number because for each odd k,
the expected percentage loss is lower at both of its even neighbors.

Table 3: For 50% refund at 5 cents, expected reward and expected loss for c = 8
and 50 ≤ k ≤ 60, exhibit that even values of k are preferable.

cents E[%loss]
c k price E[rew] E[loss] k odd k even
8 50 255 233.54 21.46 8.42
8 51 256 234.29 21.71 8.48
8 52 257 235.54 21.46 8.35
8 53 258 236.26 21.74 8.43
8 54 259 237.55 21.45 8.28
8 55 260 238.25 21.75 8.37
8 56 261 239.47 21.53 ∗8.25
8 57 262 239.90 22.10 8.44
8 58 263 240.82 22.18 8.43
8 59 264 241.64 22.36 8.47
8 60 265 242.62 22.38 8.44

Moreover, having found the optimal k for a specific c, say kc, the search for the optimal
k for (c + 1) can be expedited by taking k even, and not just larger than (c + 1) but larger
than kc. Henceforth, for all percentage refund options, we shall only look at even k > kc−1
corresponding to each contemplated c. In Tables 4 and 5, for the partial refund options
(1)–(4) we document the expected percentage loss corresponding to each c ∈ {3, 4, . . . , 11}
and selected k’s that help us determine the optimal (c, k). Finally, using Tables 4 and 5, we
choose the best among the four positive refund options (1)–(4).
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Table 4: Expected percentage losses for 3 ≤ c ≤ 11 and selected even k’s de-
termine the optimal (c, k), under refund options (1) and (2). For each refund
option, min E[%loss] within c is marked by ∗, and the minimum overall by #.

(1) 50% refund at 5 cents (2) 60% refund at 7 cents
c k price E[rew] E[loss] E[%loss] c k price E[rew] E[loss] E[%loss]
3 8 88 68.88 19.12 21.73 3 12 94 74.92 19.08 20.30
3 10 90 72.14 17.86 19.85 3 14 96 76.75 19.25 ∗20.05
3 12 92 74.35 17.65 ∗19.19 3 16 98 78.24 19.76 20.17
3 14 94 75.91 18.09 19.25 3 18 100 79.53 20.47 20.47
3 16 96 77.18 18.82 19.60 3 20 102 80.84 21.16 20.74
4 16 121 105.48 15.52 12.83 4 18 125 108.51 16.49 13.20
4 18 123 107.75 15.25 12.40 4 20 127 110.50 16.50 ∗12.99
4 20 125 109.53 15.47 ∗12.38 4 22 129 112.22 16.78 13.01
4 22 127 110.95 16.05 12.64 4 24 131 113.76 17.24 13.16
4 24 129 112.47 16.53 12.81 4 26 133 115.18 17.82 13.40
5 22 152 135.54 16.46 10.83 5 24 156 138.87 17.13 10.98
5 24 154 137.99 16.01 10.39 5 26 158 141.06 16.94 10.72
5 26 156 139.92 16.08 ∗10.31 5 28 160 143.17 16.83 ∗10.52
5 28 158 141.62 16.38 10.37 5 30 162 144.88 17.12 10.57
5 30 160 143.32 16.68 10.43 5 32 164 146.44 17.56 10.71
6 32 187 170.11 16.89 9.03 6 34 191 173.54 17.46 9.14
6 34 189 172.28 16.72 ∗ 8.85 6 36 193 175.55 17.45 9.04
6 36 191 174.07 16.93 8.86 6 38 195 177.52 17.48 8.96
6 40 195 177.21 17.79 9.12 6 40 197 179.16 17.84 ∗ 9.06
6 38 193 175.61 17.39 9.01 6 42 199 180.77 18.23 9.16
7 40 220 200.09 19.91 9.05 7 42 224 203.88 20.12 8.98
7 42 222 202.28 19.72 ∗ 8.88 7 44 226 205.81 20.19 8.93
7 44 224 204.09 19.91 8.89 7 46 228 207.88 20.12 ∗ 8.82
7 46 226 205.88 20.12 8.90 7 48 230 209.66 20.34 8.84
7 48 228 207.56 20.44 8.96 7 50 232 211.35 20.65 8.90
8 50 255 233.57 21.43 8.40 8 54 261 239.55 21.45 8.22
8 52 257 235.58 21.42 8.33 8 56 263 241.40 21.60 8.21
8 54 259 237.50 21.50 8.30 8 58 265 243.29 21.71 8.19
8 56 261 239.40 21.60 #∗ 8.28 8 60 267 245.20 21.80 #∗ 8.16
8 58 263 240.85 22.15 8.42 8 62 269 246.81 22.19 8.25
9 60 290 263.10 26.90 9.28 9 66 298 271.11 26.89 9.02
9 62 292 265.04 26.96 9.23 9 68 300 273.11 26.89 ∗ 8.96
9 64 294 266.98 27.02 ∗ 9.19 9 70 302 274.80 27.20 9.01
9 66 296 268.71 27.29 9.22 9 72 304 276.72 27.28 8.97
9 68 298 270.42 27.58 9.26 9 74 306 278.33 27.67 9.04
10 72 327 297.21 29.79 9.11 10 76 333 303.69 29.31 8.80
10 74 329 299.15 29.85 9.07 10 78 335 305.75 29.25 ∗ 8.73
10 76 331 301.05 29.95 ∗ 9.05 10 80 337 307.38 29.62 8.79
10 78 333 302.88 30.12 9.05 10 82 339 309.38 29.62 8.74
10 80 335 304.48 30.52 9.11 10 84 341 311.00 30.00 8.8
11 86 366 328.17 37.83 10.34 11 90 372 335.15 36.85 9.91
11 88 368 330.38 37.62 10.22 11 92 374 336.85 37.15 9.93
11 90 370 332.22 37.78 ∗10.21 11 94 376 338.76 37.24 9.91
11 92 372 333.74 38.26 10.29 11 96 378 340.62 37.38 ∗ 9.89
11 94 374 335.34 38.66 10.34 11 98 380 342.31 37.69 9.92
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Table 5: Expected percentage losses for 3 ≤ c ≤ 11 and selected even k’s de-
termine the optimal (c, k), under refund options (3) and (4). For each refund
option, min E[%loss] within c is marked by ∗, and the minimum overall by #.

(3) 70% refund at 10 cents (4) 80% refund at 15 cents
c k price E[rew] E[loss] E[%loss] c k price E[rew] E[loss] E[%loss]
3 14 99 77.55 21.45 21.67 3 22 112 85.29 26.71 23.85
3 16 101 79.20 21.80 21.59 3 24 114 86.88 27.12 23.79
3 18 103 80.77 22.23 ∗21.58 3 26 116 88.52 27.48 23.69
3 20 105 82.24 22.76 21.68 3 28 118 90.12 27.88 23.63
3 22 107 83.63 23.37 21.84 3 30 120 91.68 28.32 ∗23.60
4 20 130 111.54 18.46 14.20 4 26 141 118.38 22.62 16.04
4 22 132 113.54 18.46 ∗13.99 4 28 143 120.15 22.85 15.98
4 24 134 115.11 18.89 14.10 4 30 145 121.85 23.15 ∗15.97
4 26 136 116.87 19.13 14.07 4 32 147 123.49 23.51 15.99
4 28 138 118.35 19.65 14.24 4 34 149 125.07 23.93 16.06
5 28 163 144.46 18.54 11.38 5 34 174 151.79 22.21 12.76
5 30 165 146.39 18.61 ∗11.28 5 36 176 153.71 22.29 12.67
5 32 167 148.13 18.87 11.30 5 38 178 155.50 22.50 ∗12.64
5 34 169 149.89 19.11 11.31 5 40 180 157.04 22.96 12.75
5 36 171 151.51 19.49 11.40 5 42 182 158.81 23.19 12.74
6 38 198 179.28 18.72 9.45 6 46 211 188.85 22.15 10.50
6 40 200 181.21 18.79 ∗ 9.40 6 48 213 190.64 22.36 10.50
6 42 202 182.94 19.06 9.44 6 50 215 192.51 22.49 ∗10.46
6 44 204 184.77 19.23 9.43 6 52 217 194.24 22.76 10.49
6 46 206 186.40 19.60 9.51 6 54 219 195.95 23.05 10.53
7 48 233 211.84 21.16 9.08 7 58 248 223.73 24.27 9.79
7 50 235 213.64 21.36 9.09 7 60 250 225.54 24.46 9.79
7 52 237 215.57 21.43 ∗ 9.04 7 62 252 227.48 24.52 ∗ 9.73
7 54 239 217.34 21.66 9.06 7 64 254 229.07 24.93 9.82
7 56 241 219.15 21.85 9.07 7 66 256 230.89 25.11 9.81
8 58 268 245.87 22.13 8.26 8 70 285 260.11 24.89 8.74
8 60 270 247.84 22.16 8.21 8 72 287 262.02 24.98 8.70
8 62 272 249.71 22.29 #∗ 8.20 8 74 289 263.87 25.13 ∗ 8.69
8 64 274 251.38 22.62 8.19 8 76 291 265.68 25.32 8.70
8 66 276 253.39 22.61 8.26 8 78 293 267.24 25.76 8.76
9 72 307 279.68 27.32 8.90 9 82 322 292.56 29.44 9.14
9 74 309 281.39 27.61 8.94 9 84 324 294.30 29.70 9.17
9 76 311 283.46 27.54 ∗ 8.85 9 86 326 296.18 29.82 ∗ 9.15
9 78 313 285.11 27.89 8.91 9 88 328 297.96 30.04 9.16
9 80 315 286.95 28.05 8.90 9 90 330 299.63 30.37 9.20
10 84 344 314.41 29.59 8.60 10 100 365 333.37 31.63 8.67
10 86 346 316.45 29.55 8.54 10 102 367 335.23 31.77 8.66
10 88 348 318.38 29.62 ∗ 8.51 10 104 369 337.33 31.67 #∗ 8.58
10 90 350 320.02 29.98 8.57 10 106 371 338.65 32.35 8.72
10 92 352 321.70 30.30 8.61 10 108 373 340.42 32.58 8.73
11 98 383 345.96 37.04 9.67 11 112 402 363.42 38.58 9.60
11 100 385 347.67 37.33 9.70 11 114 404 365.38 38.62 9.56
11 102 387 349.84 37.16 ∗ 9.60 11 116 406 367.17 38.83 ∗ 9.56
11 104 389 351.32 37.68 9.69 11 118 408 368.85 39.15 9.59
11 106 391 353.13 37.87 9.68 11 120 410 370.66 39.34 9.60
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From Tables 4 and 5, we note that for the partial refund options of 50%, 60%, 70%
and 80% on payment of 5, 7, 10, 15 cents, respectively, the optimal (c, k) are (8, 56), (8, 60)
(8, 62) and (10, 104). Recall that in the original game with no refund the optimal game was
(6, 28). Thus, as the refund percentage increases, the gambler not only may choose to buy
more tosses, but also commit to capturing more nodes! The safety net of getting a partial
refund on prepaid excess tosses, makes the player more inclined to targeting a higher c and
choosing a higher k.

5. Properties of the Optimal Game Under the Optimal Refund Option

In the previous section, we learned that among the various refund options offered to
the gambler, the best is Option (2): 60% refund on payment of 7 cents. For this case, the
optimum (c, k) is (8, 60). This optimal game has admission price 25×8+60+7 = 267 cents.
For this optimum game, we exhibit some characteristics such as the number of tosses until
the game ends, the probability distribution of the number of nodes captured, the probability
distribution of the farthest node captured going clockwise from Node 0, and the probability
distribution of the reward earned (plus refund).

Based on a simulation of 106 (one million=ten lakhs) iterations of game (8, 60), we can
estimate the number of tosses until the game ends by capturing all 8 nodes using Figure 2.

Figure 2: The number of tosses until game (8, 60) ends by capturing 8 nodes.
About 11.6% of times the game captures fewer than 8 nodes in 60 tosses.

The probability of capturing 8 nodes in 8, 9 or 10 tosses are respectively 2−7, 2−8, 2−6.
This is supported by the simulation where out of 106 iterations the frequencies of 8, 9, 10
tosses are respectively 7790, 3896, 15632 (P-values of chi-square tests with one degree of
freedom are respectively .8027, .8758, .9582). We leave it to the inquisitive reader to explain
a curious feature observed in Figure 2: The relative frequencies for odd number of tosses are
smaller when compared to those of their two immediate neighboring even values!

The number of tosses until game (8, 60) ends with 8 nodes captured is shown in Fig-
ure 2. In 115,872 more iterations (not shown in Figure 2) fewer than 8 nodes are captured
in 60 tosses. For these iterations, how many nodes are actually captured? The answer is
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given in Table 6, which also shows the corresponding probabilities, which are correct to three
decimal places because their 95% confidence intervals are at most 0.001 wide (see Devore
and Berk, 2007, for example). All 8 vertices are captured 88.4% of times; 7 nodes 7.2% of
times and 6 or fewer nodes 4.4% of times.

Table 6: The simulated distribution of the number of nodes captured by game
(8, 60) shows about 11.6% of time not all 8 nodes are captured.

# nodes 1 2 3 4 5 6 7 8 sum
frequency 0 0 9 841 8823 34224 71975 884128 1000000

probability .000000 .000000 .000009 .000841 .008823 .034224 .071975 .884128 1.000000

Using the information in Figure 2 and Table 6, the number of tosses until game (8, 60)
ends has the following summary statistics (see R code in the Annexure):

N=106, Min=8, Q1=21, Q2=31, Mean=33.88, Q3=46, Max=60, SD=15.50

The probability distribution of the number of tosses left over when the game ends is
obtained simply by subtracting from 60 the number of tosses needed to capture 8 nodes (and
adding 0.115872 to the probability that no toss is left over). Thereafter, one can construct
the probability distribution of the refund amount by multiplying the number of leftover
tosses by the refund percentage.

Also, based on this same simulation, and using the built-in kernel density estimator
in R (see Silverman, 1986), the estimated probability density function of the reward earned
(plus refund) is shown in Figure 3, with its summary statistics given by

N=106, Min=64.4, Q1=235.2, Q2=248.2, Mean=245.2, Q3=264.2, Max=286.2, SD=27.82

Figure 3: The reward (plus refund) distribution in game (8, 60) exhibits
mean=245.2 (the + sign), SD=27.82, a 20.4% chance of winning (reward > 267
cents (the vertical line)), and an expected percentage loss of 8.18.
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Using the estimated density function given in Figure 3, we can infer (see Rohatgi,
2003, for example) some probabilities the gambler would like to know. While on average the
gambler loses 8.18% of her wager of 267 cents per game, about 20.4% of the time she earns
more reward (plus refund) than the wager. Thus, the game does not always end in a loss for
the player. Moreover, a gambler who has a tolerance limit of 10% loss, actually earns back
more than 90% of her wager (or 240.3 cents) about 66.1% of times, making the game quite
attractive to her!

Finally, note that Option (3), which offers a 70% refund on payment of 10 cents over-
head fee, is a close second best when the player chooses (c = 8, k = 62), with an expected
loss of 8.20%. We leave it to the interested reader to study its properties by adapting the R
codes given in the Annexure.

6. Lessons Learnt From The Game

The problem studied in Sarkar (2020) was formulated in response to an invitation to
deliver a keynote speech at the 2nd International Conference on “Frontiers of Operations
Research & Business Studies” held during 27–28 December 2019, at the Calcutta Business
School. The mission of FORBS (see FORBS, 2019) is described as follows:

Most often organizations are confronted with questions like how to make a good de-
cision? What is really a good decision? What constitutes a poor decision? Is there any
pattern in the decisions made? In the quest for finding answers to these questions, the
contributions of several disciplines like statistics, mathematics, sociology, economics,
information technology, operations research and behavioral science need to be acknowl-
edged. In other words “Decision Sciences incorporate an economic framework—a con-
sistent, rational and objective system to “price” each possible outcome, taking into
account risks and rewards.”

Sarkar (2020) demonstrated the essential elements of optimal decision making in a
rather simple model: Choose (c, k) to minimize the expected percentage loss in the reward-
earning binary random walk game on the parity dial. Here we have expanded that problem
to incorporate one more layer of complexity: First choose the refund policy offered at sev-
eral different options with associated overhead fees, and then choose (c, k) to minimize the
expected percentage loss.

We showed that when the gambler judiciously buys the optimal option for partial
refund, the game may become more favorable to the gambler than playing the original game
with no refund. However, we will be remiss if we did not mention that the Gambling House
still has the last laugh: It can, for instance, raise the overhead fee for each refund option
by, say, 5 cents. Then the best option for the gambler will be the original game with an
expected percentage loss of 9.79. The other refund options (1)–(4) has expected percentage
loss of 10.00, 9.853, 9.852, 9.805, respectively. To calculate these percentage losses, simply
take the ratio of expected loss and price after adding to both quantities the change in the
overhead fee, as in Table 2. See R codes in the Annexure. However, to keep the gambler
playing, the Gambling House cannot remain totally adversarial; it must keep the overhead
price in check. It is precisely this tension that keeps decision making exciting and intriguing.
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The reward-earning random walk game, translates in the marketplace into a decision
about investing sufficient resources to ensure a good chance of fulfilling the mission of a
venture. However, to avoid letting the unused part of the investment go to waste, the
entrepreneur will act prudently by purchasing an insurance to protect the resource. Thus, the
refund option can be thought of as an insurance policy. Should the entrepreneur accomplish
the goal of the venture and still have some resources left over, she will at least get back
a predetermined percentage as refund. The insurance company that underwrites such an
insurance plan likely has a market where they can resell the leftover resources and pass on
(part of) the proceeds to the insuree.

The central message of the reward-earning random walk games is that while facing un-
certainty of outcomes, an entrepreneur can and should make the best decision based on the
information available, and adjust the decision should the conditions change. A careful and
adequate planning and flexibility in decision making are necessary to maximize the expected
return from a venture.
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ANNEXURE

We document the R codes used to prepare Tables 2–6 and draw Figures 2 and 3.
### Table 2: Simulate expected nb of tosses, price reward, loss and %loss
## with 0% refund at 0 cents overhead fee
k=1000 # a very large number of tosses
reward=function(c,k){ # c=vertices to capture, k=tosses allowed

rf=c(1,11,3,9,5,7,6,8,4,10,2,0)
ber=2*rbinom(k,1,1/2)-1; cber=c(0,cumsum(ber));
(nv=cummax(cber)-cummin(cber)); l=sum(nv<c); l1=l+1

if(l<=k){cber=cber[1:l1]}
maxv=max(cber); vv=seq(min(cber),max(cber))
visited=vv*(vv>0)+(vv+12)*(vv<=0);
nvv=length(visited); rew=5*sum(rf[visited])
c(nvv,maxv,rew,l) }

el=matrix(0,9,6) # initialize E[%loss] matrix
for (i in 1:9){

data=replicate(10ˆ5,reward(i+2,k))
price=0+25*(i+2) + mean(data[4,]) # no fee yet
rew=mean(data[3,]); loss=price-rew
el[i,]=(c( round(i+2,0), round(k,0), round(price,2),

round(rew,2),round(loss,2), round(100*loss/price,2) ) }
el # calculate more columns as (E[loss]+fee)/(E[price]+fee)

### Tables 3, 4 and 5: How much is the random reward?
reward=function(c,k){ # c=vertices to capture, k=tosses allowed

rf=c(1,11,3,9,5,7,6,8,4,10,2,0) # nickels at the nodes
ber=2*rbinom(k,1,1/2)-1; cber=c(0,cumsum(ber));
(nv=cummax(cber)-cummin(cber)) # nb of non-zero vertices
l=sum(nv<c) # nb tosses until capture c nodes
l1=l+1; if(l<=k){cber=cber[1:l1]} # cber has an initial 0
maxv=max(cber); vv=seq(min(cber),max(cber)) # vertices captured
visited=vv*(vv>0)+(vv+12)*(vv<=0) # recode vertices captured
nvv=length(visited) # nb of nodes visited (includes Node 0)
rew=5*sum(rf[visited]) + (k-l)*0.60 # add refund (% of excess tosses)
c(nvv-1,maxv,rew,l) } # outputs

## (refund %, payment)=(.50, 5), (.60, 7), (.70, 10), (.80, 15)
## simulate expected nb of tosses, price, reward, loss and %loss
c=8 # 2, 3, 4, ..., 11
for (k in seq(58,62,2)){ # try a range of values of k (even)

price=10+25*c+k # overhead fee + admission
data=replicate(10ˆ5,reward(c,k))
rew=mean(data[3,]); loss=price-rew
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print(c( round(c,0), round(k,0), round(price,2),
round(rew,2),round(loss,2), round(100*loss/price,2) )) }

### Figures 2, 3 and Table 6: Properties of the optimum game
## (refund 60%, overhead 7 cents) (c=8, k=60)
c=8; k=60
data=replicate(10ˆ6,reward(c,k))
summary(data[4,]) # nb of tosses=61 means < 8 nodes captured

# Figure 2.
plot(table(data[4,])[1:53], las=1, ylab=’’, xlab=’tosses’,

main="Number of tosses until game (8, 60) captures 8 nodes",
sub="11.6% of time 60 tosses capture fewer than 8 nodes")

prop.test(7790,10ˆ6,1/128) # test P{ntoss=8)=2/2ˆ8=1/2ˆ7
prop.test(3896,10ˆ6,1/256) # test P{ntoss=9)=2/2ˆ9=1/2ˆ8
prop.test(15632,10ˆ6,1/64) # test P{ntoss=10)=2*8/2ˆ10=1/2ˆ6
nbtoss=data[4,]-(data[4,]==61) # nb tosses at game end (60 replaces 61)
summary(nbtoss); sd(nbtoss)

# Table 6.
summary(data[1,]); table(data[1,]) # nb of nodes captured

# Calculate E[%loss]
summary(data[3,]) # reward earned (plus refund)
price=25*c+k+7 # include overhead fee
rew=mean(data[3,]); loss=price-rew
print(c( round(c,0), round(k,0), round(price,2),

round(rew,2),round(loss,2), round(100*loss/price,2) ))

# Figure 3. Kernel Density Plot
d <- density(data[3,]) # returns density data
plot(d, las=1, xlim=c(100,300), ylab=’’,

main="Reward earned in 10ˆ6 plays of game (8, 60)",
sub="under 60% refund for 7 cents fee; price=267") # plots the results

abline(v=267); points(245.2,0, pch=3) # reference price and mean reward

sum(data[3,]>price)/10ˆ6 # prob of winning above the price
sum(data[3,]>0.90*price)/10ˆ6 # prob of earning above the 10% loss threshold

### What if the overhead fees change?
# Simply revise the expected % loss
eloss=c(21.60, 21.80, 22.29, 31.67)
price=c(261, 267, 272, 369)
for (i in -5:8){print((eloss+i)/(price+i))}
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Abstract  

 
Financial inclusion (FI) is a multi-dimensional phenomenon unlike its pre-cursor 

concepts of access to credit or access to savings bank account which define financial 
inclusion in a narrow sense. Hence, measuring financial inclusion is complicated and requires 
developing a suitable index.  Several scholars developed FI index mostly following 
methodology of Human Development Index.  Sharma (2008), Mehrotra (2009), Ambarkhane 
et al. (2012), Gupte et al. (2012), Goel and Sharma (2017) are a few of them. CRISIL’s 
Inclusix is an index at district level. Department of Financial Services (DFS), Ministry of 
Finance, Government of India also is constructing an index of financial inclusion to help 
monitoring over the years.  These indices covered different dimensions. All these indices are 
constructed using data from secondary sources and measure supply side access.  That is, they 
mainly represent the access an individual can have.  Actual use of a financial service by an 
individual or household is not reflected in these indices. World Bank’s Findex is one index 
developed based on survey data of individuals. We recommend that a FI index should 
manifest the actual usage of financial services in terms of breadth, intensity and extent of 
digital penetration. We, therefore, propose NAFINDEX, based on state-wise household level 
access to financial services based on data from NABARD All India Rural Financial Inclusion 
survey (NAFIS). Based on the field level data collected through NAFIS 2016-17, 
NAFINDEX has been constructed for different states of India.  Three dimensions, traditional 
banking products, modern banking products, and payment systems, are considered for 
constructing the index.  The average value of index at all India is 0.337. There are variations 
across states in the value of NAFINDEX and dimension indices.  Interestingly, many states 
which saw lower penetration of traditional banking products as reflected in the respective 
dimension index, the modern banking products and payment mechanisms showed higher 
values.   This underlines the direction for the future banking   expansion in hither to 
unreached states. 

 
Key words: Financial inclusion; Index; NAFINDEX 
 
1. Introduction  

 

Financial inclusion is increasingly being recognized world over as a key driver of 
economic growth and poverty alleviation. Apart from these benefits, financial inclusion (FI) 
imparts formal identity, provides access to the payments system and to savings safety net like 
deposit insurance, and enables the poor to receive direct benefit transferred in a leak-proof 
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manner. At a macro level, greater FI is considered crucial for sustainable and inclusive socio 
economic growth for all.  However, the FI is not an end in itself as it is only a means to reach 
higher levels of development. The potential for development in the various sectors of the 
economy such as primary sector (agriculture and allied sectors) and Micro, Small and 
Medium Enterprises (MSME) sector is enormous. However, the limited access to affordable 
financial services such as savings, loan, remittance and insurance services by the vast 
majority of the population in the rural areas and unorganised sector is believed to be acting as 
a major constraint to the growth impetus in these sectors. It is widely believed that access to 
affordable financial services - especially credit and insurance - enlarges livelihood 
opportunities and empowers the poor to take charge of their lives. Such empowerment also 
adds to social and political stability in the economy. 

2. What is Financial Inclusion?  
  

With an objective to extend such financial services to a sizeable majority of population 
particularly who continue to remain excluded from the opportunities and services provided by 
the financial sector, a Committee on Financial Inclusion (CFI) was set up by the Govt. of 
India under the Chairmanship of Dr. C. Rangarajan in 2006. This Committee on Financial 
Inclusion (Rangarajan, 2008) defined Financial Inclusion as:  

 
“process of ensuring access to financial services and timely and adequate credit 
where needed by vulnerable groups such as weaker sections and low income groups 
at affordable costs.” 

 
The report identified demand and supply sides of financial services and emphasised on 

improving human and physical resource endowments. Subsequently, Planning Commission, 
Govt. of India (2009) in a Report of the Committee on Financial Sector Reforms mentioned:  

 
“Financial Inclusion is not only about credit but involves a wide range of Financial 
Services including savings accounts, insurance and remittance products. Moreover, 
credit provision without adequate measures to create livelihood opportunities and 
enhance credit absorption amongst poor will not yield desired results.”  
 

Emphasizing the importance of those financial products, the report recommended that 
access to safe and remunerative methods of savings, remittances, insurance and pension need 
to be expanded. They suggested crop insurance for farmers and health insurance for the poor 
as vulnerability reducing instruments. 
 

The recent developments in banking technology have transformed banking from the 
traditional brick-and-mortar infrastructure like staffed branches to a system supplemented by 
other channels like automated teller machines (ATM), credit/debit cards, internet banking, 
online money transfers, mobile money, UPI, etc. The moot point, however, is that access to 
such technology is restricted only to certain segments of the society. Indeed, some trends, 
such as increasingly sophisticated customer segmentation technology – allowing, for 
example, more accurate targeting of certain sections of the market – have led to restricted 
access to financial services for some groups. There has been a growing divide, with an 
increased range of personal finance options for a segment of high and upper middle-income 
population on one hand and a significantly large section of the population who lack access to 
even the most basic banking services on the other. This is termed “financial exclusion”. 
These people, particularly, those living on low incomes, cannot access mainstream financial 
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products such as bank accounts, credit, remittances and payment services, financial advisory 
services, insurance facilities, etc. The essence of financial inclusion is in trying to ensure that 
a range of appropriate financial services is available to every individual and enabling them to 
understand and access those services. Total financial inclusion or “Sampoorn Viteeyea 
Samaveshan” (SVS) envisaged to cover six broad areas, viz., (1) Ensuring every district with 
1,000-5,000 households had access to banking services within 5 kms by March 2016; (2) 
Provide financial literacy; (3) Provide basic banking for all beneficiaries of government 
schemes by March 2016; (4) An overdraft of Rs. 5,000; (5) Micro insurance; and (6) Pension 
scheme for the unorganized sector (Mehta and Shah, 2014). Now the question arises, how do 
we get to know the level of financial inclusion of a population in a geography? This 
necessitates measurement of level of financial inclusion through an objective tool say 
financial inclusion index.   

3. Why Financial Inclusion Should be Measured? 
 

Financial inclusion is a key policy area and the central banks world over has an interest 
in it. Greater financial inclusion is essential for sustained economic welfare and for reducing 
poverty. It also supports economic, monetary and financial stability, by making saving and 
investment decisions more efficient, enhancing the effectiveness of monetary policy 
instruments, and facilitating the functioning of the economy (IFC Bulletin No. 38, Bank for 
International Settlements). In turn, economic stability helps to develop and strengthen a 
smoothly functioning financial system that can support financial inclusion. Therefore, it is 
very essential to measure financial inclusion objectively.  

4. How to Measure Financial Inclusion? 
 

Now, the question arises, how we measure financial inclusion. Financial inclusion is a 
multi-dimensional phenomenon and hence, its measurement remains inadequate if crucial 
dimensions are not included. Further, data on various indicators of financial inclusion raise 
important issues. Well-founded data frameworks are essential while developing financial 
services for the poor, in both formal and informal markets. Appropriate indicators in adequate 
number are a precondition for good financial inclusion measurement. They ensure that 
financial inclusion is properly assessed and that policies aimed at it are adequately 
implemented, monitored, and adjusted as required. Good statistics can also help to strike a 
fine balance between encouraging innovation and the growth of financial services on the one 
hand, and ensuring that financial stability is preserved, on the other.  

5. Developing Indices of Financial Inclusion 

Measurement of financial inclusion could be done through developing a suitable 
financial inclusion index (FII). A composite financial inclusion index, provides scope for 
multiple dimensions of financial inclusion to be reduced to a single one, making it simpler for 
analysts and policymakers alike. In general, such indices have no units and are constructed by 
making all the measured dimensions comparable. Such an index can be a valuable instrument 
to diagnose the financial inclusion situation for a specific geographic location, and to 
facilitate spatial and temporal comparisons. In turn, the index based on a set of identified key 
performance indicators can be established as a benchmark and used to identify best practices. 
Nevertheless, FII cannot be considered as a universal or exclusive policy tool. In fact, 
developing composite index is not a goal in itself.  The quality of underlying data, however, 
is crucial.  
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Once we construct an index and measure financial inclusion, we can strive to achieve 
beyond its benchmark level. However, how do we measure financial inclusion depends on 
how we define it. In India, there have been several attempts to measure financial inclusion 
based on proportion of adult population having access to formal banking system, proportion 
of adults having bank account, bank accounts per 1000 adult population, ATMs per 1000 sq. 
km, population being serviced per branch, etc. However, all these are supply-side factors 
determining the status of financial inclusion. Similarly, there are demand-side factors such as 
income level, credit absorption capacity, financial awareness and literacy level of people, 
availability of livelihood opportunities in the area, etc. which determine the level of financial 
inclusion of a particular geography. Further, the quality of financial services being supplied 
and availed is another dimension determining the quality of financial inclusion.  Thus, 
financial inclusion is a multi-dimensional phenomenon that can be better summarised by a 
composite index.  The financial inclusion index (FII) should be such that: (i) it represents the 
true situation as far as possible; (ii) it is simple and easy to compute so that it is amenable for 
comparison; (iii) it should have meaningful bounds (say 0 and 1); and (iv) it should have 
monotonicity (higher values indicating higher level of financial inclusion).  
 

 There are 4 Steps to be followed in constructing FII. Develop a clear theoretical 
framework, to begin with, to have a sound basis for selecting the individual indicators of 
interest. Second, define precisely the data content, analysis, weighting and aggregation 
scheme for the selected indicators. Third, conduct sensitivity and robustness analysis to 
ensure quality. For instance, the indicator should not change dramatically if one of the 
individual components is excluded, or if a different scheme of weights is used. Lastly, create 
a framework for representing and communicating information provided by an FII, especially 
when making cross-country comparisons on the overall performance of the index, and the 
contribution of the various indicators to it.  

6. Various Approaches to Construction of Index of FI  

FI index is constructed using multi-dimensional framework representing demand and 
supply factors. Beck, Kunt and Peria (2007) make a clear distinction between (1) access and 
the possibility of use, and (2) the actual use of financial services. Honohan (2005) included 
contribution of financial access to household wellbeing and firm productivity on demand 
side, while product/service design (usefulness for the poor), cost and information barriers to 
access on supply side.  And, they used following financial access indicators: 

  
1. Payments: Inland and international remittances –crucial for the families dependent 

on migrant income.  
2. Savings mobilization (deposit services).  
3. Monitoring of users of funds (mechanisms for building credit worthiness)  
4. Transforming Risk (Insurance etc.)  

 
Sarma (2010) considered 3 dimensions: penetration (number of bank accounts per adult 

population), availability (number of banking outlets (branches and ATMs) per 1000 
population), and usage (volume of credit and deposit as proportion of GDP). Arora (2010) 
considered outreach, ease, and cost. Outreach is measured by branch and ATM penetration 
per area and population. Ease is measured by (a) minimum amount to open saving account; 
(b) minimum amount to maintain saving account; and (c) number of documents required to 
open bank account. Cost includes fees for different services offered by the bank. Here again, 
all the dimensions are related with banks only, and other financial services are left out in the 
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process. Gupte, Venkataramani and Gupta (2012) considered four dimensions, namely, 
outreach, usage, ease, and cost of transaction, which are combined taking geometric mean. 
Kunt and Klapper (2012) also measured financial inclusion using four indicators, viz., (1) 
formal accounts; (2) savings behavior; (3) sources of borrowing, purposes of borrowing, and 
use of credit cards; and (4) use of insurance products. Rahman (2013) considered four 
indicators, namely, convenient accessibility, take up rate, responsible usage, and satisfaction 
level. All are assigned equal weights adding to unity.  Yorulmz (2013) followed the method 
suggested by Sarma (2008) and used multi-dimensional approach. Normalized inverse 
Euclidean distance from the ideal point for three dimensions, access, availability, and usage 
are considered. A summary of various Researcher/Social Scientists and variables used by 
them are presented below (Table 1). 

 
Table 1: Summary of various researcher/social scientists and variables used  
 

Researchers Variables used 
Beck, Kunt and Peria (2007)  (1) Access and possibility of use; and (2) Actual use  
Honohan (2005)  1. Payments, 2. Savings mobilization, 3. Monitoring of 

users of funds and 4. Transforming Risk  
The Consultative Group to 
Assist the Poor (2009)  

1. Savings, 2. Payments, 3. Credit and 4. Delivery  

Sarma (2010)  1. Penetration, 2. Availability and 3. Usage  
Arora (2010)  1. Outreach, 2. Ease and 3. Cost  
Rahman (2013)  1. Convenient Accessibility, 2. Take Up Rate, 3. 

Responsible Usage and 4. Satisfaction level.  
Gupte, Venkataramani and 
Gupta (2012)  

1. Penetration, 2. Availability, 3. Usage 4. Ease and 5. 
Cost.  

Kunt, Klapper (2012)  1. Formal accounts (a. the mechanics of the use, b. 
purpose, c. barriers, d. alternatives to formal accounts, e. 
penetration and f. receipt of payments),  
2. Savings behavior (a. use of accounts, b. use of 
community-based savings methods and c. the prevalence 
of savings goals),  
3. Sources of borrowing, purposes of borrowing, and use 
of credit cards and  
4. Use of insurance products  

Yorulmz (2013)  1. Access, 2. Availability and 3. Usage  
Credit Rating and 
Information System of 
Indian Ltd. (CRISIL) (2013)  

1. Branch penetration, 2. Credit  

Amberkhane et al. (2014) Drag factors besides demand, supply and infrastructure 
 

Amberkhane et al. (2014) considered drag factors besides demand, supply, 
infrastructure dimensions to construct FI index.  On demand and supply sides the indicators 
are related banks, NBFCs and insurance with 50% weight to banks and 25% weight for each 
of the other two. On supply side, the indicators are about spread of branches or outlets. On 
demand side, the indicators are related to deposits, loans, remittances, density of SHGs, 
insurance penetration, etc. Infrastructure indicators are on irrigation, transport, power, 
literacy, and health. Drag factors considered are population growth, law and order situation, 
and corruption.  The values of all indicators are normalized to converts values of indicators 
between 0 and 1 using formula below: 
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di =  (Ai – m)/(M – m)        (1) 
    

where, for ith State  
 
di is the normalized value of indicator.  
Ai is the actual value of indicator.  
M is maximum value of indicator.  
m is the minimum value of indicator. 

 
Then FI index is the Euclidean distance measured by using displaced ideal (D.I.) method. 
Financial inclusion index for rth state was obtained by inverse normalized distance from the 
ideal as given below:  
 

√{ (1 – sr)2 + ( 1 – dr)2 + ( 1 – ir)2 }  
    1 −    ------------------------------------------                   (2) 
  √ 3   

 
The term √{ (1 – sr)2 + ( 1 – dr)2 + ( 1 – ir)2 } in (2) above is the Euclidean distance of 

the point (sr, dr, ir), i.e. position of rth State from the ideal (1, 1, 1) (This is the distance 
between the points Sr and P in Figure 1) and dividing it by √3 normalizes it, in three 
dimensional space. Further subtracting this from 1 (i.e. normalized distance of ideal point 
from the origin) gives inverse normalized distance, which is the index. This Index satisfies all 
intuitive properties of an index suggested by Nathan, Mishra, and Reddy (2008); namely 
Normalization, Anonymity, Monotony, Proximity, Uniformity, and Signalling.  

Figure 1: Diagrammatic representation of Euclidean distance method  
Source: Nathan, Mishra and Reddy (2008) 
 

The final Financial Inclusion Index is derived after applying the drag factors. Suppose 
Dr is the drag index for rth state, the impact factor is taken as  

 
1/(1+ Dr)    (3) 
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Comprehensive Final Inclusion Index is arrived at by multiplying impact factor as above with 
Financial Inclusion Index obtained earlier.  

Points of difference with other methodologies 
 
(1)  Method is like UNDP approach following multidimensional approach  
(2)  This method uses Linear Averaging method for calculation of indices of Demand, 

Supply and Infrastructure dimensions, whereas Displaced Average Method is used for 
combining three indices.  

(3)  Signalling characteristics of D.I. Method is considered more suitable to proposed index 
as it indicates unique optimal path to reach higher value. Moreover, the signalling 
characteristic implies that an improvement in a dimension that has lower value is more 
important than an equivalent improvement in a dimension that has a higher value.  
Methodology suggested is flexible as any other relevant factor or indicator identified 
can be added to any of the dimensions or in drag.  

 
However, it is questionable if an index to measure a phenomenon shall include 

explanatory factors such as infrastructure related or drag factors. For instance, higher 
corruption may inhibit inclusion because of which the financial inclusion index may be lower 
in a state.  We consider it inappropriate to multiply with drag factor.  Even if inclusion of 
infrastructure dimension is justified, some indicators therein are about physical aspects of 
infrastructure.  Certain others are proxies. For instance, female literacy cannot be taken as 
proxy for educational infrastructure.  This is a methodological issue.  
 
Goel and Sharma (2017) have used following parameters for constructing index: 
 

• Banking Penetration (D1) - demographic branch penetration i.e., number of accounts 
(deposits and loans) per 1,000 populations with different financial institutions (d1).  

• Availability (D2) of banking services – number of ATMs per 1,00,000 population (d2). 
• Number of bank branches per 1,00,000 population (d3),  
• Number of ATMs per 1,000 sq. km (d4)  
• Number of scheduled commercial banks per 1,000 sq. km (d5). 
• Access to Insurance (D3) – number of life insurance (LIC) offices (d6).  
 

The indicators are normalised, and indices are constructed using weights.  The FII is 
measured as the simple average of two indices, X1 and X2, measured, respectively, based on 
distance from zero, and the ideal point, w, for each indicator.    
 

dd = Wd∗ (Ad  – md)/(Md – md) (4) 
   
where,  
 
wd = Weight attached to the dimension d, 1≥ wd ≥ 0;  
Ad = Actual value of dimension d;  
md = Minimum value of dimension d;  
Md = Maximum value of dimension d;  
dd = Dimensions of financial inclusion d. 
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(5) 

 

                     
(6) 

 

 
(7) 

 
Depending on the value of FII, the time period under study has been categorized as  
 
1.  0 ≤ FII ≤ 0.4; indicates low financial inclusion, LFI. 
2.  0.4 < FII ≤ 0.6; indicates medium financial inclusion, MFI. 
3.  0.6 < FII ≤ 1; indicates high financial inclusion, HFI.  
 

From the computation of FII across a time period of twelve years, India can be 
categorized under low financial inclusion during 2005 to 2012. During this time period, the 
value of FII ranged between 0 - 0.4. During 2013, condition of financial inclusion improved, 
and India fell under medium financial inclusion with FII from 0.4 to 0.6. The objective of 
inclusive growth was achieved further during 2014-2015 and India fall under high financial 
inclusion range in this time period. The value of FII ranged from 0.6 to 1. Unlike earlier 
studies where only indices such as banking penetration, availability of banking services and 
usage of banking system were used, Goel and Sharma (2017), included indicators such as 
access to savings and access to insurance also. Also, FII is constructed for a longer period of 
twelve years.  
 

Sriram and Sundaram (2015) measured FII using 3 dimensions, viz., access, 
availability, and usage. These dimensions are assigned weights of 1 for access and 0.5 each 
for the remaining two. Access is measured through number of bank accounts in the area, 
availability, through number of access points (branches, ATMs, banking correspondents) in 
the area, and, usage, through number of accounts (savings, deposits, loan and credit) held by 
respondents.   These dimensions are combined to compute FII as the difference of square root 
of Euclidean distance with reference to the ideal (i.e. weight) from unity. The formula is as 
below: 
 

FII = 1 –sqrt{[(1 – Pi)2 + (0.5 – Ai)2 + (0.5 – Ui)2] / 1.5}          (8) 
 
where, 
 
FII = Financial Inclusion Index 
Pi = Access 
Ai = Availability 
Ui = Usage 
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Sarma (2008) has computed the values of IFI for 54 countries using the three basic 
dimensions of financial inclusion–accessibility, availability and usage of banking services. 
Accessibility has been measured by the penetration of the banking system proxied by the 
number of bank A/C per 1000 population. Availability has been measured by the number of 
bank branches and number of ATMs per 100,000 people. The proxy used for the usage 
dimension is the volume of credit plus deposit relative to the GDP. Gupte et al. (2012) 
considered 4 dimensions, outreach, usage, ease and cost. Outreach has two sub-dimensions, 
penetration, and availability. Ease too has two, directly related, and inversely related.  Total 5 
indicators were included, and no indicators were considered for ease and cost dimensions.   
 

Demirguc-Kunt and Klapper (2012) delineated the methodology and computing 
Global Findex which measured the use of financial services (demand) as opposed to the 
access (supply) to them.  Several indicators were used for computing Findex. The first set of 
indicators focuses on formal accounts; the mechanics of the use of these accounts (frequency 
of use, mode of access); the purpose of these accounts (personal or business, receipt of 
payments from work, government, or family); barriers to account use; and alternatives to 
formal accounts (mobile money). The account penetration indicator measures individual or 
joint ownership of formal accounts—accounts at a formal financial institution such as a bank, 
credit union, co-operative, post office, or microfinance institution. It includes those who 
report having a debit or ATM card tied to an account. Indicators relating to the receipt of 
payments measure the use of formal accounts to receive wages (payments for work or from 
selling goods), payments or money from the government, and family remittances (money 
from family members living elsewhere).  The second set of indicators focuses on savings 
behaviour. This relates to the use of accounts, as people often save at formal financial 
institutions. Other indicators explore the use of community-based savings methods and the 
prevalence of savings goals.  The third set focuses on sources of borrowing (formal and 
informal); purposes of borrowing (mortgage, emergency or health purposes, and the like); 
and use of credit cards.  The fourth focuses on use of insurance products for health care and 
agriculture. 
 

Most of the above are at country level and one or two are there for states. Credit 
Rating and Information Services of Indian Ltd (CRISIL) (2013) calculated index, Inclusix, 
available at district level.  It considered three dimensions, namely branch penetration, credit 
penetration and deposit penetration.  However, it has serious limitations in terms of coverage 
of dimensions and indicators.  It is only in terms of number of accounts and not amount. 
Further, it covers scheduled commercial banks data only.  
 

Mehrotra et al. (2009) also built up an index for financial inclusion using similar kind 
of aggregate indicators like number of rural offices, number of rural deposit accounts, volume 
of rural deposit and credit from banking data for sixteen major states of India. Here also, 
Financial Inclusion Index is estimated at the district level in India. 

8. Issues/Limitations with Existing Measures 

Whatever existing measures were used so far, they had some issue or the other to be 
resolved/improved upon. Some of them are as under: 

 
• Mostly based on secondary and administrative data though ‘demand side’ and ‘usage’ 

based indicators are incorporated. Exceptions like Findex exist 
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• Large scale survey-based data not used. Again, Findex is an exception.  There too, the 
sample for any individual country is limited and representative at country level only.  

• Mix up between indicators and their drivers is an issue.  The question is should the 
financial inclusion index should combine indicators of access and/or use as well as 
factors influencing these indicators, together.   

• Many dimensions and large number of indicators are available. Should there be any 
standardization and consensus on indicators?  

9. Index Based on NAFIS data 

To take care of some of the limitations of the existing measures, we have tried to 
build an index, NAFINDEX, based on NABARD Rural Financial Inclusion Survey (NAFIS) 
2016-17 data.  NAFIS was undertaken by NABARD pan-India during 2016-17 covering both 
financial and livelihood aspects of 40000 sample households across 29 states. The survey 
covered all aspects of financial inclusion from a household perspective, viz., savings, 
borrowing, investment, remittances and payments, and insurance. Besides, the survey also 
covered financial literacy and experience of households with payment mechanisms.    
 

The index is generated at all India and state-level based on the field level data 
collected from households. For constructing NAFINDEX, we covered three dimensions – 
traditional banking products (T), modern banking services (M), and payment mechanisms (P).  
Traditional banking products covered savings, investments, loans, and others (insurance & 
pension); modern banking services included usage level of ATMs, internet banking, and 
mobile banking; and, payment mechanisms covered usage of cheque and credit/debit card as 
well as ease of using them. The indicators used and weights assigned for this Index are given 
in Table 2. 
 
Table 2: Indicators used for constructing NAFINDEX 
 
Dimension Service/sub-

dimension 
Indicator Symbol of 

normalised 
indicator 

Weight 

Traditional 
Banking 
Products  
   
   
   
   
   
   
   

Savings  % households that made any saving in 
the last 1 yr  

T11 0.125  

   mean savings (with all agencies) per 
household in the last 1 year [base: saver 
household who reported their saving 
amount]  

T12 0.125  

Investment  % households that made any investment 
in the last one year  

T21 0.125  

   mean investment in all assets for 
household reporting any investment in 
the last one year  

T22 0.125  

Loans  incidence of indebtedness  T31 0.125  
   average outstanding debt per indebted 

household (rs.)  
T32 0.125  

Others  % households with at least one member 
having any insurance  

T41 0.125  

   % households having pension  T42 0.125  
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Modern 
Banking 
services  
   
   
   
   
   

usage  % ATM users  M11 0.167  
   % internet banking users  M12 0.167  
   % mobile banking users  M13 0.167  
Ease in 
using  

% users having ease of using ATM M21 0.167  

   % users having ease of using internet 
banking  

M22 0.167  

   % users having ease of using mobile 
banking  

M23 0.167  

Payment 
Mechanisms  
   
   
   

usage  % users of cheque  P11 0.25  
   % users of debit/credit card  P12 0.25  
Ease in 
using  

% users having ease in using cheque  P21 0.25  

   % users having ease in using debit/credit 
card  

P22 0.25  

 
The indicators are combined to form dimension indices which are in turn combined into 
NAFINDEX. The values of all indicators are normalized to scale down values of indicators 
between 0 and 1 using formula at (1).  Individual dimension indices are computed as below: 
 
Tn = ∑(Wij*Tij) 
Mn = ∑(Wij*Mij) 
Pn = ∑(Wij*Pij)  
 
where,   
Tn is the dimension index for traditional banking products for nth state;  
Mn is the dimension index for modern banking services; and, 
Pn is the dimension index for payment mechanisms.  
  
Subscripts i and j stand for sub-dimension and indicator, respectively.   
 
NAFINDEX = 3√(Tn*Mn*Pn) 
 
We have fitted a linear regression model to understand the explanatory factors for variation of 
NAFINDEX across states. 
 
Dependent variable: NAFINDEX = Financial Inclusion Index  
 
Independent variables: 
 

Mf-membership  = index of per cent HH having membership with microfinance 
institutions 

% trained    = proportion of HH received training 
income index  = index of HH income 
% institutional loan = share of institutional loan in total 

The regression is worked for agricultural households, non-agricultural households and 
all rural households.    
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10. State-wise NAFINDEX Values 
 

The state wise Index of FI calculated based on NAFIS data are given in Table 3.  The 
NAFINDEX for all India is 0.337 in a scale of 0 to 1. The value of the index for banking 
products dimension is 0.307. The value for the payment mechanisms dimension is the highest 
at 0.370 followed by 0.345 for banking services.  Punjab, Kerala, and Karnataka ranked top 
three states in banking products dimension while Bihar, Chhattisgarhi, and Madhya Pradesh 
are at the last three positions.  Goa, Manipur, and Nagaland are at the top for banking services 
dimension and Jharkhand, Madhya Pradesh, and Meghalaya are at the bottom.  For the 
payment mechanisms dimension, top ranking states are Goa, Assam, Manipur, and Tripura 
while Uttarakhand, Rajasthan, and Chhattisgarhi are at the bottom. 

 
Table 3: NAFINDEX values for different states and all India 
 

State Banking 
products 

Rank Banking 
Services 

Rank Payment 
mechanism 

Rank NAFINDEX Rank 

Goa 0.472 5 0.946 1 0.761 1 0.600 1 
Punjab 0.617 1 0.473 12 0.383 19 0.486 2 
Karnataka 0.533 3 0.430 14 0.438 13 0.483 3 
Telangana 0.482 4 0.563 8 0.478 8 0.480 4 
Andhra 
Pradesh 0.424 7 0.703 4 0.529 5 0.473 5 

Kerala 0.609 2 0.446 13 0.362 21 0.470 6 
Manipur 0.385 12 0.791 2 0.558 3 0.464 7 
Tripura 0.366 14 0.523 10 0.558 3 0.452 8 
Jammu & 
Kashmir 0.420 8 0.427 15 0.450 12 0.435 9 

Odisha 0.379 13 0.381 24 0.477 9 0.425 10 
Haryana 0.409 10 0.328 26 0.423 14 0.416 11 
Mizoram 0.322 16 0.580 6 0.476 10 0.392 12 
Assam 0.237 21 0.482 11 0.625 2 0.385 13 
Himachal 
Pradesh 0.460 6 0.565 7 0.310 23 0.377 14 

Meghalaya 0.318 17 0.240 29 0.403 17 0.358 15 
Arunachal 
Pradesh 0.337 15 0.353 25 0.374 20 0.355 16 

Sikkim 0.253 20 0.678 5 0.486 7 0.351 17 
Nagaland 0.318 17 0.734 3 0.325 22 0.322 18 
West Bengal 0.202 25 0.419 16 0.507 6 0.320 19 
Maharashtra 0.224 22 0.416 18 0.416 16 0.305 20 
Jharkhand 0.200 26 0.321 27 0.451 11 0.301 21 
Gujarat 0.215 24 0.531 9 0.420 15 0.300 22 
Uttar Pradesh 0.217 23 0.417 17 0.397 18 0.294 23 
Tamil Nadu 0.387 11 0.404 20 0.208 25 0.284 24 
Uttarakhand 0.420 8 0.401 21 0.189 27 0.281 25 
Bihar 0.198 27 0.387 23 0.264 24 0.229 26 
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State Banking 
products 

Rank Banking 
Services 

Rank Payment 
mechanism 

Rank NAFINDEX Rank 

Rajasthan 0.276 19 0.398 22 0.178 28 0.222 27 
Madhya 
Pradesh 0.141 29 0.266 28 0.195 26 0.166 28 

Chhattisgarh 0.160 28 0.411 19 0.055 29 0.094 29 
All India 0.307   0.345   0.370   0.337   
 

Table 4 gives results of linear regression model estimated to explain the variation in 
NAFINDEX.  Of the four variables included in the model two variables Mf-membership and 
income index are significant for agricultural, non-agricultural and overall rural households.  
Proportion of households trained has significant effect on NAFINDEX.  That is, states where 
the penetration of microfinancing institution is higher and where households reported higher 
income, the financial inclusion index is also higher. The NAFINDEX among non-agricultural 
households is higher in states with higher proportion of households with trained households.   
The explanatory of power the regression is  48 to 55 per cent and is statistically significant. 

  
Table 4: Factors explaining variation in NAFINDEX 
 
Variable/description Particular Agri HH Non-Ag HH Rural HH 
Constant Coefficient 0.252247 *** 0.140434 *** 0.211313 *** 

std error 0.0518705 0.0486343 0.046158 
p - value <0.0001 0.0081 0.0001 

Mf-membership 
(index of per cent HH 
having membership 
with microfinance 
institutions) 

Coefficient 0.204269 *** 0.232292 *** 0.219316 *** 
std error 0.0573099 0.0708419 0.0646751 
p - value 0.0016 0.0032 0.0024 

% trained 
(proportion of HH 
received training)  

Coefficient −0.00254901 0.186124 *** 0.0588672 
std error 0.0683906 0.0720409 0.0693977 
p - value 0.9706 0.0163 0.4047 

income index 
(index of HH income)  

Coefficient 0.243671 *** 0.165032 ** 0.294322 *** 
std error 0.0768699 0.0841741 0.0831651 
p - value 0.0041 0.0616 0.0017 

% institutional loan 
(share of institutional 
loan in total) 

Coefficient −0.0352766 0.102054 −0.0385928 
std error 0.0826278 0.073567 0.0792173 
p - value 0.6732 0.1781 0.6306 

Note: ***, ** significant at 1% and 5%, respectively 
Mean dependent var 0.346811 0.365558 0.362676 
Sum squared residual 0.136775 0.208367 0.168062 
R-squared 0.478384 0.546915 0.499992 
F(4, 24) 5.502705 7.242553 5.999799 
Log-likelihood 36.52308 30.41914 33.5362 
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11. Conclusion 

Based on the field level data collected through NAFIS 2016-17, NAFINDEX has been 
constructed for different states of India.  Three dimensions, traditional banking products, 
modern banking products, and payment systems, are considered for constructing the index.  
The average value of index at all India is 0.337. There are variations across states in the value 
of NAFINDEX and dimension indices. Interestingly, many states which saw lower 
penetration of traditional banking products as reflected in the respective dimension index, the 
modern banking products and payment mechanisms showed higher values. This underlines 
the direction for the future banking   expansion in hither to unreached states. 
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Abstract 

 

Many countries have started assessing their students through different assessment 

surveys to know the learning level of students, to know what they can do and what they 

know? In India, Large scale educational assessment survey named, National Achievement 

Survey (NAS) is being conducted at grades 3, 5, and 8 of the elementary stage under the 

flagship program of the Government of India. In 2017, the first time the NAS was conducted 

for grades 3, 5, and 8 on a single day i.e. November 13, 2017, in all 701 districts of 36 states 

and Union territories in India. About 2.2 million students from 1.2 lacs schools across the 

country were participated (NCERT, 2020). Schools in each distract were sampled using a 

stratified sampling procedure and section and students by NCERT designed a random 

sampling process. In this round, the district was the reporting unit of the study. NAS test 

items were constructed based on different competencies at different grades and linked them 

with learning outcomes instead of content-based. In this paper, we discussed how the NAS 

was implemented in the country and how the students’ performed in the NAS. This paper 

highlights the performance of the students in different grades and different subjects. The 

comparisons between gender, school location, and school management are also discussed in 

the paper. 

 

Key words: National achievement survey; IRT; Learning outcomes; Test items; Cohen’s D. 

 

1. Introduction 

 

Large scale Assessment in education is one such tool that obtains information to assess 

the health of education systems and try to know whether the students meet curricular 

standards. Since the mid-1980s, the interest of measuring, comparing, and monitoring 

educational standards is growing in almost all countries. So, in the global countries have 

started assessing their students through different assessment surveys to know the learning 

level of students, to know what they can do and what they know? Many countries are taking 

participating in intercountry assessment surveys (large scale); for example PISA (Programme 

for International Students Assessment), TIMSS (the Trends in International Mathematics and 

Science Study), and PIRLS (the Progress in International Reading Literacy Study), etc. Some 

countries are conducting their assessment surveys to judge educational standards against 

national expectations. (NCERT, 2015a). The Sustainable Development Goal for education 

(SDG 4) is also called for an increased focus on learning outcomes, with five of the ten targets 

highlighting the learning skills and outcomes of children and adults (UNESCO, 2018).  
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In India, the large scale assessment survey is being conducted periodically since the 

seventies under different schemes and program of Govt. of India. In 2001, it is named as 

National Achievement Survey (NAS). The main aim of NAS is to provide reliable 

information about the achievement of students in the different grades of education in 

government and government aided schools. The NAS report gives a national and state-level 

picture, rather than scores for individual students or schools. The purpose of this survey is to 

obtain an overall picture of what students in specific classes know and can do and to use these 

findings to identify gaps and diagnose areas that need improvement. This information can 

then be used to impact policies and interventions for improving children learning in the 

country.  

 

The data from National Achievement Survey gives the policymakers, curriculum 

specialists, researchers, and, most importantly, school principals and teachers a ‘snapshot’ of 

what students are achieving in key subjects at a particular point in time. By repeating such 

measurements at regular intervals, trends can be explored providing an invaluable perspective 

from which to consider educational reform and improvement. It does not give scores to 

individual students or schools (Pajankar, 2019). 

 

2. History of National Achievement Survey (NAS)  

 
India has a long history of conduct achievement (or assessment) surveys. The first 

notable survey was conducted by Kulkarni (1970) to know the achievement of students at 

different stages of school education in Mathematics. Another important study was untaken by 

Dave (1988) in NCERT under the project of Primary Education Curriculum Renewal (PECR) 

in 22 States at the primary stage in Language, Mathematics, and Environmental Studies. The 

third major study at the primary stage in Language and Mathematics was initiated by Shukla 

(1990) in NCERT and was completed in 1994 in 22 States and UTs. This was followed by 

district-specific surveys in primary classes under the District Primary Education Programme 

(DPEP) as the baseline, midterm, and terminal cycles (Dave, 1988 and NCERT, 2011). 

 
Under the Sarva Shiksha Abhiyan (SSA) flagship program of Govt. of India, the survey 

is restructured and then named as National Achievement Survey (NAS). From 2001, NAS has 

been conducted in the different cycles in the country. The level was class III, class V, and 

class VIII in 2-3 years. Till 2017, 4 cycles of each grade have been conducted. In these cycles, 

the reporting unit was State and districts were sampled from each state. So NAS reported the 

learning level status of state only (Pajankar, 2019). The time-line of the conduct of NAS is 

given in table 1. 

 

In 2017, the structure and nature of NAS was again changed. In 2017, the test was 

conducted on a single day November 13, 2017, in class III, V, and VIII. For NAS 2017, 

schools sample drawn through the Population Proportionate to Size (PPS) procedure includes 

nearly 2.2 million children from 1,10,000 schools spread across all districts in India. The 

salient features of this NAS 2017 were as below (NCERT, 2017): 

 

- National Achievement Survey was linked to the learning outcomes; 

- Assessment was being conducted for classes 3, 5 and 8 on a single day across the country; 

- District was the unit for reporting;  

- Automated reports were generated at the district level; 

- Pedagogical interventions were provided in the same academic year.    
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National Achievement Survey 2017 was achieved by administering standardized tests 

to students of classes III, V, and VIII. NAS 2017 has contributed several new elements and 

gave remarkable momentum to the development of competency-based assessment. One of the 

main virtues of NAS 2017 is that it is embedded in an extremely rich system of background 

variables. The results help to accurately discover the students’ performance in different 

learning outcomes vis-à-vis the contextual variables. The synthesis of the results of the 

national level provides a rich repository of evidence for developing and designing the future 

course of action for the Indian education system (Pajankar, 2019). Internationally accepted 

technical standards and practices were being adhered to while planning, designing, and 

implementing the NAS to ensure its robustness and sustainability (NCERT, 2017). 

 

Table 1: The time period of the conduct of National Achievement Survey 

Survey Cycle Class V Class VIII Class III 

Cycle I 2001-02 2002-03 2003-04 

Cycle II 2005-06 2007-08 2007-08 

Cycle III 2009-11 2010-13 2012-13 

Cycle IV 2013-15 2014-16 2014-16 

Subjects 

Tested 

Mathematics 

Language 

Environmental- 

Studies 

Mathematics 

Language 

Science 

Social Science 

Mathematics 

Language 

Environmental- 

Studies 

Background 

Questionnaires 

Pupil  

Questionnaire 

(PQ) 

Teacher 

Questionnaire 

(TQ) 

School Questionnaire 

(SQ) 

 

3. Sampling Design 

 

In this NAS 2017, the target population was the students from classes III, V, and VIII 

from Government and Government aided schools. In earlier surveys, the state was reporting 

unit and ‘n’ number of districts was sampled. In NAS 2017, the district was reporting unit. So, 

all districts from 36 states/Union Territories were taken into consideration. 703 districts were 

listed in the sampling frame. But due to political reasons, 2 districts could not participate in 

the survey. Finally, the NAS was conducted in 701 districts in the country. 

 

Sampling was done in three stages; first stage: school sampling; second stage: section 

sampling and third stage: students sapling. At the first stage, schools from each district were 

sampled using the Probability Proportional to Size (PPS) sampling procedure. Two types of 

stratification were used namely (i) explicit stratification (for the district) and (ii) implicit 

stratification (for block, area, school management, type of schools and medium of 

instructions). This exercise was conducted for each class III, V, and VIII, separately. The 

target sample size was 61 schools for class III and V and 51 schools for class VIII. Two 

additional lists of sampled schools, parallel to the original sampled list was prepared to 

replace the schools only if the original school does not exist or enrolment less than 5 or 

destroyed in natural calamities/ Naxal attack. 
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A second stage, one section of class III, V, and VIII was selected from each sampled 

school. If the sampled school has the only section of either class then the section was 

considered as selected. In the third stage, 30 students were selected from each selected section 

of sampled schools. The maximum target of students was 30. If in a class total attendance is 

less than 30 then all students were considered. The selection of sections in sampled schools 

and students from the selected section was conducted by a simple random procedure designed 

by the NCERT team.  

 

Accuracy of a sample statistic as an estimate of an unknown population parameter is 

assessed through standard errors. Standard errors are computed through the following 

formula: 

. 

 

This formula assumes the use of Simple Random Sampling (SRS). Large scale 

assessments including NAS use complex sampling procedures. To ensure unbiased estimates 

of Standard Errors (SE) are generated, SEs are computed using the Jackknife Repeated 

Replication technique (JRR) for ability θ (NCERT, 2020). 

 

4. Methodology 

 

In this National Achievement survey 2017 (NAS 2017), schools were sampled using 

probability proportional to size procedure. In this process about 1,10,000 government and 

government aided schools were sampled from 701 districts of all states and union territories in 

the country. On November 13, 2017; the test was administered in all over the country About 

2.2 million students from these sampled schools participated in NAS 2017. The students of 

classes III, V, and VIII were tested in different subjects through two sets of test booklets as 

shown below in Table 2. 

 

Table 2: Class wise test booklets along with subjects and number of items 

 

Class Subjects No. of 

items 

Total items in 

Test Booklet 

Number of Sets  

III Language* 

Mathematics 

Environmental Science 

15 

15 

15 

45 Two Sets 

31 & 32 

V Language* 

Mathematics 

Environmental Science 

15 

15 

15 

45 Two Sets 

51 & 52 

VIII Language* 

Mathematics 

Science 

Social Science 

15 

15 

15 

15 

60 Two Sets 

81 & 82 

* Language used in a state as a local or regional language 

 

In NAS 2017, all subjects were tested through two test booklets for each class. Each 

subject had 15 items. So, 45 items in class III and class V and 60 items in class VIII. To 
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maximize the coverage of the test, two sets of test booklets were constructed. To establish a 

link between test booklets and to put them in a common platform, 05 items of each subject 

were common in both sets.  Items were constructed with different competencies and linked 

with the learning outcomes (LOs) developed by the NCERT at elementary stage (classes I to 

VIII) in 2016. The items were piloted and removed all non-functioning items before finalizing 

the test booklets. The test booklets were then translated into 20 modern Indian languages. For 

quality check, translation was verified by experts and by back translation activity (with 

limited items). 

 

Other booklets: three questionnaires i.e. Student Questionnaire (PQ), Teacher 

Questionnaire (TQ), and School Questionnaire (SQ) were also prepared for this NAS 2017. 

The objective of these questionnaires was to analyse the associations between the 

achievement and the background variables. 

 

4.1.  Analysis procedure 
 

The data was collected through two sources; one was test booklets i.e. achievement data 

and another was questionnaires i.e. information of background factors collected from school 

heads, teachers, and pupils through interview mode. The achievement data of the students was 

analysed by classical test theory and item response theory. However, questionnaire data were 

analysed by classical test theory. Two different approaches were used to analyse and for 

reporting at a different level. 

 

 
 

Figure 1: Different approaches used for the analysis at district level, state level and 

national level 
 

Under the classical test theory, raw percentages of correct responses were used to 

measure students’ abilities and item difficulties. With the classical test theory, the district 

report cards (DRCs) and state learning reports (SLRs) were generated for all districts and 

states/union territories with a record period of 2.5 months and 5 months respectively from the 

date of NAS 2017 administered. The district report cards were prepared in such a way that it 

can be easily read and understood by a layperson. The main objective behind it was that every 

parent/guardian can understand the learning level of his/her child. 10 independent report cards 

for each subject of each class of each district were generated. All DRCs and SLRs are 

available in the public domain at the NCERT web portal at link 

http://www.ncert.nic.in/programmes/NAS/NAS.html. 
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Table 3: List of district report cards for a district 
 

Sl. No. Class Subject No. of pages* 

1 Class III Language 2 

2 Class III Mathematics 2 

3 Class III Environmental Sciences (EVS) 2 

4 Class V Language 2 

5 Class V Mathematics 2 

6 Class V Environmental Sciences (EVS) 2 

7 Class VIII Language 2 

8 Class VIII Mathematics 2 

9 Class VIII Sciences (Sci) 2 

10 Class VIII Social Sciences (SSc) 2 

*Few reports may have 3 pages 

 

Item Response Theory (IRT) approach was used in NAS 2017. Major large scale 

assessment studies conducted at international levels such as PISA (Programme for 

International Students Assessment), TIMSS (the Trends in International Mathematics and 

Science Study) and PIRLS (the Progress in International Reading Literacy Study), etc., are 

also using Item Response Theory (IRT). IRT measures the learning ability of students by 

calculating the probability of a student to respond to an item correctly. IRT analysis places 

students and test items on the same numerical scale and this helps us to create meaningful 

‘maps’ of item difficulties and student abilities. In IRT, the difficulty of an item does not 

depend on the group of test-takers. Multiple test booklets can be used in IRT to increase the 

measurement points in any subject and the booklets can also be linked (NCERT, 2020). 

 

IRT uses mathematical models that ensure the statistical connection between the 

difficulty level of the test item, the ability of the student, and the probability of that student 

being successful on a particular item. For example, students with higher ability scores are 

more likely to succeed on any item than their peers of lower ability Therefore, analysis in IRT 

is more complex than traditional methods like CTT. IRT uses the concept of an Item 

Characteristic Curve (ICC) to show the relationship between students’ ability and 

performance on an item (NCERT, 2015b). 

 

The two-parameter model (2PL) to the items was applied to analyse the data. The 2PL 

model associates student’s ability to both item difficulty and item discrimination. The model 

includes difficulty (b) and discrimination (a) of the item. The expression for Pij, the 

probability of the i
th

 examinee, ability θi, being successful on the j
th

 item, difficulty bj is given 

by  Thissen and Wainer (2001) 
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where, Pij is the probability of the i
th

 examinee, ability , being successful on the j
th

 item, 

difficulty bj. 

 

Test Reliability was estimated using the following formula   

 

. 

where,  is the variance of the test score scale in the sample, and  is the mean error 

variance of scores. The values of both were estimated from BILOG software (Zimowski et. 

al., 1996). At item and tests level, quality of achievement indices (or instruments) such as 

Item difficulty indices (p-value), Item discrimination indices (DI), Options analysis or 

Distractor analysis (DE), Differential Item Functioning (DIF) and Test reliability; were 

conducted using Classical Test Theory (CTT) and Item Response Theory (IRT) approach. 

 

4.2.  The reporting scale 

 

IRT approach uses scale scores for reporting the results. In scaling, raw scores were 

transformed into a new set of scores by using either linear or nonlinear methods. The 

converted scores called Scaled Scores. The IRT scores were initially generated in the logit 

metrics, and then they were linearly converted into a scale that facilitates score interpretation. 

The reporting scale was set to the range of 100 - 500 with a mean of 300 and standard 

deviation of 50. Thus, the linear transformation from ability estimates expressed on the logit 

scale to the reporting scale scores was conducted using the expression: Scale Score = Logit 

Score * 50 + 300. Scaled scores were computed by statistically adjusting and converting raw 

scores into a common scale to account for differences in difficulty across different test forms 

(NCERT 2020 and 2014a).  

 

5. Major Findings and Discussion 
 

The National Achievement Survey (NAS) 2017 was conducted in India on dated 

November 13, 2017, in class III, V, and VIII. It was the first time when NAS for different 

classes administered on a single day. About 2.2 million from 1,10,000 government and 

government aided schools participated in this mega event. It may be the first kind of mega 

activities conducted on the globe in such a large magnitude. It includes participation from 

different sections: gender, location, management of schools, and social groups. Figure 2 

shows the participation statistics.  

 

For gender, the participation of boys and girls was almost equal. Whereas, participation 

from rural-urban and government – government aided schools were very unequal. 

Participation was a cumulative representation in major social groups SC, ST, OBC and 

General as 22 %, 18 %, 42 % and 18 % respectively. 
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              Source: NCERT (2020) 

Figure 2: Participation by gender, location, school management and social groups in 

classes III, V, and VIII (figures in percentage) 
 

Figure 3 shows the performance of students in classes III, V and VIII in the different 

subjects. The performance in different subjects was given in scale score values. It shows that 

the average achievement of students in class III was 326, the average achievement of students 

in class V was 313 and the average achievement of students in class VIII was 282. The overall 

national average of 300. Class III preference was much better than national performance and 

class V performance was close to the national average. However, the performance of class 

VIII was much below the national average. From the figure, it is concluded that with higher 

classes the performance of the students was decreasing. 

 

 
          Source: NCERT (2020) 

Figure 3: Students’ performance at national level with class wise and subject wise and 

national average 
 

Table 4 shown below presents the cut scores for each class III, V, and VIII for NAS. 

In Figure 4, students’ performance at respective classes were given in percentage.  
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Table 4: Final cut scores for National Achievement Survey (NAS) tests 
 

Test Basic Proficient Advanced 

Class III Language 268 315 370 

Class III Mathematics 285 339 395 

Class III Environmental Studies 263 315 375 

Class V Language 260 306 370 

Class V Mathematics 264 320 383 

Class V Environmental Studies 261 315 375 

Class VIII Language 255 320 370 

Class VIII Mathematics 225 275 340 

Class VIII Science 228 275 333 

Class VIII Social Science 236 298 338 

 Source: NCERT (2020) 

 

 

 
 Source: NCERT (2020) 

 

Figure 4: Percentage of students in each performance level (National Results) 
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Table 5: Performance of students in class III by gender, area and school management 
 

Class III Lang Sig. 
Cohen’s 

D  Maths Sig. Cohen’s D EVS Sig. Cohen’s D 

Gender 
Boys 335 

** -0.06 
321 

** -0.01 
320 

** -0.04 
Girls 338 321 322 

Area 
Rural 336 

** -0.05 
321 

** -0.02 
320 

** -0.07 
Urban 336 322 324 

Management 

Govt. 335 
** -0.12 

320 
** -0.12 

319 
** -0.22 Govt. 

Aided 342 326 330 
Source: NCERT (2020) 
Note:  Lang – Language, Maths – Mathematics and EVS – Environmental Science . * Statistically significant at p< 0.05; 

** Statistically significant at p<0.01. The sizes of statistically significant differences are expressed by Cohen’s D (Cohen, 

1988). The size of the difference that is lesser than D=0.20 is considered small and practically irrelevant. 

 

Table 6: Performance of students in class V by gender, area and school management 
 

Class V Lang Sig. 
Cohen’s 

D  Maths Sig. 
Cohen’s 

D  EVS Sig. 
Cohen’s 

D  

Gender 
Boys 317 

** -0.06 
310 

** -0.04 
309 

** -0.03 
Girls 320 311 310 

Area 
Rural 318 

** -0.06 
312 

** 0.10 
311 

** 0.08 
Urban 321 306 306 

Management 
Govt. 317 

** -0.12 
311 

** 0.07 
311 

** -0.06 
Govt.Aided 324 308 307 

Source: NCERT (2020) 
* Statistically significant at p< 0.05; ** Statistically significant at p<0.01. The sizes of statistically significant 

differences are expressed by Cohen’s D (Cohen, 1988). The size of the difference that is lesser than D = 0.20 is 

considered small and practically irrelevant. 

 

Table 7: Performance of students in class VIII by gender, area and school management 
 

Class VIII Lang Sig. 
Cohen 

D 
Maths Sig. 

Cohen 

D 
Sci Sig. 

Cohen 

D 
S.Sci Sig. 

Cohen 

D 

Gender 
Boys 306 

** -0.04 
269 

** -0.01 
275 

** 0.02 
278 

** 0.01 
Girls 308 269 274 279 

Area 
Rural 306 

** -0.09 
271 

** 0.18 
276 

** 0.16 
280 

** 0.13 
Urban 311 262 267 273 

Management 

Govt. 305 

** -0.11 

271 

** 0.11 

277 

** 0.14 

282 

** 0.19 Govt. 

Aided 
311 265 269 271 

Source:NCERT (2020) 
* Statistically significant at p< 0.05; ** Statistically significant at p<0.01. The sizes of statistically significant 

differences are expressed by Cohen’s D (Cohen, 1988). The size of the difference that is lesser than D = 0.20 is 

considered small and practically irrelevant. 
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6. Conclusion  
  

From the overall analysis of NAS result, the following result was concluded as – 

 

- Performance of Girls in the National Achievement Survey 2017 (NAS 2017) was slightly 

higher than boys’ performance in almost all the classes. 

- In class III, the achievement between urban and rural students was not distinguishable. In 

class V, urban students were performed statistically higher in language and rural students 

were performed higher in mathematics and environmental science. In class VIII, rural 

students were performed statistically higher in mathematics and sciences and urban 

students were higher in language.  

- In class III, the performance of Government aided schools was statistically higher. In class 

V, Government schools were performed statistically higher in Mathematics and EVS 

whereas, in Government aided schools performance was higher in language. In class VIII, 

Government aided schools were performed statistically higher in Language, and 

Government in Mathematics, Science, and Social Science. However, in every class, the 

difference between the government and aided schools was very small. 

- In class III, the performance of general category students was higher followed by OBC. In 

class V and VIII, general and OBC groups were performing slightly higher than other two 

social groups (SC and ST) in all subjects except language. In language, the OBC category 

was performed better than the general group in both classes. However, the differences 

were relatively small.  

- A final remark on, if we considered the average of scale score achieved in all subjects in 

each class then there are no significant differences between gender (boys and girls) and 

areas (rural and urban schools). in all classes except management i.e., between 

government and government aided schools however different was very small in class VIII. 

It means that boys and girls, and rural schools and urban schools were equally performed 

in the NAS 2017. But the performance of government schools and government aided 

schools was not the same. 

 

The main objective of the study is to know the learning level of the student at different 

competency levels and to identify the gap in their learning. Ranking the states/Union 

Territories based on the performance of their students was not the objective of NAS 2017. 

Only to know the Top and Low performing states/union territories, ten names are: top ten 

states/union territories are Rajasthan, Karnataka, Chandigarh, Andhra Pradesh, Jharkhand, 

Dadra and Nagar Haveli, Assam, Gujarat, Kerala and Uttarakhand and low ten states/union 

territories are Arunachal Pradesh, Delhi, Puducherry, Meghalaya, Lakshadweep, Daman 

and Diu, Uttar Pradesh, Sikkim, Punjab, and Nagaland. 
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Abstract
This article provides a brief review on design selection under model misspecification in

linear and generalized linear models. Design selection for fitting a hypothesized model is one
of the main focuses of response surface methodology. However, if the assumptions regard-
ing the relationship between the response and the covariates are incorrect, then the design
based on the assumed model may not provide accurate results. In generalized linear models
(GLMs), a certain form of the linear predictor and the link function of the model is usually
assumed and the selected designs are based on these assumptions. Model misspecification
in GLMs can arise when the form of the linear predictor and/or the link function assumed
is not correct. Many researchers have proposed several methods for selecting appropriate
designs accounting for model bias and the prediction variance for both linear and generalized
linear models. The literature review presented here discusses several existing methods in the
literature based on the mean squared error criterion for comparing/selecting designs robust
to the possible misspecification in the model. Several papers based on robust designs for
GLMs are highlighted here. The method of comparing designs by quantile dispersion graphs
(QDGs) approach addressing the linear predictor misspecification problem using an unknown
function and the link function misspecification problem using a family of link functions is
discussed in detail. A numerical example based on real data is provided to illustrate the
QDGs methodology.

Key words: Family of link functions; Mean squared error of prediction; Quantile dispersion
graphs; Robust designs.

1. Introduction

One of the main purposes of response surface methodology (RSM) is to choose an
appropriate design for fitting a hypothesized model. Usually a low-degree polynomial or
a simple linear model is used to explain the complex and possibly non linear relationship
between the response variable and the inputs/covariates. Since the simple fitted model may
not adequately approximate the unknown functional relationship that depicts the true mean
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response, there is always a chance of estimates being biased. Thus, giving rise to the model
misspecification problem. Due to this reason the chosen design should protect against the
possibility of a sizeable model bias. Box and Draper (Box & Draper (1959) and Box &
Draper (1963)) introduced the so-called integrated mean squared error (IMSE) criterion
which accounts for both prediction variance and model bias and advised experimenters to
choose designs on the basis of the IMSE. Instead of looking at an overall measure like the
average MSE, Giovannitti-Jensen & Myers (1989) and Vining & Myers (1991) used a graph-
ical approach to evaluate how a design performs over every portion of the region of interest
in terms of IMSE. More recently, Mukhopadhyay & Khuri (2008) presented the technique
of qunatile plots for evaluating and comparing response surface designs on the basis of the
mean squared error of prediction (MSEP). Four MSEP-related criteria functions free of any
unknown parameters that pertain to the unfitted true model and error variance were pro-
posed. They obtained plots of the quantiles of these criterion functions on concentric spheres
within a region of interest. These quantile plots gave complete information concerning the
distribution of each criterion function over the selected spheres.

Recently, there has been an increase in interest among researchers to study designs
robust to model misspecification in the context of generalized linear models (GLMs). Model
misspecification in GLMs is a little more complex than in linear models, since in GLMs along
with simple form of the linear predictor, the experimenter also assumes a form for the link
function. If the assumptions regarding the functional form of the linear predictor or/and the
link function are incorrect, then the inference drawn from the fitted model may not provide
accurate results, giving rise to model misspecification problem in GLMs.

Selecting robust designs for GLMs have been studied by Abdelbasit & Butler (2006),
Woods et al. (2006) and Dror & Steinberg (2006). In the context of logistic regression models,
Adewale & Wiens (2009) used the average mean-squared error criterion to generate designs
less sensitive to possible misspecifications in the linear predictors. Their work was extended
by Adewale & Xu (2010) where misspecification in both linear predictors and link functions
were considered. More recently, Mukhopadhyay & Khuri (2012) used quantile dispersion
graphs based on MSEP to compare designs for GLMs in the presence of model misspeci-
fication in linear predictors. Their approach accounted for the bias of the fitted model’s
parameter estimates in addition to their variances.

2. Model Misspecification in GLMs

GLMs are usually specified by three components:

• Distributional component: It is assumed that the data of size n y1, . . . , yn, are inde-
pendent and have the following density function,

s(yj|θj, φ) = exp
[
yjθj − b(θj)

a(φ) + c(yj, φ)
]
, j = 1, . . . , n, (1)

where b(·), c(·) are known functions and φ is the unknown dispersion parameter. The
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mean and variance of yj are, E(yj) = µj = db(θj)
dθj

and Var (yj) = σ2
j = a(φ)d

2b(θj)
dθ2

j
,

respectively.

• Linear Predictor: The linear predictor, denoted by η(x), is a function of the p control
variables x = (x1, . . . , xp)T .

• Link function: The linear predictor η(x) is related to the mean response, µ(x), through
a link function g, where the inverse of g, denoted by h, is assumed to exist. The true
relationship between η and x being usually unknown and of highly nonlinear nature.

As mentioned above, the true relationship between η(x) and the vector x of control variables
is usually unknown. The experimenter approximates the unknown relationship by a low-order
polynomial model of the form,

η(x) = zT (x)β, (2)
where, zT (x) is a known vector function of x and β is a p×1 vector of unknown parameters.
Under the assumed model, the estimated mean response is,

µ̂(x) = h[η̂(x)] = h[zT (x)β̂], (3)

where β̂ is a maximum likelihood estimate of β. However, suppose the true functional form
of the linear predictor is different from the fitted form and is actually,

ηT (x) = zT (x)β + f(x), (4)

where f(x) is not known and the true mean response is,

µT (x) = h[ηT (x)] = h[zT (x)β + f(x)]. (5)

The MSEP for the estimated mean response when the linear predictor is misspecified from
Mukhopadhyay & Khuri (2012) is given by

MSEP[µ̂(x)] .=
[
dh[η(x)]
dη(x) + f(x)d

2h[η(x)]
dη2(x)

]2

Var [η̂(x)]

+
{

Bias [η̂(x)]
[
dh[η(x)]
dη(x) + f(x)d

2h[η(x)]
dη2(x)

]}2

, (6)

where,

Bias [η̂(x)] = E[η̂(x)]− ηT (x) = zT (x)E(β̂)− zT (x)β − f(x)
= zT (x) Bias (β̂)− f(x),

and
Var [η̂(x)] = zT (x) Var (β̂)z(x).
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The bias and variance of β̂ under a misspecified linear predictor are

Bias (β̂) .= H−1
n b, (7)

and
Var (β̂) .= 1

N
H−1
n H̃nH−1

n , (8)

where Hn = ZTPWZ, H̃n = ZTPWTZ, and b = ZT P(µT −µ)
a(φ) ; Z is a matrix with rows

zT (xj), j = 1, . . . , n and P is an n × n diagonal matrix with elements nj

N
with N is the

total number of observations, i.e., N = ∑n
j=1 nj. Both, W and WT are n × n diagonal

matrices with elements, wj (= dµj/dηj

a(φ) ), wT,j (= Var (yj)
a2(φ) ), respectively, where Var (yj) is the

true variance of yj.

A scaled version of the MSEP (SMSEP) was used for design comparison. Their main
goal was to select designs with lower values of SMSEP. For comparing two designs say D1 and
D2, if the SMSEP of D1 was lower than D2 then design D1 was said to have better prediction
capability than D2. Thus, implying that the predictive performance of design D1 is more
robust to misspecification in the linear predictor than D2. However, two major difficulties in
using the SMSEP as a design criterion was its dependency on the unknown model parameters
and f(x). Mukhopadhyay & Khuri (2012) addressed the linear predictor misspecification
problem by an unknown function which was estimated using parametric empirical kriging
at any point in the design region. The dependence of SMSEP on the model parameters was
answered by the quantile dispersion graphs (QDGs) approach.

Das et al. (2015) considered robust GLM designs for misspecification in both linear
predictors and link functions. To address the possibility of incorrect forms of link functions,
they used the works of Prentice (1976); Pregibon (1980); Aranda-Ordaz (1981); Guerrero &
Johnson (1982); Stukel (1988); Czado (1989, 1997) on generalized family of link functions
for GLMs.

A family of parametric link functions were defined, relating η(x) and µ(x) by µ =
E(y|x) = h(α, η), where h(α, ·) is inverse of the parametric link function parameterized by
α the link parameter vector (Czado, 1997). Thus, for misspecification in both the linear
predictor as well as the link function, the assumed model is

µ(x) = h[α0, η(x)],

where h(α0, ·) is the assumed link function belonging to the family Λ = {h(α, ·) : α ∈ Ω},
and the true model

µT (x) = h[αT , ηT (x)],
is

ηT (x) = Z(x)β + f(x)
is the true linear predictor and αT the true link parameter. The MSEP of µ̂(x) from Das
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et al. (2015) is given by

MSEP [µ̂(x)] = V ar[µ̂(x)] +Bias[µ̂(x)][Bias{µ̂(x)}]T ,

where

V ar[µ̂(x)] =
[
∂h

∂η

]
(α0,ηT (x))

Z(x)V ar(β̂)ZT (x)
[
∂h

∂η

]T
(α0,ηT (x))

,

and

Bias[µ̂(x)] =
[
∂h

∂α

]
(αT ,ηT (x)

(α0 −αT )

+
[
∂h

∂η

]
(α0,ηT (x))

[Z(x)Bias(β̂)− f(x)],

The asymptotic bias and variance of β̂ are given by

Bias(β̂) = H−1
n b, and

V ar(β̂) = 1
N

H−1
n H̃nH−1

n ,

where
b =

n∑
i=1

1
N

∂µi
∂β

[V ar(yi)]−1(µT,i − µi),

H̃n = 1
N

n∑
i=1

∂µi
∂β

[V ar(yi)]−1[V ar(yT,i)][V ar(yi)]−1 ∂µi

∂βT ,

and

Hn = 1
N

n∑
i=1

∂µi
∂β

[V ar(yi)]−1 ∂µi

∂βT −
1
N

n∑
i=1

q∑
j=1

∂2θij

∂β∂βT (yij − µij)ni.

See Das et al. (2015) for details.

2.1. Example

We consider a real data set (Calandra Granaria data (Adewale & Xu, 2010)) containing
information about studying the mortality of grain beetle after exposure to ethylene oxide
(C2H4O). This same example was considered in Das et al. (2015). The response variable
y is the proportion of killed grain beetle after one-hour exposure of 10 different levels of
concentrations of C2H4O, which is considered as the explanatory variable (x) of the model.
Here, we compare three designs: (i) the design D7 (original design), (ii) the design D8
(“Naive” design) and (iii) the regular optimal design D9 (Adewale & Xu, 2010) under a
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misspecified linear predictor. The data set and design settings can be found in Table 7 of
Das et al. (2015).

We start fitting the data with the linear predictor

η(x) = β0 + β1x, (9)

and use the logistic link function. After estimating the unknown parameters of the model
using maximum likelihood estimation method, we see β̂0 = −3.4429 and β̂1 = 14.4404,
and the deviance of the fitted model is 36.2498 with 8 degrees of freedom. The observed
information provides that the P-value is less than 0.0001, showing a lack of fit due to the
possible misspecification of the linear predictor of the model. So, we add an unknown
function to the previous linear predictor to have the modified linear predictor as

η(x) = β0 + β1x+ f(x). (10)

The values of the unknown function f are first estimated at design points using the method
given in Section 4.1 of Das et al. (2015) and then estimated at any points other than the
design points using parametric empirical kriging. We see that the deviance of the fitted
model after adding an unknown function f is decreased to 4.9778, showing an improvement
of the fit by addressing the linear predictor misspecification of the model.

For comparing the performance of three designs concerning the proximity to the cen-
ter/boundary of the design region, the experimental region R = {x : 0.0330 ≤ x ≤ 0.3940}
is divided into several concentric regions Rν parametrized by some parameter ν ∈ [0.5, 1].
The designs are compared based on the minimum and maximum quantiles of the estimated
MSEP values over randomly selected 1000 samples from Rν and 1000 samples from a 95%
confidence region C of the regression parameter vector β. The minimum and maximum
quantiles of the three designs for ν = 0.6, 0.7, 0.8, 0.9, are shown in Figure 1, which is known
as the quantile dispersion graphs (QDGs). From the QDGs, we see that the minimum quan-
tiles are close to each other for all designs. The maximum quantiles of D9 are larger than
D7 and D8 if p > 0.5 for all values of ν. So, the prediction capabilities of D7 and D8 are
better than the design D9, while designs D7 and D8 have comparable prediction capabilities
throughout the region as the maximum quantiles are very close to each other for all values
of ν. It can also be noted by observing the differences of maximum and minimum quantiles
of the designs that D7 and D8 are more robust than D9 with respect to the changes of the
values of β. More details about this example can be found in Section 5.3 of Das et al. (2015).

3. Some New Directions

Though the topic of model misspecification and its effect on design selection has been
discussed by several researchers for single response linear and generalized linear models, very
little work has been done in the multivariate response case. However, in many experimental
situations, instead of one response, several such responses are recorded for the same subject.
This is very common in drug testing experiments where along with efficacy of the drug,
toxic effect of the drug are also measured, and the two responses are then modeled using
a bivariate distribution. Very recently, Das & Mukhopadhyay (2019) discussed the effect
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Figure 1: Quantile dispersion graphs for designs D7, D8, and D9. This figure is
reproduced from Figure 3 of Das et al. (2015).

of such misspecification on design selection for multinomial GLMs and proposed the use of
quantile dispersion graphs to select robust designs. While multivariate kriging was used to
tackle the unknown functional relationships between the linear predictors and covariates,
a parametric link function family for the multinomial distribution (Das & Mukhopadhyay
(2014)) was used for possible link function correction. Compromised exact D- optimal designs
which are robust to possible misspecifications in the model and link functions were discussed
recently by Singh & Mukhopadhyay (2019) for gene sequence studies modeled by count time
series models.
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Abstract 
 

The birth centenary of C.R. Rao in 2020 presents an occasion to not only celebrate the 

remarkable life and career of a living legend of statistics, but also remember the worldwide 

immense development of the field over the past century. Here, I discuss about C.R. Rao’s 

pioneering work on a general theory of weighted distributions presented in 1965, which was 

followed by significant development in that area. I end with discussion of some recent 

advances in methodology with applications to environmental data fusion. 

 

Keywords: C.R. Rao; Weighted distribution; Density ratio model; Data fusion. 

 

0. About This Paper 

 

This paper is based on the first lecture delivered during the C.R. Rao Birth Centenary 

Session of the 22
nd

Annual Conference of Society of Statistics, Computer and Applications 

and ISGES 2020, held on January 2, 2020, at the Department of Statistics, Savitribai Phule 

Pune University, Pune. Three more talks were delivered during this session. The session was 

Chaired by Professor Vinod K. Gupta. 

 

1.  Background 
 

Calyampudi Radhakrishna Rao, popularly known as “C.R. Rao”, was born on the 10
th

 

of September, 1920, in the Madras Presidency of British India. He is widely regarded as a 

“living legend” in the field of statistics, and known for Cramer-Rao Bound, Rao-Blackwell 

Theorem, Rao Score Test, Fisher-Rao distance, Generalized Inverse, Quadratic Entropy, and 

Orthogonal Arrays, among his numerous path breaking contributions. Along with P.C. 

Mahalanobis, he played a major role in developing the Indian Statistical Institute (ISI) into 

the major center of statistical research and education by the 1940s. C.R. Rao’s long list of 

awards includes the Padma Vibhushan (2001) and Padma Bhushan (1968), India Science 

Award (2009), the United States (US) National Medal of Science (2002), Wilks Memorial 

Award (1989), the Guy Medal in both Silver (1965) and Gold (2011). 

 

Compared to some of Rao’s other breakthroughs in statistics as stated above, the topic 

of my lecture, weighted distributions, is relatively less well known but has, nonetheless, led 

to great advances of research in the subsequent decades. It provides a curious counterpoint to 

the popular refrain that every student of statistics gets used to in her daily practise: “randomly 
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drawn samples are assumed to be independently and identically distributed.” The topic has 

been found relevant to many theoretical and applied areas of statistics, and could, in fact, help 

modern data science to deal with analysis of samples that may not be collected through well-

designed experiments. Interestingly, in the arc of Rao’s remarkable career as it spanned over 

the better part of the last century, this topic happens to make a uniquely historic contribution. 

 
In 1911-1914, (later Sir) Henry Wellcome, the British pharmaceutical entrepreneur had 

led, over four seasons, an archeological expedition at the Jebel Moya site in the southern 

Gezira plain of Sudan (Addison, 1949). It is the site of the largest pastoralist cemetery in 

Northeast Africa, currently dated to 5000–500 BC (Brass, 2016). The excavated skeletal 

remains were shipped to London where these were warehoused poorlyand even suffered from 

flooding. After the death of Wellcome (in 1936), and by the end of two World Wars, the 

remains and the excavation records were transferred to the Duckworth Laboratory in the 

University Museum of Archaeology and Ethnology at Cambridge University. The Wellcome 

Trust wanted the study to be completed under the curatorship of J.C. Trevor.  

 

In March 1946, Trevor sent a telegram to Mahalanobis asking him to send someone to 

help with the anthropomorphic analysis of the collection. Incidentally, just prior to that, 

Mahalanobis had assigned a project on analysis of anthropometric data to Rao, who used the 

D
2
 distance for grouping of Indian populations (Mahalanobis, Majumdar and Rao, 1949). 

This experience led to his selection to go, along with Ramkrishna Mukherjee, an 

anthropologist, to England in August 1946 to work as visiting scholars at the Cambridge 

University Museum of Archaeology and Anthropology. The aim of their study was “to 

undertake laboratory examination of identifiable and usable adult specimens, to analyse the 

measurements and observations of the field physical anthropologists, and to determine the 

relationship between the Jebel Moya inhabitants and other African peoples” (Brass, 2016). 

 

Upon completion of their analysis, the long overdue report of this Wellcome Trust 

project was finally published in 1955 by Mukherjee, Rao and Trevor as a book titled, ‘The 

Ancient Inhabitants of Jebel Moya (Sudan)’. (Mukherjee, Rao and Trevor, 1955) 

Unfortunately, the 40-year hiatus between the excavation and the anthropometric data 

analysis had proved to be catastrophic for the remains, which had “disintegrated beyond hope 

of repair”, according to Trevor. Out of more than 3000 skeletal parts originally excavated, 

only 98 crania, 139 mandibles and a few post-cranial elements had survived for conducting 

the anthropomorphic studies by Rao and his co-workers at Duckworth Laboratory. 

 

Rao’s task was to estimate the unknown mean cranial capacity and other features of the 

original Jebel Moya population from the damaged remains, many of which had 

measurements missing due to damage. Towards maximum likelihood estimation, one could 

write the likelihood function using a multivariate (normal) distribution based on the samples 

with complete measurements, and the derived marginal distribution for those with incomplete 

set of measurements. However, such estimation assumes that each skull – with all or some of 

the measurements – can be considered as part of a random sample from the original 

population of skulls. The key question was, however, was such an assumption valid?  

 

While looking at the samples that survived, one could make a curious observation, “are 

only small skulls preserved?” (Figure 1). If �(�) is the probability that a skull of capacity � is 

unbroken, then in archeological recovery, i.e., during the data gathering process, it is known 

that �(�) is a decreasing function of �. The larger a skull, the greater is its chance of being 

damaged upon burial and recovery, as Rao noted in his study of another collection (Rao and 
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Shaw, 1948). This will lead to a larger representation of small skulls among the unbroken 

cranial remains, and, therefore, the mean of the available measurements of the corresponding 

random variable � will be an underestimate of the mean cranial capacity of the original 

population. 

 

While analysis of Jebel Moya remains was his full-time job, Rao, who was also a 

student in King’s College, Cambridge, was “suggested” by his Ph.D. advisor R.A. Fisher to 

work simultaneously at the latter’s genetics laboratory. Fisher had long been interested in the 

concept of “ascertainment” – a mode of sampling that depends on the outcome that one 

wanted to analyze as a dependent variable. In a classical paper, Fisher studied how the 

methods of ascertainment can influence the form of the distribution of recorded observations 

(Fisher, 1934).One can assume a model that has been adjusted for ascertainment will estimate 

parameters in the general population from which the sample was drawn. In usual statistical 

practice, it is generally assumed that a random sample from a population to be studied can be 

observed in data. Not surprisingly, therefore, the key specification of ‘what population does a 

sample represent?’ might be taken for granted.  

 
However, in many situations, obtaining a random sample may be practically too 

difficult, or too costly, or indeed, even less preferable to the non-random data that are actually 

available, e.g., from field observations or non-experimental data or a survey lacking a 

suitable sampling frame, as in many ‘big data’ problems. Sometimes the events may be 

observed only in modified form, e.g., in damage models. Indeed, certain events may either be 

unobservable due to adoption of the very method that is used for making observations, and 

therefore, missed in the record. Or, they might be observable but only with certain 

probabilities or weights that may depend on the samples’ specific characteristics, such as 

conspicuousness, as well as other unknown parameters.  

 

2.  Weighted Distributions 
 

On 15-20 August of 1963, G.P. Patil organized the ‘First International Symposium on 

Classical and Contagious Distributions’ at McGill University in Montreal. Patil had visited 

ISI a decade earlier, where he recollected being advised by Rao to study discrete 

distributions. In the Montreal symposium, at a 2
nd

 day session chaired by Jerzy Neyman, Rao 

presented the first paper that formulated and unified weighted distributions in general terms. 

It was titled, ‘On discrete distributions arising out of methods of ascertainment’. Later, the 

paper was published by the Statistical Publishing Society, Calcutta, in the Proceedings, 

‘Classical and Contagious Discrete Distributions’, edited by Patil (Rao,1965).  

 

Let � be a random variable (rv) with probability density function (pdf) �(�; 
) with 

parameters 
. Traditional statistical analysis assumes that an identically (as well as 

independently) distributed random sample ��, … , �� can always be observed. Weighted 

distributions arise when � = � enters the sample with a non-zero weight �(�, �) that 

depends on the observed value � and possibly also on some unknown parameter �. Then � is 

not an observation on � but on the resulting rv�� which has the weighted pdf: 

 

�(�; 
, �) =  
�(�, �) ∙ �(�; 
)

���(�, �)�
 

 

The denominator ���(�; �)� is a normalizing constant so that �(�; 
, �) integrates to 

1. The weight �(�, �) could be any non-negative function for which ���(�; �)� exists. 



156 S. PYNE [2020 

 

When � is univariate and non-negative, then the weighted distribution �(�; 
) = � ∙
�(�; 
)/�(�) for �(�,�) = � is called size-biased; and length-biased for �(�,�) = |�| 
where |�| is some measure of “length” of �. Many length-biased distributions could be 

shown to belong to the same family as their unweighted versions (Rao, 1965). 

 

Weighted distributions are utilized to modulate the probabilities of the events as they 

are observed by means of collecting data possibly under less than perfect conditions. In this 

context, prominent application areas of weighted distributions include truncation and 

censoring, damage models, size-biased sampling, quadrat sampling, nonresponse in data, 

“file-drawer” problem in meta-analysis, etc. Even mixtures of distributions can be shown to 

belong to this general formulation (Larose and Dey, 1996). Interestingly, sometimes biased 

samples available from observational studies may contain more (Fisher) information than 

their randomly drawn counterparts (Bayarri and DeGroot, 1992). Patil and Rao (1978) 

studied size biased sampling with applications to wildlife populations and human families. 

Different applications of weighted distributions were reviewed by Patil and Rao (1977), and 

in reports and articles written byRao during his Pittsburgh years (Figure 2), e.g., Rao (1985), 

Rao (1988). 

 

As an example of such special cases of weighted distributions, we consider skewed 

data. Let the �-variate Generalized Skew Elliptical (���) distribution of rv � ϵ � have pdf of 

the form 2�(�; �,�)"(� − �) where � is an elliptically contoured pdf with location parameter 

�, scale matrix Ω, and skewing function ". An example of a ��� pdf due to Branco and Dey 

(2001) is 
$

√�
�(�&'

((� − �)) ∙ "(�&'
((� − �)), which could be formulated as a weighted 

distribution as follows: �(�; 
) = �(�&�/$�) |�|�/$⁄ , �(�) =  "(�&�/$�),  ���(*)� = 1/2 

(assuming ξ=0). Here, the weight function � distorts the elliptical contours of �via 

generation of asymmetric outliers in the observed sample due to��� (Genton 2005). 

 

Such formulations demonstrate the capacity of introducing weighting mechanisms to 

“distort” distributions as required. This allows important applications such as modeling of 

dynamic patterns as they emerge in data over space and/or time, as in environmental 

monitoring, statistical ecology, public health, etc. For describing the changes over time in the 

distribution of an environmentally important variable �, a propagation function (,-) models 

how the frequency of sampling units with the value � = � at one point in time must change 

in order to produce the distribution that occurs at a later point in time. Thus, ,- is a useful 

tool in long-term monitoring studies since all changes in a distribution can be examined 

together rather than just changes in single parameters such as the mean.  

 

Let � and . be the values of an environmental variable on a population unit at two 

consecutive time-points, with the marginal densities �/(∙) and �0(∙) (Kaur, et al., 1995). The 

,- is defined as: �(�) =  �0(�) �/(�)⁄ . This gives a weighted distribution:  �0(�) = �(�) ∙
�/(�) such that �1��� ≡ ���(�)� = 1. A similar concept of resource selection function 

(RSF) in wildlife habitat modeling was defined as a logistic discriminant function in terms of 

a ratio of pdf-s for used (�3) and available (�4) resources in 5 habitats: �3(�) �4(�)⁄ =
�(�) = exp(∑ 78�8

9
8:� ), where 78 is the model coefficient for the ;th

 habitat’s covariate 

�8(McDonald, Gonzalez and Manly,1995).A sampling strategy could be biased in its 

observation of the used sites, given their notably used features, over the unused sites. Later, 

the idea of a general density ratio model (DRM) was further developed and applied to case-

control studies (Qin, 1998). 
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3.  Recent Extensions to Weighted Systems 

 

Recent studies have extended the concept of weighted distributions to weighted system 

of distributions. This general approach allows us to develop a powerful computational frame-

work for modeling the combined dynamics of environmental samples as collected from 

multiple sources, e.g., spatially distributed multivariate data streams, automated sensors and 

surveillance networks (Zhang, Pyne and Kedem, 2020a; Zhang, Pyne and Kedem, 2020b). 

Often, environmental monitoring stations are not located randomly, may contain built-in 

redundancies, and are difficult to maintain. Therefore, by systematic fusion of a moderate 

number of such nearby data sources, we can increase the predictive capability with a 

combined model. 

 

We assume a reference event distribution �<, and its possible distortions or “tilt”-ed 

forms ��, … , �= due to > different sources. This gives us a weighted system of distributions: 
 

��(�) = ��(�) ∙ �<(�) 

⋮ 
�=(�) = �=(�) ∙ �<(�) 

 

Assume that we have data from each of �<, ��, … , �=. Then, the relationship between a 

baseline distribution and its distortions or tilts allows us to do inference on the system’s 

behavior based on fusion of data observed from multiple, possibly dependent, sources. In a 

weighted system using density ratio models, various distributions are “regressed” on a 

common reference distribution, and our data fusion approach to estimate the parameters, 

including the densities, uses the entire combined data and not just the reference sample. Tail 

probabilities of exceeding a pre-specified event threshold can be estimated by using the DRM 

with variable tilt functions (Zhang, Pyne and Kedem, 2020a). 
 

As an application of our data fusion approach, we combined data from multiple sites on 

environmental exposures of Radon, a known radioactive carcinogenic gas, using a multi-

sample DRM defined as follows: 

 

 
 

where �< represents the density of residential radon levels of the county of interest and 

��, … , �= represent the densities of its > nearby sites. Instead of making parametric 

assumptions on each of these densities, DRM captures the parametric structure of their ratios 

with a common model. To prevent bias, large standard errors, and loss of power in inference, 

it is important to properly select the variable tilt functions @9’s. 
 

Let A<, … , A= be the samples from the area of interest and its > nearby sites with 

sample sizes B<, … , B= respectively. The sample A< is referred to as the reference sample and 

let � denote the corresponding reference cumulative distribution function (CDF). The fused 

sample is defined as C = (A<
D , … A=

D )D, with size B = ∑ B9
=
9:< . Inference can be based on the 

following empirical likelihood obtained from the fused sample C: 

 

 

�9(�)
�<(�)

= 
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where �8 = E(�(F8)), and the estimates GH, IJ and hence �Ki’s are obtained by maximizing the 

above likelihood with constraints: 
 

 
 

This gives the estimated reference CDF �L(F) =  ∑ �MH�
8:� N�F8 ≤ F� and the asymptotic result 

 

 
 

as B → ∞. The expression of R(F) and other details regarding estimation and asymptotic 

result can be found in our recent paper (Zhang, Pyne and Kedem, 2020a). Based on the above 

result, a 95% confidence interval of the tail probability 1 − �(S) for a given threshold Sis 

given by 
 

 
 

Finally, an optimal choice of tilt function may be made based on a criterion that ensures 

better specification of the density ratio structure. For instance, such selection can be made 

using Akaike Information Criterion (AIC) given by −2logTU�K, 7L, �LV + 2X where X is the 

number of free parameters in the model (Zhang, Pyne and Kedem, 2020b). 

 

4.  Conclusion 

 

In statistical inference, Rao noted, “wrong specification may lead to wrong inference, 

which is sometimes called the third kind of error in statistical parlance. The problem of 

specification is not a simple one.” (Rao, 1988) The aim of my lecture, therefore, was to draw 

the attention of students and researchers to the fascinating area of weighted distributions that 

is all the more relevant in the current age of data science. Patil and Rao (1977) remarked, 

“although the situations that involve weighted distributions seem to occur frequently in 

various fields, the underlying concept of weighted distributions as a major stochastic concept 

does not seem to have been widely recognized.” As more datasets of value seemingly lacking 

any rigorous design are collected, and possibly shared through unconventional and 

occasionally biased sources, the need for working with such less than ideal yet practically 

useful observations will have to be addressed by statistical pedagogy.  

 

Personally, I had the good fortune to have had Professor Rao as my colleague, mentor 

and collaborator while serving as the P.C. Mahalanobis Chair Professor (sponsored by the 

Ministry of Statistics and Program Implementation, Government of India) and Head of 

Bioinformatics at the CR Rao Advanced Institute of Mathematics, Statistics and Computer 

Science (AIMSCS) in Hyderabad during 2012-2015. Starting in 2009, we had interactions at 

the early stages of planning the creation of the institute. We worked together on multiple 

projects that remain close to my heart, including the organization of the ‘International Year of 

Statistics 2013’ (STAT 2013) Conference held at CR Rao AIMSCS on December 28-31, 

2013, under my convenorship; inauguration of the ‘Data Science Laboratory for 

Environmental and Health Sciences’ at my initiative at CR Rao AIMSCS by Professor 

Amartya Sen on 19 December, 2013 (Figure 3); co-editing a 2-volume ‘Handbook of 

Statistics’ on Disease Modeling and Public Health’ (Rao, Pyne and Rao, 2017); founding in 

2014 of a Special Interest Group in Computer Society of India on ‘Big Data Analytics’ with 
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myself as the founding chair. Notably, in STAT 2013, we hosted an early meeting of 

international experts on ‘big data’ in India (Pyne, Rao and Rao, 2016).  

 

I, therefore, felt immensely proud and privileged to deliver the first lecture in the 

Professor C.R. Rao Centenary Lecture Session on January 2, 2020, of the International 

Conference ISGES 2020 organized by the Society of Statistics, Computer and Applications at 

the Department of Statistics, Savitribai Phule Pune University. Incidentally, the University is 

also my alma mater, which doubled my pleasure to speak both at this occasion as well as the 

venue. For this, I thank the organizers of the conference, and, in particular, my dear friend 

and former ICAR-IASRI National Professor, Professor Vinod K. Gupta, for kindly inviting 

me to deliver this lecture.  

 

The citation with the National Medal of Science, the highest award in the US in a 

scientific field, honored Rao “as a prophet of new age for his pioneering contributions to the 

foundations of statistical theory and multivariate statistical methodology and their 

applications, enriching the physical, biological, mathematical, economic and engineering 

sciences.”Indeed, to truly appreciate Rao’s “putting chance to work”, I encourage students to 

read his popular writings (Rao 1997). It has been a high honour for me to have worked 

alongside this living legend and received his guidance and blessings. In August 2019, I 

visited him (and his daughter Teja Rao) at his family home in Buffalo, New York, and 

expressed my deepest gratitude. I offer my heartiest congratulations to Professor C.R. Rao on 

his birth centenary year, and wish him a longer, healthy life. 
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ANNEXURE 
 

 

Figure 1: C.R. Rao in Cambridge during the 1940s. For discussion on the cranial capacity 

formula shown in the picture, see Rao and Shaw (1948). 

 

 
 

Figure 2: C.R. Rao (standing 4
th

 from the left) with family, friends, students in Pittsburgh, USA, 

during the 1980s. With P.R. Krishnaiah (standing 2
nd

 from the left), Rao established in 1982 a 

unique Center for Multivariate Analysis at the University of Pittsburgh. 
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Figure 3:Inauguration of Data Science Laboratory, CR Rao AIMSCS, 

19, 2013). From left to right: (late)

S.B. Rao, Teja Rao (Inset: foundation plaque)

S. PYNE 

Inauguration of Data Science Laboratory, CR Rao AIMSCS, Hyderabad (Dec

(late) Bhargavi Rao, C.R. Rao, Amartya Sen, Saumyadipta Pyne, 

ation plaque). 
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Abstract 
 

To promote small ticket debit card transactions up to Rs. 2000, the government during 
the calendar years 2018 and 2019 made merchant discount rate (MDR) zero for the merchants, 
while providing monetary support to banks @ 0.4%, towards MDR. In contrast, effective 
January 2020, the government made MDR zero for any transaction amount for use of RuPay 
debit cards alone and neither merchants nor the government paid the banks for such merchant 
transactions. However, banks were allowed to impose MDR for any transaction amount onto 
the merchants for use of mastercard/VISA debit cards. 

 
For the period January-June 2020, with about Rs. 3,69,609.00 crore worth of debit card 

merchant transactions, the government has done away with the merchant’s zero MDR regime 
(on ticket sizes up to Rs. 2,000.00) for about Rs. 1,88,867.00 crore worth of transactions that 
were done through mastercard/VISA debit cards. A simple projection implies that merchants 
would be overburdened in the calendar year 2020 in the range of Rs. 1,500.00 crore and Rs. 
3,400.00 crore depending upon the MDR ranging between 0.4% and 0.9% for 
mastercard/VISA’s sub Rs. 2,000.00 ticket transactions, as against nil burden in calendar years 
2018 and 2019. 
  

We show that during the one year period August 2018 through July 2019, there had been 
issuance of at least 455 lakh RuPay debit cards corresponding to at least 422 lakh new accounts 
added under PMJDY. In contrast, for the same tenure during August 2019 through July 2020, 
we see a subdued issuance of around 77 lakh RuPay debit cards despite at least 366 lakh new 
PMJDY accounts added. This showcases that with a revenue differential between RuPay and 
mastercard/VISA, banks and system providers, in their commercial interest have taken steps to 
move away from RuPay and promote a card scheme which generates more revenue for them. 
  

The government and RBI have effectively implemented a net increase of debit card MDR 
expenses at least for the small and medium merchants. Now, there are two contrary aspects to 
such an increase. (A) Such an increase in the “cost to merchant” is good for the development 
and increased acceptance of debit cards, and (B) The increased net MDR, onto small and 
medium merchants, is bad for the development and increased usage of debit cards. 
  

If (A) holds (and merchants pay a controlled MDR), there was no need for the induced 
discrimination between RuPay and mastercard/VISA. The same could have been achieved by 
arriving at a lower controlled MDR, uniform across all card schemes. However, if (B) holds, 
by putting restrictions only for RuPay and discriminatorily allowing mastercard/VISA to 
impose MDR onto merchants, we have not quite achieved desired results, unlike the 
government’s strategy of zero MDR for merchants for the two calendar years 2018-19. 
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 Using debit card and ATM data, this paper prepare grounds for policy guidance. 
 
Keywords: ATM cash withdrawal; Merchant Discount Rate; RuPay Debit Card. 
 
1.  Introduction 
 

Debit cards are issued by banks for facilitating bank account holders towards 
interoperable ATM cash withdrawal and carrying out merchant transactions. For merchant 
payments, such debit cards are issued under a card schemes, which are primarily mastercard, 
VISA and RuPay. Historically, card payments for merchant transactions had a well-defined 
revenue generating structure, where the revenue came from Merchant Discount Rate1 (MDR). 
 

In order to set catalysts for the digital payment systems, Government of India on February 
29, 2016 came out with cabinet approved guidelines for the ‘Promotion of Payments through 
Cards and Digital means’. The Finance Ministry’s office memorandum provides broad 
guidelines on the way forward for promotion of digital payments. Among several measures for 
wider adoption of card/digital transactions, two specific measures therein was to take steps to 
“rationalize MDR on card transactions” and to ensure that the card holders are not imposed a 
charge for using such a digital means of payment. 
 
1.1.  The history of MDR regulations 
 

In September 2012, Reserve Bank of India (RBI) mandated to cap debit card MDR at 
0.75% for transactions up to Rs. 2,000.00 and 1% for transactions above Rs. 2,000.00. This 
continued till 08 November 2016. 
 

Immediately after the demonetization of the specified bank notes on 08 November 2016, 
the government instructed banks to temporarily waive MDR imposed on merchants. 
 

As an interim measure, RBI effective 01 January 2017 rationalized the MDR on debit 
cards by capping it at (i) 0.25% for transactions valued up to Rs. 1,000.00; (ii) 0.5% for 
transactions valued in excess of Rs. 1,000.00 but not exceeding Rs. 2,000.00; and (iii) 1% for 
transactions valued in excess of Rs. 2,000.00. RBI's new caps on debit card MDR were a 
substantial reduction to the RBI's pre-demonetization cap of 0.75% for transactions valued up 
to Rs. 2,000.00. 
 

Subsequently, effective 01 January 2018, RBI tweaked MDR rules claiming that such 
tweaks would encourage some small businesses to accept debit card payments. For businesses 
with annual turnover below Rs. 20.00 lakhs, RBI capped the debit card MDR at 0.4% of 
transaction value or Rs. 200.00, whichever is lower. For others, the debit card MDR was capped 
at 0.9% of the transaction value or Rs. 1,000.00, whichever is lower. For QR-code based debit 
card acceptance, the MDR caps were set 10 basis points lower than the physical POS and online 
debit card acceptance infrastructure. 
 

In parallel, effective 01 January 2018, the government decided to bear MDR for two 
years on all debit card transactions valued up to Rs. 2,000.00. However, the government fixed 

                                                             
1 Merchant Discount Rate or Merchant Discount Fee is a service charge that banks take from merchants accepting 
card/ digital payments, which is usually a certain percentage of the transaction amount. The MDR paid by 
merchants is shared between acquirer banks, issuer banks and the card payment networks. 
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the MDR at 0.4% for debit card transactions up to Rs. 2,000.00. In effect, due to the 
government’s intervention, RBI’s decision to allow banks to charge up to 0.9% as MDR for 
businesses with annual turnover of Rs. 20.00 lakh or more (even for transaction amounts less 
than Rs. 2,000.00), got overruled and the banks got only 0.4% as MDR for such transactions. 
 

Corresponding to this MDR of 0.4%, the interchange2 fixed by card payment networks 
is 0.15%. Thus, RBI’s MDR mandates could never get implemented since the government felt 
otherwise on small ticket sized transactions up to Rs. 2,000.00 and reduced the MDR to zero 
for all merchant categories and restricted the banks to receive no more than 0.4% as MDR. 
 

In fact, National Payments Corporation of India (NPCI) was the only network to adopt 
lower-than-cap MDR. The MDR pricing structure arrived at (effective October 2019) for 
RuPay debit card had been 0.4% (0.3% when the transaction is QR-code based) for transactions 
up to Rs. 2,000.00 and 0.6% (0.5% when the transaction is QR-code based) for transactions 
exceeding Rs. 2,000.00, with a ceiling on MDR of Rs. 150.00 for any transaction.  
 
1.2.  The present avatar of MDR 
 

Effective 01 January 2020, the government decided not to bear MDR any further on all 
debit card transactions valued up to Rs. 2,000.00.3 In effect, due to this decision, RBI’s mandate 
got re-invoked and banks got the leverage to charge MDR @ 0.9% or less from businesses with 
annual turnover of Rs. 20.00 lakh or more for transactions of any value. Furthermore, for 
businesses with annual turnover of less than Rs. 20.00 lakh, banks got the freedom to impose 
an MDR of 0.4% or less. 
 

However, the government simultaneously brought in a new law where RuPay debit card 
had been identified as a prescribed payment mode such that banks and system providers could 
no longer charge any fee to the merchants for whom they setup the payment acceptance 
infrastructure. Consequently, any charge, including the MDR, was no longer applicable on 
payments made through RuPay debit card. 
 

While taking such a step, the government envisage that among low-cost digital modes of 
payment, RuPay debit cards (and not mastercard/VISA debit cards) will promote less cash 
economy through their extensive use for P2M (person-to-merchant payment) transactions. The 
underlying philosophy is that neither merchants nor consumers should get any feel of extra cost 
while adopting such digital modes of payment. An impression given is that RBI and banks will 
be able to absorb the associated costs from the savings that will accrue to them on account of 
handling less cash as people move to these digital modes of payment. 
 
1.3.  The law 
 

The government under Section 10A of the Payment and Settlement Systems (PSS) Act, 
2007, indicate that no bank or system provider shall impose any charge upon a person making 
or receiving a payment by using the electronic modes of payment prescribed under section 
269SU of the Income-tax Act, 1961. In the Income-tax Rules, 1962, a new Rule 119AA has 
been inserted that prescribed RuPay debit card and BHIM-UPI as the electronic modes of 
payment for the purpose of Section 269SU. 
                                                             
2 Interchange or issuer interchange is the share of the MDR that the issuer bank keeps as their commission. Thus, 
MDR comprises of the interchange and the acquirer’s commission.  
3 Earlier banks were getting reimbursement of 0.4% MDR for transactions up to Rs. 2,000.00 from MeitY.  
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Technically, this implies that banks shall not levy any charges to a person for payments 
made or received through RuPay debit card and BHIM-UPI. 
 
2.  Banks and System Providers 
 

To harmonise a way forward for the banks, early January 2020, the Indian Banks’ 
Association (IBA) made a move when 15 major banks came together to decide what should be 
the MDR for mastercard/VISA debit cards. Considering the government’s agenda of promoting 
digital transactions and encouragement to merchants for promoting low value transactions, the 
IBA indicate that the banks reached a consensus that for transactions up to Rs. 2,000.00, the 
applicable MDR should be 0.4% irrespective of the merchant category. 

 
Like the government, IBA too did not feel it appropriate to charge a high MDR of up to 

0.9% for merchants having annual turnover of Rs. 20.00 lakh or more. This, possibly raises 
doubt on RBI’s December 2017 regulation, where it had removed the concept of MDR based 
on ticket size and set a very low benchmark of Rs. 20.00 lakh to categorise small and medium 
merchants. Actually, that may have triggered the government to intervene, and now IBA too. 

 
The norms recommended by the banks that mostly prevail are: 
 

a) MDR cap should be 0.4% for businesses with annual turnover of less than Rs. 20.00 lakh. 
b) For businesses with annual turnover of Rs. 20.00 lakh or more, 

i. MDR to be capped @ 0.4% for transactions up to Rs. 2,000.00. 
ii. MDR to be capped @ 0.9% for transactions above Rs. 2,000.00. 
 

2.1.  Moving towards a lower controlled MDR 
 
IBA’s new norm is not quite in sync with RBI’s attempt in January 2018 to eliminate the 

concept of MDR based on ticket size (which had been in place since 2012 for transactions up 
to Rs. 2,000.00). It is felt that had RBI’s merchant categorisation been more rationale, we would 
not have seen intervention by the government with such vigour. 

 
In all this zero or low MDR mess, what had been at stake is the banks’ and system 

providers’ revenue losses from large merchants like Amazon, Big Bazaar, IRCTC and the like, 
where they have been kept at par with small and medium merchants, with respect to small ticket 
transactions up to Rs. 2,000.00. Moreover, it does not make sense to see only RuPay debit cards 
offering zero MDR to small and medium merchants while mastercard/VISA debit cards 
imposing MDR @ 0.4% for transactions up to Rs. 2,000.00.  

 
What is possibly missing is the payment industry’s will to see a modification of the 

merchant categorization, where a lower controlled MDR is set for large merchants after a more 
rational merchant categorised than RBI’s present categorization. There is an urgent need for a 
reasonable definition of large merchants for the purpose of MDR. 
 
3.  From Cash to Cards 
 

Debit cards are extensively used by bank account holders towards cash withdrawal at 
ATM. Currently RBI and banks are absorbing significant costs while they provide cash as a 
prominent mode of payment. The promotion of excessive cash needs to be mitigated in such a 
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way that it not only reduces cash handling costs for the banks but also saves enough to support 
digital payments. 
 
3.1.  Cash from ATM 

 
Cash is predominantly promoted in India with 8 to 10 free ATM withdrawals. This 

potentially amounts to bank’s disbursement of up to Rs. One lakh of free cash per month to an 
individual holding a bank account. While keeping 17 months of wash-out period in between 
the pre- and post-demonetisation periods, Figures 1 and 2 show how the debit card usage at 
ATM behaved during the pre-demonetisation period April 2015 – October 2016 and the post-
demonetisation period April 2018 – October 2019. The figures indicate that though in absolute 
terms there has not been any significant respite from predominant ATM usage in the country, 
there are some signs of reduced y-on-y growth in later months. The period November 2019 – 
July 2020 has been dealt separately since effective November 2019, RBI in its monthly ATM 
data dissemination has changed the definition of the ATM usage. 

 

 
 Source: RBI data 
 
Figure 1: ATM withdrawals during the pre- and post-demonetisation (after wash-out 
period) 

 
 

 
 Source: RBI data and author’s computation 
 
Figure 2: y-on-y growth of ATM withdrawal during the pre- and post-demonetisation 
(after wash-out period) 
 

Figure 3 shows how the ATM cash withdrawal using debit cards behaved during the 
period November 2019 – June 2020. The period since March 2020 shows the effects of 
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COVID-19 lockdown and partial unlocks. As such, even if we supplement with more recent 
National Financial Switch (NFS) off-us ATM data till July 2020, as shown in Figure 4, we see 
no respite from predominant ATM cash withdrawals in the country. 

 

 
    Source: RBI data 

 
Figure 3: Cash withdrawal at ATM 

 
 

 
   Source: NPCI and RBI data 

 
Figure 4: NFS inter bank ATM cash withdrawal 

 
But for RBI’s mandate allowing significant amount of cash withdrawal free for many 

bank customers, technically speaking, banks would not have incurred such avoidable and non-
remunerating expense. There is nothing that RBI appears to have done as a deterrent, which 
strongly prompts a reduction of large amounts of cash withdrawal in a month. Digital payment 
modes are now amply available where large and frequent cash is still in use. May be RBI 
advocating banks of charging a fee in a tiered fashion for total cash withdrawals in excess of a 
reasonable amount, say Rs. 20,000.00 a month, could create enough deterrent. Such a move 
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would allow generating desirable revenue for the banks to meet cash handling costs and 
additionally support costs for digital payments infrastructure. 
 
3.2.  Merchant transactions using debit cards 

 
Figure 5 shows the trend for debit card merchant payments during the period April 2015 

– June 2020 where we have indicated a wash-out period of 12 months to account for the 
disturbances due to impact of demonetisation. Clearly, under a controlled MDR-revenue 
model, debit card usage and acceptance for merchant payments has shown a consistent growth 
for some time now (exception being the COVID-19 lockdowns and partial unlocks). This has 
an associated cost for which revenue is collected either directly or indirectly from the users of 
the banking system. 

 

 
 Source: RBI data 
 
Figure 5: Debit card merchant transactions during the pre- and post-demonetisation 
(after wash-out period) 
 

Figure 6 shows the percentage share of debit card transactions for RuPay and 
mastercard/VISA. During April 2019 – June 2020, in value terms, RuPay had an average share 
of only 22% whereas mastercard/VISA had 78%. In fact, even during January-June 2020, in 
value terms, RuPay had an average share of 22% whereas mastercard/VISA had 78%. 

 

 
                  Source: RBI and NPCI data 

 
Figure 6: Percentage share of RuPay and mastercard/VISA (in Value terms) 
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The use of debit cards, in value terms, is more prominent among E-com merchant 
transactions rather than physical POS transactions. Primarily, E-com constitute data on e-
commerce transactions. However, though relatively meagre, RBI includes digital bill payments 
through ATMs and card to card transfers for debit cards under their E-com data. Primarily 
Figures 7 and 8 show the extent of E-com and POS transactions. Even before the COVID-19 
pandemic, in value terms, the E-com transactions had been more than the POS transactions 
(though in volume terms it is only since April 2020 that we see the same trend). The effect of 
lockdown on physical retail shops and other services had its impact in increasing the gap 
between E-com and POS transactions.     

 

 
                        Source: RBI  

 
Figure 7: Share of POS and E-com merchant transactions using debit cards 

 
In value terms, there had been a consistent increase in percentage share of E-com over 

POS transactions. During the first six months of 2020, percentage share of E-com had been 
58%. For bank account based transactions, the trend in debit card acceptance for E-com is 
unavoidable unless BHIM-UPI becomes a better choice for all. Unlike E-com, cash is always 
an alternative for POS since POS is an expensive proposition for many small and medium 
merchants. However, such merchants need to be migrated and enable for the asset-lite BHIM-
UPI acceptance. 

 

 
                   Source: RBI  

 
Figure 8: Percentage share of E-com and POS transactions (value) 
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4.  Costs and Prices 
 

We now need to address three pertinent questions. 
(i)  Given that there is zero MDR on RuPay alone, would there be an increase in the card 

acceptance desire at merchant locations? 
(ii)  If ‘cost to merchant’ is an important attribute for merchant’s choice for card acceptance 

and the bank’s desire to provide the card acceptance infrastructure, how would it impact 
continuation of the card acceptance trend? 

(iii)  What would be the consequence of the discriminatory approach adopted for RuPay? 
 
The Watal Report4 highlights the breakup of debit card transactions of less than Rs. 

2,000.00 and more than Rs. 2,000.00 in value terms (see Table 1). Nearly 65% of the total 
values of debit card transactions fall in the sub Rs. 2,000.00 tickets category, and all these 
transactions would now attract MDR within the RBI set cap of 0.9% for about 78% of debit 
card usage amounts (i.e., for mastercard/VISA but not RuPay). 

 
As a result, we now see merchants paying MDR for sub Rs. 2,000.00 tickets, contributed 

by 78% of the debit card usage. The banks’ re-imposition of debit card MDR @ 0.4-0.9% has 
affected the small and medium merchants when mastercard/VISA cards are used. This being 
the only source of MDR revenue in the debit card business for banks, it creates a strong 
potential for RuPay debit cards (constituting about 22% of the total values of debit card 
transactions) being marginalized in due course. As there is a revenue differential for banks 
between RuPay and mastercard/VISA, banks would always, in their commercial interest, tend 
to promote that card scheme which generates more revenue for them. 

 
Table 1: Distribution of debit card transactions in value terms 

 

 
 Source: Shri Ratan P. Watal Report “Committee on Digital Payments – Medium Term 
Recommendations to Strengthen Digital Payments Ecosystem” 

                                                             
4 Report of the Committee on Digital Payments headed by Shri. Ratan P Watal, December 2016. Ministry of 
Finance, Government of India. 
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4.1.  The increased MDR burden for small and medium merchants 
 
In Table 2, we present the debit card data for January-June 2020 and compute the 

merchant payoffs towards MDR for sub Rs. 2,000.00 ticket transactions. Prior to this, the 
government had made such merchant MDR zero for two calendar years 2018-19. Unlike pre-
January 2020, for the first six month of 2020, when 78% of the sub Rs. 2,000.00 debit card 
transactions (in value terms) attracted MDR @ 0.4% from merchants (including small and 
medium merchants), it amounted to a total payoff of Rs. 755.00 crore. When projected (linear 
projection) for the full year 2020, the MDR payoff amounts to Rs. 1,511.00 crore. These figures 
would more than double when MDR is applied @ 0.9%.5 

 
Table 2: Debit card transactions and computation of MDR payoffs 

 

 
       Source: RBI/NPCI data and author’s computation 

 
But for the COVID-19 lockdowns in the country, the level of debit card transactions 

would have been much higher and would have led to much larger MDR payoffs by the debit 
card accepting merchants. The government and RBI have effectively implemented a net 
increase of debit card MDR expenses at least for the small and medium merchants. Now, there 
are two contrary aspects to such an increase. 

 
(A)  Such an increase in the “cost to merchant” is good for the development and increased 

acceptance of debit cards, and 
(B)  The increased net MDR, onto small and medium merchants, is bad for the development 

and increased usage of debit cards. 
 

If (A) holds (and merchants pay a controlled MDR), there was no need for the induced 
discrimination between RuPay and mastercard/VISA. The same could have been achieved by 
arriving at a lower controlled MDR, uniform across all card schemes. 

 
However, if (B) holds, by putting restrictions only for RuPay and discriminatorily 

allowing mastercard/VISA to impose MDR onto merchants, we have not quite achieved desired 
results, unlike the government’s strategy of zero MDR for merchants for the two calendar years 
2018-19. 
                                                             
5 The average ticket size on RuPay debit card transactions being less than Rs. 1,200.00, the benefit of zero MDR 
on RuPay debit cards on ticket sizes more than Rs. 2,000.00 is minimal. 
  

Value
(Rs Crore)

 Debit 
cards 

(1)

RuPay 
 cards 

(2)

mastercard/ 
VISA cards 

(3)

Sub Rs 2000 
transactions 
@65% of (3) 

(4)

MDR 
Revenue 

@0.4% of 
(4) (5)

MDR 
Revenue 

@0.9% of 
(4) (6)

Jan-2020 84575 16728 67846 44100 176 397
Feb-2020 80146 15902 64244 41758 167 376
Mar-2020 65303 13745 51558 33513 134 302
Apr-2020 29043 7051 21991 14294 57 129
May-2020 48049 11438 36611 23797 95 214
Jun-2020 62494 14180 48314 31404 126 283

Jan-Jun 2020 369609 79044 290565 188867 755 1700
Jan-Dec 2020 1511 3400
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We have to choose between (A) and (B). 
 
Even if we keep aside the issue of MDR, Section 10A of the Payment and Settlement 

Systems Act 2007 emphasises that no bank or system provider shall impose any charge upon 
anyone, either directly or indirectly, for using RuPay debit cards. If we can have a bundled 
pricing for RuPay card acceptance, the monthly/ yearly rentals for POS terminals and PGs 
would increase with rentals being attributed to mastercard/VISA (and not RuPay) debit cards. 
This would actually lead to an indirect charge being imposed on RuPay debit cards. 

 
An important question remains as to whether zero MDR for RuPay debit cards would 

serve the purpose of promoting card payments in a situation where merchants are still 
overburdened from the fee for accepting other cards (cards other than RuPay debit cards). 
Could the answer lie in allowing merchants, at their discretion, not to accept cards other than 
RuPay debit cards? Surely not, since that may be a hindrance in their sales. 

 
4.2.  Discriminatory approach for RuPay debit cards 

 
So how would the system work now without any revenue stream for RuPay debit card (a 

prescribed modes of payment)? Also, how would the system work in presence of the induced 
discrimination between RuPay on the one hand and mastercard/VISA on the other hand? 

 
Though the zero MDR for RuPay debit card has led to savings for some merchants (of 

about Rs. 1,000.00 crore for calendar year 2020), an important question remains as to whether 
it would serve the purpose of promoting card payments in the presence of merchants being still 
overburdened on the fee for accepting other cards (cards other than RuPay debit cards). Note 
that for mastercard/VISA, effective January 2020, the merchants no longer enjoy zero MDR 
on transactions up to Rs. 2,000.00. Could the answer lie in allowing merchants, at their 
discretion, not to accept cards other than RuPay debit cards? 

 

 
   Source: Data submitted to DFS by Public Sector Banks, Regional Rural Banks and 
   Major Private Sector Banks 
  

Figure 8: RuPay debit card issued against PMJDY accounts 
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How should the government and the RBI solve this complex problem? If there is a 
revenue differential for banks between RuPay and mastercard/VISA, banks would always in 
their commercial interest have a tendency to promote that card scheme which generates more 
revenue for them. This is clearly reflected in Figure 8 where, during the one year period August 
2018 through July 2019, there had been issuance of at least 455 lakh RuPay debit cards 
corresponding to at least 422 lakh new accounts added under PMJDY. In contrast, for the same 
tenure during August 2019 through July 2020, we see a subdued issuance of around 77 lakh 
RuPay debit cards despite at least 366 lakh new PMJDY accounts added. This showcases that 
banks have taken steps to move away from RuPay and promote a card scheme which generates 
more revenue for them. 
 
5. Concluding Remark 

 
Using debit card and ATM data, this paper prepares grounds for policy guidance. Pricing 

policy can be ideally based on economic and accounting principles. For a way forward for debit 
cards, based on cost to the banking industry and prices implicitly paid by bank depositors, we 
refer to Das A. (2020), “Merchant transactions through debit cards – costs and prices”, IIT 
Bombay Technical Report (forthcoming). 
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Abstract 
 

Things that are managed are always measurable and termed as statistics. Use of 

statistical techniques in business management is vital in the contemporary scenario of 

competitive environment of globalisation. The various functional areas of business like 

marketing, finance, production, operations and HR encounters ample statistical data that has 

to be collected, processed, recorded and transmitted to the various stakeholders. The 

spectrum of statistics is widely used by the business administrators to run the business. 

Applying and using various statistical methods, techniques help the mangers to combat the 

business uncertainties. Considering this backdrop an attempt is made to highlight the role of 

statistics in business management. 

 

Key words: Statistics; Business; Organisations; Finance; Marketing; HR. 

 

1. Introduction 

 
Envisioning the trade and industrial environment of the future is a key management 

function and statistics play a dynamic role in all the types of business dealings. Every 

commercial proposal starts with an extensive research and all the data collected is compiled 

into statistics for decision(Balaji, 2013). Facts, figures and statistics are connoted to 

exhaustively explain and measure uncertainty and allows the managers to predict the future. 

Organisations encounter abundant information across all the media platforms and produce 

database for strategic operations in the day-to-day functioning of their business. From the 

perspective of businessoperations, a financial analyst useswidespread financial information 

to guide their speculative avenues and draw conclusions whether the stock is under-pricedor 

overpriced. Marketing managers using the electronic scanners at retail checkout counters 

collect data for a variety of marketing research applications. Statistics helps the business in 

producing goods with limited variations and minimum wastage and increase in the workers’ 

productivity(Scott, 2017). Considering the operationalvalue of the business, now-a-days all 

the trading concerns highly reply on information technology (IT) systems to manage data, 

facilitate remittances and run day to day operations. To overcome the obstacles, statistical 

algorithms are used. In process of steering the business direction statistics is used as device 

to forecast the future for strategic planning. Application of statistical models provides a base 

to predict the business future expenses and revenues which would help the business to adjust 

with new market developments and track the competitors’ activities(Salleh, 2018). Against 

this backdrop let us look at a few details regarding the role and significance of statistics in 

the work of managing business. The objective is to portray the importance of statistics in 

business management. 
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2. Spectrum of Literature 

 
According to Horace Secrist, Statistics is the science of collection, organisation, 

presentation, analysis and interpretation of numerical data. Various definitions are found to 

define statistics but it is universal in character when it comes to its application to the world of 

business and industry. What is measurable is always in statistics and the things that are 

measurable are always manageable. Fundamentally statistics is aggregate of facts collected in 

a systematic manner and that are affected by number of factors, numerically expressed, which 

can be estimated according to reasonable standard of accuracy and presented/placed in 

relation to each other for a pre-determined purpose. 

In the olden days’ statistics was considered as science meant purely for federal 

governance and used to collect data for law and order, defence strength, population wealth 

and welfare for formulating policies and practices. But statistics is a study which is pervasive 

in nature. It is the division of science dealing ingathering, assembling, analysing the data 

collated and depicting of inferences drawn from the samples to the whole population(Ryan 

Winters, 2010). It includes forecasting, planning, organising and decision making which are 

the primary activities under taken by the business manager.  

Contemporary world of trade and commerce is more of art than science. The growing 

worldwide competitive race amongst the corporatescompels business managers to address 

uncertainties by applying technicalmeans and be objective decision makers. Elimination of 

uncertainties is inevitable but using statistics, business executives make informed decisions 

about their products, customers, operations by applying statistical thinking and methods. This 

demandsthe unravellingmuscle of statistics for business administrators in the field of 

marketing, finance and operations. Largely, knowledge of statistics enables the business 

operational leaders to identify the problem, describe its nature of existence, estimatealternate 

course of actions, approximate errors, monitor methodsand practices and allow them to 

compare actual results with standards and upon any deviations enables the managers to take 

appropriate corrective measures(Veena, 2014).  Let us consider each of the functional areas 

of the business and deliberate how statistics discourses the need of business management.  

Marketing research heavily relies on statistical techniques to bring in insights to the 

usual deliverables and volume of output. According to American Marketing Association 

(AMA) Marketing research is examining the company’s marketing processes exhaustively 

and a marketing executive needs to collect and analyse ample volume of data related to 

market crescendos and target clienteles. Marketing strategy developed by the marketing 

executives depends upon the significant results of bazaarinvestigations which involves 

numerical methods for collection, using sampling techniques, analysing dataand assessing the 

effect of various marketing strategies. Sample customers from consumers’ population are 

selected to understand the perception with respect to a particular product or service and their 

buying and spending behaviour. It also helps in predicting the future preferences and 

purchasing habits of the consumers.(Cremonezi, 2018). The inferences derived from the 

gathered information from these surveys tend to widen the aspect of the population. This in 

turn depends on the method and source of data collection which encompasses the basic areas 

of survey design and sampling. A poorly designed survey and insufficient sample may result 

in biased and misrepresenting outcomes affecting the business advertising and sales 

promotional strategies. In Marketing management statistics is used extensively in 

determining advertising expenditures influencing sales and increasing the bottom lines i.e. net 

operating profits of the business(Saxena Parikshit, 2011). Statistics in marketing help the 
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marketing executives to identify which consumer buys what product at what frequency, 

which consumer is an active complaint launcher, recognises the sales personnel level of 

productivity and which mode of media would help in reach out the consumers in the digital 

era. 

From the perspective of production and quality control point of view statistics is very 

vital since the volume of output produced directly impacts the top line of the business that is 

gross revenues made from sales. A production manager uses statistical process control 

techniques to enhanceefficiency and quality(Veena, 2014). To enhance the production 

efficiency, the production executives, depend on application of control charts, sampling 

techniques and probability distribution ensuringimprovedmethods and produces leading to 

fall in manufacturingexpenses(Cremonezi, 2018). Organisations who have always thrived 

onto continuous improvement or heavily relied on quality assurance programs such as, Six 

Sigma or Lean Manufacturing, understands the significance of statistics. Empirical evidence 

submits that diverseintensities of statistical quality control methods application exist in the 

organisations with ISO-certified quality management systems Statistics provides a platform 

to quantify and regulate manufacturing processes to reduce variations in the occurrence of 

errors leading to waste ensuring consistency in the process of production. This ultimately 

helps in reduction in direct costs of material and labour(Williams, 2019).  

With the help of statisticians’promotion of statistical quality control and its integration 

into quality management systems isexecutedtogether at the micro and the macro level of the 

production management. Application of statistical controlling measures in productions 

management provides a means of detecting error at inspection, creates a basis for attainable 

specifications, plugsblockages and concerned areas, reduces inspection costs leading to 

uniform quality of production. The use of statistics in quality improvements includes 

hypothesis testing regression analysis, statistical process control(SPC) that helps the 

production engineers and managers identify when methods and practices are beyond 

resistance, as a result of deviations caused by uncertain situations and that are not integralpart 

of the procedures. Finally helps in designing and analysis of experiments. Further if 

considering the use statistics in finance, chompingfiscal data and using financial techniques is 

avitalmeasureundertaken by financial analyst who are none other than are the financial 

actuaries using financial data. 

Deliberating the role of statistics in finance, statistical investigation has become 

aninfluentialdevice for economic, industry and market valuation in the hands of financial 

managers. The explosive innovations in the complex financial instruments makes markets 

complex making more difficult for the investors, lenders and practitioners to value financial 

assets accurately. Statistical analysis has come to their rescue by offering the options to hedge 

the amount of risk associated with investment avenues. The best example of how statistics 

exponentially progressed is witnessed from the derivation and application of Black-Scholes 

formula (Black and Scholes, 1972 and Merton, 1973) for option pricing. These statistical 

tools have been used across all major funds analysis to forecast the performance and meeting 

the investment goals.  

The behavioural aspects of investors are used in predicting the stock prices based on the 

current price statistics of the index and the individual stock movements. Technical analysis is 

a classic example of statistical data presented in the form of charts and bars used by investors 

and financial houses for decision making analysis. Finance main concern is related to the 

valuation of assets. It is related to future receipts and payments called as cash flows. 

Statistical data helps the organisations in predicting the futures with respect to these cash 
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flows that impacts the earnings of the stakeholders. Practitioners use financial data for their 

own judgements regarding the investment positons in the stock markets(Gemeno, 2006).  

The functional areas in accounting, like, financial accounting, managerial and cost 

accounting, auditing and taxation etc., includes the use of econometrics like regression 

analysis, time series analysis, discriminant analysis, probit, logit and Altman`s Zeta analysis 

are of statistical nature. These offer various means and mode to gather, analyse and evaluate 

data for decision making on the part of financial managers to anticipate, acquire and allocate 

financial resources for the business operations. Statistics is pervasive in nature when it comes 

to accounting and finance as usually surveys research on investors use of bookkeeping data, 

capital market effects (stocks, bonds, options etc.) pension data, commodity markets and 

adjusting inflation rates to asset values. Using statistics knowledge of how firms’records, 

process and reports and constructed and transmitted to various stakeholders of the business. 

In finance the statistical procedures and estimation techniques attempt to minimise the 

occurrence of loss by quantifying the risk in returns over investments(Robert Hamada, 1998). 

At the economy level financial statistics is considered asaninclusive repository of stock and 

data on the financial assets and liabilities of all sectors of an economy. It highlights the 

statistical data that condenses past actions or projects future behaviour with respect to 

individual financial security, group of securities and markets in a widely spread geographical 

territory. The crux of presenting the balance sheet is merely the statistical record of presented 

in a systematic manners following an accounting process. The collective financial data of all 

the companies, industries and economic sectors are the resultant outcome of statistical 

process that is presented in the form of economic parameters to analyse the nation’s 

economic performance. 

Finally let us have a bird’s view over the Human resource management (HR), another 

important functional area of business management. The discipline HR and relevance of 

statistics is age old since personnel at work that are men in concept of management play a 

vital role among the five Ms that is, men, material, machine, money and markets. The focus 

on HR in management is important as men is the first factor that assembles all the other 

remaining factors. HR leaders in the organisation always on the edge to identify the changing 

perception of the employees with respect to upgradation in pay package based on their 

contributed productivity to the profitability of the organisation. HRM is a phenomenon to 

manage people in an organisation. The focus of the discipline HR is to develop strategies to 

improve the workforce experience with the rising industry trends. The statistics of employees 

is all about the data of workforce employed in an organisation with respect to their 

demographics, educational qualifications, strengths, weakness, skills, experience role and 

responsibilities. The purpose of HR management in an organisation is to identify the training 

needs to upgrade the employee skills to enhance efficiency and contribute to the 

organisational development.  

The use of statistics in HR is primarily to measure the employees level of satisfaction 

with respect to job performance. Ever since the concept of globalisation has emerged 

corporates are facing employee retention and engagement problems. Statistics as discipline 

helps these organisation in creating, maintaining and upgrading the data related to 

recruitment, contracts, payroll, performance, insurance and benefits and training needs of 

their staff and division/departmental heads. Statistical data in hand enables organisations to 

optimise engagement practices for the employee retention and motivation. The concept of HR 

analytics is receiving attention of business managers in large firms. It is a combinations of 

two terms analysis and statistics which means any analysis driven through the application of 



SPL. PROC.] STATISTICS IN BUSINESS MANAGEMENT  

 

 

179

statistics(Sengupta, 2020). Companies used several arrays of metrics to assess the effect of 

HR initiatives with the emergence of HR metrics and HR scorecard in relation to efficiency 

effectiveness and the impact on business performance. Over a period, the use of statistical 

tool gained significance over metrics, leading to the use of analytics. In the recent times  

application of quantitative techniques in HR has been prompted by the datafication of HR 

(Bersin, 2013).This is how the role of statistics is profound in the world of business 

management. Further the picture below helps us to understand how it enables the managers to 

apply statistics in business decision making through various approaches to analytics. 

 

 

Source: https://www.analyticsinsight.net/four-types-of-business-analytics-to-know/ 

From the above depiction it can be comprehended that business enables managers to 

analyse past performance, predict future business practices and lead organizations effectively. 

And in the common parlance of statistics it can be in the form of descriptive; that summarises 

existing data showing cause and effect analysis which is usually used in functional areas of 

management, diagnostic that focuses on examining the past historical performance to identify 

and evaluate the causes behind the routines, predictive; using machine learning techniques, 

modelling an data mining that enabling the managers to predict future probabilities and trends 

based on historical data,e.g., fraud detection and security, risk assessmentetc. 

3. Conclusion 

 
 From the above deliberation it is clear that in the age of technology statistics has wide 

range of applications. The discussion brings out clear deductions about the applications of 

statistics and its expediency in business managerial decision-making. Statistical methods used 

in day to day managerial aspects is a conspicuous reference for researchers, managers, 

consultants and academicians.In the fields of business, management science, operations 

research, supply chain management, financial econometrics and economics understanding 

statistical literature and applying quantitative practices is the need of the hour to combat 

business uncertainties and take smart decisions on a day to day front. To conclude researchers 

always are of the opinion that statistics enables the business managers to analyse past 

performance, predict future business practices and lead organizations effectively. In this 

entire process, descriptive analysis, predictive analysis and prescriptive analysis is key to 

success in business management. 
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Abstract
This paper review the theoretical framework of modeling high frequency financial data (HFD)

using a point process approach. We represent the financial event arrival times as the realization of
non-homogeneous Poisson process with an intensity function λ(t), which is assumed to be periodic.
In the case of HFD, this periodic pattern is quite well known, as the intensity of trades is higher
in the morning and just before closing the market and lower during the afternoon. We make an
attempt to study this intra-day cyclic behaviour with an intensity modelling approach using Bayesian
nonparametric method. The posterior consistency of the proposed nonparametric Bayesian procedure
is established. The Bayesian estimation of the intensity function is described for a specific case
where the conditions of the prior are satisfied. This paper is just a first step towards modelling
the HFD using point process approach and the corresponding Bayesian nonparametric analysis. It
may be mentioned that lot more computations need to be done to complete this ongoing work.

Key words: Bayesian nonparametrics; Financial point processes; High frequency financial data;
Intensity function; Intensity process.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

The empirical studies in finance literature usually concentrate on opening, closing or average
prices of stocks from financial markets. However, due to technological advancements, researchers
can now work with the high frequency data (HFD), which contains details of all the transactions
along with the marks such as price, volume, time of transaction etc. Such data has attracted lot of
researchers and this has become a new area of research these days. Known as ‘high-frequency finance’,
it helps to understand the financial markets at a micro level, see Viens et al. (2011), Gregoriou
(2015) and Florescu et al. (2016) for a broad overview. Here, there can be details of hundreds of
transactions happening in a micro time interval corresponding to a particular stock from an electronic
stock exchange. An important feature of HFD is that the transactions are recorded as and when
they occur, hence the observations are irregularly time spaced. This prevents the use of standard
time series methods in high frequency finance. The timing of transactions carry substantial amount
of information, which can be used in studying the micro structure of a financial market. Therefore,
it is very important to model the time interval between transactions (durations) appropriately.

Corresponding Author: T. V. Ramanathan
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One way of modeling the durations is to make use of the autoregressive-type conditional
duration (ACD) models introduced by Engle and Russell (1998), which attempts to model the time
between the events occurring at ti−1 and ti, by defining xi = ti−ti−1, where {t0,t1,...,tn,...} is a
sequence of arrival times with 0=t0≤t1≤t2≤ ...≤tn≤ .... The sequence {x1,x2,...} of non negative
random variables form the durations. Here, the arrival times ti may not necessarily mean the time
corresponding to consecutive trades. There can be other type of events of interest as well. For example,
ti can be time of occurrence of a volume event, which is said to have occurred if the cumulative trade
volume since the last volume event is at least a preset amount v. Similarly, price event is said to have
occurred if the cumulative price change since last price event is at least of a preset amount p. Thus,
xi is the interval between consecutive events of interest leading to trade, volume or price durations.

Let the conditional expected duration be
ψi=E(xi|Fi−1), (1)

where, Fi is the information set at transaction i, that is, Fi=σ(xi,xi−1,···,x1). The main assumption
of an ACD model is that the durations are of the form

xi=ψi εi, (2)
where εi are independent and identically distributed (i.i.d) random variables with E(εi)=1 (In fact,
without loss of generality, it is possible to assume that this is true). The above set up is very general
and it allows a variety of models which can be obtained by choosing different specifications for the
expected duration ψ and different distributions for ε. We refer to two interesting review papers
Pacurar (2008) and Bhogal and Ramanathan (2019) for detailed discussions on this approach.

Another approach of modeling HFD is using a point process. In this method, one represents
the event of arrival times as a realization of non-homogeneous Poisson process with an intensity
function λ(t) having a specific structure. This method is usually known as financial point process
method. A further extension of this is modelling based on the intensity function of the process,
which leads to more flexible and powerful models. Such an approach is recommended when we deal
with multivariate processes, in which case, the conditional duration approach is not very successful
(see Russell (1999), Hautsch (2004) and Bauwens and Hautsch (2006)).

Researchers have been using the periodicity adjustment procedure of Engle and Russell (1998),
which we have also used to remove intra-day effect in a paper published recently Mishra and
Ramanathan (2017). However, WSu (2012) had claimed that this procedure is not very satisfactory.
Hence, using a non-homogeneous Poisson process may resolve the issue, as suggested by various
researchers in related problems. Belitser et al. (2013) proposed an M-estimator to estimate the
period of a cyclic non-homogeneous Poisson process, established its consistency and demonstrated
the effectiveness by applying it to a call center data. In our case, we already know the period,
which is ‘daily’ and hence we are not interested in estimating the period. Weinberg et al. (2007)
modelled the day-to-day as well as intraday variations in the same call center data using a normal
approximation to Poisson. Specifically, in finance, Andersen et al. (2019) develop a procedure to
test intra-day periodicity in return volatility. We propose a procedure to adjust the periodicity using
a Bayesian approach and prove its consistency.

Bayesian approaches for Hawkes models have received much less attention. The only con-
tributions for the Bayesian inference are due to Gulddahl (2013) and Blundell et al. (2012) who
explored parametric approaches and used MCMC to approximate the posterior distribution of the
parameters. Donnet et al. (2018) study the properties of Bayesian nonparametric procedures in
the context of multivariate Hawkes processes.
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The paper is organized a follows. In Section 2, we discuss the financial point process. Bayesian
nonparametric approach for financial point process is described in Section 3. Extensions to Hawke-type
processes is described in Section 4. Section 5 concludes with some future directions.

2. Financial Point Processes

Let {ti,i = 1,··· ,n} denote a random sequence of increasing event times 0 < t1 < ··· < tn
associated with an orderly (simple) point process. Then,

N(t)=
∑
i≥1
I{ti≤t}

define a right-continuous counting function which gives the number of events of some type in the
time interval (0,t). The Ft-intensity process λ(t) of the counting process N(t) is defined as

λ(t;Ft)=lim∆→0
1
∆E[N(t+∆)−N(t)|Ft], (3)

where Ft=σ{N(s);0≤s≤t}. Therefore, the sequence of event arrival times {ti} can be modeled
as a point process by modelling the intensity λ(t).

The simplest type of point process is the homogeneous Poisson process defined by
Pr((N(t+∆)−N(t))=1|Ft) = λ∆+o(∆),
Pr((N(t+∆)−N(t))>1|Ft) = o(∆), (4)

with o(∆)/∆→0, as ∆→0. Note that in this case, the intensity is constant and it leads to

P(ti>x)=P(N(x)<i)=
i−1∑
j=0

e−λx(λx)j
j! .

A straight generalisation from here is the case when the intensity function is a deterministic
function of time or a non-homogeneous Poisson process with intensity function λ(t). This can be
particularly useful in modelling the intra-day cyclic behaviour of durations with an appropriate
choice of λ(t). One another possibility here is to use a marked point process defined with marks
such as arrival of buys, sells and certain limit orders, see Bauwens and Hautsch (2006).

3. Bayesian Point Processes

Let (Nt)t≥0 be a non-homogeneous process on [0,T ], that is, the sample paths of (Nt)t≥0 are
right-continuous step functions with N0 =0 and with jumps of size 1. Let Nt be the number of
jumps in [0,t] and Nt<∞ almost surely. We assume the following about the process N(t) and the
intensity function λ(t).

A1 For any disjoint subsets B1,B2,···,Bm∈B([0,T ]), B([0,T ]) the random variables N(B1),N(B2),
···,N(Bm) are independent random variables denoting the number of jumps in B1,B2,···,Bm
respectively.

A2 For any B∈B([0,T ]) the random variable N(B) is distributed as Poisson with parameter
Λ(B); where Λ is a finite measure on ([0,T ],B([0,T ])), called as the compensator of the process.

A3 Λ admits a density λ with respect to the Lebesgue measure on B([0,T ]). That is,

Λt=
� t

0
λ(s)ds,

where, λ(t) is called the intensity of Nt.
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We estimate λ(t) using Bayesian procedure and establish the posterior consistency. Consistency
results for intensities of Poisson processes can be established by connecting and extending the two
main approaches regarding consistency for i.i.d. observations. The first approach, due to Schwartz
(1965), Barron et al. (1999), and Ghosal et al. (1999), requires construction of an increasing sequence
of sets, a sieve, and a sequence of uniformly consistent tests. This is the approach followed by
Belitser et al. (2015) and Donnet et al. (2018). An alternative approach, which we follow in this
paper, provided by Walker (2004) relies on a martingale sequence to obtain sufficient conditions
for posterior consistency in the i.i.d. case. This alternative approach, though equivalent to the use
of a suitable sieve, simplifies the verification of necessary conditions for consistency.

Below we state Theorem 1.3 of Kutoyants (1998) as a lemma.

Lemma 1: For any λ, the law Pλ of N under the parameter value λ admits a density pλ with respect
to the measure induced by a standard Poisson point process with intensity 1. This density is given by

p(λ)=exp(
� T

0
logλ(t)dNt−

� T

0
(λ(t)−1)dt).

Suppose we observe n independent non-homogeneous Poisson processes N (1),N (2),···,N (n) on
[0,T ] with a common intensity λ, which is a positive integrable function on [0,T ]. Then, by Lemma
1, the likelihood is given by

L(λ)=
n∏
i=1
exp(

� T

0
logλ(t)dN (i)

t −
� T

0
(λ(t)−1)dt).

We define the parameter space as

F=
{
λ : [0,T ]→R+|

� T

0
λ(t)dt<∞

}
.

Here, we are estimating the intensity function λ(t), given N (1),N (2)···N (n), using a Bayesian
nonparametric approach. Let λ belong to the class F of intensities which need not be indexed by a
finite dimensional parameter. Let Π be a prior on F, Π:(F,σ(F))→ [0,1]. Let Π(.|N (1),N (2),···,N (n))
stand for the posterior distribution of λ given the data. So, if B is a set of intensities, the posterior
mass assigned to it is given by

Π(B|N (1),N (2),···,N (n))=
�
B
Rn(λ)dΠ(λ)�
FRn(λ)dΠ(λ),

where
Rn(λ)=

n∏
i=1

p(N (i),λ)
p(N (i),λ0)

is the likelihood ratio with λ0∈F being the true fixed but unknown transition density.

The Bayesian model is consistent if the posterior mass increases around λ0 as n increases.
Suppose that a topology on F has been specified. Then posterior distribution is said to be consistent
at λ0 if for every neighborhood U of λ0, we have that,

Π(Uc|N (1),N (2),···,N (n))→0 a.s.

3.1. Posterior consistency

For a continuous function f on [0,T ] we define the norms ‖f‖2 and ‖f‖∞ as usual by defining

‖f‖2 =
� T

0
f2(t)dt, and ‖f‖∞=supt∈[0,T ]|f(t)|.
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In the following theorem, we establish the posterior consistency of Bayesian procedure under a couple
of conditions on the prior assumed and on the space of intensity functions.

Theorem 1: For any given ε>0, let A′
ε be a set of intensities around the true intensity λ0∈F

defined as,
A

′

ε=(λ∈F :‖
√
λ−

√
λ0‖2>

√
2ε). (5)

Let the prior Π be such that

a) Π(λ :‖λ−λ0)‖∞<ε)>0 and

b) ∑∞j=1

√
Π(A′

j)<∞, where {A′
j} is a countable cover of size δ√

2(δ<ε) for A′
ε.

Then,
Π(A′

ε|N (1),N (2),···,N (n))→0 a.s. (6)

Condition (a) is similar to Belitser et al. (2015) and Donnet et al. (2018). But we have an
easily verifiable condition (b), as compared to other conditions provided by the same authors.

Let the square of the Hellinger distance h(pλ,pλ′ ) be defined as

h2(pλ,pλ′ )=2
1−Eλ′


√√√√ pλ(N)
pλ′ (N)

,
where Eλ is the expectation corresponding to the probability measure under which the process N is a
Poisson process with intensity function λ. Let the Kullback-Leibler divergenceK(pλ,pλ′ ) be defined by

K(pλ,pλ′ )=−Eλ′

(
log

(
pλ(N)
pλ′ (N)

))
.

We state two lemmas before proving Theorem 1. Lemma 2 constitutes a part of Lemma 1 of
Belitser et al. (2015) and Lemma 3 is nothing but Theorem 4 of Walker (2004), which gives posterior
consistency result for density estimation. Proofs of these lemmas are omitted as they are available
in the references mentioned.

Lemma 2: For the Hellinger distance h(pλ,pλ′ ) and the Kullback-Leibler divergence K(pλ,pλ′ ),
the following hold good.

(i) 1√
2‖
√
λ−
√
λ′‖2≤h(pλ,pλ′ )≤

√
2(‖
√
λ−
√
λ′‖2)

(ii) ‖λ−λ0)‖∞≤K(pλ,pλ′ )

Lemma 3: Let Aε be a set of intensities defined in terms of densities with respect to Poisson
measure pλ h-bounded away from pλ0,

Aε=(λ∈F :h(pλ,pλ0)>ε). (7)
Assume that the prior Π has the following properties:

C1. Π(K(pλ,pλ0)<ε)>0

C2.
∞∑
j=1

√
Π(Aj)<∞, where {Aj} is a countable h-cover of size δ(<ε) for Aε.
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Then,
Π(Aε|N (1),N (2),···,N (n))→0 a.s. (8)

Proof: of Theorem 1: We can view our problem as a density estimation problem with respect to
the Poisson measure, and as a consequence, we have the posterior consistency of Lemma 3. By
Lemma 2(i), we have from (7) and (5), Aε⊂A

′
ε, which gives

Π(Aε)→0⇒Π(A′

ε)→0. (9)
By Lemma 2(ii), we have

Π(λ :‖λ−λ0‖∞<ε)>0⇒Π(λ :K(pλ,pλ0)<ε)>0. (10)
Again, by Lemma 2(i), if {Aj} is a countable h-cover of size δ(<ε) for Aε, then {A′

j} is a countable
cover of size δ√

2(δ<ε) for A′
ε. Moreover, we also have, again by Lemma 3,

∞∑
j=1

√
Π(A′

j)<∞⇒
∞∑
j=1

√
Π(Aj)<∞ (11)

We have shown in (10) and (11) that condition (a) and (b) of Theorem 1 implies Lemma 3(C1) and
3(C2). Under these conditions, we have the result (8) of Lemma 3, which implies the result (6) of
Theorem 1 by (9).

Thus we have proved a general result. We can use Theorem 1, to obtain the suitability of
specific priors. For clarification, we illustrate an example in the subsection below, but would like
to emphasize that these results may also be used to verify the posterior consistency of other priors.

3.2. Illustration

There is a huge literature on prior construction for nonparametric models, where space of
functions serve as the parameter space, see Chapter 2 of Ghosal and van der Vaart (2017) for details.
The simplest and most popular is the random basis expansion, which we discuss briefly.

Given a set of basis functions φj : [0,T ]→R, one way of constructing prior on intensity functions
λ : [0,T ]→R+ is by writing λ= exp(∑∞j=0βjφj) and putting priors on the coefficients βj in this
representation. There can be many choices of bases, such as, polynomials, trigonometric functions,
wavelets, splines, spherical harmonics, etc. See De Boor (1978) for details on splines, Härdle et al.
(2012) and Donald and Percival (2000) for details on wavelets and Fourier bases. Also see Appendix
E of Ghosal and van der Vaart (2017) for their approximation properties. For a given application,
the suitability of the prior is determined by the approximation properties of the basis together with
the prior on the coefficients. Rivoirard and Rousseau (2012) discussed a very general adaptive priors
based on wavelets and Fourier bases. Shen and Ghosal (2015) and Belister et al. (2014) carry out
a similar study for priors based on spline basis. Shen and Ghosal (2015) assumed the knots as fixed,
whereas, Belister et al. (2014) considered them as random.

We outline the procedure of estimation without getting into the details of computations.

Given infinite basis functions, the convergence of λ is not guaranteed always. However, it
is true if and only if ∑β2

j <∞ a.s.. Let βj∼N(0,σ2
j ). To ensure that λ defines a valid intensity

function with probability 1, it is sufficient that ∑σj<∞. Conditions for posterior consistency can
be obtained by applying Theorem 1. Walker (2004) studied the same prior with adjustments for
density estimation case and obtained a sufficient condition as ∑(σj

ωj
)2m−1

2 <∞ for some sequence
ωj satisfying ∑ωj<∞. Basically, if we want to use this basis representation as a prior on intensity
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functions, then we will put priors on βj, which will induce a prior on intensity functions. Also we
want the prior on βj to shrink to zero at an appropriate speed. For example, by taking σj∝j−1−q

for any q>0, this will be satisfied (put ωj∝j−1−r for any r>0).

What we have provided till now is not a method of estimating the intensity, but, mentioned
the conditions that are to be verified, in order to justify the Bayesian procedure.

3.3. Bayesian estimation procedure using HFD

In order to estimate the intensity using the Bayesian procedure, appropriate choice of prior needs
to be made along with different bases, and then the posterior has to be computed. The purpose here is
not to estimate the intensity in detail, but, to throw some light on the procedure using a particular case.
The result will be true for any Bayesian procedure where the conditions on the priors are satisfied.

Let n denote the observed number of days of trading activity and Tn the total time in seconds
during which market operates everyday. For example, if market timing is 10 AM to 4 PM, then
T=0 sec corresponds to the time 10:00:00 and T=21,600 sec corresponds to the time 16:00:00.
Then the complete event counting process is given by N={Nt :t∈ [0,nT ]}, where Nt denotes the
number of events in [0,t]. The assumption of periodicity implies that λ(t+T)=λ(t), ∀ t≥0. For
i=1,···,n, the event arrival counting process during day i may be defined as

N
(i)
t =N(i−1)T+t−N(i−1)T , t∈ [0,T ].

Since the increments of the process Nt are independent, the processes N (i)
t are independent non-

homogeneous Poisson processes with λ as the intensity function, restricted to [0,T ].

Our objective is to estimate the intensity function. Let ∆ be a small grid of time, say 15
seconds, and m=T/∆ be the number of grids per day in the data set. Then the number of events
in the jth time grid on day i is given by

Aij=N (i)
j∆−N

(i)
(j−1)∆,

which is assumed to follow a Poisson distribution with mean λj =
� j∆

(j−1)∆λ(t), for every i=1,···n
and j=1,···m. We denote the available data over grids as An=(Aij :i=1,···,n,j=1,···,m). Hence,
the likelihood is given by

L(λ|An)=
n∏
i=1

m∏
j=1

λ
Aij

j expλj
Aij!

. (12)

Putting a prior of the random basis type on λ, we have

λ=
J∑
k=1
βkφk. (13)

This finite basis representation may not be truly non-parametric in nature. However, this problem
can be addressed by putting another prior on J (see Chapter 2, Ghosal and van der Vaart (2017)).
Therefore, a draw from prior Π can be constructed as follows:

1. Draw J from a Poisson distribution with mean µ (around 12).

2. Given J=j, draw β vector of j-independent N(0,σ2
j )

Given the data, likelihood (3.8) and the prior (3.9), we can use MCMC to sample from posterior
distribution, as it will be difficult to obtain the analytical form of the posterior. As long as the bases
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considered are fairly easy to evaluate and integrate, we can compute the likelihood and posterior
up to a normalising constant, without making any approximation. After that the computations will
be a straightforward adoption of existing MCMC methods Polasek (2012). Also, having the data,
form of the prior and the likelihood, we can use Stan programming language Carpenter et al. (2017),
which does the posterior computation automatically using the Hamiltonian Monte Carlo (HMC)
Betancourt (2017). While using HMC, proper care needs to be taken as a discrete parameter J
is introduced into the model, and HMC does not work in discrete parameter case. However, properly
augmenting HMC with Gibbs-type update for discrete parameter may circumvent this problem.
This demand further investigations in this front.

We need to do a detailed computation considering all the bases and their variations in order
to recommend an optimal choice of the prior and the basis for an intra-day periodicity adjustment.
To carry out this task with the data, there has to be some additional changes in the structure of
the intensity function. For example, here, we have considered the case of a Poisson process where
the intensity does not depend on the observations. But in real cases we can incorporate a dynamic
behaviour into the structure of the intensity function, so that, it actually affects the intensity of
events in the market. This can be achieved by using the Hawkes- type models for the counts. Next
we briefly discuss the Hawkes process and some of its generalizations.

4. Extensions to Hakwes-type Processes

A different generalization of the Poisson process is obtained by specifying λ(t) as a (linear)
self-exciting process given by

λ(t)=µ+
� t

0
w(t−u)dN(u)=µ+

∑
ti<t

w(t−ti) (14)

where µ(t) provides a Poisson base for the process and w(u) is a kernel (exciting). This process
is known as Hawkes process and was first proposed by Hawkes (1971) and was applied in seismology.
The generalisation capability in Hawkes process over Poisson comes from kernel, which allows
contribution by an event that occurs at a previous time t−k to intensity at time t. This kind of
a dynamic behaviour is not supported by the Poisson process.

following are some of the kernels that are frequently used in the case of Hawkes process.

1. Exponential kernel: The exponential kernel is given by
w(u)=αβe−βu, u>0. (15)

This kernel implies an exponential decay in the effect of an event on future events and β
drives the strength of the time decay and α, the overall strength of excitation.

2. Power-law kernel: The power-law kernel is given by

w(u)= αβ

(1+βu)1+p , u>0 (16)

This kernel implies a hyperbolic decay and capture long range dependence.

Another approach lies in using kernels that take the form of linear combination of exponential and/or
power functions with different rate constants, which might help in capturing different short and
long range dependence.
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The intensity given in (4.1) can also be generalised to accommodate marks. There may be
a mark, χi associated with the the event ti, that can affect the intensity. For example, a trade
with large volume may excite future trades more than a trade with small volume. Marks may be
contained within the kernel function as w(u,χ). The Hawkes process with such a modification is
known as Marked Hawkes process.

Multivariate Hawkes models can be also obtained by a generalization of (4.1). In such a case,
λ(t) is a K×1 vector defined by λ(t)=(λ1(t),···,λK(t)) with

λk(t)=µk(t)+
K∑
m=1

∑
tki<t

wmk(t−tki ). (17)

The function wmk is a cross-exciting term with wmk(t−tki ) being the contribution to the intensity
of type-m events made by a type-k event at tki .

The probabilistic properties of Hawkes processes are discussed in Hawkes (1971), and Brémaud
and Massoulíe (1996). Hawkes and Oakes (1974) show that every self-exciting Hawkes processes can
be represented as a Poisson cluster process. Thinking of each event as a parent, an event occurring at
time ti gives birth to offspring according to a Poisson process with intensity w(t−ti) : these offspring
generate their own offspring, and so on. Ogata (1978) discusses the maximum likelihood estimation of
Hawkes process, whereas, asymptotic behaviour of such an estimate is investigated by Ozaki (1979).

Despite their usefulness, Hawkes-type models did not find their place in financial econometrics
for a long time. Bowsher (2007) applied Hawkes type model in financial econometrics for the first
time. He presented a continuous time, bivariate point process model ((4.4) with K=2) of the timing
of trades and mid-quote changes for a New York Stock Exchange stock. Estimation was performed
using maximum likelihood method as analytic likelihoods were available. Since then, there has
been various developments in finance related to applications of Hawkes process. Bacry et al. (2012)
introduced a non-parametric estimation method for multivariate Hawkes processes based on the
spectral factorization of the co-variance matrix and then applied it to tick-by-tick trades data of
a futures contract for a total period of 3.5 months. Da Fonseca and Zaatour (2014) proposed an
estimation strategy using the method of moments that can be solved almost instantaneously as against
the maximum likelihood estimates, and applied to trade arrival times of major stocks for observations
of 2 years. Fauth and Tudor (2012) used multivariate marked point processes in order to describe the
fluctuation in tick-by-tick data corresponding to trades in currency exchange (EUR,GBP,CHF,JPY).
Hawkes (2018), Bacry et al. (2015) and Bauwens and Galli (2009) gave excellent reviews of applications
of point process in finance. In spite of various applications after Bowsher (2007), there has been no
Bayesian study of point processes in finance. Bayesian methods can be advantageous while obtaining
the uncertainty about the intensity using the spread of the posterior distribution.

5. Concluding Remarks

In this paper, we have discussed the financial point process associated with the high frequency fi-
nancial data. With the nonhomogeneous assumption of the count process associated with the durations,
it is appropriate to estimate the intensity function λ(t) using a nonparametric functional approach. We
have addressed the problem using a nonparametric Bayesian method. This review paper is just a first
step towards the description of the problem and the associated research. An extensive computational
exercise needs to be undertaken by considering different basis combinations for intra-day periodicity
adjustment. We also plan to extend this study by investigating various theoretical as well as computa-
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tional aspects of Bayesian nonparametric approach of modeling the HFD using Hawkes-type models.
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