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PREFACE 
The Society of Statistics, Computer and Applications (SSCA) was established in 1998 

with the aim of creating a platform for advancing and disseminating research in statistics while 
incorporating information technology. It sought to engage both theoretical and applied 
statisticians with a strong interest in the innovative applications of statistics across various 
fields, including agriculture, biological sciences, medical sciences, financial statistics, and 
industrial statistics. Over the years, the Society has undertaken numerous activities and played 
a pivotal role in promoting the development of theoretical and applied research in statistical 
sciences. 

One of SSCA's primary initiatives has been the organization of annual national and 
international conferences across the country. Additionally, SSCA publishes an open-access 
journal called "Statistics and Applications," which is available on the Society's website 
(www.ssca.org.in). The journal offers free access to full-length papers, which can be viewed 
and downloaded at no cost. In addition to regular volumes, the journal also brings out special 
volumes focusing on emerging thematic areas of global or national significance. 

The twenty-fifth Annual Conference of SSCA took place from 15th to 17th February 
2023, at the Department of Statistics, University of Jammu, Jammu. The conference was 
themed "Significance of Statistical Sciences in Emerging Scenario (SSSES 2023)" and served 
as a platform for renowned international and national statisticians to present significant 
research findings. The conference featured several noteworthy events, including a pre-
conference workshop and various technical sessions. These sessions encompassed the M.N. 
Das Memorial Lecture and a dedicated session on Financial Statistics, where distinguished 
statisticians and leading practitioners in the field shared their insights on various finance-
related topics. Moreover, the conference included three endowment lectures: the B.K. Kale 
Memorial Endowment Lecture, J.K. Ghosh Memorial Endowment Lecture, and Bikas Kumar 
Sinha Endowment Lecture. These lectures were delivered by speakers closely associated with, 
collaborated with, or were students of the respective honourees. Additionally, there was the 
V.K. Gupta Endowment Award Lecture for Achievements in Statistical Sciences and Practice, 
which was presented by Bikas Kumar Sinha. The special proceedings of these sessions have 
been assigned the ISBN #: 978-81-950383-2-9. 

The Executive Council of SSCA made the decision to publish the "Special Proceedings" 
of the conference, which would feature selected talks, including those presented in the 
Financial Statistics session. The Guest Editors, nominated by the Society's Executive Council 
- V.K. Gupta, Baidya Nath Mandal, R. Vishnu Vardhan, Ranjit Kumar Paul, Rajender Parsad, 
and Dipak Roy Choudhury - were responsible for curating these special proceedings. They 
invited authors based on their presentations during the conference to submit full papers for 
consideration in the Special Proceedings. 

Distinguished speakers who were shortlisted for contributing to the special proceedings 
were invited to submit their research papers. After a rigorous review process, 15 research 
papers were accepted for publication and included in the special proceedings. We owe special 
debt to all the reviewers for their significant contribution in completing the review process 
within a short time frame. Our heartfelt appreciation goes to all the members and office bearers 
of SSCA's Executive Council for their support. We are also grateful to Ms. Jyoti Gangwani for 
meticulously formatting the papers. Furthermore, we warrant our deepest thanks to Prof. 
Umesh Rai, Vice Chancellor, University of Jammu, and his dedicated team, particularly Dr. 
Rahul Gupta, Dr. Parmil Kumar, Dr. Pawan Kumar, Dr. V K Shivgotra, and Dr. Sunil Kumar. 
Each of them, in his own way deserves major credit for the efforts in organizing this 



 ii 

academically enriching conference of SSCA and making their facilities available for the 
conference.   

We expect the readers to benefit from the contents of the special proceedings. 

 

Guest Editors 
 

V.K. Gupta  
Baidya Nath Mandal 

R. Vishnu Vardhan 
 Ranjit Kumar Paul 

Rajender Parsad 
Dipak Roy Choudhury 

 

New Delhi 
September 2023 
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Abstract 

           In this paper based on the Bikas Sinha Endowment Lecture, we shall first discuss Rao-

Blackwellization of some early estimators obtained in finite population sampling theory along 

with historical aspects.  We note that there are certain lapses with respect to priorities and 

credits in the literature. Next, we shall briefly sketch the role played by Bikas Sinha related to 

applications during early days.   

Key words: Rao-Blackwellization; Probability proportional to size sampling; Call backs; 

Randomized response technique; Environmental statistics. 

AMS Subject Classification: 62D05 

1. Introduction 

            In this paper, we begin with the technique of Rao-Blackwellization in finite population 

sampling theory, a subject which both Prof. Bikas Sinha (BKS) and I are interested in. Rao- 

Blackwellization, a term credited to C. R. Rao based on his 1945 ‘breakthrough’ paper 

published in the Bulletin of the Calcutta Mathematical Society, provided improved estimators 

in conventional as well as adaptive, link-tracing, size-biased sampling techniques. 

Furthermore, Rao-Blackwellization found applications in statistics and a host of other 

disciplines including sports, namely Rao-Blackwellized Field Goal percentage estimator (RB-

FG%) and possibly social networks such as WhatsApp (RB-WA). 

We shall first discuss applications related to improving of estimators in finite 

population sampling theory relating to Probability Proportional to Size Without Replacement 

(PPSWOR) selection. We note that proper credit is not given to certain publications and point 

out certain lapses with respect to (wrt) priorities and credits in the sampling literature. 

2. Selection with ppswor scheme 
           

Following Basu (1958), wherein  he showed that the ‘order statistic’ (sample units in 

ascending order of their labels) is a sufficient statistic, Pathak(1961) while discussing sampling 

from finite populations,  noticed that  ‘any estimator which is not a function of the order 

statistic’, can be uniformly improved upon by the use of Rao - Blackwellization  technique. 

BKS along with Sen (Sinha and Sen,1989) goes beyond variance comparisons and generalizes 

to convex loss functions. In his book on Finite Population Sampling with Hedayat (1991), 

BKS devotes the maximum number of 58 pages for the chapter on PPS sampling.  A large part 

mailto:tjrao7@gmail.com
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of his work on sampling (solo and with co-authors) was on PPS sampling among others.  We 

shall discuss the case of  sampling of 2 units from a finite population of size N with the study 

variate  Y taking values 𝑌𝑖 and known auxiliary variate X related to Y, taking values 𝑋𝑖 on the 

units 𝑈𝑖, i = 1,2,….,N. Let  TY  and TX denote the population totals of  Y and X respectively. 

 

Let 𝑃𝑖 =  𝑋𝑖 / TX.  
 

2.1. A recap of unbiased estimators of TY 

 

International Statistical Institute held its biennial session in Delhi in 1951 from 5-11 

December. A short session was held in Calcutta from 16 to 18 December along with other 

international societies. A. C. Das of Indian Statistical Institute presented a paper on successive 

sampling. As a passing note in this paper, Das (1951) discussed PPSWOR scheme as well at 

the end. 

 

Thus, if (i, j) are the labels of units selected by PPSWOR in that order, then Das’s 

(1951) estimators for the first and second draws of sample selection are, respectively, 

 

                                   1
i

Da
i

y
t

p
                                                                                            (1) 

and      

      2

1
(1 )

( 1)

j

Da i

i j

y
t p

N p p
 


     .                                                             (2) 

After a gap of 5 years, Des Raj (1956) obtained ordered estimators (for n = 2):  

                  𝑡1  =  𝑦𝑖/ 𝑝𝑖 for first draw, 

                 𝑡2  =  𝑦𝑖 + [𝑦𝑗/{𝑝𝑗/(1− 𝑝𝑖)}], based on second draw 

and       

                                    𝑡̅    =  {𝑦𝑖 ( 1 + 𝑝𝑖  ) / 𝑝𝑖}  +  { 𝑦𝑗 (1 – 𝑝𝑖) / 𝑝𝑗 }/2  based on order ( i, j).         (3)                                                                    

 

 𝑡𝑖 ′𝑠 are defined similarly, i = 1,2,…,n and  

            𝑡𝑛 = 𝑦1 +  𝑦2 + ⋯  + 𝑦𝑛−1 + [𝑦𝑛 / (𝑝𝑛/ ( 1- 𝑝1− 𝑝2 −  … . − 𝑝𝑛−1 )] or equivalently, 

            𝑡𝑛  = 𝑦1 +  𝑦2+..+ 𝑦𝑛 +[𝑦𝑛 / {𝑥𝑛/ (TX  – 𝑥1 −  𝑥2 −  . . . − 𝑥𝑛−1– 𝑥𝑛 )}]. 

 

By independence of estimators, it is easily seen that 

                                            𝑉̂ ( 𝑡̅ ) =  ∑ (𝑡𝑖 −  𝑡)̅2𝑛
1  / n(n – 1)    

is a non-negative unbiased estimator of variance. 
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2.2. Other negative variance estimators 

 

            Towards the end of the paper, Das gave an unbiased estimate of variance as well.  This 

estimator received criticism since it can take negative values. Horvitz and Thompson (HT, 

1952) gave a general homogeneous linear unbiased estimator for TY, which had nice properties. 

They also gave an unbiased estimator of variance of their estimator, but it also takes negative 

values. A year earlier, Narain (1951), independently obtained the same estimator and published 

in the Journal of Indian Society of Agricultural Statistics (JISAS) but was not mentioned by 

several authors. Thus, credit goes to Narain and HT, and J. N. K. Rao (1999, 2005) rightly 

called it as NHT estimator.  In a discussion of Rao’s 1999 paper, J.K. Ghosh observed that  it 

was “renamed NHT honouring another pioneer Narain”. 

           The very next year, Yates and Grundy (YG) in 1953 published an alternative variance 

estimator which also takes negative values (less often than HT’s). It is interesting to note that 

Sen (1953) also published the same estimator as YG’s in JISAS.  It is now termed as SYG 

estimator, thus crediting all the three Sen, Yates and Grundy by researchers and teachers. 

However, a careful reading of YG’s paper points out that, unaware of  HT, Yates  also obtained 

the HT estimator and later Grundy(G)  joined to give the alternative variance estimator. 

Perhaps one should rename NHT estimator as NYHT estimator and SYG variance estimator 

as SG estimator!!  

 

            In view of the above discussion, we note that other variance estimators also take 

negative values and Das’s estimator is much criticised. We note here that while for Des Raj’s 

estimators, we need the previous Y values to be added to obtain the estimate at a particular 

draw, for Das’s estimator at a particular draw, one need not know the Y values of the previous 

draws. This property comes in handy when one or more Y values of the previous draws are 

unavailable due to non-response, non-cooperation, ‘not at home’s etc. In such a situation one 

has to depend on Das’s only and Des Raj’s estimator is of no help.  

 

2.3. Basu’s concept of ‘Face Validity’ 
             

            More formally, this property can be stated as follows:  

 

‘for estimating population total based on an ordered estimator, it is sufficient to have the Y 

value at the draw of selection only and the Y-values based on previous draws are not       

necessary.’ 

 

            Borrowing a phrase from Basu (1971), who defines the property of ‘face validity’, we 

term the above property as ‘order validity’.  

 

           Basu (1971) looks at the population total as 

                                                                   TY = S + S*,  

where S is the observed total of Y’s and S* is the unobserved total.    

           Having observed the Y-values and knowing S, it is now required to estimate S*. 

           Now, suppose that the n observed values 𝑌𝑖 / 𝑋𝑖  are nearly equal, but  𝑦𝑛 / 𝑥𝑛 is the 

largest.        
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            For this situation Desraj’s estimator is 

                             𝑡𝑛 = 𝑦1 + 𝑦2  + ……. + 𝑦𝑛−1 + ( 𝑦𝑛 / 𝑥𝑛 ) (TX –  𝑥1 – 𝑥2  + ……. + 𝑥𝑛−1 ) 

equivalently,  

                          𝑡𝑛  = 𝑦1 +  𝑦2+..+ 𝑦𝑛 + [𝑦𝑛 / {𝑥𝑛/ (TX  – 𝑥1 – 𝑥2 −  . . −𝑥𝑛−1 – 𝑥𝑛 )}]. 

 Basu questions estimating S* by only one Y value, namely 

                                               𝑦𝑛 / { 𝑥𝑛/ (TX – 𝑥1 – 𝑥2 −  . . −𝑥𝑛−1– 𝑥𝑛 )}]. 

 

Hence, Basu claims that it is not unbiasedness, but is hard to define property of ‘Face Validity’ 

of an estimate. He claims  

                                         𝑡𝑛 =  ∑ 𝑦𝑖 
𝑛
1  +  {(∑ 𝑦𝑖

𝑛
1 / ∑ 𝑝𝑖

𝑛
1 ) } (1 – ∑ 𝑝𝑖

𝑛
1 ),  

which uses all n  Y-values has a greater face validity. 

            Note that 𝑡𝑛 is nothing but the familiar ratio estimator  

 

                                            𝑌̂𝑅  =   ∑ 𝑦𝑖
𝑛
1 / ∑ 𝑥𝑖

𝑛
1  )TX. 

                                         

Following Basu’s arguments, one could suggest a concept like face validity as: 

 

‘An estimator is said to be ‘order-valid’ if ‘the estimator based on the result of a particular 

draw does not depend on the Y-values of the previous draws.’  

 

However, this estimator may be inefficient, but in the presence of missing values due to non-

response, not-at-home’s etc., such an estimator may be relevant. 
 

2.4. Lahiri-Murthy unordered estimator 

 

Murthy (1957) concentrated on Des Raj’s ordered estimators and discussed how to 

obtain an unordered (symmetrized) estimator. In a short section of this paper, titled ‘unordering 

of Das’s estimators’, he briefly mentions Das’s estimator, but unorders for another sampling 

scheme, and not for PPSWOR under consideration. He did not treat Das’s estimator the way 

he did for Des Raj’s as described below:  

 

            Recalling that for the ordered sample (i, j) the estimator is (3), namely 

                             

                           𝑡𝑖̅𝑗    = [{𝑦𝑖 ( 1 + 𝑝𝑖 ) / 𝑝𝑖}  +  { 𝑦𝑗 (1- 𝑝𝑖) / 𝑝𝑗 }]/2 based on order  (i, j) and   

                              𝑡𝑗̅𝑖  =  [{𝑦𝑗 ( 1 + 𝑝𝑗 ) / 𝑝𝑗} + { 𝑦𝑖 (1 – 𝑝𝑗) / 𝑝𝑖 }]/2  based on order (j, i),      

            Murthy obtained an estimator combining  these two by the respective probabilities of 

the sample as weights, namely 𝑝𝑖 𝑝𝑗/ (1- 𝑝𝑖) and 𝑝𝑗 𝑝𝑖 / (1- 𝑝𝑗),  which gave the Unordered 

(symmetric) Des Raj Estimator: 

                          𝑡𝑀̅ =  [{(1 – 𝑝𝑗) (𝑦𝑖 / 𝑝𝑖)} + {(1 – 𝑝𝑖) (𝑦𝑗 / 𝑝𝑗)}] / (2 – 𝑝𝑖 – 𝑝𝑗), 
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which is Murthy’s (3.17) of his 1957 paper. 

            A point to be noted here is that Halmos (1946) also mentions symmetrized unbiased  

estimators. For the last 70 years this is referred to as Murthy’s (1957) unordered estimator. In 

a footnote of his 1957 paper (p. 384), Murthy mentions: 

“Lahiri conjectured that Desraj’s estimators can be improved by weighting the different 

ordered estimators by their respective probabilities and in fact suggested the estimator given 

by (3.17)”. 

So, it may be called Lahiri-Murthy unordered estimator: 

                                     𝑡𝐿̅𝑀 =      [{(1 – 𝑝𝑗) (𝑦𝑖 / 𝑝𝑖)} + {(1 – 𝑝𝑖) (𝑦𝑗 / 𝑝𝑗)}] / (2 – 𝑝𝑖 – 𝑝𝑗) 

giving credit to Lahiri as well.    

Symmetrizing  Das’s in the same way, we get an interesting symmetrized                          

                                           𝑌̂𝑠𝑦𝑚𝑚.𝐷𝑎𝑠  =   ( 𝑌̂𝑆𝑦𝑚𝑚.𝐷𝑒𝑠𝑟𝑎𝑗  +  𝑌̂𝑀𝑖𝑑𝑧𝑢𝑛𝑜.𝐿𝑎ℎ𝑖𝑟𝑖 ) /2, 

where                                    𝑌̂𝑀𝑖𝑑𝑧𝑢𝑛𝑜.𝐿𝑎ℎ𝑖𝑟𝑖   =      
1

1

n

i
n

i

y

p




  

and 𝑌̂ is an estimator of TY.  The readers may like to see Rao(2021b) for details. 

 

2.5. Further  unorderings 

 

For obtaining nonnegative SYG (or SG) variance estimators, Brewer (1963) and 

Durbin (1967) gave simple 𝜋𝑝𝑠 sampling selection procedures based on ordered samples of 

size 2. Brewer’s method consists of selecting the first unit with probability proportional to 

 𝑝𝑖(1 – 𝑝𝑖 )/ (1 – 2 𝑝𝑖) and second unit with probability 𝑝𝑗/(1 – 𝑝𝑖 ),  j  ≠ i . This gives 𝜋𝑖 = 2𝑝𝑖  

and SYG variance estimator non-negative.                    

                   

For the same purpose, Durbin’s method selects the first unit with probability 𝑝𝑖 and the 

second unit with probability proportional to 𝑝𝑗[{1/ (1 – 2 𝑝𝑖  
)} + {1/(1 – 2 𝑝𝑗)}], j  ≠ i . 

We now observe that the selection of units here is based on an order and we unorder 

these following the above methodology {see Rao (2021b)}. Thus, wherever order is involved 

in selection of sample, the estimators can be unordered using proper methodology by Rao- 

Blackwellization. 

             

3. Nonresponse 
 

So far, we have discussed situations that involved reduction of sampling errors. We 

shall now move on to the case of non-sampling errors of which non-response due to ‘not at 

homes’ and refusal to answer sensitive questions are major contributors.  For the first category 

of ‘not at homes’, the technique of ‘call-backs’, while for the other one, ‘randomized response 

technique (RRT) were proposed. 
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3.1. To call back or not to call back 

 

For this, what is known as Politz-Simmons technique (PST) in the literature,  is used to 

estimate parameters using data on first call itself, thus avoiding ‘call-backs,’ by asking 

respondents during the interview a question about their availability at home (or, otherwise) at 

the same time during the preceding five week nights. 

 

However, during the discussion of the paper read by Yates(1946) at the Royal Statistical 

Society (RSS) Meeting, Hartley(1946) proposed an ‘ingenious’ and ‘decidedly cheaper’ 

alternative to call-backs . Hartley mentions: “Details of this scheme were given to the War-time 

Social Survey, but I understand that, owing to pressure of work, an opportunity of trying has, 

as yet, not arisen”. Soon after, Politz and Simmons (PS,1949) published their work popularly 

known as Politz-Simmons technique in the Journal of American Statistical Association which 

is on similar lines to the proposed method of Hartley. PS (1949) while acknowledging the work 

of Hartley, say: “It has recently been brought to the authors’ attention that a somewhat similar 

plan was proposed independently by H.O. Hartley before the Royal Statistical Society....” 

 

In the present day context of ever-changing and emerging  socioeconomic scenario of 

the society, it is to be noted that this question itself has become highly sensitive for the 

respondents who thereby may evade to answer this question truthfully.  Rao et al. (2016) have 

applied Warner's (RRT) in this situation and developed a nontrivial randomized response 

Hartley, Politz, Simmons(HPS) technique. 

` 

4. Role of BKS in other early contributions 

 

Hailing from, the then, East Bengal, environmentally rich and ecologically                  

diverse background, it is but natural that BKS turned  his attention to ‘Environment’  and other 

specialised  areas of Statistics (see Rao, 2021a). BKS was appointed as ‘Expert on Mission’ 

for United Nations (UN) Statistics Training Programme in 1991based on his early 

contributions and this led to his serving as a consultant to the United States 

Environmental Protection Agency (USEPA) in 1993.  

               

At home, he was also appointed a Member of the apex body, National Statistical  

Commission, Government of India (2006-2009). His expertise involved in social and 

environment statistics. Other early contributions of BKS include ‘Official Statistics in 

neighbouring developing countries in the Indian sub-continent’ (Rao and Sinha (2011). 

Collaborating with his colleagues JK Ghosh et al. (1999), a detailed account of  ‘Evolution of 

Statistics in India’ was presented.  Faculty and research scholars of  Sociology and other 

applied statistics unis of ISI took BKS’s and the author’s help  in organising their surveys 

rigorously. As an example we cite the design and implementation of an innovative survey of 

Annual Book Exhibition held in Calcutta Maidan, popularly known as ‘boi mela’ wherein 

random time points are chosen.       

                               

5.  Rao-Blackwellized WhatsApp 
 

In the earlier sections, we have discussed the application of Rao-Blackwellization for 

improving the estimators in sampling theory. We have also mentioned its application in sports 

to obtain improved estimates of Field Goal Percentages (RB-FG%) in Basketball by Daly 

Grafstein and Bornn (2018). Their interesting analysis could be applied to ratings of sports 

persons in tennis, cricket and a host of others as well. 
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The new concept we proposed deals with ‘message clustering’ and ‘smart response 

utility’ while using WhatsApp (WA). Every day, we are flooded with WA messages on our 

smart phones. Not all users of WA have time to go through all the messages and take suitable 

action. 

  The new concept is based on an ‘APP’ to be constructed which compresses the data 

and disregards repetitions. An abridged  message  which is ‘sufficient’ is composed. For 

example, ‘Good Morning’, ‘Have a Good day’, Happy xxxx (day of the week), etc. can be 

treated as observations repeated with replacement. The App so constructed will have an AI/ML 

mechanism that recognises the equivalents and exhibits just one or two short lines editing 

meaningfully and then lists all the users that sent these particular messages, thus solving the 

problem of ‘message clustering’.  Now, an individual can quickly choose from the list, to whom 

the abridged (meaningful) reply can be sent (ignoring some senders) or  a single ‘Thank you 

all’, if  appropriate, thus enabling  ‘smart response utility’.  

                 

In view of the compression and reduction of data and the  ability to present ‘sufficient’ 

information, we called it the Rao-Blackwellized WhatsApp (RW-WA). In a strict sense, this 

concept is not like the research of Daly-Grafstein and Bornn (2018). The new App so 

constructed reduces redundancy, saves time and  effort and could even be made premium. 

    

6. Certain lapses in literature and credits 
 

In Sections 2 and 3, we have already mentioned about the credits that were missed out 

in sampling literature. We shall add here a few more (though not complete) with respect to the 

early results.  The following anecdote may be of interest to the readers who are unaware of the 

history of the term ‘Rao-Blackwellization’: 

 

            C. R. Rao (1945) established this result and published in the Bulletin of Calcutta 

Mathematical Society. 

 

A couple of years later, Blackwell (1947) obtained the same result in Annals of 

Mathematical Statistics.       

             

Five years later, Scheffe’ and Lehmann called it Rao-Blackwell Theorem. 

 

In a 1953 conference, when Berkson named it Blackwellization. C. R. Rao pointed 

out that he published it in 1945 itself. Berkson replied “Raoization is difficult to say,” but 

later termed it Rao- Blackwellization. 

 

D.V. Lindley, in a book review referred to Blackwell only. When C.R. Rao wrote to 

him, he replied saying “you have not mentioned it in the introduction of the paper… C. R. 

Rao replied saying he is unaware that “introduction is written for the benefit of those who 

only read introduction and not the paper.” 

 

In the seminal paper read at the Royal Statistical Society meeting, Neyman derived the 

optimum allocation of sample size to strata in 1934. It was pointed out to him by Donavan 

Thompson that Tschprow had already established this result in 1923 Metron paper. Neyman 

recognized the priority and gave credit to Tchuprow. Thus, one may term this allocation as 

Tchuprow- Neyman allocation. 
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Hansen and Hurwitz introduced PPS sampling in their 1942 AMS paper. Mahalanobis 

in his 1937 paper discusses cumulative totals method for selection with varying probabilities.  

 

 Madow and Madow in 1944 discuss systematic sample, while for the selection of 

sample Anthropometric survey of United Provinces, Mahalanobis, Majumdar and C. R. Rao 

(1941) used a systematic sample. In the introduction, Mahalanobis points out that for detailed 

subclassifications, the ultimate sample size would be small giving large errors, a concept 

echoed in small area estimation.  

 

Later while analysing Bengal Anthropometric data, C. R, Rao recognises that standard 

tests need to be applied cautiously since the data is based on multi-stage stratification heralding 

‘Analysis of Complex Surveys’. 

 

Olkin’s 1958 Biometrika paper on Multivariate regression estimators was envisaged by 

B. Ghosh in 1947 in Bulletin of Calcutta Statistical Association. 

 

Murthy in 1964 rediscovers product method of estimation which was attempted using 

polykays by Robson in 1957 itself. 

 

What we call as Midzuno-Sen (1952) sampling scheme is attributed to Midzuno’s 

student Ikeda (1951), Haj’ek(1949) and Lahiri (1951), now popularly referred to  as Lahiri-

Midzuno-Sen (LMS) scheme. 

 

Royall’s 1970 predictive approach of Biometrika is also attributed to Brewer (1963) 

for introducing this concept. 

 

It is not clear how one does not find a reference to Kumarappa’s 1931 detailed survey 

of Matar taluka of Gujarat on the advice of Gandhi, which is a medium sized multi subject 

survey submitted for the attention of the British Raj, while discussing Mahalanobis’s surveys 

of NSS (1950 onwards). 

            

(For details and full references, please see T. J. Rao (2016), On the History of Certain Early 

Key Concepts in Sampling Theory and Practice). 
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Abstract 

 

Poor ranking of India under Global Hunger Index (GHI) has raised concerns as it is 

contrary to the fact that India ranks fifth in the World Economy and fourth among leading 

agriculture producing countries. Researchers, planners, policy makers and government has 

taken a serious view of this. The indicators used under GHI do not measure hunger per-se, and, 

therefore, refereeing GHI as measure of Hunger is a misnomer. Zero Hunger being the priority 

goal under the Sustainable Development Goals (SDGs), it is imperative to develop a robust and 

country specific acceptable measure of hunger to track the progress. This is a big challenge for 

statisticians and other subject specialists.  
 

Key Words: Child mortality; Hunger; Stunting; Over nutrition; Under nutrition; Wasting. 

 

0. Prologue – Life and work of Late M.N. Das 

I was honoured to have delivered Dr. M. N. Das Memorial Lecture on his Birth 

Centenary during the conference of Society of Statistics, Computer and Applications (SSCA) 

on 15th February 2023 at Department of Statistics, University of Jammu, J&K. I was student 

of Dr. Das during my M.Sc. in Agricultural Statistics at the Institute of Agricultural Research 

Statistics (IARS) 1966–68. I was fascinated by his simple way of teaching the construction of 

confounded factorial designs in the course Design of Experiment-I. In spite of taking sampling 

theory as specialized subject during my M.Sc., I opted for Design of Experiments-II taught by 

Dr. Das wherein I learned Balanced Incomplete Block Design and Partially Balanced 

Incomplete Blocked Designs which helped me in developing some πPS sampling through these 

designs. 

 

I owe my entire career to Dr. M. N. Das. When I joined the Institute as a Statistical 

Investigator in 1970, I was posted in the computer division, but he transferred me to the 

training division which provided me the opportunity of teaching the students of various 

courses. This helped me in developing skills for becoming an effective teacher. Also my first 

promotion from Statistical Investigator to Junior Statistician in 1972 was made by him during 

his tenure as Director, IARS. 

 

Dr. Das was blessed with the power of intuition. Many of his path breaking 

contributions, especially in designs for factorial experiments, augmented designs, designs for 

fitting response surfaces, and statistical computing by writing his own software programs, had 
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a strong intuitive appeal rather than complex algebraic manipulations.  Taking lead from such 

a researcher, I too developed several newer sampling designs merely through the power of 

intuition.  

 

1. Background 

 

Global Hunger Index (GHI) is being disseminated annually since 2006. It was initially 

published by International Food Policy Research Institute (IFPRI) and Welt Hunger Hilfe. In 

2007, the Irish NGO Concern Worldwide also became a co-publisher. Presently it is released 

by Concern Worldwide and Welt Hunger Hilfe. 

Table 1 presents the ranking of India for the last 6 years: 

Table 1: India’s rank in GHI for last 6 years 

Year Rank Of India in GHI Position from Bottom 

2017 100 Out of 119 countries 20th 

2018 103 Out Of 119 countries 17th 

2019 102 Out Of 117 countries 16th 

2020 94 Out Of 107 countries 14th 

2021 101 Out Of 116 countries 16th 

2022 107 Out Of 121 countries 15th 

 

Table 2 below presents relative ranking of India vis-à-vis neighbouring countries: 

Table 2: Rank of India and neighboring countries in GHI 

Sr .No. Country Rank 2021 Rank 2022 

1 India 101 107 

2 Pakistan 92 99 

3 Bangladesh 76 84 

4 Nepal 76 81 

5 Sri Lanka 65 64 

 

Surprisingly, India ranks below Sri Lanka, Pakistan, Bangladesh and Nepal.  

This ranking is contrary to the fact that India ranks 5th in the World Economy and 4th 

among top Agricultural producing countries in the world. 
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The poor ranking of India has been a matter of concern. Planners, policy makers and 

noted columnists have argued that GHI is a misleading Hunger Index and that this faulty 

measure is creating a flawed narrative against India. 

Among prominent researchers Messet (2011) pointed out that GHI has a problem of 

multiple counts, Hirotsugu (2015) observed that hunger measurement is complex 

methodological challenge which should not be crudely addressed by such an oversimplified 

concept and definitions as in GHI and Nigam (2016, 2018, 2019)  argued that GHI has high 

upward bias because while hunger leads to stated syndromes but hunger alone is not the only 

reason for these. 

In view of these issues, in 2019, the Indian Council of Medical Research (ICMR), 

Department of Health Research of the Ministry of Health and Family Welfare, Government of 

India, constituted an Expert Committee to critically review the Global Hunger Index. 

Based on the report of the committee, a white paper entitled “Global Hunger Index does 

not really measure hunger – An Indian Perspective”, has been published in Indian Journal of 

Medical Research (IJMR).  

During a meeting on the Global Hunger Index (GHI) held under the Chairpersonship 

of Dr. Rajiv Kumar, Honourable Vice Chairman, NITI Aayog on 12th November, 2021, it was 

clearly brought out that Global Hunger Index in its present form is a “misnomer” and does not 

measure “hunger” correctly due to the choice of indicators and its methodological issues. 

This paper presents an overview and critical appraisal of indicators and data used in 

measuring hunger under GHI. 

 

2. Definition of hunger 

 As per Oxford dictionary, Hunger is the state of not having enough food to eat. FAO 

defines hunger as “....an uncomfortable or painful physical sensation caused by insufficient 

consumption of dietary energy. The World Food Program (WFP) treats hunger as not having 

enough to eat to meet energy requirements. In common parlance, hunger is perceived as people 

eating inadequately due to poor access to food including lack of purchasing power. 

Following couplet (Doha) from Kabir Das, a Hindi poet is very relevant in the context 

साईं इतना दीजिए, िामे कुटंुब समाए मैं भी भूखा न रहं, साधु न भूखा िाए।  

कबीर दस िी कहते हैं जक परमात्मा तुम मुझे इतना दो जक जिसमें बस मेरा गुिरा चल िाए, मैं खुद 

भी अपना पेट पाल सकंू और आने वाले मेहमानो ंको भी भोिन करा सकंू। 

3. Indicators used in GHI 

The four indicators used in GHI are as under: 

i. PUN: Proportion of the population with insufficient calories intake i.e., Percentage of 

population consuming less than Minimum Dietary Energy Requirement of 1800 

Kcal/Capita per day Cal (%). 

ii. CST: Prevalence of stunting in children under five years old (low height for age) (%). 
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Children whose height-for-age (Z-score) is below minus two standard deviations from the 

median of the reference population are considered short for their age (stunted), or chronically 

undernourished. 

iii. CWA: Prevalence of wasting in children under five years old (low weight for height) 

(%). 

Children whose weight-for-height (Z-score) is below minus two standard deviations 

from the median of the reference population are considered thin (wasted), or acutely 

undernourished. 

iv. CM: Proportion of children dying before attaining the age of five years (%). 

4. Appropriateness of indicators in measuring hunger 

The appropriateness of indicators in measuring hunger is discussed in what follows: 

4.1. Is everybody consuming less than 1800kCal/capita/day (MDER) hungry? 

 

As per FAO, those consuming less than MDER (minimum dietary energy requirement) 

of 1800 kCal/capita/day are categorised as “Undernourished”. If this is so there should not be 

any symptoms of “Over nutrition” among those consuming less than MDER. In order to 

examine this, the results of National Nutrition Monitoring Bureau (NNMB) survey on 

prevalence of overweight, obesity, hypertension and diabetes among those consuming less than 

1800 calories/capita/day are presented in Table 3.  

Evidently, a significantly sizable proportion of symptoms of over nutrition indicators 

suggest that all those consuming less than 1800 calorie are not undernourished or hungry. In 

fact Those who are obese, diabetic and hypertensive might be consuming less than 1800 

calories by choice under doctor’s or nutritionist’s advice. 

Table 3: Prevalence of symptoms of over nutrition among those consuming less than 1800 

Kcal per day 

 

Particulars Urban 2016 Rural 2012 

Male 

(%) 

Female 

(%) 

Male 

(%) 

Female 

(%) 

SBP ≥140 and/or 

DBP ≥90 
Hypertension 33.1 22.5 22.2 20.3 

Blood Sugar 

(mg/dl) 

Pre diabetic (110-126) 10 10.4 8.7 8.8 

Diabetic (≥126) 14.1 10.5 7.3 6 

BMI WHO 

Classification 

Overweight(25-29.9) 28.1 30.4 8.3 11.2 

Obese (≥30) 5.7 15.9 0.9 2.5 

BMI Asian 

Classification 

Overweight (23-27.49) 36.1 33.3 15.2 16.8 

Obese (≥27.5) 16.6 28.5 3.1 6.2 

 

The latest information on symptoms of over nutrition as per NFHS 5 are given in Table 4. 
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Table 4: Symptom of over nutrition - NFHS 5 

Symptoms Men Women 

Rural Urban Total Rural Urban Total 

Overweight or Obese 19.3 29.8 22.9 19.7 33.2 24 

Diabetic 14.5 17.9 15.6 12.3 16.3 13.5 

Hypertension 22.7 26.6 24 20.2 23.6 21.3 

 

Thus, a little less than one-fourth are overweight or obese. An equal proportion are 

hypertensive. Another 15% are diabetics. A large proportion among these might be consuming 

less calories by choice under doctors’ advice. 

Thus in measuring hungry out of all consuming less than 1800 calorie those who 

consume less by choice under doctor’s advice should be discounted. 

Further a significant proportion of adolescents and working population presently 

consume packaged food, fast food, soft drinks etc. Probably these are not properly captured in 

NSSO and NNMB surveys.  

Further, the MDER of 1800 calories per capita per day seems to be on higher for India. 

If these issues are addressed the proportions of populations consuming less than MDER due to 

lack of purchasing power might be less than even one-fourth of the current estimated level. 

 

 

4.2. Are stunting and wasting manifestation of hunger? 

 

Global Hunger Index (GHI) considers stunting and wasting as its constituents. The 

inclusion of these indicators in GHI has implicit assumption that those who are hungry are 

likely to be short-statured and lighter. If stunting and wasting are manifestation of hunger, then 

there should not be stunted and wasted children among relatively rich who do not have problem 

of purchasing power. 

Table 5 presents status of stunting and wasting for top quintiles based on latest NFHS 5.  

Table 5: Stunting and wasting among children according to wealth quintiles 

Wealth Quintile Stunting Wasting 

Fourth (top 61/% – 80%) 
28.1 17.7 

Highest (top 81/% – 100%) 
22.9 16.2 
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It is seen that significant proportion among top two quintiles have stunted and wasted 

children. Therefore, hunger is not the cause of stunting and wasting. Further the difference in 

height and weight between individuals are influenced by parental, genetic/biological factors 

and environmental factors rather than nutrition alone. Thus, stunting and wasting are not the 

manifestations of hunger. 

4.3. Does hunger contribute to child mortality? 

 

The million death study in India, covered 1176.6 thousand deaths during 2010 – 2015. 

Of these 57.0% deaths were neonatal and 43.0% as post neonatal. Based on this study, the 

details on major causes of death are summarized in Table 6. 
 

Table 6: Leading cause of under five deaths 

Cause Number of Death Percent (%) 

Prematurity or low birth weight 370 31.4% 

Pneumonia  108 9.2% 

Neonatal infections 103 8.8% 

Diarrhoea  82 7.0% 

Injuries  82 7.0% 

Birth asphyxia or trauma 57 4.8% 

 

According to this, in India, pre-term birth resulted in 31.4% deaths. Other causes of 

under five deaths were pneumonia 9.2%; neonatal infections 8.8%; Diarrhoea 7.0%; injuries 

7.0% and Birth asphyxia or trauma 4.8%. Thus hunger as the major cause of child mortality is 

not supported by the cause of death statistics. Importantly, no family will risk the child to die 

because of hunger. 

5. Quality of data used  

 

It is important to discuss the quality of data used in computation of GHI. In view of 

this, data used for calculation of GHI for India and other neighbouring countries are discussed 

as under: 

 

Indicator 1: Proportion of undernourishment in population (%) 

Year India Nepal Pakistan Bangladesh Sri Lanka 

2015 15.2 7.8 22 16.4 22 

2016 15.2 7.8 22 16.4 22 

2017 14.5 8.1 19.9 15.1 22.1 

2018 14.8 9.5 20.5 15.2 10.9 

2019 14.5 8.7 20.3 14.7 9 
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From this data (Indicator 1), it is seen that the level of under nourishment for Nepal is 

surprisingly about half of that of India, which is unbelievable. Further, for Sri Lanka, it shows 

a sudden drop of more than 10 percentage points in a year (2017-2018), whereas for other 

countries, the levels are almost stagnant.  

Indicator 2: Prevalence of stunting in children under five years (%) 

Year India Nepal Pakistan Bangladesh Sri Lanka 

2015 38.8 37.4 45.0 36.1 14.7 

2016 38.7 37.4 45.0 36.4 14.7 

2017 38.4 37.4 45.0 36.1 14.7 

2018 38.4 35.8 45.0 36.1 17.3 

2019 37.9 36.0 37.6 36.2 17.3 

 

For stunting (Indictor 2), the values for India, Bangladesh, and Nepal are stagnant but 

there is a drop of 7 percentage points for Pakistan in a year (2018 vs 2019). On the other hand, 

there is an increase of 2.6% points for Sri Lanka in a year (2017 – 2018). 

For wasting (Indicator 3) there is an increase of 6 percentage points for India (2016 vs 

2017) and decrease of similar magnitude for Sri Lanka (2017 vs 2018) in a year. Further there 

is decline of 3.4% points for Pakistan (2018 vs 2019) and 2.0% points for Nepal (2017 vs 2018). 

Indicator 3: Prevalence of wasting in children under five years (%) 

Year India Nepal Pakistan Bangladesh Sri Lanka 

2015 15.0 11.3 10.5 14.3 21.4 

2016 15.1 11.3 10.5 14.3 21.4 

2017 21.0 11.3 10.5 14.3 21.4 

2018 21.0 9.7 10.5 14.3 15.1 

2019 20.8 9.6 7.1 14.4 15.1 
 

Indicator 4: Under-five mortality rate (%) 

Year India Nepal Pakistan Bangladesh Sri Lanka 

2015 5.3 4.0 8.6 4.1 1.0 

2016 4.8 3.6 8.1 3.8 1.0 

2017 4.8 3.6 8.1 3.8 1.0 

2018 4.3 3.5 7.9 3.4 0.9 

2019 3.9 3.4 7.5 3.2 0.9 

 

Though the level of under 5 mortality (Indicator 4) showed large variations across 

countries, there is a steady decline in under 5 mortality across all countries. 
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The change in indicators of these magnitude in a year is not acceptable. All these 

variations in data could be due to change in methodology of data collection during those years 

in different countries.  

The data for India on under nourishment is available only for 2012 and that for stunting 

wasting and child mortality for 2015. It is understood that for subsequent years data were 

collected using Gallup Surveys. Therefore these data lack credibility. Use of such data for 

computation of Index and ranking of country raises serious concerns. 

6. Conclusions and way forward 

 

The index intended to assess the hunger status for entire population is giving undue 

excessive weightage to under five children. Moreover, the indicators of undernourishment, 

stunting, wasting and child mortality do not measure hunger per se and thus, referring GHI as 

Hunger Index is misnomer. Importantly, the data used on these indicators lack credibility.  

In view of this, Global Hunger Index (GHI) reminds us of the phrase “Lies, Damned 

Lies and Statistics”.  

This ill-conceived measure of hunger for ranking of countries should not be accepted. 

  

As per the definition of hunger, we have to use a measure which captures “People eating 

inadequately due to poor access to food and lack of purchasing power.” 

The only indicator relevant in the context is the population consuming less than the 

minimum dietary energy requirement (MDER). In this regard the MDER of 1800 calories per 

capita per day needs to be revisited for India. In the surveys capturing this information through 

“household consumption expenditure” or “dietary surveys” in addition to collecting 

information on dietary intake should also collect the information on obesity, overweight, 

hypertension and diabetes. This information is needed to discount for those consuming less due 

to choice and ultimately net out those consuming less than MDER due to lack of purchasing 

power. 

The measurement of hunger being a complex methodological issue, there is a need to 

develop a robust and acceptable country specific measure of hunger. It is a challenge for all 

concerned.  
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Preamble 

  Bikas K. Sinha [BKS] is the recipient of “VK Gupta Endowment Award for 
Achievements in Statistical Thinking and Practice - 2023”. The Society of Statistics and 
Computer Applications [SSCA], New Delhi, gave this award — upon receiving 
recommendation from its Executive Council [EC]. While receiving the award, BKS made an 
online presentation during SSCA Annual Conference held in Jammu during February 15-17, 
2023. This paper originated from that presentation. BKS is happy to induct Opendra Salam 
Singh and Gurumayum Sandweep Sharma of the Department of Statistics, Manipur 
University, Imphal as his collaborators. As BKS says “I have chosen to speak on a topic 
which is simple to state and comprehend. Yet, the technicalities are quite involved.” Simply 
stated, it goes almost like a proverb: “Larger the sample size, more is the precision”! AND 
we all know that this is indeed true for [SRSWOR (N, n), Sample Mean] Strategy. What 
about [SRSWR (N, n), Sample Mean] strategy? We must qualify sample mean under srswr: 
mean based on all units including repeats or mean based on distinct units only? Under both 
the situations, the claim is valid in some sense. Research scholars may engage themselves for 
a clear proof.  

We intend to discuss some features of this problem of variance reduction via 
enhanced resources in terms of possession of additional population units at a later stage.  

Key Words: Sampling designs; Sampling strategies; Unbiased estimators [UEs]; 
Homogeneous UEs [HUEs]; Linear UEs [LUEs]; HLUEs; SRS WR/WOR schemes; Horvitz-
Thompson estimator [HTE]; First and second order inclusion probabilities; Connected 
sampling designs; Additional units; Improved sampling strategies; Lanke’s estimator. 

1. Introduction  

We start with a Sampling Strategy based on a Fixed-Size (n) [abbreviated as FS(n)] 
Sampling Design and an HLUE e(s(n)|Y) of a Finite Population Mean 𝑌" corresponding to a 
study character Y. Once the sampling design has been chosen and implemented, and a sample 
s(n) has been chosen and, further, data collection has been completed, we are told about 
Enhanced Resource in the sense of k additional units! The enhanced sample size now 
becomes (n + k), once an additional sampling design of fixed size (k) [FS(k)] defined over the 
complement of s(n) is adopted. It leads to the revised HLUE e(s(n + k)|Y ) based on the union 
of the two samples of which s(n) is already at hand.  
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One pertinent question to be asked is: Whatever be the choice of the initial HLUE 
e(s(n)|Y) and the choice of the additional sampling design FS(k) [on the complement of s(n)], 
does there exist a suitably defined HLUE e(s(n + k)|Y) which provides uniformly smaller 
variance than e(s(n)|Y)?  

Clearly, in the case of SRSWOR (N, n), followed by SRSWOR (N − n, k), we end up 
with SRSWOR (N, n + k), and hence choice of the corresponding sample means is well 
understood for the domination result to hold for every k ≥ 1.  

However, in case of SRSWR (N, n), the follow-up sampling operation could be 

(i) SRSWR (N, k) or, (ii) SRSWR (N − ν(n); k) 

where ν(n) refers to the number of distinct units selected under SRSWR (N, n). In a way, 
under (ii), therefore, the sample is selected under SRSWR out of the complement of the units 
already selected under SRSWR (N, n). Whereas the combination under (i) refers to two 
independent draws from the whole population, under (ii), the two sets of samples are 
necessarily disjoint. However, within each, units drawn are not necessarily distinct, as we 
take recourse to WR sampling.  

The question we ask is: For a given choice of e(s(n)|Y), what is the choice of e(s(n) U 
s(k)|Y) for variance reduction? Here, s(n)∪s(k) must be understood in the most general sense. 

This is apparently not an easy problem to address. There are two choices for e(s(n)|Y) 
under SRSWR (N, n): mean based on all units, and mean based on distinct units [notation 
ν(n)]. Note that SRSWR (N − ν(n), k) excludes the distinct units selected in the first round. So, 
data analysis is conditional not only on ν(n), but also on the actual units selected under s(n). 
Naturally, these are excluded during the second draw. We leave it for research scholars to 
ponder over this non-standard inference problem.  

Bagchi and Sinha [2022] have addressed a different version of this problem. We do not 
intend to enter into this matter.  

2. Data analysis under FS(.) designs

Consider FS(.) sampling designs – both Initial D (N; n) and Extension D (N − n; k).
Denote by [D (N, n), e(s(n)|Y)] the initial sampling strategy for unbiased estimation of a finite 
population total or mean.  

Let D∗	(N − n, k|s(n)) be the follow-up sampling design FS (N − n, k), conditional on
exclusion of s(n).  

We ask the question: Given e(s(n)|Y), how would one define e∗(s(n + k)|Y|s(n)) – once
totally new additional k units are available via s(k) - following FS (N − n, k), defined over 
compliment of s(n), for every s(n) with P (s(n)) > 0?  

Naturally, we desire: 
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(i) E∗	[e∗	(s(n + k)|Y |s(n))] = E [e(s(n)|Y )] (1) 

(ii)  V ∗	[e∗	(s(n + k)|Y|s(n))] ≤ V [e(s(n)|Y)]
(2) 

uniformly in Ys, where E∗ = E1E2 and V∗ = V1E2 + E1V2, in usual notations.

This specific problem has been resolved by Lanke (1975) who provided an explicit 
expression for e∗(s(n + k)|Y)’s in terms of the e(s(n)|Y)’s, provided that s(n) is a subset of
e(s(n + k)).  

We take up this exercise in the sequel. 

2.1.  Lanke’s formula 

Lanke (1975) considered extending an arbitrary sampling strategy [D(N, n), e(s(n)|Y)] 
to another sampling strategy [D(N, m=n + k), e(s(n + k)|Y)] via Q(N − n, k) so that [D(N, m = 
n + k), e(s(n + k)|Y)] is better than [D (N, n), e(s(n)|Y)], irrespective of the choice of Q(N − n, 
k).  

Lanke proposed the estimator e(s(n + k)|Y) through the relation 

e(s(n + k)|Y)[P(s(n + k))] = ∑!(#)∈!(#&') 𝑒(𝑠(𝑛)|𝑌)[𝑃	( 𝑠(𝑛))𝑄(𝑠(𝑛 + 𝑘) − 𝑠(𝑛)] (3)

Here summation is over all s(n) [subsets of s(n + k)]. 

Further,  

P [s(n+k)] = ∑ [𝑃	(𝑠(𝑛))𝑄(𝑠(𝑛 + 𝑘) − 𝑠(𝑛))]!(#)∈!(#&')                  (4) 

summation being over all s(n) [subsets of s(n + k)]. 

It transpires that Lanke basically applied Rao-Blackwellization technique i.e., 
averaging technique to produce estimator(s) with reduced sum of squares. We display the 
technical details below. Upon squaring both sides of (3) and rewriting the same, we obtain  

e2(s(n + k)|Y)[P (s(n + k))] = 

[ ∑ 𝑒(𝑠(𝑛)|𝑌)[𝑃(𝑠(𝑛))𝑄(𝑠(𝑛 + 𝑘) − 𝑠(𝑛))]]2/𝑃(𝑠(𝑛 + 𝑘))!(#)∈!(#&')                (5) 

By appealing to C-S inequality [elaborated below], we derive from (5): 

e2(s(n + k)|Y)[P(s(n + k))] ≤  [ ∑ 𝑒2(𝑠(𝑛)|𝑌)[𝑃(𝑠(𝑛))𝑄(𝑠(𝑛 + 𝑘) − 𝑠(𝑛))]]!(#)∈!(#&')       (6) 

which further simplifies to  

[ ∑ 𝑒2(𝑠(𝑛)|𝑌)[𝑃(𝑠(𝑛))]!(#)∈!(#&')            (7)    
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Hence the domination result follows in appropriate subgroups and hence on the whole. 

2.2.  Illustrative example: Lanke’s formula 

Here we take an example to demonstrate the domination result. We start with N = 10, 
n = 5, k = 2. Let us adopt the initial sampling design in the form:  

Table 1: Initial sampling design of fixed size n = 5 

Sl. No. P (…) 
1. P (1, 2, 3, 4, 5) = 0.075 
2. P (1, 3, 5, 8, 10) = 0.105 
3. P (1, 4, 6, 7, 9) = 0.165 
4. P (4, 6, 7, 8, 10) = 0.135 
5. P (2, 3, 6, 9, 10) = 0.145 
6. P (3, 4, 7, 8, 10) = 0.175 
7. P (5, 6, 7, 8, 9) = 0.180 
8. P (2, 4, 6, 7, 8) = 0.020 

The extended design for k = 2 must be defined for every sample s(n) [listed above] on 
its compliment with reference to the whole set of N = 10 units. Note that the design shown 
above is already connected in the sense of positive probability attached to all pairwise units 
i.e., P (i, j) > 0 for all pairs. So, the choice of complimentary samples for the extended design
is very simple and we need not restrict to any conditions except that these are complimentary 
in nature! Of course, the sample size k = 2 has to be kept in mind. We take up the following 
Example of extended design to this effect.  

Table 2: Initial description of s(n) and extension design using s(k) 

Sl. No.  Initial Design Extension Design 
1. (1, 2, 3, 4, 5) P (6, 7) = 0.4; P (6, 9) = 0.3; P (8, 10) = 0.3∗ 
2. (1, 3, 5, 8, 10) P (2, 4) = 0.7∗; P (4, 7) = 0.3 ∗ ∗ 
3. (1, 4, 6, 7, 9) P (2, 3) = 0.5; P (5, 8) = 0.5 ∗ ∗ ∗ ∗ 
4. (4, 6, 7, 8, 10) P (3, 9) = 0.3 ∗ ∗∗; P (3, 5) = 0.7 
5. (2, 3, 6, 9, 10) P (4, 5) = 0.6; P (5, 7) = 0.3; P (5, 8) = 0.1 
6. (3, 4, 7, 8, 10) P (1,5) = 0.4∗∗; P (2, 9) = 0.4; P (6, 9) = 0.2∗∗∗ 
7. (5, 6, 7, 8, 9) P (1, 4) = 0.3∗∗∗∗; P (2, 10) = 0.5; P (3, 4) = 0.2 
8. (2, 4, 6, 7, 8) P (3, 9) = 1.00 

Remark 1: Note that for the last design [Sl. No. 8], the extension design is degenerate. 

Composition of samples based on extended sampling design is shown below: 

(1, 2, 3, 4, 5, 6, 7) (8.1) 
(1, 2, 3, 4, 5, 6, 9)  (8.2) 
(1, 2, 3, 4, 5, 8, 10)* (8.3) 
(1, 2, 3, 4, 5, 8, 10)* (8.4) 
(1, 3, 4, 5, 7, 8, 10)** (8.5) 
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(1, 2, 3, 4, 6, 7, 9)   (8.6) 
(1, 4, 5, 6, 7, 8, 9)***   (8.7)  
(3, 4, 6, 7, 8, 9, 10)****  (8.8)  
(3, 4, 5, 6, 7, 8, 10)   (8.9) 
(2, 3, 4, 5, 6, 9, 10)   (8.10) 
(2, 3, 5, 6, 7, 9, 10)  (8.11) 
(2, 3, 5, 6, 8, 9, 10)  (8.12) 
(1, 3, 4, 5, 7, 8, 10)**   (8.13)  
(2, 3, 4, 7, 8, 9, 10)   (8.14) 
(3, 4, 6, 7, 8, 9, 10)****  (8.15)  
(1, 4, 5, 6, 7, 8, 9)***   (8.16) 
(2, 5, 6, 7, 8, 9, 10)   (8.17) 
(3, 4, 5, 6, 7, 8, 9)   (8.18) 
(2, 3, 4, 6, 7, 8, 9)   (8.19)  
                     
Remark 2:	There are altogether 19 extended samples formed through the extension formula. 
However, not all are distinct. For example, the sample (1, 2, 3, 4, 5, 8, 10)* is formed of (i) 
(1, 2, 3, 4, 5) combined with (8, 10) as well as of (ii) (1, 3, 5, 8, 10) combined with (2, 4). 
Lanke argued that once the extended sample is available through the extension formula, both 
the subsets (i) and (ii) are available and they produce e(s(n)|Y) based on initial sample s(n) 
under both (i) and (ii). Then he suggested the formula shown above in (3) for combining the 
two estimators. In this example, for the extended sample (1, 2, 3, 4, 5, 8,10)*, the formula 
yields  

e((1, 2, 3, 4, 5, 8, 10)∗) = [e((1, 2, 3, 4, 5))P(1, 2, 3, 4, 5)P((8, 10)|s(n))+   

e((1, 3, 5, 8, 10))P(1, 3, 5, 8, 10)P((2, 4)|s(n))]/  

[P(1, 2, 3, 4, 5)P((8, 10)|s(n)) + P(1, 3, 5, 8, 10)P((2, 4)|s(n))]       (9)  

In effect, the estimator based on the extended sample is a convex combination of the 
two initial estimators listed in (i) and (ii) and these are both available whenever the extended 
sample (1, 2, 3, 4, 5, 8, 10) is realized. It may be noted that for the extended sample (1, 2, 3, 
4, 5, 8, 10), P (1, 2, 3, 4, 5, 8, 10) is given by the denominator above in (9).  

Towards variance, or equivalently, sum of squares [SS] computation, we find: 
e2((1, 2, 3, 4, 5, 8, 10))P((1, 2, 3, 4, 5, 8, 10)) = [e((1, 2, 3, 4, 5))P(1, 2, 3, 4, 5)P((8, 

10)|s(n))+ e((1, 3, 5, 8, 10))P(1, 3, 5, 8, 10)P((2, 4)|s(n))]2/[P((1, 2, 3, 4, 5, 8, 10))].         (10)  

Set  

a1 = e(1, 2, 3, 4, 5)[P((1, 2, 3, 4, 5))P((8, 10)|s(n))]1/2;  
b1 = [P((1, 2, 3, 4, 5))P((8, 10)|s(n))]1/2                                    (11) 
a2 = e(1, 3, 5, 8, 10)[P((1, 3, 5, 8, 10))P((2, 4)|s(n))]1/2;  
b2 = [P((1, 3, 5, 8, 10))P((2, 4)|s(n))]1/2                  (12)           
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By C-S inequality, we know that  

[a1b1 + a2b2]2 ≤  [a12 + a22][b12 + b22]                                     (13)  

which leads to 
RHS of (10) ≤ [e2((1, 2, 3, 4, 5))P(1, 2, 3, 4, 5)P((8, 10)|s(n))  
+ e2((1, 3, 5, 8, 10))P(1, 3, 5, 8, 10)P((2, 4)|s(n))].                            (14)  

Once all the samples are utilized like in the above, we can go back to computation of the 
upper bound of the sum of squares [SS] of the extended estimator e(s(n + k)|Y). This yields, 
for example, terms like  

e2((1, 2, 3, 4, 5))P(1, 2, 3, 4, 5)P((8, 10)|s(n));                     (15) 
e2((1, 2, 3, 4, 5))P(1, 2, 3, 4, 5)P((6, 7)|s(n));                            (16) 
e2((1, 2, 3, 4, 5))P(1, 2, 3, 4, 5)P((6, 9)|s(n)).                                (17) 

These three expressions add to e2((1, 2, 3, 4, 5))P(1, 2, 3, 4, 5), upon obvious 
simplification. Likewise, we carry on similar computations of the SS for the estimators based 
on extended samples and upon application of C-S inequality, we end up with upper bounds as 
SS based on the samples in the initial sampling design.  

Remark 3: It is interesting to note that the three extension designs [(8.1), (8.2) and (8.3)*] 
arising out of a single initial sample do provide three different estimators for the population 
parameter. After that, the SS for each estimator is examined in the light of the C-S inequality. 
Taken together, we find that the SS for the estimator based on extension design is less than or 
equal to that of the original estimator. We provide below in Section 4 necessary details to 
encourage the interested teachers and researchers follow the technicalities in settling the 
claim. 

3.  Behavior of Horvitz-Thompson estimator  

In as early as 1967, Prabhu-Ajgaonkar discussed the possibility of an hlue based on a 
sample of size n to outperform an hlue based on an extended design of size (n + 1) - the two 
estimators belonging to the same class of hlues. The sampling design was chosen to be the 
Midzuno Sampling Scheme for a sample of size n = 2 and it was to be extended to the 
Generalized Midzuno Sampling Scheme for a sample of size n = 3. However, he actually 
worked out the case of n = 1 against n = 2 and that was not at all appealing. Our attempt to 
work for n = 2 to n = 3 did not go through with the set-up adopted by him.  

Starting with an arbitrarily specified initial FS(N, n) design and extending it to a 
FS(N, n + k) design by increasing the sample size from n to n + k < N, confining to the use of 
the HTE in both the designs, one may not succeed in uniformly improving over the HTE 
based on the original design. A quick and tricky proof goes like this. Let (πi(n)|FS(N, n)); i = 
1,2,...,N) denote the first order inclusion probabilities based on the original design so that 
∑(πi(n)|FS(N, n)) = n. Set Yi = Kπi(n)/n, i = 1,2, ...,N, where K is an arbitrary positive 
constant.  
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Then HTE[s(n)] =  ∑ 𝑌𝑖/𝜋𝑖(𝑛)	!∈#(%)  = K for every s(n) with P(s(n)) > 0. Hence, 
V(HTE) = 0 at the stated values of Yi’s. In the same vein, evaluated at the same Y -values,  

HTE(s(n + k)) =  ∑ 𝑌𝑖/𝜋𝑖(𝑛 + 𝑘)	!∈#(%'() (18)

= [K/n]	∑ 𝜋𝑖(𝑛)/𝜋𝑖(𝑛 + 𝑘)	!∈#(%'()            (19)

Therefore, unless πi(n)/πi(n + k) is the same for all i = 1,2,...,N, the second estimator 
has a strictly positive variance. Therefore, uniform domination is not possible using HTE in 
both the situations.  

For the case where the extended sampling design Q(N – n, k|s(n)) is SRSWOR, Sinha 
(1980) presented simple conditions on the first and second order inclusion probabilities of the 
original sampling design FS(N, n) so that HTE(s(n + t)|Y) is better than HTE(s(n + t − 1)|Y) 
simultaneously for all t = 1,2, ....,k for any arbitrary choice of k < N − n. 

Sengupta (1982) extensively studied the properties of Lanke’s estimator for various 
choices of e(s(n)|Y) [based on FS(N, n)] and its extensions. In particular, he observed that (i) 
Lanke’s estimator, even though it improves over the estimator e(s(n)|Y), may itself turn out to 
be inadmissible, and (ii) if the estimator e(s(n)|Y) is the sample mean (or HTE) then there 
may not exist an extended sampling design such that Lanke’s estimator based on e∗ is again
the sample mean (or HTE). He also showed that when e(s(n)|Y) is the sample mean and the 
extended sampling design is SRSWOR(N − n, k), Lanke’s estimator will again be the sample 
mean if and only if the initial sampling design FS(N, n) is itself SRSWOR.  

Some other features of uses of additional resources are discussed in Sengupta et al. 
(1987). Another interesting and related paper on finding admissible estimators is Patel and 
Dharmadhikari (1977).  

4. Variance comparison and effect of sample size

With reference to the example taken up above, we will examine the effect of sample
sizes n versus n + k by computing ‘Efficiency per Unit Observation’. Note that in general 
terms, efficiency is defined as the reciprocal of variance and efficiency per unit observation 
is to be computed as reciprocal of  

n × V[e(s(n)|Y)] as against (n + k) × V[e(s(n + k)|Y)].             (20) 

We fix the population Y-values as 

[1,2,3, .....,10] with a total of 55 and mean of 5.5. 

We now opt for the HTE [for the population total] based on the original design. In 
Table 3, we display all the initial samples and the HTE-values based on them. Also, we show 
the corresponding probabilities.  
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     Table 3: s(n) P(s(n)) e(s(n)|Y)  

Sl. No. s(n) P(s(n)) e(s(n)|Y)  
1. (1,2,3,4,5) 0.075 38.3934 
2. (1,3,5,8,10) 0.105 53.6526 
3. (1,4,6,7,9) 0.165 48.2112 
4. (4,6,7,8,10) 0.135 57.8106 
5. (2,3,6,9,10) 0.145 59.8600 
6. (3,4,7,8,10) 0.175 54.5083 
7. (5,6,7,8,9) 0.180 64.9370 
8. (2, 4, 6, 7, 8)  0.020 48.2868 

Computations yield for the HTE of the population total based on the initial design:  

(1) E [HTE] = 55.1453  

(2) V(HTE) = 52.6695  

Next, towards computation of Lanke’s estimator, we obtain the following:  

First, we show s(n + k), next follows e(s(n + k)), lastly we show P(s(n + k)).  

1   (1,2,3,4,5,6,7)   e(1,2,3,4,5)     0.0300  
2   (1,2,3,4,5,6,9)   e(1,2,3,4,5)     0.0225  
(1, 2)   combined   e(1, 2, 3, 4, 5) = 38.3934   0.0525  
 
3   (1,2,3,4,5,8,10)∗  e(1,2,3,4,5)     0.0225  
4   (1,2,3,4,5,8,10)∗  e(1,3,5,8,10)     0.0735  
(3,4)  combined   (1, 2, 3, 4, 5, 8, 10)∗ [0.0225×e(1,2,3,4,5)+ 

0.0735×e(1,3,5,8,10)]/0.0960=50.0762    0.0960 
 
5  (1,3,4,5,7,8,10)∗∗  e(1,3,5,8,10)     0.0315  
13   (1,3,4,5,7,8,10)∗∗  e(3,4,7,8,10)     0.0700 
(5,13) combined   (1,3,4,5,7,8,10)∗∗ [0.0315×e(1,3,5,8,10)+ 

0.070×e(3,4,7,8,10)]/0.1015=54.2427    0.1015  
 
6  (1,2,3,4,6,7,9))            e(1,4,6,7,9) = 48.2112                        0.0825 
7  (1,4,5,6,7,8,9)∗∗∗  e(1,4,6,7,9)                                         0.0825 
16  (1,4,56,7,8,9)∗∗∗  e(5,6,7,8,9)                                         0.0540 
(7,16)  combined  (1,4,5,6,7,8,9)∗∗∗ [0.0825×e(1,4,6,7,9) +  

0.0540 × e(5, 6, 7, 8, 9)]/0.1365 = 54.8280                           0.1365     
 
8                      (3,4,6,7,8,9,10))∗∗∗∗  e(4,6,7,8,10)                                        0.0405  
15  (3,4,6,7,8,9,10)∗∗∗∗  e(3,4,7,8,10)                                        0.0350 
(8,15)  combined (3,4,6,7,8,9,10))∗∗∗∗ [0.0405×e(4,6,7,8,10)+  

0.035 × e(3, 4, 7, 8, 10)]/0.0755 = 56.2797                            0.0755  
 
9   (3,4,5,6,7,8,10)  e(4,6,7,8,10) = 57.8106   0.0945  
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10   (2,3,4,5,6,9,10)  e(2,3,6,9,10)     0.0870 
11   (2,3,5,6,7,9,10)  e(2,3,6,9,10)     0.0435 
12   (2,3,5,6,8,9,10)  e(2,3,6,9,10)     0.0145 
(10, 11, 12) combined   e(2, 3, 6, 9, 10) = 59.86   0.1450  
 
14  (2,3,4,7,8,9,10)  e(3,4,7,8,10) = 54.5083   0.0700 
 
17   (2,5,6,7,8,9,10)  e(5,6,7,8,9)     0.0900  
18   (3,4,5,6,7,8,9)   e(5,6,7,8,9)     0.0360   
(17, 18)  combined   e(5, 6, 7, 8, 9) = 64.9370   0.1260  

19   (2,3,4,6,7,8,9)   e(2,4,6,7,8) = 48.2868   0.0200  

Remark 4: It may be noted that we started with a total of 8 samples for the sample size n = 5 
and after extension, we ended up with a total of 19 samples. However, for the estimator in the 
above, we have ended up with a total of 11 samples. Computations yield:  

(1)  E[e(n + k)|Y] = 55.1453  

(2) V(e(n + k)|Y) = 38.2284  

Therefore, Lanke’s estimator performs better with the use of additional units. Finally, 
referring to (4.1), we work out efficiency of the extended estimator by comparing 5 × V 
(HTE) with 7 × V (extended estimator). The quantities are respectively 263.3475 and 
267.5988. Therefore, according to this criterion, Lanke’s extension formula fails to provide a 
more efficient estimator.  

5. Concluding remarks  

Mr. Sharma [Research Scholar in Statistics] and Dr. Singh [Statistics Faculty] express 
their gratitude to Prof. K. K. Singh Meitei, Head, Department of Statistics, Manipur 
University, Imphal, for providing excellent academic atmosphere towards conducting 
collaborative research and for creating opportunities for Prof. Sinha's multiple visits for 
collaborative research with the faculty and students of this department.  

We raised the issue of effective use of additional resources. In general terms, Lanke’s 
estimator serves this purpose. However, this estimator itself may not be admissible in the 
class of competing estimators [Sengupta et al. (1987)]. Further, though variance reduction is 
achieved, efficiency per unit observation may not necessarily increase with enhanced 
resources. This area of research still holds rich rewards for those who wish to venture into the 
perplex question of profitable use of additional resources.  
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Abstract 

It has been established in many studies that genes interact in complex networks among 

themselves and with various environmental factors to cause diseases. In this article, we discuss 

how realistic statistical models for case-control genotype data can be developed using 

nonparametric Bayesian techniques founded on hierarchies of Dirichlet process based mixture 

models for studying such complex interaction structures. Suitable Bayesian hypothesis testing 

procedures need to be developed for uncovering the roles of genes, environment and their 

interactions in case-control studies. Empowered with an efficient TMCMC based parallelisable 

algorithm, application of our ideas to data simulated under five different setups of disease-

gene-environment association as well as a real, Myocardial Infarction (MI) dataset yielded 

interesting results that not only agrees with the existing works in this area, but also gives some 

novel insights into the genetic interactions underlying the disease.   

Keywords: Hierarchical Dirichlet process; Case-control study; Myocardial infarction; Parallel 

processing; Transformation based MCMC; Gene-gene and gene-environment interaction. 

1. Introduction  

 

Present day biomedical research is pointing towards the significance of interactions 

between genes and the environment in causing complex diseases. According to Hunter (2005), 

considering the contributions of genes and environment to a disease separately, ignoring their 

interactions, might lead to incorrect estimation of the disease proportion that is explained by 

these factors. The additive linear models or the logistic model based approaches, (see for 

example Ahn et al. (2013), Wen and Stephens (2014) and Liu, Ma and Amos (2015) resting on 

Fisher’s definition of interaction result in the inclusion of a large number of interaction terms 

even with a moderate number of genetic and environmental factors. The existing Bayesian 

techniques like BEAM, EpiBN study interaction by identifying the SNPs that influence the 

disease risk given particular allele combinations, ignoring the genes as functional units. In a 

nutshell, none of the existing methods, classical or Bayesian, attempts simultaneous modelling 

of the uncertainties associated with the genes as the functional units along with the interactions, 

both at SNP and gene level through unified statistical models.  

The fact that the genetic data may arise from a stratified population with an unknown 

number of subpopulations makes the problem all the more demanding. The Bayesian 

semiparametric model proposed by Bhattacharya and Bhattacharya (2020 a) takes care of the 
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above mentioned problems by proposing a model based on Dirichlet Processes (DP) and a 

hierarchical matrix-normal distribution, encapsulating the mechanism of dependence among 

genes under environmental effects with respect to genotype data arising out of a possibly 

stratified population.  

As the environmental variables may affect the gene-gene interactions of individuals 

differently, depending on the extent and type of their exposure to the environmental factors, in 

this article, we introduce a novel Bayesian nonparametric model for gene-gene and gene-

environment interactions for case-control genotype data that solves the issues detailed above. 

Our model represents the individual genotype data as finite mixtures based on Dirichlet 

processes as before, but instead of the hierarchical matrix normal distribution, we introduce a 

hierarchy of Dirichlet processes that create appropriate nonparametric dependence among the 

genes induced by the environment. We develop a novel and highly parallelisable Markov Chain 

Monte Carlo (MCMC) methodology that combines the efficiencies of modern parallel 

computing infrastructure, Gibbs steps, retrospective sampling methods, and Transformation 

based Markov Chain Monte Carlo (TMCMC). Application of our model and methods to five 

different simulation experiments for the validation purpose yielded quite encouraging results. 

Application to a real myocardial infarction (MI) case-control type dataset yielded results which 

broadly agree with the results reported in the literature, and also provided new and interesting 

insights into the mechanisms of 4 gene-gene and gene-environment interactions.  

The rest of our paper is structured as follows. We introduce our HDP-based Bayesian 

nonparametric gene-gene and gene-environment interaction model in Section 2, and in Section 

3 we extend the Bayesian hypothesis testing procedures proposed in Bhattacharya and 

Bhattacharya (2020 a) to learn about the roles of genes, environmental variables and their 

interactions in case-control studies, with respect to our current HDP model. In Section 4 we 

briefly discuss the results of application of our model and methodologies to 5 biologically 

realistic simulated data sets, the details of which are provided in section S-3 of the 

supplement in Bhattacharya and Bhattacharya (2020 b). In Section 5 we analyse the real MI 

dataset using our ideas, demonstrating quite interesting and insightful outcome. Finally, we 

summarize our work with concluding remarks in Section 6.  

2. Bayesian nonparametric model based on hierarchies of Dirichlet process for gene-

gene and gene-environment interactions 

2.1. Case-control genotype data 

For s = 1, 2 denoting the two chromosomes, let 𝑥𝑠
𝑖𝑗𝑘𝑟 = 1 and 𝑥𝑠

𝑖𝑗𝑘𝑟 = 0 indicate the

presence and absence of the minor allele of the i-th individual belonging to the k-th group, for 

k = 0, 1, with k = 1 denoting case; at the r-th locus of j-th gene, where i = 1, . . . , 𝑁𝑘; r = 1, . . 

. , 𝐿𝑗 and j = 1, . . . , J; let N = 𝑁1 + 𝑁2. Let 𝐸𝑖 denote a set of environmental variables associated 

with the i-th individual. We now proceed to model this case-control genotype and the 

environmental data using our Bayesian semiparametric model, described in the next few 

sections. 

2.2. Mixture models based on Dirichlet processes 

Let 𝑥𝑖𝑗𝑘𝑟= (𝑥1
𝑖𝑗𝑘𝑟  , 𝑥2

𝑖𝑗𝑘𝑟) and L = max (𝐿1, … , 𝐿𝐽). We assume that for every triplet (i,

j, k), 𝑋𝑖𝑗𝑘 = (𝑥𝑖𝑗𝑘1, …, 𝑥𝑖𝑗𝑘𝐿) have the mixture distribution 
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[𝑋𝑖𝑗𝑘] = ∑ 𝜋𝑚𝑖𝑗𝑘 ∏ 𝑓(𝑥𝑖𝑗𝑘𝑟|𝑝𝑚𝑖𝑗𝑘𝑟)𝐿
𝑟=1

𝑀
𝑚=1 (1) 

where 𝑓(. |𝑝𝑚𝑖𝑗𝑘𝑟) is a Bernoulli mass function given by: 

𝑓(𝑥𝑖𝑗𝑘𝑟|𝑝𝑚𝑖𝑗𝑘𝑟) =  𝑝𝑚𝑖𝑗𝑘𝑟
𝑥1

𝑖𝑗𝑘𝑟+𝑥2
𝑖𝑗𝑘𝑟(1 − 𝑝𝑚𝑖𝑗𝑘𝑟)2−(𝑥1

𝑖𝑗𝑘𝑟+𝑥2
𝑖𝑗𝑘𝑟) (2) 

In the above, M denotes the maximum number of mixture components and 𝑝𝑚𝑖𝑗𝑘𝑟 

stands for the minor allele frequency at the r-th locus of the j-th gene for the i-th individual of 

the k-th case/control group.  

Allocation variables 𝑧𝑖𝑗𝑘, with probability distribution 

[𝑧𝑖𝑗𝑘 = 𝑚] = 𝜋𝑚𝑖𝑗𝑘,        (3) 

for i = 1, . . . , 𝑁𝑘 and m = 1, . . . , M, allow representation of (1) as

[𝑋𝑖𝑗𝑘|𝑧𝑖𝑗𝑘] = ∏ 𝑓(𝑥𝑖𝑗𝑘𝑟|𝑝𝑚𝑖𝑗𝑘𝑟)𝐿
𝑟=1      (4) 

Following Majumdar et al. (2013), Bhattacharya and Bhattacharya (2018), we set 

𝜋𝑚𝑖𝑗𝑘 = 1/M, for m = 1, . . . , M, and for all (j, k). 

Letting 𝑝𝑚𝑖𝑗𝑘 = (𝑝𝑚𝑖𝑗𝑘1, … . , 𝑝𝑚𝑖𝑗𝑘𝐿), we assume that 

𝑝1𝑖𝑗𝑘, 𝑝2𝑖𝑗𝑘,…, 𝑝𝑀𝑖𝑗𝑘 
𝑖𝑖𝑑
~

  𝐺𝑖𝑗𝑘;  (5) 

𝐺𝑖𝑗𝑘 ~ DP(𝛼𝐺,𝑖𝑘, 𝐺0,𝑗𝑘)  (6) 

where DP(𝛼𝐺,𝑖𝑘, 𝐺0,𝑗𝑘) stands for Dirichlet process with expected probability measure 𝐺0,𝑗𝑘 

having precision parameter 𝛼𝐺,𝑖𝑘, with 

log(𝛼𝐺,𝑖𝑘) = 𝜇𝐺 + 𝛽𝐺
𝑇𝐸𝑖𝑘,   (7) 

where 𝐸𝑖𝑘 is a d-dimensional vector of continuous environmental variable for the i-th individual 

in the k-th group, 𝛽𝐺 is a d-dimensional vector of regression coefficients, and 𝜇𝐺 is the intercept 

term. The model can be easily extended to include categorical environmental variables along 

with the continuous ones. 

2.3. Hierarchical Dirichlet processes to model the dependence between the genes and 

case-control status 

We further assume that for k = 0, 1, 

𝐺0,𝑗𝑘 
𝑖𝑖𝑑
~

 𝐷𝑃(𝛼𝐺0𝑘, 𝐻𝑘); j = 1,…, J,     (8) 

where log(𝛼𝐺0,𝑘) = 𝜇𝐺0
+ 𝛽𝐺0

𝑇𝐸𝑘,   (9) 

with 𝐸𝑘 =
1

𝑁𝑘
∑ 𝐸𝑖𝑘

𝑁𝑘
𝑖=1          (10) 
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We postulate the last level of hierarchy as 

𝐻𝑘 
𝑖𝑖𝑑
~

 DP(𝛼𝐻𝐻̃); k = 0,1   (11) 

where log(𝛼𝐻) = 𝜇𝐻 + 𝛽𝐻
𝑇𝐸̿,  (12) 

with 𝐸̿ =  
𝐸0+𝐸1

2
  (13) 

We specify the base probability measure 𝐻̃ as follows: for m = 1, . . . , M, i = 1, . . . , 

𝑁𝑘, k = 0, 1, and r = 1, . . . , L, 

𝑝𝑚𝑖𝑗𝑘𝑟 
𝑖𝑖𝑑
~

 Beta (𝜈1, 𝜈2),  (14) 

Under 𝐻̃, where 𝜈1, 𝜈2 > 0. 

Note that our model consists of one more level of hierarchy of Dirichlet processes than 

considered in the applications of Teh et al. (2006), who introduce hierarchical Dirichlet 

processes (HDP). For detailed discussion on the dependence structure induced by our hdp-

based model see Section 3 of Bhattacharya and Bhattacharya (2020 b). 

3. Detection of the roles of environment, genes and their interactions with respect to

our hdp based model 

3.1.  Formulation of the tests and interpretation of their results 

To test if genes have any effect on case-control, we formulate the following hypotheses: 

𝐻01: ℎ0𝑗 = ℎ1𝑗; j = 1, . . . ,J,   (15) 

versus  

𝐻11 : not 𝐻01,   (16) 

where ℎ0𝑗(. ) = 
1

𝑀
∑ ∏ 𝑓(. |𝑝𝑚𝑖0𝑗𝑘=0

𝑟)
𝐿𝑗

𝑟=1
𝑀
𝑚=1   (17) 

ℎ1𝑗(. ) = 
1

𝑀
∑ ∏ 𝑓(. |𝑝𝑚𝑖1𝑗𝑘=1

𝑟)
𝐿𝑗

𝑟=1
𝑀
𝑚=1   (18) 

In the above, for k = 0, 1, 𝑖k is the index such that 𝑃𝑀𝑖𝑘𝑗𝑘 =  {𝑝1𝑖𝑘𝑗𝑘, 𝑝2𝑖𝑘𝑗𝑘, … , 𝑝𝑀𝑖𝑘𝑗𝑘}

is an appropriate measure of central tendency (see Section 4.2.1 of Bhattacharya and 

Bhattacharya (2020 b)) of {𝑃𝑀i𝑗𝑘=  {𝑝1i𝑗𝑘, 𝑝2i𝑗𝑘, … , 𝑝𝑀i𝑗𝑘}; i = 1, . . . , 𝑁𝑘.

3.1.1. Bayesian test for the significance of the environmental variables 

To check if the environmental variables are significant, we shall test the following: 

for l = 1, . . . , d,  

𝐻02𝑙: 𝛽𝐺𝑙 = 0 versus 𝐻12𝑙: 𝛽𝐺𝑙 ≠ 0,    (19) 

𝐻03𝑙: 𝛽𝐺0𝑙 = 0 versus 𝐻12𝑙: 𝛽𝐺0𝑙 ≠ 0,    (20) 

and 𝐻04𝑙: 𝛽𝐻𝑙 = 0 versus 𝐻14𝑙: 𝛽𝐻𝑙 ≠ 0.    (21) 
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3.1.2.  Bayesian test for significance of gene-gene interaction 

In order to test for gene-gene interaction, it is necessary to first reasonably define a 

measure of gene-gene interaction influenced by environmental variables. 

For our purpose, we first define 

𝑝
𝑚𝑖𝑗𝑘

 =
∑ 𝑝𝑚𝑖𝑗𝑘𝑟

𝐿𝑗
𝑟=1

𝐿𝑗
  (22) 

With the above definition, for subject i belonging to case-control group k, we consider 

the following covariance  

C(i, 𝑗1, 𝑗2, k) = cov(logit(𝑝
𝑧𝑖𝑗1𝑘𝑖𝑗1𝑘

), logit(𝑝
𝑧𝑖𝑗2𝑘𝑖𝑗2𝑘

),   (23) 

as quantification of gene-gene dependence that accounts for population memberships of subject 

i with respect to genes 𝑗1 and 𝑗2, through 𝑧𝑖𝑗1𝑘 and 𝑧𝑖𝑗2𝑘. While implementing our model using

our parallelised MCMC methodology, we simulate C(i, 𝑗1, 𝑗2, k) at each iteration by generating 

{𝑝𝑚𝑖𝑗𝑘𝑟: r = 1, . . . , 𝐿𝑗} as many times as required from the respective full conditionals holding 

the remaining parameters fixed, and then compute the empirical covariance corresponding to 

(23) using the generated iid samples conditionally on the remaining parameters to approximate 

(23).  

Formulation of the Bayesian tests for gene-gene interactions 

To test for subject-wise gene-gene interaction, we consider the following tests: 

for i = 1, . . . , 𝑁𝑘, k = 0, 1, and for𝑗1, 𝑗2 ∈ {1, . . . , J},

𝐻05𝑖𝑗1𝑗2𝑘: C(i, 𝑗1, 𝑗2, k) = 0 versus 𝐻15𝑖𝑗1𝑗2𝑘: C(i, 𝑗1, 𝑗2, k) ≠ 0.           (24) 

For some appropriate divergence measure, d, between two distributions, if 

𝑚𝑎𝑥
1 ≤ j ≤ J d(ℎ0𝑗, ℎ1𝑗), is significantly small with high posterior probability, then 𝐻01 is to be

accepted. In case 𝐻01 is rejected, we go forward to perform various tests related to gene-gene 

and gene-environment interactions, enlisted in Sections 3.1.1. and 3.1.2. above. For 

interpretations and detailed discussion on the tests see Section 4.1.4 of Bhattacharya and 

Bhattacharya (2020 b). 

3.2. Methodologies for implementing the Bayesian tests 

3.2.1.  Hypothesis testing based on clustering modes 

Here we exploit the concept of “central” clustering introduced by Mukhopadhyay et al. 

(2011). Briefly, central clustering may be interpreted as a suitable measure of central tendency 

of a set of clusterings.  

For k = 0, 1, let 𝑖𝑘 denote the index of the central clusterings of 𝑃𝑀𝑖𝑗𝑘 = 

{𝑝1𝑖𝑗𝑘, 𝑝2𝑖𝑗𝑘,…, 𝑝𝑀𝑖𝑗𝑘}, i = 1, . . . , 𝑁𝑘. We then study the divergence between the two 

clusterings of 𝑃𝑀𝑖0𝑗𝑘=0 = {𝑝1𝑖0𝑗𝑘=0, 𝑝2𝑖0𝑗𝑘=0,…, 𝑝𝑀𝑖0𝑗𝑘=0}and 𝑃𝑀𝑖1𝑗𝑘=1 = 

{𝑝1𝑖1𝑗𝑘=1, 𝑝2𝑖1𝑗𝑘=1,…, 𝑝𝑀𝑖1𝑗𝑘=1} , for j = 1, . . . , J.
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Significantly large clustering distance between 𝑃𝑀𝑗𝑘=0 and 𝑃𝑀𝑗𝑘=1indicates rejection of 𝐻0, 

but insignificant clustering distance does not necessarily provide strong evidence in favour of 

the null. In this regard, Bhattacharya and Bhattacharya (2018) (see also Bhattacharya and 

Bhattacharya (2020 a)) argue that the Euclidean distance is an appropriate candidate to be 

tested for significance before arriving at the final conclusion. Briefly, we first compute the 

averages 𝑝
𝑚𝑖𝑗𝑘

 = ∑ 𝑝mi𝑗𝑘𝑟/𝐿𝑗
𝐿𝑗

𝑟=1 , then consider their logit transformations logit(𝑝
𝑚𝑖𝑗𝑘

) = log

{𝑝
𝑚𝑖𝑗𝑘

/(1 − 𝑝
𝑚𝑖𝑗𝑘

)}. Then, we compute the Euclidean distance between the vectors

logit(𝑃𝑀𝑖0𝑗𝑘=0) = {logit(𝑝
1𝑖0𝑗𝑘=0

), logit(𝑝
2𝑖0𝑗𝑘=0

),…, logit(𝑝
M𝑖0𝑗𝑘=0

)} and 

logit(𝑃𝑀𝑖1𝑗𝑘=1) = {logit(𝑝
1𝑖1𝑗𝑘=1

), logit(𝑝
2𝑖1𝑗𝑘=1

),…, logit(𝑝
M𝑖1𝑗𝑘=1

)} 

We denote the Euclidean distance associated with the j-th gene by 

𝑑𝐸,𝑗 =  𝑑𝐸,𝑗(logit(𝑃𝑀𝑖0𝑗𝑘=0), logit(𝑃𝑀𝑖1𝑗𝑘=1))

and denote 
𝑚𝑎𝑥

1 ≤ 𝑗 ≤ 𝐽  𝑑𝐸,𝑗 by 𝑑∗
𝐸,𝑗.

3.2.2.   Formal Bayesian hypothesis testing procedure integrating the above 

developments 

In our problem, we need to test the following for reasonably small choices of ε’s: 

𝐻0,𝑑∗: 𝑑∗ <  𝜀𝑑∗  versus 𝐻1,𝑑∗: 𝑑∗ ≥  𝜀𝑑∗; (25) 

𝐻0,𝑑∗
𝐸

: 𝑑∗
𝐸 <  𝜀𝑑∗

𝐸
  versus 𝐻1,𝑑∗

𝐸
: 𝑑∗

𝐸 ≥  𝜀𝑑∗
𝐸
; (26) 

For l = 1,2,...,d 

𝐻0,𝛽𝐺𝑙
: |𝛽𝐺𝑙| <  𝜀𝐺𝑙 versus 𝐻1,𝛽𝐺𝑙

: |𝛽𝐺𝑙| ≥  𝜀𝐺𝑙 (27) 

𝐻0,𝛽𝐺𝑙
: |𝛽𝐺0𝑙 | <  𝜀𝐺0𝑙 versus 𝐻1,𝛽𝐺0𝑙 : |𝛽𝐺0𝑙 | ≥  𝜀𝐺0𝑙 (28) 

𝐻0,𝛽𝐻𝑙
: |𝛽H𝑙| <  𝜀𝐻𝑙 versus 𝐻1,𝛽H𝑙

: |𝛽H𝑙| ≥  𝜀𝐻𝑙 (29) 

and, for i = 1, . . . , 𝑁𝑘, k = 0, 1, 𝑗1, 𝑗2 ∈ {1, . . . , J}, 

𝐻0,C(i,𝑗1,𝑗2,k) : |C(i, 𝑗1, 𝑗2, k) | <  𝜀C(i,𝑗1,𝑗2,k)  versus 𝐻1,𝛽C(i,𝑗1,𝑗2,k) 
: |𝛽C(i,𝑗1,𝑗2,k) | ≥  𝜀C(i,𝑗1,𝑗2,k) 

(30) 

If 𝐻0 is rejected in (25) or in (26), we could also test if the j-th gene is influential by testing,

for j = 1, . . . , J, 𝐻0,𝑑̂𝑗
: 𝑑̂𝑗 <  𝜀𝑑̂𝑗

 versus 𝐻1,𝑑̂𝑗
: 𝑑̂𝑗 ≥  𝜀𝑑̂𝑗

, where 𝑑̂𝑗 = 𝑑̂(𝑃𝑀𝑖0𝑗𝑘=0, 𝑃𝑀𝑖1𝑗𝑘=1);

we could also test 𝐻0,𝑑𝐸,𝑗
: 𝑑𝐸,𝑗 <  𝜀𝑑𝐸,𝑗

 versus 𝐻1,𝑑𝐸,𝑗
: 𝑑𝐸,𝑗 ≥  𝜀𝑑𝐸,𝑗

. For the null model and

choice of ε see Bhattacharya and Bhattacharya (2020 b). 

4. Simulation studies

For simulation studies, we first generate realistic biological data for stratified 

population with known gene-environment interaction from the GENS2 software of Pinelli et 

al. (2012). To this data, we then apply our model and methodologies in an effort to detect gene-

environment interaction effects that are present in the data. We consider simulation studies 
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under 5 different true model set-ups: (a) presence of gene-gene and gene-environment 

interaction; (b) absence of genetic or gene-environmental interaction effect; (c) absence of 

genetic and gene-gene interaction effects but presence of environmental effect; (d) presence of 

genetic and gene-gene interaction effects but absence of environmental effect; and (e) 

independent and additive genetic and environmental effects.  

The details of our simulation experiments are provided in Section S-3 of the supplement 

of  Bhattacharya and Bhattacharya (2020 b). Here we briefly summarize the results of our 

experiments. In case (a), we correctly obtained clear significance of the influence of genetic 

effects. Also, 𝛽H𝑙 turned out to be very significant, demonstrating significant overall impact of 

the environmental variable on gene-gene interaction. The posteriors of the number of sub-

populations gave high probabilities to the correct number of sub populations in all the 5 

simulation experiments. Quite importantly, we demonstrate in cases (a), (d) and (e) where the 

genes are relevant, that our HDP model can detect disease predisposing loci (DPL) with more 

precision compared to the matrix-normal-inverse-Wishart model for gene-environment 

interactions proposed in Bhattacharya and Bhattacharya (2020A). In case (b) using our ideas 

in conjunction with significance testing in a simple logistic regression framework, we are 

correctly able to conclude that the genetic or gene-environmental effects are insignificant.  

5. Application of hdp based ideas to a real, case-control dataset on myocardial 

infarction  
 

We now consider application of our model and methods to a case-control dataset on 

early-onset of myocardial infarction (MI) from MI Gen study, obtained from the dbGaP 

database http://www.ncbi.nlm.nih.gov/gap.  

5.1. Data description 

 

The MI Gen data obtained from dbGaP consists of observations on presence/absence 

of minor alleles at 727478 SNP markers associated with 22 autosomes and the sex 

chromosomes of 2967 cases of early-onset myocardial infarction, 3075 age and sex matched 

controls. The average age at the time of MI was 41 years among the male cases and 47 years 

among the female cases. The data broadly represents a mixture of four sub-populations: 

Caucasian, Han Chinese, Japanese and Yoruban. Using the Ensembl human genome database 

(http://www.ensembl.org/) we could categorize 446765 markers out of 727478 with respect to 

37233 genes. As in Bhattacharya and Bhattacharya (2020 a) we considered 32 genes covering 

1251 loci, for 200 individuals. These 1251 loci include 33 SNPs that are believed to be 

associated with MI and also those that are believed to be associated with different 

cardiovascular end points like LDL cholesterol, smoking, blood pressure, body mass, etc. Other 

than the 33 SNPs, the remaining 1218 SNPs are not known to be associated with the disease 

(see Bhattacharya and Bhattacharya (2020 a)) for the details and the relevant references. 

5.2. Remarks on model implementation 

  

Our parallel MCMC algorithm detailed in Section S-2 of the supplement of 

Bhattacharya and Bhattacharya (2020 b), takes about 7 days to generate 30,000 iterations on 

our VMware consisting of 1 TB RAM, 60 double-threaded, 64-bit physical cores, each running 

at 2.5 GHz; 50 such cores were available to us. We discard the first 10, 000 iterations as burn-

in, using the subsequent 20,000 iterations for our Bayesian inference. Convergence is studied 

using informal convergence diagnostics such as trace plots. Some instances are provided in 

Section S-3 of the supplement of Bhattacharya and Bhattacharya (2020 b). 
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5.3.  Results of the real data analysis  

5.3.1.  Effect of the sex variable  

We obtain P(|𝛽𝐺𝑙| <  𝜀𝐺𝑙 |Data) ≈ 0, P(|𝛽𝐺0𝑙 | <  𝜀𝐺0𝑙|Data) ≈ 0 and P(|𝛽H𝑙| <

 𝜀𝐻𝑙 |Data) ≈ 1. In other words, although 𝐸̿ (here E being the sex variable) is insignificant, both 

𝐸𝑖𝑘 and 𝐸𝑘 are very significant. Thus, in this study, sex seems to play an important role in 

influencing gene-gene interaction. 

5.3.2.  Roles of individual genes  

With the clustering metric we obtained P(𝑑∗ <  𝜀𝑑∗) ≈ 0.030 while that with the 

Euclidean distance we obtained P(𝑑∗
𝐸 <  𝜀𝑑∗

𝐸
|Data) ≈ 0.540. That is, the maximum of the 

gene-wise clustering metrics turns out to be significant, while the maximum of the gene-wise 

Euclidean metrics is seen to be insignificant. None of the individual genes turned out to be 

significant, for either the clustering metric or the Euclidean metric. The posterior probabilities 

of the null hypotheses (of no significant genetic influence) with respect to the clustering metric 

is shown in Figure 1. 

 

 

Figure 1: Posterior probability of no genetic effect with respect to clustering metric 

 

5.3.3.  Gene-gene interactions 

Figures 2(a) to 2 (d) show the typical gene-gene correlations representative of cases and 

controls in males and females. The colour intensities correspond to the absolute values of the 

correlations. Although the correlations are small in all the subjects, the tests of hypotheses 

reveal some interesting structures. Our tests indicate that for most of the subjects, at least one 

of the genes AP006216.10 and C6orf106 interact with every other gene. The subjects, for 

whom no significant genetic interactions involving AP006216.10 and C6orf106 were detected, 

turned out to be male cases, indicating that the lack of genetic interaction in these males might 

be associated with MI. On the other hand, the interactions of the genes AP006216.10 and 

C6orf106 with all the genes seemed to reduce the risk of the disease for the other subjects.  
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Thus, following this study, the gene-gene interactions need to be investigated further 

for their possible beneficial effect on the subjects against MI.  

 

 

Figure 2: Typical gene-gene posterior correlation plot for male cases and controls and 

female cases and controls 

 

5.3.4.  Posteriors of the number of sub-populations  

Figure 3 shows the posteriors of the number of sub-populations for the males and 

females associated with respectively. Observe that the posteriors are quite similar, with the 

mode at 3 and 4 components receiving the next highest probability. Thus, the 4 sub-

populations, irrespective of sex, are well supported by our model. 
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Figure 3: Typical posteriors of the number of components for males and females 

6. Summary and conclusion  

 

In this paper, we have proposed a novel Bayesian nonparametric gene-gene and gene-

environment interaction model based on hierarchies of Dirichlet processes. This model is a 

significant improvement over the existing work in this area, in the sense of much clear 

interpretability and accounting for subject-specific gene-gene interactions. We propose a novel 

parallel MCMC algorithm to implement our model (Sections S-1and S-2 of the supplementary 

material of Bhattacharya and Bhattacharya (2020 b)), that combines powerful technology with 

conditionally independent structures inherent within our HDP based model and efficient 

TMCMC methods. Applications of our ideas to biologically realistic datasets generated under 

5 different setups characterized by different combinations and structures associated with gene-

gene and gene environment interactions demonstrated encouraging performance of our model 

and methods. Our analysis of the real MI dataset yielded results that are broadly in agreement 

with the previous works on the same dataset. For example, in accordance with Bhattacharya 

and Bhattacharya (2020A) (see also Lucas et al. (2012)) we obtained strong impact of the sex 

variable, weak gene-gene correlations but no significant effect of the individual genes. But 

special mention must be reserved for our original finding that two genes, AP006216.10 and 

C6orf106, tend to fight the disease by their positive interaction with the remaining genes. 

Another interesting discovery that emerged from our analyses is that only in male cases all the 

gene-gene interactions were insignificant. These two findings seem to confirm the general 

belief that as compared to females, males are more vulnerable to heart attack.  
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Abstract 

 

Among various classical estimations procedures, a relatively better estimation is 

provided by Consistent Asymptotic Estimators (CAN) method. The method of CAN provides 

estimators for parametric functions of regular and non-regular or degenerate families of 

distributions. In this article, we present CAN estimators for parametric functions of inlier-

prone (a case of degenerate) distribution models. The estimates are also compared 

numerically. 
 

Key words: Consistency; Degenerate family of distributions; Inlier-prone models; Minimum 

variance unbiased estimators.   
 

1.  Introduction 

In statistical estimation theory, one starts with the data (𝑥1, 𝑥2, … , 𝑥𝑛) of a random 

variable X, which are assumed to be independent and identically distributed with a common 

probability distribution f(x, θ) characterized by an unknown population parameter θ ∈ Ω, 
where θ can be real-valued scalar or vector. The objective is to propose a best inference for θ 

or ψ(θ) which satisfies good statistical properties. If the probability model is uniquely 

defined, one can suggest suitable estimators for the parameter or parametric functions 

explicitly. Let T = T(𝑥1, 𝑥2, … , 𝑥𝑛) be an estimator of θ based on the observed sample values 

(𝑥1, 𝑥2, … , 𝑥𝑛). By using the techniques of transformation or form the basic principles of 

distribution theory, one could, at least theoretically, obtain the sampling distribution of the 

estimator T and thus begin the inference of the population parameter θ.  

 

 There are many criteria and procedures available for deciding the best estimator for θ 

or ψ(θ) in Statistics literature. The best estimator in a statistical sense is decided based on a 

comparison of the variance or mean square error (MSE) of the estimator of one method over 

the other. For this we assume that T, a real-valued statistic, is to be used as an estimator of 

real parameter θ based on a random sample of size n from {f(x, θ), θ ∈ Ω}, Ω ⊂ 𝑅1. One of 

the criteria based on a large sample size is the consistency of an estimator. 

 

Definition 1: An estimator 𝑇𝑛 is said to be consistent for θ if 𝑇𝑛 → 𝜃 for each θ ∈ Ω in 

probability and the convergence in probability is taken under the distribution indexed by 𝜃.  
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 A very important property of a consistent estimator is the invariance under continuous 

transformation, a property not enjoyed by an unbiased estimator. Thus, if ψ(θ) is a continuous 

function and if T is consistent for θ, then the invariance property says that ψ(T) is consistent 

for ψ(θ). Because of the invariance property of consistent estimators, for all practical 

purposes one need to consider consistent estimators of θ only for further study of the 

estimators. The invariance property can be extended to the case of vector valued T and θ as 

follows: 

 

Definition 2: Let T be jointly consistent for θ and let ψ be k-dimensional continuous 

functions from Ω to 𝑅𝑘 , then ψ(T) is jointly consistent for ψ(𝜃)  (Kale and Muralidharan, 

2015). 

 

 To choose between consistent estimators one can compare the MSE’s of the 

estimators, where MSE is defined as 𝑀𝑆𝐸(𝜃) =  𝐸𝜃(𝜃 − 𝜃)
2
 = 𝑉𝑎𝑟(𝜃) + 𝐵𝑖𝑎𝑠(𝜃, 𝜃)2, 

where 𝜃=T(x)  is the unbiased estimate of 𝜃. For instance, if 𝑇1 and 𝑇2 are both consistent for 

θ then we would prefer 𝑇1 to 𝑇2 if MSE(𝑇1) ≤ 𝑀𝑆𝐸(𝑇2), ∀𝜃𝜖Ω. This comparison generally 

results into the comparison of the sample sizes of the two estimators. Thus, if 𝑇1 is preferred 

over 𝑇2 then by Tchebychev inequality it follows that 𝑃[|𝑇1 − 𝜃| < 𝜖] converges to unity 

faster than 𝑃[|𝑇2 − 𝜃| < 𝜀] → 1 as 𝑛 → ∞,∀𝜃𝜖Ω and 𝜀 > 0. For large n, it is easy to show 

that 𝑎𝑛(𝑇 −  𝜃) → 𝑁(0, 𝜎𝑇
2(𝜃) or 𝑇~𝐴𝑁 (0,

𝜎𝑇
2(𝜃)

𝑎𝑛
2 ), where 𝑎𝑛 is the blow-up factor (Kale and 

Muralidharnan, 2015). Such an estimator is called Consistent Asymptotic Normal or CAN 

estimator. As discussed above, if ψ(θ) is a continues differentiable function then according to 

invariance property of consistent estimators the CAN estimator for ψ(θ) is defined as follows: 

 

Definition 3:  Let T be CAN  for θ so that 𝑇~𝐴𝑁 (𝜃,
𝜎𝑇
2(𝜃)

𝑎𝑛
2 ) and let ψ be differentiable  

functions such that 
𝑑𝜓

𝑑𝜃
 is continuous and nonvanishing then ψ(T) is CAN for ψ(𝜃) and ψ(T)~ 

AN(𝜓(𝜃), 𝜎𝑇
2(𝜃) (

𝑑𝜓

𝑑𝜃
)
2

/𝑎𝑛
2)  (Kale and Muralidharan, 2015). 

 

  We now propose CAN estimators for parametric functions by considering a family of 

distributions which are degenerated at some random point. This degeneracy may be due to 

the occurrence of instantaneous or early failures together known as inliers are usually seen in 

life testing experiments. In the instantaneous failure cases, the random variable will have 

discrete probability mass at the origin (that is lifetime will be zero) and some positive 

lifetimes, and in the early failure case the failure times may be small in relation to other 

lifetimes. For modeling positive lifetimes, we have used exponential distribution, as it has 

been widely used as a model in areas ranging from studies on the lifetimes of manufactured 

items to research involving survival or remission times in chronic diseases. The exponential 

distribution has the pdf 

 

   𝑓(𝑥; 𝜃) =
1

𝜃
𝑒−

𝑥

𝜃, 𝑥 ≥ 0      (1) 
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The maximum likelihood estimator of 𝜃 is 𝜃 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 . The desirable properties of 𝜃 are 

numerous. In particular 𝜃 is exactly distributed as (
𝜃

2𝑛
)𝜒(2𝑛)

2  and it is a sufficient, efficient, 

and minimum variance estimator of 𝜃. 

 

The article is organized as follows: The model presentations along with some 

distributional results are given in Section 2. Along with the CAN estimation, we also propose 

uniformly minimum variance unbiased estimate (UMVUE) for various parametric functions 

in Section 3. The numerical illustration is presented in the last section.  

  

2.  Inliers-prone model 

 

If the underlying distribution is exponential as given in (1.1), then the inliers-prone 

model with instantaneous failures is shown as   

 

 𝑔(𝑥; 𝑝, 𝜃) = {
1 − 𝑝,      𝑥 = 0
𝑝

𝜃
𝑒−

𝑥

𝜃,       𝑥 > 0
      (2) 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from (2) then the pdf of 𝑋𝑖 is  

 

𝑔(𝑥𝑖; 𝑝, 𝜃) = {
(1 − 𝑝)𝐼(𝑥𝑖) (

𝑝

𝜃
𝑒−

𝑥
𝜃)

1−𝐼(𝑥𝑖)

𝑥𝑖 ≥ 0,0 < 𝑝 ≤ 1, 𝜃 > 0, 𝑖 = 1, 2, … , 𝑛

0,                                              𝑜. 𝑤.

 

 

where, 

 𝐼(𝑥) = {
1,    if 𝑥 = 0   
0,    o. w.

       (3) 

 

Aitchison (1955) had proposed various unbiased functions for parametric function in 

(3). Kale and Muralidharan (2000) were the first authors to introduce the term inliers in 

connection with the estimation of (𝑝, 𝜃) of early failure model with modified failure time 

distribution (FTD) being (1) with mean 𝜃. A similar problem was attempted by Lai et al. 

(2007), wherein they have defined nearly instantaneous through the sample configurations, 

considering Weibull as the underlying FTD. For a detailed review of inliers prone models and 

their inferences, refer to Muralidharan (2010).  

 

If 𝑝 = 𝑃(𝑥 > 0) and further, if we denote ∑ 𝐼(𝑥𝑖) = 𝑛 − 𝑟
𝑛
𝑖=1 , where 𝑟 is number of 

positive observations, then the joint pdf is given by  

 

𝑔(𝑥; 𝑝, 𝜃) = {
(1 − 𝑝)𝑛−𝑟 (

𝑝

𝜃
)
𝑟

𝑒−
1

𝜃
∑ (1−𝐼(𝑥𝑖))𝑥𝑖
𝑛
𝑖=1 , 𝑥𝑖 ≥ 0, 𝑟 = 0,1, … , 𝑛

0,                                                           𝑜. 𝑤.
   (4) 
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The following results are now obvious: 

Result 1: The joint density function given in (4) is a two-parameter exponential family of 

distribution. 

 

Result 2: (∑ 𝐼(𝑥𝑖),∑(1 − 𝐼(𝑥𝑖))𝑥𝑖) are jointly sufficient for 𝑝 and 𝜃.  

Result 3: The MLE of  𝑝 and 𝜃 are respectively given by 𝑝̂𝑀𝐿𝐸 =
𝑟

𝑛
 and 𝜃𝑀𝐿𝐸 =

1

𝑟
∑ 𝑥𝑖𝑥𝑖>0

. 

Result 4: (𝑝̂𝑀𝐿𝐸 , 𝜃𝑀𝐿𝐸)
′
 ~ 𝐴𝑁(2) [(𝑝, 𝜃)′, 𝑑𝑖𝑎𝑔 (

𝑝(1−𝑝)

𝑛
,
𝜃2

𝑛𝑝
)]. 

Result 5: The parameters 𝑝 and 𝜃 are orthogonal. 

Result 6: The true reliability or survival function for the model at time 𝑡 is given by 

                   𝑆(𝑡) = 𝑝𝑒−
𝑡

𝜃, 𝑡 > 0, 𝜃 > 0  

Result 7: 𝑔𝑍|𝑅(𝑧; 𝜃|𝑟) = {
𝑒
−
𝑧
𝜃 𝑧𝑟−1

𝛤𝑟 𝜃𝑟
, 𝑧 > 0, 𝑟 > 0 

1,              𝑧 = 0, 𝑟 = 0 
,  

where 𝑧 = ∑ [1 − 𝐼(𝑥𝑖)]𝑥𝑖
𝑛
𝑖=1 (= ∑ 𝑥𝑖𝑥𝑖>0

). 

3.  UMVUE and CAN estimators 

It is observed that, obtaining conditional distribution given the sufficient statistics is 

bit difficult in the above model. Therefore, we use exponential family approach to study the 

distributional properties.  

 

The equation (4) is written as 

 

𝑔(𝑥; 𝑝, 𝜃) =
[𝑒−

1
𝜃]
(1−𝐼(𝑥))𝑑(𝑥)

[
𝜃(1 − 𝑝)

𝑝 ]
𝐼(𝑥)

(
𝜃
𝑝)

 

       =[𝑎(𝑥)](1−𝐼(𝑥))[ℎ(𝜃)](1−𝐼(𝑥))𝑑(𝑥) [
𝑔(𝜃)(1−𝑝)

𝑝
]
𝐼(𝑥)

(
𝑔(𝜃)

𝑝
)
−1

   (5) 

where 𝑎(𝑥) = 1, ℎ(𝜃) = 𝑒−
1

𝜃, 𝑑(𝑥) = 𝑥, 𝑔(𝜃) = 𝜃. The density in (5) is so obtained is 

defined with respect to measure 𝜇(𝑥) which is the sum of Lebesgue measure over (0,∞) and 

a singular measure at {0}, is a well-known form of two parameter exponential family with 

natural parameters (𝜂1, 𝜂2) = (𝑙𝑜𝑔 (
𝜃(1−𝑝)

𝑝
) , 𝑙𝑜𝑔 (𝑒−

1

𝜃)) generated by the underlying 

indexing parameters (𝑝, 𝜃). Here (𝐼(𝑥), (1 −  𝐼(𝑥))𝑥) is jointly minimal sufficient for (𝑝, 𝜃) 
as 𝐼(𝑥) and  (1 − 𝐼(𝑥))𝑥 do not satisfy any linear restriction. Hence the natural parameter 

space is convex set in 𝐸2 containing a two-dimensional rectangle making (5) a full rank 

family. The statistic (𝐼(𝑥), (1 −  I(x))𝑥) is thus complete (Lehmann and Casella, 1998, p 

42). Kale and Muralidharan (2000) considered the above mixture and obtained optimal 

estimating equation for 𝜃 ignoring 𝑝 in the case of exponential failure time distribution. 
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Further, if we denote 𝑧 = ∑ [1 − 𝐼(𝑥𝑖)]𝑥𝑖
𝑛
𝑖=1 (= ∑ 𝑥𝑖𝑥𝑖>0

), then the joint density function can 

be expressed as 

 

  𝑔(𝑥; 𝑝, 𝜃) = (
𝑛
𝑟
) (1 − 𝑝)𝑛−𝑟 (

𝑝

𝜃
)
𝑟

𝑒−
𝑧

𝜃     (6) 

Hence (𝑛 − 𝑅, 𝑍) are jointly complete sufficient for (𝑝, 𝜃). Also, the variable 
(𝑍|𝑅 = 𝑟, 𝑟 > 0) is distributed as a Gamma random variable with parameter (𝑟, 𝜃 ). Since, 

𝑛 − 𝑅 is binomial which is same as that of 𝑅 with parameter (𝑛, 𝑝), the joint distribution of 
(𝑛 − 𝑅, 𝑍) is 

𝑔(𝑧, 𝑛 − 𝑟; 𝑝, 𝜃) = 𝑃(𝑛 − 𝑅 = 𝑛 − 𝑟) 𝑔(𝑧; 𝜃|𝑛 − 𝑟) 

     = 𝑃(𝑅 = 𝑟) 𝑔(𝑧; 𝜃|𝑟) 

     =(
𝑛
𝑟
) (1 − 𝑝)𝑛−𝑟𝑝𝑟

1

𝛤𝑟 𝜃𝑟
𝑧𝑟−1𝑒−

𝑧

𝜃 

 

                        = {

(1 − 𝑝)𝑛,                                               𝑧 = 0;  𝑟 = 0

(
𝑛
𝑟
)
𝑧𝑟

𝛤𝑟
𝑒−

𝑧
𝜃 (
𝜃(1 − 𝑝)

𝑝
)

𝑛−𝑟

(
𝜃

𝑝
)
−𝑛

, 𝑧 > 0;  𝑟 > 0
 

 

= {
(1 − 𝑝)𝑛,                                                             𝑧 = 0;  𝑟 = 0

𝐵(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧 [
𝑔(𝜃)(1−𝑝)

𝑝
]
𝑛−𝑟

(
𝑔(𝜃)

𝑝
)
−𝑛

, 𝑧 > 0;  𝑟 > 0
 (7) 

where 

 

𝐵(𝑧, 𝑟, 𝑛) = {
1,                    𝑧 = 0; 𝑟 = 0

(
𝑛
𝑟
)𝐵(𝑧|𝑟), 𝑧 > 0; 𝑟 > 0

     (8) 

is such that (1 − 𝑝)𝑛 + ∑ ∫ (
𝑛
𝑟
)

𝑧>0
𝑛
𝑟=1 𝐵(𝑧|𝑟) [𝑒−

1

𝜃]
𝑧

(
𝜃(1−𝑝)

𝑝
)
𝑛−𝑟

(
𝜃

𝑝
)
−𝑛

𝑑𝑧 = 1 and 

𝐵(𝑧|𝑟) =
𝑧𝑟−1

𝛤𝑟
. Following Roy and Mitra (1957) and Jani and Singh (1995), it is possible to 

obtain the uniformly minimum variance unbiased estimates (UMVUE) for some parametric 

functions. Note that, the UMVUE’s of parametric function 𝜙(𝑝, 𝜃)exits if and only if 𝜙(𝑝, 𝜃) 
can be expressed in the form 

𝜙(𝑝, 𝜃) = 𝛼(0,0, 𝑛)(1 − 𝑝)𝑛 + ∑ ∫
𝛼(𝑧,𝑟,𝑛)𝑒

−
𝑧
𝜃(
𝜃(1−𝑝)

𝑝
)
𝑛−𝑟

[
𝜃

𝑝
]
𝑛𝑧>0

𝑛
𝑟=1 𝑑𝑧. 

Below we consider some estimates for the parametric functions: 

Result 8: For 𝑚 ≤ 𝑛, the UMVUE of (1 − 𝑝)𝑚 is 𝐺𝑚(𝑍, 𝑅, 𝑛) as given by  

𝐺𝑚(𝑧, 𝑟, 𝑛) =

{
 

 (
𝑛 −𝑚
𝑟

)

(
𝑛
𝑟
)

, 𝑟 = 0,1, … , 𝑛 − 𝑚

0,          𝑜. 𝑤.

 

Result 9: For 𝑚 = 1, Result 8 reduces to the UMVUE of (1 − 𝑝) as  
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𝐺1(𝑧, 𝑟, 𝑛) = {

𝑛 − 𝑟

𝑛
, 𝑟 > 0; 𝑧 > 0

1,                  𝑟 = 0, 𝑧 = 0
 

 

Result 10: 𝜓(𝑇1) = (1 −
𝑟

𝑛
)𝑚 is CAN estimator of 𝜓(𝑝) = (1 − 𝑝)𝑚 with asymptotic 

variance  

                  
𝑚2

𝑛
𝑝(1 − 𝑝)2𝑚−1. 

Result 11: For  𝑚 ≤
𝑛

2
,  the UMVUE of the variance of 𝐺𝑚(𝑍, 𝑅, 𝑛) is computed as 

𝑣𝑎𝑟 ̂[𝐺𝑚(𝑧, 𝑟, 𝑛)] = {
𝐺𝑚
2 (𝑧, 𝑟, 𝑛) − 𝐺2𝑚(𝑧, 𝑟, 𝑛), 𝑟 = 1,2, … , (𝑛 − 2𝑚)

𝐺𝑚
2 (𝑧, 𝑟, 𝑛),                             𝑟 = (𝑛 − 2𝑚 + 1),… , (𝑛 − 𝑚)

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

=

{
 
 
 

 
 
 
[
(
𝑛 − 𝑚
𝑟

)

(
𝑛
𝑟
)

]

2

−
(
𝑛 − 2𝑚
𝑟

)

(
𝑛
𝑟
)

, 𝑟 = 1,2, … , (𝑛 − 2𝑚)

[
(
𝑛 − 𝑚
𝑟

)

(
𝑛
𝑟
)

]

2

,                         𝑟 = (𝑛 − 2𝑚 + 1),… , (𝑛 − 𝑚)

0,                                              𝑜. 𝑤.

 

Result 12: For 𝑚 = 1, the UMVUE of the variance of UMVUE of (1 − 𝑝) is given by 

𝑣𝑎𝑟 ̂[𝐺1(𝑧, 𝑟, 𝑛)] = {

𝑟(𝑛 − 𝑟)

𝑛2(𝑛 − 1)
, 𝑟 = 1, 2, … , (𝑛 − 1)

0,                          𝑜. 𝑤.

 

Result 13: For  𝑘 > 0 the UMVUE of parametric function (1 − 𝑝)𝑛 + (
𝑝 

𝜃
)
𝑘
[1 −

(1 − 𝑝)𝑛−𝑘] is given by 

                     𝐻𝑘(𝑧, 𝑟, 𝑛) = {

(𝑟)𝑘(𝑟 − 1)𝑘
(𝑛)𝑘𝑧𝑘

, 𝑟 = 1, 2, … , 𝑛;  𝑧 > 0

1,                                𝑟 = 0;  𝑧 = 0

 

where (𝑎)𝑘 = 𝑎(𝑎 − 1)… (𝑎 − 𝑘 + 1), and 𝑧 = ∑ 𝑥𝑖𝑥𝑖>0
.  

For various values of 𝑘 ≥ 1, one can obtain the UMVUE of the parametric function. 

Unfortunately, it is impossible to find a unbiased estimate for the parameter 𝜃 alone. 

Aitchison (1955) through the usual classical approach obtain the UMVUE of the parametric 

function (1 − 𝑝)2𝜃2 as 

        𝜑(𝑧, 𝑟, 𝑛) = {
(2𝑛−𝑟−1)𝑧2

𝑛(𝑛−1)(𝑟+1)
, 𝑟 > 0;  𝑧 > 0

0,                                      𝑟 = 0;  𝑧 = 0
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Result 15: 𝜓(𝑇2) = (∑ 𝑥𝑖𝑥𝑖>0
)𝑚 is CAN estimator of 𝜓(𝜃) = 𝜃𝑚 with asymptotic variance                   

𝑚2𝜃2𝑚

𝑛𝑝
. 

 

Result 16: For fixed 𝑥, the UMVUE of pdf 𝑔(𝑥; 𝑝, 𝜃) is shown as 

𝜙𝑥(𝑧, 𝑟, 𝑛) =

{
 
 

 
 
𝑟(𝑟 − 1)

𝑛𝑧
(1 +

𝑥

𝑧
)
𝑟−2

,     0 < 𝑥 < 𝑧;  𝑟 = 1,2, … , 𝑛

𝑛 − 𝑟

𝑛
,                                 𝑥 = 0;  𝑟 = 0,1, … , 𝑛 − 1

0,                                          𝑜. 𝑤.

 

Result 17: For 𝑟 = 𝑛, that is when all the observations are coming from the density, then the 

UMVUE of the density 𝑓(𝑥; 𝜃) is simplified as 

 

𝜙𝑥(𝑧, 𝑟, 𝑛) = {
𝑛 − 1

𝑧
(1 +

𝑥

𝑧
)
𝑛−2

,   0 < 𝑥 < 𝑧;  𝑛 > 1

0,                                  𝑜. 𝑤.
 

Result 18: For fixed 𝑥, the UMVUE of variance of pdf 𝑔(𝑥; 𝑝, 𝜃) is obtained as 

𝑣𝑎𝑟̂[𝜙𝑥(𝑧, 𝑟, 𝑛)] 

=

{
 
 
 
 

 
 
 
 [
𝑟(𝑟 − 1)

𝑛𝑧
(1 −

𝑥

𝑧
)
𝑟−2

]
2

−
𝑟(𝑟 − 1)2(𝑟 − 2)

𝑛(𝑛 − 1)𝑧(𝑧 − 𝑥)
(1 −

𝑥

𝑧
)
𝑟−2

(1 −
𝑥

𝑧 − 𝑥
)
𝑟−3

,   0 < 𝑥 < 𝑧;  𝑟 = 2… , 𝑛

[
𝑟(𝑟 − 1)

𝑛𝑧
(1 −

𝑥

𝑧
)
𝑟−2

]

2

,                                                0 < 𝑥 < 𝑧;  𝑟 = 2,… , 𝑛

𝑟(𝑛 − 𝑟)

𝑛2(𝑛 − 1)
,                                                                         𝑥 = 0;  𝑟 = 0,1, … , 𝑛 − 1

0,                                                                                           𝑜. 𝑤.

 

For 𝑟 = 𝑛, all the results will reduces to that of the estimates of an exponential distribution, 

without inliers.  

 

Result 19: For fixed 𝑧 and 𝑟, the UMVUE of the survival function 𝑆(𝑡) = 𝑃(𝑋 > 𝑡), 𝑡 ≥ 0 is 

obtained as 
 

𝑆̂(𝑡) = {
𝑟

𝑛
(1 −

𝑡

 𝑧
)
𝑟−1

,      𝑡 < 𝑧      

0,                              𝑜. 𝑤.

 

 

Result 20: For fixed 𝑧 and 𝑟, the UMVUE of the variance of 𝑆̂(𝑡) is obtained as   

𝑣𝑎𝑟 ̂[𝑆̂(𝑡) ] =  

{
 
 

 
 [
𝑟

𝑛
(1 −

𝑡

 𝑧
)
𝑟−1

]

2

− 
𝑟(𝑟 − 1)

𝑛(𝑛 − 1)
(1 −

2 𝑡

 𝑧
)
𝑟−1

, 𝑧 > 2𝑡

[
𝑟

𝑛
(1 −

𝑡

𝑧
)
𝑟−1

]

2

,                                                  𝑡 < 𝑧 <  2𝑡

0,                                                                              𝑜. 𝑤.
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For 𝑟 = 𝑛, both the above results reduce to the case of an exponential distribution.  

Result 21: 𝜓(𝑇3) = (𝑟/𝑛)𝑒−𝑡/∑ 𝑥𝑖𝑥𝑖>0  is CAN for the survival function 𝑆(𝑡) = 𝑃(𝑋 > 𝑡) = 

𝑝𝑒−𝑡/𝜃 with asymptotic variance  
𝑝𝑒−2𝑡/𝜃

𝑛𝜃2
. 

 

 Definition 3 can be extended to multiparameter case so that CAN estimator for linear 

combination of parameters can be made possible. Let 𝑇 = (𝑇1, 𝑇2,…,𝑇𝑚)′ be a vector valued 

estimator which is consistent for a vector parameter 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑚)′ then 𝑇𝑖 is CAN for 

𝜃𝑖 with asymptotic variance 
λ𝑖𝑖(𝜃)

𝑛
  and any linear combination 𝑇′ = ∑ 𝑙𝑖𝑇𝑖

𝑚
𝑖=1  is CAN for 

∑ 𝑙𝑖𝜃𝑖
𝑚
𝑖=1  with asymptotic variance 

1

𝑛
𝑙′⋀(𝜃)𝑙, where ⋀(𝜃) is the variance-covariance matrix 

of vector of parameters 𝜃 (Kale and Muralidharan, 2015).  
 

Result 22: Let 𝜓(𝑝, 𝜃) = 𝑙1𝑝 + 𝑙2𝜃, then the estimator 𝑇′ = 𝑙1 (
𝑟

𝑛
) + 𝑙2∑ 𝑥𝑖𝑥𝑖>0

 is CAN for 

𝜓(𝑝, 𝜃) with asymptotic variance  
1

𝑛
(𝑙1
2𝑝(1 − 𝑝)/𝑛 + 𝑙2

2𝜃2/(𝑛𝑝)). 

 We now investigate the MVU estimation of 𝜃 𝑜𝑟 𝜓(𝜃) based on Cramer-Rao Lower 

Bound (CRLB) to the variance of an unbiased estimator. Let {f(x, θ), θ ∈ Ω}, Ω𝑐𝑅1 be a class 

of  distributions 𝐼𝑋(𝜃)  is the Fisher Information, then under some regularity conditions (refer 

to Kale and Muralidharan, 2015) the CRLB for  𝑉(𝑇) ≥ (
𝑑𝜓(𝜃)

𝑑𝜃
)
2

/𝐼𝑋(𝜃). For instance, if 

𝜓(𝜃) = 𝜃2 then the CRLB for 𝑉(𝑇) is 
4𝜃4

𝑛𝑝
. Similarly, the CRLB for 𝑉(𝑇) for estimating 

𝜓(𝑝) = (1 − 𝑝)𝑚 is obtained as 
𝑚𝑝(1−𝑝)2𝑚−1

𝑛
.  
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Abstract
National surveys in the United States have become expensive with low response rates,

and there is an abundance of administrative data (non-probability samples). Government
agencies are now beginning to integrate these two sources of data to improve the quality
of official statistics. Our application is on agriculture, where the study variable is planted
acres and estimates early in the current year are much needed by the USDA’s National
Agricultural Statistics Service (NASS). A solution of this problem is important for economic,
policy and many other reasons. This is a very difficult problem to solve because there are
many challenges, including the poor quality of the available early survey data, that must
be overcome. We attempt to solve the problem by integrating the probability samples from
designed surveys and the non-probability samples, relatively much larger, which come from
‘administrative’ data or ‘historical’ data. Keeping in line with NASS’s preference, we use
Bayesian small area temporal models (a non-spatial model and a spatial model) to infer the
early state estimates of planted acres. The Bayesian Fay-Herriot model is manipulated to
link the data, and the Gibbs sampler, which is operationalized, is used to fit the two models.
We show that the spatio-temporal model provides higher quality state estimates than the
non-spatio-temporal model.

Key words: Conditional autoregressive (CAR) model; Data integration and data quality;
Fay-Herriot model; Gibbs sampler; Non-probability samples; Structural error models.

AMS Subject Classifications: 62F15, 62D05, 62D10, 62P12

1. Introduction

It is the objective of this paper to show how to estimate planted acres for states
early in the season in the United States. These estimates are based on historical data,
administrative data and survey data. Estimates of planted acres are so important that for
farmers and price analysts, almost every discussion of crop fundamentals begins with planted
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acres (e.g., Kansas Farm Bureau, 2020). It is our purpose to demonstrate how to integrate
these data sources with limited access to the actual survey data, which are confidential, and
instead we used published data. The key problem is to provide estimates of planted acres
in June of any year, when the quality of the actual survey data is poor, and one needs to
access other data, most of which are available to the public. We imagine that the current
year is 2021 and estimates of planted acres are required in June. The methodology is being
developed so that it can be used readily for June of any year just after the survey data are
available. However, it is not the purpose of this paper to present methodology or substantial
results from modeling real data; rather it is intended to show critical thinking on, and the
struggles in the original stages of, this project at the National Agricultural Statistics Service.

We have Farm Service Agency (FSA) data, which are administrative data. These are
voluntary to the farmers and are essentially a non-probability sample. In our models, we
integrate survey data and non-survey data in the “current year” (2021), collected in June,
and all available data over the past decade. We work at state level because county level
data are not available in June. We include all possible data sources. It is required that all
model estimates must cover (i.e., larger than) FSA planted acres. We also have final results
from the Agricultural Statistics Board (ASB). Both FSA and ASB values are historical data
(before 2021). FSA values are not available in June of the current year but ASB values are
available in March and June; see The National Agricultural Statistics Service (2021 a) for
prospective plantings in March and The National Agricultural Statistics Service (2021 b) for
acreage in June. We have analyzed planted acres (thousands of acres) for corn, which is our
focus, and a similar analysis can be done for other crops such as soybeans.

NASS conducts quarterly Agricultural Production Survey (APS) in an ongoing effort
to capture activities throughout the life cycle of the crop. These include planting intentions
(March), early estimates of planted acreage (June, with some intentions), and output activ-
ities for small grains crops (September) such as buckwheat, flax, oats and rye, and major
row crops (December) such as corn, soybeans, cotton, potato. The June Area Survey (JAS)
provides an under-coverage adjustment for the list-based samples obtained during the June,
September and December APS surveys.

According to Young and Chen (2022), “The NASS conducts more than a hundred
national surveys and produces more than 400 reports each year. An annual publication
calendar details the day and time each report is to be released, and the NASS has consistently
released its reports according to schedule more than 99% of the time.” The NASS acreage
and production reports are considered by many to be the “final word” because they are
Unbiased (they are not influenced by either buyers or sellers of commodities); Timely (data
are provided well in advance of when they will be available from other sources); Consistent
(the same statistically sound procedures are followed each time, building on a multi-year
data-base); and Transparent (NASS ensures that all participants have equal access to the
information). For further discussions of these notions, see, for example, Kansas Farm Bureau
(2020). The Research Development Division (RDD) at NASS is charged to ensure that all
procedures are current, and if not, they are revised and new methods are developed.

There are several reasons why early estimates of planted acres are needed in the
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United States.

1. June Acreage Report is a very important economic indicator in the United States and
the amount of planted acres affect prices later. It follows the well known demand and
supply principle in economics.

2. Stake holders and economists need high quality estimates, and it is incumbent on NASS
to provide these estimates. NASS is required by law (Agricultural Marketing Act of
1946 and the Census of Agriculture Act of 1997) to produce estimates for several key
crops as early as March. Markets are hungry for information.

3. Budgets are allocated to different programs around this time.

4. Many internal programs at NASS depend on quality estimates of planted acres (e.g.,
cash rental rates), so these numbers must be reported early.

5. Even before March, many farmers are, or are considering marketing portions of their
expected production.

6. To make the most informed decision, farmers, agribusinesses and even speculators
need as accurate a picture as possible as what market fundamentals are and how those
fundamentals are changing as the year progresses. USDA’s NASS provides objective
information to all market participants at the the same time at no cost.

Now, we give an idea of the order of magnitude of the APS and the JAS. March APS
has about 80,000 US farm operators, a survey of farmers conducted in the first two weeks of
March to get intentions, selected from a list of farmers that ensure that all operations had
a chance to be selected. Note that intentions are not binding, and the farmers could change
their minds, and this is a difficulty that is impossible to address in June. Like all NASS
surveys, data are collected by mail, internet, telephone, and personal interviews. June Crop
Acreage report, which includes two surveys, the APS, a survey of over 70,000 farmers, asking
the farmers how many acres they had planted and still intended to plant, and the JAS, which
includes over 11,000 individual (one square mile) segments, in which enumerators physically
inspect, to see what has been planted (and then ask the farmers what will be planted on
any unplanted tracts in the segment). This is a dual-frame survey and the two surveys are
combined to complete the June Crop Area estimates.

Every farmer participating in the USDA Farm Service Agency (FSA) programs,
such as marketing assistance loans or deficiency payments, must file an FSA-578 Report
of Acreage. However, the acreage report deadline is July 15 for FSA (not March or June),
and not every farmer gets it on time, and not every county office office gets the data inputted
immediately. Also, not every farmer participates in the FSA programs. Consequently, the
August FSA reports underestimates planted acres. Therefore, it is still an important con-
straint that must be incorporated into our model for the June estimates of planted acres; see
Office of the Chief Economist (2019). It turns that it is a difficult problem to incorporate the
constraint directly into the model, but this is not our purpose in this paper; see Nandram
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et al. (2021, 2023) and Chen, Nandram and Cruze (2022) of work already done at NASS,
where the constraints are placed directly into the models.

Next, we discuss the challenges that we must overcome to provide estimates of planted
acres with reasonable and satisfactory quality. It is pertinent to list the challenges here.

1. FSA current year values are not available in June. They become available later in
August.

2. The dual-frame (APS/JAS) model estimates must be larger than the FSA values.

3. State survey indications do not capture variation very well.

4. There are outlying states (some very large and some very small).

5. With the initialization of modernization and unification at NASS, we want to combine
administrative data (non-probability sample) with the surveys (APS/JAS). Historical
data (available) are incorporated as the non-probability sample; we have 10 years of
ABS/FSA data before the current year.

6. NASS wants model estimates for 48 US states (excluding Alaska and Hawaii). Typi-
cally data for corn may be available for all 48 states with missing survey data; soybeans
are available from fewer number of states, actually 29.

7. Weather variables (temperature and precipitation) are difficult to use, although they
are important. Current work at NASS is now trying to make use of the weather
variables.

8. Landsat satellite (imagery) data are of poor quality in June, and they are not useful;
in March there are only intentions.

9. Covariates must be incorporated as well; there are missing values here also.

10. Meeting the annual production schedule is difficult.

11. National Academy of Sciences, Engineering and Medicine (2017) recommended that
NASS use Bayesian Small Area models. These models are complicated, and Markov
chain Monte Carlo methods (ıe.g., Gibbs samplers) are needed to fit them.

A non-probability sample and a probability sample can be combined in several ways.
This depends on available data; see Rao (2020) for both design-based and model-based
approaches for making valid inferences by integrating data from surveys and other sources.
Also, Li, Chen and Wu (2020) presented double robustness with quasi-randomization via
propensity scores. Nandram, Choi and Liu (2021) and Nandram and Rao (2021, 2023)
provided Bayesian analyzes. But these can be carried out when survey weights are available
from the probability sample. In the current work, survey weights are already incorporated
into the survey indications for states, and combining the two samples need an alternative
approach. We use a measurement error model to combine the two samples; see Fuller (1987)
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and Berg et al. (2021). In our model, there is a linear relation between the FSA values and
the ASB values for the historical data (the non-probability sample), and this same relation
holds between the current year’s FSA values and the true value of planted acres. This
permits integration of the two data sources.

This paper has five sections including the current one, Section 1. In Section 2, we
describe the available data. In particular, we describe how to estimate the FSA values
before June of the current year, 2021. We also show how to impute the missing indications
and variances. In Section 3, we describe the temporal models, a non-spatial model and a
spatial model, which we use for comparison. We also describe the computations, and model
diagnostics. In Section 4, we present the data analysis of the public-used data. Section 5
has concluding remarks. Appendix A contains a short description on how to go down to the
level of Agricultural Statistics Districts (ASD) for further analysis. Appendix B has a brief
description of how to deal with clustering in the indications. Appendix C contains a list of
abbreviations used in the paper.

2. Available data and FSA values

In this section, we give a more detailed discussion of the data we must use to exemplify
the actual situation. We primarily study corn, but there are other crops of interest such as
soybeans, All wheat and All cotton; again see The National Agricultural Statistics Service
(2021 a) for prospective plantings in March and The National Agricultural Statistics Service
(2021 b) for acreage in June.

2.1. General data

We have Farm Service Agency (FSA) and Agricultural Statistics Board (ASB) his-
torical data for the past ten years before 2021, and these are not confidential. Our idea
is that the relation between the FSA values and the ASB values should be similar to the
relation between the FSA values and the true planted acres in the current year. This is
how the non-probability sample (FSA values and ASB data) are used. In March, there are
indications on planting intentions, approved by the ASB; the March ASB values are also
available for the past ten years. As stated, we have 10 years of FSA values before 2021, but
not in 2021, which we need. Note that ASB values are available to the public. We have
the Agricultural Production Survey (APS) and June Area Survey (JAS) dual frame survey
indications, but these are confidential, they are not available for the public use, and they are
not used in this paper. However, approved estimates are available in June for the public,
and these are the ones used in this paper for exploratory analysis. There is on-going work
on the actual data at NASS.

We also have five covariates, which are Percent farmland irrigated - x2, Population
density - x3, Value of cropland - x4, National commodity crop production index (NCCPI),
an index of soil quality, - x5, Number of farms - x6. These are publicly available. A simple
regression of June 2021 survey indications on the covariates gives an R2 ≈ 75%; x4 and x6
are significant; x2, x3, x5 and x4 ∗ x6 are not significant. Other variables such as weather
(temperature and precipitation) are currently being explored at NASS.
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In Figure 1, we show the maps of quintiles of the FSA values and the survey indications
of planted acres in the current year. We can see some differences (e.g., OK moves from 3 to
2, OH from 4 to 5, AL from 2 to 3).

2.2. Imputing missing data

We show how to impute the FSA values of the current year (2021). Then we show
how to impute missing indications and variances. The public use data on planted acres do
not come with estimated variances, which are needed in the Fay-Herriot model; see The
National Agricultural Statistics Service (2021 a, b).

2.2.1. Current year FSA values

We use T + 1 = 10 (i.e., T = 9) years of FSA values and March intentions (put out
by ASB) to predict the current year FSA values. We denote the ten years of historical data
by

(θ̂(f)
it , θ̂

(a)
it ), i = 1, . . . , ℓ, t = −T, . . . , 0.

Note that t = 1 is the current year, the year of interest. Then, we use simple linear regression,

θ̂
(f)
it = β0 + β1θ̂

(a)
it + ei, i = 1, . . . , ℓ, t = −T, . . . , 0.

We fit this model to get the following estimates of the regression coefficients. The 10 spec-
ulative states for corn gave β̂0 = −58.05, β̂1 = .978, R2 ≈ 1. Although it is not particularly
relevant, the 11 speculative states for soybeans gave β̂0 = 13.03, β̂1 = .986, R2 ≈ 1. There-
fore, the fits are pretty good for both corn and soybeans. However, there are some aberrations
for smaller states (38 for corn and 18 for soybeans). Finally, we predict the current year
FSA values from

θ̂1i ≡ θ̂
(f)
i1 = β̂0 + β̂1θ̂

(a)
i1 , i = 1, . . . , ℓ.

The θ̂1i will be used as part of the observed data in this paper or at NASS.

It is possible to improve this procedure using covariates such as precipitation and
temperature (under study at NASS).

2.2.2. Missing indications and variances

Fewer than 48 states are observed for corn and fewer than 29 states for soybeans; some
states are missing both indications and variances. We use the adjacent neighbors of a specific
state without indications and/or variances via an incidence matrix to impute the remaining
states for corn. The same can be done for soybeans (currently under experimentation at
NASS) and other crops such as All wheat and All cotton.

Let Ci denote the set of adjacent neighbors of the ith state, and let ni denote the
number of counties in the ith state. Then, if the ith state’s indication and/or variances are
missing, define

θ̂i =
∑

j∈Ci
nj θ̂j∑

j∈Ci
nj

and σ̂2
i =

 ∏
j∈Ci

(σ̂2
j )nj


1∑

j∈Ci
nj

,
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Figure 1: Quintiles of FSA values and survey indications of planted acres: The
quintiles for the FSA values (survey indications) are 74 (85), 293 (330), 597 (640),
3276 (3350), and for the FSA values (survey indications), the minimum and max-
imum values are 1.89 (2.00) and 12323 (13100).
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the weighted arithmetic mean and the weighted geometric mean for respectively the indica-
tions and variances. These are the ‘observed’ indications and variances corresponding to the
missing states in the public-used data.

Public-used ASB indications do not come with variances, but these are confidential
data available at NASS for the survey indications. Because of confidentiality, we cannot use
these data in this paper. Besides the variances are too small (optimistic) because of the large
amount of data that go into a state indication. When the state indications are obtained,
heterogeneity and clustering in the data are not taken into account. The data are weighted
(to reflect the survey design) from the operation (farm) level to state level.

Assuming that θ̂i is observed, we take

σ̂2
i = CV 2

i × θ̂2
i , i = 1, . . . , ℓ,

where CVi is the coefficient of variation and the θ̂i are the state indications. Here CVi is also
unknown, so we take

CVi = Uniform(.10, .50), i = 1, . . . , ℓ,

because a coefficient of variation of .30 is taken to be a threshold at most government agencies
in the United States. Here ℓ = 48 for corn and 29 for soybeans. This procedure is a bit
problematic because it penalizes some large states and some small states appear too good.

An alternative and slightly better procedure is to take CVi to be inversely proportion
to the number of counties, ni, in the ith state, and 1

ℓ

∑ℓ
i=1 CVi = .30, again a threshold for a

reliable estimate in US government agencies. This gives

CVi = max
.10, 0.30

1
ℓ

∑ℓ
i=1

1
ni

 , i = 1, . . . , ℓ,

where ni is the number of counties in the ith state, and for flexibility, the CVi can be kept
larger than 0.10 for speculative states. But we have not done so for this paper. It is another
difficult problem to specify the coefficient of variations, and clearly more data are needed.

As a summary, we present the data we want to analyze. The true values that we
want to estimate are denoted by θ = (θi, i = 1, . . . , ℓ), where ℓ denotes the number of states.
This will vary with different commodities, but as was stated we will deal only with planted
acres (thousands of acres) for corn. We denote the data by D, where

D = {θ̂
(f)
, θ̂

(a)
, θ̂1, θ̂2, σ̂

2
2}.

The (FSA, ASB) historical values are (θ̂(f)
ti , θ̂

(a)
ti ), t = −T, . . . , 0 ; the current year FSA

values are θ̂1i, obtained by imputation; the current year survey indications and variances
are (θ̂2i, σ̂

2
2i) in June, obtained from the APS and the JAS; and the covariates are xi, i =

1, . . . , ℓ, c = 6, including an intercept. We adapt the Fay-Herriot model, and a novel simpli-
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fication is to introduce the ratios,

κi = σ2
0/σ̂

2
i , i = 1, . . . , ℓ, σ2

0 = GM of σ̂2
i ,

where GM stands for geometric mean, and the κi are assumed known. We will introduce
two models, which use all the available data, and they are a non-spatio-temporal (NST)
model and spatio-temporal (ST) model; the θi are linked to the covariates, xi, via regression
with unknown coefficients. There are two additional features: First the models take care of
outliers, and second, the constraint, θi > θ̂i, i = 1, . . . , ℓ, is not part of the models, but it is
taken care of in the output analysis. This avoids model complications. For a single model,
Bayesian diagnostics are not appropriate if the constraint is included because they check
how close the predictive data are to the observed data.

3. Bayesian small area models

Small area models are appropriate because the indications from many small states
are not reliable. For survey data, there is only one data point for each state. There are
also supplemental data for ten years before the current year, and the FSA imputed value
for each state of the current year, 2021. In Section 3.1, we present the two models and we
briefly describe the computation. In Section 3.2, we present a diagnostic assessment of the
two models.

3.1. Models and computations

We first describe the non-spatial model. The spatial model is similar except with one
adjustment.

For the historical data, we assume

θ̂
(f)
ti | {θ̂(a)

ti , α0, α1, ψ1, σ
2} ind∼ Normal(α0 + α1θ̂

(a)
ti , ψ1σ

2), (1)

t = −T, . . . , 0, i = 1, . . . , ℓ, and for the current year’s FSA values, we assume

θ̂1i | {α0, α1, θi, σ
2} ind∼ Normal(α0 + α1θi, σ

2). (2)

For indications and variances, we assume

θ̂2i | {θi, zi = 0, p, σ2, ψ2}
ind∼ Normal(θi, ψ2

σ2

κi

),

θ̂2i | {θi, zi = 1, p, σ2, ψ2}
ind∼ Normal(θi,

σ2

κi

) (3)

zi | p ind∼ Bernoulli(p)

θi | {β, σ2, ρ} ind∼ Normal(x′
iβ,

ρ

1 − ρ
σ2), (4)
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and
π(α0, α1, p, ρ, ψ1, ψ2, β, σ

2) ∝ 1
σ2 Beta(

√
ℓ

2 ,

√
ℓ

2 ). (5)

The beta prior is used for stability, and it is motivated by minimum mean square error; see
Casella and Berger (2002, pg. 332) for example. The mixture model, used to accommodate
outliers and robustness to normality, is an extension of the Fay-Herriot model (Fay and
Herriot, 1979). Also, see Goyal, Datta and Mandal (2020) for a slightly different formulation
of the mixture model.

Because the parameters are weakly identified in the survey part of the model, there
is a need to specify bounds for α1 and α2, and we do so using an exploratory data analysis,
namely a0 < α1 < a1, b0 < α2 < b1. We also specify c0 < ρ < c1. We believe the relation
in (1) is tight so we assume 0 < ψ1 < 1. We also assume that 0 < ψ2 < 1 because outliers
should be more variable than non-outliers, and 0 < p < 1/2 because there should be fewer
outliers than non-outliers. These latter assumptions are natural, and all constraints are
incorporated into the model when it is fit using the Gibbs sampler. However, for simplicity,
the constraint, θi > θ̂1i, i = 1, . . . , ℓ, that the model estimates are larger than FSA values is
incorporated into the output analysis, not within the Gibbs sampler.

Note that the non-probability sample and the probability sample are linked by (2),
and (1) and (2) have the same regression coefficients.

For the spatial model, we use the conditional auto-regressive (CAR) model,

θ | {β, σ2, ρ} ind∼ Normal{Xβ, ρ

1 − ρ
σ2(R − ψ3W )−1}, X = (x′

i), (6)

where λ1, . . . , λℓ are eigenvalues of R−1W in increasing order (some negative and some pos-
itive). We simply replace (4) by (6) with an extra parameter, ψ3, beyond the less flexible
intrinsic (ψ3 = 1) CAR model (Janicki et al. 2022). A priori, we assume

π(α1, α2, p, ρ, ψ1, ψ2, ψ3, β, σ
2) ∝ 1

σ2 Beta(
√
ℓ

2 ,

√
ℓ

2 ), 0 < ψ1, ψ2 < 1, 1
λ1

< ψ3 <
1
λℓ

, (7)

replacing (5) by (7). The NST model and the ST model are discussed in great detail in
Nandram (2022), but this report is confidential. An earlier discussion is given by Berg et al.
(2021); many issues in that paper are addressed in the report. This is part of the general
measurement error model (e.g., Fuller, 1987).

Let Ω = (α1, α2, β, ψ1, ψ2) for the non-spatial model, Ω = (α1, α2, β, ψ1, ψ2, ψ3) for
the spatial model (ψ3 is not in the nonspatial model), and D = { ˆ

θ(f),
ˆ
θ(a), θ̂2, θ̂2, σ̂2} denote

the data. Then, using Bayes’ theorem, the joint posterior density is

π(Ω, z, p, β, θ, σ2 | D).

We state the following steps in the griddy Gibbs sampler.
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1. Integrate out θ to get
π(Ω, z, p, β, σ2 | D).

2. Draw (z, p) together (collapsing and blocking),

π(z, p | Ω, β, σ2, D) = π(z | p,Ω, β, σ2 | D)π(p | Ω, β, σ2 | D).

3. Draw (β, σ2) together (collapsing and blocking),

π(β, σ2 | Ω, z, p,D) = π(σ2 | Ω, z, p, d)π(β, | Ω, z, p, σ2, D).

4. Sample π(Ω | z, p, β, σ2, D).

5. Monitor convergence (Geweke test and effective sample size).

6. Sample the Rao-Blackwellized density, π(θ | Ω, z, p, β, σ2, D), in the output analysis
subject to constraints (model estimates must cover FSA values). These are truncated
univariate normal densities for non-spatial model and truncated multivariate normal
densities for spatial model.

Markov chain Monte Carlo methods (Gibbs sampler with some collapsing and block-
ing to improve convergence and better mixing) are used to fit the two models; see Liu (1994)
for collapsing and Tan and Hobert (2009) for blocking. In fact, we use the griddy Gibbs
sampler (Ritter and Tanner, 1992) in which some CPDs are sampled using the grid method.
The constraints are not included in the models to allow them to be as simple as possible,
rather they are performed in an output analysis. In the non-spatial model, this is straight
forward as we can sample from independent truncated normal densities, but in the spatial
model, we need to sample from truncated multivariate normal densities (Ridgeway 2016).
The constraint θi > θ̂i, i = 1, . . . , ℓ, in the output analysis.

In Table 1 we show the good performance of the Gibbs sampler under both models.
Specifically, the Geweke tests show that the Gibbs sampler is stationary with all p-values
being larger than .05 and the effective sample size (ESS) of each parameter is the nominal
value of 1000, except the one for ρ under the ST model, but this is still good. This shows
that the two Gibbs samplers are strongly mixing. Also, note that the computational times
are also operational at NASS; see the note to Table 1.

3.2. Model diagnostics

We use standard Bayesian diagnostics to check the goodness of fit of the two models.
We assess the more interesting mixture part of the model (i.e., the survey data).

We start by computing two simple diagnostic measures. Let PMi and PSDi, i =
1, . . . , ℓ, denote the posterior means and posterior standard deviations from the two models.
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Specifically, we have computed

ARES =

√√√√1
ℓ

ℓ∑
i=1

(θ̂2i − PMi)2, ASTD =

√√√√1
ℓ

ℓ∑
i=1

PSD2
i .

For the non-spatial (spatial) model, we have ARES = 2388 (2005) and ASTD = 366 (120),
showing the spatial model has performed much better than the non-spatial model in terms
of these two measures. It is very good for the spatial model that it provides estimates closer
to the direct estimates (indications) with smaller posterior standard deviations.

As a further check on the models, we have done a Bayesian cross-validation analysis
(i.e., delete one observation and predict it). The idea is the same for both models, but the
specific mathematical formulas are different for the non-spatial model and the spatial model.
Define

f(θ̂2i | θ̂(2i)) =
M∑

h=1
Wihf(θ̂2i | θ̂(2i),Ω(h)),Wih = {f(θ̂2i | Ω(h)}−1∑M

h=1{f(θ̂2i | Ω(h)}−1
, i = 1, . . . , ℓ.

The residuals are ri = θ̂2i − E(θ2i | θ̂(2i)), i = 1, . . . , ℓ. Then, a dispersion measure (DM,
Wang et al. 2011), which we have developed, is

DM1 = 1
ℓ

ℓ∑
i=1

|ri|,

and as this measure is not invariant to scale, we have now modified it to

DM2 = 1
ℓ

ℓ∑
i=1

|ri|
Std(θ2i | θ̂(2i))

.

We also counted the number, n0 of ri > 0, the number, n3, of |ri| ≥ 3 and the number,
n4, of |ri| ≥ 4. For the non-spatial (spatial) model, we got DM1 = 1144 (110), DM2 =
5.61 (0.91), n0 = 28 (22), n3 = 29 (13), n4 = 22 (8). The spatial model is much better than
the non-spatial model under these measures.

We have also calculated three standard Bayesian diagnostics with respect to the
survey indications, θ̂2i, which are the deviance information criterion (DIC), the Bayesian
predictive p-value (BPP) and the log-pseudo marginal likelihood (LPML). The DICs are
875 (803), the BPPs are .399 (.594) and the LPMLs are −417 (−419) for the non-spatial
(spatial) model. For the BPP and LPML there is basically no preference. However, the DIC
does show that the spatial model is significantly better than the non-spatial model.

Finally, we compute the average absolute relative deviation (AARD) and the square
root of the average squared relative deviation (RASRD), where we compare the posterior
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Table 1: Gibbs sampler diagnostics (p-values of Geweke test and effective sample
sizes)

Non-spatial Spatial

P-val ESS P-val ESS

β1 .80 1000 .67 1000
β2 .77 1000 .25 1000
β3 .29 1000 .63 1000
β4 .38 1000 .84 1000
β5 .48 1000 .66 1000
β6 .92 1000 .83 1000
σ2 .19 1000 .74 1000
α1 .21 1000 .60 1000
α2 .22 1000 .47 1000
p .75 1000 .06 1000
z .85 1000 .60 1000
ρ .44 1000 .97 884
ψ1 .18 1000 .63 1000
ψ2 .61 1000 .19 1000
ψ3 – – .09 1000

NOTE: For the non-spatial model, the Gibbs sampler is run 55, 000 times, with a “burn in” of
5, 000 and we pick every 50th one and this takes 3 minutes; for the spatial model, the Gibbs
sampler is run 75, 000 times, with a “burn in” of 15, 000 and we pick every 60th one and this takes
49 minutes. Here z is the number of outliers.

means of planted acres to last years ASB values as

AARD = 1
ℓ

ℓ∑
i=1

|PMi − ASBi|
ASBi

, RASRD =

√√√√1
ℓ

ℓ∑
i=1

{
PMi − ASBi

ASBi

}2
.

We expect the current year’s ASB values, which are unknown, to be similar to last year’s.
In Table 2 we show that the ST model does better than the NST model; the numbers under
the ST model are smaller than those under the NST model. Specifically, the spatio-temporal
(ST) model has smaller AARD and RASRD values than under the non-spatio-temporal
(NST) model with or without the constraints.
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Table 2: Average absolute (squared) relative deviation by model and constraint

Constraint AARD RASRD
NST ST NST ST

No 0.240 0.209 0.349 0.315
Yes 0.272 0.229 0.391 0.365

NOTE: NST: Non-spatio-temporal; ST: Spatio-Temporal

4. Data analysis

In this section, for corn we compare the NST model and the ST model under the
constraint that model planted acres must be larger than the FSA values. First, we look at
the important hyper-parameters to show their importance in the models. Second, we look
at the model estimates of the planted acres. In the summaries, we use posterior mean (PM),
posterior standard deviation (PSD), posterior coefficient of variation (PCV) and 95% highest
posterior density interval (HPDI) for the true state planted acres (i.e., θi, i = 1, . . . , ℓ). We
consider only corn with ℓ = 48 states. We also use maps and graphs to make more detailed
comparisons.

4.1. Posterior inference of hyper-parameters

We look at posterior inference of some of the nuisance parameters. For example, the
regression parameters contain important information; see Table 3.

Now, we discuss the results in Table 3. First, the Percent farmland irrigated has a
negative effect on planted acres. Most of the speculative states for corn, except Nebraska,
have little irrigation systems; California and the southern states have a lot of irrigation
systems but less corn production. The value of cropland has a positive effect on planted
acres, as it should. NCCPI has a positive effect on planted acres for corn. This must be true
because better soil should lead to higher planted acres. This is also a good showing for the
ST model, as under the NST model, while there is a large probability that β6 is positive,
the 95% HPDI contains 0. However, the Number of farms has a negative effect on planted
acres. One possible explanation is the following. As the number of farms go up, one would
expect smaller farms. In smaller farms, one would expect a larger variety of commodities,
not fully dominated by corn.

We note that σ2 is estimated very well under the ST model. It has a PCV of 2.21
under the NST model, but under the ST model, the PCV is 0.07, a huge improvement.
The 95% HPDI for α1 is (−23.68, 14.14) under the ST model, and it is good that α1 is not
significant. Also, the 95% HPDI for α2 is (.998, 1.009) under the ST model, and it is good
that one is in it. (This is not true for the NST model.) This is important because it shows
the power of the historical data. Here α1 and α2 are not identifiable in the models if there
were no historical data. Another important point is that ψ1 is closed to one in the ST model,
but not so close under the NST model. Finally, the features of p, z and ρ are almost the
same under both models. It is good that ρ and ψ3 are large under the ST model because it
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Table 3: Posterior summaries of hyper-parameters

Non-spatial Spatial
PM PSD PCV HPDI PM PSD PCV HPDI

β1 2556.49 438.95 0.17 (1750.30, 3336.09) 2483.14 299.13 0.12 (1868.99, 3044.76)
β2 -34.44 14.91 -0.43 (-60.13, -8.30) -21.42 8.37 -0.39 (-37.19, -6.19)
β3 0.56 0.49 0.89 (-0.38, 1.41) 0.01 0.36 19.63 (-0.71, 0.72)
β4 2771.19 207.03 0.07 (2346.28, 3120.29) 2932.2 105.1 0.04 (2730.42, 3148.56)
β5 3.24 3.48 1.07 (-3.45, 9.31) 6.27 2.12 0.34 (2.18, 10.31)
β6 -0.03 0.004 -0.15 (-0.03, -0.02) -0.03 0.002 -0.08 (-0.03, -0.02)
σ2 58233 128555 2.21 (16121, 167976) 30922 2269 0.07 (26396, 34931)
α1 3.55 1.19 0.34 (2.01, 5.86) -5.96 9.86 -1.66 (-23.68, 14.14)
α2 0.998 0 0 (0.997, 0.998) 1.002 0.004 0.004 (0.998, 1.009)
p 0.38 0.09 0.24 (0.19, 0.50) 0.38 0.09 0.25 (0.19, 0.50)
z 18.46 5.43 0.29 (8.00, 28.00) 18.38 5.54 0.3 (6.00, 27.00)
ρ 0.96 0.003 0.003 (0.95, 0.97) 0.96 0.002 0.003 (0.96, 0.97)
ψ1 0.51 0.28 0.57 (0.04, 0.98) 0.99 0.01 0.01 (0.97, 1.00)
ψ2 0.51 0.28 0.57 (0.02, 0.95) 0.68 0.22 0.32 (0.30, 1.00)
ψ3 – – – (–,–) 0.87 0.02 0.02 (0.83, 0.89)

NOTE: The five covariates are Percent farmland irrigated, Population density, Value of cropland,
National commodity crop production index (NCCPI) and Number of farms. Here z is the
number of outliers. (The bolded covariates are important.)

shows that the CAR model has a significant effect.

4.2. Posterior inference for planted acres

In this section we compare the NST model and the ST model when we make posterior
inference about planted acres under the constraint that the model planted acres are larger
than the FSA planted acres.

In Table 4 we present posterior inference for the first thirteen states (in the order of
state abbreviations), including small (e.g., AZ, CT, FL) and some large (e.g., IL, IN, IA)
corn producing states. Apart from rounding, the constraints are satisfied in all states. The
PMs are mostly similar and the PSDs under the spatial model are mostly smaller than those
under the non-spatial model. This makes the PCVs under the spatial model mostly smaller
than those under the non-spatial model, and therefore the 95% HPDIs are much shorter.
These PCVs are smaller than the corresponding ones for the ‘observed’ data. Specifically,
note that the gains in PCVs for CA, CO, FL and IL with unreliable data (larger CVp2).
There are similar patterns for the other states, which are too numerous to list. We will look
at all the states in greater detail using several plots (see below).

We now compare the spatial structure of the corn data under the constraint models.
We have used the quintiles of the posterior means; note that the quintiles are not the same
for the two sets of posterior means. In Figure 2, we show the map of the quintiles of planted
acres. We can see some changes in these maps (CA, ID move from 2 to 3; AZ, NM move
from 1 to 2; ND moves from 3 to 5; OH moves from 5 to 4, etc.). Otherwise, the two maps
are mostly similar; however, the quintiles can hide the details, so we will discuss this further.
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Figure 4 shows a plot of the posterior coefficients of variation (CVs) of the two models
versus those of the observed data for the 48 states. We can see all the points are below the
45o reference line, showing clearly that the two models provide improved reliability. We can
also see most of the points corresponding to the non-spatial model are closer to the reference
line than those from the spatial model, showing the estimates from the spatial model are
more reliable. Those points, where a star and a dot are close together, correspond to the
states with very large planted acres such as Iowa.

Figure 3 shows a plot of the posterior coefficients of variation (CVs) of the spatial
model versus those of the non-spatial model for the 48 states. We can see all the points,
except four (two very close), are below the 45o reference line; the points falling on the
reference line correspond to the states with large planted acres. This clearly shows that the
spatial model provides improved reliability over the non-spatial model.

For completeness, we also look at the plot of PMs (Figure 5) and PSDs (Figure 6)
for the spatial model versus the non-spatial model. For the PMs, it is really good that all of
the points, except five of them, are nearly on the 45o straight line through the origin. For
the PSDs, it is also good that all of the points, except eight of them (five very close), are
below the 45o straight line through the origin. There is one of them in which the PSD is
much lower under the ST model.

Integrating the (FSA, ASB) historical data into the models, which accommodate the
survey data, appear to be important. Estimating the unknown FSA values in June of the
current year is a reasonable thing to do. In general, the spatio-temporal (ST) model is
better than the non-spatio-temporal (NST) model. The ST model fits the data better than
the NST model. The constraint estimates from the ST model have smaller PCVs than those
from the NST model.

These results show that the ST model provides higher precision and is more reliable
than the NST model. Also the posterior means of the two models are very similar.

5. Concluding remarks

We have shown how to estimate planted acres for US states. This is on-going research
and there are rapid changes under way as NASS pursued early estimates of planted acres,
as early as June, and this is important for various reasons that we have discussed. As
modernization and unification are under way at NASS, data integration is an important
activity in this endeavor, and a lot of money and man power are put into it by NASS.
Specifically, we have pointed out the struggles to find suitable statistical procedures in the
initial stages. We have pointed out many challenges to get early estimates of planted acres
and how to overcome some of them. Because of confidentiality, we have not used the real
data in this paper, and the results presented may not be appropriate. As clearly described,
the real data also have shortcomings, yet this project is extremely important to NASS.

In this paper, we have shown how to integrate a non-probability sample (FSA values)
with a probability sample from a dual-frame survey (APS and JAS) to provide early estimates
of planted acres for corn. One difficulty encountered is that the model estimates must be
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Table 4: Posterior summaries for planted acres (thousands) under the constraint

State fp1 p2 sp2 CVp2 PM PSD PCV 95% HPDI
a. Non-spatial model
AL 293 350 75 0.21 376.96 53.45 0.14 (293.71, 478.25)
AZ 88 95 19 0.2 106.25 12.45 0.12 (87.98, 130.31)
AR 733 750 103 0.14 818.61 62.06 0.08 (733.64, 944.41)
CA 401 470 161 0.34 570.15 113.02 0.2 (401.17, 784.72)
CO 1418 1400 646 0.46 1579.68 149.38 0.1 (1418.42, 1879.06)
CT 22 26 5 0.18 27.84 3.5 0.13 (22.46, 34.41)
DE 166 175 50 0.29 206.17 30.3 0.15 (166.24, 264.16)
FL 78 100 48 0.48 127.1 34.25 0.27 (78.27, 194.12)
GA 420 460 69 0.15 487.03 46.2 0.1 (420.62, 578.79)
ID 342 400 107 0.27 455.68 72.49 0.16 (346.79, 585.72)
IL 10465 11200 3511 0.31 10484.83 27.88 0 (10464.58, 10542.13)
IN 4988 5400 772 0.14 5028.64 51.56 0.01 (4987.77, 5128.44)
IA 12323 13100 3404 0.26 12338.54 19.79 0 (12322.76, 12376.14)
b. Spatial Model
AL 293 350 75 0.21 355.51 34.51 0.1 (293.47, 417.46)
AZ 88 95 19 0.2 99.2 7.63 0.08 (87.99, 114.07)
AR 733 750 103 0.14 792.53 41.53 0.05 (733.44, 872.04)
CA 401 470 161 0.34 551.69 72.56 0.13 (405.20, 677.03)
CO 1418 1400 646 0.46 1480.8 41.02 0.03 (1420.05, 1538.34)
CT 22 26 5 0.18 26.35 2.12 0.08 (22.47, 30.22)
DE 166 175 50 0.29 188.37 16.05 0.09 (166.23, 217.93)
FL 78 100 48 0.48 110.13 19.61 0.18 (78.32, 144.76)
GA 420 460 69 0.15 462.48 26.63 0.06 (420.50, 511.14)
ID 342 400 107 0.27 406.32 40.33 0.1 (343.01, 480.69)
IL 10465 11200 3511 0.31 10519.4 32.92 0 (10464.97, 10572.29)
IN 4988 5400 772 0.14 5066.48 45.83 0.01 (4992.59, 5139.01)
IA 12323 13100 3404 0.26 12368.6 27.1 0 (12322.83, 12411.41)

NOTE: fp1 is FSA planted acres, p2 is survey indications, sp2 is survey variance and CVp2
is survey coefficient of variation. The constraint specifies the model estimates must be
larger than the FSA value.
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Figure 2: Quintiles of posterior means of planted acres from the two models
with constraint: The quintiles under the non-spatial (spatial) model are 101 (92),
377 (356), 730 (668) and 3346 (3623), and under the non-spatial (spatial) model,
the minimum and maximum values are 2.68 (2.32) and 12339 (12368).
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larger than FSA values, which are unknown in June. We have provided two models for these
data and we have demonstrated that the spatio-temporal model is a lot better than its non-
spatio-temporal counterpart. While important indirect covariates, as used in this paper, are
easily available, NASS has been pursuing more direct covariates such as temperature and
precipitation, ethanol production capacity, and many others.

One would need to go down to lower level of disaggregation to accommodate vari-
ability. At the state level, there are actually a large number of records that go into the
single number, thereby making variability relatively small because variance is generally in-
versely proportional to sample size. When survey indications are weighted up, there are no
considerations of heterogeneity such as clustering (e.g., counties) at intermediate levels, so
that variability at the state level can be small. Young and Chen (2022) wrote, “Modeling at
the state level is not always able to provide predictions of desired quality. Perhaps samples
that provide valid estimates at lower geospatial scale should be considered; this will require
major revisions in the current sample designs. Alternatively, if survey and non-survey data
are linked at the farm level, then modeling could be conducted at that level.”

It is now believed that modeling should be done at the level of Agricultural Statistics
Districts (ASD); several ASDs might form a state. There are no ASD level survey indications
and standard errors in June, so modeling is difficult to impossible at the ASD level; see
Appendix A for a method to get ASD data from state data. Only state level indications
and standard errors are available in June to NASS. We have been using the state level data
to project backwards to the ASDs and the number counties within each ASD is used as the
sample sizes (these are not presented) to get a rough idea of the indications and variances
at the ASD level. A non-spatial model similar to the one discussed here is fit to the ASD
level data, but now we need both an ASD level effect and a state level effect (so called
sub-area or two-fold model). This will provide better state level model estimates. However,
it is difficult to operationalize this model. At the ASD level, the NST model and the ST
model are discussed in great detail in Nandram (2023), but again this second report is
confidential. In addition, one may want to benchmark the states to the entire United States,
but this is not attempted here. See Nandram, Ericulescu and Cruze (2019) for recent work
on benchmarking.

A further problem of practical importance is the clustering of data at the state level,
ASD level or county level. Many projects at NASS operates at county level such as cash
rental rates and yield. The clustering does not have to be at geographical levels. For
example, it does not have to be the case that the counties within a state have to form a
cluster. Some counties in one state may be clustered with counties in another state. That is,
there are unseen clusters among the sampling units (e.g., counties), and these must be taken
into consideration to avoid understating variability and biased estimates. Currently, this is
on-going research activity in the Research and Development Division at NASS. Attempts are
being made to accommodate this research activity for planted acres using the stick-breaking
priors (Ishwaran and James, 2001); see Appendix B.
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APPENDIX A

How to get ASD level data from state level data?
We consider a simple change of support (COS) analysis and we assume (normality is

not required) that

θ̂ij
ind∼ Normal(θij, σ̂

2
ij), j = 1, . . . , ni, i = 1, . . . , ℓ,

where ni is the number of ASDs in the ith state (larger states have more ASDs). Let mij

denote the number of counties in the jth ASD. We do not know the θ̂ij and σ̂2
ij. However,

note that ∑ni
j=1 θ̂ij = θ̂i and ∑ni

j=1 σ̂
2
ij = σ̂2

i (assuming independence).
Specifically, we assume that θ̂ij ∝ mij, and this gives

θ̂ij =
{

mij∑ni
j=1 mij

}
θ̂i, j = 1, . . . , ni, i = 1, . . . , ℓ.

We also assume that σ̂2
ij ∝ mij

−1, and this gives

σ̂2
ij =

{
m−1

ij∑ni
j=1 m

−1
ij

}
σ̂2

i , j = 1, . . . , ni, i = 1, . . . , ℓ.

Both of these imputation procedures are reasonable because bigger states (i.e., planted acres
of corn) will have larger θ̂i and smaller σ̂2

i .
Historical data, FSA values and ASB estimates, are available at county level. How-

ever, FSA values for the current year in June are not available and a similar procedure can
be performed on the state values. Covariates can be used at the state level or jittered to get
ASD level covariates. NASS will need to put in a large effort to get the covariates at the
ASD level.
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APPENDIX B

Basic stick-breaking distribution

For planted acres, the stick-breaking distribution for state estimates, θ̂i, i = 1, . . . , ℓ,
is

f(θ̂i − θi | θi) =
ℓo∑

s=1
psNormal(zs, σ̂

2
i ), ℓo ≤ ℓ,

where, given the θi, the θ̂i − θi are independent and identically distributed, the ps are stick-
breaking weights, the zs are a random sample from a baseline distribution, and ℓo (unknown)
is the number of clusters; see Ishwaran and James (2001). Therefore, it is true that

f(θ̂i | θi) =
ℓo∑

s=1
psNormal(θi + zs, σ̂

2
i ), ℓo ≤ ℓ,

and, given the θi, the θ̂i are now independent, not identically distributed.
Introducing latent variables, this can be rewritten as

f(θ̂i, di) =
ℓo∏

s=1
[psNormal(θi + zs, σ̂

2
i )]I(di=s), ℓo ≤ ℓ,

where di maps the ith state into a cluster and I(di = s) is the indicator function.
Here the stick-breaking weights are

p1 = ν1, ps = νs

s−1∏
r=1

(1 − νr), s = 2, . . . , ℓo − 1, . . . , pℓo =
ℓo−1∏
s=1

(1 − νs),

and for the two-parameter Pitman-Yor process, we use the prior,

νs
ind∼ Beta{1 − δ1,

1 − δ2

δ2
+ (s− 1)δ1}, s = 1, . . . , ℓo, 0 < δ1, δ2 < 1.

As for the zs, we take

zs
ind∼ Normal{0, ρ

1 − ρ
σ2}, s = 1, . . . , ℓo, 0 < ρ < 1.

It is also possible to assume a stick-breaking prior on the θi.
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Figure 3: Plots of the CVs of the two models versus the CVs of the observed
data
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Figure 4: Plots of the CVs of the spatial model versus those of the non-spatial
model
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Figure 5: Plots of the PMs of the spatial model versus those of the non-spatial
model
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Figure 6: Plots of the PSDs of the spatial model versus those of the non-spatial
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APPENDIX C
A list of useful abbreviations

Abbreviations Meanings
USDA United States Department of Agriculture
NASS National Agricultural Statistics Service
FSA Farm Service Agency
RDD Research Development Division
ASB Agricultural Statistics Board
APS Agricultural Production Survey
JAS June Area Survey
ASD Agricultural Statistics District

NOTE: NASS and FSA are two of the agencies of USDA, and RDD is a division of NASS. APS
and JAS are the two surveys. All estimates are approved by the ASB before publication.
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Abstract
Extreme value theory addresses the stochastic behavior of the extreme values in a

process. There are two important methods used in modeling extreme value analysis and they
are threshold selection and block maxima techniques. The threshold selection is important
in many aspects of statistical inference of extreme or rare events because they use data
more effectively than block maxima techniques. The inference derived from the threshold
method mainly depends on the selection of the optimum threshold and it can be determined
approximately using the parameter stability plot and mean residual life plot. Since the
extreme value theory considers only extreme values in the given set of data. So there is an
unresolved issue in determining the optimal threshold while using the peaks over threshold
technique. Further exceedances above a high threshold have been shown to asymptotically
follow the generalized Pareto distribution under the usual circumstances. In this paper, a
new development in threshold selection technique is discussed in detail for modeling extreme
values along with real-life applications.

Key words: Extremes; Tail behavior; Peaks over threshold; Block maxima; Return level.

AMS Subject Classifications: 62E20, 62M10.

1. Introduction

Extreme Value Theory (EVT) is a specialized field of statistics that provides
methodologies and tools for the study and estimation of probabilities of events that have
not been previously observed or rare events. Because these extreme events are sparse,
extrapolation beyond the observed levels is required for estimation. EVT is designed
explicitly for such extrapolation and utilizes asymptotic analyses as the foundation of
extreme value models. This theory indicates that extreme value estimation is only related
to the tail of the probabilistic distribution. The objective of extreme value analysis is to
determine how likely it is that certain events will occur that are the least likely to have
previously been observed. The techniques and models have been developed to describe the
tails of the data and estimate the probabilities of extreme events.

Correponding Author: K.M. Sakthivel
Email: sakthithebest@buc.edu.in
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In the literature on extreme value theory, several researchers have applied these special
techniques in different real scenarios of the countries to come up with several estimates about
extreme events. EVT has two commonly used approaches block maxima and peaks over
threshold approaches. In block maxima (BM), the peak value of each block is considered
an extreme value, and block sizes are usually taken on year. But in some cases, the block
size may vary depending on the nature of the study areas. Such extreme values from block
maxima also known as annual or cluster maxima, these values can be modeled using the
generalized extreme value (GEV) distribution which came from the first theorem of EVT
that is Fisher Tippett Gendenko theorem (1928). The peaks over a threshold (PoT) method
is popular in the extreme value analysis because it prefixes the threshold for the whole
observations, the values above the threshold are considered as the extreme values of the
specific cases. The generalized Pareto (GP) distribution can be used to model the extreme
value sequence from the PoT method. This GP distribution originated from the second
theorem of EVT called the Pickands-Balkema-De Haan theorem (1975). However, some
other methods can also be available, r-largest order statistic with GEV and point process
(PP) with GP approaches.

So, according to Coles (2001), EVT can simulate the stochastic nature of processes
involving events of unusually high or low intensity. Pickands (1975) proposed a method for
making decisions about the upper tail of the distribution. It can be used to predict the
likelihood that future extremely large observations. And GP distribution can be introduced
to model extreme values. Smith (1989) proposed specific modifications based on the point-
process view of high-level exceedances via a clustering approach with ozone data analysis.
Davison and Smith (1990) talked about modeling the sizes and occurrences of exceedances
in order to analyze data extremes. Katz et al. (2002) explained the evolution of extremes,
which includes the development of a point process framework that incorporates block maxima
and PoT techniques. Sanders (2005) shows the modeling of extreme events is becoming of
increased importance to actuaries. Cooley (2011) investigated the definitions of return period
and return level given by Olsen et al (1998) the m-year return level was the level for which the
expected waiting time until the exceedances in m-years and Parey et al. (2007) was the m-
year return level as the level for which the expected number of events in an m-year period is
one can be considered under the nonstationary setting. Deidda (2010) introduced a multiple
threshold method (MTM) to infer the parametes by using excess over the threshold applying
againt the concepts of parameters threshold invariance, and also discussed the supremacy of
the MTM fit against the single threshod fit. Scarrot and Mac-Donald (2012) developed the
parameter stability plot, with an emphasis on estimating the shape and scale parameters
in order to determine an appropriate threshold. De Zea et al. (2012) employed the PoT
method to model the sample of excesses above a sufficiently high value of total cholesterol
level of patients. Bader et al. (2018) developed the automated sequential threshold via
ordered goodness of fit tests with adjustment for false discovery rate. Roux et al. (2020)
studied the trends in 50 years’ return levels of the ground snow loads using non-stationary
extreme value models for the French Alps with its building standards. Hesarkazzazi et
al. (2021) investigated the process of non-stationary annual maxima of river peak flow in
northwest England and a regression model for the location parameter of the generalized
logistic distribution (GLO) was also constructed. Tanprayoon et al. (2023) proposed a new
Gompertz-generalized extreme value distribution for extreme value analysis and return-level
estimation of the extreme rainfall.
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In some sectors of science and technology, the extreme values of significant variables
have special meanings and importance. The extreme value theory has recently been applied
in terrestrial and solar climatology. The sunspot number series, which was recorded from
1818 to 2022, is used to study extreme values of solar activity. The observations of daily
sunspot numbers have been collected from the database of Solar Influences Data Analysis
Center (SIDC) - the solar physics research department of the Royal Observatory of Belgium.
Sunspots are dark, planet-sized areas that appear on the surface of the sun. Sunspots are
magnetic regions on the sun with magnetic field strengths thousands of times greater than
the Earth’s magnetic field. Sunspots appear in active regions, usually in opposite magnetic
polarity pairs. Their number varies with the roughly 11-year solar cycle. Sunspot magnetic
fields are extremely strong, keeping heat away from these regions of the sun’s surface. The
active region is a temporary region with a strong and complex magnetic field in the sun.
They are often associated with sunspots and can be a source of eruptions like solar flares and
coronal mass ejections (CMEs). Solar flares are a burst of energy caused by the tangling,
crossing, or reorganization of magnetic field lines near sunspots. The variation in the number
of sunspots and solar activity are closely related. Because solar activity can have an impact
on Earth, scientists closely monitor it every day.

When sunspot counts are high, the sun is very active, and the peak in the sunspot
count is referred to as a solar maximum, whereas a period when fewer or no sunspots appear
is referred to as a solar minimum. Sunspots can cause geomagnetic storms in the Earth’s
magnetosphere. When sunspot numbers are at their peak during the solar maximum period,
the sun emits more radiation than usual. A solar flare emits a large amount of radiation into
the universe. Intense solar flares can interfere with radio waves, telecommunications, the
electric power grid, and satellite navigation by releasing radiation that interferes with these
systems. Therefore, due to the high number of sunspots in the sun’s photosphere, there is a
chance that solar flares and coronal mass ejections will appear. In this case, extreme value
analysis is essential to find out the extreme occurrences of the sunspot number during the
solar maximum period of this current solar cycle. The extreme values of previous events
of sunspots decide the behavior of the future event of the study. Acero et al. (2017) used
the block maxima method with the GEV distribution for modeling the maximum values of
the sunspot numbers at yearly, monthly, and daily scales for each solar cycle and the PoT
approach only for daily scales, which takes into account all sunspot numbers that exceed a
predefined upper threshold and can be modeled using the GP distribution. The return levels
were predicted for 10 (110 years), 50 (550 years), and 100 (1100 years) solar cycles. Elvidge
et al. (2018) used EVT to investigate the likelihood of extreme solar flares with both GOES
X-ray flux data and Kepler mission data.

In this paper, we are interested to develop a new threshold selection methodology
that is superior to the existing PoT method. The sunspot numbers data set is used for this
theory to estimate the return levels associated with the return periods, as well as to
calculate the probability of exceedances. It is therefore essential to study and model these
extremes to make accurate prognostications of return levels. As a result, new approaches
for predicting extreme occurrences can be developed and they can be modeled with GP
distribution in application to sunspot number series. This paper has been divided into five
sections. Following this introduction, Section 2 presents research materials and
methodologies, Section 3 performs preliminary data analysis, Section 4 describes the
interpretation of the results, and Section 5 shows a summary and conclusion.
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2. Methodology

In this section, we will discuss the procedures for both the traditional and proposed
threshold selection methodologies for segregating extreme values from a series of observations.
Those extreme values can be modeled with appropriate distribution to predict future events
by the return period concept for this case.

2.1. Peaks over threshold

The PoT method were created by Pickands (1975) and it concentrates on observations
that seem to go above a high threshold. The PoT with GP distribution can be used to avoid
the problem of data waste, which is a common problem with the block maxima method.
However, determining an appropriate threshold is an inherent problem specifically. If the
threshold has been too low, the tail will satisfy the less convergence criterion, causing a large
bias and an incorrect result. If the threshold is too high, however, very few values above the
threshold will result in high variance and imprecise results. Thus, selecting an appropriate
threshold necessitates balancing the bias and the variance.

The GP distribution has a continuous range of possible shapes, including special cases
of the exponential and Pareto distributions. We can use either of these to model a specific
set of exceedances. The two-parameter GP distribution with shape parameter ξ and scale
parameter σ has the following representation.

The cumulative distribution function of the two-parameter GP distribution with a
shape parameter ξ, the scale parameter σ is given by

F (x|σ, ξ) =

 1 − [1 + ξ(x
σ
)]−

1
ξ ; for ξ ̸= 0

1 − exp{−[ x
σ
]}; for ξ = 0

(1)

where, x > 0 when ξ > 0 and 0 ≤ x ≤ −σ/ξ when ξ ≤ 0. and corresponding probability
density function is

f(x|σ, ξ) =


1
σ
[1 + ξ(x

σ
)]−

ξ−1
ξ ; for ξ ̸= 0

1
σ

exp{−[ x
σ
]}; for ξ = 0

(2)

If ξ > 0, the above equation reduces to Pareto distribution, which is a heavy-tailed
distribution. If ξ = 0 it is reduced to the exponential distribution. If ξ < 0 it is simply to
obtain light-tailed distribution with finite endpoints such as short-tailed Pareto or uniform
distribution. The mean and variance of a distribution is given by

E(x|σ, ξ) = σ

1 + ξ
and

V (x|σ, ξ) = σ2

(1 + ξ)2(2ξ + 1) exists if ξ > −1, ξ > −1
2 respectively.

2.2. Reduced threshold - a new approach

The newly developed reduced threshold (RT) method divides the entire set of
observations into equal-sized non-overlapping periods and focuses on the extreme values in



2023] A NEW DEVELOPMENT OF THRESHOLD SELECTION 83

these periods. These extreme values are taken into account when determining the threshold
point. When compared to the traditional BM and PoT method, the extreme values above
this particular threshold point are considered special extreme values. There are ’m’
numbers of observations in each of the ’n’ periods. Therefore there is m × n number of
total observations.

Let us consider the blocks Bij for j = 1, 2, ..., k; i = 1, 2, ..., n, where i represent the
position of each block consisting of j is the number of independent and identically distributed
observations. The maximum values of every block are considered extreme values which are
represented as the following sequence,

Zi = {z1, z2, ..., zk}; for every i = 1, 2, ..., n

Let Zi be the sequence of iid random variables with CDF F (z) and let ξp denoted by
pth quantile of F , so that ξp = inf{z|F (z) ≥ p}. The pth quantile is defined as F (ξp) = p.
Let Qp = Z(i)⌊np⌋:n denote a sample pth quantile. Here ⌊np⌋ denotes the greater integer ≤ np.
The weighted average of the distribution’s median and quantiles Qp and Q1−p for p ∈ (0, 1/2)
is known as the ”Trimean estimator”, such that

τ̂ = α

2 Qp + (1 − α)Q1/2 + α

2 Q1−p (3)

The weights for the two quantiles are the same for Qp and Q1−p, and the weight
α ∈ [0, 1]. The Tukey’s Trimean estimator is obtained by taking α = 1

2 and p = 1
4 in the

above equation and it is a special case of the Trimean estimators. It can be defined as

τ̂T M = 1
4Q1/4 + 1

2Q1/2 + 1
4Q3/4 (4)

The threshohd u∗ can be obtained by τ̂T M and first quartile of the extreme value
sequence of iid’s.

u∗ = 1
2[τ̂T M + Q1/4] (5)

when the values exceed the threshold u then as the special extreme values denote Z∗
s for

s = 1, 2, ..., k.
Z∗

s = {z∗
1 , z∗

2 , ..., z∗
k}, forZ∗

s ≥ u, Z∗
s ̸= Zi. (6)

These special extreme values from the RT method can be modeled with generalized
Pareto distribution.

2.3. Tail dependence and declustering

In stationary sequences, extreme values can occur in clusters. The first step in making
inferences is to identify clusters in the data, which is accomplished through the declustering
process. Declustering could be effective at screening the dependent observation to a set of
threshold exceedances. The empirical rule can be used to define the cluster of exceedances,
and the maximum excess in each cluster can be determined. Runs and interval methods can
be used in such cases to separate the clusters and estimate the extremal index. The extremal
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index θ is a measure of the degree of local dependence in the extremes of a stationary process
it ranges from 0 to 1, that is θ ∈ [0, 1], where to imply some dependence. When θ the value
decreases there is evidence for greater dependence. In Runs declustering, a run length (the
minimum gap between clusters) ’r’ can be fixed to choose the cluster, and the extremes are
separated by fewer than ’r’-non extremes belonging to the same cluster. The choice of ’r’
is critical because too small a value causes the problem of independence being unrealistic
for nearby clusters, while too large a value causes the concatenation of clusters that could
reasonably be considered independent, potentially resulting in the loss of valuable data.

2.4. Return periods and return levels

The return levels and return periods, which are crucial for the prediction of extreme
events, can be discovered when the distribution is fitted. The return level predicts that the
event will occur at least once over the following ’t’ years. For the GP model, the return level
is given xq which defines the extreme level that exceeds at least once every ’q’ observations.
The return period of the GP model is

P (X > x|X > u) = [1 + ξ(x−u
σ

)]−
1
ξ

Let ξu = P (X > u) = r/n, where r is the number of upper order values exceeding the
threshold u, and n is the number of years of records then the return period can be simplified
as follows

P (X > x) =
[
1 + ξ(x−u

σ
)
]− 1

ξ

This implies that the data points exceed once in every ’m’ series of observations on average
can be determined as

ξu

[
1 + ξ(x−u

σ
)
]− 1

ξ = 1
m

Finally, the m-year return level for GPD is given by

xm =
{

u − σ
ξ
[(mξu)ξ − 1]; ξ ̸= 0

u − σ log[mξu]; ξ = 0 (7)

where xm is the return level associated with the return period q = 1/m.

The return level is the interesting final product of the extreme value analysis in the
prediction of tail probabilities. Therefore, when ’m’ should be large enough, the return level
xm exceeds the threshold ’u’.

3. Application

3.1. Data source

The daily sunspot numbers dataset spans 205 years which is more than two centuries,
beginning in January 1818 and ending in December 2022. The sunspot number daily of
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observations have been collected from the database of Solar Influences Data Analysis Center
(SIDC) - the solar physics research department of the Royal Observatory of Belgium. It
is publicly available on SIDC’s Sunspot Index and Long-term Solar Observations (SILSO)
website.

3.2. Data modeling and analysis

The excess over the threshold technique can be used to separate the extreme sunspot
number from the non-extremes by selecting the appropriate threshold. The two approaches
discussed above can be used to identify extreme sunspots, and the exceedances can be
modeled with an appropriate distribution, which can then be used to estimate the return
levels. The PoT approach takes into consideration only those sample sunspot number values
that are significantly larger than a predetermined threshold u. The scale parameter of the
distribution can be modified that is σ∗= σ − ξu against the threshold u which has been
shown in the modified scale parameter threshold stability plot in Figure 1. In this figure,

(a) Modified scale parameter (b) Shape parameter

Figure 1: Threshold stability plot

the dark black line represents the estimated parameter value and the shaded area describes
its confidence level for u = 190, the vertical line represents the threshold value, and the
horizontal line shows the estimated parameter value, the threshold stability plot can be
used to determine an appropriate threshold. The mean residual life (MRL) plot is another
alternative way of choosing an appropriate value of the threshold which is shown in Figure 2.
It plots an average value over a given threshold for a series of thresholds. A mean excess plot
with a downward-sloping line indicates thin-tailed behavior. The MRL plot shows the mean
number of excesses over the threshold u, in between a confidence interval (approx 95%). We
look for approximate linearity (from the lowest possible threshold) whilst keeping in between
the confidence bounds.

The RT is a new technique for determining an adaptive threshold u, particularly for
dependence sequences. In this series of sunspot numbers, the RT approach uses trimean τ̂T M
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and Q1/4 finds the threshold u∗ from the yearly maximum extreme value series, sometimes
also known as annual maxima. Since maximum values of sunspot numbers are grouped into
clusters, one should expect that there may be several consecutive days with the maximum
exceeding the threshold. To avoid short-term dependencies in the time series, these expected
clusters of exceedances would necessitate the use of a declustering procedure to identify
approximately independent clusters of extreme observations within the sample.

Figure 2: Mean residual life plot

The runs declustering process involves grouping exceedances into the same cluster if
their distance from one another is less than the predetermined run length r. The extremal
index for sunspot number from PoT threshold 190 is 0.01399, demonstrating the sequence’s
strong dependence. When 103 clusters are above the threshold and the appropriate run
length is r=69, the maximum values of each cluster are regarded as extreme values. The weak
dependence in the sequence is indicated by the associated extremal index, which is 0.8844
respectively. Figure 3 depicts the declustered sunspot numbers data using the runs method
of declustering. The horizontal line in the figure represents the u=190 line over the years, and
the values above the threshold are considered extreme values. These values are declustered
to form 103 clusters, from which the higher order values for this study are taken. The new
declustering series data can be modeled using the GP distribution. Maximum likelihood
estimation is used to estimate the parameters. The value of the parameter estimates with its
standard error for scale σ = 74.0544(11.7214) and shape ξ = 0.0215(0.1238). The variance-
covariance matrix of the parameters for the peaks over threshold associated with GP is given
as follows

CV =
[

137.3902 −1.12069
−1.12069 0.01534

]

The diagonals of the matrix are the variance for the fitted model. The 95% CI for
the parameters scale has (51.0811, 97.0279) and shape has (-0.22132, 0.2642) respectively.

Figure 4 depicts the declustered sunspot numbers data using the runs method of
declustering. The horizontal line in the figure represents the u∗=162 line over the years and
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Figure 3: Declustering series plot for PoT

highlighted values above the threshold are considered extreme values of each cluster. The
extremal index for RT is 0.01108 for the obtained threshold, demonstrating the severe
dependence in sequence. In this case, the appropriate run length is r=55, with 126 clusters
above the threshold, and the maximum values of each cluster are considered to be the
extreme values. The associated extremal index is 0.9023 which describes the weak
dependence in the sequence. The GP distribution can be used to model the new

Figure 4: Declustering series plot for RT

declustering series data. The parameters are estimated using the maximum likelihood
estimation. The value of the parameter estimates with its standard error for scale
σ = 62.70(9.3351) and shape ξ = 0.1427(0.1202) respectively. The variance-covariance
matrix of the parameters for the reduced threshold associated with GP is given by

CV =
[

90.0442 −0.81475
−0.81475 0.01367

]
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The diagonals of the matrix are the variance of the parameters for the fitted model. The
estimate ξ > 0 indicates that its domain of attraction is the Pareto (heavy-tailed)
distribution. The 95% CI for the parameters scale has (44.2846, 80.8806) and the shape
has (-0.09223, 0.38014) respectively.

4. Model diagnostics and return levels

In this section, we examine the results of two models: peaks over the threshold with
GP distribution and reduced threshold with GP distribution. The model is chosen using the
goodness of fit tests such as Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirnov,
and the results are shown in Table 1. The models are ranked based on their performance,
and return levels for various return periods are computed. Table 1 presents the goodness of
fit test statistic as well as the p-value for the models under consideration in this study. The
model with the least statistic is ranked with the lowest value in the range for each measure;
among these, the reduced threshold-GP distribution shows a reasonable fit for this dataset.

Table 1: Results of goodness of fit tests

Models A2
n (p-value) W 2

n (p-value) Dn (p-value)
PoT-GP 0.5664 (0.6800) 0.0603 (0.8133) 0.0587 (0.8695)
RT-GP 0.4961 (0.7504) 0.0392 (0.9381) 0.0469 (0.9444)

Table 2: Estimated return levels with 95% confidence interval

RP(yr) PoT-GP RT-GP
2023 139 (115, 163) 133 (117, 148)
2024 190 (176, 205) 175 (164, 186)
2025 221 (204, 237) 202 (188, 216)
2026 242 (223, 261) 222 (205, 239)

Table 2, above shows the estimated return level of the sunspot numbers for the
maximum period of the current 25th solar cycle, from 2023 to 2026. The solar maximum is
expected to occur between 2024 and 2026. According to a NASA report, scientists anticipate
a rise in solar activity leading up to the next maximum, which could occur in 2025. Usually,
the maximum period is unknown because no one can predict it precisely. No one knows
when the sun’s polarities change precisely; it cannot happen at a precise time, but it does
happen over an approximate period. We predicted the sunspot number for 2023 to 2026 as
well, because the exact maximum period has not been exactly predicted by scientists, if the
maximum period of the current cycle will extend to 2026, this prediction may be useful.
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Figure 5: Return Level Plot for PoT and RT

Figure 6: Profile likelihood plot for PoT and RT

The return level can be estimated by the delta method, for PoT is 242 with a 95%
confidence interval is (223, 262), for RT is 223 with a 95% confidence interval is (206, 240)
respectively. The return levels are graphically represented in Figure 5; it shows the
estimated values associated with its confidence interval. When the time increases the
estimated values of the sunspot numbers of the solar maximum period also increase with
its confidence limits. The return levels can also be obtained using the profile likelihood
method, we get the estimated value of the 4-year return level for the PoT method is 242
and its approximate 95% confidence interval is (223, 262), the estimated value of the 4-year
return level for RT method is 223 and its approximate 95% confidence interval is (211,
238). Figure 6 displays the profile likelihood for the 4-year return level. Because the profile
likelihood crosses both the blue vertical dashed and horizontal solid lines, the resulting
intervals are believable. We select the RT method because it provides a better fit for the
extreme values than the PoT method. The estimated return levels of sunspot numbers
based on the RT method are thus taken into account.
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5. Summary and conclusions

This study developed a new reduced threshold method for selecting a suitable
threshold, and the generalized Pareto distribution can be used to model the extreme
values. In the context of extreme value analysis, we applied the peaks over threshold and
reduced threshold techniques to the sunspot number series from 1818 to 2022 years to
establish the decision threshold. A generalized Pareto with shape and scale parameters can
be used to model exceedances above the threshold. The behavior of the extreme value
series is described by the estimated extreme value index. The shape parameter of the
aforementioned two methods are positive in this situation, indicating that the distribution
is heavily tailed according to the series. This study focuses on the maximum period of
sunspots in the solar cycle because there is a possibility of solar flares and CMEs occurring
during that period. The m-year return levels were estimated for the 25th solar cycle’s
maximum periods, such as 2023-2026. This prediction could be helping to determine the
next maximal event. We will discuss only the rare event rather than all occurrences
because it will be more useful to observe the tail behavior with less probability. In this
study, we explore how the peaks over threshold and the reduced threshold can be used to
estimate the model’s tail parameters. Among these, our suggested model has the narrowest
return level confidence interval. The goodness of fit test can be used in conjunction with
this study to evaluate the models and precision.
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Abstract
This article discusses the idea of an ordered random variable and its basic structure.

Under the umbrella of dual generalized order statistics, the problem of Bayesian estimation
of Fréchet distribution with parameters α and λ is addressed. Both symmetric (squared
error) and asymmetric (linear exponential and general entropy) loss functions are taken into
account to enable flexibility in the outcomes. For the aim of estimation, two approximation
methods (Lindley and Markov Chain Monte Carlo) have been employed and presented.
Simulation tools have been used to elaborate the findings clearly.

Key words: Fréchet distribution; Dual generalized order statistics; Bayesian methods; Markov
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1. Introduction

While dealing with data analysis using statistical tools and techniques, extreme value
theory is inevitable. Jenkinson (1955) described how Generalized Extreme Value (GEV) is
the most preferred distribution in this regard. The cumulative density function is given by

F (y | σ, µ, ξ) =

exp
(
−[1 + ξ(y − µ)/σ]−1/y

+

}
, for ξ ̸= 0

exp(− exp[−(y − µ)/σ]], for ξ = 0

where σ > 0, µ, ξ ∈ R. The considered distribution in this manuscript is Fréchet which is a
special cases of GEV distribution. Its name spawned from Maurice René Fréchet, a French
mathematician, who developed this distribution in 1920 as a maximum value distribution.
It is also known as the extreme value distribution of type II.

The probability density function (PDF), cumulative density function (CDF) and re-
liability function of the random variable y following Fréchet distribution are given as

f(y | λ, α) = λαy−(α+1)e−λy−α

, (1)
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F (y | λ, α) = e−λy−α

, (2)

R(t | λ, α) = 1 − e−λt−α

. (3)
where y > 0, t > 0, α > 0 is shape parameter and λ > 0 is the scale parameter. Depending
on the form of parameters, the PDF might be unimodal or declining, although the hazard
function is always unimodal. This is the only CDF that can be established on non-negative
real numbers and is also a limiting CDF for the maxima of random variables. For a range
of engineering applications, this feature is crucial for simulating the issues associated with
investigating the statistical behavior of material properties.

It was explained by Kotz and Nadarajah (2000) that how Fréchet distribution can be
used in a variety of contexts, including accelerated life testing, natural disasters, horse racing,
rainfall, grocery store lines, sea currents, wind speeds, track race records and so on. Harlow
(2002) demonstrated that the Fréchet distribution is the best option for simulating the case
where high values are crucial. The literature on Fréchet distribution is extensive. Maximum
likelihood estimation has been performed by Calabria and Pulcini (1989), and the features
of its estimator (MLE) have been studied. Maximum likelihood estimation was carried out
by Ramos et al. (2017) in the presence of the cure fraction, and Loganathan and Uma (2017)
compared the MLE, the LSE, the weighted LSE, and the method of moment estimation for
the Fréchet distribution. In order statistics, the Fréchet distribution was investigated by
Salman and AMER (2003), while generalised order statistics was researched by Maswadah
(2003). Many scholars have also addressed the issue of Bayesian estimate for the Frechet
distribution. For instance, Calabria and Pulcini (1994) and Kundu and Howlader (2010)
have performed Bayesian estimation using Gamma or other informative or arbitrary priors.
Fréchet distribution was examined using Jeffreys and reference priors in Abbas and Tang
(2015).

After carefully searching the literature, we were unable to locate any articles address-
ing its application to order statistics or lower record data. Therefore, utilizing the setup
of Dual Generalised Order Statistics (dgos ), we have addressed the Bayesian estimation of
the Fr’echet distribution. The manuscript is arranged as follows: Mathematical formulation
of dgos is thoroughly discussed in Section 2. Also, in this section, Bayesian framework for
estimation using different loss functions is given. Bayes estimators are obtained using the
Lindley approximation, a method for approximation that is detailed in Section 3. Bayes
estimators are obtained in Section 4 using Markov chain Monte Carlo approach. Simulation
analysis for dgos submodels such as order statistics and lower record values is provided in
Section 5 along with conclusions regarding the obtained results.

2. Formulation of Bayesian framework

Let us take independent and identically distributed sequence containing X1, X2, . . .
random variables having absolutely continuous distribution function F (·) and the probability
density function f(·). Let n ∈ N, (n ≥ 2), k ≥ 1 and m be the parameters such that γr = k+
(n−r)(m+1) > 0, for all r ∈ {1, 2, . . . , n−1} and Y (1, n, m, k), Y (2, n, m, k), . . . , Y (n, n, m, k)
be the n dgos. Then the joint density function of Y1, Y2, . . . , Yn is of the form

k

n−1∏
j=1

γj

(n−1∏
i=1

(F (yi))m f(yi)
)

(F (yn))k−1 f(yn), (4)
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where F −1(1) > y1 ≥ y2 ≥ · · · ≥ yn > F −1(0), Yi = Y (i, n, m, k) and y = (y1, y2, . . . , yn) is
the realization of Y = (Y1, Y2, . . . , Yn).

The dgos is a combination of many ordered random models, and we may create
different models by accounting for different dgos model characteristics. For instance, when
m = 0 and k = 1 are used, the dgos model reduces to reverse order statistics; when m = −1
is used, the dgos model reduces to the kth lower record values; and when m = −1 and k = 1
are used, the dgos model reduces to standard lower record values; etc. The following books
and articles are suggested for readers who want to learn more about ordered statistics and
record data: Ahsanullah (2004), Arnold et al. (2008), Devi et al. (2017), Arshad and Jamal
(2019a,b), Sharma et al. (2019) Arshad and Baklizi (2019), Tripathi et al. (2019), Gupta
and Jamal (2019), Anwar et al. (2020) and Azhad et al. (2021, 2022, 2023).

Now, let Y1, Y2, . . . , Yn be the n dgos drawn from Fréchet(α, λ), then by using equation
(4), equation (1) and equation (2), the likelihood function is given as

L(α, λ|y) = k(αλ)n

n−1∏
j=1

γj

( n∏
i=1

y
−(α+1)
i e−λy−α

i

)
n−1∏
i=1

(
e−λy−α

i

)m (
e−λy−α

n

)k−1
. (5)

Assuming that informative priors are independent and have a two-parameter gamma distri-
bution with the following set of hyperparameters, we now investigate informative priors for
each parameter.

π(α) = ba1
1

Γ(a1)
αa1−1e−b1α, a1, b1, α > 0,

π(λ) = ba2
2

Γ(a2)
λa2−1e−b2λ, a2, b2, λ > 0.

 (6)

We take into account symmetric and asymmetric loss functions to demonstrate the adapt-
ability of our findings and to provide a wide range of applicability for diverse real-life sce-
narios. The symmetric loss function is taken into consideration since it equally penalises
underestimation and overestimation, which are typically highly helpful. The majority of the
time, nevertheless, we observe that positive losses can sometimes be more severe than nega-
tive losses, and vice versa. Asymmetric loss functions are necessary in these circumstances.
Here, we have taken into account one symmetric loss function, the squared error loss func-
tion (SELF), as well as two asymmetric loss functions, the linear exponential (LINEX) and
general entropy (GE). For more details about these loss function, one may refer to Jaheen
(2003), Dey (2009), Ali (2015), Zhang and Gui (2020), Nagamani et al. (2020). The SELF
is defined as

L1(δ, β) = (δ − β)2, β > 0. (7)

The Bayes estimator under SELF is posterior mean (δSEL) . The LINEX loss function is
defined as

L2(δ, β) = ec(δ−β) − c(δ − β) − 1, c ̸= 0 (8)

with corresponding Bayes estimator as

δLINEX = −1
c

ln
(
E(e−cβ)

)
.
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The GE loss function is given as

L3(δ, β) ∝
(

δ

β

)c

− c ln
(

δ

β

)
− 1, c ̸= 0 (9)

with corresponding Bayes estimator as

δGE =
[
E(β)−c

]−1/c
.

Now, the joint posterior density of α and λ is obtained by using equation (5) and equation
(6), and is given as

π(α, λ|y) ∝ αn+a1−1λn+a2−1

n−1∏
j=1

γj

( n∏
i=1

y
−(α+1)
i e−λy−α

i

)
n−1∏
i=1

(
e−λy−α

i

)m (
e−λy−α

n

)k−1
(10)

e(−b1α−b2λ); α > 0, λ > 0.

Joint posterior density has a complex structure, making it difficult to construct exact Bayes
estimators. Lindley approximation and the Markov chain Monte Carlo approach are two
extensively used approximation techniques that are used to address this scenario.

3. Lindley approximation

Using the Taylor series expansion, Lindley (1980) estimated the ratio of the two
integrals. The expectation of posterior densities can be calculated using this method to a
reasonable extent. Typically, a Bayes estimator takes the following form for any loss function
of the β parameter:

E(z(β)|y) =
�

z(β)eL(β)+ρ(β)dβ�
eL(β)+ρ(β)dβ

, (11)

where L denotes the logarithm of likelihood function, logarithm of the prior distribution of
β is denoted by ρ. In present case β = (α, λ), we can transform equation (11) to

E(z(α, λ)|y) =
� �

z(α, λ)eL(α,λ)+ρ(α,λ)dαdλ� �
eL(α,λ)+ρ(α,λ)dαdλ

, (12)

The values of the quantities in above equation are L(α, λ) = ln L(α, λ|y) and ρ(α, λ) =
ln π(α) + ln π(λ). Utilizing the method by, we get (see Lindley (1980))

E(z(α, λ)|y) ≈ z(α, λ) + 1
2

2∑
i=1

2∑
j=1

zijσij +
2∑

i=1
ρiQi (13)

1
2

2∑
i=1

LiiiσiiQi + 1
2 [L112(2σ12Q1 + σ11Q2) + L122(σ22Q1 + 2σ12Q2)] ,
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where,

z1 = ∂z(α, λ)
∂α

, z2 = ∂z(α, λ)
∂λ

, z11 = ∂2z(α, λ)
∂α2 , z22 = ∂2z(α, λ)

∂λ2 , z12 = ∂2z(α, λ)
∂α∂λ

= z21,

L11 = ∂2 ln L(α, λ|y)
∂α2 , L22 = ∂2 ln L(α, λ|y)

∂λ2 , L112 = ∂3 ln L(α, λ|y)
∂α2∂λ

, L111 = ∂3 ln L(α, λ|y)
∂α3 ,

L222 = ∂3 ln L(α, λ|y)
∂λ3 , ρ1 = ∂ρ(α, λ)

∂α
, ρ2 = ∂ρ(α, λ)

∂λ
, Qr =

∑2
j=1 zjσrj


(14)

and σrj denotes (r, j)th element of the inverse of matrix [−Lij]. For obtaining Bayes estima-
tor, we have to calculate all the unknown values in equation (13) by using the MLES of α
and λ.

We have deduced the unknown quantities in equation (14) as per our problem. These
are :

L11 = − n

α2 − (k − 1)λ(ln yn)2y−α
n − mλ

∑n−1
i=0 (ln yi)2y−α

i −∑n
i=0 λ(ln yi)2y−α

i

L12 = −(k − 1)(ln yn)2y−α
n − m

∑n−1
i=0 (ln yi)2y−α

i −∑n
i=0(ln yi)2y−α

i

L22 = − n

λ2 , L222 = 2n

λ3 , L122 = 0, ρ1 = a1 − 1
α

− b1, ρ2 = a2 − 1
λ

− b2

L111 = 2n

α3 + (k − 1)λ(ln yn)3y−α
n − mλ

∑n−1
i=0 −(ln yi)3y−α

i −∑n
i=0 −λ(ln yi)3y−α

i



(15)

According to the defined loss functions, we have derived the quantities required. It is evident
that except z(α, λ) and its derivatives, all the other quantities are same.

We know that the posterior mean is the Bayes estimator in SELF. So, Bayes estimator
of α, is obtained using

z(α, λ) = α, z1 = 1, z2 = 0 = z11 = z12 = z22 = z21.

Similarly, the quantities

z(α, λ) = λ, z2 = 1, z1 = 0 = z11 = z12 = z22 = z21.

are used for Bayes estimator of λ,
and,

z(α, λ) = 1 − e−α(t−λ−1), z1 = −e−t−αλt−αλ ln t, z2 = e−t−αλt−α,

z11 = e−t−αλt−2α (tα − λ) λ(ln t)2, z22 = −e−t−αλt−2α,

z12 = −e−t−αλt−2α (tα − λ) ln t = z21.

are used for Bayes estimator of R(t).
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Under LINEX loss function, following quantities are used for the Bayes estimator of
α and λ, respectively

z(α, λ) = e−cα, z1 = −ce−cα, z11 = c2e−cα, z2 = 0 = z12 = z21 = z22.

z(α, λ) = e−cλ, z2 = −ce−cλ, z22 = c2e−cλ, z1 = 0 = z12 = z21 = z11.

and for R(t), the used quantities are:

z(α, λ) = e
−c

(
1−e−λt−α

)
, z1 = ce

−c

(
1−e−t−αλ

)
−t−αλ

t−αλ ln t

z11 = −ce
−c

(
1−e−t−αλ

)
−t−αλ

t−αλ(ln t)2 + ce
−c

(
1−e−t−αλ

)
−t−αλ

t−αλ ln t

×
(
t−αλ ln t + ce−t−αλt−αλ ln t

)
z2 = −ce

−c

(
1−e−t−αλ

)
−t−αλ

t−α

z22 = −ce
−c

(
1−e−t−αλ

)
−t−αλ

t−α
(
−t−α − ce−t−αλt−α

)
z12 = ce

−c

(
1−e−t−αλ

)
−t−αλ

t−α ln t + ce
−c

(
1−e−t−αλ

)
−t−αλ

t−α
(
−t−α − ce−t−αλt−α

)
λ ln t = z21.

Similarly, in case of GE loss function, Bayes estimator of α can be obtained by the
following quantities

z(α, λ) = α−c, z1 = −cα−c−1, z11 = c(c + 1)α−c−2, z2 = 0 = z12 = z21 = z22.

For Bayes estimator of λ, we have,

z(α, λ) = λ−c, z2 = −cλ−c−1, z22 = c(c + 1)λ−c−2, z1 = 0 = z12 = z21 = z11.

and for Bayes estimator of R(t), following quantities are used

z(α, λ) =
(
1 − e−λt−α

)−c
, z1 = ce−t−αλ

(
1 − e−t−αλ

)−1−c
t−αλ ln t

z2 = −ce−t−αλ
(
1 − e−t−αλ

)−1−c
t−α

z11 =
c
(
1 − e−t−αλ

)−c
t−2αλ

(
−
(
et−αλ − 1

)
tα +

(
c + et−αλ

)
λ
)

(ln t)2

(et−αλ − 1)2

z22 =
c
(
1 − e−t−αλ

)−c (
c + et−αλ

)
t−2α

(et−αλ − 1)2

z12 =
c
(
1 − e−t−αλ

)−c
t−2α

(
−
(
et−αλ − 1

)
tα +

(
c + et−αλ

)
λ
)

ln t

(et−αλ − 1)2 = z21.

4. Markov chain Monte Carlo

From equation (10), we see that posterior density is complex in nature and exact
Bayes estimates of parameters are not easy to compute. To tackle this situation, one of the
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most popular tools known as Markov chain Monte Carlo (MCMC) is applied here. MCMC
is is a powerful computational method used for generating samples from complex probability
distributions and obtaining approximate Bayes estimates of the unknown parameters. This
tools has significant popularity in various scientific fields, including statistics, machine learn-
ing, physics, and computational biology. To derive the approximate Bayes estimator of α, λ
and R(t), we use the MCMC technique in this part. With the use of posterior densities, the
MCMC method is utilised to generate a random samples of unknown quantities. The Bayes
estimator for the loss functions is then obtained using the generated samples. For this we
first derived the conditional posterior densities of α and λ, from equation (10) as,

π(α|λ, y) ∝ αn+a1−1
(∏n

i=1 y
−(α+1)
i e−λy−α

i

)∏n−1
i=1

(
e−λy−α

i

)m (
e−λy−α

n

)k−1
e−b1α

π(λ|α, y) ∝ λn+a2−1
(∏n

i=1 e−λy−α
i

)∏n−1
i=1

(
e−λy−α

i

)m (
e−λy−α

n

)k−1
e−b2λ

 . (16)

From equation (16), we observe that the marginal posterior densities of α and λ do not
have known form of any probability distribution. So, we adopt the technique of Metropolis
Hasting (MH) algorithm with normal distribution (see Gelman et al. (2013)) as the proposal
density to generate samples. The algorithm and steps are followed from Arshad et al. (2021).

5. Simulation study

This section comprises of studying the behavior of the derived estimators on the
simulated model. Various configurations of the parameters, sample sizes and priors have been
tested and reported in this section. Since dgos is an umbrella term containing many models
having different configurations for random variables of ordered nature, we have confined
ourselves to study the lower record data and order statistics. To assess the credibility of
Bayes estimators, risk function is taken to be the measure. The first thing is to generate the
random samples from the dgos setup. For this purpose the algorithm discussed by Azhad
et al. (2021) is considered here. Using the generated samples, for 1000 replications, all the
estimators are obtained along with the risks in their estimation. For assessing the different
possibilities, we have considered two set of priors i.e., Prior I : (ai, bi) = (2, 2), i = 1, 2
and Prior II : (ai, bi) = (0.05, 0.05), i = 1, 2, and different configurations of shape and scale
parameters. The calculation is performed using R software (R Core Team (2022)). In
addition to this, the convergence behaviour of generated Markov chain is tested with the aid
of Gelman Rubin (GR) diagnostic (See Gelman et al. (2013)). With GR diagnostic we find
that as we increase the number of iterations, the value of shrink reduction factor is getting
close to 1. Hence, we conclude that convergence is achieved. The risks of various estimators
are reported in Table [1-4] (see Appendix). From these tables, the following observations are
made.

(i) The Table [1] (see Appendix) reports risks of Bayes estimates obtained using Lindley
Approximation method for lower record values. From the table, it is observed that
risks based on asymmetric loss functions (LINEX and GELF) are much smaller than
symmetric loss function.

(ii) The Table [2] (see Appendix) reports risks of Bayes estimates obtained using MCMC
method for lower record values. From the table, it is observed that risks based on
asymmetric loss functions (LINEX and GELF) are much smaller than symmetric loss
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function. It is also observed that mostly risks of estimators based on MCMC method
smaller than risk of estimators based on Lindley method.

(iv) The Table [3 - 4] (see Appendix) report risks of Bayes estimates obtained using Lindley
and MCMC method for order statistics, respectively. Similar observations are seen for
risks of all estimators for order statistics as these were for lower record values.

(v) From all the Tables, it is observed that the risks of all estimators are decreasing as
we increase the sample size irrespective of ordered random models. Also, on average,
Prior I seems to have showm lesser risk that Prior II.

(vi) From these observations it is evident that Bayes estimators based on asymmetric loss
functions (LINEX and GELF) are performing better based on their risks. So, In prac-
tical scenarios where the underlying assumptions considered in this study are satisfied,
it is recommended to use asymmetric loss functions as it provides more flexibility to the
model. Also, estimators based on MCMC method are performing better than Lindley
estimators.

6. Discussion and conclusions

In the present manuscript Fréchet distribution is considered and Bayesian perspective
on estimation is explored under the dgos configuration. The considered distribution has many
applications like it is used in hydrology to describe severe occurrences like annual maximum
one-day rainfall and river discharges, used to depict a falling pattern in time series data of oil
or gas production rate over time for a well, employed to simulate the idiosyncratic element of
people’s preferences for various goods, places , or businesses etc. The reliability function and
Bayes estimators of unknown quantities are thoroughly addressed. For Bayesian methods,
it makes sense to take distinct loss functions into account. In addition, a discussion of the
findings for order statistics under dgos’s setup and lower record values under dgos’s setup
is given. After careful examination of the simulation results, we come to the conclusion
that, MCMC is a better choice than Lindley approximation for estimation of parameters α,
λ, and R(t) in both the cases of lower record values and order statistics for the considered
distribution.

For future studies scaled squared error loss function, precautionary loss function,
K-loss function, regression loss function, etc., may be used. This research may possibly
be expanded by assuming additional estimating techniques and applying them on censored
data.
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APPENDIX
Table 1: Risk of Lindley Bayes estimates based on lower record values for (c, t) =

(0.5, 0.5)

(α, λ) n
SELF Linex General Entropy

α̂risk λ̂risk
ˆR(t)risk α̂risk λ̂risk

ˆR(t)risk α̂risk λ̂risk
ˆR(t)risk

(a1, a2, b1, b2) = (2, 2, 2, 2)

(1,1)
5 0.1493 0.2405 0.2423 0.0200 0.0340 0.0304 0.0124 0.0362 0.0467
10 0.0896 0.1096 0.2209 0.0079 0.0125 0.0263 0.0033 0.0200 0.0361
15 0.0306 0.0690 0.2208 0.0017 0.0047 0.0260 0.0011 0.0103 0.0330

(1.5,1)
5 0.3810 0.3609 0.2753 0.0611 0.0358 0.0330 0.0408 0.0476 0.0562
10 0.2700 0.1910 0.2628 0.0181 0.0331 0.0330 0.0107 0.0275 0.0445
15 0.1532 0.1246 0.2595 0.0059 0.0146 0.0302 0.0041 0.0194 0.0393

(1,1.5)
5 0.1600 0.3802 0.3791 0.0211 0.0348 0.0452 0.0109 0.0633 0.0628
10 0.0912 0.3383 0.3664 0.0083 0.0252 0.0423 0.0064 0.0409 0.0537
15 0.0398 0.3117 0.3620 0.0040 0.0237 0.0416 0.0041 0.0315 0.0498

(1.5,1.5)
5 0.2758 0.3346 0.3793 0.0349 0.0271 0.0451 0.0231 0.0640 0.0640
10 0.1552 0.2322 0.3720 0.0083 0.0166 0.0432 0.0056 0.0316 0.0559
15 0.0812 0.2025 0.3599 0.0041 0.0119 0.0411 0.0035 0.0213 0.0504

(a1, a2, b1, b2) = (0.05, 0.05, 0.05, 0.05)

(1,1)
5 0.1853 0.3233 0.2036 0.0239 0.0337 0.0254 0.0221 0.0501 0.0453
10 0.1394 0.2609 0.2030 0.0167 0.0284 0.0248 0.0154 0.0415 0.0381
15 0.0849 0.2423 0.1996 0.0107 0.0272 0.0240 0.0100 0.0347 0.0342

(1.5,1)
5 0.1254 0.3322 0.2742 0.0155 0.0347 0.0335 0.0188 0.0492 0.0560
10 0.0864 0.2873 0.2716 0.0107 0.0305 0.0310 0.0119 0.0410 0.0455
15 0.0648 0.2483 0.2568 0.0082 0.0279 0.0322 0.0086 0.0366 0.0440

(1,1.5)
5 0.1919 0.5153 0.2899 0.0233 0.0537 0.0353 0.0211 0.0878 0.0575
10 0.1363 0.4065 0.2890 0.0175 0.0434 0.0345 0.0162 0.0700 0.0496
15 0.0987 0.3688 0.2732 0.0128 0.0400 0.0323 0.0120 0.0620 0.0437

(1.5,1.5)
5 0.1092 0.4841 0.3193 0.0138 0.0507 0.0387 0.0169 0.0851 0.0620
10 0.0834 0.4338 0.3143 0.0106 0.0458 0.0374 0.0115 0.0734 0.0531
15 0.0736 0.3466 0.3122 0.0096 0.0382 0.0367 0.0100 0.0601 0.0488
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Table 2: Risk of MCMC Bayes estimates based on lower record values for (c, t) =
(0.5, 0.5)

(α, λ) n
SELF Linex General Entropy

α̂risk λ̂risk
ˆR(t)risk α̂risk λ̂risk

ˆR(t)risk α̂risk λ̂risk
ˆR(t)risk

(a1, a2, b1, b2) = (2, 2, 2, 2)

(1,1)
5 0.0626 0.0314 0.1837 0.0079 0.0040 0.0214 0.0057 0.0033 0.0380
10 0.0601 0.0302 0.1832 0.0076 0.0038 0.0214 0.0056 0.0032 0.0379
15 0.0578 0.0287 0.1816 0.0073 0.0036 0.0212 0.0054 0.0030 0.0375

(1.5,1)
5 0.0646 0.2124 0.1874 0.0082 0.0247 0.0218 0.0059 0.0179 0.0390
10 0.0589 0.2060 0.1833 0.0075 0.0239 0.0214 0.0055 0.0159 0.0379
15 0.0557 0.1928 0.1801 0.0070 0.0225 0.0210 0.0052 0.0174 0.0371

(1,1.5)
5 0.0875 0.0329 0.1848 0.0106 0.0041 0.0215 0.0064 0.0035 0.0380
10 0.0839 0.0319 0.1839 0.0102 0.0040 0.0214 0.0061 0.0033 0.0383
15 0.0837 0.0289 0.1836 0.0101 0.0036 0.0214 0.0061 0.0030 0.0380

(1.5,1.5)
5 0.0873 0.2180 0.1844 0.0106 0.0253 0.0215 0.0064 0.0184 0.0382
10 0.0840 0.2139 0.1808 0.0101 0.0248 0.0211 0.0061 0.0181 0.0373
15 0.0835 0.2022 0.1816 0.0102 0.0235 0.0212 0.0061 0.0168 0.0375

(a1, a2, b1, b2) = (0.05, 0.05, 0.05, 0.05)

(1,1)
5 0.0627 0.0319 0.1851 0.0079 0.0040 0.0216 0.0058 0.0035 0.0384
10 0.0591 0.0308 0.1834 0.0075 0.0039 0.0211 0.0055 0.0032 0.0372
15 0.0560 0.0306 0.1804 0.0071 0.0039 0.0214 0.0052 0.0032 0.0379

(1.5,1)
5 0.0649 0.2036 0.1839 0.0082 0.0240 0.0215 0.0060 0.0173 0.0381
10 0.0605 0.2031 0.1821 0.0077 0.0237 0.0213 0.0056 0.0169 0.0376
15 0.0585 0.2068 0.1804 0.0074 0.0237 0.0211 0.0054 0.0168 0.0371

(1,1.5)
5 0.0863 0.0328 0.1835 0.0105 0.0041 0.0214 0.0063 0.0034 0.0380
10 0.0845 0.0299 0.1833 0.0102 0.0038 0.0214 0.0062 0.0032 0.0379
15 0.0832 0.0296 0.1833 0.0101 0.0037 0.0214 0.0061 0.0031 0.0379

(1.5,1.5)
5 0.0880 0.2113 0.1848 0.0106 0.0245 0.0215 0.0064 0.0176 0.0383
10 0.0841 0.2087 0.1820 0.0102 0.0243 0.0212 0.0061 0.0174 0.0376
15 0.0833 0.2053 0.1819 0.0101 0.0239 0.0212 0.0061 0.0172 0.0375
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Table 3: Risk of Lindley Bayes estimates based on order statistics for (c, t) =
(0.5, 0.5)

(α, λ) n
SELF Linex General Entropy

α̂risk λ̂risk
ˆR(t)risk α̂risk λ̂risk

ˆR(t)risk α̂risk λ̂risk
ˆR(t)risk

(a1, a2, b1, b2) = (2, 2, 2, 2)

(1,1)
5 0.0711 0.0632 0.6544 0.0086 0.0049 0.0718 0.0102 0.0074 0.0744
10 0.0643 0.0599 0.6168 0.0078 0.0079 0.0680 0.0078 0.0087 0.0719
15 0.0481 0.0369 0.4837 0.0059 0.0073 0.0540 0.0057 0.0074 0.0631

(1.5,1)
5 0.1965 0.0571 0.7713 0.0154 0.0045 0.0837 0.0178 0.0060 0.0864
10 0.0608 0.0562 0.7173 0.0074 0.0069 0.0782 0.0083 0.0077 0.0818
15 0.0503 0.0380 0.5412 0.0063 0.0069 0.0597 0.0067 0.0071 0.0684

(1,1.5)
5 0.0882 0.3452 0.8049 0.0112 0.0412 0.0871 0.0153 0.0420 0.0898
10 0.0640 0.0974 0.7617 0.0079 0.0106 0.0828 0.0074 0.0131 0.0869
15 0.0471 0.0711 0.6257 0.0058 0.0092 0.0690 0.0056 0.0103 0.0799

(1.5,1.5)
5 0.2417 0.2860 0.8531 0.0249 0.0417 0.0920 0.0286 0.0403 0.0947
10 0.0799 0.0996 0.7967 0.0096 0.0095 0.0863 0.0094 0.0119 0.0903
15 0.0500 0.0698 0.6197 0.0064 0.0089 0.0682 0.0067 0.0102 0.0780

(a1, a2, b1, b2) = (0.05, 0.05, 0.05, 0.05)

(1,1)
5 0.1562 0.1643 0.6613 0.0203 0.0209 0.0725 0.0194 0.0239 0.0750
10 0.1004 0.1094 0.6263 0.0130 0.0131 0.0690 0.0121 0.0136 0.0731
15 0.0653 0.0870 0.5379 0.0082 0.0108 0.0599 0.0077 0.0113 0.0694

(1.5,1)
5 0.1124 0.1681 0.7867 0.0135 0.0196 0.0853 0.0154 0.0224 0.0880
10 0.0713 0.1163 0.7492 0.0091 0.0142 0.0815 0.0097 0.0145 0.0860
15 0.0583 0.0836 0.6535 0.0071 0.0102 0.0720 0.0073 0.0100 0.0821

(1,1.5)
5 0.1566 0.2145 0.8007 0.0193 0.0250 0.0867 0.0177 0.0307 0.0895
10 0.0920 0.1135 0.7594 0.0111 0.0144 0.0826 0.0101 0.0164 0.0872
15 0.0589 0.0814 0.6712 0.0076 0.0103 0.0738 0.0073 0.0111 0.0840

(1.5,1.5)
5 0.0961 0.1915 0.8692 0.0122 0.0225 0.0936 0.0147 0.0289 0.0964
10 0.0702 0.1213 0.8295 0.0091 0.0146 0.0897 0.0096 0.0164 0.0944
15 0.0612 0.0841 0.7239 0.0076 0.0104 0.0792 0.0077 0.0112 0.0899
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Table 4: Risk of MCMC Bayes estimates based on order statistics for (c, t) =
(0.5, 0.5)

(α, λ) n
SELF Linex General Entropy

α̂risk λ̂risk
ˆR(t)risk α̂risk λ̂risk

ˆR(t)risk α̂risk λ̂risk
ˆR(t)risk

(a1, a2, b1, b2) = (2, 2, 2, 2)

(1,1)
5 0.0428 0.2054 0.2548 0.0052 0.0249 0.0294 0.0077 0.0670 0.0603
10 0.0401 0.1966 0.2512 0.0049 0.0238 0.0290 0.0072 0.0632 0.0591
15 0.0379 0.1961 0.2473 0.0047 0.0237 0.0285 0.0068 0.0629 0.0579

(1.5,1)
5 0.0457 0.8683 0.2593 0.0056 0.0952 0.0299 0.0083 0.1353 0.0618
10 0.0442 0.8594 0.2554 0.0054 0.0942 0.0294 0.0081 0.1318 0.0608
15 0.0422 0.8490 0.2549 0.0052 0.0932 0.0294 0.0077 0.1288 0.0605

(1,1.5)
5 0.4668 0.2074 0.2550 0.0525 0.0251 0.0294 0.0452 0.0671 0.0602
10 0.4553 0.2028 0.2500 0.0513 0.0245 0.0289 0.0439 0.0656 0.0588
15 0.4471 0.1914 0.2465 0.0504 0.0232 0.0285 0.0427 0.0602 0.0575

(1.5,1.5)
5 0.4587 0.8904 0.2509 0.0516 0.0975 0.0290 0.0441 0.1410 0.0573
10 0.4562 0.8883 0.2500 0.0514 0.0973 0.0288 0.0439 0.1392 0.0587
15 0.4417 0.8818 0.2454 0.0498 0.0966 0.0283 0.0422 0.1352 0.0589

(a1, a2, b1, b2) = (0.05, 0.05, 0.05, 0.05)

(1,1)
5 0.0402 0.2067 0.2564 0.0054 0.0250 0.0289 0.0080 0.0673 0.0591
10 0.0403 0.1973 0.2509 0.0049 0.0239 0.0288 0.0073 0.0635 0.0585
15 0.0438 0.1884 0.2493 0.0049 0.0229 0.0295 0.0072 0.0596 0.0609

(1.5,1)
5 0.0432 0.8842 0.2544 0.0053 0.0968 0.0293 0.0078 0.1371 0.0603
10 0.0405 0.8697 0.2527 0.0050 0.0954 0.0291 0.0073 0.1357 0.0596
15 0.0378 0.8654 0.2477 0.0046 0.0949 0.0286 0.0067 0.1345 0.0579

(1,1.5)
5 0.4582 0.2015 0.2515 0.0516 0.0244 0.0290 0.0443 0.0651 0.0591
10 0.4582 0.2014 0.2510 0.0516 0.0244 0.0290 0.0442 0.0641 0.0590
15 0.4562 0.1980 0.2505 0.0514 0.0240 0.0289 0.0442 0.0634 0.0592

(1.5,1.5)
5 0.4581 0.8825 0.2517 0.0516 0.0967 0.0290 0.0442 0.1380 0.0593
10 0.4557 0.8772 0.2507 0.0511 0.0961 0.0288 0.0438 0.1368 0.0589
15 0.4535 0.8746 0.2496 0.0513 0.0958 0.0289 0.0436 0.1353 0.0585



Special Proceedings: ISBN #: 978-81-950383-2-9
25th Annual Conference, 15-17 February 2023; pp 107–118

Long Memory in Volatility: Application of Fractionally
Integrated GARCH Model

Debopam Rakshit and Ranjit Kumar Paul
ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Received: 10 July 2023; Revised: 24 July 2023; Accepted: 28 July 2023

Abstract
Volatility is an important characteristic of time series. If the volatility of a series at

any time epoch is affected by its distant counterpart, then it is known as long memory in
volatility. The (FIGARCH) model is useful for addressing the long memory in volatility.
In this paper, for empirical illustration, the daily modal spot price of mustard from four
markets of Rajasthan namely Khedli (Laxmangarh), Atru, Nimbahera and Anoopgarh, are
used. The GARCH, EGARCH, APARCH, GJR-GARCH, and FIGARCH models are fitted
to the log return series of the selected datasets. It is seen that the FIGARCH model is the
best-fitted model for all the time series and it confirmed the presence of long memory in
volatility.

Key words: GARCH; Long memory; Nonlinear models; Time series; Volatility.

1. Introduction

Time series analysis is used to identify patterns and trends in the dataset, and it
helps make predictions about future values. Time series modelling is a crucial aspect for un-
derstanding the price behaviour and movement of any economic goods including the prices
of agricultural commodities. The major breakthrough in time series modelling was first pio-
neered by Box and Jenkins (1970) through the introduction of the autoregressive integrated
moving average (ARIMA) model. The ARIMA model is based on the assumptions of lin-
earity and stationarity of the dataset and the homoscedasticity of the error variance. Lots
of applications of the ARIMA model can be found in the literature (Paul et al., 2014, 2020;
Agarwal et al., 2021). Linear models take advantage of their analytical and implementable
easiness over the others. But it is irrational to assume a priori about the linear process for
time series. Volatility is the nonlinear aspect of time series. It is the degree of unexpected
variation of its realizations over a certain period. Engle (1982) introduced the autoregressive
conditional heteroscedastic (ARCH) model for capturing the volatility of any time series.
Later, its generalization, i.e. generalized ARCH (GARCH) model was proposed by Boller-
slev (1986) and Taylor (1986) independent of each other. Applications of the GARCH model
can be found in Paul et al. (2009, 2015), etc. The GARCH model is symmetric. It does not
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account for the sign of shocks and only takes into consideration the amount of shocks’ effects
on volatility. Hence, it cannot capture the asymmetric behaviour of price volatility, i.e.,
reactions to the volatility may differ depending on whether the positive and negative shocks
are of the same magnitude. The exponential GARCH (EGARCH) model (Nelson, 1991),
Asymmetric Power ARCH (APARCH) model (Ding et al., 1993), and GJR-GARCH model
(Glosten et al., 1993) are better alternatives to the GARCH model for addressing asym-
metric volatility. Again, the realizations of a time series may have long term dependency.
In the presence of long term dependency, the autocorrelation function (ACF) and partial
autocorrelation function (PACF) are significant for a long lag. This is known as hyperbolic
decay. The long memory process can be present in both linear and nonlinear dynamics of
a time series. If long memory is present in the linear model then the autoregressive frac-
tionally integrated moving average (ARFIMA) model (Granger and Joyeux, 1980) is useful.
Fractional integration is a generalization of ordinary integration, where the integral is taken
to a fractional power. Some applications of the ARFIMA model can be found in Paul (2014)
and Rakshit et al. (2022). Similarly, the fractionally integrated GARCH (FIGARCH) model
(Baillie et al., 1996) is useful for capturing the long memory in volatility. Paul et al. (2016)
applied the FIGARCH model for modelling long memory in the volatility of the spot price
of gram in Delhi, India. In the presence of long memory both in the mean and variance
structure, Mitra et al. (2018) applied the ARFIMA-FIGARCH models for modelling the
potato price of the Agra and Amritsar markets, India.

Agriculture is the backbone of the Indian economy. Around 60% of the Indian popu-
lation depends on agriculture for their livelihood. As per the Second Advance Estimates of
National Income, 2022-23 released by the Ministry of Statistics and Programme Implemen-
tation (MoSPI), the share of Gross value added (GVA) of agriculture and allied sectors in
the total economy is 18.3% at current prices. The volatility study of the price series of agri-
cultural commodities is an important aspect to social science researchers (Paul and Garai,
2021; Rakshit et al., 2021, 2023; Garai et al., 2023). Mustard is an important oilseed crop
in India. It is grown in the rabi (winter) season and is a major source of edible oil for the
country. The oilcake from mustard seeds is used as a feed for livestock. In addition to its
edible oil, mustard has a number of other uses. The leaves of the mustard plant can be eaten
as a vegetable, and the flowers can be used to make mustard seed paste, which is used as a
condiment. Mustard seeds also have medicinal properties and have been used traditionally
to treat a variety of ailments, including arthritis, rheumatism, and respiratory problems.
Mustard cultivation provides livelihood opportunities for a large number of farmers, espe-
cially in the states of Rajasthan, Uttar Pradesh, Madhya Pradesh, and Punjab, where it
is extensively grown. Earlier, it is seen that the modelling and forecasting of rapeseed and
mustard prices helps in improving decision making in Rajasthan (Bhardwaj et al., 2015). In
the present study, the modal daily spot price series of mustard for Khedli (Laxmangarh),
Atru, Nimbahera and Anoopgarh markets of Rajasthan are used. The GARCH, EGARCH,
APARCH, GJR-GARCH and FIGARCH models are applied to the selected time series. Sec-
tion 2 includes a description of the used models. The empirical illustration is given in Section
3 followed by concluding remarks in Section 4.
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2. Materials and methods

2.1. The ARCH and GARCH models

ARIMA is a linear model that cannot address the nonlinear dynamics of a time series.
Homoscedasticity in the error variance is a basic assumption of this model. By relaxing the
linear and homoscedasticity assumptions, the ARCH model is introduced by taking into
account substantial autocorrelations present in the squared residual series to capture the
nonlinear dynamics of a time series. A process {εt} is said to follow the ARCH (q) model if
the conditional distribution of {εt} given the available information (ψt−1) up to t − 1 time
epoch is represented as:

εt|ψt−1 ∼ N (0, ht) and εt =
√
htνt (1)

where νt is identically and independently distributed (IID) innovation with zero mean and
unit variance. The conditional variance ht of ARCH (q) model is calculated as

ht = α0 +
q∑

i=1
αiε

2
t−i, α0 > 0, αi ≥ 0 ∀ i and

q∑
i=1

αi < 1 (2)

The GARCH model is a more parsimonious version of the ARCH model where the
number of parameters to be estimated is less. Here, the conditional variance is treated
as a linear function of its own lags. The GARCH (p, q) model has the following form of
conditional variance

ht = α0 +
q∑

i=1
αiε

2
t−i +

p∑
j=1

βjht−j (3)

provided α0 > 0, αi ≥ 0 ∀ i βj ≥ 0 ∀ j

αi and βj parameters indicate how previous shocks and volatility have influenced
current volatility, respectively. The GARCH (p, q) model is said to be weakly stationary if
and only if

q∑
i=1

αi +
p∑

j=1
βj < 1 (4)

The GARCH model only considers the dependencies of volatility on the magnitude
of the shocks, and it does not consider the sign of the shocks that influence the degree of
volatility. The EGARCH, APARCH, and GJR-GARCH models can be useful to overcome
this gap.

2.2. EGARCH model

The EGARCH model is introduced by defining the conditional variance in terms of
the logarithm function. The main advantage of this model over the GARCH model, aside
from addressing the asymmetric volatility, is that no restriction is imposed on the parameters
as the positivity of the conditional variance is always achieved. The conditional variance for
the EGARCH model is defined as

ln ht = α0 +
p∑

j=1
βjln ht−j +

q∑
i=1

(
αi

∣∣∣∣∣ εt−i√
ht−i

∣∣∣∣∣+ γi
εt−i√
ht−i

)
(5)
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where, γi is the asymmetric factor which explains the asymmetric effect due to external
shocks. For EGARCH (1,1) model conditional variance ht is reduced to

ln ht = α0 + β1ln ht−1 +
(
α1

∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣+ γ
εt−1√
ht−1

)
(6)

2.3. APARCH model

The APARCH model considers some asymmetric power to the conditional variance
ht. The conditional variance of the APARCH model is defined as

h
δ
2
t = α0 +

p∑
j=1

βjh
δ
2
t−j +

q∑
i=1

αi (|εt−i| − γεt−i)δ (7)

where γ(−1 < γ < 1) is the parameter for asymmetry and δ(> 0) is the power term
parameter. The APARCH model is a general framework of models. Different orders of
GARCH models can be fitted within the APARCH model by defining specific values to the
parameters. For δ = 2 and γ = 0, the APARCH model is the same as the GARCH model.
The conditional variance ht for APARCH (1,1) model is reduced to

h
δ
2
t = α0 + β1h

δ
2
t−1 + α1 (|εt−1| − γεt−1)δ (8)

2.4. GJR-GARCH model

The GJR-GARCH model considers the impact of ε2
t−1 on the conditional variance

based on the sign of εt−1. An indicator variable is introduced to capture the sign dependency.
The conditional variance of the GJR-GARCH model is defined as

ht = α0 +
p∑

j=1
βjht−j +

q∑
i=1

αiε
2
t−i + γε2

t−1It−1 (9)

where γ(−1 < γ < 1) is the asymmetric parameter and It−1 is the indicator variable, such
that

It−1 = 1 if εt−1 < 0
0 if εt−1 ≥ 0

For GJR-GARCH (1,1) model conditional variance ht is reduced to

ht = α0 + α1ε
2
t−1 + β1ht−1 + γε2

t−1It−1 (10)

2.5. FIGARCH model

The FIGARCH model is useful when the volatility is symmetric i.e. positive and
negative shocks of the same magnitude exhibit the same response to volatility and the
volatility exhibits long term persistence. The FIGARCH model is derived by introducing
a fractional differencing parameter in the GARCH model after some algebraic operations.
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Tayefi and Ramanathan (2012) provided a thorough review of the FIGARCH model. The
FIGARCH (p, d, q) model can be expressed as

[1 − α (L) − β (L)] (1 − L)d ε
2
t = α0 + [1 − β (L)] zt (11)

where, α (L) and β (L) are polynomials in lag operator and (1−L)d is the fractional difference
operator. Here, d is a fraction and 0 < d < 1.

3. Empirical illustration

3.1. Data description

For empirical illustration purposes, the daily modal spot prices (Rs./q) of mustard for
four markets in Rajasthan namely Khedli (Laxmangarh), Atru, Nimbahera and Anoopgarh
are collected from the Ministry of Agriculture and Farmers’ Welfare, Government of India
for the study period of 1st January 2010 to 31st May 2023 (total number of observation is
4899). Since the square of return is regarded as the realization of volatility, the analysis is
done with the log return series of the selected time series data. For a time series {yt} the
log return series {rt} is calculated as

rt = ln yt

yt−1
(12)

The latest 250 realizations of the log return series of each of the selected markets are used as
the model validation set, while the remaining previous portion is used as the model building
set.

3.2. Descriptive statistics

The descriptive statistics of the selected price series are given in Table 1. The Khedli
market has the highest mean price, while the Nimbahera market has the lowest mean price.
The Atru market has the highest median price and the Nimbahera market is the lowest one.
Regarding the minimum price, the Khedli market minimum price is significantly lower than
the others. The Khedli market has the highest maximum price and the Nimbahera has the
lowest maximum price. All the selected price series are positively skewed and leptokurtic.
Figure 1 shows the time plots of the selected price series. The time plots of all the price
series show a similar pattern of price variation.

3.3. Test for stationarity

The stationarity of the time series is a prior assumption for the GARCH modelling.
Using the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979), Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992), and the Phillips-Perron (PP)
test (Phillips and Perron, 1988), the stationarity of the log return series and the squared log
return series are tested (Table 2). For ADF and PP tests, the null hypothesis is that the
unit root is present in the time series. For the KPSS test, the null hypothesis is that the
unit root is not present in the time series. All three tests terminate the possibility of the
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Table 1: Descriptive statistics of selected price series

Statistics Khedli Atru Nimbahera Anoopgarh
Mean (Rs./q) 4040.02 3883.61 3748.34 3863.27

Median (Rs./q) 3523.35 3589.03 3475.82 3588.00
Minimum (Rs./q) 1055.00 2026.00 2000.00 2108.00
Maximum (Rs./q) 8300.00 8091.00 7715.00 8031.00

S.D. (Rs./q) 1215.30 1232.00 1175.12 1234.29
CV (%) 30.08 31.72 31.35 31.95

Skewness 1.45 1.15 1.00 1.11
Kurtosis 1.32 0.84 0.39 0.75

Figure 1: Time plots of the daily price series

presence of a unit root in the log return series and the squared log return series (p-values
are given in parenthesis).

Table 2: Test for stationarity

Market Khedli Atru Nimbahera Anoopgarh
Series Log return Log return Log return Log return
ADF -23.44 -18.5 -18.89 -17.97

(0.01) (0.01) (0.01) (0.01)
KPSS 0.01 0.04 0.03 0.10

(0.10) (0.10) (0.10) (0.10)
PP -5674.1 -6079.5 -5850.8 -5724.6

(0.01) (0.01) (0.01) (0.01)
Series Squared log return Squared log return Squared log return Squared log return
ADF -15.15 -14.81 -14.98 -15.85

(0.01) (0.01) (0.01) (0.01)
KPSS 0.39 0.25 1.22 0.41

(0.08) (0.10) (0.10) (0.07)
PP -2356.8 -2527 -2644 -2781.9

(0.01) (0.01) (0.01) (0.01)
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3.4. Test for long memory

The GPH test (Geweke and Porter-Hudak, 1983) is used to check the presence of
long memory in the log return series and the squared log return series (Table 3). It is seen
that the fractional differencing parameters for the log return series are not significant. But,
they are significant for their corresponding squared log return series. It implies that the long
memory is present in the squared log return series but not in the log return series.

Table 3: GPH test

Market Log return Squared log return
d s.e. Z d s.e. Z

Khedli -0.088 0.081 -1.085 0.211 0.073 2.884
Atru 0.157 0.088 1.776 0.128 0.065 1.976

Nimbahera -0.137 0.097 -1.403 0.24 0.106 2.259
Anoopgarh -0.095 0.096 -0.987 0.224 0.086 2.596

3.5. ACF and PACF plots

The ACF and PACF plots help to examine the statistical relationships between the
realizations of a time series through visualization. Figure 2 depicts the ACF and PACF plots
of the selected log return series and the ACF plots of the squared log return series. The
ACF and PACF plots of the log return series are decaying at exponential rates. It implies
the absence of long memory in the mean model. But, hyperbolic decay is visible in the ACF
plots of the squared log return series. It implies the presence of long memory in volatility.
The GPH test’s results also support the same conclusions.

3.6. Fitting of models

In the first step, the AR (1) model is fitted as the mean model in all the log return
series. After that, the residuals are obtained and tested for the presence of conditional
heteroscedasticity using the ARCH-LM test. The null hypothesis for this test is the absence
of the ARCH effect in the residual series. It is seen that the ARCH-LM test is significant
for all residual series and the presence of ARCH effect in all the residual series is confirmed.
After that, the GARCH, EGARCH, APARCH, GJR-GARCH, and FIGARCH models are
fitted to the residual series. The parameters are estimated using the maximum likelihood
estimation procedure. The best fitted model for all the time series is chosen based on the
degree of fitting in terms of three popularly used error functions namely Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)
in the model building set. These error functions are calculated as

RMSE =
[

1
k

k∑
t=1

(yt − ŷt)2
] 1

2

(13)

MAE = 1
k

k∑
t=1

|yt − ŷt| (14)
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Figure 2: ACF and PACF plots

MAPE = 1
k

k∑
t=1

|yt − ŷt|
yt

× 100 (15)

where k denotes the number of realizations used, yt is the observed value and ŷt is
the corresponding predicted value.

The estimated parameters of the best-fitted models are given in Table 4. It is seen
that the FIGARCH model is the best-fitted model for all the markets. For all the series
the parameters α1, β1 and d are highly significant. This implies that the current volatility
significantly depends on previous volatility as well as previous shock. The presence of long
memory is also significant for all cases. Fitting performances of the used models in the model
building set in terms of RMSE, MAE and MAPE are given in Table 5. It is seen that for all
the markets the best fitted model is the AR (1)-FIGARCH (1, d, 1) model. The ACF and
PACF plots of the residual series, after fitting the AR (1)-FIGARCH (1, d, 1) model, for all
the markets, do not exhibit any systematic trend and almost all the correlations lie within
the 95% confidence interval.

In the model validation set, the rolling window forecast for 50 days, 100 days, 150
days, 200 days and 250 days are obtained and they are given in Table 6. It can be seen that
for Khedli and Anoopgarh markets the forecasting performance is improving by increasing
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Table 4: Estimate of parameters of the best-fitted models

Market Khedli Atru Nimbahera Anoopgarh
parameter AR(1) - FIGARCH AR(1) - FIGARCH AR(1) - FIGARCH AR(1) - FIGARCH

(1, d, 1) (1, d, 1) (1, d, 1) (1, d, 1)
Mean Model

Constant 0.000 -0.001 -0.000 0.000
(0.000)*** (0.000)*** (0.000) (0.000)

AR(1) -0.550 -0.327 -0.410 -0.230
(0.000)*** (0.016)*** (0.016)*** (0.019)***

Variance Model
Constant 0.000 0.000 0.000 0.000

(0.000) (0.000)*** (0.000) (0.000)***
α1 0.152 0.961 0.820 0.311

(0.000)*** (0.004)*** (0.194)*** (0.026)***
β1 0.649 0.942 0.797 0.824

(0.000)*** (0.003)*** (0.219)*** (0.012)***
d 0.727 0.577 0.463 0.631

(0.000)*** (0.013)*** (0.050)*** (0.033)***

Table 5: Fitting performance of the selected models in the model building set

Market Model RMSE MAE MAPE (%)
AR(1)-GARCH (1,1) 103.165 35.684 0.930
AR(1)-EGARCH(1,1) 107.785 36.921 0.962

Khedli AR(1)-APARCH (1,1) 99.267 36.163 0.702
AR(1)-GJRGARCH (1,1) 98.542 36.408 0.688
AR(1)-FIGARCH (1, d, 1) 67.986 23.223 0.575

AR(1)-GARCH (1,1) 39.918 20.478 0.520
AR(1)-EGARCH(1,1) 39.871 18.858 0.478

Atru AR(1)-APARCH (1,1) 38.233 19.554 0.496
AR(1)-GJRGARCH (1,1) 39.344 20.167 0.512
AR(1)-FIGARCH (1, d, 1) 32.608 16.317 0.410

AR(1)-GARCH (1,1) 56.147 28.414 0.755
AR(1)-EGARCH(1,1) 50.373 25.513 0.678

Nimbahera AR(1)-APARCH (1,1) 56.484 28.583 0.760
AR(1)-GJRGARCH (1,1) 59.615 30.157 0.802
AR(1)-FIGARCH (1, d, 1) 48.295 24.481 0.651

AR(1)-GARCH (1,1) 19.260 9.822 0.240
AR(1)-EGARCH(1,1) 16.133 8.229 0.218

Anoopgarh AR(1)-APARCH (1,1) 16.999 8.670 0.212
AR(1)-GJRGARCH (1,1) 18.385 9.376 0.229
AR(1)-FIGARCH (1, d, 1) 14.963 7.652 0.202

the forecast horizon. For the Atru market, the numerical values of these three error functions
first increase and then decrease. For the Nimbahera market, they decrease, then increase and
again then decrease. All these are because of the presence of long memory in volatility. Long
memory in volatility plays a crucial role in increasing the forecast efficiency while increasing
the forecast horizon at different levels.
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Table 6: Rolling window forecasting performance of best-fitted models in the
model validation set

Market Model Horizon RMSE MAE MAPE (%)
50 138.469 89.017 1.595
100 131.694 87.371 1.529

Khedli AR (1) - FIGARCH (1, d , 1) 150 129.799 86.693 1.488
200 124.836 85.922 1.472
250 117.413 81.497 1.427
50 75.871 61.047 1.054
100 84.717 66.929 1.145

Atru AR (1) - FIGARCH (1, d , 1) 150 89.824 68.346 1.207
200 88.569 65.951 1.206
250 87.919 65.031 1.202
50 202.693 116.820 2.039
100 166.421 102.061 1.748

Nimbahera AR (1) - FIGARCH (1, d , 1) 150 185.467 113.154 2.072
200 241.414 114.319 2.249
250 218.968 101.744 2.024
50 141.472 106.313 1.874
100 131.277 98.890 1.719

Anoopgarh AR (1) - FIGARCH (1, d , 1) 150 126.541 96.082 1.710
200 122.185 94.336 1.709
250 118.971 91.240 1.707

4. Conclusions

In this article, the mustard price volatility of four markets from the state of Rajasthan
is studied. The presence of long memory in volatility for these series is confirmed using the
GPH test. The GARCH, EGARCH, APARCH, GJR-GARCH and FIGARCH models are
fitted to the log return series of the selected markets and it is seen that the FIGARCH model
is the best fitted model for all the markets. The presence of long memory in volatility helps
increase the model forecasting efficiency on a larger horizon. A better understanding of price
volatility in the presence of long memory in volatility can help improve decision scenarios.
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Abstract
Even though the childhood mortality rates have been on a steady decline in India,

they are still unacceptably high across many parts of the country. As per WHO estimates,
India experienced 490 thousand new born deaths in 2020, the highest in the world. To achieve
the Sustainable Development Goal (SDG) goal of reducing under-five mortality to at least as
low as 25 per 1,000 live births in every country by 2030, India needs to identify factors acting
as barriers in the implementation of health policies and programmes to improve accessibility,
utilization and outreach of quality public healthcare systems to all.

The objective of this study is to identify and assess the impact of demographic,
socio-economic and health resource factors associated with infant mortality in India. A
comparative assessment of the current status of child mortality in India has been presented.
Further, risk of infant deaths associated with these factors has been evaluated using a binary
logistic regression. Individual child level data from the fifth National Family Health Survey
(NFHS 5) has been used for the analysis.

Out of the four factors included in the model, education level of mother has come out
to be the most significant determinant of infant mortality. Results show that the odds of
infant mortality increase consistently as the education level of mother decreases. Those born
to a mother with no education are at more than two times risk of dying within 1 year as
compared to those born to a mother with higher education. An interesting finding, contrary
to the historical trend, is that the risk of infant mortality in male child is significantly higher
(by around 25%), as compared to that of a female child.

Key words: Maternal and Child Health; Healthcare; Under-five mortality; Infant mortality;
Excess girl child mortality; Female literacy.
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1. Introduction

There is a potential association between the causes of infant mortality and factors
that are likely to influence health status of the whole population, see Crevoiserat and Kim
(2013). Three significant measures of child mortality are neonatal mortality – probability of
dying in the first month of life, infant mortality – probability of dying before reaching the
first birthday, and the under-five mortality – probability of dying before the fifth birthday.
India as a member state of the United Nations had adopted the now named Sustainable
Development Goals (SDGs) goals, previously known as the Millennium Development Goals,
since 2000. These goals, 17 in all, aim at reducing economic and social inequities among
nations - ‘they recognize that ending poverty and other deprivations must go hand-in-hand
with strategies that improve health and education, reduce inequality, and spur economic
growth – all while tackling climate change and working to preserve our oceans and forests
(https://sdgs.un.org/goals).The Sustainable Development Goal 3 (SDG 3) - Good Health
and Well Being, is aimed at ensuring healthy lives and promoting well-being for all at all
ages. In particular, the target of goal 3.2 is to end preventable deaths of newborns to at least
as low as 12 per 1000 live births in every country and reduce under-five mortality to at least
as low as 25 per 1,000 live births in every country by 2030. In India, recent data from the
NFHS 5 survey report of 2019-21 have estimated neonatal mortality at 25, infant mortality
rate at 35 and the under-five mortality at 42 per 1000 live births. In terms of actual number
of child deaths, this is very high considering India is now expected to surpass China as the
most populous country in the world with a population exceeding one billion. UNICEF has
reported an estimate of 490 thousand newborn deaths in India in 2020 (Figure 1). This is
nearly twice that of Nigeria which has the second highest estimated number of new born
deaths at 271 thousand.

Figure 1: Number of new born deaths (in thousands) in 2020 [Data Source:
https://www.unicef.org]

These numbers for India remain worrisome, even after considerable reductions in the
last four decades. Evolving evidences on demographic and socioeconomic determinants of
child mortality from latest national surveys will be crucial to inform health policies and
overcome programmatic gaps. This paper examines the current status of child mortality in
India using survey data from various sources, primarily the NFHS 5. It also analyzes the
impact of some determinants currently associated with infant mortality in India.

Section 2 contains a comparative analysis of the current state of child mortality in
India with respect to the other G20 nations. In section 3, we have presented a synopsis of
the major socio-economic and demographic determinants of child mortality in India based
on exploratory findings from the NFHS 5 and SRS datasets. Furthermore, based on the
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NFHS 5 data, impact of these determinants on infant mortality in India has been assessed
using multiple logistic regression in section 4. Section 5 provides a comprehensive discussion
on the findings of the sections 2, 3, and 4.

2. Child mortality in India – An assessment

The Infant Mortality Rate (IMR) of India was recorded as 125 per 1000 live births
in 1978 and, almost forty five years later, it now stands at 28 per 1000 live births in 2020
(SRS bulletins, 1997-2021). The World Bank estimate of the IMR of India for the same
year is 27 per 1000 live births. The overall IMR and the IMRs for both male and female
child have been on a decline since 1998 as evident from the data (Figure 2). Despite the

Figure 2: IMR trend in India [Data Source: SRS bulletins, 1997–2021]
substantial drop over the years, the current IMR for India (2020) does not compare well
with the other G20 countries. G20 is a consortium of 19 countries and the European Union
that together represent around 85% of the global GDP, over 75% of the global trade, and
about two-thirds of the world population (https://www.g20.org). G20 initially focused on
broad macroeconomic issues but it has since expanded its agenda to include sustainable
development and health in its ambit. According to estimates of child mortality of the G20
nations in 2020 (https://data.worldbank.org), neonatal mortality rate of India is highest
among these nations at 20.3 (Figure 3). 15 of these nations are below the 5 mark, with
Indonesia having the next highest at 11.7. IMR of India is also the highest (Figure 4) at 27,
with Japan having the lowest at 1.8. Again, 15 of these G20 nations have an IMR less than
10. The under-five mortality rate of India stands at 32.6 with Japan being the lowest again
at 2.5 (Figure 5).
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Figure 3: G20 nations: neonatal mortality rates (2020) [Data Source:
https://data.worldbank.org]

Figure 4: G20 nations: infant mortality rates (2020) [Data Source:
https://data.worldbank.org)]

Figure 5: G20 nations: under-five mortality rates (2020) [Data Source:
https://data.worldbank.org]

3. Socioeconomic and demographic risk factors of child mortality

According to World Bank estimates (https://data.worldbank.org), 65% population of
India lives in rural areas. Statistics also indicate that the IMR has been uneven across the
rural urban divide (Figure 6). The National Rural Health Mission was launched in 2005.
One of the targets was to reduce IMR in rural areas to 30 by 2012. The Janani Suraksha
Yojana (JSY) is one such program under the National Rural Health Mission. This program
was introduced in 2005 with the objective of reducing maternal and neonatal mortality
by promoting institutional delivery among poor pregnant women. The JSY is currently
being implemented through the Accredited Social Health Activists (ASHA) and Anganwadi
Workers (AWW). Under this scheme, a comprehensive package of free and cashless services
is offered to all pregnant women, and sick infants up to the age of one year, in government
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health institutions. The Janani Shishu Suraksha Karyakram (JSSK), thereby is aimed at
reducing financial barriers to care and improving access to health services by eliminating out
of pocket expenditure in all government facilities.

Twenty years of IMR data of rural and urban population from 2000 to 2020, from
the SRS bulletins was examined and analysed. It was observed that the IMR has gone down
steadily in both rural and urban areas from 2000 to 2020. The gap between the two still
remains high with IMR in urban areas at 19 and in rural areas is higher at 31 per thousand
in 2020 (Figure 6). A t -test confirms that this difference between IMR values in rural and
urban areas in 2020 is statistically significant.

Figure 6: IMR in rural and urban areas in India, 2000-2020 [Data Source: SRS
Bulletin, 2000- 2020]

Several studies have established that there is an inverse relationship between female
literacy and infant mortality rate (Rao et al. (1996), Gokhale et al. (2002), Gakidou et al.
(2010), Singh et al. (2011), Balaj et al. (2021), Okui (2023)). A meta analysis of surveys from
92 countries by Balaj et al. (2021) observed a reduction in under-5 mortality of 31·0% for
children born to mothers with 12 years of education (i.e., completed secondary education).
A basic minimum level of education empowers females and helps creates awareness about
health practices. Maternal health is an immediate and important factor in determining
child mortality. Factors such as low birth weight, nutritional deficiency in infants are all
tied to maternal health and can affect the child’s survival. Socioeconomic and demographic
factors identified in various studies include nutritional status of mother, age of the mother,
gaps between two deliveries, access to healthcare services that ensure safe delivery along
with ante natal and post natal care (Thakkar et al. (2023), Patel and Olickal (2021), Bora
(2020) Singh et al. (2011)). From the observed data of educational status and percentage
of institutional deliveries obtained from the NFHS 5 survey, it can be seen in Figure7 that
higher the education level of the mother, the more likely she is to go for a safer delivery in
a health facility with trained medical staff. Among women who had completed 12 years of
schooling and above, 97 percent had opted for institutional deliveries as compared to women
with no schooling among which the percentage was 75.

From Table 1, it can be observed that the most common reason for not delivering in a
health facility for both rural as well as urban areas was that the woman did not think it was
necessary. In rural areas 19.5 percent women said that the husband or family did not allow
them to have the delivery in a health facility, 17.4 percent of women said that a health facility
was too far or there was no transportation, and 15.1 percent said it costs too much. 27.6 per-
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cent women in rural and 30.5 percent women in urban areas did not feet that it was necessary.

Table 1: Rural vs. urban response percentage on reasons for not deliv-
ering in a health facility

Sl. no. Reason for not delivering in health facility Urban Rural
1 Costs too much 15.2 15.1
2 Facility not open 9.1 9.8
3 Too far/ no transportation 12.4 17.4
4 Don’t trust/poor quality service 6.8 4.7
5 No female provider at facility 4.3 3.9
6 Husband /family did not allow 18.1 19.5
7 Not necessary 30.5 27.6
8 Not customary 3.6 3.5
9 Other 19.1 16.4

Data Source: NFHS 5, 2019-21

Figure 7: Percentage of institutional deliveries for different levels of schooling
[Data Source: NFHS 5, 2019- 2021]

In NFHS 5 data, wealth index is a composite measure of a household’s cumulative
living standard and relative economic status. The wealth index is calculated using data on
a household’s ownership of certain selected assets which include consumer items such as a
television and car; dwelling characteristics such as flooring material, type of drinking water
source, toilet facilities and other characteristics that are related to wealth status (NFHS 5
India Report). On the basis of household scores, the population is divided into five equal
categories (quintiles) each consisting of 20% of the population. Table 2 presents the wealth
index from the NFHS 5 survey report (2019-21). The rural urban divide in economic condi-
tion is further evident from the data in this table. Nearly 76% of the wealthiest population
falling in the highest two quintiles reside in urban areas as opposed to 24% in rural areas,
and more than 50% of the rural population falls in the lowest two quintiles.

Table 3 indicates that, in India, the brunt of high child deaths is borne by the
marginalized and socioeconomically disadvantaged sections of the population. For exam-
ple, the Infant Mortality Rate in the poorest 20 percent of the population is more than 3
times higher than that in the richest 20 percent of the population. This means that an
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Table 2: Distribution (in%) of wealth index by residency

Residency Lowest Second Middle Fourth Highest Total
India 20 20 20 20 20 100
Rural 3.2 7.2 15.5 28.6 45.5 100
Urban 27.8 26 22.1 16 8.1 100
Data Source: NFHS 5 Report, 2019-21

infant born in a relatively poor family is more than three times likely to die in infancy than
an infant born in a better off family. Similar conclusions follow for neonatal and under-five
mortality. A study by Goel et al. (2015), investigated the link between maternal health and
wealth index. They concluded that the number of antenatal care (ANC) visits increased as
the wealth index increased. Another study by Thakkar et al. (2023) came up with similar
results - women with less formal education, from poorer households and belonging to rural
areas had higher odds of inadequate visits. Among the reasons given for not delivering in a
health facility – ‘it costs too much’ and ‘was too far / no transportation’, together consti-
tuted 27.6% respondents in urban and 32.5% respondents in urban areas respectively.

Table 3: Child mortality rates by wealth quintiles

Wealth Quintile Neonatal Mortality Infant Mortality Under- Five Mortality
Lowest 39.2 53.1 63.4
Second 25.4 34.8 43.6
Middle 22.3 34.5 40.2
Fourth 19.4 29.2 33.7
Highest 10.9 16.2 19.4
Data Source: NFHS 5 Report, 2019-21

4. Risk assessment of determinants of infant mortality using NFHS 5 data

4.1. Socioeconomic and demographic determinants

Based on the review presented in the previous sections, four major factors are selected
for generating evidence on associated risk of infant mortality using the NFHS 5 data. These
are - type of place of residence, education level of the mother, wealth index of the household,
and sex of the child. Type of place of residence is classified into two categories- rural and
urban. Four levels of education were considered - no education, primary education, secondary
education and higher education. All five quintiles of the wealth index from NFHS 5 survey
are considered – poorest, poorer, middle, richer and richest are considered.

4.2. Methodology and results

Individual level data of children from NFHS 5 (file name: IAKR7EDT), downloaded
from the website of DHS [www.dhsprogram.com], was used for the analyses. Respondents
(mothers) are between 15 to 49 years of age. Since the age at death is in rounded-off months,
deaths till 11 months of age have been categorized as infant mortality. Children who were
alive at the time of interview and were 12 months or older are considered as those who did
not experience infant mortality. Summary of the data by different factors are provided in
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Table 4. A binary logistic regression with response variable as infant mortality status of
children has been fitted with the four factors (type of place of residence, education level of
the mother, wealth index of the household, and sex of the child), while adjusting for the
age of the respondent (mother) at the birth of her first child. Results of the fitted logistic
regression are presented in Table 5. All analyses have been performed using R software.

Out of the four factors included in the model, education level of mother has come
out to be the most significant determinant of infant mortality. Results show that the odds
of infant mortality increase consistently as the education level of mother decreases. Those
born to a mother with no education are at more than two times risk of dying within 1 year
as compared to those born to a mother with higher education (college and above). Similarly,
odds of infant mortality among children born to mothers with primary and secondary edu-
cation are around 2 times and 1.6 times of the odds for those born to mothers with higher
education. Although the estimated odds of infant mortality associated with lower wealth
index quintiles, as compared to that for the Richest group, are all higher, only two of the
odds ratios are statistically significant. That is, it does indicate higher odds of infant mor-
tality in relatively poorer households, but the odds do not increase consistently through the
subsequent lower levels of wealth quintiles. An interesting result is that there is no signifi-
cant difference in the odds of infant mortality among children born in households residing in
rural areas as compared to those residing in urban households. The risk of infant mortality
in male child is significantly higher (by around 25%), as compared to that of a female child.

5. Discussion

Child mortality rates in India are highly variable across the rural urban divide. De-
spite two decades of implementation of policies and programs to improve child mortality with
particular focus in rural areas, IMR in rural areas of India continue to be significantly and
consistently higher than in urban areas. The insignificant odds ratio of infant mortality in
urban areas as compared to rural areas, may be indicative of the narrowing gap, but in terms
of the IMR, NFHS 5 India report specifies that the under-five and infant mortality rates are
still considerably higher in rural areas than in urban areas. Similar conclusions were given
by Kumar et al. (2022) based on data from the earlier NFHS 4 survey. Their study found
an existing rural-urban gap in under-five mortality and the authors suggested that the social
and health policies need to reach rural children from poor families and uneducated mothers.

Based on the results of the present study we can conclude that female literacy remains
one of the risk factors associated with child mortality in India. Improvements in the literacy
rate of women will have a positive impact in reducing child mortality. The fact that 27.6 per-
cent women in rural and 30.5 percent women in urban areas felt that it was not necessary to
go for institutional deliveries, indicates a lack of awareness about safe deliveries, importance
of antenatal and postnatal care, proper nutrition of the mother. It reflects a casual approach
towards the birthing process. With reproductive and child health services being improved
through Health and Wellness centres and primary health care centres, the decision to avail
Antenatal care (ANC) and Postnatal care (PNC) services may depend more on awareness
than on economic status. Consequently, the education level of mother can be expected to
be a more significant determinant of infant mortality than household wealth index quintiles.
Ensuring education of women up to a minimum level would play a vital role here to empower
women to make better choices regarding health services. Policies and programs need to be
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Table 4: Data summary and distribution with respect to factors

designed to ensure that women complete at least a basic minimum level of 12 to 15 years of
schooling for the effects of education to reflect truly on the individuals.

The results for male and female IMR indicate that a male child is at a significantly
higher risk of mortality than a female child during the first year of life. Historically, IMR for
females in India have been higher than that of males (Figure 2). However, as per the finding
from our study, the risk of infant mortality is higher for male children than female children.
This is corroborated by the higher male IMR as per the NFHS 5 India report which may
be indicative of a recent change in trend in male and female IMR in India. Some earlier
studies, like, Graunt (1977), Naeye et al. (1971), Waldron (1983), have attributed childhood
mortality differences in sex to genetic and biological factors arguing that male children are
more susceptible to diseases as compared to their female counterparts, and hence have lower
survival rates. However, some later studies, like, Garenne (2003), and Pongou (2013), have
argued that while prenatal environment and child biology are important contributing factors
to sex differences in infant mortality, the effect of biology is much less important than the
literature suggests. In the absence of any conclusive evidence on this research question, there
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is a need for further investigation through well designed India-specific studies to identify and
understand the possible changes in the infant mortality trends in India.

Table 5: Results of the logistic regression

To conclude, socioeconomic and demographic factors continue to contribute to the
disparities in the risk of infant mortality. These factors have the potential to create barriers
for effective implementation of health programmes. With thousands of children in India still
not being able to make it beyond the initial crucial years of their lives, there is an urgent need
to identify and address such barriers in implementation and utilization of public healthcare
programmes. Such steps will be imperative for India to achieve the Sustainable Development
Goal (SDG) goal of reducing under-five mortality to at least as low as 25 per 1,000 live births
by 2030.

A limitation of this analysis is that regional variations have not been considered and
analysis has been performed at the national level only. Also, factors, like ANC visits, PNC,
etc. have not been included as there was a lot of missing data.
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Abstract 

 

Classification is that arena of science which deals with grouping of objects on the basis 

of information available about those objects. It plays a significant role for planning purposes 

in agriculture system. The aim of this study was to classify the rice genotypes using statistical 

methods like discriminant analysis and artificial neural network (ANN), such as multilayer 

perceptron neural network for different classes of yield. These methods are fitted to primary 

data recorded for 100 genotypes of rice for five morphological variables and the data has been 

collected from the trial laid in SKUAST, Jammu. The class variable grain yield was categorized 

into 3 classes and was considered as dependent variable and all morphological characters as 

independent variables. The ability measures of classification such as Accuracy Rate and Kappa 

Statistics were used for testing samples. Number of days for full maturity was found to be 

important attributing character followed by number of effective tillers per plant for 

classification. Artificial Neural Network model (85 %) performed better than Discriminant 

Analysis (75 %) for classification of genotypes for different classes of yield of rice genotypes.  

 

Key words: Classification; Rice; Discriminant analysis; Multilayer perceptron neural network; 

Accuracy rate; Kappa statistics. 

 

1. Introduction 

 

Agriculture sector plays a very crucial role in the economy of developing countries and 

it is the main source of income, employment and food for their population. With the aim of 

producing more and better crops, the agricultural sector has gone through many new 

technologies. According to UN Report 2017, the world population is expected to have an 

increase of 9.8 billion in 2050 and 11.2 billion in 2100. So, there should be need to increase 

world food production by 50% to feed the estimated world production. 

 

Rice is an important staple food in Jammu and Kashmir as well as all over the world 

and its production plays an important role in the life of all farmers. Agriculture and Food 

security policymakers all over the world should give their attention in promoting the research 

work and projects for studying the processing, food manufacturing, improvement in nutritive 
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values and potential health benefits of rice by considering its different varieties to promote their 

utilization as food in respective places. 

 

Classification is playing a very important role in the field of research in agriculture 

sector. It is a data mining technique used for prediction of class of objects and is an example 

of supervised learning as suggested by Kumar et. al. 2012. Classification predicts categorical 

label either discrete or ordered. Classification problems can be done using either statistical 

methods or machine learning methods or both. For classification through statistical methods, 

discriminant analysis and through machine learning methods, artificial neural network can be 

used. The classification of genotypes for different classes of yield, can helps to create genetic 

variability among the genotypes with respect to a particular character. 

 

The primary goal of the research work is to provide a best approach to classify the rice 

genotypes for different classes of yield on the basis of different characters. 

 

2. Material and method 

 

The primary data collected on yield and attributing characters of rice genotypes such as 

average plant height (X1), number of effective tillers per plant (X2), number of days for 50 

percent maturity (X3), number of days for full maturity (X4) and 1000 grains weight (X5) of 

100 rice genotypes from the trail laid in SKUAST Jammu. The yield of rice genotypes is 

considered as dependent variable which has been classified into three categories as given below 

 

Low    : Yield less than 150 grams 

Medium : Yield between 150 & 300 grams 

High       :  Yield greater than 300 grams 

 

and all other physical characters are considered as independent variables. The data set is 

divided randomly into training data consists of 80 percent of data and test data consists 

remaining 20%. Discriminant Analysis is a multivariate technique introduced by Fisher (1936) 

to differentiate between groups. The maximum number of discriminant functions that can be 

computed is equal to minimum of K-1 and t, where K is the number of groups and t is the 

number of variables. Suppose the first discriminant function is 

 

                                                              𝐷1 = 𝐴11𝑋1 + 𝐴12𝑋2 + ⋯ + 𝐴1𝑡𝑋𝑡  

 

 where the 𝐴1𝑗 is the weight of the jth variable for the first discriminant function. The weights 

of the discriminant function are such that the ratio is 
 

𝜆1 =
𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠 𝑆𝑆 𝑜𝑓 𝐷1

𝑊𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝𝑠 𝑆𝑆 𝑜𝑓 𝐷1 
 . 

 

Suppose the second discriminant function is given by 𝐷2 = 𝐴21𝑋1 + 𝐴22𝑋2 + ⋯ + 𝐴2𝑡𝑋𝑡. 

 

The weights of above discriminant function are estimated such that the ratio is 

 

𝜆2 =
𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠 𝑆𝑆 𝑜𝑓 𝐷2

𝑊𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝𝑠 𝑆𝑆 𝑜𝑓 𝐷2 
 . 
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The above 𝜆𝑖’s are maximized subject to the condition that 𝐷𝑖 and 𝐷𝑖−1are uncorrelated. The 

procedure is repeated until all possible discriminant functions are identified. Once the 

identification of discriminant functions is done, the next step is to determine a rule for 

classifying the future observations.  

 

The other technique used is multilayer 

perceptron (MLP), the most known and most 

frequently used type of neural network for 

classification problems. In this neural network 

there are multiple layers of neurons that are 

present between input and output. MLPs are 

also known as feedforward neural networks 

which means that data flow in one direction 

from the input to the output layer. Layers that 

are present in between the input and output 

layers are referred as hidden layers. The 

hidden layer performs useful intermediary computations before directing the input to the output 

layer. The input layer neurons are linked to the hidden layer neurons through some weights 

known as input-hidden layer weights. Similarly, the hidden layer neurons are linked to the 

output layer neurons by hidden-output layer weights.  

 

In order to check the classification ability of statistical models and artificial neural 

network model we use measures like Accuracy rate and Kappa statistics given as 

 

Accuracy Rate =  
correctly classified data

total data
× 100  

Kappa Statistics =  
𝑁 ∑ 𝑥𝑖𝑖

𝑘
𝑖=1 − ∑ 𝑥𝑖𝑟𝑥𝑖𝑐

𝑘
𝑖=1

𝑁2 −  ∑ 𝑥𝑖𝑟𝑥𝑖𝑐
𝑘
𝑖=1

 

 

where 𝑥𝑖𝑖 is the count of diagonal elements of the confusion matrix; 𝑥𝑖𝑟 and 𝑥𝑖𝑐 are the total of 

rows and columns of confusion matrix respectively and N is the total number of observations. 

 

3. Results and discussions 

 

The Discriminant analysis and Multilayer Perceptron Neural Network (MLPNN) used 

for classification of research data and the results of these methods have been discussed. 

 

Table 1: Classification table of discriminant analysis for yield of rice 

Sample Observed 

(Number of 

genotypes) 

Predicted (Number of genotypes) 

Low Medium High %  Correct 

Training 

(80 %) 

Low (9) 8 0 1 88.9 

Medium (50) 10 24 16 48.0 

High (21) 1 8 12 57.1 

Overall %  55.0 

Testing Low (5) 5 0 0 100.0 
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The classification of rice genotypes using discriminant analysis is given by Table 1 

which represents that in training dataset of discriminant analysis, 8 out of the 9 Low yield 

genotypes with 88.9 percent of accuracy, 24 out of the 50 Medium yield genotypes with 48.0 

percent of accuracy, 12 out of 21 High yield genotypes with 57.1 percent of accuracy are 

correctly classified and overall, 55.0 percent of the training cases are classified correctly. In 

testing dataset of discriminant analysis, 5 out of 5 low yield genotypes are classified correctly 

with 100 percent accuracy, 8 out of 13 medium yield genotypes are correctly with 61.5 percent 

of accuracy, 2 out of 2 high yield genotypes are correctly with 100 percent of accuracy and 

overall, 75 percent of the testing cases are classified correctly. 

 

Table 2: Tests of equality of group means 

 

Variable Wilks' 

Lambda 

F DF1 DF2 p-value 

X1 0.865 1.326 2 17 0.292ns 

X2 0.893 1.014 2 17 0.384ns 

X3 0.576 6.250 2 17 0.009** 

X4 0.557 6.755 2 17 0.007** 

X5 0.971 0.256 2 17 0.777ns 

ns: non-significant                                     **: significant at 1% level of significance 

 

The Table 2 represents that the Wilks’ Lambda statistics for variables average plant 

height, number of effective tillers per plant, number of days for 50 percent maturity, number 

of days for full maturity and 1000 grains weight which was 0.865, 0.893, 0.576, 0.557 and 

0.971 respectively. As per values of Wilks’ Lambda, the smaller the value of Wilks’ Lambda, 

the more important the independent variable. Therefore, it indicates that the important 

independent variable is number of days for full maturity followed by number of days for 50 

percent maturity, average plant height, number of effective tillers and 1000 grains weight for 

yield classes of rice genotypes. Also, it is concluded that the variables such as number of days 

for 50 percent maturity and number of days for full maturity are highly significant and these 

regressors are the main contributors for differences in means of three classes for yield of rice.  

The architecture of Multilayer Perceptron Neural Network (MLPNN) in Figure 1 

depicts that there are 5 input nodes and 4 hidden nodes for yield of rice, the lines with light 

colour represents weights greater than zero and the dark colour lines display weights less than 

zero. 

Table 3 depicts that in training dataset of MLPNN, 7 out of the 9 Low yield genotypes 

are correctly classified with 77.8 percent of accuracy, 39 out of 50 Medium yield genotypes 

are classified correctly with 78.0 percent of accuracy, 3 out of 21 High yield genotypes are 

correctly classified with 14.3 percent of accuracy and overall, 61.3 percent of the training 

cases are classified correctly. In testing dataset of MLPNN, 4 out of the 5 Low yield genotypes 

are correctly classified with 80 percent of accuracy, 13 out of 13 Medium yield genotypes are 

classified correctly with 100 percent of accuracy, 0 out of 2 High yield genotypes are correctly 

(20%) Medium (13) 3 8 2 61.5 

High (2) 0 0 2 100.0 

Overall %  75.0 
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classified with 0 percent of accuracy and overall, 85 percent of the testing samples are 

classified correctly. 

 
 

Figure 1: Architecture of MLPNN for yield of rice genotypes 

 

Table 3: Classification table of MLPNN for yield of rice genotypes 

 

Sample Observed 

(Number of 

genotypes) 

Predicted (Number of genotypes) 

Low Medium High % Correct 

Training 

(80 %) 

Low (9) 7 2 0 77.8 

Medium (50) 7 39 4 78.0 

High (21) 1 17 3 14.3 

Overall %  61.3 

Testing 

(20 %) 

Low (5) 4 1 0 80.0 

Medium (13) 0 13 0 100.0 

High (2) 0 2 0 0.0 

Overall %  85.0 

 

 

Figure 2 represents the importance of independent variable through MLP neural 

network for classification of rice genotypes for different classes of yield and depicts that 

number of days for 50 percent maturity is the most important independent variable for 

classification (100 percent) followed by number of effective tillers per plant (99.1 percent), 

average plant height (76 percent), 1000 grains weight (69.8 percent) and number of days for 

full maturity (51.2 percent). 
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Figure 2: Normalized independent variable importance 

 

Table 4: Classification ability measure 

 

Criteria Measures Discriminant Analysis Multilayer Perceptron 

Classification 

Ability 

Accuracy Rate 75 85 

Kappa Statistics 0.59 0.65 

 

Table 4 represents the value of different classification ability measures and these 

measures will help to select the best model for classification. The accuracy rate for 

Discriminant Analysis is 75 percent whereas for MLPNN it is 85 percent. Also, value of kappa 

statistics for discriminant analysis is 0.59 but 0.65 for MLPNN. 

 
4. Conclusion 

 

The MLPNN method performed better as compare to Discriminant Analysis method 

for classification of rice genotypes for different classes of yield of rice genotypes as it has larger 

values of classification ability measures. The important attributing character for classification 

of rice genotypes through MLPNN is number of days for 50 percent maturity followed by 

number of effective tillers per plant, average plant height, 1000 grains weight and number of 

days for full maturity whereas for Discriminant Analysis important attributing variable is 

number of days for full maturity followed by number of days for 50 percent maturity, average 

plant height, number of effective tillers and 1000 grains weight for classification of rice 

genotypes for yield. 

  
References 

 

Fisher, R. A. (1936). Discriminant Analysis and Statistical Pattern Recognition. John Wiley & 

Sons, Inc.publication.  



2023] CLASSIFYING GENOTYPES USING MORPHOLOGICAL CHARACTERS   

 
 

137 

Galdon, B. R., Mendez, E. M., Havel, J., and Diaz, C. (2010).  Cluster analysis and artificial 

neural networks multivariate classification of onion Varieties. Journal of Agricultural 

and Food Chemistry, 58, 11435–11440.  

Halagundegowda, G. R., Singh, Abhishek, and Meenakshi, H. K. (2017). Discriminant analysis 

for prediction and classification of farmers based on adoption of drought coping 

mechanisms. Agriculture Update, 12, 635-640. 

Khan, M., and Hooda, B. K. (2021). Potential of artificial neural networks as compared to 

 discriminant analysis in the classification of mustard accessions using grain yield. 

 International Journal of Statistics and Applied Mathematics, 6, 20-23. 

Kumar, R., and Verma, R. (2012). Classification algorithms for data mining: A survey. 

International Journal of Innovative Engineering Technology (IJIET), 1, 7-14. 

Nagraja M. S., and Singh, Abhishek (2018). Statistical models for classification of genotypes 

for yield of little Millet. International Journal of Agriculture Sciences, 10, 5593-5597. 

Nagraja, M. S., and Singh, A. (2018). Use of ordinal logistic regression and multiclass 

discriminant model for classification of genotypes for maturity of little millet. 

International Journal of  Pure Applied Biosciences, 6, 248-258. 

Pazoki, A. R., Farokhi, F., and Pazoki, Z. (2014). Classification of rice grain varieties using 

two artificial neural networks (mlp and neuro-fuzzy). The Journal of Animal & Plant 

Sciences, 24, 336-343.  

Praveen, S., and Gayatri, V. (2005). Discriminant analysis for rice-wheat system having the 

same attributing characters towards grain yield. Indian Journal Agricultural Research, 

39, 203-207.  

Savakar, D. (2012). Identification and classification of bulk fruits images using artificial neural 

networks. International Journal of Engineering and Innovative Technology, 1, 36-40. 





Special Proceedings: ISBN #: 978-81-950383-2-9
25th Annual Conference, 15–17 February 2023; pp 139–150

On Zero-inflated Generalized Alternative Hyper-Poisson
Distribution and its Properties

C. Satheesh Kumar and Rakhi Ramachandran
Department of Statistics

University of Kerala, Trivandrum, Kerala-695581

Received: 26 July 2023; Revised: 06 August 2023; Accepted: 08 August 2023

Abstract
A generalized version of the zero-inflated alternative hyper-Poisson distribution of

Kumar and Ramachandran (Statistica, 2021) is introduced and study some of its impor-
tant statistical properties such as mean, variance, recursion relations for probabilities, raw
moments and factorial moments. The estimation of the parameters of this distribution is
considered and the distribution has been fitted to a well-known data set. Further a gener-
alized likelihood ratio test procedure is applied for testing the significance of the inflation
parameter.

Key words: Confluent hypergeometric series; Count data modeling; Generalized likelihood
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1. Introduction

Bardwell and Crow (1964) considered a generalized version of the Poisson family of
distributions through the following probability mass function (p.m.f.), for x= 0, 1, 2, ...,
λ > 0 and θ > 0.

f(x) = P (X = x) = 1
ϕ(1;λ; θ)

θx

(λ)x

, (1)

where

ϕ(a; b; z) =
∞∑

k=0

(a)kz
k

(b)kk!

is the confluent hypergeometric series, in which

(a)k = a(a + 1)(a + 2)...(a + k − 1) = Γ(a+ k)
Γ(a) , for k=1, 2, ... and (a)0=1. The distri-

bution with p.m.f. (1) is known in the literature as the hyper-Poisson distribution (HPD).
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Kumar and Nair (2012) considered an alternative form of the hyper-Poisson distribu-
tion (AHPD). The p.m.f.. of the AHPD is the following, for y=0, 1, 2, ... .

P (Y = y) = γy

(ρ)y

ϕ(1 + y; ρ+ y; −γ), (2)

in which γ > 0 and ρ > 0. The Poisson distribution is the special case of the AHPD when
ρ = 1. Moreover over dispersion and under dispersion in cases of ρ > 1 and ρ < 1 is also one
of the important characteristics of the AHPD. Kumar and Ramachandran (2021) introduced
a zero-inflated version of the alternative hyper-Poisson distribution (ZIAHPD) whose p.m.f..
is given by

f(z) =
{
ω + (1 − ω)ϕ(1; ρ; −γ), z = 0
(1 − ω) γz

(ρ)z
ϕ(1 + z; ρ+ z; −γ), z = 1, 2, ... , (3)

in which ω ∈ [0, 1], ρ > 0 and γ > 0. When ρ = 1, the ZIAHPD reduces to the zero-inflated
Poisson distribution.

Through this paper we develop further a generalized version of the zero-inflated alter-
native hyper-Poisson distribution (ZIAHPD) of Kumar and Ramachandran (2021) which we
call “the zero-inflated generalized alternative hyper-Poisson distribution (ZIGAHPD)” and
discuss some of its important statistical properties. In section 2, we present the definition
of the ZIGAHPD and obtain its probability generating function, expressions for its mean
and variance, and recursion formulae for probabilities, raw moments and factorial moments.
Further, the estimation of the parameters of the model is discussed in section 3 and a test
procedure is discussed in section 4. In section 5 both procedures discussed in sections 3 and
4 are illustrated with its relevence with the help of a real life data set.

We need the following series representations in the sequel.

∞∑
x=0

∞∑
r=0

A(r, x) =
∞∑

x=0

x∑
r=0

A(r, x− r) (4)

∞∑
x=0

∞∑
r=0

A(r, x) =
∞∑

x=0

[ x
m

]∑
r=0

A(r, x− rm). (5)

2. Definition and Properties

We present the definition of the ZIGAHPD and discuss some of its properties.

Definition 1: A discrete random variable M is said to follow “the zero-inflated generalized
alternative hyper-Poisson distribution or in short ZIGAHPD” with parameters ω, λ, θ1, θ2
and θ3 if its p.m.f. is

f(m) = P (M = m) (6)

=


ω + (1 − ω)ϕ[1; λ; −(θ1 + θ2 + θ3)], m = 0

(1 − ω)
[ m

3 ]∑
j=0

[ m
2 ]∑

k=0

(1)m−2j−k
(λ)m−2j−k

ϕ[1 + m − 2j − k; λ + m − 2j − k; −(θ1 + θ2 + θ3)]
θ

m−3j−2k
1

(m−3j−2k)!
θk

2
k!

θ
j
3

j! , m = 1, 2, ...

0, otherwise
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in which ω ∈ [0, 1), λ > 0, θ1 > 0, θ2 ≥ 0 and θ3 ≥ 0.

Important special cases of the ZIGAHPD includes the following cases.

1. when ω = 0, ZIGAHPD → generalized alternative hyper-Poisson distribution (GAHPD)
of Kumar and Sandeep (2022).

2. when θ2 = θ3 = 0, ZIGAHPD → the ZIAHPD of Kumar and Ramachandran (2021)
with p.m.f.. (3).

3. when θ2 = θ3 = 0 and λ = 1, ZIGAHPD → ZIPD of Lambert (1992).

4. when θ3 = 0 and λ = 1, ZIGAHPD → zero-inflated Hermite distribution (ZIHD) of
Kumar and Ramachandran (2020).

5. when ω = 0, θ3 = 0 and λ = 1, ZIGAHPD → Hermite distribution (HD) of Kemp and
Kemp (1965).

6. when ω = 0 and θ3 = 0, ZIGAHPD → modified alternative hyper-Poisson distribution
(MAHPD) of Kumar and Nair (2013).

7. when ω = 0, θ2 = 0 and θ3 = 0, ZIGAHPD → alternative hyper-Poisson distribution
(AHPD) of Kumar and Nair (2012).

Now we obtain the following results.

Result 1: The probability generating function (p.g.f) G(t) of the ZIGAHPD with p.m.f.
(6) is the following.

G(t) = ω + (1 − ω) ϕ[1;λ; θ1(t− 1) + θ2(t2 − 1) + θ3(t3 − 1)]. (7)

Proof: By definition, the p.g.f of the ZIGAHPD having p.m.f. (6) is given by

G(t) =
∞∑

m=0
f(m)tm

= ω + (1 − ω)ϕ[1;λ; −(θ1 + θ2 + θ3)] + (1 − ω)
∞∑

m=1

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0
tm

(1)m−2j−k

(λ)m−2j−k

× ϕ[1 +m− 2j − k;λ+m− 2j − k + z; −(θ1 + θ2 + θ3)]
θm−3j−2k

1 θk
2θ

j
3

(m− 3j − 2k)!k!j!

= ω + (1 − ω)
∞∑

m=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0
tm

(1)m−2j−k

(λ)m−2j−k

θm−3j−2k
1 θk

2θ
j
3

(m− 3j − 2k)!k!j!
× ϕ[1 +m− 2j − k;λ+m− 2j − k + z; −(θ1 + θ2 + θ3)].
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In the light of the following result (λ)x(λ+ x)r = (λ)x+r, we have

G(t) = ω + (1 − ω)
∞∑

m=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(m− 2j − k)!(m− 3j − k)!
(m− 3j − k)!j!k!(m− 3j − 2k)

θm−3j−2k
1 θk

2θ
j
3

(λ)m−2j−k

(8)

× ϕ[1 +m− 2j − k;λ+m− 2j − k; −(θ1 + θ2 + θ3)]tm

= ω + (1 − ω)
∞∑

m=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(
m− 2j − k

j

)(
m− 3j − k

k

)
θm−3j−2k

1 θk
2θ

j
3

(λ)m−2j−k

× ϕ[1 +m− 2j − k;λ+m− 2j − k; −(θ1 + θ2 + θ3)]tm

= ω + (1 − ω)
∞∑

m=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(
m− 2j − k

j

)(
m− 3j − k

k

)
θm−3j−2k

1 θk
2θ

j
3

(λ)m−2j−k

tm

×
∞∑

r=0

(1 +m− 2j − k)r

(λ+m− 2j − k)r

[−(θ1 + θ2 + θ3)]r
r!

= ω + (1 − ω)
∞∑

m=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(
m− 2j − k

j

)(
m− 3j − k

k

)
θm−3j−2k

1 θk
2θ

j
3

(λ)m−2j−k

tm

× (1)m−2j−k

(m− 2j − k)!(λ)m−2j−k

∞∑
r=0

(1 +m− 2j − k)r

(λ+m− 2j − k)r

[−(θ1 + θ2 + θ3)]r
r!

= ω + (1 − ω)
∞∑

m=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(
m− 2j − k

j

)(
m− 3j − k

k

)
θm−3j−2k

1 θk
2θ

j
3

(λ)m−2j−k(m− 2j − k)!t
m

×
∞∑

r=0
(1)m−2j−k

(1 +m− 2j − k)r

(λ+m− 2j − k)r

[−(θ1 + θ2 + θ3)]r
r!

= ω + (1 − ω)
∞∑

m=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(
m− 2j − k

j

)(
m− 3j − k

k

)
θm−3j−2k

1 θk
2θ

j
3t

m

×
∞∑

r=0
(1)m−2j−k+r

[−(θ1 + θ2 + θ3)]r
(λ)m−2j−k+rr!(m− 2j − k)!

= ω + (1 − ω)
∞∑

m=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(
m− 2j − k

j

)(
m− 3j − k

k

)
θm−3j−2k

1 θk
2θ

j
3t

m

×
∞∑

r=0

(
m− 2j − k + r

r

)
[−(θ1 + θ2 + θ3)]r

(λ)m−2j−k+r

= ω + (1 − ω)
∞∑

m=0

∞∑
r=0

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(
m− 2j − k + r

r

)(
m− 2j − k

j

)(
m− 3j − k

k

)

× θm−3j−2k
1 θk

2θ
j
3

(λ)m−2j−k+r

[−(θ1 + θ2 + θ3)]rtm.
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Using inequality (4), we obtain

G(t) = ω + (1 − ω)
∞∑

m=0

∞∑
r=0

∞∑
j=0

[ m
2 ]∑

k=0

(
m+ 2j + r − k

r

)(
m+ j − k

j

)(
m− k
k

)
(9)

× (θ1t)m−2k(θ2t
2)k(θ3t

3)j

(λ)m+r+j−k

[−(θ1 + θ2 + θ3)]r

= ω + (1 − ω)
∞∑

m=0

∞∑
r=0

∞∑
j=0

∞∑
k=0

(
m+ j + r − k

r

)(
m+ j + k

j

)(
m+ k
k

)

× (θ1t)m(θ2t
2)k(θ3t

3)j

(λ)m+r+j+k

[−(θ1 + θ2 + θ3)]r

= ω + (1 − ω)
∞∑

m=0

∞∑
r=0

∞∑
j=0

m∑
k=0

(
m+ j + r

r

)(
m+ j
j

)(
m
k

)

× (θ1t)m−k(θ2t
2)k(θ3t

3)j

(λ)m+r+j

[−(θ1 + θ2 + θ3)]r

= ω + (1 − ω)
∞∑

m=0

∞∑
k=0

∞∑
j=0

(
m+ j + r

r

)(
m+ j
j

)
(θ1t+ θ2t

2)m(θ3t
3)j

(λ)m+r+j

[−(θ1 + θ2 + θ3)]r

= ω + (1 − ω)
∞∑

m=0

∞∑
k=0

m∑
j=0

(
m+ r
r

)(
m
j

)
(θ1t+ θ2t

2)m−j(θ3t
3)j

(λ)m+r+j

[−(θ1 + θ2 + θ3)]r

= ω + (1 − ω)
∞∑

m=0

∞∑
k=0

(
m+ r
r

)
(θ1t+ θ2t

2 + θ3t
3)m

(λ)m+r

[−(θ1 + θ2 + θ3)]r

= ω + (1 − ω)
∞∑

m=0

∞∑
k=0

(
m
r

)
(θ1t+ θ2t

2 + θ3t
3)m−r

(λ)m

[−(θ1 + θ2 + θ3)]r

= ω + (1 − ω)
∞∑

m=0

[θ1t+ θ2t
2 + θ3t

3 − (θ1 + θ2 + θ3)]m
(λ)m

= ω + (1 − ω)
∞∑

m=0

[θ1(t− 1) + θ2(t2 − 1) + θ3(t3 − 1)]m
(λ)m

which on simplification gives (7).

Result 2: The mean and variance of the ZIGAHPD with p.g.f (7) are

Mean = (1 − ω)
λ

(θ1 + 2θ2 + 3θ3)

and

V ariance =
{( 2

λ+ 1 − 1 − ω

λ

)
(θ1 + 2θ2 + 3θ3)2 + (θ1 + 4θ2 + 9θ3)

} (1 − ω)
λ

.

Next we derive certain recursion formulae for the probabilities, raw moments and
factorial moments of the ZIGAHPD through the following results. Hereafter, for the conve-
nience of the notation, we write fm(λ(j)) for the probability mass function f(m) as given in
(6) where λ(j) = (1 + j, λ+ j) for j = 0, 1, 2, ... .
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Result 3: A simple recursion formula for probabilities fm(λ(j)) of the ZIGAHPD is the
following

f1(λ(0)) = θ1

λ

(
f0(λ(1)) − ω

)
(10)

and

(m+ 1)fm+1(λ(0)) = 1
λ

[
θ1fm(λ(1)) + 2θ2fm−1(λ(1)) + 3θ3fm−2(λ(1))

]
, for m ≥ 1. (11)

Proof: The p.g.f of the ZIGAHPD given in (7) can be written as

G(t) = ω + (1 − ω) ϕ[1;λ; θ1(t− 1) + θ2(t2 − 1) + θ3(t3 − 1)]

=
∞∑

m=0
tmfm(λ(j)). (12)

On differentiating (12) with respect to t, we obtain the following.
∞∑

m=0
(m+ 1)fm+1(λ(0))tm = (1 − ω)

λ
(θ1+2θ2t+3θ3t

2) ϕ[2;λ+1; θ1(t−1)+θ2(t2−1)+θ3(t3−1)].

(13)
Also from (12), we have

(1 − ω)ϕ[2;λ+ 1; θ1(t− 1) + θ2(t2 − 1) + θ3(t3 − 1)] =
∞∑

m=0
fm(λ(1))tm − ω. (14)

Combining relations (13) and (14) we obtain
∞∑

m=0
(m+ 1)fm+1(λ(0))tm = (θ1 + 2θ2t+ 3θ3t

2)
λ

[ ∞∑
m=0

fm(λ(1))tm − ω

]
. (15)

Now, on equating the coefficients of t0 on both sides of (15), we get (10), and on equating
the coefficients of ty on both sides of (15), we get (11).

Result 4: For r ≥ 0, a recursion formula for raw moments µr(λ(0)) of the ZIGAHPD is

µ[r+1](λ(0)) = 1
λ

r∑
k=0

(
r
k

)
(θ1 + 2k+1θ2 + 3k+1θ3)µ[r−k](λ(1)). (16)

Proof: For any t ∈ ℜ = (−∞,∞) and i =
√

−1, the characteristic function of the ZIGAHPD
is

H(t) = G(eit)
= ω + (1 − ω) ϕ[1;λ; θ1(eit − 1) + θ2(e2it − 1) + θ3(e3it − 1)]

=
∞∑

r=0
µr(λ(0))(it)r

r! . (17)
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Differentiating (17) with respect to t, we get

∞∑
r=0

µ[r+1](λ(0))(it)r

r! = (1 − ω)
λ

(
θ1e

it + 2θ2e
2it + 3θ3e

3it
)

× (18)

ϕ[2;λ+ 1; θ1(eit − 1) + θ2(e2it − 1) + θ3(e3it − 1)].

Also, from (17) we have

(1 − ω)ϕ[2;λ+ 1; θ1(eit − 1) + θ2(e2it − 1) + θ3(e3it − 1)] =
∞∑

r=0
µ[r](λ(1))(it)r

r! − ω. (19)

Combining (18) and (19), we get
∞∑

r=0
µ[r+1](λ(0))(it)r

r! = 1
λ

(
θ1e

it + 2θ2e
2it + 3θ3e

3it
)( ∞∑

r=0
µ[r](λ(1))(it)r

r! − ω

)
. (20)

On expanding the exponential functions in the right hand side expression of (20) and equating
the coefficients of (it)r

r! on both sides we get (16).

Result 5: For r ≥ 1 a simple recursion formula for factorial moments µ[r](λ(0)) of the
ZIGAHPD is

µ[r+1](λ(0)) = θ1

λ
µ[r](λ(1)) + 2θ2r

λ
µ[r−1](λ(1)) + 3θ3r(r − 1)

λ
µ[r−2](λ(1)). (21)

Proof: The factorial moment generating function F(t) of the ZIGAHPD with p.g.f. (7) is
the following

F (t) = G(1 + t)
= ω + (1 − ω)ϕ[1;λ; θ1t+ θ2{(1 + t)2 − 1} + θ3{(1 + t)3 − 1}]

=
∞∑

r=0
µ[r](λ(0))t

r

r! . (22)

On differentiating (22) with respect to t, we get

1
λ

(1 − ω)(θ1t+ θ2{(1 + t)2 − 1}) + θ3{(1 + t)3 − 1)}× (23)

ϕ[2;λ+ 1; θ1t+ θ2{(1 + t)2 − 1} + θ3{(1 + t)3 − 1}] =
∞∑

r=0
µ[r+1](λ(0))t

r

r! .

From (22), we obtain

(1 − ω)ϕ[2;λ+ 1; θ1t+ θ2{(1 + t)2 − 1} + θ3{(1 + t)3 − 1}] =
∞∑

r=0
µ[r](λ(1))t

r

r! − ω. (24)
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Equations (23) and (24) together lead to
∞∑

r=0
µ[r+1](λ(0))t

r

r! = θ1 + 2θ2(1 + t) + 3θ3(1 + t)2

λ

( ∞∑
r=0

µ[r](λ(1))t
r

r! − ω

)
. (25)

On equating the coefficients of tr

r! , we get (21).

3. Maximum likelihood estimation

Here we consider the estimation of the parameters ω, λ, θ1, θ2 and θ3 of the ZIGAHPD
by the method of maximum likelihood. For any m = 0, 1, 2, ..., let A(m) be the observed
frequency of m events and let z be the highest value of m observed. Then the likelihood
function of the sample is given by

L(Θ;m) =
z∏

m=0
[f(m)]A(m),

where f(m) is the p.m.f. of the ZIGAHPD given in (6).
Now L(Θ;m) can be written as

L(Θ;m) = (f(0))s
z∏

m=1
(f(m))A(m),

where s = A(0).

Then the log-likelihood function can be written as

lnL(θ;m) = s ln [ω + (1 − ω)ϕ(1;λ; θ1 + θ2 + θ3)] +
z∑

m=1
A(m)

× ln
(1 − ω)

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(1)m−2j−k

(λ)m−2j−k

ϕ[1 +m− 2j − k;λ+m− 2j − k; −(θ1 + θ2 + θ3)]

× θm−3j−2k
1 θk

2 θ
j
3

(m− 3j − 2k)! k! j!

]
(26)

Assume that ω̂, λ̂, θ̂1, θ̂2 and θ̂3 be the maximum likelihood estimators of the param-
eters ω, λ, θ1, θ2 and θ̂3 of the ZIGAHPD. Now, on differentiating the log-likelihood function
(26) with respect to ω, λ, θ1, θ2 and θ3 and equating to zero, we obtain the following likelihood
equations:

∂ lnL
∂ω

= 0

which implies
s [1 − ϕ[1;λ; −(θ1 + θ2 + θ3)]]

ω + (1 − ω)ϕ[1;λ; −(θ1 + θ2 + θ3)]
−

z∑
m=1

A(m)
(1 − ω) = 0, (27)
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∂ lnL
∂λ

= 0

which implies
s(1 − ω)

ω + (1 − ω)ϕ[1;λ; −(θ1 + θ2 + θ3)]

∞∑
r=0

[−(θ1 + θ2 + θ3)]r
(λ)r

[ψ(λ) − ψ(λ+ r)] (28)

+
z∑

m=1
A(m)

[ m
3 ]∑

j=0

[ m
2 ]∑

k=0

(1)m−2j−k

[(λ)m−2j−k]2
θm−3j−2k

1 θk
2θ

j
3

(m− 3j − 2k)!k!j!

×
{

1
(λ)m−2j−k

∞∑
r=0

[−(θ1 + θ2 + θ3)]r
r!(λ+m− 2j − k)r

(1 +m− 2j − k)rϕ[1;λ; −(θ1 + θ2 + θ3)]

×[ψ(λ+m− 2j − k) − ψ(λ+m− 2j − k + r)] − ϕ[1;λ; −(θ1 + θ2 + θ3)]

× 1
(λ)m−2j−k

[ψ(λ+m− 2j − k) − ψ(λ+m− 2j − k + r)]
}

= 0,

∂ lnL
∂θ1

= 0

which implies

−s(1 − ω)/λϕ[2;λ+ 1; −(θ1 + θ2 + θ3)]
ω + (1 − ω)ϕ[1;λ; −(θ1 + θ2 + θ3)]

+
z∑

m=0
A(m)1

ξ


[ m

3 ]∑
j=0

[ m
2 ]∑

k=0

(1)m−2j−k

(λ)m−2j−k

(29)

× θm−3j−2k−1
1

(m− 3j − 2k − 1)!
θk

2θ
j
3

k!j! ϕ[1 +m− 2j − k;λ+m− 2j − k; −(θ1 + θ2 + θ3)]

−
[ m

3 ]∑
j=0

[ m
2 ]∑

k=0

(1)m−2j−k

(λ)m−2j−k

θm−3j−2k
1

(m− 3j − 2k)!
θk

2θ
j
3

k!j!
1

λ+m− 2j − k

× ϕ[2 +m− 2j − k;λ+ 1 +m− 2j − k; −(θ1 + θ2 + θ3)]} = 0,

∂ lnL
∂θ2

= 0

which implies

−s(1 − ω)/λϕ[2;λ+ 1; −(θ1 + θ2 + θ3)]
ω + (1 − ω)ϕ[1;λ; −(θ1 + θ2 + θ3)]

+
z∑

m=0
A(m)1

ξ


[ m

3 ]∑
j=0

[ m
2 ]∑

k=0

(1)m−2j−k

(λ)m−2j−k

(30)

× θm−3j−2k
1

(m− 3j − 2k)!
θk−1

2 θj
3

(k − 1)!j!ϕ[1 +m− 2j − k;λ+m− 2j − k; −(θ1 + θ2 + θ3)]

−
[ m

3 ]∑
j=0

[ m
2 ]∑

k=0

(1)m−2j−k

(λ)m−2j−k

θm−3j−2k
1

(m− 3j − 2k)!
θk

2θ
j
3

k!j!
1

λ+m− 2j − k

× ϕ[2 +m− 2j − k;λ+ 1 +m− 2j − k; −(θ1 + θ2 + θ3)]} = 0
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and
∂ lnL
∂θ3

= 0

which implies

−s(1 − ω)/λϕ[2;λ+ 1; −(θ1 + θ2 + θ3)]
ω + (1 − ω)ϕ[1;λ; −(θ1 + θ2 + θ3)]

+
z∑

m=0
A(m)1

ξ


[ m

3 ]∑
j=0

[ m
2 ]∑

k=0

(1)m−2j−k

(λ)m−2j−k

(31)

× θm−3j−2k
1

(m− 3j − 2k)!
θk

2θ
j−1
3

k!(j − 1)!ϕ[1 +m− 2j − k;λ+m− 2j − k; −(θ1 + θ2 + θ3)]

−
[ m

3 ]∑
j=0

[ m
2 ]∑

k=0

(1)m−2j−k

(λ)m−2j−k

θm−3j−2k
1

(m− 3j − 2k)!
θk

2θ
j
3

k!j!
1

λ+m− 2j − k

× ϕ[2 +m− 2j − k;λ+ 1 +m− 2j − k; −(θ1 + θ2 + θ3)]} ,

in which ψ(λ) = ∂
∂λ
log Γ(λ) and

ξ =
[ m

3 ]∑
j=0

[ m
2 ]∑

k=0

(1)m−2j−kθ
m−3j−2k
1 θk

2θ
j
3

(λ)m−2j−k(m− 3j − 2k)!j!k!ϕ[1 +m− 2j − k;λ+m− 2j − k; −(θ1 + θ2 + θ3)].

On solving the likelihood equations (27), (28), (29), (30) and (31) with the help of
some mathematical softwares, say Mathematica, one can obtain the maximum likelihood
estimators of the parameters of the proposed distribution.

4. Testing

In order to test the significance of the inflation parameter ω of the ZIGAHPD, we
adopt the following generalized likelihood ratio test (GLRT) procedure. Here the null hy-
pothesis is

H0 : ω = 0 against the alternative hypothesis H1 : ω ̸= 0.
The test statistic suggested in the case of GLRT is given by

−2 lnψ = 2 (ι1 − ι2) , (32)

where, ι1 = lnL(θ̂;m), where θ̂ is the maximum likelihood estimator for θ = (ω, λ, θ1, θ2, θ3)
with no restrictions, and ι2 = lnL(θ̂∗;m), in which θ̂∗ is the maximum likelihood estimator
for θ under the null hypothesis H0. The test statistic defined in (32) is asymptotically
distributed as χ2 with one degree of freedom.

5. Applications

In this section we illustrate all the procedures discussed in sections 3 and 4 with the
help of a real life data set.

The data here considered is a biological data based on the distribution of European
Corn borer Pyrausta Naubilalis in field corn (Avi et al. (2008)). We have fitted the ZIGAHPD
to the data set and considered the fitting of the models - ZIAHPD, ZIHD, ZIPD, ZIMAHPD
and GAHPD for comparison. For comparing the models we computed the values of χ2, AIC,
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BIC and AICc. The numerical results obtained are presented in Tables 1. Based on the
computed values of χ2, AIC, BIC and AICc as presented in Table 1, one can observe that
the ZIGAHPD gives a better fit to the data set while all other models such as ZIAHPD,
ZIHD, ZIPD, ZIMAHPD and GAHPD are not appropriate.

We have also calulated the values of the test statistic. The value of the test statistic
for lnL(θ̂∗;m) = −169.1 and lnL(θ̂;m) = −144.3 is given by 49.6. The critical value of
the test having 5% level of significance and degree of freedom one is 3.84, so that the null
hypothesis is rejected in all the cases. Thus, we conclude that the additional parameter ω
in the model is significant.
Table 1: Distribution of the spread of European Corn borer Pyrausta Naubi-

lalis in field corn (Rodriguez et.al., 2008) and the expected frequencies
computed using ZIAHPD, ZIHD, ZIPD, ZIMAHPD, GAHPD and ZI-
GAHPD.

Count Observed frequency ZIAHPD ZIHD ZIPD ZIMAHPD GAHPD ZIGAHPD
0 206 265.73 200.4 252.15 213.65 245.4 200.3
1 143 148.4 100.515 151.43 112.51 157.6 142.6
2 128 144.2 137.73 140.6 179.2 151.4 119.8
3 107 127.1 110.6 118.35 119.6 128.048 100.8
4 71 80.361 90.7 75.78 93.2 73.42 80.4
5 36 7.29 59.8 23.9 35.3 8.5 38.5
6 32 4.6 38.6 7.1 19.08 7.4 39.4
7 17 2.3 21.3 5.4 5.9 3.6 12.6
8 14 1.25 11.5 4.02 2.58 2.45 19.2
9 7 0.5 5.7 1.25 0.67 1.98 5.2
10 7 0.25 2.7 1.6 0.23 0.87 7.9
11 2 0.0024 1.52 0.0015 0.05 0.50 1.2
12 3 0.01 0.61 0.35 0.018 0.23 1.8
13 3 0.006 0.2 0.021 0.004 0.20 2.3
14 1 0.00003 0.08 0.006 0.00815 0.35 2.2
15 1 0.00009 0.03 0.0002 0.00025 0.05 1.1
16 1 0.000006 0.011 0.00004 0.00007 0.002 2.7
17 2 0.000007 0.003 0.041 0.000013 0.00035 2.5
18 1 0.000009 0.0013 0.000008 0.0000021 0.000007 1.5

Total 782 782 782 782 782 782 782

df 3 7 6 3 3 6

Estimates λ=12.09 λ=1.11 λ=3.95 λ=0.1 λ=0.15 λ=0.63
ω=0.59 ω=0.14 ω=0.17 ω=0.8 ω=0.29 ω=0.26
θ=7.0009 θ=0.89 θ1=0.32 θ=0.60 θ1=0.22

θ2=0.36 θ2=0.55
θ3=0.025

χ2-value 880.21 880.21 188.64 297.9 418.01 7.48
P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.2787

AIC 1733.5 3344.1 910.6 3766.18 1220.5 840.25
BIC 1734.3 3346.9 911.8 3769.9 1224.3 841.25.5
AICc 1739.6 3345.8 915.3 3769.4 1224.6 845.7
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Abstract
Random walks are mathematical objects for modelling random trajectories where the 

future of the trajectory does not depend on the past. We take three simple random walk 
where the increments are distributed as +1, −1 valued random variables with probabilities p 
and 1 − p. We study the expected first collision time of three such random walks. This work is 
an extension of the work of Coupier et. al. (2020) where they studied the case of p = 1/2.

Key words: Random walks; First collision time; Martingale.

AMS Subject Classifications: 62D05

1. Introduction

A random walk, denoted by RW, represents a trajectory or collection of trajectories
that consists of taking successive random steps, each of which are independent and identically
distributed. The most studied example of random walk is the walk on the integers Z, which
starts at an integer point and at each step moves by +1 or −1. This is known as the simple
random walk (SRW). When the probabilities of moving to +1 and to −1 are identical, we
call it the simple symmetric random walk (SSRW).

Random walks originate in almost all sciences quite naturally and find applications in
various branches of mathematics, computer science, biology, chemistry, physics. In Physics,
random walks are used to model the movement of particles in a random environment. The
limiting process of the random walk yields the Brownian motion which is central to almost
many predictive models. This has connected various branches of Mathematics and physics
through the application of random walk.

In biological science, the genetic drift is modelled using random walks, which provide a
general idea of the statistical processes involved. In physics, we can random walks to describe
an ideal chains of polymers. The concepts of random work has been very crucially used in
several fields such as psychology, finance, ecology. In Economics Stock market modelling
and pricing are done through the Brownian motion. It is possible to describe fluctuations
in the stock market with the random walk concepts. This has resulted several Nobel prizes

Corresponding Author: Anish Sarkar
Email: anish.sarkar@gmail.com
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in Economics. Random walks also find application in the Google search engine algorithms,
namely the page rank algorithm.

A simple way to construct the random walk is to flip a coin, and if the toss results
in a HEAD, move to right by single step, whereas if the toss results in a TAIL, move to left
by a single step. To define this walk formally, we take a sequence of independent random
variables independent and identically distributed random variables, called the increment
sequence, {Ik : k ∈ N} and an initial state x ∈ Z. The random walk, starting from x, is
defined as follows:

S0 = x and Sn = x +
n∑

k=1
Ik for n ∈ N.

This sequence {Sn : n ≥ 0} is called the random walk on Z.

In this article we deal with three independent simple random walks. Therefore, we will
consider three starting points. We note that if the starting positions of two random walks are
of different parity, they will never be at the same position at any time point. Thus, we need
to consider all starting positions of same parity. Since the intersection times and collision
times will not change when we translate all the processes by same amount, we may choose
the starting positions so that one random walk starts below the origin (the left random walk),
one at the origin (the middle random walk) and the other above the origin (the right random
walk). More precisely, we choose a and b positive even numbers and start the random walks
at −a, 0 and b respectively. We also consider three independent sequences of independent
and identically distributed increment random variables

{
I

(L)
k : k ≥ 1

}
,
{

I
(M)
k : k ≥ 1

}
and{

I
(R)
k : k ≥ 1

}
with

P
(

I
(s)
k = +1

)
= p = 1 − P

(
I

(s)
k = −1

)
(1)

where p ∈ (0, 1) and s ∈ {L, M, R}. Now, we consider the random walks represented by

S(L)
n = −a +

n∑
k=1

I
(L)
k , S(M)

n =
n∑

k=1
I

(M)
k and S(R)

n = b +
n∑

k=1
I

(R)
k .

By construction, these three random walks S(L)
n , S(M)

n and S(R)
n , starting from −a, 0 and +b

respectively, are independent. We define the first collision time of these three random walks
by

τc = inf
{

n ≥ 1 : (S(M)
n − S(L)

n )(S(R)
n − S(M)

n )(S(L)
n − S(R)

n ) = 0
}

. (2)

In this article we compute the expectation of τc. Coupier et. al. (2020) studied the behavior
of τc in the case of simple symmetric random walks, i.e., the increment random variables are
distributed as random variables taking values +1 with probability 1

2 and −1 with probability
1
2 . We extend the result of Coupier et. al. (2020) for any value of p ∈ (0, 1).

2. Collision of two random walks

In Spitzer (1964) it is shown that the first hitting time of a random walk to a state
where increment random variables are independent and identically distributed having mean
0 and finite variance is finite almost surely.
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We observe that the expectation of the increment random variables and the expecta-
tion of the square of the increment random variables are given by : for s ∈ {L, M, R},

E
(
I

(s)
k

)
= p − (1 − p) = 2p − 1 and

E
((

I
(s)
k

)2
)

= p + 1 − p = 1.

Therefore, we have

Var
(
I

(s)
k

)
= E

((
I

(s)
k

)2
)

−
(
E

(
I

(s)
k

))2
= 4p(1 − p).

In our particular case, we consider first the collision times of the left random walk and the
middle random walk, i.e., set

τL,M = inf
{

n ≥ 1 : S(L)
n = S(M)

n

}
= inf

{
n ≥ 1 : S(L)

n − S(M)
n = 0

}
. (3)

Similarly, we may define the first collision time of the middle random walk and the right
random walk by

τM,R = inf
{

n ≥ 1 : S(M)
n = S(R)

n

}
= inf

{
n ≥ 1 : S(M)

n − S(R)
n = 0

}
. (4)

We consider the collision time of the left and the middle random walk. We set the
difference of the two walks by

Xn = S(M)
n − S(L)

n (5)
for all n ≥ 0. Similarly set

Yn = S(R)
n − S(M)

n (6)
for all n ≥ 0. Hence, we observe that X0 = a and Y0 = b.

We may now rephrase the first collision time of two random walks as follows:

τL,M = inf
{

n ≥ 1 : Xn = 0
}

and τM,R = inf
{

n ≥ 1 : Yn = 0
}

. (7)

We observe that, for n ≥ 1,

Xn = S(M)
n − S(L)

n = a +
n∑

k=1

[
I

(M)
k − I

(L)
k

]
= a +

n∑
k=1

D
(M,L)
k

where D
(M,L)
k = I

(M)
k −I

(L)
k for any any k ≥ 1. Note that E

(
D

(M,L)
k

)
= E

(
I

(M)
k

)
−E

(
I

(M)
k

)
= 0

and Var
(
D

(M,L)
k

)
= Var

(
I

(M)
k

)
+ Var

(
I

(L)
k

)
= 8p(1 − p). Thus, it is clear that the difference

process {Xn : n ≥ 0} can also be be presented as a random walk with increments having
mean 0 with finite variance. Therefore, using the result of Spitzer (1964), we may conclude
that is finite almost surely. However, we will provide a direct argument and will actually
compute the generating function of the collision time of the middle random walk and left
random walk.
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Theorem 1: Under the Assumption, we have

τL,M < +∞ almost surely.

Note that there is nothing special about the middle and left random walks. The result
may be applied to any pair of random walks. So, as a corollary, we also have

Corollary 1: Under the Assumption, we have

τM,R < +∞ almost surely.

We will prove the result using martingale method. The method is inspired by the
results in Williams (1991).Let us define the filtration

{
F (M,L)

n : n ≥ 0
}

, where

F (M,L)
n = σ

(
I

(L)
k , I

(M)
k : k ≤ n

)
= σ

(
S

(L)
k , S

(M)
k : k ≤ n

)
is the σ-algebra generated by the increment random variables of the middle random walk
and the left random walk up to time n. Also, this is same as the σ-algebra generated by the
middle random walk and the left random walk up to time n. This is the natural filtration
associated with two random walks we are studying.

We have already observed that

Xn = a +
n∑

k=1

(
I

(M)
k − I

(L)
k

)

for n ≥ 0. The random variables {I
(M)
k − I

(L)
k : k ≥ 1} is a sequence of independently and

identically distributed random variables with common distribution being the same as of a
random variable taking values +2 with probability p(1 − p), −2 with probability p(1 − p)
and 0 with probability 1 − 2p(1 − p). Let us set α = p(1 − p).

For λ ∈ R, let us define, the Laplace transform of the common increment distribution
by

f(λ) = E
[
exp

(
−λ

(
I

(M)
1 − I

(L)
1

))]
= α

(
e2λ + e−2λ

)
+ (1 − 2α). (8)

Clearly, we have

f(λ) = α
(
e2λ + e−2λ − 2

)
+ 1 = α

(
eλ − e−λ

)2
+ 1.

This implies that f(λ) > 1 for λ ∈ R and f(λ) = 1 for λ = 0. Also, by continuity of f at 0,
f(λ) ↓ 1 as λ → 0.

Let us define, for n ≥ 0,

Zn = exp (−λXn)
(
f(λ)

)−n
. (9)

We first show
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Proposition 1: The sequence {Zn : n ≥ 0} is an F (M,L)
n -martingale.

Proof: Clearly Z0 = exp
(
−λX0

)
= exp(−λa). We observe that the Xn is F (M,L)

n adapted
by definition. Since Zn is a measurable function of Xn, Zn is also F (M,L)

n adapted. It is easy
to check that for each n ≥ 0, we have |Zn| ≤ exp

(
|λ|(a + n)

)
and hence E(|Zn|) < ∞ for all

n ≥ 1.

Now, to show {Zn : n ≥ 0} is a martingale with respect to F (M,L)
n , we note that Xn

is measurable with respect to F (M,L)
n . We have

E
(

Zn+1 | F (M,L)
n

)
= E

[
exp (−λXn+1)

(
f(λ)

)−n−1
| F (M,L)

n

]
= E

[
exp

(
−λ

(
Xn + I

(M)
n+1 − I

(L)
n+1

))(
f(λ)

)−n−1
| F (M,L)

n

]
= exp

(
−λXn

)(
f(λ)

)−n−1
E

[
exp

(
−λ

(
I

(M)
n+1 − I

(L)
n+1

))]
= exp

(
−λXn

)(
f(λ)

)−n−1
f(λ) = exp

(
−λXn

)(
f(λ)

)−n
= Zn.

This completes the proof of the proposition.

Now we prove Theorem 1.

Proof: We note that

{τL,M = n} = {X0 = a > 0, X1 > 0, . . . , Xn−1 > 0, Xn = 0}

and hence {τL,M = n} ∈ F (M,L)
n . Thus, τL,M is a stopping time relative to {F (M,L)

n }. Hence,
the family

{
Zn∧τL,M

: n ≥ 0
}

is also a F (M,L)
n -martingale. Therefore, we obtain

E
(

exp(−λXn∧τL,M
)
(
f(λ)

)n∧τL,M
)

= E
(
Zn∧τL,M

)
= E

(
Z0∧τL,M

)
= E (Z0) = exp(−λa). (10)

Now, we specialize to the case of λ > 0 and take limit as n → ∞ in equation (10).
We have already noted that f(λ) > 1 for λ ∈ R, in particular for λ > 0.

• On the event {τL,M = +∞}, clearly
(
f(λ)

)−n∧τL,M → 0 as n → ∞.

• On the event {τL,M < ∞}, we have Xn∧τL,M
→ XτL,M

= 0. Thus, exp(−λXn∧τL,M
) → 1

as n → ∞ and
(
f(λ)

)−n∧τL,M →
(
f(λ)

)−τL,M as n → ∞.

Combining, we have

exp
(
−λXn∧τL,M

)
(f(λ))−(n∧τL,M) → I (τL,M < ∞) (f(λ))−τL,M

as n → ∞. Further, we observe that
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• For all n ≥ 0, Xn∧τL,M
≥ 0. For λ > 0, this implies that

exp
(
−λXn∧τL,M

)
≤ 1.

• Since f(λ) > 1 for λ > 0 and n ≥ 0, we have

(f(λ))−(n∧τL,M ) ≤ 1.

Thus, we have
exp(−λXn∧τL,M

)
(
f(λ)

)n∧τL,M ≤ 1.

Thus, we can use DCT in equation (10) to obtain, for all λ > 0,

E
(
I (τL,M < ∞)

(
f(λ)

)−τL,M
)

= exp(−λa). (11)

Now, we will take limit by letting λ ↓ 0 in equation (11). On the event {τL,M < ∞},
using continuity of f , we get

(
f(λ)

)−τL,M → 1 as λ ↓ 0. Therefore, we have

I (τL,M < ∞)
(
f(λ)

)−τL,M → I (τL,M < ∞) .

Furthermore, we have
I (τL,M < ∞)

(
f(λ)

)−τL,M ≤ 1

as f(λ) > 1 for any λ > 0. Thus, by apply DCT in (11), we have

P
(
τL,M < ∞

)
= E

(
I (τL,M < ∞)

)
= lim

λ↓0
E

(
I (τL,M < ∞)

(
f(λ)

)−τL,M
)

= lim
λ↓0

exp(−λa) = 1.

This proves that τL,M < ∞ with probability 1.

The result in (11) yields more information. Indeed, we may calculate the probability
generating function of τL,M , in in turn provides more information.

Corollary 2: The probability generating function of τL,M is given by

E
(

sτL,M

)
= 1

(2
√

α)a

√
1
s

− 1 + 4α −
√

1
s

− 1
a

(12)

for −1 < s ≤ 1.

Proof: Since τL,M < ∞ almost surely, we can rewrite equation (11), for all λ > 0

E
(
(f(λ))−τL,M

)
= exp(−λa).
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This formula may be used to get the probability generating function of τL,M . Letting s =(
f(λ)

)−1
for λ > 0 and solving λ in terms of s, we have

E (sτL,M ) = exp(−λa) = 1
(2

√
α)a

√
1
s

− 1 + 4α −
√

1
s

− 1
a

.

This proves the corollary.

This may be used to show that the expectation is infinite. Indeed, we have

d

ds
E (sτL,M ) = a

(2√
q)a

√
1
s

− 1 + 4q −
√

1
s

− 1
a−1

× 1
2s2

 1√
1
s

− 1
− 1√

1
s

− 1 + 4q

 .

So, when s ↑ 1, the right hand side diverges to ∞. Thus, E (τL,M) = ∞. Similarly we can
also prove that E (τM,R) = ∞. We may also obtain the tail behaviour of the stopping time.

3. Collision time of three random walks : simulation

Before we go into the theoretical derivation, we carry out some simulation studies.
Here we use a cutoff, to stop the process the process if the the simulation has not resulted
in a value. Our cutoff is 10000000 and we have simulated for 10000000 times. We have also
taken different values of a and b where a and b are both even positive integers. We have
carried out the simulation using 3 different values of p, which are 1

2 , 1
3 and 5

7 respectively.

For p = 1
2 , y1 is the observed mean of the first collision time of three random walks

after simulating it 10000000 times, For p = 1
3 , y2 is the observed mean of the first collision

time of three random walks after simulating it 10000000 times, For p = 5
7 , y3 is the observed

mean of the first collision time of three random walks after simulating it 10000000 times.
Now we will look at the scatter plots of (ab,y1), (ab,y2) and (ab,y3) and also we will find and
plot regression lines of y1 on ab, y2 on ab and y3 on ab. Here S

(L)
0 , S

(M)
0 and S

(R)
0 are −a, 0

and +b respectively.

Simulation output

Table 1: Simulation of expected collision times

−a +b y1 y2 y3 ab

-2 2 3.9987 4.4956 4.8801 4
-2 4 7.9961 9.0174 9.7983 8
-2 6 12.0102 13.4858 14.6516 12
-2 8 15.9895 17.9811 19.6139 16
-2 10 20.0246 22.5134 24.4733 20
-2 12 24.0198 27.0171 29.3998 24
-2 14 28.0139 31.4881 34.3256 28
-2 16 31.9907 35.9944 39.2114 32
-2 18 35.9821 40.4913 44.0897 36



158 A. DEY, K. SAHA AND A. SARKAR [SPL. PROC.

Table 1: Simulation of expected collision times

−a +b y1 y2 y3 ab

-2 20 40.0912 44.9591 48.9771 40
-4 4 15.9931 17.5619 19.5812 16
-4 6 23.9978 27.0127 29.3665 24
-4 8 31.9914 36.0223 39.1997 32
-4 10 40.0297 45.0136 49.0315 40
-4 12 47.9956 53.9889 58.7969 48
-4 14 55.9992 62.9156 68.5899 56
-4 16 63.9958 71.9929 78.3878 64
-4 18 72.0154 81.0147 88.2156 72
-4 20 80.0083 90.0396 97.9089 80
-6 6 35.9841 40.5069 44.0989 36
-6 8 47.9892 53.9574 58.7899 48
-6 10 59.9946 67.4998 73.5017 60
-6 12 71.9839 80.9758 88.1898 72
-6 14 84.0629 94.5195 102.8761 84
-6 16 95.9779 108.0251 117.6112 96
-6 18 108.0022 121.5245 132.2893 108
-6 20 119.9141 134.9596 146.9674 120
-8 8 63.9951 72.0212 78.3894 64
-8 10 79.9917 90.0018 97.9825 80
-8 12 95.9679 107.9786 117.5997 96
-8 14 112.0091 125.9925 137.2119 112
-8 16 127.9899 143.9512 156.7898 128
-8 18 143.9769 161.9213 176.2996 144
-8 20 160.0998 179.9621 196.0176 160
-10 10 100.0518 112.5185 122.4886 100
-10 12 119.9371 135.0121 147.0259 120
-10 14 139.9145 157.4852 171.4966 140
-10 16 159.9159 179.9597 195.9979 160
-10 18 180.0263 202.5096 220.3999 180
-10 20 199.9564 224.9917 244.9732 200
-12 12 143.9768 161.9129 176.3993 144
-12 14 168.0459 189.0432 205.7915 168
-12 16 192.0091 216.0278 235.2112 192
-12 18 215.9316 242.9841 264.5889 216
-12 20 239.9089 269.9124 294.0113 240
-14 14 195.9989 220.5398 240.1376 196
-14 16 223.9388 251.9492 274.2998 224
-14 18 251.9164 283.4919 308.6779 252
-14 20 279.9936 315.0154 342.9547 280
-16 16 255.9989 287.9754 313.6291 256
-16 18 287.9669 324.0478 352.7959 288
-16 20 319.9799 359.9954 391.9286 320
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Table 1: Simulation of expected collision times

−a +b y1 y2 y3 ab

-18 18 323.9193 364.3991 396.8777 324
-18 20 359.9899 404.9145 441.1223 360
-20 20 399.9918 449.7982 489.8979 400

The scatter plots of the above data is very instructive as they clearly bring out the
relation between ab and the expected time of the first collision time τc.

Figure 1: Scatter plot of (ab,y1) and regression line of y1 on ab

Table 2: Summary statistics of simulation

Statistics Estimate T statistics P value
Constant1 0.00727396818 0.8787564386 0.3835000647

Slope1 0.9998608551 19192.1238453652 0
Constant2 -0.0096277426 -0.6188423746 0.5386710900

Slope2 1.1248997399 11488.2891168571 0
Constant3 -0.0077084624 -0.9309990213 0.3560755895

Slope3 1.2249623703 23506.6195548538 0
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Figure 2: Scatter plot of (ab,y2) and regression line of y2 on ab

Figure 3: Scatter plot of (ab,y3) and regression line of y3 on ab
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The regression lines on ab are for different values of p:

ŷ1 = 0.00727396818 + 0.9998608551 × ab

ŷ2 = −0.0096277426 + 1.1248997399 × ab

ŷ3 = −0.0077084624 + 1.2249623703 × ab.

The correlation coefficients are 0.9999999281, 0.9999997992, 0.9999999952 respectively. In
each of the three cases the correlation coefficient is very close to +1, so here we can observe
near perfect positive correlation.

The summary statistics of the above data, which from the above scatter plots is quite
expected, clearly shows that there should be a linear relationship between the expected time
and the product of the initial distances ab. In each of the three cases the estimate of the
constant is very close to 0 and the estimate of the slope is very close to

(
4p(1 − p)

)−1
. Also

in each of the three cases the p-value of the intercept is greater than 0.05, so the intercept
is not significant. From these observations we postulate that the expectation of τc should be
ab

(
4p(1 − p)

)−1
. In the next section we derive these theoretical results.

4. Theoretical results

We first note that we are working with random walks having steps size of ±1 with
the starting points are on even lattice. Therefore, these independent random walks do not
cross each other before intersecting. So, we can write the first collision time of these three
random walks τc as,

τc = min
{
τL,M , τM,R

}
. (13)

As an immediate consequence of Theorem 1, we have

τc < +∞ with probability 1.

Further from the above observation, it is easy to conclude that at τc either the pair
of left random walk and the middle random walk collides or the pair of middle random walk
and the right random walk collides. So, we can rephrase the definition of τc (see equation
(2)) as follows:

τc = inf
{

n ≥ 1 : (S(M)
n − S(L)

n )(S(R)
n − S(M)

n )(S(L)
n − S(R)

n ) = 0
}

= inf
{

n ≥ 1 : (S(M)
n − S(L)

n )(S(R)
n − S(M)

n ) = 0
}

= inf
{

n ≥ 1 : XnYn = 0
}

. (14)

We will use this identification to justify these results.

We will again use the martingale method. Let us define the filtration
{

Fn : n ≥ 0
}

,
where

Fn = σ
(

I
(L)
k , I

(M)
k , I

(R)
k : k ≤ n

)
= σ

(
S

(L)
k , S

(M)
k , S

(R)
k : k ≤ n

)
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is the σ-algebra generated by the increment random variables of all the random walks. Also,
this is same as the σ-algebra generated by the all the random walk up to time n. This is the
natural filtration associated with all three random walks we are studying.

Proposition 2: The family {XnYn + 4np(1 − p) : n ≥ 0} is an Fn-martingale.

Proof: It is easy to see that random variable XnYn +4np(1−p) is Fn-adapted for any n ≥ 0.
Further, for any n ≥ 0,

|XnYn| ≤ (a + 2n)(b + 2n)

Thus, we have E
(

|XnYn + 4np(1 − p)|
)

< ∞ for all n ≥ 0.

Now, we have

Xn+1Yn+1 + 4(n + 1)p(1 − p)

=
(

Xn +
(
I

(M)
n+1 − I

(L)
n+1

))(
Yn +

(
I

(R)
n+1 − I

(M)
n+1

))
+ 4(n + 1)p(1 − p)

= XnYn + Xn

(
I

(R)
n+1 − I

(M)
n+1

)
+ Yn

(
I

(M)
n+1 − I

(L)
n+1

)
+

(
I

(R)
n+1 − I

(M)
n+1

)(
I

(M)
n+1 − I

(L)
n+1

)
+ 4(n + 1)p(1 − p).

Thus, we have

(Xn+1Yn+1 + 4(n + 1)p(1 − p)) − (XnYn + 4np(1 − p))
= Xn

(
I

(R)
n+1 − I

(M)
n+1

)
+ Yn

(
I

(M)
n+1 − I

(L)
n+1

)
+

(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)
+ 4p(1 − p).

Note that Xn and Yn are Fn-measurable and the random variables
(
I

(R)
n+1−I

(M)
n+1

)
,
(
I

(M)
n+1−I

(L)
n+1

)
are independent of Fn with expectation 0. Further, the random variables I

(L)
n+1, I

(M)
n+1 and I

(R)
n+1

are also independent of Fn and are independent with expectation 2p−1 and variance 4p(1−p).

Now, we take conditional expectation with respect to Fn. Observe that

• E
[
Xn

(
I

(R)
n+1 −I

(M)
n+1

)
| Fn

]
= XnE

[(
I

(R)
n+1 −I

(M)
n+1

)
| Fn

]
= XnE

[(
I

(R)
n+1 −I

(M)
n+1

)]
= 0 where

we have used the fact that Xn is Fn-measurable and the increments random variables
are independent of Fn.

• Similarly we have E
[
Yn

(
I

(M)
n+1 − I

(L)
n+1

)
| Fn

]
= 0 .

• Finally, using the fact that the increments are independent of Fn, we have

E
[(

I
(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)
| Fn

]
= E

[(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)]
= E

[(
(I(M)

n+1 − (2p − 1)) − (I(L)
n+1 − (2p − 1)

)(
(I(R)

n+1 − (2p − 1)) − (I(M)
n+1 − (2p − 1))

)]
= −Var

(
I

(M)
n+1

)
= −4p(1 − p).
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Combing the above and the fact that XnYn is measurable with respect to Fn, we now
have

E
(

Xn+1Yn+1 + 4(n + 1)p(1 − p) | Fn

)
= XnYn + 4np(1 − p).

This proves the proposition.

Next we proves another similar proposition.

Proposition 3: The family {XnYn (Xn + Yn) : n ≥ 0} is an Fn-martingale.

Proof: The adaptedness of XnYn(Xn+Yn) with respect Fn is again straightforward. Further,
it is also obvious that |XnYn(Xn+Yn)| ≤ (a+2n)(b+2n)(a+b+4n) and hence E

(
|XnYn(Xn+

Yn)|
)

< ∞ for any n ≥ 0.

As in the earlier proposition, we have

Xn+1Yn+1 (Xn+1 + Yn+1)
=

(
Xn +

(
I

(M)
n+1 − I

(L)
n+1

)) (
Yn +

(
I

(R)
n+1 − I

(M)
n+1

)) (
Xn + Yn +

(
I

(R)
n+1 − I

(L)
n+1

))
= XnYn (Xn + Yn) + XnYn

(
I

(R)
n+1 − I

(L)
n+1

)
+ Xn (Xn + Yn)

(
I

(R)
n+1 − I

(M)
n+1

)
+ Yn (Xn + Yn)

(
I

(M)
n+1 − I

(L)
n+1

)
+ Xn

(
I

(R)
n+1 − I

(M)
n+1

) (
I

(R)
n+1 − I

(L)
n+1

)
+ Yn

(
I

(M)
n+1 − I

(L)
n+1

) (
I

(R)
n+1 − I

(L)
n+1

)
+ (Xn + Yn)

(
I

(M)
n+1 − I

(L)
n+1

) (
I

(R)
n+1 − I

(M)
n+1

)
(
I

(M)
n+1 − I

(L)
n+1

) (
I

(R)
n+1 − I

(M)
n+1

) (
I

(R)
n+1 − I

(L)
n+1

)
.

As in the previous proposition, we have Xn and Yn are Fn-measurable and the ran-
dom variables

(
I

(R)
n+1 − I

(M)
n+1

)
,
(
I

(M)
n+1 − I

(L)
n+1

)
and

(
I

(R)
n+1 − I

(L)
n+1

)
are independent of Fn with

expectation 0. Thus, same arguments as above, apply to show that

• E
[
XnYn

(
I

(R)
n+1−I

(L)
n+1

)
| Fn

]
= E

[
Xn(Xn+Yn)

(
I

(R)
n+1−I

(M)
n+1

)
| Fn

]
=

[
Yn(Xn+Yn)

(
I

(R)
n+1−

I
(L)
n+1

)
| Fn

]
= 0.

• Same arguments as above, yield

(a) E
[
Xn

(
I

(R)
n+1 − I

(M)
n+1

)(
I

(R)
n+1 − I

(L)
n+1

)
| Fn

]
= XnVar

(
I

(R)
n+1

)
= 4p(1 − p)Xn

(b) E
[
Yn

(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(L)
n+1

)
| Fn

]
= YnVar

(
I

(L)
n+1

)
= 4p(1 − p)Yn

(c) E
[(

Xn + Yn

)(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)
| Fn

]
= −(Xn + Yn)Var

(
I

(M)
n+1

)
= −4p(1 − p)(Xn + Yn).
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• We also have

E
[(

I
(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)(
I

(R)
n+1 − I

(L)
n+1

)
| Fn

]
= E

[(
I

(M)
n+1 − I

(L)
n+1

)(
I

(R)
n+1 − I

(M)
n+1

)(
I

(R)
n+1 − I

(L)
n+1

)]
= E

[(
(I(M)

n+1 − (2p − 1)) − (I(L)
n+1 − (2p − 1))

)(
(I(R)

n+1 − (2p − 1)) − (I(M)
n+1 − (2p − 1))

)
×

(
(I(R)

n+1 − (2p − 1)) − (I(L)
n+1 − (2p − 1))

)]
= 0

by independence of the random variables and the fact that they have expectation 0.

Combining the above and the fact that XnYn(Xn + Yn) is Fn-measurable, we have

E
(

Xn+1Yn+1
(
Xn+1 + Yn+1

)
| Fn

)
= XnYn

(
Xn + Yn

)
.

This completes the proof.

Now, we are in a position to state and prove our main result.

Theorem 2: We have
E

(
τc

)
= ab

(
4p(1 − p)

)−1
. (15)

Proof: We observe that, from equation (13), that

{τc = n} =
{
X0Y0 > 0, X1Y1 > 0, . . . , Xn−1Yn−1 > 0, XnYn = 0

}
.

Clearly {τc = n} ∈ Fn, which implies that τc is also stopping time relative to {Fn}.

By using Proposition 2, we get that,
{
Xn∧τcYn∧τc + 4p(1 − p) (n ∧ τc) : n ≥ 0

}
is a

martingale and hence for any n ≥ 1,

E
(

Xn∧τcYn∧τc + 4p(1 − p) (n ∧ τc)
)

= E
(

X0∧τcY0∧τc + 4p(1 − p) (0 ∧ τc)
)

= E
(

X0Y0

)
= ab (16)

since τc ≥ 0.

Now, we will take limit in equation (16) as n → ∞. Since τc < ∞ almost surely,
n ∧ τc ↑ τc as n → ∞. By MCT, we obtain

E
(
n ∧ τc

)
→ E

(
τc

)
as n → ∞.
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To complete the proof we show that E
(
Xn∧τcYn∧τc

)
→ 0 as n → ∞. Since τc < ∞

almost surely, we have that
Xn∧τcYn∧τc → XτcYτc = 0 (17)

as n → ∞.

In order to show that the expected value also converges to 0, we will use Theorem
26.13 of Billingsley (1986). For this we require to show that the sequence of random variable
{Xn∧τcYn∧τc : n ≥ 0} is an uniformly integrable family. A sufficient condition for a family of
random variables to be uniformly integrable (see Billingsley (1986)) is given by

sup
n≥0

E
[(

Xn∧τcYn∧τc

)1+ϵ
]

< ∞

for some ϵ > 0.

By using Proposition 3, we get that
{
Xn∧τcYn∧τc (Xn∧τc + Yn∧τc) : n ≥ 0

}
is also a

martingale. Hence, for any n ≥ 1,

E
[
Xn∧τcYn∧τc

(
Xn∧τc + Yn∧τc

)]
= E

[
X0∧τcY0∧τc

(
X0∧τc + Y0∧τc

)]
= E

[
X0Y0

(
X0 + Y0

)]
= ab(a + b).

For non-negative u, v ≥ 0, using AM-GM inequality, we have (uv)3/2 ≤ 1
2uv(u + v). Since

Xn∧τc and Yn∧rc are both non negative, we have, for any n ≥ 0

E
[(

Xn∧τcYn∧τc

)3/2
]

≤ 1
2E

[
Xn∧τcYn∧τc

(
Xn∧τc + Yn∧τc

)]
= 1

2ab(a + b).

Therefore,
sup
n≥0

E
[(

Xn∧τcYn∧τc

)1+1/2
]

≤ 1
2ab(a + b) < ∞.

Hence, we conclude that {Xn∧τcYn∧τc : n ≥ 0} is an uniformly integrable family. Therefore,
we have

E
(

Xn∧τcYn∧τc

)
→ 0 as n → ∞.

This completes the proof of the Theorem.
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ANNEXURE

R code for simulation

Increment<−func t i on ( uniform , p)
{

# uniform := uniform v a r i a b l e
# p := p r o b a b i l i t y o f increment o f +1,

# output := the increment with p r o b a b i l i t y d i s t r i b u t i o n

i f ( uniform <= p)
{

r e turn (1 )
}
r e turn (−1)

}

FindCo l l i s i on <−func t i on (
s t a r t r i g h t ,
startmid ,
s t a r t l e f t ,
p ,
c u t o f f )

{
# s t a r t r i g h t := s t a r t i n g p o s i t i o n o f r i g h t random walk
# startmid := s t a r t i n g p o s i t i o n o f mid random walk
# s t a r t l e f t := s t a r t i n g p o s i t i o n o f l e f t random walk
# c u t o f f := the max length o f random walk to be cons ide r ed

# output := F i r s t C o l l i s i o n time o f 3 random walks

# i n i t i a l i z e s t a r t i n g p o s i t i o n s
r i gh tpo s = s t a r t r i g h t
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midpos = startmid
l e f t p o s = s t a r t l e f t

# s e t time f o r c o l l i s i o n to c u t o f f + 1
time = c u t o f f+1

# run the loop u n t i l c u t o f f time
f o r ( i in 1 : c u t o f f )
{

# Get three uni forms
uni forms = r u n i f (3 )

# update the random walk p o s i t i o n s
r i gh tpo s = r i gh tpo s + Increment ( uni forms [ 1 ] , p )
midpos = midpos + Increment ( uni forms [ 2 ] , p )
l e f t p o s = l e f t p o s + Increment ( uni forms [ 3 ] , p )

# Check f o r c o l l i s i o n
i f ( ( r i gh tpo s − midpos )∗ ( midpos−l e f t p o s ) == 0 )
{

# C o l l i s i o n has happened
# se t time to t h i s c o l l i s i o n time
time = i

# stop the s imu la t i on
break

}
}

# return the time
return ( time )

}

RW<−func t i on (
s t a r t r i g h t ,
startmid ,
s t a r t l e f t ,
p ,
cu to f f ,
num)

{
# output := mean o f F i r s t C o l l i s i o n t imes o f num repea ta t i on
W = rep (0 , num)

# run loop f o r r e p ea t a t i on s o f t imes
f o r ( i in 1 :num)
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{
W[ i ] = F indCo l l i s i on (

s t a r t r i g h t ,
startmid ,
s t a r t l e f t ,
p ,
c u t o f f )

}
ava = c (mean(W))
re turn ( ava )

}
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Abstract 

The analysis of studies using large medical databases has gained popularity due to their 

ability to provide extensive and diverse samples. However, in the currently published literature, 

the selection of samples in such studies often relies on inclusion criteria based solely on the 

study's objectives, rather than utilizing formal sample size calculation techniques. Also, 

inferences are predominantly drawn based on p-values, which tend to be highly significant due 

to large samples but may lack clinical relevance. In this article, we explore the issue of 

statistically significant p-values but with limited clinical relevance when analyzing large 

databases. We propose the incorporation of effect sizes, a concept well-established in the 

literature, to supplement p-values in assessing the practical significance of research findings. 

To address the unique challenges of analyzing large samples using logistic regression, we 

present a novel effect size measure specifically tailored for this context. Moreover, we 

introduce conventions for interpreting effect sizes when analyzing large databases, thus 

providing researchers with a standardized approach for evaluating the magnitude of the 

observed associations. To validate the proposed effect size measure, we employ state-of-the-

art machine learning techniques on the same datasets and demonstrate its robustness and utility 

in large-scale medical studies. To illustrate the statistical challenges and the application of our 

novel effect size measure, we present a compelling case study utilizing breast cancer data from 

the National Cancer Database (NCDB). Our findings shed light on the potential pitfalls of 

relying solely on p-values in large database studies and highlight the significance of 

incorporating effect sizes to better understand the clinical implications of research results. By 

emphasizing the importance of effect sizes in addition to p-values, this study aims to improve 

the accuracy and clinical relevance of statistical analyses for large medical databases. 

Implementing our suggested approach can lead to more informative and meaningful insights, 

thereby contributing to the advancement of evidence-based medicine and patient care. 
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 1.   Introduction 

Most traditional statistical analysis methods, such as linear regression, t-test, ANOVA, 

etc., require the assumption of normality and randomized study sample selection. While 

conducting clinical research to test the safety and efficacy of new drugs, randomization is an 

essential component as well. Such studies require careful selection of a representative sample 

which is achieved using formal randomization techniques.  

A relatively new branch of study, often referred as Real-World Data (RWD) and Real 

World Evidence (RWE), involves analyzing databases maintained by various government and 

private institutions to discover new insights related to public health which were previously 

underutilized, Breckenridge et al. (2019). Since data collection is lengthy and expensive, 

readily available databases provide an excellent alternative to conducting research and help 

save time, cost, and resources and complement evidence obtained from randomized clinical 

studies. However, large databases (which may also be referred as ‘big data’) are repositories of 

majority of the actual observed cases; hence, these are not randomized. Being extremely large, 

normality assumption is unrealistic and often unmet for most of these databases. Hence, using 

traditional parametric tests for such databases tend to produce highly significant results which 

may have no clinical relevance. The traditional statistical tests run using these large databases 

tend to produce highly significant p-values and inferences based on p-values alone and could 

lead to misleading or incorrect conclusions. Several articles such as Sullivan and Feinn (2012) 

and Solla et al. (2018) explore the alternative of using effect sizes and provide criticism for the 

use of p-values alone talk about the use of effect sizes and confidence intervals in addition to 

using p-values. They note highly significant p-values with small effect sizes may be clinically 

irrelevant as suggested by Ranstam et al. (2012) that confidence interval is a better alternative 

to using p-values.  

Cohen (1988) and Cohen (1992) introduced the concept of effect sizes and defined it 

as the discrepancy between the null and the alternative hypotheses. He suggested formulae for 

effect sizes using normally distributed outcomes as well as proportions which were respectively 

popularized as Cohen’s d and Cohen’s h. A strength of the effect size measure is that it does 

not directly depend on the sample size and hence, is unaffected by large sample sizes. 

Consequently, for big data analysis involving large databases, effect size could be a better 

inferential measure than the traditional p-values. However, in the case of a logistic regression 

in which we are comparing effects of two treatments within two different categories of a 

variable, the Cohen’s h effect size cannot be used in the present form. 

In this paper, we argue that p-values alone can provide misleading results for extremely 

large sample sizes since p-value calculations depend on sample size. We compare the p-values 

obtained from an overall test and those obtained from individual tests as well as Bonferroni 

adjusted p-values. As an alternative to using p-values, we propose a modification/extension of 

Cohen’s h effect size estimator for logistic regression. We validate our results obtained using 

the new Cohen’s h measure using machine learning techniques such as Association Rule 

Mining (ARM) and Naïve Bayes classifier.  

The organization of the paper is described as follows. In Section 2, we introduce 

statistical formulation of the issue of obtaining highly significant p-values for large sample 

sizes. We formally introduce the concept of alpha adjustment for multiple comparisons and 

introduce the theory of Bonferroni method of multiplicity adjustment. Furthermore, we 
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introduce the theory of logistic regression, and we introduce the concept of effect size and 

explore the theory of different effect size measures. Lastly, we provide the theory for ARM 

and Naïve Bayes classifier. In Section 3, we describe our proposed modification/extension of 

Cohen’s h measure which can be applied to logistic regression analysis. In Section 4, we 

describe different statistical issues in the analysis of large databases using National Cancer 

Database (NCDB) as an example and present a literature review of articles published using 

NCDB. In Section 5, we present a case study using breast cancer data from NCDB to 

demonstrate the central issue of p-values addressed in this paper and how our proposed 

modified Cohen’s h effect size will lead to ‘meaningful statistical significance’ as opposed to 

clinically irrelevant statistical significance. We provide a strong support for our arguments by 

using ARM and Naïve Bayes classifier methods.  

2.  Statistical methods 

2.1. Wald test 

When analyzing data using statistical tests, p-values are often used to draw inferences. 

We will illustrate the effect of large sample size on p-values using the Wald test as established 

by Wald (1974). The traditional t-test statistic, binomial test statistic, Poisson test statistic etc. 

are special cases of the Wald test statistic. We will illustrate the dependence of the test statistic 

on the sample size using the simple case of Wald test for Bernoulli random variable. In the case 

of Bernoulli test as described by Klotz (1973), we observe independent binary responses, and 

we wish to draw inferences about the probability of an event in the population. 

Suppose we sample n individuals from a pre-specified population and the probability 

of occurrence of an event in this population is the same for an individual, say, p. 

 

Let Yi denote the occurrence of an event for each individual i. Here, we define Yi = 1 if 

an event occurs and Yi = 0, otherwise. Thus, the observed data would be given by Y1, Y2, …, 

Yn. 

 

The maximum likelihood estimate (MLE) of p is given by  

 

𝑝̂ =
∑ 𝑌𝑖

𝑛
𝑖=1

𝑛
       (1) 

 

Now, suppose we are testing the hypothesis 𝐻0: 𝑝 =  𝑝0 vs. 𝐻1: 𝑝 ≠  𝑝0. 

The Wald test statistic (W) is given by a difference in the MLE estimate of p and the 

hypothesized value, normalized by the MLE estimate of the standard deviation. 
 

Thus, we have  

𝑊 =  
(𝑝−𝑝0)2

𝑝(1−𝑝) 𝑛⁄
      (2) 

 

This test can be extended for the case of logistic regression to test the significance of 

regression coefficients. 

For 𝐸(𝑌𝑖) =  𝜋𝑖, we have 
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𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) =  𝛽0 +  𝛽0𝑥𝑖1 + ⋯ +  𝛽𝑝𝑥𝑖𝑝 =  𝑥𝑖
′𝛽, where 𝑥𝑖 = (1, 𝑥𝑖1, … , 𝑥𝑖𝑝)

′
 and 𝛽 =

(𝛽0, 𝛽1, … , 𝛽𝑝)
′
. 

To test a single 𝛽 coefficient value, the Wald test statistic will be given by 

𝑍 =
𝛽̂𝑗−𝛽𝑗0

𝑠𝑒̂(𝛽̂)
 ~ 𝑁(0, 1)      (3) 

where 𝑠𝑒̂(𝛽̂) is calculated by taking the inverse of the estimated information matrix. 

From equation (2), we observe that W statistic depends on the sample size, n. Note as n 

becomes large in equation (2), i.e., as 𝑛 → ∞, 𝑊 → ∞. Similarly, for the case of logistic 

regression, using equation (3), as 𝑛 → ∞, 𝑍 → ∞. 

 

The p-value may be defined as the probability of observing a test statistic as extreme as 

the one observed if the null hypothesis were true. Alternatively, p-value is the observed risk of 

rejecting H0. For the Wald test, we have p-value, 𝑝′ = 𝑃(|𝑍| > |𝑇𝑜𝑏𝑠|), where Tobs is the 

observed value of the test statistic. 

Thus, using (3) and definition of 𝑝′, as 𝑍 → ∞, 𝑝′ → 0. 

As described above, increasing the sample size leads to a significant increase in the 

value of test statistics, resulting in a very low p-value. This is considered highly significant in 

statistical terms. However, it's important to note that simply increasing the sample size does 

not guarantee clinical relevance. In fact, using an infinitely large sample can lead to significant 

results even if there is no real clinical difference, as is often the case with studies that use large 

databases. Therefore, it is important to reconsider the use of p-values when analyzing large 

databases to ensure that clinical relevance is accurately assessed. Thus, p-values alone cannot 

provide reliable results when sample size becomes extremely large. In addition to the use of 

the Wald test statistic, multiple comparisons and multiplicity adjustment are discussed in the 

next section.  

2.2.      Multiple comparisons and multiplicity adjustment 

In exploratory analyses on large datasets, many hypotheses are evaluated. Sometimes 

when an experiment is conducted to answer a research question, multiple hypotheses may need 

to be tested, thereby requiring multiple comparisons to be performed. If all comparisons are 

simultaneously performed with an error rate of 0.05, the actual error rate gets inflated to a 

quantity equal to 0.05 times the number of hypothesis tests. This would reduce the reliability 

of the results and hence, we require an appropriate statistical inferential procedure to handle 

such a situation. Therefore, multiple comparison adjustments have been suggested in the 

literature which help in maintaining the allowable error rate at 5%. Consider a family of k 

independent null hypotheses being tested at level 𝛼. In this case, the family wise error rate 

(FWER) described by Ranstam et al. (2012) would be 1-(1- 𝛼)k. Some commonly used 

multiplicity adjustment techniques are Bonferroni test, Tukey test, and Scheffé test as shown 

by Lee and Lee (2018). The Bonferroni method offers a higher level of rigor compared to the 

Tukey test, which is more permissive toward Type I errors. It also provides more leniency 

compared to the highly conservative Scheffé's method as indicated by Lee and Lee (2018). For 

a detailed description of the Bonferroni method and its application in this study, please refer to 

the next section. 
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2.2.1.  Bonferroni test 

When working with a family of hypotheses and their corresponding p-values, the 

Bonferroni correction can be used to control the FWER. The FWER is the probability of 

incorrectly rejecting at least one true null hypothesis(𝐻𝑖). The Bonferroni correction involves 

rejecting the null hypothesis for each p-value that is less than or equal to alpha divided by the 

total number of hypotheses as described by Lee and Lee (2018). This approach effectively 

controls the FWER at a level of 𝛼. Boole's inequality as shown by Khrennikov (2008) provides 

proof that this control is achieved as follows:  

𝐹𝑊𝐸𝑅 =  𝛲 {⋃ (𝑝𝑖 ≤
𝛼

𝑚
)

𝑚0
𝑖=1 } ≤ ∑ {𝑃 (𝑝𝑖 ≤

𝛼

𝑚
)} = 𝑚0

𝛼

𝑚
≤ 𝛼

𝑚0
𝑖=1    (3) 

where m = total number of null hypotheses, 𝐻1, … . , 𝐻𝑚 are a family of hypotheses and 

𝑝1, … . , 𝑝𝑚 are corresponding p-values. 

This control method is very versatile and flexible, though conservative, as it doesn’t 

rely on any assumptions about the relationships between p-values or how many of the null 

hypotheses are actually true.  

2.3. Logistic regression 

There are different types of logistic regression, including simple, ordinal, and multiple 

versions of logistic and ordinal regression as described by McNulty (2021). Simple logistic 

regression is used when the outcome variable is binary, while ordinal regression is used when 

the outcome variable has multiple ordered categories. Multiple versions of logistic and ordinal 

regression are used depending on the complexity of the data and research question. When 

researchers conduct multiple statistical tests within these regression models, they may 

encounter multiple comparisons, which can lead to false positives. A logistic regression model, 

also known as the logit model, estimates the probability of occurrence of an event, such as 

treatment was beneficial or not, based on certain set of independent variables as described by 

McNulty (2021). In logistic regression, a logit transformation is performed on the odds, i.e., 

the probability of success divided by the probability of failure. The logistic function is written 

as follows 

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖) =  
1

1+𝑒−𝑝𝑖
 .     (4) 

The logistic regression model is written as follows. 

𝑙𝑛 (
𝑝𝑖

1−𝑝𝑖
) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘    (5) 

Here, 𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖) = ln (
𝑝𝑖

1−𝑝𝑖
) is the dependent variable and 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘)𝑇 is the 

vector of independent variables. Generally, the maximum likelihood estimation (MLE) method 

is used to estimate the beta coefficients of the logistic model. 

2.4. Effect size 

Effect sizes represent quantitative measures of the relationships between variables. 

While the term "effect size" has historically been associated with various specific measures, it 

is now commonly used to denote any index indicating the relationship between variables. 
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Effect sizes serve as a means to convey the magnitude of the relationship observed between 

variables in a scientific study performed by Hedges et al. (2008). Effect size helps in 

quantifying the difference between the comparison groups as described by Grissom and Kim 

(2005). It gives an idea about the actual difference between groups and does not directly depend 

on the sample size. We describe some of the common effect size measures in the following 

subsections. 

2.4.1. Cohen’s d 

The effect size using Cohen’s d presented by Cohen (1988) and Cohen (1992) is 

calculated as follows: 

𝑑 =  
𝜇1−𝜇2

𝑠
       (6) 

Here, 𝜇1and 𝜇2 are the means of the two comparison groups and s is the pooled standard 

deviation. Cohen’s d is used for continuous outcomes and follows a general convention that d 

= 0.2 implies small effect, d = 0.5 implies medium effect and d = 0.8 implies large effect. 

2.4.2. Glass’s ∆ 

The effect size using Glass’s ∆ presented by Rosenthal et al. (1994) is calculated as 

follows. 

∆ =  
𝜇1−𝜇2

𝑠𝑐
      (7) 

Here, 𝜇1and 𝜇2 are the means of the two comparison groups and sc is the standard 

deviation of the control group. The same convention is followed for Glass’s ∆ effect size 

estimates as that for Cohen’s d described above with respect to interpretation based on cutoff 

values. 

2.4.3. Cohen’s h 

In case of categorical outcomes, Cohen’s d, or Glass’s ∆ cannot be used. In such cases, 

difference between proportions is tested instead of means presented by Cohen (1988) and 

Rosenthal et al. (1994).  

Suppose p1 and p2 represent two proportions. Cohen’s h effect size measure is 

represented by 

ℎ =  𝜑1 −  𝜑2       (8)  

where 𝜑𝑖 = 2 arcsin(√𝑝𝑖)      (9). 

The same convention is followed for Cohen’s h effect size estimates as that for Cohen’s 

d described above with respect to interpretation based on cutoff values as shown by Cohen 

(1988), Cohen (1992), Hedges et al. (2008) and Grissom and Kim (2005). 
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2.4.4. Odds ratio (OR) 

OR is used to assess degree of association between binary outcomes and is interpreted 

as follows as reported by Chinn (2000). OR = 1.5 indicates weak association, OR = 2 indicates 

medium association and OR = 3 indicates strong association. 

Consider the following 2x2 table.  

Table 1: 2×2 Contingency table 

 Event 

Exposure Yes No 

Yes a b 

No c d 

Odds ratio (𝑂𝑅) =  
𝑜𝑑𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝑜𝑑𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑛−𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑔𝑟𝑜𝑢𝑝
    (10) 

𝑂𝑅 =  
𝑎

𝑏
𝑐

𝑑

=  
𝑎𝑑

𝑏𝑐
      (11) 

2.5. Machine learning techniques 

Multiple Linear Regression (MLR) is a powerful statistical technique commonly used 

in large data set analyses. MLR aims to model the relationship between a dependent variable 

and multiple independent variables by estimating the best-fitting regression equation as 

described by Ayyadevara (2018). In scenarios where data sets are large and complex, MLR 

serves as a valuable tool to identify and quantify the effects of multiple predictors on the 

outcome of interest. By incorporating multiple independent variables simultaneously, MLR 

allows researchers to understand the collective influence of various factors on the dependent 

variable, enabling them to uncover complex patterns and associations within the data. Although 

there are multiple MLR models, the choice of MLR model depends on the nature of the data, 

the research question, and the assumptions underlying the analysis as described by Ayyadevara 

(2018). In this work, we use ARM and the Naïve Bayes Classifier within Multiple Linear 

Regression (MLR) to provide valuable insights and enhance the interpretability and statistical 

analysis of big datasets. 

2.5.1. Association rule mining (ARM) 

To discover interesting relations between variables in large databases, ARM can be 

used as denoted by Ayyadevara (2018). ARM is a rule-based machine learning approach. The 

main concept in ARM is to discover rules that govern how certain sets of variables relate to 

each other. To find the degree of these relations, different measures such as lift (L), support (S) 

and confidence (C) can be used as described below. 

In order to distinguish a trivial rule from a non-trivial rule, a measure used in ARM 

called the lift (L) can be calculated as follows as denoted by Geurts et al. (2003). 

L = 
𝑠(𝑋 ⇒ 𝑌)

𝑠(𝑋)∙𝑠(𝑌)
      (12) 

X is known as the antecedent of the rule and Y is known as the consequent. The 

numerator s(X⇒Y) measures the observed frequency of the items in X and Y occurring together 
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and the denominator s(X) • s(Y) measures the expected frequency of the items in X and Y 

occurring together under the assumption of conditional independence as denoted by Geurts et 

al. (2003). 

If L has a value greater than 1, we conclude that there is positive interdependence 

between X and Y. If the value of L is less than 1, we conclude that there is negative 

interdependence between X and Y. Lastly, if L = 1, X and Y are said to be conditionally 

independent. The greater the value of lift L, the stronger is the dependence between X and Y. 

Two other important parameters for the ARM are the support (S) and confidence (C) of 

a rule by means of which the algorithm to produce a set of rules describing the underlying 

patterns in the data. Support of a rule indicates the frequency with which a rule occurs in a 

dataset and confidence measures the reliability of an association rule as indicated by Geurts et 

al. (2003). Suppose we are studying the association of different predictor variables with 

different surgery types for breast cancer. 

Table 2: Interpretation of lift values 

Outcome Interpretation of lift (L) 

L < 1 Negative interdependence between X and Y 

L = 1 Conditional independence between X and Y 

L > 1 Positive interdependence between X and Y 

Then,  

S {X} = 
number of patients receiving surgery type X

total number of patients
 for a rule {X ⇒ Y}  (13) 

C {X ≥ Y} = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑠𝑢𝑟𝑔𝑒𝑟𝑦 𝑡𝑦𝑝𝑒 𝑋 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑌

total number of patients receiving surgery type X
 (14) 

2.5.2. Naïve Bayes classifier 

Naïve Bayes classifier is a machine learning algorithm based on Bayes’ theorem that 

follows a probabilistic approach for solving classification problems. In real-world scenarios, 

variables have some correlations and are not entirely independent. However, the algorithm is 

called ‘Naïve’ Bayes classifier because it assumes independence between predictor variables 

as described by Zhang (2016) and Ayyadevara (2018). 

The equation for Bayes’ theorem is given as 

P(A | B) = 
𝑃(𝐵 | 𝐴)∗ 𝑃 (𝐴)

𝑃(𝐵)
     (15) 

Here, P(A | B): Conditional probability of an event A, given the event B, 

P(A): Probability of event A 

P(B): Probability of event B 

P(B|A): Conditional probability of an event B, given the event A 

The equation (15) represents a case with a single predictor. However, in real-world 

scenarios, there are more than one predictor variables and for a classification problem, there 

are multiple output classes. Let us represent these classes as C1, C2, …, Ck and the predictor 

variables as x1, x2, …, xn. 
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The objective of a Naïve Bayes algorithm is to estimate the conditional probability that 

an event with a feature vector x1, x2, …, xn belongs to a particular class Ci. 

Given these conditions, the equation for Naïve Bayes’ classifier can be written as 

follows. 

P(Ci | x1, x2, …, xn) ∝ (∏ 𝑃(𝑥𝑗  | 𝐶𝑖)
𝑛
𝑗=1 ) ∙ 𝑃(𝐶𝑖) for 1 < i < k   (16) 

Two statistical measures, namely, misclassification and accuracy, can be calculated for 

the Naïve Bayes classifier, based on which the model performance can be evaluated. 

Misclassification is the percentage of times a classifier incorrectly classifies an item into a class 

or category. Accuracy is the percentage of times a classifier correctly classifies an item into a 

class or category. 

Other classification techniques include the Random Forest method that combines 

multiple decision trees to improve accuracy and reduce overfitting as explained by Ayyadevara 

2018. The Neural Networks classification approach uses deep learning models with multiple 

layers of interconnected nodes that could be used for complex classification tasks. Another 

classification technique is the K-Nearest Neighbors (KNN), a non-parametric method that 

assigns class labels based on the majority class of the k-nearest data points. While other 

classification methods like Random Forest, Neural Networks, and K-Nearest Neighbors also 

offer their respective advantages, we have chosen the Naïve Bayes Classifier for this study as 

shown by Zhang (2016) and Ayyadevara (2018). The decision to use this method is based on 

factors such as interpretability, computational efficiency, and the specific characteristics of the 

NCDB dataset and the research question. 

3.  Modification/Extension of Cohen’s h for logistic regression 

Consider the following notations for effect size calculation.  

Table 3: Variables and notations for effect size calculations 

  Outcome variable 

Variable 1 Total Category 1 Category 2 … Category n’ 

Category 1 n1 n11 n12  n1n’ 

Category 2 n2 n21 n22  n2n’ 

…      

Category n nn nn1 nn2  nnn’ 

Notations 

- nij: Number of patients in category i of variable 1 and category j of variable 2; i = 1, 2, 

…, n; j = 1, 2, …, n’.  

- ni: Total number of patients in ith category of variable 1.  

- pij: Prevalence for category i of variable 1 and category j of variable 2. We calculate pij 

as  

pij  = nij/ni 

Cohen’s h effect size for the ith category will be given by 

ℎ𝑖 =  𝜑𝑖1 −  𝜑𝑖2; i = 1, 2     (17) 

𝜑𝑖𝑗 = 2 𝑙𝑜𝑔𝑖𝑡(√𝑝𝑖𝑗); i = 1, 2; j = 1, 2   (18) 
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These are defined for comparing two categories within two variables. 

Here, instead of the traditional arcsin transformation used for Cohen’s h shown by 

Catarino et al. (2011), we use logit transformation described  by Collins et al. (1992). A logit 

transformation is more appropriate in the case of logistic regression. 

For our case we will calculate h1 and h2 corresponding to the two groups that we are 

comparing using equation (17). Then the effect size h is given by 

ℎ = ℎ1 − ℎ2     (19) 

Here, we are comparing the effect sizes for one category of predictor variable with 

another category of predictor variable based on different categories of outcome variable. Since 

we are comparing the two categories of a predictor variable, a difference of differences is 

proposed. This difference, h defined using equations (17), (18) and (19) is the novel effect size 

measure which would help in determining the meaningfully significant differences. 

The convention used for the interpretation of the effect sizes is described in the table 

below. For large sample sizes such as the NCDB database, effects show up quickly due to the 

large sample. Hence, the convention that we have suggested considers an effect of 

approximately 93% as a small effect, 99.3% as medium effect and 99.9% as large effect. We 

suggest using this convention owing to the large sample size and using the guidelines suggested 

by Cohen for determining small, medium and large effect sizes as detailed by Cohen (1988) 

and Cohen (1992).   

Thus, in the case of modified Cohen’s h – 1.5: small effect, 2.5: medium effect, 3: large 

effect (Table 4). 

In this paper, using a case study from the National Cancer Database (NCDB), we have 

presented how the proposed novel effect size measure above can be utilized to help in obtaining 

meaningfully significant results. In addition, we have also validated the novel effect size 

measure using machine learning techniques. 

Table 4: Convention for modified Cohen’s h 

 

Relative size Effect size Difference between the 

comparison groups 

 0.0 50% 

Small 1.5 93.3% 

Medium 2.5 99.3% 

Large 3 99.9% 

 5.5 100% 

The next section describes a brief literature review which is followed by the case study 

which demonstrates the statistical issues in the analysis of large databases, particularly 

expanding on p-values, and illustrates the use of the novel effect size measure. 

4.  Literature review 

In this section, we provide a short literature review that comprises of 15 research articles 

that were carefully selected using the flowchart presented in Figure 1. Our main objective was 
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to gain insights into the prevailing statistical issues surrounding sample selection, missing data 

imputation techniques, commonly used statistical methods and inference measures used. Our 

search revealed that a total of 3,331 articles were published between 2004 and 2014 using the 

NCDB, out of which 257 were focused on female breast cancer. To maintain uniformity, since 

the case study presented in this paper is focused on the association of surgery types with 

different demographic predictor variables, we only included articles that dealt with 

'mastectomy' and 'lumpectomy' surgeries. This led us to 22 articles, and after removing 

duplicates, we were left with 15 articles that were used for our literature review. 

4.1. Article search protocol 

In the current article, we have presented a case study to examine association of surgery 

types with different demographic predictor variables to demonstrate statistical issues while 

analyzing large databases using NCDB as an example. The three surgery types for this study 

included from the NCDB were ‘lumpectomy’, ‘mastectomy without reconstruction’ and 

‘mastectomy with reconstruction’. Hence, we designed the literature to identify and 

demonstrate statistical issues in the analysis of large medical databases. We identified articles 

published using female breast cancer data from NCDB and we performed keyword search using 

PubMed, MEDLINE (Web of Science), and Embase databases. We used the following 

keywords to search relevant articles: ‘NCDB’, ‘National Cancer Database’, ‘Breast Cancer’, 

‘surgery’, ‘mastectomy’, ‘lumpectomy’, and ‘female’ and narrowed down to 15 articles that 

were most relevant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic representation for selection of articles 

4.2.  Literature review results 

Table 5 presents an overview of the research articles with respect to important statistical 

considerations. 

 

Peer-reviewed Research Articles Published using NCDB (n = 3,331) 

Peer-reviewed Research Articles Published using NCDB on Female 

Breast Cancer (n = 257) 

Peer-reviewed Research Articles Published using NCDB on Female 

Breast Cancer related to surgeries including ‘mastectomy’ and 

‘lumpectomy’ (n = 22) 

Final number of articles included after deleting the articles that 

overlap within databases (n = 15) 
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Table 5: General overview of research articles 

Article  

reference (Year) 
 

Details of the article 

Hotsinpiller et al. 

(2021) 

Objective 

Describe rates and predictors of positive 

margins for invasive breast cancers in the 

NCDB 

Sample Size 707,798 

Missing/Imputation None 

Statistical Methods 
Two-sided t-test; Chi-square test; 

Multivariable logistic regression 

Inference Measures Odds ratios with 95% CI; p-values 

Wrubel et al. 

(2021) 

Objective 
Compare BCT with mastectomy for treatment 

of early-stage breast cancer 

Sample Size 202,236 

Missing/Imputation None 

Statistical Methods 
Chi-square test; Kaplan-Meier analysis; Log-

rank test 

Inference Measures 
Kaplan-Meier survival curves; Overall survival 

(%); p-values 

Weiser et al. 

(2021) 

Objective 

Identify sub-groups of node-positive patients 

with low to intermediate RS who still benefit 

from adjuvant chemotherapy 

Sample Size 28,591 

Missing/Imputation None 

Statistical Methods 

t-test; Chi-square test; Multivariable logistic 

regression; Kaplan-Meier method; Log-rank 

test; Multivariable Cox proportional hazards 

model 

Inference Measures 

Hazard ratios with 95% CI; Odds ratios with 

95% CI; Kaplan-Meier survival curves; p-

values 

Lehrberg et al. 

(2021) 

Objective 

Evaluate the outcomes and predictors for 

patients receiving BCS treatment outside of the 

standard NCCN guidelines, compared with 

patients receiving standard MRM treatment 

Sample Size 10,610 

Missing/Imputation None 

Statistical Methods 

t-test; Chi-square test; Cochran-Armitage trend 

test; Multivariate Cox proportional hazards 

model 

Inference Measures Adjusted hazards ratios; p-values 

Pratt et al. (2021) 

Objective 

Examine the association between the time 

interval from time of diagnosis to completion 

of all acute breast cancer treatment modalities 

(surgery, chemotherapy, and radiation therapy) 

and survival 

Sample Size 50,720 

Missing/Imputation None 
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Article  

reference (Year) 
 

Details of the article 

Statistical Methods 

Univariate and multivariate Cox proportional 

hazards model; Log-rank test; Kaplan-Meier 

method; Chi-square test; Fisher’s exact test; 

Two-sample t-test 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; 5-year survival (%); p-values 

Lewis et al. (2019) 

Objective 

Determine the clinical characteristics, 

outcomes, and propensity for lymph node 

metastasis of patients with IMPC of the breast 

recorded in the NCDB  

Sample Size 2660 

Missing/Imputation None 

Statistical Methods 
Log-rank test; Cox proportional hazards 

model; Kaplan-Meier method 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

Mazor et al. 

(2019) 

Objective 
Assess patterns and outcomes of BCT for T3 

tumors 

Sample Size 37,268 

Missing/Imputation None 

Statistical Methods 

Sensitivity analysis; Chi-square test; Wilcoxon 

rank sum test; Multivariable logistic 

regression; Cochran-Armitage trend test; 

Spearman’s correlation; Kaplan-Meier 

method; Cox proportional hazards model 

Inference Measures 

Odds ratios with 95% CI; Hazard ratios with 

95% CI; Kaplan-Meier survival curves; p-

values 

Zhu et al. (2019) 

Objectives 

Study clinicopathological features, treatment 

patterns and prognosis of SCC; Investigate 

whether SCC (vs. IEDC) is associated with 

poor clinicopathological characteristics, 

different treatment patterns and worse survival; 

Perform exploratory analysis of the benefits of 

systematics therapy for SCC patients   

Sample Size 3,430  

Missing/Imputation None 

Statistical Methods 
Chi-square test; Kaplan-Meier analysis; Cox 

regression model 

 Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

Landercasper et al. 

(2019) 

Objective 

Determine if there were differences in the OS 

of matched breast cancer patients undergoing 

lumpectomy vs. mastectomy in the NCDB 

Sample Size 845,136 

Missing/Imputation None 
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Article  

reference (Year) 
 

Details of the article 

Statistical Methods 

Kaplan-Meier method; Propensity score 

matched analysis; Cox proportional hazards 

model; Subgroup analysis 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

McClelland et al. 

(2019) 

Objective 

To assess trends in patterns of care and clinical 

outcomes to manage localized breast 

angiosarcoma 

Sample Size 826 

Missing/Imputation None 

Statistical Methods 

Chi-square test; Cochran-Armitage trend test; 

Univariate and multivariate logistic regression 

analysis; Univariate and adjusted Cox models; 

Survival analysis 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; Forest plots; p-values 

Mills et al. (2018) 

Objective 

Utilize data from NCDB to complete 

investigation of the prognostic importance of 

histology within TMBC  

Sample Size 89,220 

Missing/Imputation None 

Statistical Methods 
Kaplan-Meier method; Log-rank test; 

Multivariate Cox proportional hazards model 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

Chiba et al. (2017) 

Objective 

Evaluate national trends in NET use in relation 

to conduct of Z1031 trial and impact of NET 

on the rates of BCS 

Sample Size 77,272 

Missing/Imputation None 

Statistical Methods 

Cochran-Armitage trend test; Chi-square test; 

Two-sample t-test; Multivariable logistic 

regression 

Inference Measures Odds ratios with 95% CI; p-values 

Landercasper et al. 

(2017 

Objective 
Investigate whether the receipt of NAC is 

associated with fewer reoperations 

Sample Size 71,627 

Missing/Imputation None 

Statistical Methods 

Cochran-Armitage trend test; Chi-square test; 

Multivariable logistic regression; Propensity 

score matching 

Inference Measures Odds ratios with 95% CI; Forest plots; p-values 

Rusthoven et al. 

(2016) 

Objective 

Evaluate the impact of PMRT and RNI for 

women with clinically node positive breast 

cancer treated with NAC 

Sample Size 15,315 

Missing/Imputation None 
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Article  

reference (Year) 
 

Details of the article 

Statistical Methods 

Kaplan-Meier method; Log-rank test; 

Multivariate Cox models; Propensity score 

matched analysis 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; Forest plot; p-values  

Chen et al. (2015) 

Objective 
Compare efficacy of BCS with RT and 

mastectomy using NCDB. 

Sample Size 160,880 

Missing/Imputation None 

Statistical Methods 
Kaplan-Meier method; Cox regression; 

Propensity score analysis 

Inference Measures 
Hazard ratios with 95% CI; Kaplan-Meier 

survival curves; p-values 

BCS= breast conserving surgery, RT= radiotherapy, CI= Confidence interval, PMRT= Postmastectomy radiotherapy, RNI= 

Regional nodal irradiation, NAC = Neoadjuvant chemotherapy, NET = Neoadjuvant endocrine therapy, IMPC= invasive 

micropapillary carcinoma, BCT= Breast conservation therapy, SCC= Squamous cell carcinoma, IDC= Infiltrating ductal 

carcinoma, RS= recurrence score assay, OS=overall survival, NCCN= National comprehensive cancer network, MRM= 

Modified radical mastectomy, TMBC= Triple negative breast cancer 

4.3.  Observations from the literature review 

After conducting a comprehensive literature review, we found that there is a 

commonality between the sample size selection techniques, missing value imputation methods, 

statistical methods, and inference measures used in published research studies. Table 5 

provides a helpful summary of these various approaches, which we organized according to the 

study objective and statistical considerations. Our analysis of this information yielded some 

interesting findings, which we will now discuss in more detail in next sections.  

4.3.1. Sample selection techniques 

Based on our analysis, appropriate sample size selection is a crucial aspect of statistical 

research. We have found that most of the studies that we reviewed worked with large sample 

sizes. In fact, we observed that the largest sample size among the 15 studies was an impressive 

707,798 as observed in Hotsinpiller et al. (2021) while the smallest sample size was just 826 

as observed in McClelland et al. (2019). 

Interestingly, we also found that none of the studies that we reviewed described any 

formal sample size calculation techniques used for sample selection. Instead, it appears that 

samples were selected primarily based on data availability and filtering based on the study 

objective. This means that convenience/purposive sampling was used, and analysis methods 

designed for randomized data were employed, which could lead to misleading results and 

conclusions. 

4.3.2.  Missing data imputation 

It is important to note that missing data can be a common occurrence, especially in large 

datasets like the NCDB. If missing data is simply deleted without any imputation, it can lead 

to a biased sample with biased results. Unfortunately, many of the studies such as Landercasper 

et al. (2017), Landercasper et al. (2019), Lewis et al. (2019), Mazor et al. (2019), McClelland 

et al. (2019), Zhu and Chen (2019), Lehrberg et al. (2021), Weiser et al. (2021), and Wrubel 
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et al. (2021) included in the literature review did not describe or perform any missing data 

imputation. Instead, they chose to perform a complete case analysis. However, it is worth 

noting that some studies, like Rusthoven et al. (2016), conducted a sensitivity analysis before 

and after excluding unknown variable values and still obtained similar results. Others, like 

Chiba et al. (2017), reported missing values in their table for tumor characteristics but did not 

mention whether these values were imputed or deleted before analysis. Lastly, Landercasper et 

al. (2019) pointed out that all but one of the studies they cited did not include any missing data 

imputation. 

4.3.3.  Statistical analysis methods 

The choice of analysis methods depends upon the study objective. However, every 

statistical technique involves certain assumptions and if these assumptions are not satisfied, the 

analysis may not result in reliable conclusions. This is a common issue with statistical analysis 

of the NCDB. For example, application of a common Cox proportional hazard model to non-

randomized studies (case-control and databases) results in unreliable estimate of hazard ratio 

(relative risk) due to heterogeneity, time-varying exposure, corelated risk factors, and 

confounding etc. as presented by Moolgavkar et al. (2018). 

From the studies included in the present literature review, we observed that the most 

common statistical analysis methods used were univariable as shown in Weiser et al. (2021) 

and multivariable logistic regression as used in Chiba et al. (2017), Landercasper et al. (2017), 

Mazor et al. (2019), McClelland et al. (2019), Hotsinpiller et al. (2021), and Weiser et al. 

(2021) and survival analysis as shown in Chen et al. (2015), Rusthoven et al. (2016), Mills et 

al. 2018, Landercasper et al. (2019), Lewis et al. (2019), Mazor et al. (2019), McClelland et 

al. (2019), Zhu and Chen (2019), Lehrberg et al. (2021), Pratt et al. (2021), Weiser et al. (2021), 

and Wrubel et al. (2021). Baseline characteristics are commonly compared using either a t-test 

(continuous variables) as indicated in Chiba et al. (2017), Hotsinpiller et al. (2021), Lehrberg 

et al. (2021), Pratt et al. (2021), and Weiser et al. (2021) or a chi-square test (categorical 

variables) as indicated in (Chiba et al. (2017), Landercasper et al. (2017), Mazor et al. (2019), 

McClelland et al. (2019), Zhu and Chen 2019, Hotsinpiller et al. (2021), Lehrberg et al. (2021), 

Pratt et al. (2021), Weiser et al. (2021), and Wrubel et al. (2021). Propensity score matching 

methods shown in Chen et al. (2015), Rusthoven et al. (2016), Landercasper et al. (2017), and 

Landercasper et al. (2019) and the Cochran-Armitage trend test as shown in Chiba et al. (2017), 

Landercasper et al. (2017), Mazor et al. (2019), McClelland et al. (2019), and Lehrberg et al. 

(2021) are also popular techniques for analyzing NCDB. 

4.3.4.  Inference measures 

Different statistical analysis methods involve different inference measures based on 

which we draw conclusions. The most common inference measures in the cancer studies are 

hazard ratio, odds ratio, Kaplan-Meier survival curve, and   the ubiquitous p-value which is 

used for making conclusions in most of the analysis procedures. 

In the articles included in the literature review as well, p-values were the most common 

statistical inference measure were used in Chen et al. (2015), Rusthoven et al. (2016), Chiba 

et al. (2017), Landercasper et al. (2017), Mills et al. 2018, Landercasper et al. (2019), Lewis 

et al. (2019), Mazor et al. (2019), McClelland et al. (2019), Zhu and Chen (2019), Hotsinpiller 

et al. (2021), Lehrberg et al. (2021), Pratt et al. (2021), Weiser et al. (2021), and Wrubel et al. 

(2021). Odds ratios was used in Chiba et al. (2017), Landercasper et al. (2019), Mazor et al. 

(2019), Hotsinpiller et al. (2021), and Weiser et al. (2021), hazard ratios was used in Chen et 

al. (2015), Rusthoven et al. (2016), Mills et al. 2018, Landercasper et al. (2019), Lewis et al. 
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(2019), Mazor et al. (2019), McClelland et al. (2019), Zhu and Chen (2019), Lehrberg et al. 

(2021), Pratt et al. (2021), and Weiser et al. (2021), and their 95% confidence intervals, 

Kaplan-Meier survival curves was shown in Chen et al. (2015), Rusthoven et al. (2016), Mills 

et al. 2018, Landercasper et al. (2019), Lewis et al. (2019), Mazor et al. (2019), McClelland et 

al. (2019), Zhu and Chen (2019), Pratt et al. (2021), Weiser et al. (2021), and Wrubel et al. 

(2021) were also a common choice. Some studies such as Rusthoven et al. (2016), 

Landercasper et al. (2017), and McClelland et al. (2019) used forest plots.  

4.3.5.  Statistical issues with large databases – Summary 

After conducting the literature review and carefully studying the published literature, 

we observed the following statistical issues with large databases. 

Based on our comprehensive literature review and analysis of large databases, we have 

identified several design and statistical analysis issues that need to be addressed. Firstly, 

databases such as NCDB have extremely large sample sizes, which can create challenges in 

analyzing the data effectively. Secondly, data from large databases are not randomized, and 

therefore include close to all observed cases, making it difficult to control for bias. There is 

also a risk of duplicate records if a patient gets treated at multiple facilities and gets included 

in the databases that many times they were treated at different locations, which could 

significantly confound the results. 

Another issue is that since databases such as NCDB are huge, the assumption of 

normality fails, which can impact the validity of parametric statistical analysis, most of which 

is built on the assumption of normality of data. Furthermore, due to extremely large sample 

size, analysis results in highly significant p-values, which may have no clinical relevance and 

could lead to false conclusions. Lastly, Simpson’s paradox is a concern when using the entire 

database, as we may get highly significant results that might get reversed if we use a smaller 

sample selected using formal sample size selection techniques as reported by Hernán et al. 

(2011), and Pearl (2022).  

5.  Case study 

5.1. Study design 

Using the general study considerations outlined previously and based on the most 

common statistical analysis methods, we designed a case study using female breast cancer data 

from the NCDB collected between 2004 and 2014. This case study was designed and presented 

to demonstrate statistical issues related to analyzing large databases using NCDB as an example 

and suggesting alternative inference techniques that could describe real-world scenarios better 

than the current methods. Additionally, using the case study, we demonstrate the effectiveness 

of the novel modified Cohen’s h effect size estimator. We also present category-wise 

comparisons which result in multiple p-values and show Bonferroni multiplicity adjustment 

fails to produce meaningful results as reported by Leon (2004). Note that the Bonferroni 

method is the most conservative method for adjusting for multiple comparisons. 

The objective of the case study was to examine whether there is an association between 

surgery types and different demographic predictor variables. The dependent and independent 

variables and their levels/categories is given in Table 6. 

The study used participants that satisfied certain inclusion and exclusion criteria based 

on the type of malignancy, diagnosis year, cancer stage, surgery type, etc. This outline has 
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been explained in detail in Figure 2. After choosing participants, we investigated the data for 

missingness. In the current design, we deleted the missing observations as the proportion of 

missing values was low (approximately 1%). Details about the analysis have been discussed 

in section.  

As described in Table 6, the dependent variable used in the case study was surgery type 

and the independent variables were age, race, insurance status, facility type, stage (of cancer) 

and great circle distance (distance between the medical facility and patient’s residence). 

Figure 2 presents the flowchart for selection of study participants. We included nine 

primary tumor sites as shown in Figure 2. The initial sample size was 2,445,870 for subjects 

who had tumors detected at the given primary sites. We, then, included patients who had a 

single malignant primary tumor, invasive or microinvasive breast cancer behavior, were 

diagnosed between 2004 and 2014, experienced breast cancer stages I, II or III and were female 

subjects. Later, we excluded the patients who did not undergo any surgery or had surgeries 

other than lumpectomy, mastectomy without reconstruction or mastectomy with 

reconstruction. The final sample size was 1,158,387 after applying all the inclusion and 

exclusion criteria. This is a large sample size that fits the definition of big data and hence, 

analysis using traditional approaches poses issues that need a robust solution. We will 

demonstrate the statistical issues and the effectiveness of our novel modified Cohen’s h effect 

size estimator in the following sections. 

Table 6: Dependent and independent variables for the case study 

 Variable Levels/Categories 

Dependent 

Variable 
Surgery Type 

1. Lumpectomy 

      2. Mastectomy without reconstruction 

      3. Mastectomy with reconstruction 

Independent 

Variables 

Age 

1. < 40 years 

2. 40 – 50 years 

3. 50 – 65 years 

4. > 65 years 

Race 

1. White, 

2. Black 

3. Others 

Insurance status 

1. Medicare + Other Govt. 

2. Private 

3. Medicaid 

4. Not insured 

Facility type 

1. Academic 

2. Community Cancer Center 

3. Comprehensive Community Center 

4. Integrated Network 

Stage (of cancer) 

1. Stage I 

2. Stage II 

3. Stage III 

Great Circle Distance 

(Distance from the medical 

facility and patient’s 

residence) 

1. < 50 miles 

2. 50 – 150 miles 

3. > 150 miles 
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5.2. Analysis plan 

The study sample was divided into three groups based on the surgery types, and baseline 

characteristics. Values were tabulated for each of the three groups with respect to the different 

categories of predictor variables (see Table 7). We compared the baseline characteristics of the 

study participants using chi-square test, and the results are presented in Table 7. 

To examine the association between surgery types and different predictor variables with 

multiple levels/categories for each, we applied multinomial multivariable logistic regression. 

We presented results along with odds ratios, their 95% confidence intervals (CI) and p-values 

in Table 9. In addition, we calculated the effect sizes using modified Cohen’s h and presented 

the results for comparison in Table 10. A schematic of the study design has been presented in 

Figure 3. 

 

Figure 2: Study flowchart 

Furthermore, we used ARM and NBC to understand the underlying associations and 

identify clinically relevant variables. Both ARM and NBC were used to validate the results 

obtained using our novel effect size estimator and to identify the important variables. This was 

especially important given the large and complex datasets we were working with. 

5.3. Methods 

A detailed protocol stating the study objectives, methods, analysis plan etc. was 

submitted for IRB approval in order to gain access to the data from NCDB for the present 

Include Primary Sites:    N = 2,445,870 

1. Nipple,  

2. Central Portion of Breast,  

3. Upper-inner quadrant of breast,  

4. Lower-inner quadrant of breast,  

5. Upper-outer quadrant of breast,  

6. Lower-outer quadrant of breast,  

7. Axillary tail of breast,  

8. Overlapping lesion of breast,  

9. Breast, NOS (Mammary Gland) 

 

Inclusion Criteria: 

1. Single malignant primary      N = 1,841,051 

2. Invasive or microinvasive breast cancer behavior   N = 1,486,760 

3. Diagnosed between 2004 and 2014    N = 1,339,935 

4. Analytic Stage Groups include Stages I, II and III  N = 1,210,315 

5. Sex = Female       N = 1,198,976 

Exclusion Criteria: 

1. Exclude Surgery Type = “None” & “Others”   N = 1,158,387 
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research. The protocol was approved by the University of Louisville and James Graham Brown 

Cancer Center Cancer Committee which is a CoC Accredited Cancer Center. After receiving 

the IRB approval (IRB Number: 20.0049, we submitted access request to NCDB, which was 

also approved and access to NCDB was then granted to the authors of this manuscript. IRB 

approval request at the University of Cincinnati is pending. This study falls under IRB 

exemption since it is a retrospective study that looks at and utilizes NCDB data for analyses 

but does not involve working with human subjects. 

5.4. Results 

This section presents and describes the results obtained from analyzing our 

retrospective study. Table 7 shows the frequency distribution of breast cancer patients' three 

most common surgery types. For analyzing these data, we deleted the missing observations and 

compared Lumpectomy vs. Mastectomy without reconstruction and Mastectomy with 

reconstruction using the complete cases available. We present an overall p-value along with p-

values for individual comparisons for each category of dependent variable. These p-values 

were then adjusted for multiple comparison using Bonferroni’s test and the results are presented 

in Table 8. Majority of the studies present an overall p-value without looking at individual level 

comparisons. Since logistic regression compares difference between surgery types within 

categories of predictor variables, it is useful to present individual level p-values to help direct 

comparison of results. 

 

 

Figure 3: Study design 

 

1. Lumpectomy 

2. Mastectomy without reconstruction 

3. Mastectomy with reconstruction 

Surgery Types 

Delete missing observations Missing values 

1. Multinomial multivariable logistic regression 

model 

2. Effect sizes using modified Cohen’s h  

3. Association rule mining (ARM) 

4. Naïve Bayes’ classifier (NBC) 

Analysis Model 

1. Odds ratios 

2. 95% confidence intervals for odds ratios 

3. p-values 

4. Effect sizes (using novel modified Cohen’s h) 

5. Lift, Support, and Confidence for ARM 

6. Misclassification and Accuracy for NBC 

7. Variable importance plot for each surgery type 

Results 
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5.4.1. Baseline characteristics 

Table 7 presents the baseline characteristics (lumpectomy (LT) vs. mastectomy without 

reconstruction (MTnR)/mastectomy with reconstruction (MTR)). It can be observed that p-

values for all the variables shown in Table 7 are <10-5 due to the large sample size and such a 

situation where almost all comparisons appear to be statistically significant, regardless of their 

practical importance or real-world significance. Therefore, we provide an alternative approach 

as presented in Table 8.  

Table 8 presents the raw p-values in addition to Bonferroni-adjusted p-values to aid in 

comparing logistic regression results with baseline characteristics results. 

 

Table 7: Baseline characteristics (lumpectomy (LT) vs. mastectomy without 

reconstruction (MTnR)/mastectomy with reconstruction (MTR)) 

 

Variable 

 

 

Total 

(N = 

1157322) 

Surgery type p-value 

LT 

(N = 692564) 

(59.84%) 

MTnR 

(N = 

325104) 

(28.09%) 

MTR 

(N = 139654) 

(12.07%) 

 

 Frequency (%)  

Age     < 10-5 

< 40 years 65404 

(5.65) 

23133 (3.34) 21327 

(6.56) 

20944 (15.00) -- 

40 – 50 years 217557 

(18.8) 

110796 

(15.99) 

57470 

(17.68) 

49291 (35.30) Ref 

50 – 65 years 483166 

(41.75) 

302250 

(43.64) 

123114 

(37.87) 

57802 (41.39) 9.9x10-5 

> 65 years 391195 

(33.80) 

256385 

(37.02) 

123193 

(37.89) 

11617 (8.32) 9.9x10-5 

Race     < 10-5 

White 971210 

(83.92) 

587089 

(84.77) 

265520 

(81.67) 

118601 (84.92) Ref 

Black 124883 

(10.79) 

71636 (10.34) 40003 

(12.30) 

13244 (9.48) 9.9x10-5 

Others 48959 

(4.23) 

26181 (3.78) 16482 

(5.07) 

6296 (4.51) 9.9x10-5 

Insurance 

Status 

    <  10-5 

Medicare + 

Other Govt 

399491 

(34.52) 

256126 

(36.98) 

127127 

(39.10) 

16238 (11.63) Ref 

Private 643302 

(55.59) 

378917 

(54.71) 

152246 

(46.83) 

112139 (80.30) 9.9x10-5 

Medicaid 70271 

(6.07) 

35047 (5.06) 27374 

(8.42) 

7850 (5.62) 9.9x10-5 

Not Insured 23876 

(2.06) 

11782 (1.70) 10169 

(3.13) 

1925 (1.38) 9.9x10-5 

Facility Type     < 10-5 

Academic 321773 

(27.80) 

196015 

(28.30) 

82863 

(25.49) 

42895 (30.72) Ref 
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Variable 

 

 

Total 

(N = 

1157322) 

Surgery type p-value 

LT 

(N = 692564) 

(59.84%) 

MTnR 

(N = 

325104) 

(28.09%) 

MTR 

(N = 139654) 

(12.07%) 

 

Community 

Cancer 

116406 

(10.06) 

72115 (10.41) 37621 

(11.57) 

6670 (4.78) 9.9x10-5 

Comprehensive 

Community 

532529 

(46.01) 

327628 

(47.31) 

151580 

(46.63) 

53321 (38.18) 9.9x10-5 

Integrated 

Network 

121210 

(10.47) 

73673 (10.64) 31713 

(9.75) 

15824 (11.33) 0.004 

Analytic Stage     < 10-5 

I 620662 

(53.63) 

456319 

(65.89) 

101909 

(31.35) 

62434 (44.71) Ref 

II 399934 

(34.56) 

204739 

(29.56) 

137980 

(42.44) 

57215 (40.97) 9.9x10-5 

III 136726 

(11.81) 

31506 (4.55) 85215 

(26.21) 

20005 (14.32) 9.9x10-5 

Great Circle 

Distance 

    < 10-5 

< 50 miles 1069529 

(92.41) 

646664 

(93.37) 

296028 

(91.06) 

126837 (90.82) Ref 

50 – 150 miles 61414 

(5.31) 

31426 (4.54) 20605 

(6.34) 

9383 (6.72) 9.9x10-5 

> 150 miles 16632 

(1.44) 

8656 (1.25) 5375 (1.65) 2601 (1.86) 9.9x10-5 

 

Table 8: Raw and Bonferroni-adjusted p-values for baseline characteristics 

Variable Raw p-value Bonferroni adjusted p-value 

Age   

40 – 50 years Ref 

50 – 65 years 9.9x10-5 20x10-5 

> 65 years 9.9x10-5 20x10-5 

Race   

White Ref  

Black 9.9x10-5 20x10-5 

Others 9.9x10-5 20x10-5 

Insurance Status   

Medicare + Other Govt Ref 

Private 9.9x10-5 30x10-5 

Medicaid 9.9x10-5 30x10-5 

Not Insured 9.9x10-5 30x10-5 

Facility Type   

Academic Ref  

Community Cancer 9.9x10-5 30x10-5 

Comprehensive Community 9.9x10-5 30x10-5 

Integrated Network 0.004 0.012 

Analytic Stage   
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Variable Raw p-value Bonferroni adjusted p-value 

I Ref  

II 9.9x10-5 20x10-5 

III 9.9x10-5 20x10-5 

Great Circle Distance   

< 50 miles Ref  

50 – 150 miles 9.9x10-5 20x10-5 

> 150 miles 9.9x10-5 20x10-5 

 

The variables that have three categories and two comparisons (age, race, analytical stage, and 

great circle distance) will be tested at a significance level of 0.05/2 = 0.025. The variables that 

have four categories and three comparisons (insurance status and facility type) will be tested at 

a significance level of 0.05/3 = 0.017. 

5.4.2.  Logistic regression: lumpectomy vs. mastectomy without reconstruction and 

mastectomy with reconstruction 

Table 9 presents the results of multinomial multivariable logistic regression using 

surgery types as the dependent variable and same predictor variables as those presented in the 

baseline characteristics table. 

Table 9: Multinomial multivariable logistic regression results 

 Multiple logistic regression 

Predictors Odds ratio 95% CI p-value 

LT vs. MTnR 

Age    

40 – 50 years (Ref) 1 NA NA 

50 – 65 years 0.85 (0.85, 0.87) < 10-5 

> 65 years 0.97 (0.95, 0.99) 0.0007 

Race    

White (Ref) 1 NA NA 

Black 1.05 (1.03, 1.07) < 10-5 

Others 1.41 (1.38, 1.45) < 10-5 

Insurance status    

Medicare + Other Govt (Ref) 1 NA NA 

Private 0.75 (0.74, 0.76) < 10-5 

Medicaid 1.17 (1.14, 1.19) < 10-5 

Not Insured 1.31 (1.27, 1.36) < 10-5 

Facility Type    

Academic (Ref) 1 NA NA 

Community Cancer 1.29 (1.27, 1.31) < 10-5 

Comprehensive Community 1.19 (1.17, 1.20) < 10-5 

Integrated Network 1.09 (1.07, 1.11) < 10-5 

Stage    

I (Ref) 1 NA NA 

II 3.05 (3.02, 3.08) < 10-5 

III 12.37 (12.18, 12.57) < 10-5 

Great Circle Distance    

< 50 miles (Ref) 1 NA NA 
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 Multiple logistic regression 

Predictors Odds ratio 95% CI p-value 

50 – 150 miles 1.48 (1.46, 1.52) < 10-5 

> 150 miles 1.22 (1.18, 1.28) < 10-5 

LT vs. MTR 

Age    

40 – 50 years (Ref) 1 NA NA 

50 – 65 years 0.45 (0.44, 0.46) < 10-5 

> 65 years 0.15 (0.14, 0.152) < 10-5 

Race    

White (Ref) 1 NA NA 

Black 0.73 (0.71, 0.75) < 10-5 

Others 0.92 (0.89, 0.95) < 10-5 

Insurance    

Medicare + Other Govt (Ref) 1 NA NA 

Private 1.49 (1.45, 1.52) < 10-5 

Medicaid 0.94 (0.90, 0.97) 0.0005 

Not Insured 0.67 (0.63, 0.71) < 10-5 

Facility Type    

Academic (Ref) NA NA NA 

Community Cancer  0.48 (0.47, 0.49) < 10-5 

Comprehensive Community 0.80 (0.78, 0.81) < 10-5 

Integrated Network 1.04 (1.02, 1.07) 0.0001 

Stage    

I NA NA NA 

II 1.83 (1.80, 1.85) < 10-5 

III 4.07 (3.98, 4.16) < 10-5 

Great Circle Distance    

< 50 miles (Ref) NA NA NA 

50 - 150 miles 1.43 (1.39, 1.47) < 10-5 

> 150 miles 1.43 (1.36, 1.50) < 10-5 

5.4.3. Effect size 

Table 10 presents the effect sizes using modified Cohen’s h estimator. These results 

will be compared with the p-values obtained using logistic regression to identify the important 

associated variables for surgery types that the two procedures predict. 

5.4.4.  Association rule mining  

Table 11 presented below shows the results obtained using the ARM procedure. Here, 

we present lift, support, and confidence for each of the associations obtained using this 

procedure. The ARM procedure was run to check associations between the surgery types and 

all the predictor variables. Conclusions were mainly drawn using lift values and support and 

confidence values were presented to demonstrate the strength of the lift values. 
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Table 10: Effect sizes using modified Cohen’s h 

Variable Effect size using modified Cohen’s h procedure 

 LT vs. MTnR LT vs. MTR 

Age   

40 – 50 years Ref 

50 – 65 years -0.91 -1.92 

> 65 years -0.69 -4.01 

Race   

White Ref 

Black 0.57 0.01 

Others 0.96 0.58 

Insurance Status   

Medicare + Other Govt Ref 

Private -0.23 2.48 

Medicaid 1.53 2.40 

Not Insured 1.81 1.97 

Facility Type   

Academic Ref 

Community Cancer 0.41 -1.28 

Comprehensive Community 0.16 -0.48 

Integrated Network 0.04 -0.02 

Analytic Stage   

I Ref 

II 3.22 2.28 

III 7.16 4.32 

Great Circle Distance   

< 50 miles Ref 

50 – 150 miles 1.09 1.06 

> 150 miles 0.94 1.04 

Table 11: Association rule mining – testing association between surgery types and 

predictor variables lift (L), support (S), and confidence (C) 

Association L S C 

Surgery types and Age 

Lumpectomy and age group ‘> 65 years’ 1.09 0.24 0.66 

Lumpectomy and age group ‘50 – 65 years’ 1.04 0.24 0.62 

Lumpectomy and age group ‘40 – 50 years’ 0.85 0.10 0.51 

Surgery types and Race 

Mastectomy with Reconstruction and White 1.01 0.10 0.86 

Lumpectomy and White 1.01 0.51 0.86 

Mastectomy without Reconstruction and White 0.97 0.23 0.82 

Surgery types and Insurance status 

Mastectomy with Reconstruction and Private 1.43 0.10 0.81 

Lumpectomy and Medicare + Other Govt. 1.07 0.22 0.64 

Lumpectomy and Private 0.98 0.33 0.59 

Surgery types and Facility type 

Lumpectomy and Comprehensive Community Cancer Program 1.03 0.28 0.62 

Lumpectomy and Academic/Research Program 1.02 0.17 0.61 
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Association L S C 

Lumpectomy and Integrated Network Cancer Program 1.02 0.06 0.10 

Lumpectomy and Community Cancer Program 0.88 0.08 0.52 

Surgery types and Stage of cancer 

Mastectomy with Reconstruction and Stage III 2.22 0.07 0.62 

Lumpectomy with Stage I 1.23 0.39 0.74 

Lumpectomy and Stage II 0.86 0.18 0.51 

Surgery types and Great circle distance 

Lumpectomy and < 50 miles 1.01 0.56 0.94 

Lumpectomy and > 150 miles 0.87 0.01 0.52 

Lumpectomy and 50 – 150 miles 0.86 0.03 0.51 

 

5.4.5.  Naïve Bayes classifier 

 

To validate the results obtained using modified effect sizes, we used Naïve Bayes 

classifier. To identify important variables using Naïve Bayes classifier, the measures used were 

misclassification and accuracy as described in Section 2.5.2. The variable with the least 

misclassification and highest accuracy was concluded to have highest association with the 

dependent variable, surgery type. Furthermore, for the Naïve Bayes classifier, we plotted a 

variable importance plot by surgery type. The variable importance plot is presented in Figure 

3. The variables highly associated with each surgery type is presented in the plot in the order 

of the strength of association. Each variable has an associated bar indicating the magnitude of 

its importance. 

 

Table 12: Naïve Bayes classifier – misclassification percentages along with accuracy 

 

Association of surgery types with Misclassification Accuracy 

Age 40.3% 59.7% 

Race 40.9% 59.1% 

Insurance Status 40.3% 59.7% 

Facility Type 40.04% 59.96% 

Stage 35.4% 64.6% 

Great Circle Distance 41.3% 58.7% 

5.5.  Interpretation 

5.5.1. Baseline characteristics 

Our selected study population had approximately 60% of the patients who received 

lumpectomy, 28% received mastectomy without reconstruction, 12% received mastectomy 

with reconstruction, and for around 1% of the subjects’ surgery information was missing. 

Table 7 shows that the age group of 50 – 65 years receives the maximum proportion of 

breast cancer surgery. Among this group, lumpectomy is the most common surgery type, 

followed by mastectomy with reconstruction. The study also revealed that 84% of the patients 

were white, and 11% were black. The most common surgery type for white patients was 

lumpectomy and mastectomy without reconstruction, and for black patients, it was also 

lumpectomy and mastectomy without reconstruction. Private insurance was the preferred 

choice of the majority of the patients, and within this group, mastectomy with reconstruction 

was the most common surgery type. The study also found that about 46% of the patients 
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received treatment at a comprehensive community center, and the maximum proportion of 

patients received lumpectomy. Among the patients with Stage I and Stage II breast cancer, 74% 

received lumpectomy and 51%, respectively, while most of the patients with Stage III received 

mastectomy without reconstruction (62%). The study also revealed that 92% of the patients 

lived within 50 miles of the facility where they received treatment, and within this group, 60% 

received lumpectomy followed by mastectomy without reconstruction (28%).  

 

Figure 4: Variable importance plot 
 

The chi-square tests run on the baseline characteristics reveal a highly significant 

association between the surgery types and all predictors, i.e., age, race, insurance status, facility 

type, analytic stage, and great circle distance. When we conducted pairwise comparisons using 

one of the categories as the reference category for each of the predictor variables, we obtained 

highly significant p-values for all the comparisons. Table 8 presents Bonferroni adjusted p-

values in addition to the raw p-values. The Bonferroni adjusted p-values are highly significant 

for all variables as well. From tables 7 and 8, we conclude that surgery type has a highly 

significant association with all the predictor variables included in the study. 

5.5.2.  Logistic regression – p-values and odds ratios  

It is interesting to note that Table 9 displays highly significant p-values (< 10-5) for all 

the variables. However, the odds ratios tell a different story. According to Sullivan and Feinn 

(2012) an odds ratio around 1.5 indicates a small difference, around 2 indicates a medium 

difference, and around 3 indicates a significant difference. Except for the stage of cancer, none 

LT 

MTnR MTR 
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of the other variables have an odds ratio of >1.5, and thus, based on p-values, it can be 

concluded that stage is the only variable with a significant difference.  

It should be noted that the statistical fallacy in this case is that the p-values are highly 

significant, with an odds ratio close to 1. This is demonstrated by the odds ratio of 0.97 and a 

p-value of 0.0007 for age group > 65 years vs. 40 – 50 years when comparing LT vs. MTnR. 

From the odds ratio, which is very close to 1, we would conclude that the age groups > 65 years 

and 40 – 50 years does not significantly differ from each other in terms of the surgery types. 

The 95% CI for this case is (0.95, 0.99) which almost cuts through the value of 1, thus hinting 

non-significant difference. This is a classic example of how p-values can be misleading, and 

concluding significant differences based on p-values alone would lead to misleading 

conclusions. 

5.5.3. Effect sizes 

In Table 10, the effect sizes calculated using modified Cohen's h formula are presented. 

To interpret the effect sizes, we use the cutoffs presented in Table 4 suggested by the authors 

of this paper. If the effect size is close to 1.5, it indicates a small effect, 2.5 indicates a medium 

effect, and 3 indicates a large effect. For a significant difference, we require a large effect size 

as it indicates a large underlying difference. 

 

From Table 10, we can see that for LT vs. MTnR, we obtained an effect size of 3.22 for 

Stage II vs. Stage I and an effect size of 7.16 for Stage III vs. Stage I using the novel modified 

Cohen’s h effect size. This means that patients with Stage II breast cancer have a significantly 

higher chance of receiving MTnR than LT when compared with patients who have Stage I 

breast cancer. A similar interpretation applies to Stage III vs. Stage I. For all other comparisons, 

we do not obtain a high effect size and thus, we may conclude that except stage of cancer, the 

other predictors do not have a significant association with surgery type. 

 

When comparing LT vs. MTR, a large effect size of -4.01 was obtained for age group 

> 65 years vs. 40 – 50 years. This indicates that the age group > 65 years has a significantly 

lower chance of receiving LT vs. MTR when compared with patients in the age group 40 – 50 

years. 

Similarly, we obtained a large effect size of 4.32 for comparing stage III vs. stage I 

breast cancer for LT vs. MTR. This also indicates that except age group and stage of cancer, 

none of the other predictors show a highly significant association with surgery types. 

 

Based on odds ratios and effect sizes, we find only one significant association, i.e., 

between surgery types and stage of cancer. Even though the p-values are highly significant for 

all comparisons, odds ratios and effect sizes do not support this result. Thus, using effect sizes 

in addition to p-values when analyzing large datasets may be a more statistically sound 

approach. 

 

5.5.4. Association rule mining 

 

We observe from Table 11 that the values for lift are either very close to 1 or just below 

1 for most associations except for the variable ‘stage’. Thus, we may say that the predictor 

variables age, race, insurance status, facility type, and great circle distance have a weak 

correlation with surgery types. There is, however, a strong association between stage of cancer 

and surgery types. From the lift value of 2.22, we may conclude that patients suffering from 

stage III breast cancer have a strong possibility of receiving mastectomy with reconstruction. 
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Also, patients suffering from stage I breast cancer have a slightly positive correlation with 

receiving lumpectomy which agrees with our conclusions from Table 7. The lift value for 

Mastectomy with reconstruction and private is 1.43 which is higher than 1. This implies a 

positive correlation between the two values with a confidence of 0.81. 
 

5.5.5. Naïve Bayes classifier 

 

Table 12 presents the results obtained using the Naïve Bayes classifier. The 

misclassification proportion is 35% for stage of cancer which is the lowest and the 

corresponding accuracy is 65% which is the highest. This indicates and supports all the 

previous results and arguments that the only significantly associated variable with surgery 

types is the stage of cancer. 

 

From the variable importance plot, we see that stage is the most important variable 

associated with the surgery types LT and MTnR and the second most important variable 

associated for surgery type MTR.  

 

From all the above results, we see that p-values indicate highly significant associations 

for surgery types with all the predictors. However, this statistical significance is not clinically 

relevant as indicated by the odds ratios that are close to 1. The modified effect sizes indicate a 

highly significant association between stage and surgery types and one of the age groups for 

LT vs. MTR comparison. The significant association between stage of cancer and surgery type 

is supported by ARM and NBC results as well. 

6.  Conclusion 

From our analysis, we observed that p-values alone can lead to misleading conclusions 

since they are very sensitive to sample sizes. As sample size increases, p-values tend to 

decrease and produce highly significant but clinically irrelevant results. Thus, an alternative to 

p-values when analyzing extremely large datasets is crucial. For this purpose, we explored 

effect sizes. However, to the best of our knowledge, effect size measures have not been 

suggested for the case of a logistic regression when we are comparing effects of two treatments 

within two different categories of a variable. To handle such a situation, we suggested an 

extension to Cohen’s h effect size measure and demonstrated its use with the help of a case 

study using NCDB as an example. We proved its utility using machine learning tools such as 

ARM and NBC. We suggest using this modified version of Cohen’s h for large databases when 

using logistic regression and comparing multiple treatments across different categories of 

predictor variables. 

7.  Discussion  

The study aimed to address critical gaps in the existing literature related to the analysis 

of large electronic health record (EHR) databases, sample selection methods for such 

databases, and the over-reliance on p-values for drawing clinical inferences. By doing so, it 

sought to provide valuable insights into the limitations of p-values in the context of large 

sample sizes and propose a novel effect size measure tailored for logistic regression. 

Furthermore, the study aimed to validate the effectiveness of the proposed effect size measure 

using machine learning techniques. 
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The first research question focused on the clinical relevance of p-values when dealing 

with sampling from large databases. It is well-known that large sample sizes can lead to 

statistically significant p-values, even when the observed effect sizes are trivial or lack clinical 

importance. The study's objective was to demonstrate this phenomenon when analyzing large 

medical databases, which is critical in guiding researchers to avoid misinterpreting significant 

p-values as clinically meaningful results. By highlighting the limitations of relying solely on 

p-values, the study encourages researchers to adopt a more comprehensive approach that 

includes effect sizes for a more nuanced interpretation of results. For large databases, in 

general, even if the large number of comparisons are subjected to the most stringent procedure 

of controlling Type I error i.e., Bonferroni adjustment, let alone less stringent procedures like 

Holm, Hochberg, Hommel, and Benjamini-Hochberg, will result in highly significant p-values. 

The second research question sought to explore the clinical relevance of effect sizes 

compared to p-values. Effect sizes provide a quantitative measure of the magnitude of an 

observed effect, indicating the practical importance of a finding. The study recognized the 

value of effect sizes in determining clinical significance, especially when dealing with large 

samples. By proposing a novel effect size measure specifically designed for logistic regression, 

the study aimed to overcome the limitations of p-values and offer a more meaningful and 

informative measure for interpreting results. 

The study's primary objective was to propose and validate a novel effect size measure 

for logistic regression using machine learning techniques. Machine learning methods, 

specifically, association rule mining and Naïve Bayes classifier served as complementary tools 

to corroborate the findings obtained from the effect size measure. The validation process aimed 

to strengthen the credibility of the proposed measure and ensure its applicability in real-world 

scenarios. 

The study's findings shed light on the importance of considering both p-values and 

effect sizes in data analysis. It emphasized that large sample sizes can lead to significant p-

values without necessarily indicating clinical relevance. The proposed novel effect size 

measure offered a valuable alternative for assessing practical significance, particularly in 

logistic regression models. The validation through machine learning techniques provided 

additional support for the effectiveness and reliability of the novel effect size measure. 

7.1. Baseline characteristics  

The baseline characteristics of the selected study population provided valuable insights 

into the distribution of breast cancer surgery types and the patient demographics. The majority 

of patients (approximately 60%) underwent lumpectomy, followed by 28% who received 

mastectomy without reconstruction and 12% who underwent mastectomy with reconstruction. 

While the proportion of missing surgery information was minimal (around 1%), it is essential 

for future studies to address and minimize missing data to ensure the completeness and 

accuracy of the analysis. 

One of the key findings of the study was the prominence of the age group between 50 

and 65 years, as it received the highest proportion of breast cancer surgeries. Within this age 

group, lumpectomy was the most common surgery type, followed by mastectomy with 

reconstruction. This observation aligns with the current clinical guidelines, which often 

recommend lumpectomy as a preferred option for early-stage breast cancer in older patients 

due to its less invasive nature and potential for better cosmetic outcomes Pusic et al. (1999).  
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It is essential to recognize the limitations of the study, including potential selection bias 

and generalizability. The study population may not be fully representative of the broader breast 

cancer patient population, particularly in settings with different healthcare systems or 

demographics. Researchers should consider such factors when interpreting and applying the 

study's findings to diverse patient populations.  

7.2. Logistics regression – odds ratio and p-value  

The findings from the logistic regression analysis revealed highly significant p-values 

(< 10-5) for all the variables under investigation. Such high significance levels might lead one 

to believe that all predictor variables have a strong impact on the outcome (surgery types). 

However, a closer examination of the odds ratios indicated that, except for the stage of cancer, 

none of the other variables demonstrated odds ratios greater than 1.5. This observation suggests 

that most of the predictor variables might not have a substantial effect on the choice of surgery 

types, except for the stage variable, which appears to be significantly associated with surgery 

types. 

One notable concern arising from the analysis is the occurrence of a statistical fallacy 

when highly significant p-values are accompanied by odds ratios close to 1. This implies that, 

despite the statistical significance, the observed effect sizes might be minimal or practically 

negligible. In the context of the study, this phenomenon is particularly evident in the 

comparison between age groups and surgery types received. Although the p-values suggest a 

significant association, the odds ratios close to 1 indicate that age groups may not play a 

substantial role in determining the choice of surgery. 

Relying solely on p-values to draw conclusions can be misleading, as highlighted by 

the findings. Focusing solely on the significance levels without considering the effect sizes 

might lead to incorrect interpretations of significant differences. It is essential to consider both 

the statistical significance and the practical significance (effect sizes) of the predictor variables 

to gain a comprehensive understanding of their impact on the outcome. 

To avoid this statistical fallacy and ensure a more meaningful interpretation of the 

results, researchers should adopt a more holistic approach that considers both p-values and 

effect sizes. By considering the magnitude and direction of the effect sizes, researchers can 

better understand the clinical relevance of the predictor variables in relation to the outcome of 

interest. 

Furthermore, the study underscores the importance of interpreting logistic regression 

results in the context of the research question and the clinical significance of the variables under 

investigation. While highly significant p-values are essential in identifying potential 

associations, they should not be the sole basis for decision-making or drawing conclusions. 

Instead, researchers should use them as a starting point to explore effect sizes and consider the 

practical implications of the findings. 

7.3. Effect sizes  

The analysis of effect sizes provided valuable insights into the magnitude and clinical 

relevance of the associations between predictor variables and surgery types in breast cancer 

patients. The effect sizes demonstrated that patients with Stage II and Stage III breast cancer 

had significantly higher chances of receiving mastectomy without reconstruction (MTnR) 
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compared to lumpectomy (LT) when compared to patients with Stage I breast cancer. The large 

effect sizes of 3.22 and 7.16 for Stage II and Stage III, respectively, indicated a substantial 

impact of cancer stage on the choice of surgery type. These findings align with clinical practice, 

as more advanced stages of cancer often require more extensive surgical interventions. 

However, apart from the stage of cancer, the analysis of effect sizes revealed that other 

predictor variables did not show a significant association with surgery types. Effect sizes not 

being high for these comparisons indicated that variables such as age group, race, insurance 

status, facility type, analytic stage, and great circle distance might not have a considerable 

impact on the choice of surgery type. It is crucial to consider these results when making 

treatment decisions and designing interventions, as they highlight the relative importance of 

different predictors in guiding surgical decisions for breast cancer patients. 

An interesting finding emerged when comparing lumpectomy (LT) vs. mastectomy 

with reconstruction (MTR) within different age groups. The effect size of -4.01 for the age 

group > 65 years indicated a significantly lower chance of receiving lumpectomy compared to 

patients in the age group 40-50 years. This observation suggests that age plays a critical role in 

determining the choice of surgical treatment, and older patients are more likely to undergo 

mastectomy with reconstruction. These insights can help inform patient counseling and shared 

decision-making, enabling healthcare providers to better tailor treatment plans based on age-

related preferences and concerns. 

Moreover, the discussion emphasizes the added value of incorporating effect sizes 

alongside p-values in analyzing large datasets. While p-values indicate statistical significance, 

they might not fully convey the practical relevance of the findings. In contrast, effect sizes 

provide a quantitative measure of the strength of the associations, allowing researchers to 

assess the clinical significance of the predictor variables. The finding that only the stage of 

cancer showed significant associations based on both odds ratios and effect sizes suggests that 

effect sizes serve as a more robust tool for identifying clinically relevant relationships. 

Using effect sizes in conjunction with p-values in the analysis of large datasets is 

suggested as a more statistically sound approach. By combining these measures, researchers 

can gain a more comprehensive understanding of the study results, identify meaningful 

associations, and avoid drawing conclusions based solely on statistical significance. This 

approach ensures that the reported findings have practical implications in clinical decision-

making and can guide evidence-based practices. 

The effect size measure proposed in this study was developed based on breast cancer 

data from the National Cancer Database (NCDB). To ensure its broader applicability, the 

robustness of this measure, along with the recommended conventions for interpretation, needs 

to be thoroughly investigated across various types of cancer and in diverse medical databases. 

Only through such comprehensive validation can the suggested novel effect size measure be 

established as a globally applicable and reliable metric for analyzing large medical datasets. 

7.4. Naïve Bayes classifier (NBC)  

The NBC results provide valuable insights into the relationship between predictor 

variables and surgery types in breast cancer patients. The findings show that the 

misclassification proportion for the stage of cancer is the lowest at 35%, and the corresponding 

accuracy is the highest at 65%. These results align with previous arguments that the stage of 
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cancer is the most influential variable associated with surgery types, indicating that patients' 

cancer stage significantly impacts the choice of surgical treatment. 

The variable importance plot further supports the importance of the stage of cancer in 

determining surgery types. The plot reveals that the stage variable is the most critical factor 

associated with lumpectomy (LT) and mastectomy without reconstruction (MTnR). 

Additionally, the stage variable is the second most important variable linked to mastectomy 

with reconstruction (MTR). These results emphasize the significance of cancer staging in 

guiding surgical decisions for breast cancer patients. 

Interestingly, the p-values indicate highly significant associations for surgery types 

with all predictor variables. However, the odds ratios are close to 1, suggesting that the 

observed statistical significance might not translate into substantial clinical relevance. This 

discrepancy between statistical significance and practical significance can lead to the statistical 

fallacy discussed earlier, where highly significant p-values might not provide meaningful 

insights into the impact of predictor variables on surgery types. This highlights the importance 

of using effect sizes, as demonstrated in the modified effect sizes, to assess the clinical 

relevance of the associations. 

The modified effect sizes demonstrate a highly significant association between the stage 

of cancer and surgery types, as well as one of the age groups in the comparison between LT 

and MTR. These effect sizes provide a more accurate and clinically meaningful measure of the 

associations, helping researchers understand the practical implications of the predictor 

variables in determining surgical choices for breast cancer patients. 

The consistency of the significant association between the stage of cancer and surgery 

types across the Naïve Bayes Classifier, ARM, and other methods reinforces the robustness of 

the findings. These complementary techniques lend additional support to the conclusion that 

the stage of cancer is the most critical predictor variable influencing surgery types. 

Overall, the study contributed to the growing body of literature on statistical analysis 

methods, offering insights into how to avoid misinterpretations and ensure more robust and 

clinically meaningful inferences. By addressing the gaps in the existing literature and proposing 

a novel effect size measure, this research provides valuable guidance to researchers, helping 

them make informed decisions and draw more accurate conclusions from large EHR databases. 
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Abstract
Breast cancer is the most commonly occurring cancer among women globally and also

the most common cancer overall, with around 2.3 million new cases of breast cancer and
around 685,000 deaths related to breast cancer reported globally in 2020. However, there
are significant variations in the incidence and mortality rates across and within countries.
Some studies have argued the role of neighbourhood socioeconomic status, family support
mechanisms (marital status) and access to health care in explaining survival disparities.

The objective of this study is to identify and evaluate possible role of regional so-
cioeconomic status in determining disparities in survival of women with breast cancer, while
adjusting for other demographic and biomedical factors. Individual-level data of women in
the US with breast cancer diagnosis between 1975 and 2019 was retrieved from the well-
known Surveillance, Epidemiology, and End Results (SEER) Program submission 2021.

We hypothesized that individuals from counties in the US with similar socioeconomic
status share unmeasured vulnerabilities towards survival from breast cancer. To validate
this hypothesis, we have fitted semiparametric survival models with shared frailty defined
for different categories of the county-level median household income.

Our modeling results show significant unmeasured heterogeneity between the clusters
of individuals based on economic status of their counties. Individuals residing in counties
with lower annual median household income share a higher risk of death due to breast cancer
as compared to those from counties with higher median household incomes.
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SEER; Healthcare disparity.
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1. Introduction

Breast cancer is the most commonly occurring cancer among women globally and
also the most common cancer overall (WHO (2023a), WCRF (2023)). In the year 2020,
approximately 2.3 million new cases of breast cancer were diagnosed, and around 685,000
deaths related to breast cancer were reported globally. There are significant variations in
breast cancer incidence and mortality rates across different regions. As per the 2020 global
data, breast cancer incidences were higher in developed countries whereas breast cancer
deaths were higher in developing countries (WCRF (2023)). This may be due to systematic
early detection programmes in developed countries, thereby underscoring the importance
of economic and biomedical resources in ensuring adequate health programmes to facilitate
awareness, early detection and treatment. Late diagnoses, inadequate health services and
low universal health coverage are some of the important factors leading to global disparities
in the outcomes of breast cancer (WHO (2023a)). Consider that breast cancer five-year
survival rates are above 90% in high-income countries, as compared to 66% in India and
40% in South Africa (WHO (2023a)).

Centers of Disease Control and Prevention (CDC) have reported breast cancer as
the second most common cancer among women (CDC (2023)). Breast cancer incidence is
attributed to physical, hormonal, environmental, and genetic factors, including obesity, im-
munity, and the tumor environment. Interestingly, race, socioeconomic status and geography
have also been found to determine patterns of breast cancer incidence. Incidence rates are
the highest among non-Hispanic (NH) whites (130.8 per 100,000), followed closely by NH
blacks (126.7 per 100,000). Yet, NH black women have the highest breast cancer death rate
among all races in the US (28.4 deaths per 100,000). In fact, for every stage at diagnosis,
NH black women have the lowest 5-year rate of survival (ACS (2019)).

Social Determinants of Health (SDH) have emerged in the recent years as a key is-
sue alongside the traditional roles of genetic and demographic factors affecting survival of
individuals with breast cancer. Disparities in access to and quality of healthcare could lead
to disparities in health outcomes. WHO defines SDH as the “conditions in which people
are born, grow, work, live and age, and the wider set of forces and systems shaping the
conditions of daily life” (WHO (2023b)). The 2017 NIMHD Research Framework identified
the domains of influence (Biological, Behavioral, Physical/Built Environment, Sociocultural
Environment, Healthcare System) as well as different levels of influence (Individual, Inter-
personal, Community, Societal) within those domains (NIMHD-NIH (2022)).

Among different SDH, geographical or physical/built environment health disparities
are thought to be due – not only to limited physical access to health care – but also to
differences in demography, attitudes, lifestyle factors, and cultural practices in regional and
rural settings. A report by the US National Academies of Medicine stipulated that reducing
geographical disparities in quality of care will benefit all its citizens but is likely to yield
greater benefits to minority individuals (NRC (2004)). In the past few years, multilevel
research on the local social context known as ‘neighbourhood effects’ and health led to find-
ings about large racial/ethnic differences on mortality and morbidity (Chandra and Skinner
(2004)). Neighbourhood as a SDH can be viewed through its components of the built envi-
ronment, services, and the people within the neighbourhood (Bharmal et al. (2015)). Higher
rates of obesity in neighbourhoods with poor walkability, access to healthy foods, health
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care facilities, are some of the mechanisms by which built environments can influence breast
cancer outcomes (Obeng-Gyasi et al. (2022)). Neighbourhoods are in turn impacted by
the socioeconomic conditions, i.e., poorer neighbourhoods may have lower access to green
spaces, healthy food markets, healthcare services, etc., compared to richer neighbourhoods.
Over time, such disparities may accrue and lead to unhealthy behaviours such as seden-
tary lifestyles, use of addictive substances, etc., thereby perpetuating a cycle of poor health
outcomes and worsening neighbourhood and socioeconomic conditions.

Disparities in breast cancer outcomes is currently an active area of research in epi-
demiology. A population-based cancer-specific survival study of patients diagnosed with
breast, prostate, colorectal, or lung cancer between 2000 and 2013 in California, USA, by
Ellis et al. (2018) estimated that the stage of diagnosis of cancer accounted for merely 24%
of disparities in the survival of breast cancer patients. They found significant racial/ethnic
survival disparities, with an overall reduction in survivability of black patients as compared
to white patients. Their findings also suggested a significant role of neighbourhood socioe-
conomic status, family support mechanisms (marital status) and access to health care in
explaining survival disparities. Hastert et al. (2021) used data from a regional cohort of
African-American survivors of breast, colorectal, lung, and prostate cancer, to study the as-
sociation between social needs of survivors and their health-related quality of life (HRQoL).
They found a significant reduction in Functional Assessment of Cancer Therapy–General
score, a measurement of HRQoL, for not getting care due to lack of transportation, for
housing instability, for food insecurity, and for feeling unsafe in their neighbourhood.

In this direction, the present study aims to identify and evaluate the possible role(s) of
regional socioeconomic status towards characterizing disparities in survival of women with
breast cancer, while adjusting for other demographic and biomedical factors. Individual-
level data of women in the US with breast cancer diagnosis between 1975 and 2019 was
retrieved from the well-known Surveillance, Epidemiology, and End Results (SEER) Program
submission 2021. In particular, we consider the location information of these individuals at
the level of counties within the US states at which they reside. A county in the US provides
a reasonably consistent environment for the local historic, geographic, and socioeconomic
conditions that are commonly shared by the residents therein.

We hypothesized that individuals from counties with similar socioeconomic status
share unmeasured vulnerabilities towards survival from breast cancer. To validate this hy-
pothesis, we fitted semiparametric survival models with shared frailty defined for different
categories of the county-level median household income. That is, individuals were clustered
into different groups based on the median household income level of their county. Each of
these clusters of individuals with breast cancer was expected to share some common un-
measured (or unaccounted for) risk of death due to breast cancer that was different from
other clusters. This shared unmeasured risk could be due to various factors not directly
included in the model, but those related to the local economic conditions of the individuals.
For example, a county with lower median household income may imply less accessibility to
healthcare services, higher risk of job loss, inadequate transportation, etc. Other relevant
demographic and clinical factors available in the dataset, like age, cancer stage at diagnosis,
breast cancer sub-type, and race are also included in the analysis. Posterior estimates of the
random effects (frailty coefficients) corresponding to all clusters have been obtained. These
estimates are a measure of unaccounted disparity between the clusters in the mortality risks
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from breast cancer.

The rest of the paper is organized in four sections. Description of the data and the
shared frailty survival model has been provided in the next section on methodology. Section 3
contains descriptive summary of the data and the results of the fitted frailty survival models.
A thorough discussion on the results is presented in section 4, and concluding remarks from
the findings are provided in section 5.

2. Methodology

2.1. Data

SEER program of the National Cancer Institute (NCI) of the National Institutes of
Health (NIH), USA, provides information on cancer statistics (SRP) [https://seer.cancer.gov/].
SEER currently collects and publishes cancer incidence and survival data from population-
based cancer registries covering approximately 48 percent of the US population.

In this study, we have used the SEER research data on individuals who are women
with breast cancer diagnosed between 1975 and 2019, based on the November 2021 sub-
mission of the SEER (SEER (2022)). The individual-level data is compiled from 8 cancer
registries which are linked to county-specific attributes such as median household income,
rurality, etc. The dataset covers a total of 465,908 individuals from eight US geographic
areas, viz., San Francisco-Oakland SMSA, Connecticut, Hawaii, Iowa, New Mexico, Seattle
(Puget Sound), Utah, and Atlanta (Metropolitan). A list of variables used in the study and
their description are provided in Table 1. Cases with complete information on these variables
were included in the modeling exercise. A descriptive summary of the resulting dataset of
83,344 individuals is presented in Table 2.

2.2. Shared frailty survival model

The term frailty was used by Clayton (1978) to refer to any unobservable random
effect shared by individuals with similar (unmeasured) risks in the analysis of mortality
rates. Heterogeneity in unaccounted risks can be either defined for individuals experiencing
recurrent events, or for clusters of individuals sharing common risks of an event (shared
frailty). Shared frailty reflects excess risk for distinct groups of individuals sharing certain
characteristics, over and above the risk explained by the measured covariates. In survival
models, frailty is introduced as a random effect that acts multiplicatively on the hazard.
The variance of the frailty measures the degree of heterogeneity in the hazard of different
clusters of individuals- the case of shared frailty (Balan and Putter (2019)).

As a general structure for the shared frailty survival model, the conditional hazard
function given the shared frailty can be written as

hij(t|Zi) = h0(t)Ziexp(βTxij(t)) (1)

where, Zi is an unobserved random effect common to all observations from cluster i, i.e.,
the shared frailty of cluster i, β is a vector of unknown regression coefficients, xij(t) are the
observed covariates (which could also be time-dependent), and h0(t) is the baseline hazard
function (Balan and Putter (2019), Hanagal (2019)). Zi, being latent random terms having
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multiplicative effect on the hazard, are assumed to be iid random variables with a non-
negative distribution, referred to as Z. We have used the R package “frailtyEM” by Balan
and Putter (2019) to fit the model defined in (1). They have assumed that the distribution
of the unobservable random variable Z is defined by the Laplace transform

LZ(c;α, γ) ≡ E[exp(−Zc)] = exp(−αψ(c, γ)) (2)

With α > 0 and γ > 0, this formulation for the frailty distribution includes several distri-
butions such as gamma, positive stable, inverse Gaussian, and compound Poisson, which
belong to the Power Variance Function (PVF) family. Since these distributions are a part
of the same family, likelihood values of models fitted with different frailty distributions are
comparable.

3. Results

Semiparametric shared frailty survival models were fitted using the emfrail function
of the R package frailtyEM. Shared frailty was defined with respect to clusters based on
median household income of the counties. The frailty parameter was assumed to follow
Gamma distribution. Models were fitted with various baseline hazard distributions such as
Breslow, Exponential, Weibull, Lognormal; and the best model was chosen based on the
highest log-likelihood value. The resulting model, adjusted for the factors – age category,
race, breast cancer stage, and breast cancer subtype – had a Gamma frailty with Weibull
baseline hazard. A summary of results of the selected model is shown in Table 3.

From Table 3, we observed that both the Commenges-Andersen test and the likelihood-
ratio test conclude that the random effect (shared frailty) is highly significant. This is further
validated by the non-zero variance of the frailty parameter, Var(Z), the confidence interval
of which does not contain zero. This variation in frailty can be visualized from the histogram
of the frailty estimates (Figure 1). Values of the posterior frailty estimates corresponding to
each category of county-level median household income is provided in Table 4.

Figure 1: Histogram of posterior frailty estimates of the selected model
We can see from Table 4 that, in general, the frailty estimates decrease as the median

household income level increases. That is, the additional unaccounted risk of an individual
of dying due to breast cancer increases as the median household income level of their county
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decreases. The lower risk for the $35,000 - $39,999 income category could be a result of
inappropriate representation of the cluster due to the relatively low number of individuals
that belong to it (see Table 2).

The coefficient estimates of the selected survival model given in Table 3 provide a
comprehensive insight into the impact of the factors on survival of women with breast cancer
after adjusting for the unmeasured random effects (shared frailty) in the clusters. All the
estimates were highly significant. Among the individuals with breast cancer, those belonging
to white or other races are at significantly lower risk (around 30% lower) of dying due to
breast cancer as compared to their black counterparts. As expected, risk of death increases
by almost 10 times for individuals getting diagnosed in a late stage (stage III and higher)
as compared to those diagnosed early. Among the four-breast cancer sub-types, risk of
death is significantly higher for the HR−/HER2− category, also known as Triple-negative
breast cancer (TNBC), as compared to each of the other three categories, namely Luminal
A, Luminal B, and HER2. In other words, the risk of death associated with the other three
sub-types is lower by around 54% – 62% than that for the TNBC sub-type. Compared to
women with breast cancer who are lower than 50 years of age, the hazard of dying increases
by 45% among those over 50 years of age.

4. Discussion

Factors considered in our study including age, breast cancer sub-type, race, and cancer
stage, have been reported as significant risk factors by various previous studies (Ellis et al.
(2018), Narod et al. (2018), Wadsten et al. (2017), CDC (2022)). Results from our modelling
exercise reiterated the significant role of these risk factors in survival of women with breast
cancer. In addition, as our results also show that black women with breast cancer are at
significantly higher risk of death which has been previously reported by Ellis et al. (2018).
This racial disparity can be partly because of genetic factors, and partly because of the
socioeconomic disparities as well as disparities in accessibility to screening, treatment, and
relevant resources across races.

The primary objective of this study was to investigate the possible role of unmea-
sured impact of regional socioeconomic status on survival of individuals with breast cancer
in the US, while adjusting for other factors that have been previously shown to be asso-
ciated with survival risk. Our findings validate the hypothesis that there is a significant
unmeasured heterogeneity among clusters of individuals based on economic status of their
respective counties. Individuals residing in counties with lower annual median household
income share a higher risk of death due to breast cancer as compared to those from counties
with higher median household incomes. The higher unmeasured risk for such individuals
can be attributed to lack of adequate healthcare facilities, insecurity of jobs, less adherence
to clinical follow-up due to potential loss of wages, lack of resources (which could include
transportation, time and/or paid leave), poor diet and exercise, among other factors interde-
pendent with the economic status of a county. This inference is concurrent with the findings
of some previous studies that have explored the socioeconomic determinants of disparities
in survival of individuals with cancer (Hastert et al. (2021), Merletti et al. (2011)).
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5. Conclusion

Our findings indicate that economic vulnerabilities of women with breast cancer
present added risks of mortality beyond the identified risks due to other common covari-
ates. Socioeconomic and external environmental factors can play a significant role in cancer
survival. Apart from efforts to improve healthcare practices such as early clinical interven-
tions, detection programmes and screening, community education, etc., there is a need to
address the socioeconomic disparities to improve cancer survivability. Efforts in this direc-
tion begin with development of new policies aimed to reduce disparities and mitigate risks
arising from the various SDH for individuals with breast cancer.

Our study has certain limitations. Due to constraints of data availability, we could
not include additional factors such as treatment type or appropriateness, education level, etc.
in the analysis. Additionally, since the data obtained pertains to only 8 registries associated
with SEER, future studies could benefit from including additional registries to gain further
insights into the effects of regional SDH on breast cancer outcomes.
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Table 1: List of variables and their description

Name Description Categories

surv months Survival time in months (since diagnosis).
It is right censored for individuals who
remained alive till the end of follow-up.

event Survival status of the individual 1: Died
0: Alive (censored)

age Baseline age of the individual
(15 years and above)

age cat1 Factor variable derived from the less than 50
baseline age. 50 or more

sub type Breast cancer subtype. HR+/HER2− (Luminal A)
For more information, see HR−/HER2− (TNBC)
https://seer.cancer.gov/seerstat/ HR+/HER2+ (Luminal B)
databases/ssf/breast-subtype.html. HR−/HER2+ (HER2)

race 1 Race recode of individuals. 1: White
This recode is independent of 2: Black
Hispanic ethnicity of the individuals. 3: Other

(American Indian,
AK Native,
Asian/Pacific Islander)

AJCC6 stage AJCC 6TH STAGE classification of breast 0, I, IIA, IIB,
cancer. Refer http://seer.cancer.gov/ IIIA, IIIB, IIIC,
seerstat/variables/seer/ajcc-stage/6th IIINOS, IV

grade1 A broader classification of stage of breast early: 0, I, IIA,
cancer of the individual at baseline, IIB, IIA
based on the AJCC6 stage variable. late: IIIA, IIIB,

IIIC, IIINOS, IV

Median HI Median annual household income of the less than $35,000
county where the individual resides. $35,000 - $39,999

$40,000 - $44,999
$45,000 - $49,999
$50,000 - $54,999
$55,000 - $59,999
$60,000 - $64,999
$65,000 - $69,999
$70,000 - $74,999
$75,000 and more
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Table 2: Factor-wise summary of the dataset from SEER
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Table 3: Results of the fitted semiparametric shared frailty survival model
with gamma frailty and Weibull baseline hazard

Table 4: Posterior frailty estimate for each category of county-level me-
dian household income

less than $35,000 - $40,000 - $45,000 - $50,000 -
$35,000 $39,999 $44,999 $49,999 $54,999

1.1899 0.9941 1.2126 1.137 1.004

$55,000 - $60,000 - $65,000 - $70,000 - $75,000
$59,999 $64,999 $69,999 $74,999 and above

0.9244 0.9133 0.8821 0.8740 0.8838
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