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PREFACE

We are pleased to present the special proceedings of the twenty-sixth annual
conference of the Society of Statistics, Computer, and Applications (SSCA), organized
by Department of Mathematics and Statistics and the Centre for Artificial Intelligence,
Banasthali Vidyapith, Banasthali – 304022, Rajasthan, India, during February 26-28,
2024. This conference was a key component of the broader international event focused
on “Emerging Trends of Statistical Sciences in AI and its Applications, ETSSAA-2024”.

Founded in 1998 with its inaugural gathering at Haryana Agricultural University,
Hisar, SSCA has consistently organized annual conferences across various educational
institutions nationwide. The society’s core mission focuses on fostering research at
the intersection of Statistics and Information Technology, serving both theoretical and
applied statisticians committed to advancing technology for societal progress. SSCA
also promotes open access to knowledge through its journal ’Statistics and Applications,’
facilitating free downloads, saving, and printing of full-length papers. In addition to
regular issues, the journal periodically releases special volumes addressing globally and
nationally significant thematic areas.

The recent 26th conference aimed to provide a unified platform for deliberations on
regional and global statistical issues. Distinguished experts in theoretical and applied
statistics from India and abroad, notably from the USA, actively engaged in dissemination
of knowledge. Speakers represented prestigious Indian institutions such as the Indian
Statistical Institute, IITs, ICAR, RBI, senior governmental offices, and universities. The
conference featured several noteworthy events, including a preconference workshop and
various technical sessions. These sessions encompassed the M.N. Das Memorial Lecture
and a dedicated session on Financial Statistics, where distinguished statisticians and
leading practitioners in the field shared their insights on various finance related topics.
Moreover, the conference included three endowment lectures: the B.K. Kale Memorial
Endowment Lecture, J.K. Ghosh Memorial Endowment Lecture, and Bikas Kumar Sinha
Endowment Lecture. These lectures were delivered by speakers closely associated with,
or collaborated with, or students of the respective honourees. Additionally, there was
the V.K. Gupta Endowment Award Lecture for Achievements in Statistical Sciences and
Practice, delivered by J. Sunil Rao from USA. The SSCA introduced this year the Aditya
Shastri Memorial Lecture in memory of Late Aditya Shastri, Vice Chancellor, Banasthali
Vidyapith who left for heavenly abode in 2021 due to COVID - 19. The first lecture was
delivered by Navin M. Shastri.

The Executive Council of SSCA resolved to compile “Special Proceedings,”
highlighting selected presentations, including those from the specialized Financial
Statistics session. The Guest Editors appointed by the Council—V.K. Gupta, Baidya
Nath Mandal, R. Vishnu Vardhan, Ranjit Kumar Paul, Rajender Parsad, and Dipak



Roy Choudhury—meticulously curated these proceedings. While constraints limited the
inclusion of all invited papers, esteemed speakers were invited to submit their research
contributions. Following a rigorous review process, a distinguished selection of 12
papers was accepted for publication in the special proceedings. We extend our sincere
gratefulness to all the authors for prompt submission of high-quality research papers for
special proceedings. We owe special debt to all the reviewers whose dedicated efforts
ensured a swift and thorough review process that led to completing the review process
within a short time frame. Special acknowledgment is also due to all members and
office bearers of the SSCA-Executive Council for their steadfast support. Our gratitude
to Ashish Das, Treasurer of the SSCA, for arranging funds for publishing these special
proceedings. We are indeed grateful to Ms. Jyoti Gangwani for meticulously formatting
the papers. Furthermore, our deepest appreciation goes to Prof. Ina Aditya Shastri, Vice
Chancellor of Banasthali Vidyapith, and her dedicated team, including Prof. Anshuman
Shastri, Director of the Centre for Artificial Intelligence, Prof. Sarla Pareek, Dean of the
Faculty of Mathematics and Computing, Prof. Shalini Chandra, Head of the Department
of Mathematics and Statistics, and other esteemed faculty members. Their collective
efforts are a testament to the success of this intellectually enriching SSCA conference
and advancing the field of Statistics and its applications in AI. The special proceedings of
these sessions have been assigned the ISBN #: 978-81-950383-5-0.

We are confident that the contents encapsulated within these special proceedings will
prove immensely beneficial to our readership, fostering further insights and advancements
in the field of Statistics and its applications in AI and beyond. We welcome any
suggestions for further improving future conferences and special proceedings, as we
continually strive to serve the statistical community better.

V.K. Gupta
Baidya Nath Mandal

R. Vishnu Vardhan
Ranjit Kumar Paul

Rajender Parsad
Dipak Roy Choudhury

New Delhi
September 2024
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Abstract
We show how to use supplemental information from a small probability sample (ps) to

do Bayesian predictive inference for finite population means of small areas using a relatively
larger non-probability sample (nps). We focus on the most practical situation when there
are common covariates in the nps and ps, where the nps has the study variable but no
survey weights and the ps has survey weights but no study variable. We assume that the
population model is correct and any functional relation between the study variable and the
covariates is unspecified. Data preparation is necessary, and there are three steps, which are
a double mass imputation, stratification of the population and allocation of the sample to the
strata (domains), and creating a spatial structure to accommodate the covariates. Our main
Bayesian analysis uses the conditional auto-regressive model, which helps to accommodate
the covariates without incorporating them into the model, thereby avoiding a functional
relation between the study variable and the covariates. However, the actual small areas are
not part of the model, but we need to keep track of them, and the strata are modeled as the
“small areas”. Our procedure allows a small area (not a stratum) to participate in several
strata, and this helps to mitigate over-shrinkage, which is common in small area models.
Using an illustrative example on body mass index data, our method appears to work better
than a standard method with a linear regression of the study variable on the covariates.
Our new framework allows several extensions and it avoids an approximation used in survey
design analysis.

Key words: BHF baseline model; Finite population mean; Gibbs sampler; Inverse probability
weighting; Mass imputation; Robustness; Stratification; Surrogate samples.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

We have data from a non-probability sample, nps (1), and a probability sample, ps
(2), relatively much smaller. The nps and ps have common covariates, x, a p-vector including
an intercept. The nps has the study variable (response), y, but no survey weights, W , and the

Corresponding Author: Balgobin Nandram
Email: balnan@wpi.edu & balgobin.nandram@usda.gov



2 BALGOBIN NANDRAM [SPL. PROC.

ps has survey weights, W , but no study variable, y. We know the small areas (e.g., counties)
in the nps, but we do not need to know these small areas in the ps. The population size,
N , may be unknown and the nonsampled covariates from the nps (or the ps) are unknown.
These two quantities can be constructed from the ps sampled data. The population has
(xi, yi), i = 1, . . . , N . Letting yij, j = 1, . . . , Ni, i = 1, . . . , ℓ, denote the values of the study
variable from the ℓ small areas, we want to make inference about the finite population mean
of the ith area,

Ȳi = 1
Ni

Ni∑
i=1

yi, i = 1, . . . , ℓ.

Again the Ni may be unknown, and these can be constructed from the ps.

Non-probability sampling has become important over the past decade. Many surveys
are done without proper survey designs. Observational studies, which are very useful, have no
probabilistic structure. A probability sample is the gold standard, but many data collection
procedures are done by walking around a mall or standing at the door of a library. Clearly,
these data are non-probability samples, and they are generally biased. On the other hand the
response rates for many probability samples have declined to situations, where the sample
can more reasonably be called a non-probability sample. Therefore, it is important to do
research into the topic of non-probability sampling; indeed, this is a “hot” topic and it is
difficult.

From the nps, we have (x1i, y1i), i = 1, . . . , n1, which are respectively the covariates
and the study variable (response) but we do not have survey weights, Wi, i = 1, . . . , n1. From
the ps, we have (W2i, x2i), i = 1, . . . , n2, but not the study variable, y2i, i = 1, . . . , n2. This
is a fairly general and practical set up; see Li et al. (2020).

In our new approach, no participation (selection mechanism) model is needed. How-
ever, our standard assumption is that the population model for the study variable is correct
and the sample model is derived from it. Therefore, robustness to its assumptions plays a
key role in this paper.

In Table 1, we show different scenarios of massively missing data and what action
can be taken, where all the data are missing for a specific variable, and mass imputation is
needed; see Kim et al. (2021). For example, for the nps, all survey weights are missing.

Sakshaug et al. (2019), Wisniowski et al. (2020) and Salvatore et al. (2023) worked
with Scenario 2a to provide a full Bayesian approach. They supplemented a probability
sample with a much larger non-probability sample. They mainly studied superpopulation
parameters, not finite populations. There is no penalty on the non-probability sample, except
for Salvatore et al. (2023) where they used the idea of Nandram and Rao (2021, 2023) on
discounting historical data for binary data via logistic regression (e.g., see Ibrahim and Chen,
2002, for the power prior). Except for Wisniowski et al. (2020), who used survey weights as a
covariate which is a bit controversial, the others did not do so. Finite population parameter
estimation was not done, and inference was not required about small areas.

Chen et al. (2020), henceforth sometimes CLW, studied Scenario 1 with propen-
sity scores. They presented a doubly robust inference with non-probability samples mainly
within the design-based approach. They estimated propensity scores via logistic regression
(parametric modeling for the participation variable) using the probability sample without
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Table 1: Data scenarios with massively missing data

nps (1) ps (2)

Scenarios w x y w x y Action

1 – + + + + – Supplement nps by ps

2 a – + + + + + Supplement ps by nps

2 b – + + + + + Data integration

3 – + – + – + Supplement ps by nps

NOTE: Here “+” means observed and “–” means missing.

study variable, and inverse probability weighting (IPW) for the finite population mean.

Based on the method of Chen, Li and Wu (2020) to estimate propensity scores,
Nandram and Rao (2021, 2023) studied Scenario 2b. They argued that the nps should be
used to construct the prior for the parameters (the study variable is observed in both nps
and ps), a less practical situation. In addition, thinking of the nps as historical data, the
prior of the parameters, obtained from it, should be partially discounted. For Bayesians,
normalized weighted density should be used to model the study variable. Nandram, Choi
and Liu (2021) discussed some mixed analyzes.

Rafei, Elliot and Flannagan (2022) and Marellla (2023) used Scenario 2b. Rafei et
al. (2022) used Bayesian additive regression trees (BART), which has its own problems.
Marella (2023) used empirical likelihood, and the study variable for the ps is manufactured
and assumed real.

There has also been some activities in small area estimation for non-probability sam-
ples. Beaumont (2020) used Scenario 2a and Beaumont and Rao (2021) used covariates from
nps in ps (e.g., Fay-Herriot model) in Scenario 3; Nandram and Rao (2024) used Scenario 2a
with unit level data and used the method of CLW to estimate propensity scores for the nps;
they also discussed Scenario 2b. Rao (2021) discussed many scenarios and how the ideas of
probability samples can be used to study non-probability samples. See Elliott and Valliant
(2017) for an earlier review, where they discussed quasi-randomization, used in CLW and
others.

Following CLW, in our current work under Scenario (1) without using propensity
scores, we do not have a participation model for the selection mechanism, and the non-
Bayesian notion of double robustness is null and void; in our case only the model for the
study variable (response) is needed. However, this situation may not be fully practical
because even though a nps is available, we may still need to plan and field a small probability
sample (an unnecessary burden). Instead it is possible to obtain the necessary information
in our set up using web-scraping. For example, it is possible to obtain population sizes and
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population total covariates from the web for many variables.

In this paper, we have a nps (1) and a ps (2) from California (NHANES III). Body
mass index (BMI) is the study variable, and for adults the normal range of BMI is [20, 25];
see Nandram and Choi (2010) for more details about the survey design and a discussion
about a much larger BMI data set. The population size is about 5000 times the sample size
(.02% sampling). The nps has about 80% of the data and the ps has about 20%. Our data
are of the form, (Wsj, xsj, ysj), s = 1, 2, j = 1, . . . , ns, where Wsj are original survey weights,
xsj, a p-vector of covariates including an intercept, and ysj is the study variable; but W1j

and y2j are unknown. It is worth noting some of the features of the data:

a. There are three covaariates :Age (20-90 years’ old), race (white, non-white), sex (male,
female) are covariates but interactions are not significant;

b. The data are partitioned into eight (8) counties (small areas), an area in the ps may
not have data, and interest is on the finite population mean of each area (county);

c. The population is stratified and the data from the nps and ps are allocated to 56 strata
(areas) with some discretization: age (20-24, 25-29,. . . , 85-90), race (0, 1), sex (0, 1),
where other covariates are redacted or missing, and the partition of age is normally
used at the National Center for Health Statistics;

d. The study variable (response) and covariates in the nps, (x, y), provide the spatial
relation (both x and y are used);

e. A double mass imputation is used to get the survey weights in the nps (W , x and y are
used), and the weights are trimmed, calibrated to the population size, and adjusted to
the effective sample size.

Our procedure differs from all others in the literature. We stratify the population
into distinct values of the covariates in the nps, each distinct covariate vector represents a
stratum. Note that these strata are obtained using basic knowledge about the population.
We may need to discretize some covariates; in survey sampling many of the covariates are
usually discrete.

In our example on BMI, age, race and sex are covariates; age (20-90 years old), race
(white, non-white) and sex (male, female). So there are 71 × 2 × 2 = 484 possible strata.
The nps and ps data are then allocated to the strata, of course, after the sample data are
observed. Then some strata will be empty and some discretization and regular imputation
needs to be done. The covariates and study variable from the nps will be used to obtain a
spatial structure among the strata via an incidence matrix, V . Then, we construct Table
2 for BMI data with some discretization on age to get 56 strata and 8 counties to avoid
sparseness and empty strata. These are the data we actually analyze. Note that an area
may have data in different strata, and each stratum will have a different parameter in our
models. That is, a small area (county) may have several parameters associated with it, and
this helps to mitigate over shrinkage, which is very common in small area estimation. In
Section 3, we will describe how to prepare Table 2 because our new Bayesian analysis is
based on it.
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As a summary, we are using the nps data to make inference about the finite population
mean of each small area (county for the BMI data). We have data from the nps and some
information from the ps that we used to supplement the nps. This paper has six sections,
including the current one. In Section 2, we review the main ideas, relevant to our current
work, Nandram and Rao (2021, 2023) and Chen et al. (2020). In Section 3, we show how to
prepare the data for a robust analysis. Specifically, we discuss stratification of the population
by distinct covariate values, mass imputation to construct the survey weights for the nps,
and a spatial structure, which we use to replace any functional relation between the study
variable and the covariates, and Bayesian predictive inference for the finite population mean
of each area (county); see Table 2. In Section 4, we discuss the hierarchical Bayesian models,
where robustness is mostly based on a two-component mixture model. These models are
primarily based on the Scott-Smith model; see Scott and Smith (1969) and Nandram et al.
(2011). This section also has detailed discussion of an example of body mass index (BMI) in
parallel to the rest of the technical discussion. In Section 5, we discuss some improvements
and possible extensions. In Section 6, we present concluding remarks.

Table 2: Structurally complete BMI data for nps with G = 56 strata and ℓ = 8
counties

Stratum nps Size

x1 (W1j , y1j), j = 1, . . . , n1 N1

· · ·

· · ·

xg (Wgj , ygj), j = 1, . . . , ng Ng

· · ·

· · ·

xG (WGj , yGj), j = 1, . . . , nG NG

NOTE: There are G distinct values of xg, g = 1, . . . , G; G = 56 for the BMI data. In addition, for
the spatial analysis, we have the incidence matrix, V , among the strata. Weights may be equal
or unequal and adjusted weights are used in the sampling process (study variable). An actual
area (county) may be represented in several strata. The normal range of BMI for adults should be
[20, 25].

2. Review and background information

In this section, a review of Nandram and Rao (2021, 2023, 2024) is presented. We
also present the method of Chen, Li and Wu (2020) to construct the propensity scores, and
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some general comments are made about this method for propensity scores to highlight and
justify our new approach.

2.1. Review of Nandram and Rao (2021, 2023, 2024)

First, we describe the normalized weighted density. Nandram and Rao (2021, 2023,
2024) considered a single population, not sub-populations (e.g., small areas), and they
showed how to make inference for finite population mean. They assumed that sample data
are available from a nps (1) and a ps (2).

We recall here that the original survey weights are Wsi, i = 1, . . . , ns, s = 1, 2, and Wsi

is the number of units the ith sampled individual represents in the finite population of size,
N . Since we assume that both samples are drawn from the same population, ∑ns

i=1 Wsi =
N, s = 1, 2.

Nandram and Rao (2021, 2023) defined adjusted weights,

wsi = n̂s
Wsi∑ns

j=1 Wsj

, i = 1, . . . , ns, s = 1, 2, (1)

where the ysi are assumed to be independent, and the effective sample size is

n̂s =
(∑ns

j=1 Wsj)2∑ns
j=1 W

2
sj

.

The adjusted weights in (1) is needed to construct the likelihood functions. They also
assumed an estimator of the population total, based on the ps, is N̂ = ∑n2

i=1 W2i. This is
actually a Horvitz-Thompson estimator, but this interpretation is not necessary. Also, a
Horvitz-Thompson estimator of the total covariates, based on the ps, is

N̂∑
i=1

x2i =
n2∑
i=1

W2ix2i.

Of course, these two estimators are based on inverse probability weighting (IPW), where the
first one being natural.

In their approach, they assumed the population model, f(y | x, θ), is correct, and
so robustness is a serious consideration. The participation model (for selection indicators)
must also be robust; in our new approach there is no participation model, a huge gain. For
the sample distribution, they used the weighted density,

f(y | x, θ, w) = {f(y | x, θ)}w´
{f(y | x, θ)}wdy}

. (2)

In the Bayesian paradigm, the sampling process must also be proper. Because the normal-
ization constant may be a function of θ, it must be included, and therefore, the general
specification in (2) is needed.

Next, we describe Bayesian predictive inference. We have estimated the survey
weights; we use Chen, Li and Wu (2020) to get nps weights. For the nps and ps we now have

(Wsi, xsi, ysi), i = 1, . . . , ℓ, s = 1, 2.
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Therefore, the population model is

yi | β, σ2 ind∼ Normal(x′
iβ, σ

2), i = 1, . . . , N.
The sample model is

f(yi | β, σ2) ∝
[

1√
2πσ2

exp{− 1
2σ2 (yi − x′

iβ)2}
]wi

and normalizing, we have

y1i | β, σ2 ind∼ Normal(x′
1iβ,

σ2

w1i

), i = 1, . . . , n.

The prior distribution is
π(β, σ2) ∝ σ−2.

Once the sample model is fit, we use the ps to guess the population size and covariate total
and we use surrogate sampling (Nandram, 2007) to sample population (prediction).

The finite population mean is

Ȳ = 1
N

N∑
i=1

yi

and
π(Ȳ | y

s
) =
ˆ
f(Ȳ | β, σ2)π(β, σ2 | y

s
) dβ dσ2.

For Bayesian predictive inference, Nandram and Rao (2021, 2023, 2024) used surrogate
sampling,

Ȳ | β, σ2 ind∼ Normal
(∑n2

i=1 W2ix
′
2i∑n2

i=1 W2i

β,
σ2∑n2

i=1 W2i

)
.

We do not split the finite population as Ȳ = fȳs + (1 − f)ȳns, where f = n
N

is the sample
fraction, ȳs is the sample mean and ȳns is the nonsample mean, because both ȳs and ȳns are
corrupted (biased). We will use a similar procedure in our new method.

To perform Bayesian predictive inference for small areas, Nandram and Rao (2024)
assumed

(Wsij, xsij, ysij), j = 1, . . . , nsi, i = 1, . . . , ℓ, s = 1, 2,
are available,

yij | νi, β, σ
2 ind∼ Normal(x′

ijβ + νi, σ
2), j = 1, . . . , Ni, i = 1, . . . , ℓ

where Ω = (ν, β, σ2). We note that the population is too large to sample completely, pop-
ulation sizes and covariates are unknown. We use surrogate sampling (Nandram, 2007)
again.

The finite population means are

Ȳi = 1
Ni

Ni∑
j=1

yij, π(Ȳi | y
s
) =
ˆ
f(Ȳi | νi, β, σ

2)π(νi, β, σ
2, | y

s
) dνi dβ dσ

2, i = 1, . . . , ℓ.

Again, Nandram and Rao (2024) used surrogate sampling for small areas.
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1. For i = 1, . . . , ℓ,

Ȳi | Ω ind∼ Normal
(∑n2i

j=1 W2ijx
′
2ij∑n2i

j=1 W2ij

β + νi,
σ2∑n2i

j=1 W2ij

)
; Ȳ (h)

i | Ω(h), y
s

2. For the hth iterate from the Gibbs sampler,

Ȳ
(h)

i | Ω(h), y
s

ind∼ Normal
(∑n2i

j=1 W2ijx
′
2ij∑n2i

j=1 W2ij

β(h) + ν
(h)
i ,

σ2(h)∑n2i
j=1 W2ij

)
.

We note that ∑n2i
j=1 W2ij is very large, and in this case the variance can be very small with

Ȳ
(h)

i | Ω(h), y
s

essentially a point mass.

2.2. Propensity scores (Chen, Li and Wu, 2020)

We review the method of Chen et al. (2020), recall CLW, and we make some com-
mentaries about their method; see also Wu (2022).

Denote the common covariates by zi, i = 1, . . . , N , with nps, z1i, i = 1, . . . , n1, and
ps, z2i, i = 1, . . . , n2. Again we note that nonsampled covariates are unknown.

Let Ri, i = 1, . . . , N , where Ri = 1 if unit i is sampled and Ri = 0 if unit i is not
sampled. With ri = 0, 1, they used the parametric assumption,

πi = P (Ri = 1 | zi) = π(zi; θ),

p(r | θ) =
N∏

i=1
{π(zi; θ)}ri{1 − π(zi; θ}1−ri

=
n∏

i=1

π(zi; θ)
1 − π(zi; θ)

N∏
i=1

{1 − π(zi; θ}

with independence over i.

Then, the population log-likelihood is

ℓ(θ) =
n1∑
i=1

log
{

π(z1i; θ)
1 − π(z1i; θ)

}
+

N∑
i=1

log{1 − π(zi; θ)},

and the pseudo-log-likelihood is

ℓ1(θ) =
n1∑
i=1

log
{

π(z1i; θ)
1 − π(z1i; θ)

}
+

n2∑
i=1

W2i log{1 − π(z2i; θ)}.

The propensity scores for the nps are then π(z1i; θ̂), i = 1, . . . , n1, where θ̂ is the MLE of θ

Now, we make some comments about the CLW Approach.

1. Horvitz-Thompson estimator may be sub-optimal with survey weights because the ratio
of the study variable and the selection probabilities may not be close to a constant;
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2. Propensity scores depend only on z (common variables only), and there may be other
important variables;

3. Propensity scores are not selection probabilities because the entire population should
be taken into consideration, and a proper quasi-randomization (see Elliot and Valiant,
2017) cannot be executed;

4. Logistic regression is not robust against its assumptions (e.g., the linearity assumption
on logit);

5. They assume ignorable selection, but nonignorable selection is preferred;

6. There are difficulties in optimization (convergence) especially for small samples;

7. In the Bayesian paradigm, the uncertainty in the estimation of the propensity scores
must be taken into consideration, and this is a difficult problem, but a bootstrap
procedure shows a 50% increase in standard deviation;

8. Need more robust participation models, perhaps a mixture of several link functions
(e.g., t4, t8, etc.).

Our new method has the following features: (a) We avoid using propensity scores
because they are not selection probabilities in the CLW method; (b) We avoid direct link
between the study variable and covariates (robustness, spatial model); (c) We do not need
non-sample covariates for prediction; (d) We avoid using the Horvitz-Thompson estimator for
prediction because it is sub-optimal with survey weights; (e) We consider a robust population
model in which a two-component mixture model is used to accommodate outliers and non-
normality.

We are particularly interested in inference about the finite population mean of each
small area. The small areas (counties) are not modeled in our procedure, but rather the
strata are modeled as small areas. Therefore, the phrase “small areas” is used in two ways,
one for the constructed strata and one for counties. Another approach for non-probability
samples with small areas is given by Nandram and Rao (2023b), where the actual small
areas are modeled directly, and inference is about finite population means and percentiles
(e.g., 85th and 95th percentiles for BMI are useful). Our new approach avoids many difficult
problems, except one of them is to incorporate the uncertainty in the estimated propensity
scores, but we are still working on this problem.

3. Data preparation

In this section, we show how to prepare the data to construct our procedures and
methods. We show how to obtain survey weights in the nps, form the strata, allocate the
sample units to the strata, and obtain the the neighborhood structure among the strata. As
we stated already, the strata are formed by distinct covariates. This is done for the BMI
data; see Table 2 for the data we analyze in this paper.

We note the following steps in our procedure.
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a. A few strata may be empty, and we can donate one unit from a stratum with at least
two units (with all variables) to a “nearby” empty stratum separately for the nps (1)
and the ps (2). For the nps, there was one empty stratum and for the ps there were
three empty strata when the BMI data is processed.

b. The W1ij, j = 1, . . . , n1i, are unknown, but it is true that ∑n1i
j W1ij = ∑n2i

j W2ij =
Ni, i = 1, . . . , G.

c. Assume all W1ij are the same with the same xi (ith stratum); under simple random
sampling (SRS) without replacement W1ij = Ni/n1i (multiple-level regression and
post-stratification (MRP) uses equal weights).

d. We have also obtained unequal weights, W1ij, j = 1, . . . , n1i, and this can be accom-
plished using a double (reverse) mass imputation.

e. All weights are trimmed to mitigate the effects of outlying weights. Outliers decrease
the effective sample size. Trimmed weights are calibrated to the population size and
adjusted to the effective sample size for modeling, but too much trimming can lead to
a false sense of security (decreased variance but increased bias).

We use double mass imputation to provide a structurally complete nps data set; see
Kim et al. 2021. In mass imputation with two data sets, an entire variable may be missing
from one data set, and both data sets are used to impute the missing data. For nps, we have
(x1i, y1i), i = 1, . . . , n1, and for the ps we have (W2i, xi), i = 1, . . . , n2 (no intercept). The
procedure is straightforward:

a. Use (x1i, y1i), i = 1, . . . , n1, to fill in y2i, i = 1, . . . , n2. This is done using the Maha-
lanobis distance among the x1i and x2i via nearest neighbors.

b. Stack the y1i under the x1i to create a new vector, x∗
1i. Similarly, stack y2i under the

x2i to create a new vector, x∗
2i.

c. Use (W2i, x
∗
2i), i = 1, . . . , n2, to fill in W1i, i = 1, . . . , n1. This is done using the Maha-

lanobis distance among the x∗
1i and x∗

2i via nearest neighbor again.

We compare two situations, which are equal weights within strata (different strata
can have different weights) and unequal weights within strata (small areas can have different
weights). Actually the situation of equal weights correspond to ignorable selection and the
situation of unequal weights corresponds to the situation of non-ignorable selection. See
Nandram and Choi (2010) and more recently Nandram (2022).

Next, we show how to use the nps to get the spatial structure, which is used as a
surrogate of the covariates to avoid the specification of any functional relation between the
study variable and the covariates. Recall robustness is very important because the population
model is assumed to be correct.

We follow the steps below:
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a. Use a surrogate for any functional relation between the study variable and the co-
variates (Lockwood 2023, PhD Dissertation). The spatial approach can provide this
surrogate.

b. Use ordinary least squares to find the G×G incidence matrix, V , which has zeros every
where except when two strata are neighbors. We use a distribution-free procedure,
where we assume that

ygj = x′
gβ + νg, j = 1, . . . , ng,

ν̂g = ȳg − x′
gβ̂, g = 1, . . . , G,

ȳg = n−1
g

ng∑
j=1

ygj, β̂ =
 G∑

g=1
ngxgx

′
g

−1
G∑

g=1
ngxgȳg.

The neighbors of stratum g are Ng = {h : |ν̂g − ν̂h| < to}, h = 1, . . . , G.

c. Choose to to make the Moran’s I correlation coefficient strong.

d. Once the strata are obtained, we never need the covariates again. Specifically, we
do not need to estimate the nonsampled covariates, a huge saving, and the uncertain
Horvitz-Thompson estimator of the population total covariate is not needed.

We note that there are difficulties using the Mahalanobis distance to find the incidence
matrix. The distinct covariates should not be used, and there is virtually no control over
this procedure.

Finally, we show how to do Bayesian predictive inference for the finite population
means of the small areas using surrogate sampling as described in the review. Again, the
population model is

ygj | µg, σ
2 ind∼ Normal(µg, σ

2), j = 1, . . . , Ng, g = 1, . . . , G.

Let Cig, g = 1, . . . , G, i = 1, . . . , ℓ, denote the set of sampled units of the ith area in
gth stratum. Define the sum of the weights associated with ith area in the gth stratum as

Nig =
∑

j∈Cig

Wgj.

Note that many of these Nig are zeros. Then, for Nig > 0,

Ȳig | µg, σ
2 ind∼ Normal{µg,

σ2

Nig

}

and
Ȳi =

∑G
g=1 NigȲig∑G

g=1 Nig

, i = 1, . . . , ℓ.

For posterior inference, we have (µ(h)
g , σ2(h)), h = 1, . . . ,M, g = 1, . . . , G, from the

sample model. Then, we have Ȳ (h)
i , h = 1, . . . ,M, i = 1, . . . , ℓ.
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4. Hierarchical Bayesian models and a numerical example

This is the main section of the paper in which we present the hierarchical Bayesian
models to analyze the new data. In parallel, we present our numerical example on body
mass index (BMI) data.

First, we fit a small area model with covariates. This is the basic model of Battese et
al. (1988); henceforth the BHF model. A full Bayesian approach of the BHF model is given
by Toto and Nandram (2011) and Molina et al. (2014). However, this model is notoriously
non-robust to its assumptions (normality, linearity, outliers). We use the BHF model as the
baseline model for comparison.

Second, we use the Scott-Smith model (Scott and Smith, 1969), which does not have
covariates; this model was intended for cluster sampling, but nowadays we have been using
it for small area estimation; see Nandram et al. (2011), henceforth SS model. Note that
the SS model is a special case of the BHF model. For example, we will construct a spatial
model to accommodate the covariates and we will add robustness through mostly a two-
component mixture model (Chakraborty et al., 2019, Goyal et al., 2020) and one slightly
different model with a stick-breaking prior (Ishwaran and James, 2001). So we are using
the SS model to drop the linearity assumption of the study variable and the covariates, to
robustify the assumption of normality, and accommodating outliers. Note all SS models have
a spatial component to accommodate the covariates.

We will compare the models with (a) equal weights and (b) unequal weights using
posterior inference about the finite population means by actual small areas (counties in
the application on BMI). For comparison, we use posterior mean (PM), posterior standard
deviation (PSD), numerical standard error (NSE), posterior coefficient of variation (PCV)
and 95% highest posterior density interval (HPDI). All our data analyses will be done on
the BMI data.

All computations were done on WPI’s Solar Cluster. The Gibbs sampler was used
for almost all models. The computations used more time (increasing complex models) as
we go from Table 3 to Table 7 because longer runs are needed to ensure strong mixing in
the Gibbs samplers. Apart from the data preparation, which took just a few minutes, the
computational time for all models (equal & unequal weights) took just about one hour.

Baseline (BHF) model

In the BHF model we use the original 8 counties. The stratum table with the weights
is reverted to the small areas (not strata). We note that BHF model is notoriously not robust
to its assumptions.

The population model is

yij | νi, β, σ
2 ind∼ Normal{x′

ijβ + νi, σ
2}, j = 1, . . . , Ni, i = 1, . . . , ℓ.

The sample model is

yij | νi, β
ind∼ Normal{x′

ijβ + νi,
σ2

wij

}, j = 1, . . . , ni,
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νi | σ2, ρ
ind∼ Normal(0, ρ

1 − ρ
σ2), i = 1, . . . , ℓ,

π(β, σ2, ρ) ∝ 1
σ2 . (3)

The joint posterior density for the sample model described in (3) is proper if the design
matrix is full rank and ℓ ≥ 2. It can be sampled using a random sampler; a noisy Gibbs
sampler is not necessary.

Bayesian predictive inference is now standard using surrogate sampling,

Ȳi | νi, β, σ
2 ind∼ Normal{X̄ ′

iβ + νi,
σ2

Ni

},

π(Ȳi | y
s
) =
ˆ
f(Ȳi | νi, β, σ

2)π(νi, β, σ
2, | y

s
)dνi dβ dσ

2, i = 1, . . . , ℓ.

In Table 3 we compare the BHF models, with equal weights and unequal weights.
We observe that the PMs are rougher, PSDs are larger and PMs are closer to 25 (but not as
close as we want) under the model with unequal weights than the model with equal weights.
Note that counties 4 & 8 are mostly different from the others. But can we do better on these
three measures?

SS model with spatial effects

We next delete the covariates and replace them with the spatial covariance matrix.
This is the SS model with spatial effects.

Now the population model is

ygj | µg, σ
2 ind∼ Normal{µg, σ

2}, j = 1, . . . , Ng, g = 1, . . . , G.

The sample model is

ygj | µg, ρ
ind∼ Normal{µg,

σ2

wgj

}, j = 1, . . . , ng,

µg | σ2, ρ
ind∼ Normal(θ, ρ

1 − ρ
σ2), g = 1, . . . , G,

π(θ, σ2, ρ) ∝ 1
σ2 . (4)

The model, described in (4) and the few lines above it, is the basic SS model, which can be
fit using a random sampler.

However, we need to add the spatial structure and we use the simultaneous conditional
auto-regressive (CAR) model (e.g., He and Sun, 2000; Chung and Datta, 2022). The sample
model is now given by

ygj | µg, σ
2 ind∼ Normal

{
µg,

σ2

wgj

}
, j = 1, . . . , ng, g = 1, . . . , G,
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Table 3: BHF model is fit directly to the small areas

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 27.629 0.365 0.004 0.013 (26.905, 28.351)
2 138 28.277 28.025 0.398 0.004 0.014 (27.293, 28.847)
3 667 27.340 27.629 0.192 0.002 0.007 (27.248, 27.995)
4 133 25.980 27.051 0.405 0.004 0.015 (26.221, 27.814)
5 96 27.075 27.547 0.406 0.004 0.015 (26.767, 28.368)
6 119 27.313 27.318 0.395 0.004 0.014 (26.538, 28.108)
7 100 27.518 27.881 0.449 0.005 0.016 (27.002, 28.777)
8 137 26.698 27.470 0.370 0.004 0.013 (26.741, 28.205)

b. Unequal weights

1 140 27.324 27.234 0.440 0.004 0.016 (26.359, 28.085)
2 138 28.277 28.594 0.436 0.005 0.015 (27.728, 29.442)
3 667 27.340 27.193 0.197 0.002 0.007 (26.821, 27.590)
4 133 25.980 25.901 0.463 0.005 0.018 (25.002, 26.794)
5 96 27.075 27.855 0.497 0.005 0.018 (26.838, 28.790)
6 119 27.313 27.372 0.457 0.005 0.017 (26.489, 28.302)
7 100 27.518 27.394 0.514 0.005 0.019 (26.443, 28.439)
8 137 26.698 26.266 0.460 0.005 0.017 (25.355, 27.136)

NOTE: ȳ1 = n−1
i

∑ni
j=1 yij , i = 1, . . . , ℓ, is the ordinary sample average. Posterior inference is

based on 1,000 iterates that provide posterior mean (PM), posterior standard deviation (PSD),
numerical standard error (NSE), posterior coefficient of variation (PCV), and 95% highest
posterior density interval (HPDI). Only random samplers, no Gibbs samplers, are used.

µ | θ, ρ, ψ, σ2 ∼ Normal
{
jθ,

ρ

1 − ρ
σ2(R − ψV )−1

}
,

(j is a vector of ones),

π(θ, ρ, ψ, σ2) ∝ 1
σ2 ,

0 < ρ < 1, 1
λ1

< ψ <
1
λG

,

where λ1 < . . . < λG, are eigenvalues of R−1V, and R = diagonal(rg, g = 1, . . . , G) with rg

the gth row (column) sum of V . We note that the joint posterior density is proper and it
can be fit using the Gibbs sampler. This is our first SS model.

In Table 4 we notice that the PSDs for some of the areas are smaller under unequal
weights (not desirable). The PMs are smoother under the unequal weights, but closer to 25.
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We need to improve this model, which can be done by robustification of either the sampling
process or the area means or both. All these models require the use of the Gibbs sampler.
Details of number of iterations used are described in the notes of the tables. To come up
with those numbers, we have used the Geweke test of stationarity and the effective sample,
and in all cases the Gibbs sampler mixed strongly.

Table 4: Scott-Smith model is fit to the strata with spatial effects

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 27.197 0.314 0.009 0.012 (26.638, 27.832)
2 138 28.277 26.741 0.258 0.008 0.010 (26.233, 27.276)
3 667 27.340 27.104 0.204 0.007 0.008 (26.709, 27.485)
4 133 25.980 27.050 0.269 0.010 0.010 (26.602, 27.591)
5 96 27.075 26.829 0.300 0.009 0.011 (26.256, 27.435)
6 119 27.313 27.082 0.356 0.012 0.013 (26.378, 27.812)
7 100 27.518 27.125 0.411 0.013 0.015 (26.358, 27.867)
8 137 26.698 27.076 0.279 0.008 0.010 (26.592, 27.632)

b. Unequal weights

1 140 27.324 26.640 0.299 0.008 0.011 (26.113, 27.229)
2 138 28.277 26.730 0.253 0.006 0.009 (26.232, 27.208)
3 667 27.340 26.546 0.178 0.005 0.007 (26.225, 26.895)
4 133 25.980 26.687 0.424 0.016 0.016 (25.831, 27.375)
5 96 27.075 26.149 0.310 0.008 0.012 (25.575, 26.758)
6 119 27.313 26.412 0.293 0.010 0.011 (25.779, 26.954)
7 100 27.518 25.877 0.372 0.012 0.014 (25.257, 26.632)
8 137 26.698 25.951 0.289 0.010 0.011 (25.399, 26.538)

NOTE: The Gibbs sampler is run 11, 000 times with a “burn-in” of 1, 000 and a systematic
sample of every tenth is taken.

SS model with spatial effects and robust study variable

The population model is

ygj | µg
ind∼ (1 − p)Normal(µg, γσ

2) + pNormal(µg, σ
2),

j = 1, . . . , Ng, g = 1, . . . , G, 0 < p < 1/2 and 0 < γ < 1.

The sample model is

ygj | µg
ind∼ (1 − p)Normal(µg, γ

σ2

wgj

) + pNormal(µg,
σ2

wgj

),
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j = 1, . . . , ng, g = 1, . . . , G

µ
ind∼ Normal{θj, ρ

1 − ρ
σ2(R − ψV )−1},

π(θ, σ2, p, ρ, γ, ψ) ∝ 1
σ2 ,

1
λ1

< ψ <
1
λG

.

The joint posterior density is

π(z, µ, θ, σ2, γ, ρ, ψ | y) ∝

1
σ2

G∏
g=1

ng∏
j=1

[(1 − p)Normal(µg, γ
σ2

wgj

)]1−zgj [pNormal(µg,
σ2

wgj

)]zgj

×Normal{θj, ρ

1 − ρ
σ2(R − ψV )−1},

and this posterior can be sampled using the Gibbs sampler; see note to Table 5. The results
are better than those in BHF model and the SS model with only spatial effects.

SS Model with spatial effects, robustness on study variable and random
effects

The population model is now

ygj | µg
ind∼ (1 − p)Normal(µg, γ0σ

2) + pNormal(µg, σ
2),

j = 1, . . . , Ng, g = 1, . . . , G, 0 < p < 1/2 and 0 < γ0 < 1.

The sample model is

ygj | µg
ind∼ (1 − p)Normal(µg, γ0

σ2

wgj

) + pNormal(µg,
σ2

wgj

), (5)

j = 1, . . . , ng, g = 1, . . . , G,

µg
ind∼ (1 − q)Normal(νg, γ1

ρ1

1 − ρ1
σ2) + qNormal(νg,

ρ1

1 − ρ1
σ2), (6)

0 < q < 1/2, 0 < γ1 < 1,

ν ∼ Normal{θj, ρ2

1 − ρ2
σ2(R − ψV )−1},

π(θ, σ2, p, q, ρ1, ρ2, ψ, γ0, γ1) ∝ 1
σ2 .

The assumptions in (5) and (6) express a form of Bayesian double robustness.

The joint posterior density is

π(z, t, µ, ν, θ, σ2, p, q, ρ1, ρ2, ψ, γ0, γ1 | y) ∝
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Table 5: Scott-Smith model is fit to the strata with spatial effects and robust
study variable

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 27.257 0.309 0.008 0.011 (26.701, 27.839)
2 138 28.277 27.100 0.248 0.010 0.009 (26.579, 27.541)
3 667 27.340 27.315 0.202 0.006 0.007 (26.969, 27.667)
4 133 25.980 27.206 0.252 0.007 0.009 (26.715, 27.674)
5 96 27.075 26.956 0.358 0.011 0.013 (26.341, 27.538)
6 119 27.313 27.286 0.233 0.008 0.009 (26.821, 27.712)
7 100 27.518 27.040 0.425 0.014 0.016 (26.251, 27.731)
8 137 26.698 27.235 0.238 0.008 0.009 (26.838, 27.628)

b. Unequal weights

1 140 27.324 27.021 0.345 0.011 0.013 (26.349, 27.668)
2 138 28.277 27.084 0.311 0.009 0.011 (26.464, 27.584)
3 667 27.340 26.835 0.186 0.005 0.007 (26.493, 27.203)
4 133 25.980 26.752 0.381 0.011 0.014 (26.095, 27.410)
5 96 27.075 26.503 0.367 0.011 0.014 (25.784, 27.121)
6 119 27.313 27.003 0.341 0.011 0.013 (26.340, 27.619)
7 100 27.518 26.163 0.457 0.016 0.017 (25.311, 26.969)
8 137 26.698 26.417 0.281 0.010 0.011 (25.823, 26.902)

NOTE: The Gibbs sampler is run 40, 000 times with a “burn-in” of 10, 000 and a systematic
sample of every thirtieth.

1
σ2

G∏
g=1

ng∏
j=1

[(1 − p)Normalygj
(µg, γ0

σ2

wgj

)]1−zgj [pNormalygj
(µg,

σ2

wgj

)]zgj

×
G∏

g=1
[(1 − q)Normalµg(νg, γ1

ρ1

1 − ρ1
σ2)]1−tg [qNormalµg(νg,

ρ1

1 − ρ1
σ2)]tg

×
(

1 − ρ2

ρ2σ2

)G/2

|R − ψV |1/2 exp
{

−1 − ρ2

2ρ2σ2 (ν − θj)′(R − ψV )(ν − θj)
}
,

and this can be sampled using the Gibbs sampler; see note to Table 6. Again the results look
better than the previous ones. This model appears to be the best: The PSDs for unequal
weights are larger than those for equal weights, and the PMs for unequal weights are smaller
than those for equal weights (therefore closer 25).
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Table 6: Scott-Smith model is fit to the strata with spatial effects and robust
study variable and robust random effects

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 26.826 0.268 0.008 0.010 (26.283, 27.321)
2 138 28.277 26.798 0.270 0.007 0.010 (26.305, 27.324)
3 667 27.340 27.096 0.221 0.006 0.008 (26.679, 27.523)
4 133 25.980 27.166 0.198 0.006 0.007 (26.778, 27.550)
5 96 27.075 26.722 0.239 0.007 0.009 (26.280, 27.172)
6 119 27.313 26.997 0.238 0.006 0.009 (26.539, 27.451)
7 100 27.518 26.814 0.227 0.007 0.008 (26.379, 27.238)
8 137 26.698 27.185 0.202 0.006 0.007 (26.815, 27.597)

b. Unequal weights

1 140 27.324 26.228 0.355 0.010 0.014 (25.479, 26.839)
2 138 28.277 26.523 0.333 0.010 0.013 (25.889, 27.167)
3 667 27.340 26.367 0.270 0.008 0.010 (25.851, 26.899)
4 133 25.980 26.460 0.236 0.007 0.009 (26.000, 26.915)
5 96 27.075 25.949 0.283 0.008 0.011 (25.389, 26.477)
6 119 27.313 26.432 0.317 0.010 0.012 (25.746, 26.953)
7 100 27.518 25.917 0.274 0.008 0.011 (25.376, 26.412)
8 137 26.698 26.171 0.245 0.008 0.009 (25.709, 26.653)

NOTE: The Gibbs sampler is run 60, 000 times with a “burn-in” of 15, 000 and a systematic
sample of every forty-fifth.

SS model with spatial effects, robust study variable and stick-breaking
priors on random effects

The population model is

ygj | µg
ind∼ (1 − p)Normal(µg, γ0σ

2) + pNormal(µg, σ
2),

j = 1, . . . , Ng, g = 1, . . . , G, 0 < p < 1/2 and 0 < γ0 < 1.

The sampling model is

ygj | µg
ind∼ (1 − p)Normal(µg, γ0

σ2

wgj

) + pNormal(µg,
σ2

wgj

), (7)

j = 1, . . . , ng, g = 1, . . . , G,

µ ∼ Normal{θj + η,
ρ1

1 − ρ1
σ2(R − ψV )−1},
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where j is a vector of ones, and the Pitman-Yor two-parameter process is

ηg | t ind∼
G0∑
s=1

psNormal(ts,
ρ2

1 − ρ2
σ2), G0 ≤ G, g = 1, . . . , G, (8)

p1 = ν1, p2 = ν2(1 − ν1), . . . , pG0 =
G0−1∏
s=1

(1 − νs),

νs | δ1, δ2
ind∼ Beta{1 − δ1,

1 − δ2

δ2
+ (s− 1)δ1}, s = 1, . . . , G0,

ts
ind∼ Normal(0, ρ3

1 − ρ3
σ2), s = 1, . . . , G0.

The assumptions in (7) and (8) are a form of Bayesian double robustness; these are more
flexible than the assumptions in (5) and (6). We have used the prior,

π(σ2) ∝ 1
σ2 , θ ∼ Normal(θo, σ

2
o),

where θo and σ2
o must be specified. Also, for computational stability, we have kept 0 < δ1 <

1
2 < δ2 < 1 with uniform priors on δ1, δ2, γo, p, ψ, ρ1, ρ2, ρ3.

In Table 7, this model is similar to the model in which there is robustness on both
the study variable and the area effects. But there are some aberrations as some of the PSDs
under the stick-breaking prior are smaller with unequal weights, which is a bit concerning.

As a summary, we compare all the models in Table 8. We use the summaries,

RD = {1 − AV GUW − 25
AV GEW − 25}100%, RP = {GMUW

GMEW

− 1}100%, (9)

where AV GUW and AV GEW are the arithmetic means of the 8 PMs for respectively the
unequal weights (UW ) case and the equal weights (EW ) case, and GMUW and GMEW are
the geometric means of the 8 PSDs for respectively the unequal weights (UW ) case and the
equal weights (EW ) case. Here RD is the percent AV GUW is closer to 25 than AV GEW

(expected to be positive), and RP is the percent increase of GMUW over GMEW (expected
to be positive).

Under the RD measure, three models stand out with robust study variable. Under
the RP measure, three models stand out. For both measures the model that wins is the
model in which study variable and the area effects are both robust; indeed, this is a novel
model. While the stick-breaking of the area effects is robust, it is a bit concerning that
RP is negative, but it is possible to overcome this problem. Detailed results, like the other
models, were not shown for the first and second SS model in Table 8. These results show
that robustness on the study variable is important, because for the first SS model, without
robustness on the study variable, there are artificially low PSDs relative to the BHF model
and the second SS model with robust study variable.
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Table 7: Scott-Smith model is fit to the strata with spatial effects and robust
study variable and stick-breaking priors on random effects

County n1 ȳ1 PM PSD NSE PCV 95% HPDI

a. Equal weights

1 140 27.324 27.286 0.347 0.012 0.013 (26.708, 28.092)
2 138 28.277 26.674 0.330 0.010 0.012 (25.989, 27.256)
3 667 27.340 27.172 0.214 0.006 0.008 (26.762, 27.580)
4 133 25.980 27.105 0.303 0.009 0.011 (26.573, 27.689)
5 96 27.075 26.880 0.367 0.010 0.014 (26.152, 27.533)
6 119 27.313 27.226 0.575 0.021 0.021 (26.194, 28.372)
7 100 27.518 27.174 0.378 0.010 0.014 (26.403, 27.824)
8 137 26.698 27.133 0.311 0.009 0.011 (26.534, 27.739)

b. Unequal weights

1 140 27.324 26.738 0.347 0.009 0.013 (26.144, 27.448)
2 138 28.277 26.738 0.282 0.008 0.011 (26.193, 27.296)
3 667 27.340 26.581 0.201 0.006 0.008 (26.213, 26.943)
4 133 25.980 26.715 0.424 0.012 0.016 (25.872, 27.429)
5 96 27.075 26.076 0.310 0.011 0.012 (25.522, 26.747)
6 119 27.313 26.453 0.410 0.011 0.016 (25.642, 27.223)
7 100 27.518 25.856 0.372 0.009 0.014 (25.189, 26.543)
8 137 26.698 25.914 0.324 0.009 0.013 (25.283, 26.503)

NOTE: The Gibbs sampler is run 100, 000 times with a “burn-in” of 25, 000 with a systematic
sample of every seventy-fifth, and it took twenty-five minutes.

5. Improvements and extensions

In this section, we show what improvements can be made to our new procedure and
possible extensions. We also show how to make inference about all propensity scores, not just
those associated with the non-probability sample, but its non-sampled part of the population
as well.

5.1. Improvements, Mahalanobis distance

We discuss how to replace the Mahalanobis distance because it is not appropriate
with discrete variables. Leon and Carriere (2005) introduced a generalized Mahalanobis
distance for mixed data but this method is cumbersome; so we seek a simpler mathod that
avoids the Mahalanobis distance completely. Basically we use the nps (1) and the ps (2) to
get propensity scores, and matching to get surrogates for y2j, j = 1, . . . , n2. Then, we use
the nps (1) and ps (2) with the surrogates, to get propensity scores again, and matching to
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Table 8: Comparison of the six models by summaries of the PMs and PSDs over
the eight counties

PM PSD

Models EW UW RD (%) EW UW RP (%)

Covariates (BHF) 27.569 27.226 15.391 0.363 0.418 15.295
NR, NS-RE (SS)∗ 27.540 27.174 16.840 0.143 0.152 5.844
RS, NS-RE (SS)∗ 27.186 26.732 26.243 0.265 0.329 24.381

RS, S-RE (SS) 27.034 26.372 48.264 0.294 0.298 1.200
RS & S-R-RE (SS) 26.917 26.215 57.703 0.233 0.284 22.009
RS & S-SB-RE (SS) 27.081 26.384 50.402 0.341 0.326 -4.423

NOTE: Scott-Smith (SS) spatial models have the CAR prior and the non-spatial models∗

replace R− ψV by the identity matrix. The summaries are respectively the arithmetic mean of
the eight PMs and geometric mean of the eight PSDs. The first three models are non-spatial
(NS), and last four models have robust study variable (RS).

get surrogates for W1j, j = 1, . . . , n1. The y2j are not used for further analysis.

Our procedure has two steps. First, we massively impute y2i, i = 1, . . . , n2, using
propensity scores (i.e., matching via nearest neighbors). Second, we match (nearest neighbor)
propensity scores conditional on the nps and ps data now available.

In the first step, we define Ii = 0 if i = 1, . . . , n1 (nps) and Ii = 1 if i = n1+1, . . . , n1+
n2 = n (ps); xi = x1i, i = 1, . . . , n1 and xn1+i = x2i, i = 1, . . . , n2. We then assume logistic
regression model,

Ii
ind∼ Bernoulli( ex′

iβ

1 + ex′
iβ

), i = 1, . . . , n = n1 + n2.

Let β̂ denote the maximum likelihood estimator of β, we have propensity scores,

πi = ex′
iβ̂

1 + ex′
iβ̂
, i = 1, . . . , n.

We fill in the missing y2i, i = 1, . . . , n2, using matching on the πi. For each i = n1+1, . . . , n1+
n2, we find which j, j = 1, . . . , n1, minimizes |πi − πj|, say j∗; j∗ may not be unique. Then,
the value of the study variable given to unit i is y2j∗ , i = n1 + 1, . . . , n1 + n2.

In the second step, we define xi = x1i, i = 1, . . . , n1, xi = x2i, i = 1, . . . , n2. Similarly,
we define yi = y1i, i = 1, . . . , n1, yi = y2i, i = 1, . . . , n2. Also, define Ii = 1, i = 1, . . . , n1,
for the nps (1) and Ii = 0, i = n1 + 1, . . . , n1 + n2 = n, for the ps (2). Note that xi

has p components, including an intercept. For the nonignorable model, we assume logistic
regression,

Ii | β, yi
ind∼ Bernoulli

 e
(x′

iβ(p)+yiβp+1)

1 + e
(x′

iβ(p)+yiβp+1)

 , i = 1, . . . , n.
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We optimize the likelihood function to obtain the maximum likelihood estimator of β, which
we now denote by β̂. The propensity scores are then

πi = ex′
iβ̂+yiβ̂p+1

1 + ex′
iβ̂+yiβ̂p+1

, i = 1, . . . , n.

For each i = 1, . . . , n1, we find which j, j = n1 + 1, . . . , n, minimizes |πi − πj|, say j∗; j∗ may
not be unique. Then, the weight given to unit i is W2j∗ , i = 1, . . . , n1. Denote these weights
by W1i, i = 1, . . . , n1. Letting N = ∑n2

i=1 W2i, the design estimate of the population size, our
final weights for the nps (1) are

W1i ≡ N
W1i∑n1

i=1 W1i

, i = 1, . . . , n1.

Note that the y2i are discarded and are not used in any further analysis.

5.2. Extensions

Unfortunately, in our new procedure sample sizes and the sub-population sizes of the
strata (domains) are random variables. The uncertainty in their values should be taken into
consideration.

Let j = (1, . . . , 1)′, a vector of ones, and O = (0, . . . , 0)′, a vector of zeros, Ng >>
ng, g = 1, . . . , G denote G-vectors.

a. Population sizes

Letting N = (N1, . . . , NG)′, domain sizes from ps (1), we assume

N − j ∼ Multinomial(N −G,P ), P ∼ Dirichlet(O),

P | N ∼ Dirichlet(N − j), T − j | P ,N ∼ Multinomial(N −G,P )

b. Sample sizes

Letting n = (n1, . . . , nG)′, observed domain sizes, we assume

n− j ∼ Multinomial(n−G, p), p ∼ Dirichlet(O),

p | n ∼ Dirichlet(n− J), t− j | p, n ∼ Multinomial(n−G, p).

c. Posterior inference

Using Bayes’ theorem, the joint posterior density is

π(Ω, z, t, T | y,W, n,N),

where z is a vector of latent variables; zgj, j = 1, . . . , tg, g = 1, . . . , G. There are three cases,
which we must consider,
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a. If tg < ng, take a simple random sample without replacement from ygj, j = 1, . . . , ng

(carry on Wgj);

b. If tg = ng, retain (ygj,Wgj), j = 1, . . . , ng;

c. If tg > ng, take all (ygj,Wgj), j = 1, . . . , ng and draw a simple random sample with
replacement from them to get the others.

We use the following decomposition of the joint posterior density,

π(Ω, z, t, T | y,W, n,N) =

π1(Ω | z, t, T , y,W, n,N) π2(z | t, T , y,W, n,N) π3(t, T | y,W, n,N).
We assume

π(Ω, z, t, T | y,W, n,N) =
π1(Ω | z, t, y,W , n) π2(z | t, y,W , n) π30(t | n) π31(T | N).

5.3. Inference for all propensity scores

As usual, there are two cases, ignorable selection and non-ignorable selection. For
ignorable selection in our new procedure, logistic regression is null and void. Basically, we
have a simple random sample without replacement from each stratum. So the selection
probabilities for the gth stratum are ng/Ng, j = 1, . . . , Ng; obviously these vary with the
sizes of the strata/domains. It does not affect the modeling of the study variable. It is
trivial to deal with random sample sizes of the strata/domains; see Section 5.2. Now the
method of Chen, Li and Wu (2020) is completely useless.

For nonignorable selection, we do not need the Horvitz-Thompson estimator (pseudo-
likelihood). However, we will obtain the propensity scores for the entire population of N
individuals, and therefore these propensity scores can be interpreted as selection probabili-
ties. We use the following logistic regression model,

G∏
g=1

 ng∏
j=1

ex′
gβ+ygjβp+1

1 + ex′
gβygjβp+1

{ 1
ex′

gβ+ygjβp+1

}Ng/ng−1
 .

Note that we are assuming each individual in the gth stratum in the sample is reproduced
Ng/ng with the same value of the study variable. Maximum likelihood estimators, β̂, can be
obtained for β. Hence, the propensity scores, πgs, are given by

πgs = ex′
gβ̂+ygsβ̂p+1

1 + ex′
gβ̂ygsβ̂p+1

, s = (j − 1)Ng

ng

+ 1, . . . , jNg

ng

, j = 1, . . . , ng.

Some comments are in order.

(a) It is possible to provide a full Bayesian method to obtain the propensity scores.

(b) The πgs are very variable, and they will not add up to n, and we can rake them up to
n. String out the πgs as πi, i = 1, . . . , N .
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(c) The raking procedure can be a bit problematic because 0 < πi < 1, i = 1, . . . , N and∑N
i=1 πi = n for sampling without replacement. Of course, if ∑n

i=1 πi ≥ n, raking does
not cause any problems. If ∑n

i=1 πi < n, there are difficulties because raking up will
make some of the raked πi > 1, which we do not want. Keep the πi in the fourth
quartile unchanged. Suppose ∑i∈Q4 πi = no, where Q4 is the fourth quartile; then rake
up the πi in the first three quartiles to n− no.

(d) It is not much more difficult to make inference about the study variable with random
sample sizes of the strata/domains.

6. Concluding remarks

A structurally complete probability sample is obtained from the non-probability sam-
ple using double mass imputation with supplemental data from a relatively small probability
sample (no study variable). The population is stratified by distinct covariates and the nps
and ps are allocated to the strata. The study variable and the covariates are used to con-
struct an incidence matrix (spatial structure), which is used to accommodate the covariates.
The covariates are never used in the proposed models.

We have used the Scott-Smith model to avoid specifying the uncertain relationship
between the study variable and covariates for unit level data without consideration of the
participation variable. Robust models are specified for both the study variable and the
random effects, and in one model, the Pitman-Yor two-parameter stick-breaking process is
used. This is needed because the population model, used for prediction, is assumed to be
correct. The nps data are used to construct an incidence matrix with the neighboring strata.

The small areas are not modeled directly, rather the model is placed on the strata
with the non-probability samples. Inference about the actual small areas is obtained in the
output analysis. This helps with over-shrinkage.

A simulation study to assess the predictive power of the proposed models will be
useful. Sensitivity of Bayesian predictive inference of the finite population mean to the
size of the ps sample needs to be investigated. Further robustification can be done using the
stick-breaking process for the sampling process (study variable) instead of the two component
mixture model for the study variable in the Scott-Smith model. An alternative approach,
using structural error models, is presented by Nandram (2023).

The method is promising, and the non-Bayesian notion of double robustness is null
and void. The probability sample plays a fairly minor role, and it can be eliminated if the
required population information can be obtained using web-scraping, an emerging science.
There is a good comparison with the BHF (baseline) model. Future work will be focused in
this direction (stratification and matching).

At one of my talks, a participant asked if the means of the two components in mixture
model can be different. Of course, they can be different; the mixture model in the stick-
breaking process has a different mean for each cluster. The model of Goyal et al. (2020) is
limited, and so in Appendix B, we describe how one might use different means for a single
area; thereby adding flexibility to this two-component mixture model.
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Appendices

Appendix A: Extension of the Scott-Smith model with stick breaking process

We extend the Scott-Smith model to have a robust model on the study variable,
spatial effects and random effects, where the random effects have a stick-breaking prior
(Ishwaran and James, 2001).

For g = 1, . . . , G, j = 1, . . . , Ng, again we have the mixture population model (ro-
bustness),

ygj | µg ∼ (1 − p)Normal(µg, γσ
2) + pNormal(µg, σ

2), (A.1)
where 0 < p < 1

2 , 0 < γ < 1.

For g = 1, . . . , G, j = 1, . . . , ng, again we have the sample model,

ygj | µg ∼ (1 − p)Normal(µg, γ
σ2

wgj

) + pNormal(µg,
σ2

wgj

), (A.2)

where 0 < p < 1
2 , 0 < γ < 1.

Then,
µ | η ∼ Normal{jθ + η,

ρ1

1 − ρ1
σ2(R − ψV )−1}. (A.3)

We consider the Pitman-Yor two parameter stick-breaking process for ηg, g = 1, . . . , G.

The stick-breaking process is

π(ηg | t, etc.) =
Go∑
s=1

psNormal(ts,
ρ2

1 − ρ2
σ2),

where Go is the number of distinct clusters with independence over g = 1, . . . , G. Using the
latent variables, dg, it can be expressed in a computationally convenient form,

π(ηg, dg | t, etc.) =
G∏

s=1
[pdgNormalηg{tdg ,

ρ2

1 − ρ2
σ2}]I(dg=s)

with independence over (ηg, dg), g = 1, . . . , G. The number of clusters, Go, is the number of
distinct dg and dg informs which cluster ηg belongs. Note that the limit of the product is ℓ
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and it cannot be larger; this is different from a Dirichlet process, where the upper limit in
the product goes to infinity. Here p1 = ν1, p2 = ν2(1 − ν1), . . . , pGo = ∏Go−1

s=1 (1 − νs) and

νs
ind∼ Beta{1 − δ1,

1 − δ2

δ2
+ (s− 1)δ1}, s = 1, . . . , G, 0 < δ1, δ2 < 1.

Then, for η, we have

η | t, d ∼ Normal{Pt, ρ2

1 − ρ2
σ2I}, (A.4)

where P is an incidence (partition) matrix (i.e., it consists of zeros and ones), mapping the
areas to the clusters. Finally, we assume

ts
ind∼ Normal{0, ρ3

1 − ρ3
σ2}, s = 1, . . . , Go. (A.5)

Note that η and t are Go-vectors.

Also, it is clear that

Pr(dg = s | t, etc.) ∝ psNormalηg(ts,
ρ2

1 − ρ2
σ2), s = 1, . . . , G, g = 1, . . . , G.

Once dg, g = 1, . . . , G, are sampled, the incidence matrix, P is obtained, and all other
parameters can be sampled. That is, draw the dg first, and all other parameters can be
sampled easily. Note at this moment, if we do not have enough zs or νs, we must sample
their priors.

We need to specify a proper prior for θ. Actually, µg = ϕg + ηg, g = 1, . . . , G,
where the ϕg are spatial effects and the ηg are clustering effects. Therefore, there is weak
identifiability and we must take care of this issue. Now, E(µg | θ, ηg) = E(ϕg | θ, ηg) + ηg,
and E(ϕg | θ, ηg) = θ. Also, note that E(η) = E{E(η | t)} = E(Pt) = 0. Therefore, we
have centered the µg on θ by taking E(ϕg | ηg) = θ and E(η) = 0 This centering together
with proper diffused priors on θ can overcome the weak identifiability in this hierarchical
Bayesian model. It is possible to improve this model further.

However, there are some additional problems that are likely to occur with stick break-
ing. First, there can be a single cluster, but at least three clusters are needed in any partition.
One can use a random grouping with three clusters if this happens ( this is rare). Second,
to allow a relatively larger number of clusters, we take 1 − δ1 >

1
2 , better than Jeffrey’s

prior for the first parameter of the beta density, and 1−δ2
δ2

< 1, thereby assisting the second
beta parameter from getting too large a priori. These two conditions give 0 < δ1 <

1
2 and

1
2 < δ2 < 1. Third, an informative prior for θ is required. This can be obtained by using a
small sub-sample of the data to avoid double using all the data. These three things help to
obtain a more efficient Gibbs sampler.

To obtain the prior for θ, we can take a random sample of 10% of the data, ȳg, g =
1, . . . , G. Now calculate the average, θo, and the variance, σ2

o . Then, we take θ ∼ Normal(θo, σ
2
o).

This is like a proper diffused prior, which avoids the uncertainty in inflating σ2
o near to
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vagueness. Admittedly it double uses the data, but only 10% of the data, not all the data.
Otherwise, we would need a prior for θ from an independent source. For example, if we also
have the study variable from a small probability sample, we can use that as we have done
here. Alternatively, we can take a small percent (e.g., 5%) of the nps data, and do the same,
and we can use the remaining data for the analysis. So that we do not need the ps for the
construction of the prior.

The CPD of θ consists of two pieces, one from the proper prior and other from the
model. It is easy to show that the contribution from the model is

θ ∼ Normal
{∑G

g=1 rgµg∑G
g=1 rg

,
ρ1

1 − ρ1
σ2 1

(1 − ψ)∑G
g=1 rg

}
,

where rg are the row (column) sums of V . It is now a standard calculation to combine the
two pieces.

Starting values for the Gibbs sampler can be obtained by first doing three things.

a. Find the sample averages, ȳg = 1
ng

∑ng

j=1 ygj, g = 1, . . . , G.

b. Find clusters in these G stratum means, say 10 clusters, and this will give initial values
of the dg.

c. Form the partition matrix, P .

With this set up, we can generate starting values for all pertinent parameters. We can set
ρs = 1

2 , s = 1, 2, 3, and δ1 = δ2 = 1
2 . Also, ts, s = 1, . . . , 10, can be obtained by averaging the

appropriate yg. Then, we can now sample the ηg, g = 1, . . . , G. At the first iterate of the
griddy Gibbs sampler, we can easily sample the dg followed by all the parameters.

Appendix B: Unequal means in the two-component mixture model

We consider a single area (or stratum) to show how we can proceed. We assume

yi | p, µ, σ2, ρ, γ
ind∼ (1 − p)Normalyi

(µ− γ, ρσ2) + pNormalyi
(µ, σ2), i = 1, . . . , n,

where the first component has smaller mean and variance, and a priori,

π(p, µ, σ2, ρ, γ) ∝ 1
σ2 , 0 < p < 1/2, 0 < ρ < 1, |µ|, σ2, γ > 0.

Continuous survey data are typically skewed to the right, and so it is safe to take γ > 0. Of
course, we can do regression (with covariates) in a similar manner.

The joint posterior density is

π(p, µ, σ2, ρ, γ | y) ∝

1
σ2

n∏
i=1

{
1 − p√
ρσ2ϕ{(yi − µ+ γ)/

√
ρσ2} + p√

σ2
ϕ{(yi − µ)/

√
σ2}

}
, (B.1)
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where ϕ(·) is the standard normal density and 0 < p < 1/2, 0 < ρ < 1, |µ|, σ2, γ > 0.

We can simplify drawing samples from the joint posterior density by introducing latent
variables, zi, i = 1, . . . , n, where zi = 0 if an observation comes from the first component
and zi = 1 if an observation comes from the second component. Then, the augmented joint
posterior density, starting with (B.1), is now

π(z, p, µ, σ2, ρ, γ | y) ∝

1
σ2

n∏
i=1


[

1 − p√
ρσ2ϕ{(yi − µ+ γ)/

√
ρσ2}

]1−zi
[
p√
σ2
ϕ{(yi − µ)/

√
σ2}

]zi
 , (B.2)

where 0 < p < 1/2, 0 < ρ < 1, |µ|, σ2, γ > 0. It is now easy to run a Gibbs sampler to fit
the joint posterior density in (B.2). It is advisable to sample the joint conditional posterior
density of (µ, σ2) (i.e., blocking).

Note that if we have only the first (or the second) component in the model (i.e., p = 0
or p = 1), then γ and ρ will not be identifiable. Therefore, it is necessary to assume there
are at least two observations from each component of the mixture to avoid impropriety of
the joint posterior density (i.e., 2 ≤ ∑n

i=1 zi ≤ n − 2). One way to do this is to arrange
y1, . . . , yn in increasing order y(i), i = 1, . . . , n, and take the corresponding z1 = z2 = 0 and
zn−1 = zn = 1, where zi, i = 3, . . . , n − 2, are determined from the joint posterior density.
Doing so will avoid specifying this difficult constraint in the joint posterior density in (B.2).
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Abstract
Existence and construction of combinatorial designs, projective and affine planes,

nets has been a topic, extensively studied during last 8-10 decades. Main interest arose
from classical projective geometry, group theory and applications in Statistics, in designs
of experiments, computer science and digital electronics etc. The paper gives a short sur-
vey of trends in Discrete Mathematics focused on topics of planes, nets, designs and list
designs (designs with multisets as blocks). Main methods used during these decades have
been algebraic methods, graph-theoretic methods, probabilistic methods and combinatorial
techniques of forming bigger designs by pasting together smaller ones.

Key words: Designs; Planes; Algebraic methods; BIBD; Latin squares.

AMS Subject Classifications: 05B05, 05B25

1. Basic definitions

Let X be a finite set of v elements, X = {x1, x2, . . . , xv}. We will denote by P(X),
the set all subsets of X and by Pk(X), the set of all k-subsets of X, 0 ≤ k ≤ v. We will
denote by V (X), the set of all rational valued functions f : P(X) → Q. Clearly V (X) is a
vector space over Q, of dimension 2v. The set M(X) ⊆ V (X) of all integral valued functions,
is clearly a module of rank 2v over the ring of integers Z. By N(X) we will denote the set of
all nonnegative integral valued functions f : P(X) → N. Thus N(X) ⊆ M(X) ⊆ V (X).

Similarly we will denote by Vk(X) the subspace of V (X) of dimension
(

v
k

)
of all

rational valued functions f ∈ V (X) such that f(B) = 0 if |B| ̸= k . Thus when f ∈ Vk(X),
we can also think of f also as a function f : Pk(X) → Q. We will denote by Mk(X) the
submodule of M(X) of rank

(
v
k

)
of all f ∈ M(X) such that f(B) = 0 if |B| ≠ k. Thus

f ∈ Mk(X) can also be thought of as an integral valued functions f : Pk(X) → Z. Similarly
by Nk(X), we will denote the subset of N(X) of all f ∈ N(X) such that f(B) = 0, if
|B| ̸= k. Thus f ∈ Nk(X), we will also think of as a nonnegative integral valued function
f : Pk(X) → N. Thus Nk(X) ⊆ Mk(X) ⊆ Vk(X).

For any real valued function f : X → R, the subset supp(f) ⊆ X defined by supp(f) =
{x ∈ X | f(x) ̸= 0} is called the support of the function f . A list on X (also called a
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frequency function on X ) is a map ℓ : X → N. For each x ∈ X, ℓ(x) is called the
multiplicity or the frequency of x in the list ℓ. The subset supp(ℓ) ⊆ X, is called the
support of the list ℓ.

A list ℓ on X is essentially a multiset on X. We can also visualize the list ℓ on X
as a multiset ℓ on X, where for each x ∈ X, ℓ(x) gives the number of times the element x
occurs in the multiset ℓ.

Example 1: The multiset ℓ = [x, x, y, y, y] is the same as the list ℓ defined by ℓ(x) =
2, ℓ(y) = 3 and ℓ(z) = 0 for z ̸= x, y. Also, the multiset [x, x, y, y, y] is the same as the
multiset [x, y, x, y, y] or [y, y, y, x, x] etc. In general we can visualize a multiset or a list as an
indexed family (xi)i∈I or an unordered tuple [xi|i ∈ I]. For example the multiset ℓ considered
here is an unordered tuple [xi|1 ≤ i ≤ 5] with x1 = x2 = x and x3 = x4 = x5 = y. When
the indexing set I = In = {1, 2....n}, we may also use the notation [x1, x2, . . . , xn] for the
multiset [xi|i ∈ In].

We also note that the set N(X) is the set of all lists (or all multisets ) on the set
P(X).

We will denote by |ℓ| the sum ∑
ℓ(x), summed over all x ∈ X and call it the size

of the list ℓ. If |ℓ| = k, we will say that ℓ is a k-list or a k-multiset. A list ℓ is clearly a
subset of X if ℓ(x) ∈ {0, 1} for all x ∈ X.

We will denote by L(X) the set of all lists on X and by Lk(X) the set of all k-lists
on X. We note that |Lk(X)| is the same as the number of ways to choose k elements from
the set X with repetitions allowed and is thus given by

|Lk(X)| =
(

m + k − 1
m − 1

)
=
(

m + k − 1
k

)
, m = |X|. (1)

Now suppose ℓ, ℓ1 ∈ L(X). We will say that ℓ1 is a sublist (or a submultiset when
we consider ℓ as a multiset) of ℓ and denote it by ℓ1 ⊆ ℓ, if and only if ℓ1(x) ≤ ℓ(x) for all
x ∈ X.

Unlike sets, a multiset or a list ℓ1 can occur as a submultiset of ℓ in several ways.
In fact the number of ways in which the multiset ℓ1 occurs as a submultiset ℓ is precisely
c(ℓ, ℓ1)= ∏

x∈X

(
ℓ(x)
ℓ1(x)

)
. We note that a product over an empty set is defined to be 1.

Example 2: Let ℓ = [xi | i ∈ I10] be a multiset on a set X = {a, b, c}. Suppose x1 = x2 =
x3 = a, x4 = x5 = x6 = b and x7 = x8 = x9 = x10 = c. Thus ℓ = [a, a, a, b, b, b, c, c, c, c]. Now
suppose ℓ1 = [yj | j ∈ I7] is the multiset with y1 = a, y2 = y3 = b, y4 = y5 = y6 = c, y7 = a.
It can be easily seen that the multiset [xi | i ∈ A] is same as the multiset ℓ1 if and only if
A = {jn | 1 ≤ n ≤ 7}, where j1, j2 ∈ I3, j3, j4 ∈ {4, 5, 6} and j5, j6, j7 ∈ {7, 8, 9, 10}. Thus
c(ℓ, ℓ1) =

(
3
2

)(
3
2

)(
4
3

)
= 36

A design is a pair D = (X, f), where X is finite set and f ∈ N(X), i.e., f is
nonnegative integral valued function on P(X). Thus f is just a list on P(X). The elements
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of the set X are called points or treatments of the design D. When f(B) ̸= 0, the subsetB
of X is called a block of the design D. For a block B of D, f(B) gives the number of times
the block B is repeated in the design D, it is also called the frequency of the block B in
the design D. The number |B| is said to be the size of the block B. If all blocks of a design
D have size k, then k is said to be the block-size of the design D. When the design has the
block size k, clearly f ∈ Nk(X).

Similarly we define a signed design to be a pair D = (X, f), where f ∈ M(X)
and a rational design to be a pair D = (X, f), where f ∈ V (X). The blocks, frequency,
block-size are similarly defined for these designs too. Note that the frequency of a block
of a signed design is an integer thus it may be even negative and for a rational design it
is a rational number. Signed designs or rational designs are useful, as a tool to study and
construct designs.

When the set X = {x1, x2, . . . , xv} of points is fixed, we may consider f , it self as the
design (X, f).

Designs have been one of the main focus of studies in discrete mathematics, since
1940’s at least. Specially studies of projective and affine planes, nets and t-designs have
been a dominating factor in the field of discrete mathematics for last several decades. These
studies have also influenced many other areas. In particular a lot of developments in the study
of 2-designs, also called BIBD, was done by Statisticians. Graph and Hypergraph theory,
Group theory, Computer science, Applied Algebra, Digital Electronics are some other areas
which have been influenced by studies in designs and vice verse.

In the next section we will give a short survey of developments in projective planes
and nets in this era. While in section 3 we will do the same in the case of more general t-
designs. Note that BIBD’s are particular case of t-designs. in fact they are exactly 2-designs.
Also symmetric BIBD’s with λ = 1 are precisely Projective planes.

We will give some references in these sections. But let us end this section with men-
tion of three good books discussing these aspects, by Hughes and Piper on projective planes
Hughes and Piper (1970), by Beth Jugnickel and Lenz on Design Theory Beth et al. (2000)
and by Raghavarao on designs and their applications in designs of experiments Raghavarao
(1971). Another classic book is Finite Geometries book by Peter Dembowski, a great refer-
ence book for both geometries and designs Dembowski (1968)

2. Projective planes and nets

In this section we will study basically finite geometries. These are special cases of
designs. In a geometry, generally treatments are called points and blocks are called lines.
We will also use usual terms from geomtry. For example if two or more points are on a line,
they are also called collinear and similarly if three or more lines are on the same point,
they are called concurrent.

A partial linear space is a design D = (X, f), such that any pair of distinct points
x, y ∈ X is on at most one line of D. Such a space is called a linear space, if every pair of
points x, y ∈ X is on a unique line of D. Note that a linear space is essentially the same as
partially balanced design (PBD) with λ = 1 (see Section 2 for definition of PBD) .
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A projective space is a linear space D = (X, f), containing four points no three of
which are collinear and which satisfies the following Pasch’s axiom.

Pasch’s axiom: Suppose ℓ1 and ℓ2 are two distinct intersecting lines of D, i.e., ℓ1 ̸= ℓ2 and
there is a point x ∈ ℓ1 ∩ℓ2. Also suppose ℓ3 and ℓ4 are two lines of D, which are transversal
to ℓ1 and ℓ2, i.e., both of them are not on x but each of them intersects both ℓ1 and ℓ2. Then
ℓ3 and ℓ4 are also intersecting lines.

Each projective space has a unique dimension (see for more details Hughes and Piper
(1970) or Veblen and Young (1938)). A classical theorem of projective geometry states that
every projective space of dimension 3 or more is essentially coordinatized by a field.

The result is not true for a projective plane, i.e., a projective space of dimension 2.
For many years, people have believed that a finite projective plane with no proper subplane
is coordinatized by a prime field (Example below describes, what generally one means by
coordinatizing a plane) and that the order of a finite projective plane (order is defined below),
is a power of a prime number. Axiomatizing and classifying projective planes and related
structures has been a very active field. Included among a large number of mathematicians,
who have made significant contributions are Pasch, Hilbert, Dickson, Albert, Hall and Bose.
Some good sources for the results and theory are Albert (1961),Hall (1943) Hughes and Piper
(1970) and Veblen and Young (1938).

Though the problem of classifying projective planes has been studied for more than
200 years, a spurt in the activity during last few decades was caused by Marshal Hall’s via
his paper Hall (1943) and by R.C. Bose via his Paper in 1939 Bose (1939). While Marshal
Hall connected the problem with many algebraic structures, groups, permutation groups,
fields, near fields, nonassociative rings ternary rings etc., Bose was interested in looking at
constructing designs, specially BIBD’s from projective planes, affine planes, netsetc. and even
from higher dimensional geometries. He used these designs for the designs of experiments,
a branch of statistics, which was just evolving then.These papers made many researchers
from all these areas, finite group theory, number theory, algebra, nonassociative algebras,
statistics, graph theorists, computer scientists and digital electronics engineers interested
in these geometric and designs problems. Perhaps more than 1000 remarkable papers may
have evolved on planes nets and t-designs, as a result of these two exceptional path-breaking
papers. We will describe some of the results which evolved as a result of these two papers.
We will also discuss some recent work of the author ( Singhi (2010), Singhi (2009).

We will restrict our discussion in this section essentially to projective and affine planes
and nets. As already remarked projective planes, also affine planes are examples of BIBD’s,
which will be studied in the next section.

It is not too difficult to see (Hughes and Piper (1970)) from the definition of a pro-
jective space that a projective space of dimension 2, i.e., a projective plane is a design
D = (X, f), satisfying the following conditions and conversely every such design is a projec-
tive plane.
(A). D is a linear space, i.e., given any two distinct points x, y ∈ X, there is a unique line
(block) ℓ of D such that x, y ∈ ℓ.
(B). Any two lines of D intersect in a unique point.



2024] PLANES AND DESIGNS 35

(C). There is exist 4 points in X, no three of which are collinear.
(D). All lines are on the same number n + 1 points.
(E). All points are on exactly the same number n + 1 lines.
(F). Total number of points or lines of D are n2 + n + 1.

The common number n is called order of the plane D.

An affine plane is obtained from a projective plane of order n by removing a line
and all the points on it. The number n is also called the order of the affine plane. It can
be easily seen (see Hughes and Piper (1970) ) that an affine plane of order n is also a linear
space, in which every line is on exactly n points and every point is on exactly n + 1 lines.
Conversely every linear space satisfying these conditions is an affine plane of order n. An
affine plane of order n has exactly n2 points and n2 + n lines.

A parallel class is a partial linear space D = (X, f) is a set of lines of D such that
every point of D is on exactly one line of this class. Thus a parallel class of partial linear
space D is actually a partition of X into lines. It can be easily seen that in an affine plane of
order n there are exactly n+1 parallel classes, which are mutually disjoint and they partition
the set of lines of the affine plane.

A net, is a partial linear space D = (X, f) on n2 points, such that each line of D is
on exactly n points and in all there are nr lines, r ≥ 2, partitioned into r, parallel classes.
The net is said to have order n and r parallel classes. We will also say that D is Net(n, r).
It can be easily seen that r ≤ n + 1 for a Net(n, r). When r = n + 1, one can see that the
net is actually an affine plane. It is well-known that a Net(n, r) gives rise to r − 2 mutually
orthogonal latin squares and conversely. Nets behave as if n + 1 − r parallel classes are
removed from an affine plane of order n. Though not all nets can be completed to an affine
plane. Nets were formally defined by Bruck , who studied general problem of embedding a
net into an affine plane ( seeBruck (1963)). Though as mutually orthogonal latin squares
they were studied much earlier, (see Bose (1939)). In particular the embedding problem
was solved for the case when r = n − 1 by Marshal Hall and Connor and by Shrikhande.
Bruck proved a much more general result. Bruck’s paper is also well known for describing a
basic technique, started by Hoffman, of using maximal claws in a graph to find large cliques.
Such cliques correspond to adding more lines to the net. Bruck’s paper resulted in a lot of
activity in studying such problems and connected studies of designs with graphs. Almost
the same time R.C. Bose generalized Bruck’s ideas to define a strongly regular graph and
also generalizing Bruck’s nets to a much more general class of partial linear spaces. He
called them partial geometries Bose (1963). Strongly regular graphs were studied earlier
by statisticians as 2 class association schemes. But looking at them as graphs gave a new
thrust to this area and many researchers both in mathematics and statistics started looking
at such problems. Later these ideas were further generalized to multigraphs and partial
geometric designs by Bose Shrikhande and Singhi and used to solve a much more general
problem of embedding of a residual BIBD into a symmetric BIBD Bose et al. (1976). Note
that projective planes are particular case of symmetric BIBD’s.

Example 3: (a). Let F be a finite field of order n. Let X be the set of all ordered pairs of
F, X = {(x, y)|x, y ∈ F}. Let m, c ∈ F . Define ℓ(m, c) = {(x, y) ∈ X|y = mx + c}. Also
define for each d ∈ F, [d] = {(x, y) ∈ X|x = d}. Let D = (X, f), be the design, where f is
defined as follows. For any B ∈ P(X), f(B) = 1 if B = ℓ(m, c), m, c ∈ F or B = [d], d ∈ F



36 NAVIN SINGHI [SPL. PROC.

and f(B) = 0 in all other cases. It can be easily checked that D is an affine plane of order
n, Hughes and Piper (1970). For the line ℓ(m, c), m is called the slope of the line and c the
y-intercept. All lines of D with a given slope m are parallel and they form a parallel class.
Similarly all lines [d], d ∈ F , also form a parallel class, the so called lines parallel to y-axis.
The line [0] may be thought of as y-axis and the line ℓ(0, 0) is the x-axis. We say that the
affine plane D is coordinatized by the field F .

One can also use other algebraic structures like quasi fields, near fields, nonassociative
division rings etc. to construct an affine plane in quite similar manner.

(b). Note that in case we use real field R instead of a finite field, the above construction
exactly gives us the usual real affine plane which we study in high school geometry.

(c). Instead of pairs, now we take a set X1 of all triplets (x, y, z), x, y, z ∈ F . For each
triplet ℓ, m, s of elements of F , define [ℓ, m, s] = {(x, y, z) ∈ X1|ℓx + my + sz = 0}. Let
D1 = (X1, f1) be a design, where f1 is defined by f1(B) = 1 if B = [ℓ, m, s] for some
ℓ, m, s ∈ F and f1(B) = 0 in all other cases. It can be easily seen that D1 is a projective
plane of order n, coordinatized by the field F .

Let D = (X, f) be a projective plane (or affine plane). A projective plane (resp.
affine plane) D1 = (Y, g) is said to be subplane of D if every line of D1 is a subset of a line
of D. A projective plane (or affine plane) is said to be a prime plane if it has no proper
subplane.

As remarked earlier, apart from the field plane, i.e., the projective or affine plane
coordiatized by a finite field, there are many other examples of projective planes for example
coordinatized by quasi fields or near fields etc. But all known planes so far have order a
power of prime. Also all prime planes so far known, have a prime order and are in fact the
prime field plane . This gives rise to the following Conjecture.

Projective plane conjecture:
(a). Order of any projective plane is power of a prime number.
(b). A prime projective plane is coordinatized by a prime field.

A lot of research in the area of projective planes has been motivated by these conjec-
tures and related problems. Though the problem is hard.There are very interesting examples
of planes, which defy all possibilities of relationship with a field but so far no example of
prime planes has been found which is not a prime field plane. Even though there are many
planes, for example the so called Hughes planes, which have order q2, where q is a power of
an odd prime, which have subplanes of order 2 or 3 Caliskan and Moorhouse (2011). Such
examples show difficulty in solving the problem of classifying projective planes.

As noted earlier Projective spaces of dimension more than 2 are unique and coordina-
tized by fields. One reason they are coordinatized by fields, is that they satisfy Desargues’s
Thoerem, which we describe now. Two triangles ABC and abc in a projective space are
said to be centrally perspective if the lines Aa, Bb, Cc are concurrent, at a point say
H. The point H is called the centre of perspectivity of the triangles ABC and abc.
Similarly dually consider the three points A′, B′ and C ′ of intersection of three pairs of lines
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(BC, bc), (AC, ac) and (AB, ab) respectively. Suppose the points A′, B′ and C ′ are collinear.
Then The triangles ABC and abc are said to be axially perspective and the line A′B′C ′

is called axis of perspectivity. Desargues’s theorem says that if any two triangles in a
projective space of dimension 3 or more are centrally perspective then they are also axially
perspective.

The above figure with 10 Points A, B, C, a, b, c centre of perspectivity H, and
three points A′, B′ and C ′ on the axis of perspectivity, together with the 10 lines on these
points as given in the above figure is called a Desargues’s Configuration, Hughes and
Piper (1970), ChapterIV. Note that some times H may be on the axis of perspectivity too.

In a general projective plane, it is not true that two triangles which are centrally
perspective are also axially perspective. But it is known that every projective plane has
several pairs of centrally perspective triangles, which are also axially perspective. Desargues’s
configuarations play an important role in classification projective planes Hughes and Piper
(1970), Chapter IV. We will discuss this later in this section.

Marshal Hall’s 1943 paper was a landmark. Among many interesting ideas in the
paper, one of them, idea of associating a ternary ring with a projective plane gave a com-
pletely new color to the study of these planes. If you look at Example 3(a) above, the affine
plane coordinatized by a finite field F , the equation of the line ℓ(m, c) not parallel to the
y-axis is y = mx + c. Marshal Hall had a bright idea that in the case of looking at projective
plane, instead of looking at product and addition as operations in field or other such struc-
tures, it seems more natural to look at a ternary operation τ(m, x, c), instead of addition
and product in the field, where τ(m, x, c) = mx + c. He was indeed right. He defined a
general such ternary ring, called it, planar ternary ring, which we will describe below and
he showed that Every projective or affine plane can be coordinatized by such a ring. This
insight opened up study of projective planes to a new areas. A problem which looked so far
to be of geometry type, suddenly started looking equally as an algebraic problem. We now
define planar ternary rings, defined by Hall in this paper.

Let S be a finite set. An ordered pair R = (S, τ) is said to be a ternary ring, if
τ : S × S × S → S. When the ternary operation τ is fixed, we will call S itself, the ternary
ring. Thus by a ternary ring S, we will mean, a finite set S, with a ternary operation τ on
it.

A ternary ring S is said to be a planar ternary ring if there are two special elements
0, 1 ∈ S and the following conditions are satisfied.
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(A).τ(x, 0, c) = τ(0, x, c) = k for all x, c ∈ S.
(B). τ(x, 1, 0) = τ(1, x, 0) = x for all x ∈ S
(C). Given x, y, m ∈ S, there is a unique c ∈ S such that τ(x, m, c) = y.
(D) Given m, c, k, p ∈ S, m ̸= k, there is unique x ∈ S such that τ(x, m, c) = τ(x, k, p).

Example 4: (A). Let S be a planar ternary ring. Construct a Design D = (X, f), in exactly
the same manner as we did, while constructing Affine plane from a field in the previous
Example. Only this time equations of lines not parallel to y-axis will be y = τ(x, m, c),
instead of y = mx + c. It can be easily seen that the design we get is an Affine plane. A
projective plane can always be obtained from Affine plane. This construction was given by
Hall in his paper in 1943 ( See Hughes and Piper (1970), ChapterV).

(B). Conversely given any four points in a projective plane D of order n, no three of which
are collinear, using them we can construct a planar ternary ring S, |S| = n, such that D is
coordinatized by S, as described in (A) above and further all points on the line with slope
1 are of the type (x, x), x ∈ S. For more details see Hughes and Piper (1970), Chapter V,
Hall’s method.

This example shows that studying projective planes and planar ternary rings is essen-
tially the same thing. Thus the problem can be studied as a geometric problem or algebraic
problem. We will use word PTR for a planar ternary ring.

Two PTR S1 and S2 are said to be isotopic if they coordinatize the same projective
plane. Unlike the field case, isotopic here does not imply isomorphic.

Let us define a few more terms for a PTR to understand them better and also to see
that how they behave almost like fields and yet are very different too. Let S be a planar
ternary ring. Let x, y ∈ S. Define x + y = τ(x, 1, y) and xy = τ(x, y, 0). When S is a field,
i.e., τ(x, m, k) = xm + k where addition and multiplication are the field operation, clearly
the above definitions of addition and multiplication in this case, are the same as the addition
and multiplication in the field. Also, When S is a field, S is a group under addition, the
additive group and S∗ = S/{0} is a group, the multiplicative group of the field. This is not
true when S is not a field, addition or multiplication may not be associative, in a general
PTR. However in every PTR S, both (S, +) and (S∗, .) are loops under the addition and
multiplication, as defined above. We will call (S, +), the additive loop of the planar ternary
ring S and similarly (S∗, .), the multiplicative loop of S. A PTR S is said to be linear, if
τ(x, m, c) = xm + c, for all x, m, c ∈ S. A PTR S is called a quasifield if the additive loop
(S,+) is a group, S is linear and satisfies left distributive law, i.e. a(b + c) = ab + ac for all
a, b, c ∈ S. A quasifield satisfying right distributive law also is called division ring. Planes
coordinatized by quasifields are very special, they are called translation planes. We will
describe group theoretic and geometric significance of them.

Let us first see in terms of desarguesian configurations. Let H be a point of a pro-
jective plane and ℓ be a line. A projective plane is said to be (H, ℓ)- desarguesian if for
every pair of triangles ABC and abc which are centrally perspsective with H, as the centre
of perspectivity (see above figure of desargues’s configuration) and ℓ as the possible axis of
perspectivity, i.e., any two of the points A′, B′, C ′ are on ℓ, the two triangles ABC and abc
are also axially perspective and the third point is also on ℓ. Thus ℓ is the axis of perspectivity.
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Thus being (H, ℓ)-desarguesian, essentially says that any two centrally perspective triangles
with H as centre of perspectivity, and ℓ as ”possible” axis of perspectivity, are actually also
axially perspective, with ℓ as axis of perspectivity.

We now describe what is meant by (H, ℓ)-transitive. For a projective plane D =
(X, f), we will denote by aut(D), the group of all automorphisms of D, i,e., permutations of
the set X which take lines into lines. For any x ∈ X, σ ∈ aut(D), we will denote by σ(x),
the image of x under σ. and similarly for a line ℓ of D, we will denote by σ(ℓ) the line, which
is image of ℓ under σ. If σ(x) = x, the point x is said to be fixed by σ. If further σ(m) = m
for all lines m of the plane which are on x, then we say that point x is fixed line-wise by
σ. We can similarly define a line ℓ to be fixed point-wise, if σ(ℓ) = ℓ and σ(x) = x for
all x ∈ ℓ. An automorphism σ ∈ Aut(D) is said to be a (x, ℓ)-perspectivity, if σ fixes x
line-wise and line ℓ point-wise.

Now the projective plane D is said to be (H, ℓ)-transitive, if for all points y, w ∈ X
such that x ̸= y, x ̸= w, y /∈ ℓ, w /∈ ℓ and x, y, w are collinear, there is an (H, ℓ)-perspectivity
σ such that σ(y) = σ(w). Thus (H, ℓ)-transitive essentially says that (H, ℓ)-perspectivities
act transitively. A line ℓ is said to be a translation line of the projective plane D, if
D is (H, ℓ)-transitive for all points H ∈ ℓ. If D has a translation line then D is called a
translation plane. The following two theorems show how closely projective geometry and
algebra are related. They show properties of algebraic structures coordinatizing the plane,
transitivity properties of automorphism groups and geometric properties like deasarguessian
configurations occur mutually together, Hughes and Piper (1970), Chapter IV, Dembowski
(1968)

Theorem 1: A projective Plane D is (H, ℓ)-transitive if and only if D is (H, ℓ)-desarguesian.

Theorem 2: A plane is coordinatized by a quasifield, if and only if it is a translation plane.

Almost every algebraic structure which coordinatizes a projective plane can similarly
be related with some similar transitivity of an automorphism group as well as occurrence of
desarguesian configurations. This relationship inspired a lot of work in this area during the
second half of last century. Still many interesting research papers appear regularly studying
such aspects. Another idea which similarly resulted in a lot of activity was started by Lenz
and Barlotti. Now it is known as Lenz-Barlotti classification Dembowski (1968) pages 123-
126. They looked at non-desarguesian planes, i.e., those not coordinatized by a field. It
has clearly then a non-desarguesian configuration. They classified all such non-desarguesian
configurations, into different classes, which could occur in a plane. Assuming such structures
they classified all planes in many of these classes. Many others also completed similar work
for different such classes.

Still the basic problem I described above as conjectures remains. We will end this
section with another a very different style of studying projective planes via PTR. The prob-
lem to classify the planes is the same as classifying PTR. These ternary rings have many
properties similar to fields, for example any subring of a PTR is a PTR. Classifying finite
fields has a very direct path, one starts with the ring of integers Z which may be considered
as a free ring generated by 1 subject to the usual rules of commutativity, associativity, dis-
tributivity, linearity (one can think of Z as ternary ring, satisfying linearity as we defined
earlier for fields). We will write cadl rules in short for these 4 rules. One looks at maximal
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ideals in this free ring Z, to get prime fields as quotients. Other finite fields are obtained
then by considering polynomial rings over these prime fields. The polynomial rings also
may be thought of as free rings generated by starting variables subject to cadl laws. One
difficulty with general PTR is that even though they are very similar to fields, yet many of
them satisfy none of these cadl laws. In the papers Singhi (2010) and Singhi (2009), some
more general structures than PTR which are more like ring of integers, instead fields were
defined. Free such structures were defined and constructed, which in a way corresponded
to some kind of generalized ring of ”Integers” and ”polynomials” which did not satisfy cadl
laws. Actual ring of integers or polynomials are quotients of these general ternary rings
quotiented by ideals whose elements are all cadl laws. It was shown that every such PTR
is quotient of a maximal ideal in these rings. Though it is not clear that all maximal ideals
give PTR. The idea is to develop a language without using cadl laws to imitate classification
theory of finite (or infinite) fields. In this connection it may be interesting to observe that
Albert studied division rings in some what similar manner Albert (1961). He defined a ”gen-
eralized twisting” of a field to get such division rings and conjectured that all division rings
are obtained from a field in this manner. The conjecture is known to be true for dimension
3 or 4.

The language developed in above two papers though very general does not still in-
clude all PTR’s. For example two isotopic PTR may have very different structure. In this
connection it may be interesting to look at structures more general than Hall’s PTR. Grari
studies such general structures (see Grari (2004)).

3. t-designs

In this section we will review some basic construction methods and results on t-
designs which evolved over last few decades and describe a generalization of t-designs to t-
list designs, given in a joint paper of the author with Raychaudhuri, Singhi and Raychaudhuri
(2012).

Let D = (X, f) be a design. Thus f ∈ N(X). Define a function ∂t: N(X) → Nt(X)
as follows. Let ∂t(f)(T ) = the number of blocks containing T, T ∈ Pt(X). Thus

∂t(f)(T ) = ∑
T ∈B f(B), where the sum is over all B ∈ P(X)

The number of blocks in D = ∂0(f)(∅), will be denoted by b or b(D).

If ∂1(f)({x}) = ∂1(f)({y}) for x, y ∈ X, we will denote the common value of ∂1(f)({x}), x ∈
X by r or r(D).

We will denote by ∂t,k, the restriction of ∂t on Nk(X). Thus ∂t,k : Nk(X) → Nt(X),
is defined by ∂t,k(f)(T ) = ∑

T ∈B f(B), where the sum is over all B ∈ Pk(X).

A design D = (x, f) is said to be a t-(v, k, λ)-design if D has, v points, i.e. |X| = v, block
size in D is k and ∂t(f)(T ) = λ for every t-subset T of X.
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If D = (X, f) is a signed design (or rational design), all the above terms signed t-(v, k, λ)-
designs and rational t-(v, k, λ)-designs etc. are similarly defined in those cases too. In par-
ticular ∂t and ∂t,k are similarly defined over M(X) and Mk(X) ( or for V (x) and Vk(X)) also.

Remark 1: It is easy to see that if D = (x, f) is a t-(v, k, λ)-design (or signed design or
rational design) then
(A). ∂t(f)(W ) = λ

(v−w
t−w)

(k−w
t−w) for every w-subset W of X, 0 ≤ w ≤ t.

(B). Thus in particular b = λ
(v

t)
(k

t)
and r = λ

(v−1
t−1)

(k−1
t−1)

(C). Thus a t-(v, k, λ)-design is also a w-(v, k, λw)-design with λw = λ
(v−w

t−w)
(k−w

t−w) , 0 ≤ w ≤ t.

When t = 2, a 2-(v, k, λ)-design is also called a BIBD (Balanced Incomplete Block Design).
A BIBD is also called BIBD(v, b, r, k, λ) or (v, b, r, k, λ)-design. It is difficult to con-
struct t-designs with t ≥ 3, specially when parameters are small. Very few such designs with
small parameters are known. And yet there are interesting results which show that all such
designs, with v sufficiently large, exist. We will discuss these results, how they evolved over
the decades.

A t-design with λ = 1 is also called a Steiner system, named after Swiss Mathe-
matician Steiner, who studied them almost 200 years back. Most of the focus is on BIBD’s,
specially because they are very useful in Statistics, in Designs of Experiments. Perhaps
Fisher and Yates were the ones, who formalized using such designs for designs of experi-
ments. Main current interest arose with the 1939 paper of R.C.Bose , who was perhaps
the first one to methodically study them by using algebra, geometry and number theory
(see Bose (1939)). He used affine and projective planes, finite fields, difference sets etc. to
construct them. Some good reference books are Raghavarao’s book on designs and their
applications in designs of experiments Raghavarao (1971), Colbourn and Dinitz Handbook
of Combinatorial Designs Colbourn and Dinitz (2006), Beth Jugnickel and Lenz book on De-
sign Theory Beth et al. (2000) and Peter Dembowski’s book on finite geometries Dembowski
(1968).

Example 5: (A). Suppose D = (x, f) is a projective plane of order n, then it can be easily
seen that D is a 2-(n2 +n+1, n+1, 1) design, i.e. BIBD(n2 +n+1, n2 +n+1, n+1, n+1, 1).
Interestingly, thus in this design, the number of blocks, b = v, the number of treatments.
A 2-(v, k, λ)-design, in which b = v, is called a SBIBD(v, k, λ), (symmetric BIBD).
Conversely every SBIBD with λ = 1 is essentially a projective plane.

One can similarly construct an SBIBD with higher lambda using projective spaces of higher
dimensions. Blocks in these designs are the hyperplanes. In an SBIBD(v, k, λ), any two
blocks intersect in exactly λ treatments. SBIBD’s are very challenging objects of study.
There are many unsolved problems about them. We briefly mentioned them in the Section
2 also, while discussing nets. The above example from projective planes shows that there
are infinitely many SBIBD’s with λ = 1. SBIBD’s with λ = 2 are called biplanes.

Interestingly only finitely many SBIBD with a given λ are known for any λ ≥ 2. There is a
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well-known conjecture formulated by Marashal Hall Jr.

Conjecture. For any given integer m ≥ 2, there are only finitely many SBIBD with λ = m.

(B). Now suppose D = (X, f) is an affine plane of order n. Again it can be easily seen that
D is a 2-(n2, n, 1)-design, a BIBD(n2, n2 + n, n + 1, n, 1). As we had noted in Section 2,
blocks of this design can be partitioned into parallel classes.

A design D = (X, f) is said to be resolvable, if blocks of D can be partitioned into parallel
classes. Affine planes and nets are examples of resolvable designs.

A resolvable design is called an affine design, if any two blocks from different parallel classes
intersect in exactly the same number of treatments. In an affine plane clearly they intersect
in exactly one treatment. Thus an affine plane is also an affine design. Conversely every
BIBD with λ = 1, which is an affine design, actually is obtained form the affine plane in this
manner.

Affine spaces of higher dimension can also be used to form similarly affine designs. The
hyperplanes of affine spaces form the blocks of such designs.

Thus in affine designs intersection number of two blocks takes only two possible values,
one of which is 0. BIBD’s in which blocks intersect in only two possible values are called
quasi-symmetric BIBD’s. These are sort of designs next best to symmetric BIBD’s. As
remarked in (A), blocks in a symmetric BIBD intersect in a unique value. qausi-symmetric
BIBD’s have been extensively studied. It has become a subject by itself. A good source for
results and theory on quasi-symmetric designs is the book by M.S. Shrikhande and S.S. Sane
(Shrikhande and Sane (1991)).

(C). In High school geometry we learn that there is a unique circle through any 3 noncollinear
points in a real affine plane. Suppose we take all ”‘circles” in an affine plane and an extra
point say ∞, added to every line of the plane, it is not hard to see these new extended lines
together with circles considered as blocks, give us a 3-design, in the sense that any 3 points
are on a unique block.

Some what similar construction can be carried out with an affine plane over a finite field.
What we get 3-(n2 + 1, n + 1, 1)-design as an extension of an affine plane of order n.

Formally such a design is constructed from an ovoid in a projective space of dimension 3 over
a field of order n. An ovoid in this 3-dimensional projective space is a set of n2 + 1 points,
no three of which are collinear. It can be shown that every hyperplane of this projective
space (it is actually a plane since we have taken projective space of dimension 3), intersects
this ovoid in 0 or n + 1 points.

When we take all these sets of intersections with the ovoid of size n + 1 as blocks, we get a
3-(n2 + 1, n + 1, 1)- design.

Any 3-(n2 + 1, n + 1, 1)-design is called an inversive plane. There are some interesting
unsolved problems associated with study of inversive planes. For more details see Beth et al.
(2000) or Dembowski (1968).
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Remark 2: Necessary conditions for existence of t-designs.
From Remark 1. It is clear that a necessary conditions for existence of t-designs is that

λ

(
v − w

t − w

)
= 0 (mod

(
k − w

t − w

)
), 0 ≤ w ≤ t

Remark 3: Basic problem in the theory of t-(v, k, λ)-designs.

A. Existence Problem:. Characterize all quadruples t-(v, k, λ) satisfying the necessary
conditions of Remark 2. for which there exists a t-(v, k, λ) designs.

B. Classifying problem:. For a given t-(v, k, λ) satisfying necessary conditions, construct
all non-isomorphic t-(v, k, λ)-designs.

Main effort in the subject has been to solve the Existence Problem. This general
problem is quite hard. Even for very small parameters designs are not known, nor one
can prove that they do not exist. Some examples of such parameters are 2-(22, 8, 4)-design,
(BIBD(22,33,12,84)), 2-(157,13,1)-design (projective plane of order 12) or 6-designs with
λ = 1 for small v. Even with best computers one can not do much in such cases. May be AI
and simulations could be used to study such problems properly. There are 1000’s of papers
on this topic, still many designs in the useful range for Statistical studies are not known.

On the other hand, Bose’s 1939 paper, Bose (1939), started a spurt in research activity
of studies of t-designs, specially BIBD’s, which still continues. Constructing new families of
BIBD’s whose existence is not known or which are not isomorphic to already known designs,
still creates a lot of new interest in the subject.

Remark 4: Constructing t-designs.
Two types of types of methods are used generally to construct BIBD’s or t designs.

(A). Direct construction methods:.
One constructs a new design or a new family of design directly by using some algebraic
objects like difference sets, transitive permutation groups etc. Or one constructs them from
geometric objects like projective spaces, affine space or ovals etc. Some examples we have de-
scribed in the above Example 5. Bose himself gave some examples of such constructions in his
paper. Among many others, who have given very interesting such constructions, included
are S.S. Shrikhande, Marshal Hall, Wilson, Ray-Chaudhuri, Hanani (see Wilson (1972a),
Ray-Chaudhuri and Wilson (1971), Wilson (1973),Ray-Chaudhuri and Singhi (1988), Col-
bourn and Dinitz (2006), Raghavarao (1971)).

(B). Composition Techniques:.
Smaller Designs are used to paste together a bigger design by using a base design. We will
discuss some composition methods evolved, later in this section.
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Let us just note here first that these studies had led to a conjecture, the so called the
existence conjecture. It stated that if v is sufficiently large compared k and λ then necessary
conditions of existence for a t-(v, k, λ)-design are sufficient. Conjecture was proved by Wilson
in 1975 for the t = 2 case, i.e., BIBD’s, We will describe some details of his method later.
Though many of Wilson’s ideas were generalized for all t- designs. But the conjecture for
t ≥ 2, remained unsolved until 2014. The conjecture was proved in the general case by
Keevash in 2014 by very different methods. He used probabilistic arguments to prove the
conjecture. His method may be considered as a modification of the famous Rodl’s nibble
method (see Rodl (1985)). Though Keevash is able to get exactness of a very different order,
which was needed to construct such exact designs. Keevash calls his method randomized
algebraic construction (see Keevash (2014), Keevash (2015), See also an interesting lecture by
Kalai, explaining Keevash’s papers, Kalai (2015)). It is a bit amazing to see that probabilistic
methods can give such exact geometric objects, even though v is large for such objects.
Perhaps Kim and Vu were among the first ones to show such a potential of probabilistic
methods in finding such exact constructions. They showed existence of small complete arcs
in projective planes with high probability (Kim and Vu (2003)).

Though Keevash’s theorem implies that all t-designs with sufficiently large v exist,
still the existence problem in many of the general useful practical cases remains unsolved.
There is a possibility that Wilson’s method and composition techniques could be modified
to get existence problems solved for practical cases. In fact in three interesting papers Blan-
chard proved some thing similar to existence conjecture for transversal designs or orthogonal
arrays, using such methods (see Blanchard (1995b), Blanchard (1995a), Blanchard (1997) ).
We now describe in short how one of such basic composition technique evolved and many
similar composition techniques were developed. Wilson also developed some of them. Such
techniques formed the main core of his proof of the existence conjecture in the BIBD case.

A design D = (X, F ) is called a PBD (pairwise balanced design) with index λ if for
all x, y ∈ X, the number of blocks of D containing x, y is λ. Thus ∑x,y∈B f(B) = λ for all
x, y ∈ X. A PBD is similar to a 2-(v, k, λ)-design, only now the block size is not constant.
Let us define for a PBD, D = (X, f), of index λ, the set K (or K(D)) to be the set of all
block sizes of D, i.e., K = {k ∈ N| there exists B ∈ P(X) such that f(B) ̸= 0 and |b| = k}.
We will say that D is a PBD(v, K, λ) or a (v, K, λ)-design.

PBD’s were first defined by Bose and Shrikhande. They were interested in a famous
problem on nets, the so called Euler’s conjecture, posed almost 200 years back. The con-
jecture stated that there is no Net(n, 4) when ever n = 2(mod 4). Note that a net with 4
parallel classes corresponds to two mutually orthogonal latin squares. Thus Euler’s conjec-
ture was that there are no mutually orthogonal latin squares of order n, if n = 2(mod 4).
Euler became interested in this problem because of some arrangement of army regiments
and ranks, Russian Czar had asked him to arrange. It corresponded to creating 2 mutually
orthogonal squares of order 6. Euler could prove that no such mutually orthogonal squares of
order 6 exist. He then conjectured the same for orders n = 2(mod 4). Bose and Shrikhande
proved that the conjecture is false.

Their method was to use smaller nets or planes and paste them together by using a
PBD as a base. Crucial aspect in the construction was to use these designs with unequal
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block sizes to get designs with equal block sizes. Before them Parker was also trying to study
the same problem. He had also come up with similar construction but he was using projective
or affine planes which have blocks with the same sizes. He came up with interesting results
but could not prove falsity of Euler’s conjecture. Later all three of them together proved
that Euler’s conjecture was only true for 2 and 6, it was false in all other cases (Bose and
Shrikhande (1959) and Bose et al. (1960)). Later, Chowla Erdos and Strauss proved using
similar compositions that if n is large and r ≤ n1/91 then a net N(n, r) exists. Wilson later
improved this bound to n1/17. Thus largest r for which N(n, r) exist, does not depend on
prime power decomposition of n (see Chowla et al. (1960) and Wilson (1974)).

The composing bigger designs from smaller designs with nonconstant block sizes be-
came an important technique to study different type of designs and arrays. In particular it
helped in construction of many specialized designs and arrays, PBIBD (partially balanced
incomplete block designs), Orthogonal arrays, association schemes, resolvable designs etc.
Wilson and Ray-Chaudhari developed several such methods to solve the famous Kirkman’s
School Girl Problem, posed by Kirkman, almost 200 years back (see Ray-Chaudhuri and
Wilson (1971), Beth et al. (2000) ).

Later Wilson used all this development, to unify most of such work by then. He
defined a very interesting closure operation PBD closure on any subset of N, in the following
manner. A set K ⊆ N is said to be PBD-closed if the existence of a PBD(v, K, 1) implies
that v ∈ K. Let K ⊆ N and let B(K) = {v| there exists a PBD(v, K, 1)}. Then B(K)
is a PBD-closed set, called the closure of K. Given any set K define β(K) to be the
gcd{k(k − 1)|k ∈ K}. Using this closure operation, Wilson proved the following interesting
result in 1972. Every closed set K is eventually periodic with period β(K). That is, there
exists a constant C such that, for every k ∈ K, {v|v ≥ C, v = k(mod β(K))} ⊆ K. What
this theorem implies, for example, is that if v = k (mod k(k − 1)) and is sufficiently large,
then a 2-(v, k, λ)- design exists. In fact the result implied for many such congruent classes,
the existence of BIBD’s for all large v (see for more details Wilson (1972b), Wilson (1972c)).
Ultimately by 1975, he proved the existence conjecture for BIBD case completely, ( Wilson
(1975)). We will describe basic steps in his proof.

Another tool which helped in construction of BIBD’s, and more generally t-(v, k, λ)-
designs was studying the structure of the module which is kernel of the mapping ∂t,k :
Mk(X) → Mt(X). Note that if f ∈ ker(∂t,k), ∂t,k(f)(T ) = 0 for all T ∈ Pt(X). Thus we can
think of such an f as a signed t-(v, k, λ) design with λ = 0. Such signed t-(v, k, 0) designs
are called null t-designs. Thus ker(∂t,k) is a Z-module of all null t-designs. Its rank is
clearly

(
v
k

)
−
(

v
t

)
. Constructing a natural basis ker(∂t,k) acting on Mk(X) or vector-space

Vk(X) helps a lot in developing a proper understanding of the signed designs. Graver and
Jurkat and Wilson constructed such a basis. While Graver and Jukart studied it for mod-
ule Mk(X), Wilson studied over the vector space Vk(X). Wilson actually proved that all
t-(v, k.λ)-designs exist if λ is sufficiently large (see Graver and Jurkat (1973), Wilson (1973) ).

These results were used by them to show that signed t-(v, k.λ)-designs always exist.
Thus interestingly rational or signed t-(v, k, λ)-designs can be directly constructed by using
such algebraic methods. Could a more careful study and better base or generating set for
ker∂t,k or Mk(X) itself, help in direct construction of t-designs? The method was used by
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Ray-Chaudhri and Singhi to construct t-(v, k, λ) designs, for large λ and v, in which no block
is repeated more than 2 times (see Ray-Chaudhuri and Singhi (1988)).

We describe an interesting natural set of generators of the Z-submodule ker∂t,k of
Mk(X). This interesting generating set was first described by Graham Li Li, (see Graham
et al. (1980)).

Let X = {x1, x2, . . . , xv}. Let A = {y1, y2, . . . y2t+2, w1, w2 · · · wk−t−1} be a (k + t+1)-
subset of X. Define a polynomial PA by

PA = (y1 − y2)(y3 − y4) . . . (y2t+1 − y2t+2)w1w2 . . . wk−t−1

Now define a function fA ∈ Mk(X) as follows. For a set B ∈ Pk(X), B = {q1, q2 . . . qk},
define fA(B) to be the coefficient of the monomial q1q1 . . . qk in PA. Thus fA(B) is ±1 or 0.
Using the fact that there are t + 1 brackets in the above expression of PA, it can be easily
seen that ∂t,k(fA)(T ) = 0 for all T ∈ Pt(X). Thus fA ∈ ker∂t,k is a null t-design. Graham
Li and Li showed that such singed designs fA generate the submodule ker∂t,k of Mk(X).
Chahal and Singhi, using these ideas, constructed a natural basis of the module Mk(X) by
using lexicographic ordering. Elements of this basis they called tags (see for more details
Chahal and Singhi (2001), Singhi (2006)). Tags can be used to study many other problems
too.

Wilson’s proof of existence conjecture for BIBD can be summarized in a 3-step pro-
cess.

(i). Existence theorem for signed designs:. Step 1 is to show that the necessary con-
ditions are sufficient for signed t-designs or more general similar structures. This was done,
as described above, first by Graver and Jurkar and Wilson.

(ii) λ large theorem: Step 2 is to prove that given v, t and k for all sufficiently large λ
the necessary conditions are sufficient. This was proved by Wilson by studying his famous
Wt,k matrices and corresponding vector spaces, which he also used for solving many other
interesting problems Wilson (1973).

(iii) Block spreading: Step 3 is to replace a set X in designs constructed in Step 2 with
X × V for a large set V to reduce repetitions and create 2-designs on the set X × V with
much smaller λ, for example a Steiner system. This was done by Wilson by taking V to
be a vector space. The method is now known as Wilson’s block spreading technique (see
Wilson (1980) Wilson (1975) Wilson (1990)). As we already remarked, the method was later
generalized for transversal designs for any t by Blanchard.

Finally we describe the generalization of t-designs to t designs for multisets (or lists,
as we remarked in Section 1, two concepts lists or multisets are the same ). These generalized
designs should be useful in Statistics too. Also, another possibility is that Wilson’s ideas of
block spreading could be applied to them too, to get construction of actual t-designs.

We first define designs on multisets. A list Design is an ordered pair D = (X, f),
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where X is finite set and f is a list on L(X). Thus for each multiset ℓ of X, f(ℓ) ∈ N. We
may also consider f as a multiset f = [ℓi|i ∈ I|f |]. Each element of f is called a block of the
list design f . Thus ℓ ∈ L(X) is a block if and only if f(ℓ)) ̸= 0. Elements of X are called,
as in the case of sets, points or treatments. D is said to be of block size k, if all blocks
are multisets of size k, i.e f(ℓ) ̸= 0 implies that ℓ ∈ Lk(X). We define ∂t and ∂t,k, for lists
in quite similar manner, as we defined them for N(X) and Nk(X), only now they will be
defined over L(X) and Lk(X) respectively. Thus, for example, if f is a list on Lk(X), ∂t,k(f)
is a list on Lt(X), defined by ∂t,k(f)(s) = ∑

s⊆ℓ c(ℓ, s)f(ℓ), for all s ∈ Lt(X). Thus ∂t,k(f)(s),
essentially gives the number of ways in which s occurs as a submultiset in the blocks of f .

For a finite set X we will denote by S(X) the symmetric group of all permutations
of X. We note that S(X) also acts as permutation group on the set of all k-subsets Pk(X)
as well as on the set of all k-multisets Lk(X). We also note that S(X) acts transitively on
Pk(X), i.e., given any two k-subsets A1, A2 of X, we can always find an element σ ∈ S(X),
such that σ(A1) = A2. But this is not true with k-multisets.

Example 6: Let X be finite set. x, y ∈ X, x ̸= y. Consider two 5-multisets A1 =
[x, x, y, y, y] and A2 = [x, x, x, y, y]. Define a permutation σ : X → X by σ(x) = y, σ(y) = x
and σ(z) = z, if z ̸= x or y. Then clearly σ(A1) = A2. Now consider the 5-multiset
A3 = [x, y, y, y, y]. It can be easily seen that there is no τ ∈ S(X) such that τ(A1) = A3.
Thus in general S(X) is not transitive on Lk(X).

Let ℓ ∈ Lt(X) we will denote orbt(ℓ), the orbit of ℓ ∈ Lt(X) under S(X). Thus
orbt(ℓ) = {ℓ1|σ(ℓ) = σ(ℓ1) for some σ ∈ S(X)}. Let ORBt(X) be the set {orbt(ℓ)|ℓ ∈
Lt(X)} of all orbits of elements of Lt(X).

Let m ∈ N. a partition π of m is a list on the set Im = {1, 2, . . . m} such that∑
iπ(i) = m, where the sum is over all i ∈ In.

Example 7: Consider the list π on the set I13 defined by π(1) = 3, π(2) = π(3) = 2 and
π(g) = 0 if g ̸= 1, 2, 3. π corresponds to the multiset [1, 1, 1, 2, 2, 3, 3]. Clearly π is a partition
of 13.

Now suppose ℓ ∈ L(X). Define a partition of π(ℓ) of integer |ℓ| by π(ℓ)(i) = |{x ∈
supp(ℓ)|ℓ(x) = i}|. Thus π(ℓ) = [ℓ(x) x ∈ supp(ℓ)].

Remark 5: Suppose ℓ, ℓ1 ∈ Lt(X). Then, it can be easily seen that orbt(ℓ) = orbt(ℓ1), if
and only if π(ℓ) = π(ℓ1).

We can now define t-list designs. Let 0 ≤ t ≤ k, |X| = v. A t-list design on X with
block size k is a list design D = (X, f), with block size k such that for all s1, s2 ∈ Lt(X)
with π(s1) = π(s2), (∂t,k(f))(s1) = (∂t,k(f))(s2). Thus t-list design with block size k is a list
design with block size k on the set X such that if any two t-lists s1, s2 on X are in the same
orbit under the action of S(X), then they occur the same number of times in blocks of D.
We define t-list designs also in terms of parameters, only note that now λ is not a constant,
it is a function on ORBt(X).

Let λ : ORBt(X) → N be a list on ORBt(X). A list design D = (X, f) on a set X of
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size v and block size k is said to be a t-(v, k, λ)-list design if for all s ∈ Lt(X), ∂t,k(f)(s) =
λ(orbt(s)).

In the paper Singhi and Raychaudhuri (2012), list designs, signed list designs, rational
list designs are studied, the concept of tags is extended to list designs. Signed list designs
are constructed for all parameters. And similarly second step in Wilson’s three step process
described above, of creating list designs when λ is large for all orbits, is carried out. some
ideas of block spreading are also discussed.
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Abstract
Horticulture is an important sector that contributes towards the economic growth of

our country. The UT of Jammu and Kashmir is the largest producer of walnut in India
and provides important source of livelihood for many people. The study aims to forecast
the production of walnut for Jammu and Kashmir using Time series models. Therefore,
Holt linear exponential Smoothing and Autoregressive Integrated Moving Average (ARIMA)
model have been applied and it shows that ARIMA(1,2,1) is appropriate model for forecasting
on the basis of minimum value of information criterion and maximum value of coefficient of
determination as compared to other models. Based on the forecast provided by the proposed
model, there is a projected 56.69 percent increase in walnut production for the year 2035
with respect to 2022. This increase is contingent upon policymakers implementing policies
aimed at boosting production.

Key words: ARIMA; Walnut production; Holt’s linear exponential smoothing model.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Jammu and Kashmir is northern most state of India. The Jammu and Kashmir holds
important position in horticultural production. The contribution of horticulture in gross
state domestic product (GSDP) is more than 9 percent as per Sharma et al. (2023). Horti-
culture is an important sector which provides employment to people. Growing dependence
on service sector for employment has added a lot of burden on union territory so; horticul-
ture development makes a strong case. Walnut productions are light demanding species and
are drought tolerant. Drought tolerating nature of walnuts makes a special case for their
cultivation in Jammu & Kashmir. Walnuts (genus Juglans) are plants in the family Juglan-
daceae. Walnut is believed to have originated in Iran and its surrounding areas and brought
to Europe by Alexander the Great and from Europe it was brought to China. In India walnut
was earlier confined to Jammu and Kashmir and in late century it was brought to Himachal
Pradesh, Uttarakhand hills and expanding up to Darjeeling and Sikkim. Walnut is called by
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different names in different parts of India. The most commonly used name is akhroot, while
in Kashmir it is called dun. Walnuts became the viable horticulture industry in India since
1980s particularly in the valley of Kashmir (Pandey and Shukla, 2007). Jammu and Kashmir
occupy almost 90 per cent share of walnut industry in India. According to provisional data
from the National Horticulture Board, Jammu and Kashmir recorded a production of 206.43
thousand metric tons of walnuts, cultivated across 69.24 thousand hectares in the 2016-17
period. In contrast, the rest of India produced 21.8 thousand metric tons of walnuts, cov-
ering an area of 22.85 thousand hectares during the same period (Horticulture Statistics
at a Glance 2017). Jammu and Kashmir have been declared as an Agri-Export Zone for
walnuts as discussed by Shah et al. (2021). The major walnut production areas of Jammu
and Kashmir are Anantnag, Kupwara, Kulgam, Budgam, Doda, Poonch, Kishtwar, Rajouri
and Kathua. The demand of Kashmiri walnut is increasing rapidly which needs to bring
more land under it and require a regular attention to this industry so that it can better
flourish in the times to come. Forecasting is an important problem that spans many fields
including business and industry, government, economics, environmental sciences, medicine,
social science, politics, agriculture and finance. Forecasting problems are often classified as
short-term and long-term. Short-term forecasting problems involve predicting events only
a few time periods (days, weeks, and months) into the future and long-term forecasting
problems can extend beyond that by many years. Short term forecasts required for activ-
ities that range from operations management to budgeting and selecting new research and
development projects. Long-term forecasts impact issues such as strategic planning. Most
forecasting problems involve the use of time series data which is a time-oriented or chrono-
logical sequence of observations on a variable of interest. It is a sequential set of data points,
measured typically over successive times. The measurements taken during an event in a time
series are arranged in a proper chronological order. The time series in general supposed to
be affected by four main components, which can be separated from the observed data. These
components are: Trend, Cyclical, Seasonal and Irregular components. A time series model is
linear or non-linear whether the variable of interest is forecasted using a linear or non-linear
combination of past value of the variable. The linear time series models are designed to
model the auto-covariance structure in the time series. Some of the forecasting models like
Exponential smoothing, Autoregressive (AR), Moving Average (MA), Autoregressive Moving
Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA). The two popu-
lar sub groups of Linear time series models are the Autoregressive (AR) and Moving Average
(MA) models. AR models combined with moving average (MA) model to form a general
and useful class of time series models called the Autoregressive Moving Average (ARMA)
models. Sharma et al. (2018) applied Box-Jenkins methodology to build Autoregressive In-
tegrated Moving Average (ARIMA) model for monthly arrival of Rohu fish in Jammu region
of J&K state among many models the best model obtained was ARMA (2, 2) on the basis of
significance of model and parameters. Mahajan et al. (2020) applied ARIMA model for the
production of Rice crop in India. The best model would be ARIMA(0,2,2) on the basis of
minimum AIC and SBIC. Kumari et al. (2022) applied Exponential smoothing and ARIMA
model for the area, production and productivity of total fruit crops in Gujarat.

2. Material and methods

This study used annual time series data of walnut production in MT from 1973 to
2022 (Directorate of Horticulture Kashmir). We have to find Instability Index to check if
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the time series exhibit any trend. Cuddy Della Valle Index (CDVI) method has been used as
proposed Cuddy and Della Valle (1978) for measuring the instability in time series data. It is
measured through CDVI = CV ∗

√
1 − R̄2 where, CV is the coefficient of variation in percent,

and R̄2 is the adjusted coefficient of determination. An appropriate modeling technique has
been used for the forecasting of walnut production. Box and Jenkins methodology or ARIMA
modeling has been introduced by Box and Jenkins (1976) is commonly used for forecasting
purpose. It combines the Autoregressive Process (AR) and Moving Average Process (MA).
The structure of ARIMA model is; ARIMA (p, d, q), where p and q are the order of the
autoregressive and moving average process respectively while d is the order of differencing.
The mathematical form of ARIMA (p, d, q) model is:

Yt = C + (Φ1Yt−1 + . . . + Φt−pYt−p) + ϵt(−θ1ϵt−1 − . . . − θqϵt−q)

where, C is the constant, Yt is the data on which the ARIMA model is to be applied,
Φ1, . . . Φt − p are AR coefficients, θ1, . . . , θq are MA coefficients and et is the random error.
However, the AR model of order p is Yt = C + (Φ1Yt−1 + . . . + Φt−pYt−p) + et. Similarly, the
MA structure of order q is Ytθ = C + ϵt − (θ1ϵ(t − 1) + . . . + θqϵ(t − q)) .

The three main stages of Box-Jenkins forecasting model are used, first is identification
of the model or specification of the model second is estimating the parameters and third is
diagnostic checking of the residuals and forecasting. Another most commonly used univari-
ate time series forecasting technique is the exponential smoothing (ES). In this technique,
forecasts are weighted averages of past observations, with the weights decaying exponentially
as the observations get older. In other words, recent observations are given relatively more
weight in forecasting than the older observations. Exponential smoothing method classified
according to the type of component presented in the time series data. The current study
exclusively employs a single exponential smoothing method, namely Holts linear trend expo-
nential smoothing technique, utilizing time series data. Holt (2004) introduced an extension
of simple exponential smoothing tailored to forecast data exhibiting a trend. This method
entails a forecast equation and two smoothing equations.

Forecast equation Ŷt = lt + hbt

Level Equation lt = αYt + (1 − α)(lt−1 + bt−1).

Trend Equation bt = β(lt − lt−1) + (1 − β)bt−1.

where, Yt, Ŷt is observed and predicted value of series at time t, lt and bt are the estimate of
level and trend of the series at time t. The α, β are the smoothing parameters for the level
and the trend, 0 ≤ α, β ≤ 1.

Model selection is done on the basis of following measures:

• Akaike’s information criterion (AIC) proposed by Akaike (1979) is a useful statistic
for model identification and evaluation. It defined as −2logL + 2n, where, L is the
likelihood function and n is the number of hyper parameters estimated from the model.

• Bayesian Information Criterion (BIC) also as known as Schwarz Criterion. Schwarz
(1978) proposed the criterion from Bayesian likelihood maximization. And is defined
as SBIC = −2LogL + nLogT where, T is total number of observations.
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• Coefficient of determination (R2) Wright (1921) and calculated as R2 = 1−RSS/TSS.
where, RSS is residual sum of square and TSS total sum of square Range of R2 is 0
to +1.

• Mean Absolute Percentage Error: The mean absolute percentage error (MAPE) is
one of the most popular measures of the forecast accuracy. It was used as the primary
measure in the M-competition Makridakis et al. (1982). MAPE is defined as MAPE =
1
N

∑N
t=1 |At−Ft

At
| ∗ 100 where, At is the actual value, Ft is the forecast value, N is the

number of data points.

3. Results and discussion

The annual time series data of the walnut production in Jammu & Kashmir for the
last fifty years are used in the forecasting model. The data has been segmented into two
25-year phases: 1972-1997 and 1998-2022, aiming to analyze trends and stability. Notably,
the average production during the latter phase surpassed that of the former (refer to Table
1). A similar trend is evident in the standard deviation. Consequently, the instability index
was higher during the initial phase (33.30 percent) compared to the second phase (12.49
percent), possibly attributed to government subsidies, support programs, and the use of
high-quality seeds to promote walnut cultivation. The overall instability index of the walnut
production was 32.62 percent clearly indicating the production instability. The increasing
market demand for walnuts incentivized farmers in Jammu and Kashmir to ramp up produc-
tion for greater profits. The Durbin-Watson test yielded a value of 0.257, indicating positive
autocorrelation among the residuals, necessitating the utilization of time series models.

Table 1: Descriptive statistics of walnut production from 1973-1997 and 1998-
2022

Period Mean Std. Dev. Max.Value Min.Value Instability Durbin Watson
(MT) (MT) (MT) (MT) Index (%) test (Overall)

Phase I 27954.20 18620.05 68880.00 10212.00 33.03

0.257

(1973-1997)
Phase II 169281.00 75563.61 279422.00 74906.00 12.49(1998-2022)
Phase III 98617.60 89786.98 279422.00 10212.00 32.62(1973-2022)

Both graphical and empirical methods have been employed for this investigation. The
line chart presented in Figure (1) illustrates an upward trend in walnut production. Addi-
tionally, long-term patterns suggest that the data is non-stationary, with a mean production
of 98,617.60 metric tons (MT) and a standard deviation of 88,884.50 MT.

Table 2: ADF test value of actual Series and second differenced series

Test Statistic Actual Series Second Differenced Series
Value P-Value Value P-Value

ADF 1.05 0.99(NS) -10.12 0.000**
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Figure 1: Trend of the annual production of walnut in Jammu and Kashmir

The Augmented Dickey-fuller (ADF) test value (see Table 2) is 1.05 and non-significant.
It depicts non-stationarity of the data and p-values of Ljung-Box Q values are significant
which means the residuals are dependent.

Figure 2: ACF and PACF plots of production of walnut in Jammu and Kashmir

The ACF and PACF plots in figure (2) show that the spikes are outside from the
insignificant zone and fail to follow the assumption of randomness. Therefore, in order to
met the stationary of the data first is to apply differencing method Mahajan et al. (2020).
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The line chart, correlogram and ADF test have been used again after taking first and second
order differencing until stationarity is achieved.

Figure 3: Trend of the data after taking differencing of order 2

Figure 4: Trend and correlogram of the data after taking differencing of order 2

The line chart in Figure (3) after taking the second order differencing shows that mean
has no change and having constant variation. Thus, stationarity has been achieved through
differencing. Moreover, ADF test value after second order differencing found to be significant
which indicate that data are stationary. The order of (p) and (q), as depicted in Figure (4)
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through the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF),
is determined to be one. In the ACF, only one spike falls outside the range, while in
the PACF, two spikes extend beyond the range. This suggests that the data has achieved
stationarity. Different ARIMA models have been developed on the basis of Box-Jenkins
methodology. Among them five best models have been proposed on the basis of minimum
AIC (Akaike Information Criterion), SBIC (Schwartz Bayesian Information Criterion) and
R2. The model ARIMA(1,2,1) have minimum AIC(1068.32), and SBIC(1073.94) values with
R2 (0.97) with significant parameters found to be the best. The estimates of the parameters
are shown in Table (3) having AR(1) as -0.40. MA(1) 1.00 are found to be significant
respectively.

Table 3: Different models for annual production of rice in India

Models R2 AIC SBIC Significance of Parameters/models
ARIMA(1,2,2) 0.95 1094.00 1101.54 Non-Significant
ARIMA(1,2,1) 0.97 1068.32 1173.94 Significant
ARIMA(2,2,1) 0.97 1092.63 1100.19 Non-Significant
ARIMA(2,2,2) 0.97 1072.00 1082.01 Non-Significant
ARIMA(1,2,3) 0.94 1093.62 1100.01 Significant

Table 4: Parameters estimates of ARIMA(1,2,1) for production of walnut

Terms with orders Estimates Standard Error t-Ratio P-Value
AR(1) -0.40 0.12 -3.10 0.00**
MA(1) 1.00 0.06 15.85 < 00∗∗

Intercept 202.30 108.03 1.87 0.06

Figure 5: ACF and PACF plots of ARIMA(1,2,1)

The ACF and PACF plots in Figure (5) of the residuals indicate a good fit of the
model, with p-values of the Ljung-Box Q test exceeding the significance level of 0.05. This
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implies that the residuals are independent, satisfying the assumption of randomness. Mean-
while, the (Holt) linear exponential smoothing model is employed to estimate walnut pro-
duction. It exhibits an AIC of 1068.71 and SBIC of 1074.12, with an R-squared value of 0.96.
Table (5) displays the parameter estimates of the Holt model. The Level smoothing weight is
calculated to be 0.59 and the Trend Smoothing Weight is 0.14. The Level smoothing weight
is found to be significant, while the Trend smoothing weight is not significant so this model
is not considered.

Table 5: Parameter estimates of the linear (Holt) ES model for production of
walnut

Term Estimate Std Error t-Ratio Prob > |t|
Level Smoothing Weight 0.59 0.13 4.29 < .0001∗∗

Trend Smoothing Weight 0.14 0.13 1.05 0.29

Comparison of performance of model done on the basis of AIC,SBIC, R2, and MAPE.
Table (6) shows that the ARIMA(1,2,1) have maximum R2, with minimum Mean Absolute
Percentage Error as compared to Linear Holt Exponential Smoothing model. So, on the basis
of that ARIMA(1,2,1) model is best model for forecasting of walnut production of Jammu
and Kashmir.

Table 6: Comparison of performance of different fitted models

Model

Model Selection Measures

AIC SBIC R2 MAPE Forecasted Actual
DifferenceValue value

% (2022) (2022)
ARIMA 1068.32 1073.94 0.97 13.10 274397.68 265423 8974.68

Holt Linear
1068.71 1074.12 0.96 13.97 276750.55 265423 11327.55Smoothing

Model

Thus, the proposed model for estimating walnut production is ARIMA(1,2,1), speci-
fied as: Ȳ = 202.30 + (−0.40)[Yt + Yt−1 + Yt−2] + 1.000[ϵt − ϵt−1 − ϵt−2]. For validation, data
are splitted into training(80 percent) and testing (20 percent) and as per the result of Table
(7) the testing has minimum RMSE as compared to the training. Thus the model is best
fitted.

Table 7: RMSE of training and testing for ARIMA (1,2,1)

Model RMSE
Training Testing

ARIMA (1,2,1) 115859.98 96998.59

The graphical representation of forecasting of ARIMA(1,2,1) model in Figure (6),
shows there is upward trend in the production of walnut in Jammu and Kashmir.
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Table 8: Forecasting values for walnut production in Jammu and Kashmir

year Forecasted U-95 L-95 Percentage increase
values (MT) in production on the basis of 2022

2025 297927.24 339403.54 256450.95 12.24
2030 354356.67 417331.60 291381.74 33.50
2035 415908.24 494827.67 336988.81 56.69

Figure 6: Forecasting graph of ARIMA (1,2,1) for annual production of Walnut

After conducting a forecast, the results indicate minimal variance between the actual
and predicted values for the year 2022, affirming the accuracy of the model. The model’s
effectiveness is further validated by evaluating the lower and upper bounds of the forecasted
values. Table (8) presents the projected walnut production for the years 2025, 2030, and 2035
based on this model. It illustrates a consistent upward trend in future walnut production.
Specifically, the percentage increase in walnut production for 2025, 2030, and 2035 is 12.24%,
33.50%, and 56.69% respectively.

4. Conclusion

The current research aimed to forecast walnut production in Jammu and Kashmir,
employing several time series models including linear Holt exponential smoothing and au-
toregressive integrated moving average (ARIMA). The findings suggest that the ARIMA
model is the most appropriate for predicting walnut production. According to this model,
the projected increase in walnut production for the year 2035 is 56.69%. This ARIMA model
will be utilized for future walnut production forecasts, integrating up-to-date data.
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Abstract
The normal distribution, though widely popular and heavily used in modelling datasets,

has its own limitations, especially dealing with engineering and environmental data. In the
univariate case, when the variable of interest is positively skewed, one can use a host of other
distributions such as Gamma, Weibull, Lognormal etc., just to name a few. However, in a
multivariate set-up, the multivariate normal distribution appears to be the default choice,
either by omission or by commission. The multivariate normal model has a host of advan-
tages as its inferential problems are well studied, and the sampling distributions of its key
statistics are relatively convenient to deal with. To be precise, the sample average follows
a multivariate normal, and the sample cross-product matrix follows a Wishart distribution,
and these two statistics are independent. Further, conditional expectation of any component
given the remaining components is a linear function (of those remaining components) which
is the foundation of the linear regression analysis.

But what happens if our multivariate data, which we commonly see in many applied
problems, do not follow normal? The first casualty is the aforementioned mutual indepen-
dence between the two commonly used statistics, let alone them being the minimal sufficient.
Secondly, the linear regression model may not hold, thereby complicating the further con-
ditional inferences. Also, multivariate normality forces one to assume marginally univariate
normal distributions which may not seem reasonable as seen from the marginal empirical
relative frequency histograms. One possible way out of this difficult situation is to transform
the individual components to achieve multivariate normality, but this faces two big hurdles –
(a) it would be an ad hoc approach to begin with; and (b) such ad hoc transformations may
distort the natural association(s) among the components as well as the units being used,
thus rendering the subsequent analyses questionable. On this backdrop, the copula theory
comes handy in modelling multivariate data. Multiple individual components, apparently
following skewed distributions, can be adequately combined by a suitable copula (also known
as a link function) in order to model the given multivariate data. As opposed to the multi-
variate normal distribution’s ‘top-down’ approach, the copula theory provides a ‘ground-up’
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approach where diversely distributed marginals can be combined into a suitable multivariate
distribution for further inferences, including regressions.

Our study of the copula theory was motivated by an environmental dataset from
the Mekong Delta Region (MDR) of Vietnam. In a bivariate set-up we have used a special
copula, known as the Farlie-Gumbel-Morgenstern Copula (FGMC) to analyze the data. But
this has also opened up a host of other research problems, such as estimation of the copula
parameter, hypothesis testing, goodness of fit tests of FGMC, etc. Further, FGMC is just
one of many, - possibly three dozen copulas, and thus this is a very rich emerging research
field which has received relatively less attention, but has tremendous implications in ‘Big
Data’ or ‘Data Analytics’. We will also discuss some of the major challenges in copula theory
which are related to heavy yet efficient computations in a reasonable amount of time. Thus
this is a rich research area where experts in efficient algorithms and/or numerical analysis
are very much welcome.

Key words: Copula; Jeffrey’s prior; Parametric bootstrap method; Prediction mean absolute
error; Prediction root mean squared error; Kolmogorov-Smirnov statistic.

AMS Subject Classifications: 62F10, 62F15, 62C05

1. Introduction

1.1. Why copula?

The normal distribution, though widely popular and heavily used in modelling datasets,
has its own limitations. In the univariate case, when the variable of interest is positively
skewed, one can use a host of non-normal distributions such as Gamma, Weibull, Lognor-
mal etc., just to name a few. However, in a multivariate set-up, the multivariate normal
distribution appears to be the default choice, either by omission or by commission. The
multivariate normal model has a host of advantages as its inferential problems are well stud-
ied, and the sampling distributions of its key statistics are relatively convenient to deal with.
To be precise, let X = (X1, X2, ..., Xp)′ be a p-variate random vector whose distribution is
assumed to be Np(µ, Σ) where µ ∈ Rp and Σ = ((σij)) > 0 (p.d.). Based on a random
sample Xi, 1 ≤ i ≤ n, (i.e., n copies of X), assuming n > p, the maximum likelihood
estimators (MLEs) of µ and Σ are respectively µ̂ = X = ∑n

i=1 Xi/n, and Σ̂ = S/n, where
S = ∑n

i=1(Xi − X)(Xi − X)′. Further, under the above normality of X = (X1, ...., Xp)′, it is
well known that E(X1|X2, ..., Xp) = β1 +∑p

k=2 βkXk, for suitable value of β = (β1, β2, ..., βp)′

which depends on µ and Σ, and this is the motivation behind the usual multiple linear re-
gression where X1 is intended to be explained as a linear function of (X2, ..., Xp) subject to
some variation. But what happens if X does not follow Np(µ, Σ)?
(a): Can we have the aforementioned X and S/n as the MLE of µ and Σ?
- Possibly not.
(b): Can we have the independence of X and S (which is the foundation of most of the
normality based inferential results)?
- Most likely not.
(c): Does regressing X1 on (X2, ..., Xp) through a linear function make sense?
- Doesn’t seem so, since E(X1|X2, ..., Xp) may not be linear at all if the distribution of X is
non-spherically symmetric and/or does not follow homoscedasticity.
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Also, if X = (X1, ..., Xp) ∼ Np(µ, Σ), then it yields Xk ∼ N(µk, σkk = σ2
k), 1 ≤ k ≤ p.

Thus, in dealing with a multivariate data set, if one assumes the Np(µ, Σ) model then
inadvertently univariate normality is assumed for individual components, and this can be
problematic. Yet, in multivariate modelling, ranging from psychology to anthropology, from
agriculture to environmental science, especially in a ‘Big Data’ setting, multivariate normal
distribution is being used hastily without paying closer attention to whether such model
fitting is appropriate or not.

If the multivariate normal is found to be inappropriate for the data Xi, 1 ≤ i ≤ n,
then one may transform the variable(s) suitably hoping that the transformed data would
follow normal. But there are two major issues with such transformations. There is no magic
formula to tell us what transformation would be suitable for normality. Secondly, often such
transformed variables are hard to interpret, and they lose significance to the original problem
which gave rise to the dataset to begin with.

This study has been motivated by several datasets where component-wise histograms
indicate that marginals are heavily skewed, and therefore the joint distribution of the
marginals ought to be something other than a multivariate normal distribution (not even el-
liptically symmetric one). In such a situation, it makes sense to follow a ‘ground-up’ approach
to build a multivariate model starting with marginals, rather than the ‘top-down’ approach
of starting with a (questionable) multivariate model and then live with its consequences at
the marginal level.

Copula theory is a convenient ‘ground-up’ approach where one theorizes a multivariate
distribution for the random vector X = (X1, X2, ..., Xp)′ based on the marginal of each
Xk, 1 ≤ k ≤ p. This is based on the understanding that the desired joint distribution ought
to obey a particular structure involving the marginals which we have much control over.
The following subsection gives a brief introduction of the copula theory. The focus of this
work is on the bivariate set-up; however, we may present some general multivariate results
occasionally.

1.2. General copula framework

The path breaking theorem in Sklar (1959) plays the most important role in the
Copula theory. In the simplest case of a bivariate distribution, it tells us that given a random
vector (X1, X2) with absolutely continuous marginal cumulative distribution functions (cdfs),
F1 and F2, with corresponding probability density functions (pdfs) f1 and f2 respectively,
and its joint cdf denoted by F , with joint pdf f , there exist unique copula C (a functional),
such that

F (x1, x2) = C(F1(x1), F2(x2)),
i.e., f(x1, x2) = ∂2F (x1, x2)/∂x1∂x2

= C(x1,x2)(F1(x1), F2(x2))f1(x1)f2(x2),
(1)

where C(u,v)(u, v) := ∂2C(u, v)/∂u∂v.

In general, given a continuous random vector in p-dimension, i.e., X = (X1, X2, ..., Xp)′,
with marginal cdfs Fk, k = 1, 2, ..., p, if we use the transformations such that Uk := Fk(Xk), k =
1, 2, .., p, then we have Uk ∼ Uniform(0, 1), k = 1, 2, ..., p. The copula function C : [0, 1]p →
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[0, 1] is a joint multivariate cdf of U := (U1, U2, ..., Up)′, i.e.,

C(u1, u2, ......, up) = P (U1 ≤ u1, ...., Up ≤ up). (2)

The joint cdf of X, denoted by F (x1, ..., xp), can be given in terms of C(u1, ..., up). By Sklar’s
theorem there exists a unique copula C such that

F (x1, x2, ..., xp) = C(F1(x1), F2(x2), ...., Fp(xp). (3)

Simply put, the copula C is viewed as a dependence structure among the marginal cdfs.

Since the inception of the copula idea, one can find several copulas in the literature
such as Gaussian copula, Exponential copula, Clayton copula, Frank Copula etc., just to
name a few. Out of the many available copula structures we focus on the Farlie-Gumbel-
Morgenstern copula (FGMC) (see Morgenstern (1956)). The following section gives a brief
introduction about the joint distribution based on FGMC, henceforth referred to as Farlie -
Gumbel - Morgernstern Distribution (FGMD). The main reason behind our choice of FGMC
(and subsequently that of FGMD) is its simplicity. Moreover, the nature of our investigation
is completely new, and to the best of our knowledge the type of our investigation has not
been carried out for FGMC. Therefore, this work of ours can be used as a template of future
research for all other copulas as needed.

1.3. Farlie - Gumbel - Morgenstern Copula (FGMC) and the resultant model

As mentioned in the earlier section, a host of Copula structures have been discussed
in the existing literature and one can find an overview of the available copula structures in
Nelsen (2007). Several bivariate and multivariate non-normal probability distributions based
on copula structures can be found in Kotz et al. (2004).

Morgenstern (1956) first introduced the following bivariate probability distribution
on the square [−1, 1] × [−1, 1] of the form

f(x1, x2) = 1
4(1 + λx1x2), (4)

where |λ| ≤ 1 and −1 ≤ x1, x2 ≤ 1. Farlie (1960) further studied various standard correlation
coefficients between X1 and X2 for the bivariate distribution in (4). The limitations that a
bivariate normal distribution brings to a dataset were first pointed out by Gumbel (1960)
while he constructed a bivariate distribution with exponential marginals using Morgenstern’s
underlying copula in (4).

The pdf of the bivariate Farlie-Gumbel-Morgenstern distribution (FGMD) with gen-
eral marginals based on the FGMC is given by

f(x1, x2) = f1(x1)f2(x2)[1 + λ(2F1(x1) − 1)(2F2(x2) − 1)], (5)

where |λ| ≤ 1 is the association parameter, f1, f2 are the marginal pdfs of the components
X1 and X2, with corresponding marginal cdfs F1, F2 respectively. The range of λ happens
to be [−1, 1], similar to many common correlation coefficients.

As a special case of (5), D’este (1981) considered a special biavriate Gamma dis-
tribution with gamma marginals and studied the structures of the covariance, conditional
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expectations as well as other distributional properties. Since the inception of the FGMC, it
has undergone several modifications over the years leading to some wider family of FGMC
by different researchers. All these modifications were done with the goal of capturing a wider
range of dependence among the components through common dependence measures such as
Pearson’s Correlation Coefficient (ρ), Spearman’s Correlation coefficient (ρs), Kendall’s Tau
(ρK), etc. In their modified FGMD Huang and Kotz (1999) showed that with a polynomial
type single parameter extension of the FGMC with uniform marginals the maximal attain-
able range of ρ is [−0.39, 0.333...]. Bairamov and Kotz (2002) proposed a new generalization
of FGMD by introducing new association parameters and were able to attain a maximal pos-
itive (Pearson’s) correlation of ρ = 0.5021 for some specific values of the model parameters.
All these generalizations were made to accommodate a larger spectrum of the Pearson’s
correlation coefficient values. However the Pearson’s correlation coefficient measures the
strength of linear relationship between the components; therefore, paying attention only to
this aspect of dependency, at the cost of adding more parameters to the model, is a rather
narrow approach. Amblard and Girard (2009) gave a new family of copulas by generalizing
the FGMC and highlighted the main feature of the proposed family as to permit modelling of
data with high positive dependency, in particular over the range of ρs ∈ [−0.75, 1]. Another
new generalization of the FGMC was put forward by Bekrizadeh et al. (2012) and they were
able to show the usefulness of the proposed generalized model in data with high negative
dependence value by showing the (Spearman’s rank correlation) values of ρs ∈ [−0.5, 0.43].
All these generalizations were made by introducing new parameters which only adds to the
complexity of the statistical inferences of the FGMD model.

1.4. A motivational example with a real life dataset

This work has been motivated by an excellent investigation carried out by Merola
et al. (2015) where the researchers have presented, among other things, a useful dataset on
arsenic (As) concentration as well as a few other apparently benign elements from a survey
carried out in Dong Thap province within the Mekong Delta Region (MDR) of Southern
Vietnam. The complete dataset is given in Appendix A.1.

Vietnam is one of the worst affected countries where arsenic contamination in ground-
water is particularly worrisome in two areas, - The Red River Delta (RDR) in the northern
part, and the Mekong Delta Region (MDR) in the southern part. The MDR is the most
economically vibrant region of the country which comprises twelve southern provinces and
one major city (Can Tho) municipality. The provinces adjacent to Mekong river and its dis-
tributaries have been witnessing a very high concentration of arsenic in groundwater which
is caused by both natural as well as man-made factors as discussed below.

As mentioned at the beginning of this section, Merola et al. (2015) collected data on
arsenic concentration in groundwater in two subregions within Dong Thap province of MDR.
Dong Thap, along with An Giang and Long An, is one of the provinces bordering Cambodia
that has a high level of arsenic and poses a public health hazard. Thus, measuring arsenic
in groundwater and issuing guidelines if and when needed is of paramount importance for
the local administrations to mitigate arsenic poisoning. However, measuring arsenic level
frequently and accurately is a time consuming and/or expensive exercise. Therefore it would
be of great help to all the stakeholders if the level (or concentration) of arsenic could be
predicted from the other benign elements when it is established, based on some existing
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survey data, that in certain region there is an association between arsenic and one or more
benign element(s) which can be measured easily (and cheaply), often through user friendly
devices.

1.5. Scope of this research

The initial exploratory analysis points towards the fact that the MDR dataset con-
sists of components which, firstly, have distinct distributions over the two sub-regions as
mentioned above and secondly, have mostly skewed marginal distributions. We further delve
into the exploration of the nature of pairwise association present among the variables in this
dataset. We employ the FGMD model for the purpose.

The flexibility of the copula structure lies in allowing the freedom of choice of the
desired marginal distributions. Hence, the association parameter λ of the copula structure
(5) becomes a pivotal parameter in conserving the dependency between the components. As
a result, inferences on the association parameter λ in (5) is of paramount interest. The basis
of this current work has been the FGMD given in (5) with the goal of studying the inferential
aspects of the association parameter λ comprehensively, with known marginals.

The inferential aspect includes parameter estimation where we have discussed a host
of estimators and recommend the most suitable ones. Secondly, we have studied the existence
of association among the variates through hypothesis testing under the FGMD model. We
proposed a family of parametric bootstrap (PB) tests which addresses the problem of λ = 0
vs λ ̸= 0. Along with the regular asympototic tests, we have studied the proposed PB tests
and have shown that they tend to attain the nominal level very accurately.

While various correlation measures reveal some interesting patterns in terms of asso-
ciation between Arsenic (As) and Chlorine (Cl), between As and Hydrogen Potential (pH),
and between As and Redox Potential or level (Eh), they do not address the objective of
this work, i.e., predicting the value of As when a suitable covariate, which is known to be
significantly associated with As, is known. For example, in the southern region, where As
and Cl are apparently strongly associated, can we predict the value (or, do we know the
expected value) of As when Cl is equal to, say, 10 ppm? The prediction problem which
has been posed above can be answered only by fitting an appropriate bivariate probability
distribution to the given data on two relevant variates.

Let us denote the variate As by Y for the time being, and its suitable covariate by
X (where X can be either Cl, or pH, or Eh). (For convenience in notation, these three
covariates can be denoted by X1, X2 and X3, respectively.) We addressed the suitable distri-
bution of (X, Y ) through FGMD which fits the given data. Once that suitable distribution
of (X, Y ) fits the data, then we use the conditional distribution of (Y |X) to draw inferences
on Y when X is given. As noted earlier, the joint probability distribution of (X, Y ) has to
be a non-normal one because the univariate normality tests reject such a notion most of the
time (six out of eight cases - four variables in two subregions).

Finally, one can raise the question of ‘goodness of fit’ (GoF) of FGMD. It is worthy
of noting that there is no “one stop solution” for the goodness of fit problem for the host of
available copula in the literature and it remains an open problem. Several goodness of fit
tests are available across the literature but to the best of our knowledge there doesn’t exist
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one for FGMC which considers the parametric nature of the distribution. We have proposed
and developed a novel data driven goodness of fit test for FGMD, which does not assume
any known distribution of the test statistic under the null hypothesis. A detailed study of
this goodness of fit test including the test procedures, as well as its performance is discussed
which validates the application of FGMD model to the MDR dataset.

2. Point estimation of the association parameter

If one looks at the existing applications of the copula theory with real-life data sets
then it becomes abundantly clear that the preferred estimator of the association parameter
has always been the maximum likelihood estimator (MLE). But how good is the MLE? From
an asymptotic point of view the MLE has nice tractable limiting distributional properties.
But, for small to moderate sample sizes the performance of the MLE of the FGMD association
parameter λ is totally unknown. Worse, the existing literature is completely silent on other
possible estimators, especially the Bayes ones under noninformative priors. In a parametric
set up, one should study various estimators of all the model parameters simultaneously which
include the association parameter λ as well as other parameters of the marginal distributions.
(For example, if one assumes a two parameter gamma model for each of the two marginals,
then one ends up with a total five parameters.) It has been noted that estimating just
the association parameter with known marginals itself is a research problem as it entails
several point estimators with corresponding sampling distributions, followed by hypothesis
testing which allows us to verify, under the FGMD assumption, whether the components are
independent or not. The computational challenges that one faces with Bayes estimators in
this simplistic scenario (i.e., just for the association parameter) can be quite overwhelming.
However, the simplistic model that we are using in this work can be applied in a totally non-
parametric marginal set up where one can use the empirical marginal cdf of each component
to replace the aforementioned known marginal, and then can proceed with the subsequent
inferences. With that above objective in mind, the following subsections present a brief
review of parametric estimation of the association parameter λ as available in the existing
literature. Also, the following lemma will be useful in deriving Bayes estimators under
noninformative priors.

Lemma 1: Based on the iid observations X1, X2, ..., Xn from (5) with marginals f1 and f2
completely known, the Fisher information I(λ) is given as I(λ) = nI0(λ), where I0(λ) is the
Fisher information per observation (FIPO), and

I0(λ) = (1/4)
� +1

−1

� +1

−1
u2

1u
2
2(1 + λu1u2)−1du1du2. (6)

Note that the FIPO expression is free from f1 and f2. A further simplification yields

I0(λ) =
∞∑

m=0
λ2m/(2m + 3). (7)

Note that the infinite sum in the above expression is convergent. Using that expression
of the infinite sum, the final form of the FIPO, is given by

I0(λ) = {−λ + tanh−1(λ)}/λ3, (8)
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where tanh−1(λ) = (0.5)log((1 + λ)/(1 − λ)). See Chatterjee (2022) for the proof.

Remark 1: It is not at all surprising to see that the expression of I0 in (7) or (8) is free
from fk’s (k = 1, 2). Since the marginals are assumed to be completely known, without any
loss of information one can look at Yik = Fk(Xik), k = 1, 2, 1 ≤ i ≤ n. Note that Yik’s
are iid Uniform(0, 1). Each Yi = (Yi1, Yi2)′ then follows the FGMD(λ) with joint pdf , say
g(y) = [1+λ(2y1 −1)(2y2 −2)] on the unit square [0, 1]× [0, 1]. The transformation Xi → Yi

does not change the problem as far as inference on λ is concerned, and yields the FIPO
expression as stated above.

In the following subsections, we propose a wide variety of estimators of the association
parameter λ based on n iid observations from (5) with known marginals f1 and f2.

2.1. Method of moment estimation

Method of moment estimator is attained essentially by equating the sample raw
moment with the population moment. For the joint population moment, using the simple
calculation of the expectation of the distribution in (5) and some further simplification lead
us to the following form

E(X1X2) = E(X1)E(X2) + λI1I2, (9)

where Ik =
� 1

−1(u/2)F −1
k ((1 + u)/2)∂u, k = 1, 2. For convenience define µk = E(Xk),

k = 1, 2, i.e., the means of the known marginals. Therefore from (9) it can be easily
established that Cov(X1, X2) = λI1I2. For the method of moment estimator λ̂MM we equate
λI1I2 with the sample equivalent of Cov(X1, X2) which is (1/n) ∑n

i=1(X1i − X1)(X2i − X2)
where Xk = (1/n) ∑n

i=1 Xki, k = 1, 2. Therefore,

λ̂MM = (nI1I2)−1
n∑

i=1
(X1i − X1)(X2i − X2). (10)

2.2. Maximum likelihood estimation

For the brevity in derivation, let us denote 2Fk(xik) − 1 = Gk(xik), k = 1, 2. The
log-likelihood function of the data denoted by l(λ) is as follows

l(λ) = C +
n∑

i=1
ln(1 + λG1(xi1)G2(xi2)), (11)

where C is a constant, free of λ. It is tempting to take derivative of l(λ) and equating it
with zero, i.e.,

n∑
i=1

G1(xi1)G2(xi2)/(1 + λG1(xi1)G2(xi2)) = 0, (12)

to find the MLE of λ. But this can lead to a computational error as the solution may lie
outside the parameter space which may go unnoticed in simulation studies. (We suspect
that this issue may arise for other copula - based joint distributions as well, and may have
gone unnoticed in applications.)
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Theorem 1: The MLE of λ i.e., λ̂ML as it is called here, which maximizes l(λ) in (11),
exists, and it is unique.

Proof. See Appendix of Chatterjee (2022).

Remark 2: Define ai = G1(xi1)G2(xi2), 1 ≤ i ≤ n, and Gk(xik) = 2Fk(xik) − 1, k = 1, 2.
Let h(λ) = ∑n

i=1 ai/(1 + λai), λ ∈ [−1, +1]. As seen from the details of the proof of the
above theorem, λ̂ML takes the following form

λ̂ML =


−1 if h(−1) < 0
solution of (12) if h(−1) > 0 and h(+1) < 0
+1 if h(+1) > 0,

(13)

Remark 3: It is further seen that if all the ai’s are > 0, which happens with probability
(0.5)n, then l(λ) is monotonically increasing in λ. Hence λ̂ML is +1. Thus, {(a1, ..., an)| ai >
0 ∀ i} ⊆ {(a1, ..., an)| h(+1) = ∑n

i=1 ai/(1 + ai) > 0}. Similarly, if all the ai’s are < 0, which
again happens with probability (0.5)n, then l(λ) is monotonically decreasing in λ. Hence
λ̂ML is −1. Thus, {(a1, ..., an)| ai < 0 ∀ i} ⊆ {(a1, ..., an)| h(−1) = ∑n

i=1 ai/(1 − ai) < 0}.
We will see later in our simulation study that λ̂ML can take ±1 with substantially high
probabilities depending on the sample size as well as λ.

2.3. Bayes’ estimators

For any suitable prior π(λ) over the parameter space [−1, +1], the posterior distri-
bution of (λ|data), denoted by g(λ|data), is

g(λ|data) =
∏n

i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)� 1
−1

∏n
i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)∂λ

. (14)

A natural choice of the prior for the association parameter is a modification of the
beta distribution which is originally defined over the space (0, 1). The beta-type prior density
function defined over the parameter space [−1, +1] is

π(λ) = 1/(2B(a, b))((1 + λ)/2)a−1((1 − λ)/2)b−1, (15)

where a, b are the hyper-parameters.

The most common loss function for estimating a parameter is the usual squared error
loss. However, when a parameter is restricted to a finite range, as we have here for the
association parameter λ, a weighted quadratic loss is more meaningful which can assign a
heavy penalty near the boundary. Hence, we consider a general structure of the loss function
of the form

L(λ̂, λ) = w(λ)(λ̂ − λ)2, (16)

where w(λ) is a suitable weight function. In this work we are going to consider weight
function w(λ) of the form

wδ(λ) = (1 − λ2)−δ, δ ≥ 0. (17)
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Note that δ = 0 leads to the usual squared error loss. For any δ > 0, the loss (16) goes to
∞ as λ approaches ±1 and |λ̂ − λ| > 0. In other words, a small deviation of λ̂ from λ near
the boundary can be very costly.

Under the general weighted quadratic loss (16), the general structure of the Bayes’
rule is given as

λ̂B = E(λw(λ)|λ ∼ g(λ|data))
E(w(λ)|λ ∼ g(λ|data))

=
� 1

−1 λw(λ) ∏n
i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)dλ� 1

−1 w(λ) ∏n
i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)dλ

.

(18)

With the special structure of w(λ) = wδ(λ) = (1 − λ2)−δ, we are now ready to derive the
Bayes’ rule, denoted by λ̂Bδ as follows.

In order to attain a tractable structure of the Bayes’ rule, we resort to a sim-
ple algebraic manipulation within Equation (18). Let us focus on the term ∏n

i=1(1 +
λG1(Xi1)G2(Xi2)) in the Equation (18). Recalling from Remark 2 that ai = G1(Xi1)G2(Xi2),
the following product term can be rewritten as

n∏
i=1

(1 + λG1(Xi1)G2(Xi2)) = (1 + λa1)(1 + λa2)....(1 + λan)

= 1 + λ
n∑

i1=1
ai1 + λ2 ∑

(1≤i1<i2≤n)
ai1ai2 + ...

... + λk
∑

(1≤i1<i2<...<ik≤n)
ai1ai2 ...aik

+ .... + λnai1ai2 ...ain .

(19)

Call ∑
(1≤i1<i2<...<ik≤n) ai1ai2 ...aik

= Dk, 1 ≤ k ≤ n, and define D0 = 1. Therefore ∏n
i=1(1 +

λG1(Xi1)G2(Xi2)) = ∑n
k=0 λkDk. Hence, the Bayes’ rule in (18) can be simplified as -

λ̂B =
∑n

k=0 Dk

� 1
−1 λk+1(1 − λ2)−δπ(λ)dλ∑n

k=0 Dk

� 1
−1 λk(1 − λ2)−δπ(λ)dλ

. (20)

Further, we will consider the special case of a = b = d, which implies a symmetric prior
about 0. We are going to introduce the notation β as β = d − δ and the estimator (18) with
the prior in (17) will be denoted as λ̂Bβ, i.e.,

λ̂Bβ =
∑n

k=0 Dk

� 1
−1 λk+1(1 − λ2)β−1dλ∑n

k=0 Dk

� 1
−1 λk(1 − λ2)β−1dλ

. (21)

2.3.1. Special case of β = 1 (Bayes estimator under flat prior or BFP)

A particular case of interest is β = 1 which can happen if δ = 0 and d = 1 or δ = 1
and d = 2 etc. Since β = 1 (due to δ = 0 and d = 1) also implies the Bayes’ estimator under
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the flat prior (FP ) using the ordinary squared error loss function, we denote λ̂B1 as λ̂BF P

and is given by

λ̂BF P =
∑n

k=0 Dk

� 1
−1 λk+1dλ∑n

k=0 Dk

� 1
−1 λkdλ

=
∑n

k=0(Dk/(k + 2)){1 − (−1)k}∑n
k=0(Dk/(k + 1)){1 − (−1)k+1}

. (22)

2.3.2. Bayes’ estimator under Jeffrey’s prior (BJP)

Let us step back to the initial form of the Bayes’ estimator as mentioned in equation
(20). A natural non-informative prior is the Jeffrey’s prior, denoted by πJP (λ), which is

πJP (λ) ∝ (I(λ))1/2,

where I(λ) = Fisher Information of λ from a sample of size n. Hence, from (7), we have

πJP (λ) ∝
∞∑

m=0
λ2m/(2m + 3)

Therefore, the Bayes’ estimator under Jeffrey’s prior using δ = 0 in the weight function in
(18) and, denoting λ̂BJP , is given by

λ̂BJP =
∑n

k=0 Dk

� 1
−1 λk+1(∑∞

m=0 λ2m/(2m + 3))1/2dλ∑n
k=0 Dk

� 1
−1 λk(∑∞

m=0 λ2m/(2m + 3))1/2dλ
. (23)

2.3.3. Bayes’ estimator under an approximate Jeffrey’s prior (BAJP)

Note that in either of (20) or (18) the Bayes’ estimator involves an infinite series.
For the ease of simplification and being able to study the performance of a suitable Bayes’
estimator analytically, we propose a simplistic approximation of the Jeffrey’s prior which is
given by ∑∞

m=0 |λ|m/(2m + 3)1/2. Also, note that this infinite series is convergent and has
a finite value. In fact, the above series converges to

√
2Φ(|λ|, 1/2, 3/2)/2, where Φ(x, y, z)

is called the confluent hypergeometric function of the first kind (Abramowitz and Stegun
(1964)), which is a function of x when y, z are held constants. Due to this fact, we can use
this approximation as a new prior distribution. We call this as the approximate Jeffrey’s
prior and is given by

πAJP (λ) ∝
∞∑

m=0
|λ|m/(2m + 3)1/2. (24)

Hence, the Bayes’ estimator with respect to (24), denoted by λ̂BAJP , is

λ̂BAJP =
∑n

k=0
∑∞

m=0 Dk(2m + 3)−1/2(1 + (−1)k+1)(m + k + 2)−1∑n
k=0

∑∞
m=0 Dk(2m + 3)−1/2(1 + (−1)k)(m + k + 1)−1 . (25)

The derivation of (25) is available in Chatterjee (2022).
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2.4. Sampling distributions of various point estimators

One has to be extremely careful about obtaining the MLE by maximizing the log-
likelihood function by differentiation which yields (11). However, the solution of this equation
exhibit a tendency to go outside of the parameter space [−1, +1], especially when true λ is
near the boundary values, with a high probability. Therefore, λ̂ML needs to be truncated
at ±1 which shows a high probability concentration (i.e., high relative frequency in the
simulation study) at the boundaries. This feature hasn’t been discussed by other researchers
earlier. As the sample size increases, this behavior of λ̂ML diminishes considerably, especially
for n ≥ 50 (see Chatterjee (2022)).

On the other hand, the Bayesian estimators are always strictly within the parameter
space compared to the traditional estimator MLE showing a bimodal trend while estimating
λ close to the center of the parameter space, (see Figure 2.1 in Chatterjee (2022)). Figure
1 illustrates the simulated sampling distributions of the 4 estimators described earlier for a
sample of size n = 25 based on 104 replications.

As a demonstration, we apply the FGMD model to the MDR dataset. This gives us
an opportunity to estimate the pairwise association among the variates in our dataset.

Table 1: Estimates of the FGMD association parameter in two MDR subregions

Pair of Elements North South
λ̂ML λ̂BF P λ̂BJP λ̂BAJP λ̂ML λ̂BF P λ̂BJP λ̂BAJP

As vs Cl 0.085 0.053 0.064 0.108 −0.982 −0.621 −0.674 −0.81
As vs Eh −1 −0.587 −0.646 −0.803 −1 −0.872 −0.892 −0.941
As vs pH 0.746 0.423 0.475 0.666 0.611 0.431 0.469 0.648

Remark 4: (a) With the application of FGMD(λ) we were able to estimate the underly-
ing association among the pairwise variables using the four estimators. According to the
estimates in Table 1 there exists a strong negative association between Eh and As in the
northern region. λ̂ML estimates the strongest negative association among the variables, fol-
lowed by λ̂BAJP , λ̂BJP and λ̂BF P . The highly negative association between As and Eh in the
northern subregion, which was partially captured by the Spearman’s and Kendall’s, is rati-
fied by the estimates of the association parameter of FGMD (see the details of the standard
estimated correlation measures in Table 7 within Section 5).

(b) In the instance of As vs pH it is crucial to note that in the northern sub-region, Spear-
man’s rho and Kendall’s Tau contradicted pearson’s correlation coefficient which showed a
strong linear association. This is in agreement with our FGMD model.

(c) In the southern subregion, the standard correlation coefficients estimate a considerable
negative linear association in (As, Eh). Although there is visible evidence of association
present in (As, Eh) and to some extent in (As, Cl) but labeling it as a linear association
will be an over simplification and inaccurate. The estimates in Table 1 of the association
parameter λ shows a strong negative association in (As, Eh) and in (As, Cl). The MLE
registers the strongest association among the variables (As, Eh) followed by λ̂BAJP , λ̂BJP
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and λ̂BF P . The same holds for (As, Cl) as well. There is a positive association among the
variables (As, pH) as estimated by all the standard correlation measures, reiterating the
same phenomenon by FGMD.
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Figure 1: Simulated relative frequency histograms of four estimators of λ, n = 25

3. Hypothesis testing on the association parameter

3.1. The rationale behind hypothesis testing

In most of the applied cases one would be interested in knowing whether the compo-
nents are associated or not. The copula based distributions such as FGMD which preserves
the information of association through a single parameter λ (in the bivariate case), if proven
to be suitable, can provide an answer to this problem. In this Section, we study the perfor-
mance of different types of hypothesis testing procedures to test the hypotheses H0 : λ = λ0
vs HA : λ ̸= λ0. Hence to examine whether the association indeed exists or not, one partic-
ular value of λ0 is of interest, that is λ0 = 0. The following tests have been proposed and
studied through size and power for the aforementioned hypotheses.

1. Asymptotic tests:

(a) Asymptotic Normal Test. (ANT )

(b) Asymptotic Likelihood Ratio Test (ALRT )

2. Parametric bootstrap tests based on the LRT statistic (PBLRT )
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3.2. Asymptotic normal test (ANT)

While testing the values of λ, this is probably the simplest approach of developing a
hypothesis test utilizing the asymptotic property of the MLE of λ. Earlier we have already
seen that for an iid sample of size n from FGMD(λ) the MLE exists and it is unique. It is
a well known result that as n → ∞, λ̂ML

d→ N(λ, AV (λ)), where AV (λ) is the asymptotic
variance of the MLE and is given by the inverse of the fisher information of λ, i.e. I−1(λ),
assuming that marginals are fully known. Therefore, if we assume that the null hypothesis
is true, then λ̂ML

d→ N(λ0, I−1(λ0)) as n → ∞. Therefore we reject the null hypothesis if

|
√

nI0(λ0)(λ̂ML − λ0)| > z(1−α/2),

where z(1−α/2) is the right tail (α/2) - probability cutoff point of the standard normal distri-
bution and I0(λ0) is the FIPO in the relation I(λ0) = nI0(λ0).

3.3. Asymptotic likelihood ratio test (ALRT )

Based on the iid observations derive the likelihood ratio statistic Λ as

Λ =
Sup

H0

L(λ|data)

Sup
H0UHA

L(λ|data) = L(λ0|data)
L(λ̂ML|data)

.

Define Λ∗ = −2ln(Λ). Asymtotically, as n → ∞, Λ∗
d→ χ2

1 under H0. So we reject
the null hypothesis at level α if

Λ∗ > χ2
1;(1−α),

where χ2
1;(1−α) is the right tail (α) - probability cut off point of Chi squared distribution

with 1 degree of freedom. The following Table 2 shows the simulated size values of the two
asymptotic tests based on the MLE λ̂ML.

Table 2: Simulated size values of the two asymptotic tests for λ0 = 0, α = 0.05

Test n = 10 n = 20 n = 30 n = 40 n = 50 n = 75 n = 100
ANT 0.000 0.297 0.284 0.274 0.270 0.265 0.262
ALRT 0.002 0.017 0.026 0.028 0.028 0.027 0.026

Remark 5: Both the asymptotic tests are far from satisfactory as far as size is concerned.
For n = 10, both of them are hopelessly conservative. For n ≥ 20, ANT is overall a very
liberal test and ALRT on the other hand is a very conservative test. It is clearly visible that
ANT has a monotonically decreasing (albeit very slowly) size property with the increase in
sample size, whereas ALRT ’s size values indicate a conservative behavior. Even for sample
of size 100, which are generally considered to be ‘large’, these tests are still unable to achieve
the level condition satisfactorily.
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3.4. Parametric bootstrap (PB) tests

As seen in the earlier section, the asymptotic tests do not perform well for small to
moderately large sample sizes. Therefore, in this subsection we propose a class of four tests
based on the idea of LRT with the added parametric bootstrap (PB) concept.

The traditional LRT calls for using Λ∗ = −2 ln(Λ) which, under H0, follows χ2
1

asymptotically. However, in this present FGMD case, the null distribution of Λ∗ has been
found to be way off from the asymptotic distribution χ2

1. Therefore, the cut-off point χ2
1;(1−α)

is not applicable for the statistic Λ∗ in order to test H0. A situation like this calls for coming
up with different cut-off points for Λ∗ depending on sample size n as well as the data X
through a PB method. Note that the expression Λ has λ̂ML in the denominator as an
estimator of λ while the numerator uses the null value λ0 of λ. As a result, the value of Λ
is always between 0 and 1, and a value of Λ closer to 1 implies a probable validity of H0.

We extend the above traditional LRT concept a bit further by incorporating the other
three estimates of λ which have shown considerable improvement over λ̂ML, especially in the
mid region of the parameter space. In this regard we are going to consider λ̂BF P , λ̂BJP and
λ̂BAJP (along with λ̂ML) in the LRT structure. In its generic form, the structure of Λ∗ is
going to be redefined as Λ∗(λ̂) = −2 ln(Λ(λ̂)), where Λ(λ̂) = [ L(λ0|data)/L(λ̂|data) ], where
λ̂ can be any one of the four aforementioned estimators of λ.

One difficulty with the above Λ(λ̂) is that the denominator is not guaranteed to be
greater or equal to the numerator unless λ̂ = λ̂ML. In other words, Λ∗(λ̂) = −2 lnΛ(λ̂) is
not guaranteed to be non-negative unless λ̂ = λ̂ML. However, a value of Λ∗(λ̂) closer to 0
still conforms the validity of H0. Therefore, to find suitable cut-off points for the statistic
Λ∗, we consider

Λ∗∗(λ̂) = |Λ∗(λ̂)|, (26)

which is always nonnegative. The four versions of Λ∗∗ using four aforementioned estimators
will be referred to as

Λ∗∗1 (orPBLRT 1) = Λ∗∗(λ̂ML)
Λ∗∗2 (orPBLRT 2) = Λ∗∗(λ̂BF P )
Λ∗∗3 (orPBLRT 3) = Λ∗∗(λ̂BJP )
Λ∗∗4 (orPBLRT 4) = Λ∗∗(λ̂BAJP )

(27)

Algorithmic steps to implement Λ∗∗(λ̂) as a test:
Step - 1: For the given data X = (X1, X2, ..., Xn) from FGMD, compute λ̂ (which is one
of the above 4 estimators as mentioned earlier). Obtain the corresponding Λ∗∗(λ̂).
Step - 2: Assume that H0 : λ = λ0 is true. Generate a bootstrap sample of size n (say,
X∗

1, X∗
2, ..., X∗

n) from FGMD(λ0). Once this bootstrap data is generated, pretend that λ is
unknown, estimate λ using the bootstrap data by λ̂, and call it λ̂∗, which in turn produces
the value of Λ∗∗(λ̂∗). (See Chatterjee (2022) about generating data from FGMD(λ).)
Step - 3: Repeat the above Step - 2 a large number of times (say, B times). This produces
B copies of Λ∗∗(λ̂∗), and call them as Λ(b)

∗∗ (λ̂) = Λ∗∗(λ̂∗(b)), 1 ≤ b ≤ B, where λ̂∗(b) is the bth
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copy of λ̂∗ as mentioned in Step - 2. These Λ(b)
∗∗ (λ̂) values are supposed to approximate the

null distribution of Λ∗∗(λ̂).
Step - 4: Order Λ(b)

∗∗ (λ̂), 1 ≤ b ≤ B, and let Λ∗∗(λ̂|α) be the 100(1 − α)th percentile value of
Λ(b)

∗∗ (λ̂), 1 ≤ b ≤ B. This Λ∗∗(λ̂|α) is the critical value for Λ∗∗(λ̂) in Step - 1.
Step - 5: Reject H0 if Λ∗∗(λ̂) (from Step -1) > Λ∗∗(λ̂|α), and retain H0 if otherwise.

A complete comparison of the four PB test in terms of size and power, for different
sample size is detailed in Chatterjee (2022)

3.5. Application to MDR dataset

Using the estimates of λ from the MDR dataset in Table 1, we proceed to perform
PBLRT1, PBLRT2, PBLRT3 and PBLRT4 to test the hypothesis H0 : λ = 0 vs HA :
λ ̸= 0. The following Table 3 gives the PBLRT test statistic values along with the simulated
P -values.

Table 3: PBLRT test statistic and their p-values for the MDR data

Test North South
As vs Cl As vs Eh As vs pH As vs Cl As vs Eh As vs pH

PBLRT1 0.017 3.959∗ 1.366 4.447∗ 17.099∗ 1.364
(0.899) (0.047∗∗) (0.263) (0.039∗∗) (0.000∗∗∗) (0.251)

PBLRT2 0.013 2.792 1.108 3.841 15.266∗ 1.262
(0.208) (0.101∗) (0.485) (0.076∗) (0.002∗∗∗) (0.503)

PBLRT3 0.015 2.986 1.186 4.006 15.577∗ 1.305
(0.216) (0.101∗) (0.491) (0.076∗) (0.000∗∗∗) (0.506)

PBLRT4 0.016 3.475 1.350 4.309 16.280∗ 1.353
(0.239) (0.098∗) (0.503) (0.076∗) (0.000∗∗∗) (0.495)

Remark 6: The results of Table 3 show that As is not associated with pH in both the
regions based on the FGMD model. However, As is significantly associated with both Cl
and Eh in the southern subregion, and with Eh in the northern subregion thereby opening
up the possibility of further prediction (see more in Section 5).

4. Goodness of fit tests for FGMD

4.1. The rationale behind goodness of fit (GoF) tests

Since the pathbreaking work of Sklar (1959) about three dozen copulas have been
proposed by various researchers for different applications. A particular copula presents
a particular family of multivariate distributions of the random vector X which combines
p suitably hypothesized univariate marginal distributions of the components. Therefore,
before adopting a particular copula for a specific dataset one must come up with a suitable
GoF test for that copula, and this is where there appears to be an ample room for further
research.

The problem of finding an optimal GoF for a given copula is an open problem. It
appears that there does not exist a robust test which can identify the most appropriate
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copula for a given dataset. Therefore, one can take each copula, from a handful of copulas
and see their applicability by running a GoF for a given dataset. Most of the available GoF
tests in the literature are developed with either a specific copula or a specific family of copula
based probability distributions in mind. A brief review of the available GoF tests and their
inadequacy is discussed in the following section.

4.2. Inadequacy in the existing literature

There are several works on GoF tests involving copulas, such as Fermanian (2005),
Genest et al. (2006), Genest and Favre (2007), Genest et al. (2009) (which is primarily a
review of the existing methods with a limited power study), Genest et al. (2011) (which is a
goodness of fit test for the bivariate extreme value copulas). However Genest et al. (2006)
appears to encompass the overall GoF test methods for copulas.

Genest et al. (2006) provided two test statistics that have been developed to test
the GoF of a given copula. These two test statistics, say Sn and Tn, which are essentially
Cramer-Von Mises and Kolmogorov-Smirnov statistics respectively, can be computed for
FGMD through the following steps.

(i) Given the bivariate data Xik, i = 1, 2, ..., n and k = 1, 2, define the pseudo observations
V1, V2, ..., Vn as Vi = (1/n) ∑n

l=1 I(Xl1 ≤ Xi1, Xl2 ≤ Xi2), 1 ≤ i ≤ n.

(ii) Define Kn(t) = (1/n) ∑n
i=1 I(Vi ≤ t) = (Number of Vi’s ≤ t)/n.

(iii) Define K(t|λ) as

K(t|λ) =
� t

0

� 1

s

h(x, s|λ)dxds,

where

h(x, s|λ) = 1
(1 − x)r(x, s|λ) + 1

x
− 1

(1 − x) ,

with
r(x, s|λ) = [{1 − λ(1 − x)}2 + 4λ(1 − x)(1 − s/x)]1/2.

Note that while implementation of the GoF tests, λ in the above expression is to be
replaced by a suitable estimate λ̂.

(iv) Both Kn(t) and K(t|λ̂) are to be evaluated at (j/n) as well as ((j + i)/n) with j =
0, 1, 2, ..., (n − 1) and i = 0, 1, such that the test statistics Sn and Tn have the desired
expressions as follow (Genest et al. (2006))

Sn = n

3 + n
n−1∑
j=1

K2
n( j

n
){K(j + 1

n
|λ̂) − K( j

n
|λ̂)}

−n
n−1∑
j=1

Kn( j

n
){K2(j + 1

n
|λ̂) − K2( j

n
|λ̂)}

Tn =
√

n max
i=0,1;0≤j≤n−1

{|Kn( j

n
) − K(j + i

n
|λ̂)|}.
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Remark 7: The above tests are shown to be applicable on samples coming from a few chosen
copulas but the applicability of these tests has not been demonstrated when the data follow
FGMD. In our work we have tried to implement the tests proposed by Genest et al. (2006)
for a sample coming from FGMD. Following are the observations made while implementing
these tests and why they do not work.

(a) In order to apply the above GoF tests, K(t|λ = λ̂) needs to be evaluated at t = 1 which
is encountered when j = (n − 1). Note that we have used the extension of the Gaussian
quadrature in two dimension to evaluate the definite integral. This numerical integration
can be implemented by the ‘quad2d’ function in the ‘pracma’ package in R software.

(b) The function K(t|λ̂) does not take a finite value, meaning the double integration is not
convergent at the boundary for a given value of λ̂. This issue is particularly evident at t = 1,
but it can also occur at other values of t depending on the value of λ̂. This phenomenon
should be taken into account when implementing the GoF tests.

(c) The double integration for K(t = 1|λ̂) yields an “NaN” error in R since the integration
fails to converge to a finite value. We provided a plot of this phenomenon in the following
Figure 2 where K(t|λ) has been plotted over t, 0 ≤ t ≤ 1, for five different values of
λ, λ = −1, −0.5, 0, 0.5, 1. It is evident from Figure 2 that the double integration fails to
converge at the boundary value of t = 1 for all λ values. Also, note that for λ = 0.5 and 1
the integration fails to converge not only at t = 1 but also at other values of t between (0,1),
thereby making the test statistic Sn or Tn questionable.

(d) The behavior of the function K(t|λ̂) can be studied for any arbitrary λ̂ ∈ [−1, 1]. For
example, at λ̂ = 0, this function fails to converge to a finite value. The function K(t|λ̂) fails
to attain a finite value when the upper limit of the definite integral is 1, and this is evident
from Figure 3, where the function K(t = 1|λ̂) has been redefined as K(1 − 10−L|λ̂) has
been plotted against L such that the value of t = 1 is dependent on L through the relation
t = 1 − 10−L, i.e. as L → ∞, t → 1. This plot gives us an idea on how close to 1 we can
achieve a finite value for the integration which defines the function K(t|λ̂). The integration
yields finite value approximately upto L = 13 i.e. the double integration would converge
only upto t = 1 − 10−13, not beyond that.

(e) Interestingly, K(t|λ̂) is a distribution function of the iid pseudo observations Vi’s, and by
definition it is supposed to demonstrate the non-decreasing property. However, going by the
definition of Genest et al. (2006) as applied for the bivariate FGMD, K(t|λ̂) as a function of
t for any given λ fails to show the non-decreasing property as seen in Figure 2.

(f) The two test statistics Sn and Tn seem to work well for some non-FGMDs with large
sample sizes of 100, 250 or 1000 in case of simulated data, or sample sizes of 1500 and 655
in case of application to real data Genest et al. (2006). It is crucial to note that FGMD,
although briefly mentioned in Section 3.4 of Genest et al. (2006), it has neither been applied
to any simulation exercise nor in the real data example. Hence, a GoF test for samples
from FGMD became imperative, which has been developed and discussed in the following
subsections.
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(g) Finally, there is no evidence that the above mentioned tests based on Sn and Tn would
work well in case of small and moderate sample sizes for any copula in terms of size as well
as power. Table 5 and Table 6 of Genest et al. (2006) presents the size and power values
only for large samples whereas in this study of ours, the datasets have sample sizes of 23
and 44.

Figure 2: Plot of K(t|λ) for different values of λ.

Figure 3: Plot of K(1 − 10−L|λ) as a function of L for λ = 0.

4.3. A Bootstrap approach to GoF test for FGMD

4.3.1. Developing the test statistic (bivariate case)

Suppose X = (X1, X2)′ follows a bivariate distribution with pdf f(x) and the corre-
sponding cdf F (x). How do we test that f(x) is the FGMD pdf given earlier?

For convenience let us denote the marginal pdf and cdf of Xk by fk(.) and Fk(.),
respectively, k = 1, 2. If X follows FGMD, then the above joint pdf f(x) and the cor-
responding bivariate cdf will be denoted by say FF GMD(x|λ) as well. Our objective is to
test

H0 : F = FF GMD(x|λ), for some λ vs HA : F ̸= FF GMD(x|λ), for any λ, (28)
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where λ ∈ [−1, +1].

Note that if we use the transformed data Yi, 1 ≤ i ≤ n, where Yi = (Y1i, Y2i)′,
i = 1, 2, ..., n and Yki = Fk(xki), k = 1, 2, i = 1, 2, .., n, then Yi’s are n copies of the bivariate
random vector Y = (Y1, Y2)′ where marginally Y1 and Y2 are uniformly distributed over (0,1),
and have the joint pdf, say g(y) with the corresponding cdf, say G(y) over the unite square
(0, 1) ⊗ (0, 1).

If X has the specified distribution in (5), then equivalently Y has the distribution
with pdf , say gF GMD(y|λ), where

gF GMD(y|λ) = (1 + λ(2y1 − 1)(2y2 − 1)) (29)

over the unit square (0, 1) ⊗ (0, 1). Testing (28) then boils down to testing

H0 : G = GF GMD(y|λ) for some λ vs HA : G ̸= GF GMD(y|λ) for any λ, (30)

based on the data Y = (Y1, Y2, ..., Yn), where GF GMD is the cdf corresponding to the pdf
gF GMD given in (29).

Remark 8: The broad idea of our testing mechanism will rely on finding a suitable distance
between G(Y) and GF GMD(Y|λ). But since Fi’s (i = 1, 2) are unknown, we are going to
replace them by the corresponding marginal empirical cdfs, i.e., we are going to work with

Ŷij = F̂ij(Xij), i = 1, 2 and j = 1, 2, .., n.

= (1/n)((Number of Xik values ≤ Xij)), 1 ≤ k ≤ n.
(31)

Theoretically, Y is supposed to have a joint distribution with approximate pdf g(y)
and approximate cdf G(y) whose marginals are uniform. The joint cdf G(y) can be approx-
imated by the observed empirical cdf Ĝ(y) as

Ĝ(y) = (1/n){Number of (Ŷ1s, Ŷ2t) values ∋ Ŷ1s ≤ y1 and Ŷ2t ≤ y2}, (32)

1 ≤ s, t ≤ n. Notice that Ĝ(y) is a bivariate step function which can be visualized on the
grid points (Ŷ1s, Ŷ2t), 1 ≤ s, t ≤ n.

At the same time, if we assume that X ∼ fF GMD(x|λ) (i.e., equivalently, Y ∼
gF GMD(y|λ)), then the cdf of Y under H0 can be approximated by

GF GMD(y|λ̂) =
� y1

0

� y2

0
gF GMD(u|λ̂) du2 du1, (33)

where λ̂ is the estimated value of λ, and gF GMD(.|λ̂) expression is given in (29). It is easy
to see that

GF GMD(y|λ) = y1y2{1 + λ̂(y1 − 1)(y2 − 1)}, (34)

where y ∈ (0, 1) ⊗ (0, 1). Similar to Kolmogorov - Smirnov test statistic, the distance
between Ĝ(y) in (32) and GF GMD(y|λ̂) can be measured by the statistic ∆(Y) for the given
(transformed) data Y = (Y1, Y2, ..., Yn); as

∆(Y|λ̂) = Sup
y∈(0,1)⊗(0,1)

|Ĝ(y) − GF GMD(y|λ̂)|. (35)
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Numerical computation of ∆(Y|λ̂) can be done easily by taking a very fine mesh over the unit
square (0, 1) ⊗ (0, 1). Intuitively, one should reject H0 if ∆(Y|λ̂) is too “large”, and retain
H0 otherwise. In the following we present a bootstrap method to find a data dependent
cut-off value and the p-value.

4.3.2. Leveraging ∆(Y|λ̂) to draw an inference via bootstrap

Step - 1: For the given data Y = (Y1, Y2, ..., Yn), compute ∆(Y|λ̂), where λ̂ is the
estimated value of λ (from one of the four estimators as discussed in Section 2).
Step - 2: Assume that H0 holds. Using λ̂ computed in Step - 1, generate a bootstrap
sample Y∗

1, Y∗
2, ..., Y∗

n iid from gF GMD(y|λ̂). [This is equivalent to generating X∗
1, X∗

2, ..., X∗
n

iid from fF GMD(x|λ̂), and then transforming them back to Y∗
j ’s.]

Step - 3: Using the bootstrap data Y∗ = (Y∗
1, Y∗

2, ..., Y∗
n), recalculate λ̂ as in Step-1

(pretending that it were unknown). Call this estimate of λ as λ̂∗ (i.e., λ̂ based on Y∗). Then
compute ∆(Y|λ̂) using this bootstrap data Y∗, and λ̂∗. Call this ∆∗ = ∆(Y∗|λ̂∗).
Step - 4: Repeat the above Step - 2 and Step - 3 a large number of times (say, B times).
This yields B copies of ∆∗, say ∆∗b, 1 ≤ b ≤ B, which are then ordered as ∆∗(1) ≤ ∆∗(2) ≤
... ≤ ∆∗(B).
Step - 5: Our α-level bootstrap cut-off point is found as ∆B

α = ∆∗((1−α)B). If ∆ (from Step
- 1) > ∆B

α , then reject H0, and retain it otherwise.

Alternatively, one can obtain the bootstrap p-value of the GoF test as

pB = {Number of ∆∗b values > ∆(Y|λ̂)}/B,

and compare it with α. Essentially with the four proposed estimators of λ we can have four
different GoF tests which are named as follows - (i) GoF1 when λ = λ̂ML, (ii) GoF2 when
λ = λ̂BF P , (iii) GoF3 when λ = λ̂BJP and (iv) GoF4 when λ = λ̂BAJP .

4.4. Results of goodness of fit tests on MDR dataset

In the following table we present the bootstrap p-values of FGMD goodness of fit
test through the statistic ∆(Y|λ̂) for the MDR data as discussed earlier. The results have
been obtained for both north and south regions using all the four estimators of λ (i.e.,
λ̂ = λ̂ML, λ̂BF P , λ̂BJP and λ̂BAJP ).

Table 4: Goodness of fit p-values through bootstrap for testing FGMD

Variable Combination North South
MLE BFP BJP BAJP MLE BFP BJP BAJP

As and Cl 0.499 0.498 0.496 0.496 0.647 0.661 0.665 0.660
As and Eh 0.571 0.558 0.557 0.562 0.838 0.826 0.829 0.837
As and pH 0.926 0.926 0.927 0.927 0.509 0.500 0.508 0.519

Table 4 clearly shows that bivariate FGMD is definitely an acceptable joint distri-
bution to model As along with each of the three other variables, i.e., Cl, Eh and pH.
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Obviously a natural extension of this observation is that of studying the conditional distri-
bution of As given a benign element, and then making a suitable prediction of As. This
aspect of prediction will be reported in a separate comprehensive work.

Remark 9: (a) In this section, we have made an attempt to address the elusive query of
goodness of fit of a copula, specifically the FGMC. We have proposed a class of parametric
bootstrap (PB) tests based on the Kolmogorov - Smirnov (KS) distance between the two cdfs,
- the hypothesized FGMD and the empirical one (see (32)). To the best of our knowledge,
this is first time that GoF of FGMD has been addressed in a comprehensive manner for
small to moderate sample sizes.

(b) We have been able to show that our proposed parametric bootstrap tests not only
adhere to the size criterion (see Chatterjee (2022)) but also there is no need to know the
null distributions of the test statistics, either for a fixed sample or asymptotically. The
performance of the tests in terms of power indicate that they are almost identical, and hence
any one of the four can be used in applications.

(c) Though this section deals with GoF of a bivariate FGMD to model As with another
element, one should look at a possible extension in a multidimensional set up (i.e., going
beyond the dimension 2) so that As can be modeled along with (Cl, Eh, pH) for a more
meaningful analysis of the data. This is a future research problem which will be taken up
later. Another potential avenue for further GoF study is to use a different distance measure
(other than the KS one) and study the resultant implications.

5. Predictions under FGMD

5.1. The rationale behind prediction

Our in-depth analysis of the given data shows that each variate (As, Cl, pH and Eh)
individually has a vastly different probability distribution in each of the two subregions. The
following Figure 4 shows the sample relative frequency histograms of the four variables in
two subregions.

We have used two well-known and widely accepted formal test methods, namely -
Anderson-Darling Test (ADT) and Shapiro - Wilk Test (SWT), to check if the sample his-
tograms in Figure 4 conform to normality. Unfortunately six out of eight sample histograms
rejected normality. Only the variate pH, and that too for the southern subregion, accepted
normality (by both ADT and SWT) comfortably with very high p-values. In the north,
Eh appears to follow normality with moderately large p-values. Usually one should feel
comfortable with the assumption of normality if both ADT and SWT show substantially
large p-values. The following Table 5 shows the p-values for all the four variates in the two
subregions when both the tests are applied.

Further rigorous investigation showed that not only the six out of eight subdatasets
(four variables in two subregions) are non-normal, each variable’s probability distributions in
the two subregions are vastly different. In this regard we show the p-values of the well known
Kolmogorov-Smirnov Test (KST) to test the equality of two distributions in the following
Table 6.
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Table 5: ADT and SWT p-values to test the normality in two subregions

Test Subregion As Cl Eh pH

North ADT < 0.0001 0.0414 0.1404 0.0029
SWT < 0.0001 0.0286 0.0914 0.0012

South ADT < 0.0001 < 0.0001 < 0.0001 0.4363
SWT 0.0002 < 0.0001 < 0.0001 0.6933

Table 6: KST p-values to check equality of distributions in two subregions

As Cl Eh pH

p-value < 0.0001 0.0004 < 0.0001 < 0.0001

The above observations about the distributional properties of four variables now set
the ground for bivariate scatter plots between As and each of the other three variables.
Figure 5 comprehensively shows the six scatterplots in the two subregions.

Notice that out of six bivariate scatterplots, four do not show any linear trend (and
these are (a), (b), (d) and (f)). Plots (c) and (e) are somewhat linear, but the variations (or
dispersion) of As against Eh (in (c)), and pH (in (e)) do not look uniform (i.e., the condi-
tional probability distribution of As given another variable appears to be heteroscedastic).
As a result, the standard Pearson’s correlation coefficient ρP is not going to be an adequate
measure to assess the association between As and other variables in a bivariate framework.

Yet, for the sake of argument, one can compute the three standard correlation esti-
mates, including ρP , while the other two being the Spearman’s rank correlation (denoted by
ρS) and Kendall’s ‘Tau’ (or, Kendall’s rank correlation), denoted by ρK , to get an overall
sense of these associations. While ρP measures the strength of linear association, ρS and ρK

are much more robust, and indicate the strength of monotonic association between the two
variables of interest. The following Table 7 provides the three sample correlation measures
for three pairs of variables in the two subregions. The value in parentheses under each entry
is the p-value for testing the null hypothesis (H0) which states that the true (or population)
correlation measure is zero, against the alternative hypothesis (HA), which negates the null.
Note, in Table 7: ‘***’ implies p - value ≤ 0.01; ‘**’ for ≤ 0.05; and ‘*’ for ≤ 0.10.

Table 7: Estimated standard correlation coefficients with corresponding p-values

North (nN = 23) South (nS = 43)
As vs Cl As vs Eh As vs pH As vs Cl As vs Eh As vs pH

ρ̂P 0.182 0.525 0.754 −0.325 −0.668 0.119
(0.405) (0.010∗) (0.000∗∗∗) (0.031∗∗) (0.000∗∗∗) (0.442)

ρ̂S 0.018 −0.414 0.260 −0.320 −0.753 0.156
(0.936) (0.050∗∗) (0.231) (0.035∗∗) (0.000∗∗∗) (0.314)

ρ̂K 0.012 −0.323 0.188 −0.230 −0.577 0.101
(0.937) (0.032∗∗) (0.213) (0.028∗∗) (0.000∗∗∗) (0.336)
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Figure 4: Relative frequency histograms of the four variables in two subregions
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(d) As vs Eh (South)

6.0 6.5 7.0

0
5

10
15

20

 

pH Level 

A
rs

en
ic

 c
on

ce
nt

ra
tio

n 

(e) As vs pH (North)

6.5 7.0 7.5

0
20

0
40

0
60

0
80

0
10

00

 

pH Level 

A
rs

en
ic

 c
on

ce
nt

ra
tio

n 

(f) As vs pH (South)

Figure 5: Scatter plots of As against each of the other three benign variables
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Remark 10: The three estimated standard correlation measures portray some interesting
scenarios as summarized below.

(a) Between As and Cl, in the North, all three correlations indicate that there is no associ-
ation. However, in the South, they all indicate a significant negative association.

(b) Between As and Eh, there appears to be a significant negative association in both the
subregions mostly. Only a conflicting picture is provided by ρP in the north which shows a
significant positive linear association.

(c) Between As and pH, there appears to have no significant association mostly as all but
one p-values are quite high (more than 20%). However, only ρP shows a strong linear positive
association in the north.

The usual correlation measures show interesting associations between As and Cl, As
and pH, and As and Eh, but they do not help predict As values based on these variables.
For instance, in regions where As and Cl are strongly associated, predicting As when Cl is
10ppm or Eh is 100mv requires more than just linear regression, which assumes normality and
homoscedasticity. The problem is better addressed by fitting a suitable bivariate probability
distribution to the data. Specifically, we need a non-normal bivariate distribution of (X, Y ),
where Y is As and X can be Cl, pH, or Eh, using copula theory. This approach allows us to
use the conditional distribution of Y given X to make predictions. The goal is to explore the
association between As and the other variables beyond linear correlation and to exploit this
association for prediction, recognizing that simplistic linear models might lead to incorrect
conclusions.

5.2. Prediction of Y using a covariate under FGMD

The parameter λ, by its appearance, has some similarities with the three standard
correlation measures discussed earlier. If λ = 0, then X and Y are independent; if λ < 0
(> 0), then they are negatively (positively) associated.

Note that, marginally the pdfs fX and fY of X and Y are unknown, and so are the
cdfs FX and FY . It is possible to adopt a suitable parametric model for fX and fY , but that
is not the main focus of our study. We want to bypass this aspect of unknown marginals
by replacing FX (and FY ) by F̂X (and F̂Y ) where F̂X (and F̂Y ) represents the empirical
distribution function defined as (where the subscript has been dropped for generalization)

F̂ (t) = {number of observed data points ≤ t}/n, (36)

n being the sample size. Therefore, we pretend that the marginals (FX and FY ) are known,
and they can be replaced by their estimates whenever needed.

The conditional distribution of Y given X is

fY |X(y|x) = fY (y)[1 + λ(2FX(x) − 1)(2FY (y) − 1)], (37)

and this will be used in predicting the value of Y when X = x is given. The main challenge
here is the estimation of λ. Some noteworthy works along this line, i.e., regressing Y based
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on X from copula based predictive models is discussed as follows. We now proceed with the
conditional distribution given in (37) to predict the value of Y when X = x is given. We
have discussed the structures of the predictors of Y based on the three standard measures
of center of a conditional probability distribution as follows.

5.3. Conditional mean as a predictor

The first predictor is the conditional mean, denoted by Ŷmean(x), given as

Ŷmean(x) = E(Y |X = x) =
�

yfY |X(y|x)dy, (38)

where the integration is over the appropriate range of Y given X = x. In the current
context where Y represents the As level, this range of Y is (0, ∞). It can be shown that (see
Chatterjee (2022)) the expression (38) simplifies to

Ŷmean(x) = µY + λGX(x)IY (FY ), (39)
where µY is the unconditional mean of Y , GX(x) = (2FX(x) − 1) and

IY (FY ) =
� 1

−1
(t/2)F −1

Y ((1 + t)/2)dt. (40)

In applications, µY will be replaced by µ̂Y = Y = sample mean of Y observations, and
GX(x) will be replaced by ĜX(x) = 2F̂X(x) − 1 with IY (FY ) being replaced by IY (F̂Y ).
Also, λ will be replaced by a suitable estimator as mentioned earlier.

5.4. Conditional median as a predictor

Another simple predictor is the median calculated from the conditional distribution of
Y |X. When the conditional distribution is skewed, which is expected in real life applications,
the conditional median tends to be a robust predictor than the mean. We get the conditional
median Ŷmedian(x) of Y |X by solving the following Equation (41) in terms of M , the desired
median of the conditional distribution.

0.5 =
� M

−∞
fY (y)(1 + λ(2FX(x) − 1)(2FY (y) − 1)∂y. (41)

For brevity, we use the following notation λGX(x) = A and FY (M) = w. It can be
shown (see Chatterjee (2022)) that solving Equation (41) boils down to solving

2Aw2 + 2(1 − A)w − 1 = 0. (42)
The feasible solution from the above quadratic equation and inverting the cdf for Y gives
us our estimate of the Y for a given x based on the median of the conditional distribution.
Hence the predictor is as follows

Ŷmedian(x) = F −1
Y [

{λ(2FX(x) − 1) − 1} +
√

1 + λ2(2FX(x) − 1)2

2λ(2FX(x) − 1) ]. (43)
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In applications, λ will be replaced by λ̂, the marginal FX(x) is replaced by F̂X(x), and F −1
Y

should be replaced by F̂ −1
Y .

5.5. Conditional mode as a predictor

One can use a predictor of the third kind, i.e., the conditional mode, which can be
found simply by deriving the mode of the conditional distribution of Y |X, which is found
by differentiating the conditional pdf and equating it with zero, i.e.,

(∂/∂y)(fY |X(y|x)) = 0, (44)

assuming that the fY |X is absolutely continuous. Using the usual notation of fY (y) =
fY and λ(2FX(x) − 1) = λGX(x) = A, the equation (44) above then can be written as
f ′

Y + A(2(fY )2 + (2FY (y) − 1)f ′
Y ) = 0. Substituting for 2FY (y) − 1 = u(y) = u(say), we

have 2fY = u′ and 2f ′
Y = u′′. The above equation (44) thus yields a second-order ordinary

differential equation as (u′′/2) + 2A(u′/2) + Auu′′/2 = 0, i.e., (u′)2 + (B + u)u′′ = 0 where
B = 1/A. Let (B + u) = v, i.e., u′ = v′, i.e., u′′ = v′′. Then the above equation boils down
to the differential equation (v′)2 + vv′′ = 0, i.e., ∂(vv′) = 0, i.e., vv′ = c, for some constant
c, i.e., v∂v/ = c∂y, i.e., v2/2 = cy + d, i.e.,

(B + u)2 = c1y + d1, (45)

where c, d, c1, d1 are suitable constants. The above final expression (45) gives the general
solution of the differential equation (44). In order to find the values of the constants in
the solution, specific boundary values were chosen, say y = y∗ and y = y∗∗, where y∗ and
y∗∗ are two suitable small and large extreme values of the variable y over its support. For
the purpose of computational convenience we have taken y∗ = y(1) and y∗∗ = y(n), the
smallest and the largest observed values of the variable Y respectively. Then, u(y∗) ≈ −1
and u(y∗∗) ≈ 1 respectively. Plugging-in these choices of y = y∗ and y = y∗∗ as boundary
values in our general solution (45), we get the following solution with c1 = c∗

1 = 4B/y∗∗ and
d1 = d∗

1 = (B − 1)2 as

4(F̂Y (y))2 + 2(B − 1)(F̂Y (y)) = c∗
1y. (46)

Remark 11: The solution of (46) in terms of Y gives an approximate mode of the conditional
distribution of Y |X. Further, note that this conditional mode depends on X = x, through
the term B = 1/A, which involves x. Thus the solution of the Equation (46) will be the
intersection of the plots of the left hand side (LHS) and the right hand side (RHS) of the
said equation within the range of Y . But the plot of the LHS depends on the sign of B.
The sign of B in turn is dictated by the sign of λ and the sign of the term (2FX(x) − 1).
For example, in the southern subregion, the data on As and Eh, all the estimates of λ are
negative. This phenomenon is true for the estimate calculated for the entire data and all the
estimates calculated by the “Leave-One-Out Bootstrap” (LOOB) computation (elaborated
in Section 5.6). This means, the sign of B is determined on the basis of three distinct
scenarios eventually giving rise to three distinct cases: (i) x > median (X); (ii) x < median
(X); (iii) x ≡ median (X).

Eventually, the mode predictor of the conditional distribution, denoted by Ŷmode(x),



2024] USE OF FGMC TO MODEL A BIVARIATE WATER QUALITY DATA 89

is defined in the following way

Ŷmode(x) =
{

(possible) solution(s) of (46) if x ̸= median(X)
unconditional mode of (Y ) if x ≡ median(X).

(47)

Remark 12: Regarding the above predictor expression in (47) note the following -

(a) The sign of B (negative or positive) is determined by whether x > median(X) or
x < median(X) from the definition of B as noted earlier.

(b) For example, in As vs Eh in the southern subregion, we observe that median(X) =
−106.5 mV . When x < median(X), B is positive and we have noted the plots of
both RHS and LHS are monotonically increasing. The opposite happens when x >
median(X). Representative plots for both the cases have been considered in Figure 6
and Figure 7 i.e., As vs Eh data from the southern subregion in MDR for x = −126 mV
and x = 126 mV which are less than and greater than the median(X) respectively.

(c) Analytically, there is a possibility of having multiple solutions of (46) due to multiple
intersections between LHS and RHS. The intuition behind finding the mode of the
conditional density function is as follows. One can collect all the multiple solutions
and check which one yields the maximum value of the conditional density given in
(37). Under the assumed parameter free model of the marginals, the next step is to
estimate the marginal density in the expression (37), i.e. how to get fY (y). This can be
achieved in a multiple ways but we have presented a simple and straightforward way in
our LOOB calculations. Assume one obtains multiple solutions as y∗

i , i = 1, 2, ..., k in
(47) and k < n within the range of Y , then the unconditional density function at y∗

i , by
definition, is the rate of change of the cumulative distribution function at y∗

i . In light
of this definition, one can approximate fY (y∗

i ) as fY (y∗
i ) ≈ (1/nh) ∑n

i=1 K((y∗
i −yi)/h),

where K(.) is a suitable kernel - a non-negative function, yi, i = 1, 2, ..., n are the
sample observations and h > 0 is a smoothing parameter called the bandwidth.

(d) An in-built R-package has been used for the above density estimation which uses the
Gaussian kernel function. While choosing the bandwidth in Kernel, which is still an
open topic of research, the default choice of bandwidth rule selection in the R - package
is by Silverman’s ‘rule of thumb’ (Silverman (1986, page 48, eq.(3.31)). This choice
is more appropriate if the original distribution (i.e. the true marginals) is bell-shaped
and symmetric in nature. In contrast, none of our marginals are symmetric and bell-
shaped. Therefore, in our case Sheather and Jones method (Sheather and Jones (1991))
is more applicable which is a more robust and data dependant approach. Moreover, in
theory, a finer kernel bandwidth reveals more intricacies in the true distribution. But
there is a risk of under-smoothing by choosing a too small ’h’. On the other hand, a
risk of over-smoothing exists if ‘h’ is too large. We have examined several bandwidths
under the Sheather and Jones rule and have chosen h = 1010.

(e) Finally, when x ≡ median(X), it is straightforward to note from the conditional dis-
tribution in (37) that the predictor would be the unconditional mode of Y, say Ymode.

However, the exact sampling distributions of these three predictors are intractable
theoretically. Therefore, the performance of these three predictors have been evaluated
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through the ‘Leave-One-Out-Bootstrap’ (LOOB) method, which has been discussed and
applied on the groundwater data from MDR in the following subsection. Extending on the
existing idea and incorporating ten estimators of λ the association parameter of FGMD (one
traditional estimator - MLE, and nine Bayes’ estimators - under each of the three types
of priors - Flat, Jeffrey’s and approximate Jeffrey’s prior, three types of central tendency
measure (expectation, median and mode) of the three resulting posterior distribution) and
three predictors, we have achieved a collection of thirty predicted values of Y for a given
value of X.
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Figure 6: Plots of LHS and RHS of equation (46) when x = −126 mV (<
median(X)), where X = Eh in the southern subregion.
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Figure 7: Plots of LHS and RHS of equation (46) when x = 126 mV (>
median(X)), where X = Eh in the southern subregion.
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5.6. Applications: Predicting arsenic from Cl

In this section we are going to demonstrate how to predict As from the three covari-
ates but focusing mostly on Cl in the southern subregion just as an example. Before delving
into the performances of the different predictors in the As prediction study, let us look at
the FGMD association parameter estimates from the two subregions in Table (8). Note
that, for a pair of variables that includes As, we can employ a total of ten estimates of λ.
Selection of an estimator of λ will depend on the overall LOOB performance to be explained
below.

Table 8: Estimates of the FGMD association parameter in the MDR subregions

(a) Northern subregions

Pair of Elements MLE
Posterior

BFP BJP BAJP
Mean Median Mode Mean Median Mode Mean Median Mode

As vs Cl 0.089 0.051 0.065 0.061 0.064 0.075 0.134 0.108 0.195 0.560
As vs Eh −1 −0.585 −0.665 −0.254 −0.646 −0.745 −0.341 −0.803 −0.905 −0.114
As vs pH 0.749 0.418 0.475 0.371 0.475 0.555 0.722 0.666 0.815 0.311

(b) Southern subregion

Pair of Elements MLE
Posterior

BFP BJP BAJP
Mean Median Mode Mean Median Mode Mean Median Mode

As vs Cl −0.979 −0.624 −0.675 −0.176 −0.674 −0.745 −0.242 −0.810 −0.895 −0.083
As vs Eh −1 −0.869 −0.905 −0.001 −0.892 −0.925 −0.001 −0.941 −0.975 −0.001
As vs pH 0.593 0.425 0.465 0.302 0.469 0.525 0.754 0.648 0.765 0.344

We present the findings on the performance of the predictors using As as Y and Cl
as X. In a generic sense, when we apply FGMD to a data set, we should first estimate the
association parameter λ in the model, and call it λ̂. We now apply the three predictors as
discussed in Section 3, to predict As from Cl. We implement a Leave-One-Out-Bootstrap
(LOOB) method to evaluate the performance of the three predictors. The scheme of LOOB
is simple where we drop one observation (a pair of As and the corresponding Cl observation)
from the dataset and then we fit the FGMD model onto that reduced dataset with (n − 1)
observations. We can estimate the association parameter λ by making use of any suitable
estimator as mentioned in Section 2. Finally, with the estimated model, we use Cl (the
independent variable or X in our study) of the dropped off observation to estimate the
corresponding As (the dependent variable or Y in our study). This LOOB mechanism is
applied to all the n observations which in turn helps us to see how a predictor fared against
all the true observations.

The performance of a predictor in conjunction with an estimator of λ is then evaluated
by the Prediction Mean Absolute Error (PMAE) and Prediction Root Mean Squared Error
(PRMSE). The following Table 9 presents LOOB − PMAE and LOOB − PRMSE of the
three predictors each with one of the ten estimators of λ. Let Yi be the ith observation of Y (=
As), and Ŷ

(−i)
i is the predicted value of Yi based on the remaining (n − 1)observations (after

fitting the FGMD) and using Xi (= the ith value of Cl), then PMAE = ∑n
i=1 |Yi − Ŷ

(−i)
i |/n,

and PRMSE = [∑n
i=1(Yi − Ŷ

(−i)
i )2/n]1/2.
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Table 9: Performance of the predictors of As from Cl in the southern subregion

λ Estimate Used

Predictor MLE
Posterior Mean Posterior Median Posterior Mode

BFP BJP BAJP BFP BJP BAJP BFP BJP BAJP

PMAE
Mean 248.12 247.15 246.90 245.86 247.37 247.15 245.73 248.98 245.12 251.70

Median 242.06 243.81 244.16 242.64 244.54 244.14 241.19 244.54 244.14 241.19
Mode 230.762 241.98 249.63 253.55 248.69 247.41 237.873 241.42 251.36 204.331

PRMSE
Mean 306.47 305.55 305.26 304.46 305.60 305.41 304.34 305.52 302.033 307.69

Median 314.65 313.65 314.22 314.63 314.55 315.18 313.50 314.55 315.18 313.5
Mode 298.862 319.35 325.18 334.94 324.57 328.74 309.14 319.5 330.34 286.281

Remark 13: (a) Overall, the mean predictor and the mode predictor based on the condi-
tional distribution show better performance than the mode predictor in terms of both
PRMSE as well as PMAE. Out of the ten estimators of the association parame-
ter, MLE of λ is consistently the top performer followed by BAJP2 in the second
place and BJP3 in the third place. This LOOB based work is highly data dependent,
i.e., for another dataset the performance evaluation measures can vary drastically and
hence one must apply all the three predictors and all the ten estimators of the as-
sociation parameter to see which predictor (along with which λ̂) has the best overall
performance.

(b) If the parabolic shape of the scatterplot between As and one of the covariates is ignored
and the usual simple linear regression model is force-fitted, then it can cause several
theoretical as well as practical complexities, such as: (i) the normality assumption of
the errors which is implicit in linear regression, is violated; (ii) the homoscedasticity
of the error variance is not tenable; and (iii) the predicted value of As may result in
negative values as seen for several of our data points.

(c) Forcing a linear regression upon ignoring the previously stated concerns, and truncating
the As value at 0 for negative predicted values (unrealistic in nature though) may still
result in poor performance.

(d) One has to keep in mind that these aforementioned computational results are based on
using a single predictor (Eh, Cl or pH). Things will definitely improve if we use two
predictors (say, Eh and Cl) or all the three predictors (Eh, Cl and pH). This requires
upgrading our bivariate FGMD to a trivariate or a quadravariate FGMD and this
is currently under investigation. While a bivariate FGMD has a single association
parameter λ (= λ12) between the components 1 and 2, a trivariate FGMD has four
association parameters λ12, λ13, λ23 and λ123. Expanding it further, a quadravariate
FGMD has a total eleven association parameters. Ota and Kimura (2021) considered
the three variate FGMC and the resultant FGMD mainly from an asymptotic point of
view. More specifically, they considered the special case of λ12 = λ23 = λ13 = λ123 = λ
(say), and considered estimation of the common association parameter λ. However,
more work needs to be done to investigate the exact sampling distribution of the MLE
either for all the four parameters or the single common parameter in dimension three.
How the behavior of high probability concentration of MLE near the boundary, as we
have seen in the bivariate case and discussed in Section 2, permeates to 3 or higher
dimensions, needs to studied extensively especially for small to moderate sample sizes.
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Further, the Bayesian estimation of the association parameter vector in dimension
greater than 2 may lead to interesting results.

(e) The main challenge in dealing with a p-dimensional (p > 2) FGMD is to carry out a
very complex set of computations within a reasonable amount of time which requires
sophisticated computational codes. We are currently studying the trivariate FGMD
and how it can be used for the arsenic prediction study. This will be reported in
near future as we sort out the computational complexities. The case of p = 2 is the
springboard for the higher dimensional generalizations. Even for p = 3, in order to
find the maximum likelihood estimates of λ12, λ13, λ23 and λ123 is a computational
nightmare as the optimization is to be done in a 4-dimensional space over a feasible
region subject to 8 linear inequalities (i.e., the feasible region has a ‘diamond cut’
shape).

6. Conclusion

With the onset of copula theory which brought about an influx of several copula based
joint distributions and its growing application across several disciplines, it is of paramount
interest to investigate the copula models more closely. The flexibility of the copula model lies
in producing a unique link function (in the continuous random variate case) which essentially
joins the marginals. This copula function preserves the entire information about the mutual
dependence between two marginals through a single association parameter.

In our work, we have provided a template of a comprehensive inferential investigation
of the association parameter of FGMD. In our application, we have taken up the bivariate
case i.e., we have studied the pairwise components of the groundwater data of MDR. There
is, in fact, an array of future directions that are in the works for this research stream -

(a) The generalization of the copula model to a p - dimensional (p > 2) set up. Inves-
tigating the sampling distribution of the different estimators in the general case and
construction of confidence bands.

(b) We have seen the superiority in performance of the Bayes’ estimators but the compu-
tational challenge was stifling at times. It is intuitive that this challenge will only grow
as p increases. Tackling this computational challenge in itself will be an interesting
data science research problem.

(c) Development of higher dimensional predictors and subsequent GoF test will be another
research problem. Our GoF tests which show adherence to the size criteria in the
bivariate case, need to be studied in higher dimensional cases.

(d) The nature of our study for bivariate FGMD has been comprehensive and covers
several inferential aspects. This template of investigation can be extended to other
commonly used Archimedean and non-Archimedean copulas.

(e) Even though our comprehensive study on FGMD was motivated by an environmental
dataset, one might be interested to study how the copula based models can reveal some
hidden information for other datasets especially sparse gene expression datasets.
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A. Appendix

A.1. Application data

NOTE: Well ID starting with TH are located in the northern subregion and Well ID starting
with DT or TB are from the southern subregion.
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Table 10: MDR groundwater data

Well ID As (ppb) Cl (ppm) Eh (mv) pH Well ID As (ppb) Cl (ppm) Eh (mv) pH
DT7 563.9 107 -126 6.78 TB19 300.3 160.3 -120 6.68
DT6 0.5 56.1 142 6.71 TBE10 700.4 81.4 -108 7.07
DT5 0.7 46.8 199 7.04 TBE9 196.2 986.6 -110 6.72
DT3 0.4 345.2 169 6.44 TBE7 166.3 20 -84 7.16
DT4 0.1 500.1 165 6.51 TBE4 4.4 1499.6 82 6.09
DT2 1.8 632.8 101 6.66 TBE5 981.4 60.4 -110 6.87
DT1 13.1 19.7 97 7.75 TBE3 6.8 2.7 158 7.17
TB11 462.3 9.2 -114 6.92 TBE1 6.6 61.7 126 7.1
TB18 155.7 25.9 -72 6.52 TBE11 5.3 12.2 60 7.16
TB9 187.6 12.8 -128 6.94 TBE6 3.2 1527 149 6.73
TB2 850.4 10.5 -133 7.14 TH16 0.4 173.6 157 6.14
TB24 370.4 13.9 -90 7.15 TH9 0.2 275.3 253 5.84
TB26 139.9 13.8 -83 7.43 TH13 0 22.7 194 6.19
TB27 77.7 5.4 -33 7.24 TH14 0.3 113.6 184 6.02
TB21 842.1 21.1 -105 6.88 TH22 0.1 228.1 226 6.5
TB1 276.8 19.6 -92 6.85 TH21 0.3 89.9 169 6.1
TB10 377.3 8.2 -129 6.79 TH5 0.8 742.1 251 5.83
TB25 272.9 11.9 -104 7.2 TH12 2.3 182.7 127 6.31
TB13 746 72.7 -125 7.16 TH15 8.4 27.5 60 6.18
TB22 311 13.5 -130 6.63 TH1 6 544.4 210 6.08
TB15 937.7 19.3 -110 7.04 TH10 3.2 277.3 231 6
TB16 314.5 25.8 -115 6.74 TH2 2 487.6 130 5.87
TB20 746.3 6.9 -139 6.61 TH23 0.2 158.5 175 6.04
TB23 270 12.7 -110 7.01 TH3 1.5 560.2 261 6
TB17 224.2 21.5 -126 6.46 TH4 2.6 21.4 80 5.99
TB3 727 10.8 -136 7.14 TH11 8.9 479.8 158 6.56
TB12 931.5 2.9 -125 7.03 TH18 3.6 335.6 181 6.29
TB14 747.7 63.4 -115 7.15 TH8 6 253.2 235 5.85
TB5 416.3 0 -60 7.69 TH7 0.7 122.3 162 6.29
TB4 360.3 42.9 -130 7.34 TH6 0 242.8 200 6.19
TB6 315.5 61.2 -111 7.36 TH17 22.2 40.5 -13 7.03
TB7 101.1 42.7 -28 7.3 TH19 17.5 57.3 145 7.39
TB8 237.6 124.4 -98 7.17 TH20 2.4 0 24 6.51
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Abstract
In a mixture experiment, the response depends on the proportions of the mixing

components. Canonical models of different degrees have been suggested by Scheffé (1958)
to represent the mean response in terms of the mixing proportions, and optimum designs
for estimation of the parameters of the models have been investigated by several authors.
In most cases, the optimum design includes the vertex points of the simplex as support
points of the design, which are not mixture combinations in the true non-trivial sense, and
therefore are not acceptable to the practitioners. Further, in some situations, due to physical
or economic limitations, the experimental region forms only a part of the simplex that does
not cover the extreme points. The present paper gives a review of the available literature on
optimum mixture experiments in regular subspaces of the simplex.
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1. Introduction

A systematic study of optimum regression designs began with the pathbreaking work
of Kiefer and Wolfowitz (1959). Soon after, various authors started to investigate optimality
criteria for designs to estimate the model parameters (cf. Elfving, 1959; Karlin and Studden,
1966; Fedorov, 1971; Pukelsheim, 1993; Draper and Pukelsheim, 1996; Liski et al. 1998; Li
et al., 2005). A mixture experiment is a special case of a regression experiment, where the
mean response is dependent on the mixing proportions of the ingredients in the mixture,
rather than on their actual amounts. Thus, for a mixture experiment with q ingredients, the
experimental region is defined by

Ξ =
{

(x1, x2, . . . , xq)T : xi ≥ 0, i = 1 (1) q,
q∑

i=1
xi = 1

}
, (1)

where (x1, x2, . . . , xq) denote the mixing proportions. Graphically, (1) is defined by a
simplex with vertices (1, 0, . . ., 0), (0, 1, . . ., 0), . . ., (0, 0, . . ., 1).
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There are high applications of mixture methodologies in different research areas, like
(a) agricultural experiments, such as (i) intercropping (Dhekale et al., 2003), (ii) split of total
fertilizer application at different growth-stages of plants (Batra et al., 1999), (iii) blend of
waste water/saline water/marginal quality water for effective irrigation (Kan and Rapaport-
Rom, 2012), (b) horticultural experiments, such as preparation of ready-to-serve beverages
(Deka et al., 2001), (c) animal nutritional experiments, such as feeding trials with several
alternatives (Osborne and Mendel, 1921), (d) gasoline blending (Snee, 1981), (e) experiments
with chemical pesticides (Deneer, 2000), and so on.

Mixture models, of the form ηx = f ′(x)β, were first introduced by Scheffé (1958),
who defined canonical models of degrees one to three to express the mean response in terms
of the mixing proportions as follows:

Linear (homogeneous): ηx = ∑
i βixi

Quadratic: ηx = ∑
i βixi+

∑
i<j βijxixj

Full cubic: ηx = ∑
i βixi+

∑
i<j βijxixj +∑i<j<k βijkxixjxk +∑

i<j δij(xi−xj)

Special cubic: ηx = ∑
i βixi+

∑
i<j βijxixj +∑i<j<k βijkxixjxk.

Scheffé (1958, 1963) also proposed the simplex lattice design and the simplex centroid
design as suitable for parameter estimation in his proposed models. Later, other models,
like the log-contrast model, Darroch-Waller quadratic mixture model, linear mixture models
with synergism, were introduced.

Optimal designs for estimation of model parameters in various mixture models have
been investigated by many researchers. Noteworthy are the studies by Kiefer (1961), Farrel
et al. (1967), Atwood (1969), Galil and Kiefer (1977), Liu and Neudecker (1995), to name
a few. Generally, the designs suggested for estimation and analysis in mixture experiments
include the vertex points of the simplex, and such designs also turn out to be optimal
designs. However, practitioners find such suggestions rather absurd and illogical as vertices
of the simplex are not mixtures in the true sense, and they prefer to perform experiments
excluding these points. Further, often due to physical or economic limitations, or interest of
the experimenter, experiments may be confined to a sub-region of the whole experimental
space. For example, when interest lies on the relationship among the ingredients, factorial
arrangements can be used to analyze the response to ratios of ingredients (Kentworthy, 1963).
Here only complete mixtures must be considered, that is, only mixtures where the proportion
of each component is greater than zero. In agricultural/horticultural experiments, there
are instances of usage of mixture experiments, and a growing interest in use of restricted
subspaces of the simplex (Batra et al. 1999; Deka et al. 2001; Dhekale et al. 2003).
Suggestion for the experimental region as a subspace of the simplex that does not include
the vertex points are available in (Cornell, 2002). Though much research has been conducted
to find appropriate designs for mixture experiments with restricted space, not much studies
are available where the optimal design has been investigated.

This paper takes the readers on a journey through optimum designs when the experi-
mental region is defined by a regular subspace of the simplex, such as an ellipsoid, a simplex
within the simplex or a cuboid.
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2. Restricted regions

The most common form of restricted region arises when one or more of the proportions
of ingredients in the mixture are subjected to lower and/or upper bounds. This is very
common in pharmaceutical experiments, horticulture experiments, agricultural experiments,
gasoline blending, etc. The experimental region in such cases form a subset of the simplex.
For example, if we have a 4-component mixture with the mixing proportions x1, x2, x3 and
x4 having bounds 0.4 ≤ x1 ≤ 0.6, 0.1 ≤ x2, x3 ≤ 0.5, 0.03 ≤ x4 ≤ 0.08, the experimental
region is given by the bounded region within the simplex in Figure 1.

Figure 1: Experimental region within the simplex
In view of the bounds on the mixing proportions, the vertices of the simplex are

excluded in the experimental region.

An interesting investigation carried out with such lower or upper bounds on mix-
ing proportions, or on linear combinations of them, is due to Martin et al. (1999), who
argued that theory cannot usually be used to obtain a good design. They discussed the
algorithmic methods to obtain optimal designs, mainly using the D-optimality criterion, and
sometimes the V – optimality criterion, and compared the algorithms using several published
3-component mixture examples. Their study was restricted to optimum designs for parame-
ter estimation in Scheffé’s canonical models. Later, Mandal et al. (2008) attempted to find
the optimum design for estimation of the optimum mixing proportions in 2- and 3-component
mixtures using Scheffé’s quadratic mixture model, where one of the components is restricted
by an upper bound less than unity. They used the pseudo-Bayesian approach due to Pal
and Mandal (2006), and obtained the A-optimal design in the case of 2-component mixture.
However, in the case of 3-component mixture, they could suggest an optimum design within
six-point designs, but not within all competing designs. This instigated them to search fur-
ther, and they came up with a seven-point design which was very close to the other design
in terms of the criterion function. So, their suggestion was to start with any one of these
designs, and use a standard numerical algorithm to reach the optimum design.

Other types of restricted experimental regions may be as given in Figure 2, As is
noted, these regions have regular shapes, which are easy to study analytically, rather than
very irregular regions within the simplex.

The restricted regions in Figure 2 also do not include the vertex points of the simplex.

An ellipsoidal experimental region often appears in pharmaceutical and engineering
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Figure 2: Some regular subspaces within the simplex forming the experimental
regions

experiments. For example, Rais et al. (2004) used an ellipsoidal subregion of the space of
mixture components for the optimization of a fluoroanhydrite-based self-levelling floor com-
position. A simplex within a simplex arises as an experimental region when the mixing
proportions lie within a fixed range in (0,1). An example of this can be found in pharma-
ceutical experiment with oral tablets, where 2 or 3 polymers may be used with proportions
having the same fixed non-zero bounds. Again, bounds on the mixing proportions may lead
to a rectangular cuboid experimental region under certain conditions, as shown by Crosier
(1990).

Restricted experimental region, ignoring the vertex points of the simplex, have been
studies in mixture experiments to prescribe designs for parameter estimation (cf. Cornell,
2002). However, few authors attempted to find the optimum designs in such cases. Sections
3 - 5 review optimal designs for parameter estimation in Scheffé’s first and second order
models under regular experimental regions as indicated in Figure 2.

3. Ellipsoidal experimental region in the simplex

Mandal et al. (2015) were perhaps the first to attempt to find optimal design in
an ellipsoidal region. For a q-component mixture experiment, they defined the constrained
experimental region as

Ξ0 =
{

x = (x1, x2, . . . , xq)T : xi ≥ 0, 1 ≤ i ≤ q,
q∑

i=1
xi = 1, (x − x0)T H−2(x − x0) ≤ 1

}

where x0 = (1/q, 1/q, . . . , 1/q)T is the centroid of the simplex, and H is a non-singular
diagonal matrix given by H = diag (h11, h22, . . . , hqq) . The experimental region can be made
to suit a specific situation by varying the hii’s.

The authors considered the case where H ∝ Iq, an identity matrix. Then, for the
transformation x → z = H−1 (x − x0) , the domain of z comes out as {z = (z1, z2, ..., zn)T :

zT z ≤ 1, zT 1q = 0}. A further transformation, viz.
[

u
v(q−1)×1

]
= Qz, where Q is an

orthogonal matrix given by
[
q

1
2 1q

P

]
, and 1q is a q × 1 vector with all elements unity, leads
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to u = 0 and v = Pz, with domain of v given by {v = (v1, v2, . . . , v(q−1))T : vT v ≤ 1}. One
can easily express a Scheffé’s model in terms of v.

The problem of determining optimum designs in terms of v in its domain is a standard
one in the context of response surface. Invariance structure, combined with the Loewner
ordering (partial ordering of the information matrices), constitutes the Kiefer ordering, and
this provides an effective tool in tackling optimal design problems of high dimension (cf.
Pukelsheim, 1993). Using inverse transformation, it is easy to obtain the optimal design in
terms of z, and hence in terms of x. Further, the optimum design in terms of x may not
include the vertex points of the simplex, and, therefore, it will be different from the standard
optimum design obtained over the whole simplex.

When Scheffé’s first order mixture model is considered in the restricted space, the
model in terms of v is also of first order, and to construct Kiefer optimal design on the
experimental domain vT v ≤ 1 one needs to vary each of the k = q − 1 components of v
on the two levels ± k−1/2 only. The design that assigns uniform weight to each of the 2k

vertices of [−k−1/2, k−1/2]k is the complete factorial design 2k, and its optimality is established
through the following lemma (cf. Pukelsheim, 1993):

Lemma 1: A first order design D(n×k) with k components is optimum in the sense
of Kiefer ordering if DT D ∝ Ik .

Examples of first order optimal designs for the restricted region are obtained by
exploiting the Kiefer optimal first order designs on the v – space and choice of H as follows:

(i) For q = 2, v ∈ [−1, 1], and the Kiefer optimal design assigns equal mass, namely
1
2 , to the two extreme points v = −1 and v = 1. Accordingly, the optimal design on the
original restricted domain has the support points

(a)
(√

3+
√

2
2
√

3 ,
√

3−
√

2
2
√

3

)
and

(√
3−

√
2

2
√

3 ,
√

3+
√

2
2
√

3

)
when H = 3−1/2 I2,

(b)
(√

2+1
2
√

2 ,
√

2−1
2
√

2

)
and

(√
2−1

2
√

2 ,
√

2+1
2
√

2

)
when H = 2−1 I2,

In general, for q = 2, Lemma1 establishes the Keifer optimality of the designs obtained
for all H of the form H = hIq, when h ≤ 2− 1

2 .

It is to be noted that for H = 2−1/2 I2 the points in the experimental region Ξ0 are
restricted by x1(x1−1) ≤ 0, which leads to the optimum design in the restricted space to have
support points at (1, 0) and (0, 1) with equal masses. This is also the case in the unrestricted
case.. Draper and Pukelsheim (1999) has already established the Kiefer optimality of this
design in their ingenious way.

(ii) For q = 3, the Kiefer optimal design in the v – space has the supports
(
−

√
3

2 , 1
2

)
,(√

3
2 , 1

2

)
, (0, −1), which, on inverse transformation, gives the support points of the optimal

design in the restricted space as (1/6, 1/6, 2/3), (2/3, 1/6, 1/6) and (1/6, 2/3, 1/6) when H =

6−1/2 I3, and P =
(

− 1√
2 0 1√

2
1√
6 − 2√

6
1√
6

)
. This design is an axial design as noted in Figure 3

below.
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Figure 3: Support points of the optimum design in the case of 3-component
mixture with ellipsoidal experimental region

Mandal et al. (2015) established that a design with any three points on the circum-
ference of the circle in Figure 3, which form an equilateral triangle, is Kiefer-optimal. Thus,
though the design indicated in Figure 3 is an axial design, a Kiefer optimal design is not
necessarily so.

For Scheffé’s quadratic mixture model, using the natural constraint ∑k
i=1 xi = 1, it

is possible to have a Kronecker product representation of the model, viz. ηx = (x ⊗ x)T β∗,
which makes it easier to represent the model as a quadratic model in v with its parameter
vector, say τ ∗, having a linear relationship with β∗. As such, a design for estimating τ ∗

with Loewner Order dominance will also have Loewner Order dominance for τ ∗. Pal et
al. (2015) exploited this to obtain a Kiefer optimal design in the ellipsoidal region under
Scheffé’s quadratic mixture model.

Consider the central composite design (CCD) ξ∗ in the v -space {v : vT v ≤ 1}, which
is a mixture of three blocks of designs, viz.

(i) cubes ξc , where ξc is a regular 2k−r fraction of the full factorial design (with levels
±1/

√
k), of resolution V . (For k ≤ 5, we have to take 2k full factorial design);

(ii) stars ξs, where ξs is a set of star points of the form (±1, 0, 0, ..., 0), (0, ±1, 0, ..., 0), ...,
(0, 0, ..., ±1);

(iii) centre points : ξ0 = {v : vT v = 0},

and ξ∗ is defined as
ξ∗ = (1 − α)ξ0 + αξ̃, (2)

where ξ̃ = ncξc+nsξs

n
, nc = k2, ns = 2k−r, n = 2k−rnc + 2kns, 0 < α < 1 Mandal et al. (2015)

proved the following Theorem:

Theorem 1: The class of central composite designs (CCD), given by (2), is complete in the
sense that given any design ξ, there is always a CCD of the form ξ∗ given by (2) which is
better in terms of

(i) Kiefer ordering

(ii) ϕ-optimality, provided it is invariant with respect to orthogonal transformation.
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Through inverse transformation, it is then easy to conclude that the Kiefer optimal
design for parameter estimation in Scheffé’s quadratic mixture model in the ellipsoidal ex-
perimental region is obtained from a CCD, which is Kiefer optimal for the model in terms
of v.

For a 3-component mixture, ξ∗ is obtained from the following blocks of designs:

(i) 4 star points: (±1, 0), (0, ±1)

(ii) 22 factorial design points: 1√
2(−1, 1), 1√

2(−1, 1), 1√
2(1, −1), 1√

2(1, 1)

(iii) centre point: (0, 0).

Then, for H =
√

6I3, the optimal design in the restricted experimental region has the
supports
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(9)
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1
3 , 1
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3
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which are presented in Figure 4.

Figure 4: Support points of a Kiefer optimal design for the quadratic mixture
model under ellipsoidal experimental region

It is noted that the Kiefer optimal design has 8 support points in the interior of the
simplex, including the centroid, given by (9), and one on an edge, namely (4).
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4. A restricted region in the form of a simplex within the unrestricted simplex

Mandal and Pal (2017) investigated the Kiefer optimal design when the experimental
region is given by the form

Ξ1 =
{

x= (x1, x2, . . . ,xq)T :1
q

− h

q − 1 ≤ xi ≤ 1
q

+ h

q − 1 , 1 ≤ i ≤ q,
q∑

i=1
xi = 1

}
,

where h ∈
(
0, q−1

q

)
.

It is noteworthy that the centroid of the restricted region coincides with that of the
simplex, viz. x0 =

(
1
q
, 1

q
, . . . , 1

q

)T
.

The transformation x → z = q−1
qh

[x − (x0 − h
q−11q)] transforms the experimental

region to

Ξz =
{

z = (z1, z2, . . . zq)T : zi ∈ [0.1] , i = 1 (1) q,
q∑

i=1
zi = 1

}
, (3)

which is same as the unrestricted experimental region Ξ.

The Kiefer optimal design in the permutation invariant class for estimation of the
parameters of a first-degree or second-degree model, with unrestricted experimental region,
is available in literature (Draper and Pukelsheim, 1999). This leads to the Kiefer optimal
design for parameter estimation of the model in the restricted region owing to the 1:1 relation
between x and z.

For q = 3, the Kiefer optimal design in the z-space has support points (1, 0, 0), (0, 1, 0)
and (0, 0, 1) for Scheffé’s linear homogeneous model, and (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 1/2, 0),
(1/2, 0, 1/2) and (0, 1/2, 1/2) for Scheffé’s quadratic mixture model. This enables to find the
support points of the Kiefer optimal design in the restricted x-space as shown in Figure 5
for Scheffé’s first order mixture model, and Figure 6 for Scheffé’s quadratic mixture model.
The points marked by alphabets in parentheses denote the support points.

Remark: As the experimental region is well within the simplex, the vertex points of
the simplex can never be included in a design.

5. Cuboidal experimental region in the simplex

A q-dimensional hypercube often defines the experimental region in industrial experi-
mentation. In case of a cuboidal region, no result has been established so far that could help
in finding the Kiefer optimal design. In view of that, Mandal and Pal (2017) attempted to
find the D-optimal design for parameter estimation in the linear, homogeneous and quadratic
mixture models due to Scheffé in the cuboidal region.

The restricted region within the simplex is defined by

Ξ2 =
{

(x1, . . . , xq)T : 0 ≤ xi0 − hi ≤ xi ≤ xi0 + hi,
q∑

i=1
xi = 1

}
,
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Figure 5: Support points of a Kiefer optimal design for the first-order mixture
model in the experimental region Ξ1
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Figure 6: Support points of a Kiefer optimal design for the quadratic mixture
model in the experimental region Ξ1

where x0 = (x10, . . . , xq0)T is the centre of Ξ2, hi ≤ min [xi0, 1 − xi0] ∀i = 1 (1) q, and it is
assumed that x0 is the centroid of the simplex .
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A transformation x → z = H−1(x − x0) , where H = Diag(h1, h2, . . . , hq), along
with the natural constraint ∑q

i=1 xi = 1, gives

−1 ≤ zi ≤ 1, for i = 1 (1) q,
∑q

i=1 hizi = 0.

For H ∝ Iq, or hi = h for all i, the z – space reduces to

Ξz =
{

z = (z1, z2, . . . zq)T : −1 ≤ zi ≤ 1, , i = 1 (1) q,
q∑

i=1
zi = 0

}
.

A further orthogonal transformation z →
[

u
v(q−1)×1

]
=
[√

q1q

P

]
z, gives u = 0, and

the range of values of vi as −c ≤ vi ≤ c, where v = (v1, v2, . . . vq−1) and

c ≤ c∗ = min
1≤i≤q

xi0

[
1
h2

i

− 1
a − h2

i

]1/2

, a =
q∑

i=1
h2

i

(vide Cornell (2002), pp. 122). c∗ gives the greatest possible distance from x = x0 to the
closest boundary opposite the vertex xi = 1.

Expressing the Scheffé’s response model in terms of v, the problem of determining
the D-optimum design in the domain −c ≤ vi ≤ c, i = 1 (1) (q − 1) , is a standard one in the
context of response surface and the results are well known (cf. Pukelsheim, 1993). Mandal
and Pal (2017) made use of this to find the D-optimum design for parameter estimation in
the model in x with cuboidal experimental region.

For Scheffé’s first-degree model in x, the model in terms of v is also a first-degree
model with its parameters sharing a 1:1 relationship with the parameters of the model in
x, and the restricted x -space Ξ2 is permutation invariant. Hence, If ξx is a design in Ξ2
corresponding to a design ξv in the v-space, and, if ξv is D-optimal in the v–space, then ξx

will also be D-optimal in Ξ2.

For q = 2 and hi = h for all i, v is a single variable in the interval [−c, c]. In this
case, the D-optimal design in the v – space assigns mass 1/2 at each of the values −c and
+c. Accordingly, the D-optimal design in the restricted space of x puts equal masses at
(x01 − hc√

2 , x02 + hc√
2) and (x01 + hc√

2 , x02 − hc√
2).

For q = 3, the D-optimal design assigns equal masses at its support points (±c, ±c).
Reverse transformation gives the support points of the D-optimal design with equal masses
in the restricted x – space as

x01 +

(√
3 − 1

)
hc

√
6

, x02 + 2hc√
6

, x03 −

(√
3 + 1

)
hc

√
6


x01 +

(√
3 + 1

)
hc

√
6

, x02 − 2hc√
6

, x03 −

(√
3 − 1

)
hc

√
6
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x01 −

(√
3 + 1

)
hc

√
6

, x02 + 2hc√
6

, x03 +

(√
3 − 1

)
hc

√
6


x01 −

(√
3 − 1

)
hc

√
6

, x02 − 2hc√
6

, x03 +

(√
3 + 1

)
hc

√
6


These points lie within the cuboidal region Ξ2.

Remark: Different choices of H lead to different optimal designs in the restricted
space.

In the quadratic response model due to Scheffé, using similar transformations [x →
z → (0, v)], and observing that there is a 1:1 relation between the parameters of the model
in terms of x and that in terms of v, the D-optimal design in the v–space leads to the
D-optimal design in the restricted x–space through reverse transformation.

From Mandal (1989), the support points of the D-optimal design in the v–space is
obtained from the following result:

Theorem 2: D-optimum design in the v–space is supported on the lattice of points with
coordinates only 0 or ±c.

For the case of 3-component mixture, the support points of the D-optimum design in
the v–space are the points (0, 0), (±c, 0), (0, ±c), (±c, ±c).

Reverse transformation gives the support points of the D-optimum design in the
restricted x–space as

(i) (x01, x02, x03) with mass 0;

(ii)
(
x01 − hc√

2 , x02, x03 + hc√
2

)
,
(
x01 + hc√

2 , x02, x03 − hc√
2

)
,

(
x01 − hc√

6
, x02 − 2hc√

6
, x03 + hc√

6

)
,

(
x01 + hc√

6
, x02 + 2hc√

6
, x03 − hc√

6

)

each with mass 0.1325;

(iii)
(

x01 + (√
3−1)hc
√

6 , x02 + 2hc√
6 , x03 − (√

3+1)hc
√

6

)
,
(

x01 + (√
3+1)hc
√

6 , x02 − 2hc√
6 , x03 − (√

3−1)hc
√

6

)
,(

x01 − (√
3+1)hc
√

6 , x02 + 2hc√
6 , x03 + (√

3−1)hc
√

6

)
,
(

x01 − (√
3−1)hc
√

6 , x02 − 2hc√
6 , x03 + (√

3+1)hc
√

6

)
each with mass 0.1175.

6. Concluding remarks

The restricted experimental regions reviewed in this paper are proper subspaces of the
simplex, and have suitable permutation invariance property. As such, it has been possible to
characterize the optimal designs for Scheffé’s linear and quadratic mixture models. Though
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the derivations are non-trivial, the tools used in earlier studies have been exploited to find
the optimum designs.

In case of the absence of symmetry and invariance, it would be very difficult to obtain
the optimum designs. This is the case if (i) the restricted region has its centre/centroid
different from the centroid of the unrestricted simplex, or (ii) H ∝ Iq does not hold for
the ellipsoidal/cuboid region. These remain as open problems which perhaps would be very
challenging to tackle analytically.
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Abstract
With significant advances in the treatment and supportive care, the overall 5-year

survival rate for pediatric cancers in high-income countries, such as USA, exceeds 85%, see
Ehrhardt, et al. (2023), SEER (2022) and it is expected that the number of survivors will
exceed 580,000 by year 2040. However, this comes at a high cost of treatment and cancer
related long-term sequalae. To better characterize and to develop interventions/screening
guidelines to mitigate the long-term effects of these adverse events researchers in North
America and Europe established large-cohort retrospective studies with prospective follow-
up assessments, see Robison, et al. (2009), Winther, et al. (2015), Park, et al. (2012).
However, it is logistically impossible to follow the survivors continuously and this information
is usually collected through cross-sectional surveys at various times from cancer diagnosis,
which leads to interval censored data since the exact time of the onset of the adverse event
of interest is unknown. However, if this risk could be characterized in a continuous manner,
then appropriate screening guidelines or interventions could be implemented. Our primary
focus is on estimating the incidence rates (cumulative incidence) of a particular outcome of
interest e.g. cardiovascular events using interval censored data. In this exposition we utilize
SJLIFE cohort and propose the use of multi-state survival framework for modeling incidence
rates and risk factors associated with it. We also highlight the use of multi-state models for
analyzing more complicated relationships and identify some challenges associated with the
analysis of such data.
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1. Introduction

The 5-year survival rate for childhood cancer survivors now exceeds 85% but they
are at an increased risk of developing long-term chronic health conditions as a result of
their cancer or its treatment. As the childhood cancer survivor population increases, under-
standing the long-term impact of cancer on health during adulthood is important to guide
the development of interventions to improve the quality of life and duration of survival.
The Cancer Control and Survivorship Program in the Comprehensive Cancer Center at St.
Jude Children’s Research Hospital is a multidisciplinary research program that strives to im-
prove the quality of life of individuals surviving childhood cancer by translating the research
findings into effective strategies to reduce treatment related complications. The St. Jude
Lifetime Cohort Study (SJLIFE) is a cancer epidemiologic cohort established to facilitate
longitudinal clinical evaluation of health outcomes in childhood cancer survivors across the
lifespan. A detailed description of the study along with schema for longitudinally follow-up
can be obtained by visiting the St. Jude Cloud portal (https://www.stjude.cloud/) and
going through the Cancer Survivorship tab and clicking on St. Jude LIFE study (SJLIFE),
Howell, et al. (2021). SJLIFE was activated in 2007 with initial eligibility for participation
including 10+ year survivor of pediatric cancer, treated, or followed at St. Jude from 1962
to 2012 who were at least 18 years of age. Eligibility criteria were modified in 2015 to include
5-year survivors. Eligible survivors are periodically invited to return to St. Jude for compre-
hensive clinical evaluations that involves completion of questionnaire with patient-reported
outcomes, collection of biological specimens, and systematic evaluation of organ function
including metabolic, cognitive and neuromuscular status.

Howell, et al. (2021) reported an update of the cohort progress. Among 8192 eligible
survivors, 6560 have agreed to participate and 5,223 have completed baseline on-campus eval-
uations. The median [range] age at evaluation was 32 [7.0 – 71.9]. Participants are invited
to return for follow-up visits in 3–5 years intervals. Study findings from these evaluations
have enabled characterization of multimorbidity experiences by survivors many years after
treatment for childhood cancer. This is highlighted in the study by Bhakta, et al. (2017)
that used St. Jude modified National Cancer Institute’s Common Terminology Criteria for
Adverse Events (CTCAE) 4.03, Hudson, et al. (2017), and graded 168 chronic conditions
within 13 organ systems. The CTCAE grades correspond to grade 1 (mild), grade 2 (mod-
erate), grade 3 (severe/disabling), grade 4 (life-threatening) and grade 5 (death). Often, the
focus is on modeling grade 3 or higher chronic conditions. The details of all the chronic
conditions within each organ system can be obtained from Bhakta, et al. (2017), Supple-
mentary Table S1. They grouped the chronic conditions into 13 organ systems as shown in
Table 1.

In addition to studying different outcomes the identification of the appropriate study
cohort at risk for developing the outcomes of interest is equally important. There are multiple
factors that need to be considered in the selection of eligible subjects (survivors) in the study
cohort. Because this cohort was originally constructed retrospectively, cohort entry and exit
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Table 1: Number of chronic conditions within each grouped category for each
organ system
Organ System Grouped Condition Category
Cardiovascular Myocardial Infarction (1), Arrhythmias (6), Cardiovascular

Dysfunctions (4), Structural Heart Defects (4), Vascular Diseases (4),
Essential Hypertension/Dyslipidemia (3)

Respiratory Asthama (1), Obstructive Respiratory Disorders (2), Functional
Pulmonary Deficits (3), Respiratory Parenchymal Diseases (7)

Gastrointestinal Esophageal Disorders (3), Disorders of the GI Tract (11),
Inflammatory Disorders (8), Hepatic Disorders (6), Disorder of
the Gallbladder (1)

Reproductive Disorders of the Female Reproductive System (8), Disorders of the
Male Reproductive System (5), Condition affecting the Pituitary (1)

Endocrine Growth Hormone Deficiencies (2), Overweight/Underweight (2),
Thyroid Disorders (4), Parathyroid Disorders (2), Abnormal
Glucose Metabolism (1), Conditions affecting the Pituitary (3)

Renal Kidney Injuries (2), Obstructive Urinary Disorders (3),
Hematuria (1)

Musculoskeletal Amputation (1), Osteoporosis (1), Joint Diseases (3), Peripheral
Musculoskeletal Disorders (6), Spine Disorders (4)

Neurology Strokes (3), Central Nervous System Disorders (9), Mixed Nervous
System Disorders (4), Peripheral Nervous System Disorders (6),
Seizure (1), Severe Headache (1)

Immunology and Infections Immunologic Disorders (2), Frequent/Recurrent Infections (8),
Chronic Infections (7)

Hematology Hematologic Disorders (7)
Auditory Hearing Loss (1)
Second Neoplasms Secondary and Recurrent Malignancy (1)
Ocular Ocular Disorders (4)

Note: The numbers in the brackets indicate the number of chronic conditions within each grouped category
within an organ system.

are heterogenous, i.e. their follow-up times are not equally spaced, and subjects may enter
the cohort or leave the cohort at any follow-up times, including baseline (T0), longitudinal
follow-up (TL) and date of death (TD) etc. These are outlined in Table 2.

A thorough understanding of these chronic conditions, their prevalence and associ-
ated risk factors can provide valuable information which could be used to improve future
treatment plans. For our discussions, we will focus on Cardiovascular Dysfunction (CD)
within the Cardiovascular System (22 individual chronic conditions), which has four indi-
vidual chronic conditions (cardiomyopathy (CAD), Right ventricular systolic dysfunction
(RVSD), Cor Pulmonale (CP) and Pulmonary Hypertension (PH). The discussion can be
easily generalized to all chronic conditions within cardiovascular system or across other or-
gan systems as well. CAD refers to problems with heart muscles that make it harder for the
heart to pump blood and, if untreated, can lead to heart failure or cardiac arrest. Similarly,
RVSD if untreated could lead to heart failure or myocardial infarction, CP is an alteration
in the structure and function of the right ventricle of the heart caused by a primary disorder
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Table 2: Issues of heterogeneity in identifying the study cohort
Time points Challenges
T0 1. Should T0 = 5 years since the primary diagnosis (eligibility criterion).

What is the rationale for 5 years, why not 2, 3, 4, 6, 7, 8, 9, 10 years?
2. Should T0 depend on multiple factors, including patient’s age, time
since treatment, disease type etc.?

TL 1. If we need to choose only on long-term follow-up time
to collect information, should TL be largest or shortest or somewhere in
between, when patients have more than one follow-up visits.

TD 1. Eligibility restricted to 5-year survivors potentially introduces survival
bias
2. Not every eligible patient in the the SJLIFE cohort visits clinics. They may
be lost to follow-up (true censoring) or died but this information may not be
accurately recoded. Should TD and patient
characteristics, including comorbidity at the time of death be obtained
from other sources (such as death registry).

of the respiratory system, and PH is a condition that affects blood vessels in the lungs and
makes heart work harder than normal to pump blood into lungs.

Among childhood cancer survivors, cardiovascular events (CEs) are among the top
nonmalignant causes of death (Armstrong, et al. (2009)). This is due to the damage to car-
diomyocytes caused by chemotherapy and chest radiation therapy received during the cancer
treatment (Hammoud, et al. 2024). Even though certain chemotherapy exposures such as
anthracycline are well known for associations with cardiotoxicity (Ehrhardt, et al. 2023),
they continue to be used to treat cancer because of their curative benefits. Improved char-
acterization of the cumulative incidence of CEs may facilitate opportunities for intervention
to improve/preserve cardiac health. This motivates us to estimate the cumulative incidence
(CI) of the CEs in childhood cancer survivors who completed their baseline evaluation be-
cause such information could be used to help researchers identify the best time to intervene.
More information regarding the causes, treatment, and prevention of cardiotoxicity can be
found in a comprehensive review by Koutsoukis, et al. (2018).

For our discussion we will focus on CAD (a CD), whose exact timing of development
is unknown since SJLIFE participants are not followed continuously in real time. However,
health related information is ascertained when participants came to campus for their baseline
and follow-up visits, either on their scheduled visits or in an ad hoc manner to participate
in ancillary studies. Although the exact time of CAD is unknown, the current status is
available and from there we know that CAD symptoms that motivated medical attention
occurred sometimes in the interval between the two follow-up visits. Such dataset can be
characterized as case I interval-censored data, see Sun (2006), Rai (2008).

Remark: It may be noted that the approaches presented in this article would be
applicable to the phase IV clinical trials in the context of drug development where the focus
would be on monitoring for long term toxicities/side effects of an approved drug, see Zhang,
et al. (2016).

We propose the use of multi-state models for estimating the cumulative incidence
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rate for the event of interest. Multi-state models are extensions of the survival models,
which are usually analyzed under the Cox proportional hazard model assumption. However,
multi-state models have the advantage of providing more insight into disease process and
progression as each transition, from one state to another, can be modeled and the covariates
could be incorporated e.g. using Cox proportional hazards model. It further allows for
simultaneous modeling of competing causes of death or morbidities; see Eulenburg, et al.
(2015). The simplest extension of the survival model is the continuous time progressive three-
state model e.g. see van den Hout (2017, Chapter 3). It is assumed that the survivors are
followed longitudinally and the status of the survivors alive at the pre-specified observation
time is available and that follow-up time for survivors on study can vary. In a progressive
illness/death model as illustrated in Figure 1. For example, in the context of the study
discussed above all survivors who survived for at least 5 years from their date of diagnosis
will be assumed to be in State 1 (all are alive with no CAD) and then after a median follow-
up of about 25 years were enrolled in SJLIFE and systematically evaluated for CAD. At that
point each survivor could take one of the three paths: 1) remain alive with no CAD (State
1); 2) develop CAD but remain alive (moving from State 1 to State 2); 3) progress to death
due to CAD or otherwise (moving from State 1 to State 3). For patients that reached State
2, they could also have two options: 1) remain alive with CAD (State 2); or 2) progress
towards death or cardiac failure (moving from State 2 to State 3).

λ1(u) represents the transition intensity from State 1 to State 2; λ2(t) is the transition
intensity from State 1 to State 3; λ3(t|u) is the transition intensity from State 2 to State 3.
In general, the focus could be on estimating λ1(u), the transition intensity rate for patients

Figure 1: Three-states illness/death model of patients developing CAD

progressing from the initial state (State 1) of being normal to developing CAD (State 2)
but one could be interested in estimating the incidence rates λ2(t) or λ3(t|u). This can be
done using a parametric or a semi-parametric framework. In section 2 and 3 we will outline
the parametric and semi-parametric approaches, respectively. In section 4, we outline the
complexities involved when the interest could be in estimating the incidence rates of two or
more events of interest.
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2. Parametric modeling

Let {X(t)} represent the stochastic process which identifies the state occupied a
survivor at time t if we start with n survivors in the cohort then at time t = 0 all survivors
will be in state 1 and has not experienced CAD (the event of interest). Let T be a random
variable denoting the observation time (death, CAD or no event observed in the study
duration) and U denotes the time to CAD. Thus, X(t) = 1, X(t) = 2 and X(t) = 3
represent the current status of the survivor; alive without CAD, alive with CAD or dead
with or without CAD, respectively. We assume that the occurrence of CAD is irreversible.
With the intensity functions shown in Figure 1 one can easily obtain the pseudo-survival
functions, see Rai, et al. (2013) and van den Hout (2017), as follows:

Qi(t) = exp{−
� 0

t

λi(ν)dν}, for i = 1, 2 (1)

and
Q3(t|u) = exp{−

� u

t

λ3(ν|u)dν} (2)

It may be noted that probability of surviving without experiencing CAD or death beyond
time t can be represented as,

Q(t) = exp{−
� t

0
(λ1(ν) + λ2(ν))dν} = Q1(t)Q2(t), (3)

and the survival function can be obtained as,

S(t) = P (X(t) = 1) + P (X(t) = 2)

= Q(t) +
� t

0
λ1(u)Q(u)Q3(t|u)du

(4)

2.1. Construction of the likelihood

The likelihood for the three-state model can be constructed in the following manner.
Let θ denote the vector of parameters including transition intensities. Let t be the realization
of the r.v. T and let ∆i denote the contribution to the likelihood for the ith survivor for
i = 1, 2, . . . , n. Then the likelihood function L(θ) = ∏n

i=1 ∆i Within this framework the
survivor will be in one of the four distinct types of observations and their contribution to
the likelihood will be as follows:

(i) Death without CAD, T = t, X(t−) = 1, and L1(t) = λ2(t)Q(t),

(ii) Alive without CAD, T > t, X(t) = 1, and L2(t) = Q(t),

(iii) Death with CAD, T = t, X(t−) = 2, and L3(t) =
� t

0 λ1(u)Q(u)λ3(t|u)Q3(t|u)du,

(iv) Alive with CAD, T > t, X(t) = 2, and L4(t) =
� t

0 λ1(u)Q(u)Q3(t|u)du

The likelihood function depends on in addition to the observation time and status, but is
suppressed for convenience.
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Parametric modeling is appealing as one can easily obtain the estimates and perform
the inference using likelihood approaches. Among the class of parametric distributions,
e.g. see Srivastava, et al. (2018), ven den Hout (2017), commonly used distributions are
exponential, piecewise exponential and Weibull but other distributions such as log-normal,
Gamma, log-logistic or Gompertz distributions could also be used. The data observed for
each survivor i, i = 1, 2, . . . , n, at a particular time, consists of triplet (ti, δi, γi) where ti is
the observation time and,

δi =
{

1, if ith survivor died at time ti

0, if ith survivor was alive without CAD at time ti

and
γi =

{
1, if ith survivor had CAD at time ti

0, if ith survivor did not have CAD at time ti

Then, the log-likelihood function can be written as,

l(θ) =
n∑

i=1
[ailogL1(ti) + bilogL2(ti) + cilogL3(ti) + dilogL4(ti)], (5)

where, ai = δi(1 − γi), bi = (1 − δi)(1 − γi), ci = δiγi, and di = (1 − δi)γi.

The contributions that a survivor makes to the likelihood depends on the status and
the underlying distribution. It may be worth noting that often the interest would be in
estimating the cumulative incidence of the event of interest (CAD) at particular time points,
e.g. 5-year of 10-year. Exponential distribution is the simplest model because it assumes the
intensity function to be constant across time. However, this is not a plausible assumption
when the follow-up time is long and there is the possibility of the intensity function changing
over time. To provide more flexibility in modeling such data Rai, et al. (2013) proposed to
use piecewise exponential distribution in estimating λ1(u). However, this poses the problem
of knowing exactly when the incidence rate changes, how many change points are needed
and that the incidence rates are constant within each piece. Srivastava, et al. (2018) used
Weibull distribution to circumvent these limitations. Pradhan and Kundu (2014) also used
Weibull distribution as the underlying lifetime distribution for the interval-censored data
but suggested using the EM algorithm approach.

For exponential distribution the intensity rates are constant, i.e. λi(t) = λi for i = 1, 2
and λ3(t|u) = λ3. Then, the contributions to the likelihood will be as follows:

L1(t) = λ2 exp(−(λ1 + λ2)t) (6)
L2(t) = exp(−(λ1 + λ2)t) (7)

L3(t) = λ1λ3

λ1 + λ2 − λ3
(exp(−λ3t) − exp(−(λ1 + λ2)t)) (8)

L4(t) = λ1

λ1 + λ2 − λ3
(exp(−λ3t) − exp(−(λ1 + λ2)t)) (9)

Now if one assumes that the incidence rate for CAD may change say at tc years (say,
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tc = 5) then one could use piecewise exponential distribution that would imply that λ1 = λ11
if t < tc and λ12 if t ≥ tc. The piecewise exponential assumption could be extend to other
pieces of multi-state model if there is evidence of shift in incidence rates over time. The
contributions to the likelihood will be as follows:

L1(t) = λ2 exp(−(λ11 − λ12)tc − λ12t) exp(−λ2t)
L2(t) = exp(−(λ11 − λ12)tc − λ12t) exp(−λ2t)
L3(t)

= λ11λ3

λ11 + λ2 − λ3
(exp(−λ3t) − exp(−(λ11 + λ2 + λ3)t)) if t < tc

= λ11λ3

λ11 + λ2 − λ3
exp(−λ3t)(1 − exp(−(λ11 + λ2 + λ3)tc) + λ12λ3

λ12 + λ2 − λ3
exp(−(λ11 − λ12)tc − λ3t)(exp(−(λ12+λ2−λ3)tc)) − exp(−(λ12 + λ2 − λ3)t) if t ≥ tc

L4(t) = L3(t)/λ3

For Weibull distribution the intensity function can be defines by λi(t) = ηiωit
ωi−1,

for i = 1, 2 and λ3(t|u) = λSM
3 (t|u) = η3ω3(t)ω3−1 under the assumption of a semi-Markov

process or λ3(t|u) = λM
3 (t|u) = η3ω3(t − u)ω3−1 under the assumption of a Markov pro-

cess. This leads to QSM
3 (t|u) = exp(−η3(tω3 − uω3)) under semi-Markov assumption and

QM
3 (t|u) = exp(−η3(t − u)ω3) under Markov assumption, see Kalbfleisch and Lawless (1985)

and Hazerlak, et al. (2003). The contribution to the likelihood is provided below:

L1(t) = η2ω2t
ω2−1 exp(−η1t

ω1 − η2t
ω2)

L2(t) = exp(−η1t
ω1 − η2t

ω2)

L3(t) =
� t

0
Q(u)λ1(u)QSM

3 (t|u)λSM
3 (t|u)du under semi-Markov assumption

=
� t

0
Q(u)λ1(u)QM

3 (t|u)λM
3 (t|u)du under Markov assumption

L4(t) =
� t

0
Q(u)λ1(u)QSM

3 (t|u)du under semi-Markov assumption

=
� t

0
Q(u)λ1(u)QM

3 (t|u)du under Markov assumption

Now, using the above contributions to the likelihood one can perform the likelihood estima-
tion and obtain confidence intervals.

2.2. Incorporating covariates

As we have noted before, one of the long-term consequences of cancer patients treated
with cardiotoxic therapy (treated with anthracycline and/or chest radiation) is that they are
at a very high risk of developing CAD. Let us denote this group as AR (At Risk group),
and let NR represent the groups of survivors who were not treated with cardiotoxic therapy.
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Within this context, it would be important not only to know the onset time of these CADs
but it would be important to know, from a clinician’s perspective, the risk associated with
therapeutic exposure and other risk factors such as age at diagnosis or sex etc. Thus,
incorporation of covariates is an important issue. van den Hout (2017) proposes to use
proportional hazard type to regression framework represented as

h(t|X) = h0(t) exp(β′X) (10)

where β = (β1, β2, . . . , βp) is a vector of parameters and x = (x1, x2, . . . , xp) is the vector
of fixed covariates without an intercept term and h0(t) denotes the baseline hazard which
could be modeled using any of the above mentioned parametric distributions. Alternatively,
one can assess the impact of the covariates on the incidence rates by modeling the scale
parameter as function of the parameters. For exponential distribution it would be equivalent
to modeling λ = exp(β′X) and for Weibull distribution it would amount to modeling η =
exp(β′X).

3. Semi-parametric modeling

Both Rai, et al. (2013) and Srivastava, et al. (2018) used a parametric approach with
the assumption that the transition intensity rates from different risk groups are independent.
Subjects in different groups are indeed independent, but the rates can be modeled assuming
a dependence structure. In other words, the parametric approach may not be suitable
if the underlying parametric assumptions do not hold. To overcome this limitation, we
propose a semi-parametric approach with EM algorithm to model CI within the illness-
death framework. Rai and Matthews (1997) introduced discrete scale models for estimating
the transition intensity rate in a survival-sacrifice experiment using EM algorithm. Later,
Rai, et al. (2000) extended a similar methodology to a mixed-scale model with an EM
algorithm approach as well. EM algorithm is a powerful procedure to use when no closed-
form solution can be obtained from the likelihood function. Besides the traditional EM
algorithm, Rai and Matthews (1993) introduced a modified approach that could potentially
save time (fewer iterations). A detailed application demonstration of EM algorithm can be
found in Gunaratnam and Rai (2019). Additionally, when dealing with high dimensional
parameters, the regular simple case likelihood function will not work. Rather, the use of
profile likelihood should be considered, see Murphy and Van Der Vaart (2000).

Given that the data on CAD is collected intermittently the occurrence of the events
falls in the category of interval-censored data as discussed above. To better understand the
problem at hand, let us define Year 1 as 5 years after treatment completion and Year 2 as 6
years after treatment completion, a patient can choose to participate in the study either at
Year 1 or Year 2, or even later. The challenge comes when we build the likelihood functions
that will be discussed in the next section.

The following table reflects the data characteristics in a complete data setting. Table
3 corresponds to survivors who have come for SJLIFE evaluations for the first time and
assume the maximum follow-up time is 5 years after cohort entry.

It is assumed that we are interested in looking at intensity rates up to five years. Let
λi, i = 1, 2, . . . , 5 be the intensity rates at Year i (Year 1, Year 2, etc.). Let n+i i = 1, 2, . . . , 5
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Table 3: Data characteristics in a complete data setting

Year n+1 n+2 n+3 n+4 n+5 Rate
1 r11 r12 r13 r14 r15 λ1
2 r22 r23 r24 r25 λ2
3 r33 r34 r35 λ3
4 r44 r45 λ4
5 r55 λ5

r+1 r+2 r+3 r+4 r+5

be the number of subjects that came to the clinic in year i. For example, n+1 represents the
patients who came to the clinic with 1 year of follow-up, and n+2 represents the patients who
came to the clinic with 2 years of follow-up. Within any year i let there be r+i, i = 1, 2, . . . , 5
events (survivors with CAD, abnormal). For example, when an abnormal survivor visited
in Year 2, the survivor may have become abnormal either in Year 1 or in Year 2, but that
information is unknown. Therefore, we define r+2 = r12 + r22 as the total number of events
in Year 2 in which r11 represents the events that occurred during Year 1 and r22 represents
the events that occurred during Year 2.

In summary, estimating transition intensity rates in a three-states illness-death model,
such as the SJLIFE study, is not a simple task. The existing approach such as construct-
ing the likelihood function is very complicated since the function is not in a closed form.
Furthermore, sometimes the exponential model and the Weibull model might not be appro-
priate as the underlying assumptions might not always hold. This motivates us to construct
a non-parametric model. In combination with EM algorithm, the transition intensity rate
can be easily obtained.

Likelihood based approach

Including all the characteristics of the data in the likelihood is somewhat challenging
in our situation. However, here we present an approach that would be appropriate for the
data that we have in hand. For simplicity purposes, we will only show time points up to
three years (M = 3).

We define the table above as complete data since we specifically know which survivors
are abnormal. For incomplete data, we define (n+k, r+k), k = 1, 2, . . . , M and r+k = ∑k

j=1 rjk,
k = 1, 2, . . . , M represents the total number of survivors with abnormality with k years of
follow-up and n+k represents the survivors who come to the clinic with k years of follow-up.
In our case, we can write it as r+1 = r11, r+2 = r12 + r22, r+3 = r13 + r23 + r33. In the
incomplete data setting, we only know r+k but not the actual number of abnormal cases
within each year of follow-up. Since we have two independent groups, AR (At Risk) and NR
(Not at Risk), the likelihood function can be defined for each group independently, which
have a similar form. Let

z+j = n+j − r+j, j = 1, 2, 3
p+1 = λ1

p+2 = λ1 + (1 − λ1)λ2

p+3 = λ1 + (1 − λ1)λ2 + (1 − λ1)(1 − λ2)λ3
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Thus, in general,
p+j = λ1 +

j−1∑
k=1

[ k∏
i=1

(1 − λi)
]
λk+1 (11)

z+j represents the number of subjects at risk, p+j is the prevalence of events occurring in
the jth year. For incomplete data, the likelihood functions corresponding to the first three
time points will be:

LIC
1 = p

r+1
+1 (1 − p+1)z+1 = λ

r+1
1 (1 − λ1)n+1−r+1

LIC
2 = p

r+2
+2 (1 − p+2)z+2 = [λ1 + (1 − λ1)λ2]r+2 [(1 − λ1)(1 − λ2)]n+2−r+2

LIC
3 = p

r+3
+3 (1 − p+3)z+3 = [λ1 + (1 − λ1)λ2 + (1 − λ1)(1 − λ2)λ3]r+3 [(1 − λ1)(1 − λ2)(1 − λ3)]n+3−r+3

The generalized form of the likelihood function at each time point can be written as:

LIC
j =

[
λ1 +

j−1∑
k=1

k∏
i=1

(1 − λi)λk+1
]r+j

[ j∏
k=1

(1 − λj)
]z+j

, j = 1, 2, . . . , M (12)

For complete data, assuming the number of events to follow a multinomial distribution, the
likelihood functions of the first three time points can be presented as:

LC
1 = λr11

1 (1 − λ1)z+1

LC
2 = λr12

1 [(1 − λ1)λ2]r22 [(1 − λ1)(1 − λ2)]z+2

LC
3 = λr13

1 [(1 − λ1)λ2]r23 [(1 − λ1)(1 − λ2)λ3]r33 [(1 − λ1)(1 − λ2)(1 − λ3)]z+3

The generalized form of the likelihood function at each time point can be written as:

LC
j = λ

r1j

1 [(1 − λ1)λ2]r2j . . . [
j−1∏
k=1

(1 − λk)λj]rjj [
j∏

k=1
(1 − λk)]z+j (13)

Now assuming the intensity rates to be λi and λ∗
i , i = 1, 2, . . . , M , for the AR and NR

groups respectively, one can obtain the complete likelihood functions, for details see Qian, et
al. (2023). Qian, et al. (2023) used logit link, see Agresti (2013), Rai and Matthews (1997),
to establish a relationship between and to provide for a parsimonious modeling of the data.
Specifically, they assumed,

λ∗
k = eβλk

1 + (eβ − 1)λk

, and (1 − λ∗
k) = 1 − λk

1 + (eβ − 1)λk

(14)

It may be noted that within this framework other covariates of interest could be modeled by
replacing β with β′X in the above equation. Now it is easy to see that r+j is known in the
incomplete data and follows a binomial distribution,

r+j ∼ B(n+j, 1 −
j∏

k=1
(1 − λk)), j = 1, 2, . . . , M (15)

and the conditional distribution of rkj given r+j will also follow a binomial distribution given
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by,

rkj|r+j ∼ B(r+j,

∏k−1
i=1 (1 − λi)λk

1 − ∏j
i=1(1 − λi)

), k = 1, 2, . . . , j; j = 1, 2, . . . , M (16)

Qian, et al. (2023) use the fact the sufficient statistics corresponding to the complete
log-likelihood lC(λ, β) are:

M∑
j=k

(rkj + r∗
kj), and

M∑
j=k

r∗
kj (17)

and propose to estimate the parameters using EM algorithm. The basic steps are outlined
below:

E-step: Start with the initial estimates of λ = λ(0) and β = β(0) then one can obtain
the values of r

(1)
kj for k = 1, 2, . . . , j and for all j = 1, 2, . . . , M .

M-step: Then, using the r
(1)
kj ’s and the initial value λ(0) and one can obtain the

estimate of β, β(1), using profile likelihood. Then, using r
(1)
kj ’s and β(1) obtain updated

estimate λ(1) using the complete likelihood. This iterative process continues until the distance
between (λ(q)

1 , λ
(q)
2 , λ

(q)
3 , β(q)) and (λ(q−1)

1 , λ
(q−1)
2 , λ

(q−1)
3 , β(q−1)) at the qth iteration is smaller

than a pre-specified constant C0. Qian, et al. (2023) also performed simulation studies to
show that the performance of the EM approach is reasonable.

4. Extension of multi-state model for competing events

So far, our focus has been on estimating the CI for CAD. However, there are multiple
events of interest such as RVSD and PH making the modeling becomes even more com-
plicated. In this section we outline some of the issues in modeling such data and discuss
some analytical approaches. For simplicity let us first assume that all three types of CEs are
mutually exclusive and if the interest is in estimating CI for all three types of events, then
we can proceed to model it according to the illness-death model proposed below.

In the above setting we assume that the three CDs of interest are mutually exclusive,
and each survivor can have only one event during the follow-up time. In such situations,
one can extend the parametric models proposed in Section 2 using either exponential or
Weibull distribution. Although, in principle, the approach could be easily implemented but
the likelihood representation may be somewhat complicated, and the estimations process
could be computationally more involved. The pseudo survival functions can be obtained as,

Q1a(t) = exp{−
� t

0
λ1a(ν)dν}, Q1b(t) = exp{−

� t

0
λ1b(ν)dν}, and

Q1c(t) = exp{−
� t

0
λ1c(ν)dν}, Q2(t) = exp{−

� t

0
λ2(ν)dν}
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Figure 2: Three-states illness/death model of patients developing cardiovascular
dysfunction

and

Q3a(t|u) = exp{−
� t

u

λ3a(ν|u)dν}, Q3b(t|u) = exp{−
� t

u

λ3b(ν|u)dν},

Q3c(t|u) = exp{−
� t

u

λ3c(ν|u)dν}

It may be noted that probability of surviving without experiencing and any CD or death
beyond time t can be represented as,

Q(t) = exp{−
� t

0
(λ1z(ν) + λ1b(ν) + λ1c(ν) + λ2(ν))dν} = Q1a(t)Q1b(t)Q1c(t)Q2(t) (18)

and the survival function can be obtained as,

S(t) = P (X(t) = 1) + P (X(t) = 2)

= Q(t) +
� t

0
λ1a(u)Q(u)Q3a(t|u)du +

� t

0
λ1b(u)Q(u)Q3b(t|u)du+

� t

0
λ1c(u)Q(u)Q3c(t|u)du

(19)

Then, using the above pseudo survival functions one can obtain the contributions to the
likelihood made by each survivor depending on their outcome which can be described as
follows:
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(i) Death without any CD, T = t, X(t−) = 1, and L1(t) = λ2(t)Q(t),
(ii) Alive without any CD, T > t, X(t) = 1, and L2(t) = Q(t),
(iii) Death with CAD, T = t, X(t−) = 2, and L3a =

� t

0 λ1a(u)Q(u)λ3a(t|u)Q3a(t|u)du

(iv) Alive with CAD, T > t, X(t) = 2, and L4a =
� t

0 λ1a(u)Q(u)λ3a(t|u)du

(v) Death with RSVD, T = t, X(t−) = 2, and L3b =
� t

0 λ1b(u)Q(u)λ3b(t|u)Q3b(t|u)du

(vi) Alive with RSVD, T = t, X(t) = 2, and L4b(t) =
� t

0 λ1b(u)Q(u)Q3b(t|u)du

(vii) Death with PH, T > t, X(t−) = 2, and L3c(t) =
� t

0 λ1c(u)Q(u)λ3c(t|u)Q3c(t|u)du

(viii) Alive with PH, T = t, X(t) = 2, and L4c(t) =
� t

0 λ1c(u)Q(u)Q3c(t|u)du

Based on the above quantities one can write down the likelihood function and obtain
the estimates of the parameters of interest using the theory of maximum likelihood or EM
algorithms as discussed in Sections 2 and 3. Extension of semi-parametric approach for
simultaneous modeling of the three types of CDs requires more theoretical development and
is proposed as future work.

5. Conclusions and discussions

In this manuscript, we have provided an overview of the parametric and semi-parametric
approaches that could be adopted for modeling CI of one or more competing events of interest
with death being an absorbing state.

When the survivors are followed longitudinally then, under the assumption of con-
tinuous time Markov process, one can easily adopt the likelihood approach to model the
transition probabilities as discussed in van den Hout (2017, Chapter 4). The development
of semi-parametric approach needs to be developed and is left as future work.

The SJLIFE cohort study is a unique study to evaluate the association of childhood
cancer treatment with the long-term adverse effect. The discussed approach can be extended
to any interval-censored data or any multi-state models and could be extremely useful in the
prediction of adverse outcomes.

There are multiple challenges to drawing statistical inference from such studies. Ro-
bustness of results may depend on the selection of the cohort and time of data collection
as discussed in Table 2. Estimation can be based on parametric, non-parametric or semi-
parametric models. The number of parameters not only depends on estimation procedure
but also number of stages as included in Figures 1 and 2. Incorporating covariate effects on
different parameters in Figures 1 and 2 makes inference much more cumbersome.
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Abstract
In the era of language processing and artificial intelligence, people are amazed by

the capabilities of ChatGPT. However, ChatGPT is not the end but the beginning of an
era where much more is yet to happen. The backbone of ChatGPT is generative AI or
large language models (LLMs). One of the most difficult challenges has been dealing with
the semantics or meaning of language. This is what LLMs have been able to achieve to a
certain extent: enabling computers to understand the semantics of text. However, LLMs are
not the effort or product of a single person or community. They are the result of ongoing
community efforts involving numerous scientists, researchers, and professionals who have
worked for decades across the globe in various interdisciplinary fields, including statistics,
computer science, and linguistics. Therefore, it is particularly important for the computer
science and statistics communities to systematically understand the evolution of language
models. This is the main objective of our paper. Our paper addresses the fundamental
issue of incorporating the semantics of natural language text into its representation, which
is the core of language models, including LLMs, and has revolutionized the field of natural
language processing (NLP).

Key words: Attention based neural network; BERT; Deep learning based language embed-
dings; Large Language model; LSTM.

1. Introduction

Since the start of the digital processing of natural language text, text representation
has been the most primitive requirement but, at the same time, the most complicated task.
Some of the parameters are well known in the context of the difficulty in text representation
viz: unstructured nature, ambiguity, how to represent meaning of text, high dimensionality,
etc. However, another major issue evolved with the use of machine learning techniques for
processing natural language text. As all the Machine learning algorithms work naturally
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with the vector data, the vector representation of the text is the first step in dealing with
the text data. Not only is it the first step, but it also impacts the text mining process and
their outcomes from the machine learning algorithm, accuracy and the biases in the results.
Though natural language processing has been an important research area for more than a
decade, today, it has encroached on our day-to-day life, intentionally or unintentionally, in
the form of web searches, recommendation systems, chatbots, etc. People are amazed by the
potential of ChatGPT. However, along with the utility of ChatGPT in NLP, many issues
are emerging regarding the accuracy, reliability, authenticity, and biases of the results. To
be aware of these intricacies, one must know what is happening at the backend of ChatGPT
as a specific case. Another term associated with the emergence of ChatGPT that became
popular in the scientific and general community is Large Language Models(LLMs), more
popularly termed generative AI models. These models form the core essence of the working
of ChatGPT. Thus, it becomes important for the statistical and computer science commu-
nity to understand the notion of LLMs. The core of LLM’s efficiency is the efficient text
representation and text generation. Here, we will focus on text representation. In fact, text
generation can be considered as an outcome of text representation. The representation of
text in the form we see today is not a sudden discovery, but actually, it is a success story
of a long, tough but consistent effort of the NLP community, including computer scientists,
mathematicians, statisticians and a lot of contributions from linguists. The objective of this
paper is to present the evolution of transformer-based generative LLMs starting from one
of the earliest tf-idf based traditional vector space models. The paper provides a systematic
review of the important models focusing on the emergence of transformer-based models. It
will address the basic issue of incorporating semantics of a natural language text in the
representation itself, which is the core of deep learning algorithms, including LLMs and has
revolutionized the field of NLP. Additionally, we discuss the unresolved issues and challenges
in this field. We also present some of our efforts to address these challenges.

The paper is organized as follows: Section 2 introduces the traditional TF-IDF-based
Vector Space Model. Section 3 delves into the Distributional Hypothesis, laying the ground-
work for the subsequent discussion on machine learning techniques for text representation in
Section 4. Section 5 presents deep learning-based language modeling, and Section 6 concludes
the paper.

2. Traditional TF-IDF based Vector Space Model (VSM)

One of the earliest attempts to represent a text document by a vector emerged in
the form of the Classical Vector Space Model (VSM)Salton et al. (1975). Though not very
efficient for representing the text, it is one of the simplest and computationally efficient
models. Also one should keep in mind that it presents one of the earliest attempts to
represent a text by a vector. The model is based on the bag of words (BOW) approach.
To understand the BOW-based VSM model, let us consider that we have a corpus of text
documents and the objective is to represent each text document by a vector. The initial
step involves preprocessing of the text, mainly involving stop word removal and stemming to
remove irrelevant/nonessential words. After preprocessing, the outcome results in a collection
of words that form the vocabulary of the text corpus. A text document matrix (TDM) can
then be constructed with M ∗ N size, where rows represent documents, M being number
of documents and columns represent terms, N being the size of the vocabulary. Further,
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each element wij of TDM represents the weight of jth term in ith document. Thus each row
of the matrix represents the vector corresponding to the document, the size of the vector
being the vocabulary size. Ideally, the weight should represent the importance of a term
in the document. But importance itself is a subjective term and may depend on the task
to be performed. However, some objective criteria is required. Various Now weights can
be assigned in different ways, however, tf-idf (term frequency-inverse document frequency)
based weighting emerged as the most popular technique for traditional VSM based model.

2.1. Weighting using TF-IDF (Term Frequency-Inverse Document Frequency)

The words in VSM need to be given weight so as to reflect their importance in the
document. Documents with higher weights are more important. The most obvious way of
giving weights can be related to the frequency of words in the document. The weight may
correspond to frequency count of words in the document. Table 2 represents the matrix using
term frequency count for the same example as presented for binary vector. The raw frequency
may not be a statistically stable value, so a normalized measure might be used.However, it
can easily be observed that frequency of the word, though important, may not be the only
measure for assigning the weight to a word. The simplest example to understand this is that
stopwords are most frequent but are least important. This leads to the notion of TF-IDF
based measure in VSM. It is a statistical measure that reflects how important a word is
to a document in a collection or corpus. TF-IDF consists of two main components: Term
frequency (TF) and Inverse document frequency (IDF). Term frequency (TF) measures the
number of times a term (word) is present in a document. Instead of raw value , the value
may be normalized. Inverse document frequency (IDF) measures how rare a term is across
the corpus. Some variants of IDF exist, as far as it is inversely proportional to the no. of
documents in which it is appearing, thus giving higher weightage to rare terms. One way of
calculating IDF is as follows: For each term t in the corpus:

IDF (t) = log(N/(df(t))) (1)

where N : Total number of documents in the corpus. df(t): Number of documents in the
corpus that contain the term t.

TF is a local measure (calculated for each document), whereas IDF is a global measure
(calculated for the entire corpus). TF-IDF is then calculated as the product of TF and IDF.
The resulting value represents the importance of the term in the document and the corpus
as a whole. High TF-IDF values indicate that a term is important to a document and
the corpus, while low values indicate that the term is less important or common. Also
frequently stated as frequent and rare terms are more important. TF-IDF is often used for
text classification, information retrieval, and content-based recommendation systems. It is a
popular technique because it is simple, efficient, and effective in identifying important terms
in a document or corpus. The TF-IDF score can be calculated by the formula:

TF − IDF (t, d) = TF (t, d) ∗ IDF (t) (2)

where TF (t, d) represents the frequency of term t in document d.

Let us take an example of three Documents for a better understanding:-
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Table 1: Sentences from medical domain

Document Sentence
Document 1 Chemotherapy is used to treat cancer.
Document 2 Cancer cells can grow uncontrollably.
Document 3 Radiation therapy damages cancer cell

After some preprocessing (stopword removal and case conversion), the vocabulary of
the corpus in this case may be represented as [cancer, therapy, cells, chemotherapy, radiation,
grow, uncontrollably, damages]

Table 2 contains TF-IDF Scores of each term in the document.

Table 2: TF-IDF Scores

Term Document 1 Document 2 Document 3
cancer 0 0 0
therapy 0.4055 0 0.4055
cells 0 0.4055 0.4055
chemotherapy 1.0986 0 0
radiation 0 0 1.0986
grow 0 1.0986 0
uncontrollably 0 1.0986 0
damages 0 0 1.0986

It can be observed that medical domain terms present in the document are important.

Traditional VSM is a sort of one-hot encoding where each word has its own space and
index. One hot representation has a lot of limitations and problems. Some of the important
problems with one hot encoding are as follows :

• Viewing all the words as discrete units is not ideal.

• High dimensionality problem, since there can be hundreds of thousands of words in a
given language, representing and storing words as one-hots can be extremely expensive.

• Sparsity Problem.

• All sequencing information is lost.

• Lack of an inherent similarity notion. a simple way of measuring the similarity between
two vectors is using the cosine similarity. But since the one-hot vectors of any two
different words are necessarily orthogonal, taking the dot product of even two synonyms
would yield a similarity score of 0.

• Can not deal with contextual similarity between sentences.

The Distributional Hypothesis addresses some of these limitations by positing that
words with similar distributions in a large corpus are likely to have similar meanings. By
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leveraging statistical patterns in language usage, the Distributional Hypothesis allows VSM
to capture semantic similarities more effectively across varied contexts and improve the
representation of word meanings beyond mere co-occurrence.

3. Distributional hypothesis

Now there has been much talk about incorporating semantics in text representation.
This tends to consider meaning of words and the notion of synonyms in the text represen-
tation. It brings into the picture the notion of dictionary, thesaurus, ontology, etc . All
these resources are beneficial for understanding the meaning of the text but fail to provide
a computational model for representing the meaning of the text. Thus came the idea of the
Distributional hypothesis, the same idea repeated in different ways by various researchers
Harris (1954). A very old and popular idea in the Linguistic domain – You shall know a word
by the company it keeps Firth (1957). In particular in the modern NLP context – A word
is defined by its environment (the context words around it). But this is again based on the
sound foundation of linguists Harris (1954): If A and B have almost identical environments
we say that they are synonyms. For a long time, computational linguists have been focusing
on the representation of the context of a word that can assist in incorporating the semantics
of the word in the representation itself. The base of this again lies in the hypothesis that
words with high similarity (such as synonyms) occur in the same context.

3.1. Representing words using co-occurrence statistics

In the previous section, we saw an example of representing text as a vector but in
many applications, we are interested in finding an appropriate representation of a word
as a vector. One of the most primitive ways is to consider each column of the TF-IDF
matrix as a word vector. Thus words can be represented as vectors in document dimension.
Here two word vectors are similar if they share common documents. This word vector
captures the information of words based on their presence in documents that are not very
meaningful. There are no word-to-word associations. Based on the distributional hypothesis
it was thought to represent word vectors in a way that might capture this association. One of
the earliest attempt is reflected in the form of mutual information-based association. Mutual
information (MI) is a measure of how often two events x and y occur, compared with what
we would expect if they were independent. The standard formula is

I(x, y) = log2
P (x, y)

P (x)P (y) (3)

Based on MI an important measure in NLP is Pointwize MI (PMI). PMI measures
the the chances of co-occurrence of two words PMI between two words (we we may call them
word w and context word c) w and c can be given by

PMI(w, c) = log2
P (w, c)

P (w)P (c) (4)

However, PMI value may range from positive to negative infinity. Negative informa-
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tion may create misinformation in many cases. Thus a refined measure is called as Positive
PMI(PPMI)

PPMI(w, c) = max(log2
P (w, c)

P (w)P (c) , 0) (5)

Let us try to understand its practical application. Let us consider some words and se-
lective context words. The words considered are computer, data, result, pie, and sugar. The
context words are cherry, strawberry, digital, and information. We can see the co-occurrence
of the context words in a large corpus of the order of say Wikipedia. For determining the
co-occurrence of context words, we need to fix the window size say 4, then observe the count
of context words in the neighborhood of all occurrences of a word considering 4 neighbors
on the left and 4 on the right. Assume that it results in the following matrix between word
and context.

Table 3: Co-occurence statistics

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 344

information 3325 3982 378 5 13 7703
count(context) 4997 5673 473 512 61 11716

The resultant PPMI comes out to be :

Table 4: PPMI scores

computer data result pie sugar count(w)
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0

Now a word is represented as a vector in word dimension. This was a small example.
If all words in the vocabulary are included. We can have a n∗n matrix where n is size of the
vocabulary. Thus each word is a vector in the dimension of vocabulary. One can make out
an interesting observation. One can find the cosine similarity between the words and you can
observe from the table that cherry and strawberry are more similar and similarly digital and
information. For other pairs, the similarity is zero. The obvious observation is that digital
and information share computer and data, while cherry and strawberry share pie and sugar.
Thus PPMI based captures the co-occurrence information in the word vector representation
that is quite meaningful. However, this matrix is again sparse as in the case of TF-IDF
based measure. Also, it does not involve any learning. With the advancement in machine
learning approaches for NLP, now machine learning is being used for text representation,
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text processing, text mining, and finally text generation. In the next part, our focus is on
machine learning based vector representation of text, frequently called word embedding and
text embedding.

4. Machine Learning for text representation

The previous section presented Count based context vector creation. Count based
context representation does not involve any learning so has a limited usage in era of machine
learning , where everything can be learnt and thus can be predicted. Prediction based
Context word model can predict the co-occurrence probabilities , thus they can predict the
context words corresponding to a given word. While we are learning to predict context
words, the sole objective is not only context word prediction. In fact such a trained model
leads to the notion of representational learning, where the vectors representing the words
can be learnt through neural network based models.

4.1. Word2Vec

Word2Vec is a groundbreaking model introduced by Tomas Mikolov Mikolov et al.
(2013a,b) and his team at Google in 2013. It revolutionized the field of natural language
processing by enabling the creation of dense vector representations of words in a continuous
vector space. This model uses a shallow, two-layer neural network to process vast amounts
of text data and learn the relationships between words based on their context. There are
two main architectures used in Word2Vec: Continuous Bag of Words (CBOW) and Skip-
gram. CBOW predicts a target word from its surrounding context words, while Skip-gram
does the reverse, predicting the context words given a target word. These approaches allow
Word2Vec to capture semantic relationships between words effectively, such that words with
similar meanings are positioned close to each other in the vector space.

One of the most compelling features of Word2Vec is its ability to capture linear
relationships between words. For example, the model can understand analogies like “King”
is to “queen” as “man” is to “woman” by performing vector arithmetic: vector(“king”) -
vector(“man”) + vector(“woman”) ≈ vector(“queen”). This ability stems from the model’s
training process, which uses a technique called negative sampling to efficiently differentiate
relevant context words from irrelevant ones. The learned vectors from Word2Vec have been
widely used in various applications, including machine translation, text classification, and
sentiment analysis, due to their effectiveness in encoding semantic meanings and relationships
in a computationally efficient manner.

4.2. GloVe

Global Vectors for Word Representation(GloVe) Pennington et al. (2014) is a pow-
erful word embedding technique developed by researchers at Stanford University. Unlike
traditional methods that solely rely on local context (like Word2Vec), GloVe combines the
benefits of both global matrix factorization and local context window methods. It constructs
word vectors by aggregating global word-word co-occurrence statistics from a large corpus.
Specifically, it utilizes a co-occurrence matrix where the entries represent the frequency of
word pairs appearing together within a certain window. By factorizing this matrix, GloVe
generates dense vector representations where the semantic relationships between words are
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captured. For instance, the difference between the vectors for “king” and “queen” is similar
to the difference between “man” and “woman”, reflecting meaningful linear substructures.
These pre-trained embeddings have been extensively used in various natural language pro-
cessing tasks due to their ability to capture both syntactic and semantic word relationships
effectively.

Since this method captures the global statistics in the corpus, it is named Global
Vectors (in short GloVe). These methods have a very good performance on various tasks
like word analogy, word-similarity, and named entity recognition.

5. Deep Learning based Language modeling

In addition to many problems associated with the computational processing of natural
language, another major issue is the temporal nature of language that is reflected in language
flow, continuity, etc. Thus a language is sometimes considered as a sequence that unfolds
in time. Most of the deep learning models perform the task of language modeling. At the
most primitive level, language modelling involves the prediction of the next word in the
sequence. How accurately the model predicts the word forms the base for the performance
of the language model. It seems a well-defined task, but it is too complicated, as the correct
prediction of words can only be done if the text is understood properly. However, there is no
model for the representation of meaning. This actually leads to modeling the distributional
hypothesis, the well-known hypothesis given by linguists. These models try to capture/learn
the context vectors of the words. Based on the context vector, the model tries to predict
the next word in sequence. But the question may come to mind: What would be so great
if we were able to predict the next word? The answer lies in the statement that correct
prediction is not possible without an understanding of the text(for which there is no explicit
mechanism). Thus, correct prediction involves some understanding of the text. In other
words, deep learning models are able to capture the semantics of text using the notion of
statistics and probabilities. With time, various deep learning models have evolved, but in
terms of architecture, we have three categories: Sequential model, encoder decoder-based
architecture, and transformer-based model.

5.1. Sequential Models: The Era of RNN and LSTM

The era of sequential models in artificial intelligence has been significantly shaped by
recurrent neural networks (RNNs) Elman (1990) and their refined variant, Long Short-Term
Memory networks (LSTMs). These models excel in processing sequential data, such as time
series, text, and speech, by maintaining an internal state that evolves as new inputs are
processed. RNNs were among the first neural architectures capable of capturing temporal
dependencies, making them pivotal in tasks like speech recognition, language modeling, and
machine translation. However, traditional RNNs are prone to the vanishing and exploding
gradient problems, hindering their ability to learn long-term dependencies effectively. The
introduction of LSTMs by Hochreiter and Schmidhuber in 1997 addressed these challenges
by incorporating memory cells and gating mechanisms that regulate information flow, al-
lowing them to remember information over long sequences and selectively forget irrelevant
details. This innovation marked a breakthrough in sequential modeling, enabling more ro-
bust learning and improved performance in tasks requiring nuanced understanding of context
and continuity over time. Despite their successes, both RNNs and LSTMs have limitations
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in handling very long sequences due to computational constraints and struggles with captur-
ing hierarchical dependencies. As the field advances, newer architectures like transformers,
which rely on attention mechanisms, have emerged to address these shortcomings and push
the boundaries of sequential modeling in modern AI applications.

5.2. Limitation and constraints of LSTM

Long Short-Term Memory (LSTM) Hochreiter and Schmidhuber (1997)networks are
a type of recurrent neural network (RNN) specifically designed to overcome the limitations
of traditional RNNs, such as the vanishing gradient problem, by introducing a more sophis-
ticated memory architecture. The LSTM unit consists of a cell state Ct and three gates that
regulate the flow of information: the input gate it, the forget gate ft, and the output gate
ot.The equations governing these gates are as follows:

ft = σ(Wf [ht−1, xt] + bf )
it = σ(Wi[ht−1, xt] + bi)

ot = σ(Wo[ht−1, xt] + bo)
Ch

t = tanh(WC [ht−1, xt] + bC)
Ct = ft ∗ Ct−1 + it ∗ Ch

t

ht = ot ∗ tanh(Ct)

(6)

Here, xt represents the input at time step t, ht is the hidden state, W and b denote
the weights and biases for the respective gates, σ is the sigmoid activation function, and
∗ indicates element-wise multiplication. The forget gate ft determines which information
from the previous cell state Ct−1 should be discarded, the input gate it decides which new
information should be added to the cell state, and the output gate ot controls what part of the
cell state is output as the hidden state ht. The combination of these gates allows LSTMs to
maintain and update the cell state over long sequences, making them highly effective for tasks
that require learning from temporal patterns, such as natural language processing, speech
recognition, and time-series prediction. Long Short-term Memory (LSTM) networks, despite
their advancements in handling sequential data, have several limitations. Firstly, they require
substantial computational resources and time for training due to their complex architecture
and numerous parameters, which can be a bottleneck for large datasets. Additionally, LSTMs
can struggle with very long sequences, where even their memory cells might not effectively
capture dependencies over extremely long periods, potentially leading to gradient vanishing
or explosion issues. Moreover, fine-tuning LSTM models requires considerable expertise,
as the process involves balancing many hyperparameters, such as learning rates and the
number of layers. They also tend to overfit if not regularized properly. Lastly, LSTMs are
less interpretable compared to simpler models, making it challenging to understand and trust
their decision-making processes, which is crucial in applications where model transparency
is essential.

Vanishing and exploding gradients Bengio et al. (1994) pose significant challenges in
training RNNs, particularly due to their deep sequential nature. In standard RNNs, the
vanishing gradient problem arises because gradients can diminish exponentially over time
steps, especially in long sequences, making it difficult for the model to learn dependencies



136 S. VERMA, P. BHATNAGAR AND A. SHARAN [SPL. PROC.

over distant time steps. Conversely, exploding gradients can occur due to unstable weight
updates, leading to numerical instability during training. Both problems can severely impact
the ability of neural networks to learn and generalize from data effectively. Addressing
these issues often involves careful initialization of parameters, using activation functions
that mitigate gradient saturation, and employing techniques like gradient clipping to stabilize
training dynamics.

While LSTM networks have been instrumental in addressing the vanishing gradient
problem in RNNs, they are not without their shortcomings. One notable limitation is their
computational complexity, which arises from the multiple gates and memory cells that need
to be managed per unit. This complexity can lead to slower training times and increased
memory requirements, making LSTMs less scalable for very large datasets or when deploying
models in resource-constrained environments. Additionally, LSTMs may struggle with cap-
turing fine-grained dependencies within sequences, as their gating mechanisms are designed
to capture long-term dependencies rather than focusing on specific, short-term relationships.

The emergence of attention mechanisms represents a significant advancement in ad-
dressing these shortcomings. Attention networks, such as the Transformer model, allow neu-
ral networks to dynamically focus on different parts of the input sequence. Unlike LSTMs,
attention mechanisms do not impose a fixed-length context window and can adaptively at-
tend to relevant parts of the input sequence. This flexibility enables attention networks to
capture both short-term and long-term dependencies more effectively without the computa-
tional overhead of managing complex gating mechanisms. Moreover, attention mechanisms
have shown superior performance in tasks like machine translation, where aligning and trans-
lating words or phrases across languages require capturing nuanced relationships within and
between sentences.

5.3. Attention

An attention network, often referred to simply as an attention mechanism is a com-
ponent of neural networks designed to dynamically focus on specific parts of the input data
when making predictions. Attention networks were developed to address some of the limita-
tions of LSTMs, particularly their difficulty in capturing long-range dependencies and their
inefficiency with very long sequences. The attention mechanism allows the model to weigh
the importance of different input elements, enabling it to handle long-range dependencies
and improve performance on tasks such as machine translation, image captioning, and more.

The primary idea of attention is to assign different weights to different parts of the
input sequence. When making a prediction, the model can then focus more on the relevant
parts and less on the irrelevant ones. This selective focus helps capture relationships and
dependencies that span long distances in the input data.

Several types of attention mechanisms are designed to address specific needs or im-
prove computational efficiency. Here’s an overview of the most commonly used attention
mechanisms:

Additive (Bahdanau) Attention: Bahdanau attentionBahdanau et al. (2014), also
known as additive attention, was introduced by Dzmitry Bahdanau and colleagues in their
2014 paper to improve the performance of sequence-to-sequence (seq2seq) models, particu-
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larly for machine translation. The main goal of Bahdanau’s attention is to allow the model
to focus on different parts of the input sequence dynamically when generating each part of
the output sequence. It combines the decoder hidden state and the encoder hidden states
using a trainable weight matrix and a non-linear activation function (typically tanh).

et,i = vT tanh(Wsst + Whhi) (7)

where Ws and Wh are weight matrices, v is a weight vector, st is the decoder hidden state
at time t, and hi is the encoder hidden state at time i.

Pros: Flexible and can capture complex relationships between the encoder and de-
coder states.

Cons: Computationally expensive due to the non-linear transformation.

Multiplicative (Luong) Attention: Proposed by Luong et al.Luong et al. (2015), this
mechanism computes attention scores using a dot product (multiplicative) approach, which
is computationally more efficient than additive attention.

et,i = sT
t hi (8)

Pros: More efficient than additive attention.

Cons: May not perform as well as additive attention when the dimensions of si and
hi differ significantly.

Self Attention: Self-attention is a mechanism used in various neural network archi-
tectures, particularly in transformers Vaswani et al. (2017), to enable models to focus on
different parts of the input sequence when processing each token. This mechanism allows
the model to capture dependencies regardless of their distance in the sequence, making it
highly effective for tasks like language modeling and machine translation.

In self-attention, each token in the input sequence is transformed into three vectors:
Query (Q), Key (K), and Value (V), as shown in fig 1. These vectors are derived through
learned linear transformations. Assume we have an input sequence of length n, represented
by the matrix XϵRn∗d, where d is the dimensionality of the input embeddings. The input
matrix X is multiplied by three weight matrices to produce the Query, Key, and Value
matrices as follows:

Q = XW Q,

K = XW K ,

V = XW V

(9)

where W Q, W K , W V ϵRd∗dk are weight matrices, and dk is the dimensionality of Query, Key,
and Value vectors.

The core of the self-attention mechanism involves computing a score for each pair of
tokens in the sequence to determine how much focus one token should have on another. This
is done using the Query and Key matrices. The score for each pair is calculated as the dot
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Figure 1: Scaled Dot Product and Multi-head Attention

product of their Query and Key vectors, scaled by the square root of dk to stabilize gradients
as follows:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (10)

It is also known as scaled dot-product attention. The result of the self-attention
mechanism is a new representation of the input sequence, where each token now includes
information from all other tokens, weighted by their relevance. This process can be repeated
in multiple layers to capture increasingly complex dependencies.

To allow the model to focus on different parts of the sequence simultaneously, the self-
attention mechanism is often extended to multi-head attention. This involves using multiple
sets of Query, Key, and Value weight matrices:

MultiHead(Q, K, V ) = Concat(head1, head2..., headh)W O (11)
Each head independently performs the self-attention operation, and the results are concate-
nated and linearly transformed using the weight matrix W O.

The Transformer architecture has revolutionized the field of natural language pro-
cessing by enabling more efficient and effective processing of sequential data, notable for its
innovative encoder-decoder structure. This architecture is designed to handle sequence-to-
sequence tasks such as translation, summarization, and question-answering with unparalleled
efficiency and performance. The encoder is composed of multiple identical layers, each with
two key sub-layers: multi-head self-attention mechanisms and position-wise feed-forward
networks. The self-attention mechanism allows the encoder to weigh the importance of
different words in a sentence relative to each other, capturing complex dependencies and



2024] TEXT REPRESENTATION JOURNEY 139

relationships. Each encoder layer also includes residual connections and layer normaliza-
tion, ensuring stability and improving gradient flow during training. The decoder mirrors
the encoder but includes an additional sub-layer for masked multi-head self-attention, which
ensures that predictions for a given word depend only on previous words in the sequence,
maintaining causality. The decoder also integrates multi-head attention over the encoder’s
output, allowing it to focus on relevant parts of the input sequence when generating each
word of the output. This dual structure of the Transformer, with its powerful self-attention
mechanisms and ability to process input and output sequences in parallel, represents a sig-
nificant advancement over traditional recurrent models, offering superior scalability and the
ability to capture long-range dependencies more effectively.

This architecture is highly scalable and can be parallelized, leading to faster training
times and improved performance on large datasets. The Transformer has become the foun-
dation for many state-of-the-art models, including BERT, GPT, and T5, driving significant
advancements in tasks such as machine translation, text generation, and sentiment analysis.

5.4. BERT

Bidirectional Encoder Representations from Transformers(BERT) embeddings Devlin
et al. (2018) have revolutionized natural language processing by providing deep, contextu-
alized representations of words. Unlike traditional embeddings that generate a fixed vector
for each word regardless of context, BERT dynamically produces word vectors based on the
entire sentence, capturing intricate details of the language. BERT’s pre-training involves
two key subtasks: the masked language model (MLM) and next sentence prediction (NSP).

In MLM, a portion of the input tokens is randomly masked, and the model is trained
to predict these masked tokens based on the surrounding context. For example, in the
sentence ”The quick brown fox jumps over the lazy [MASK],” BERT attempts to predict the
masked word ”dog” using the context provided by the rest of the sentence. This task forces
BERT to develop a bidirectional understanding of language, considering both the left and
right contexts of each word.

NSP is designed to train BERT to understand the relationship between sentences.
During pre-training, BERT receives pairs of sentences. Some pairs are actual consecutive
sentences from the corpus, while others are random pairs. The model learns to classify
whether the second sentence logically follows the first. For instance, given the sentence pair
The man went to the store. He bought a gallon of milk, BERT should identify this as a
logical sequence. Conversely, for the pair The man went to the store. Penguins are great
swimmers, BERT should recognize this as a random pairing.

By combining these two subtasks, BERT achieves a robust understanding of language
context and sentence relationships. MLM helps BERT learn to predict words based on
context, enhancing its ability to generate accurate word embeddings in various contexts.
NSP, on the other hand, improves BERT’s grasp of coherence and logical flow between
sentences, which is essential for tasks requiring sentence-level comprehension, such as text
summarization and question answering.

These pre-training tasks enable BERT to produce embeddings that are highly effective
for a wide range of natural language processing tasks, leading to state-of-the-art performance
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in many benchmarks.

6. Applications of Text Mining

The advancements in text mining and deep learning have given rise to Transformer-
based models with numerous real-time applications. These applications are transforming
our daily lives and benefiting society. Transformer models, such as BERT and GPT, utilize
self-attention mechanisms to efficiently manage dependencies across long sequences, signif-
icantly enhancing performance in various NLP tasks. The encoder-decoder architecture in
transformers, seen in models like T5 and BART, uses an encoder to process input sequences
and a decoder to generate outputs, enabling tasks like translation and summarization. This
architecture allows for parallel processing, significantly accelerating training and inference.

In translation tasks, these models go beyond sequential translation, encoding based
on the semantics of the source language text and the context of both source and target
languages. This approach allows for the creation of multilingual translation models using
the same architecture with ample examples of translations. Additionally, Transformer models
have numerous applications in the public health domain, including drug recommendation,
drug design, health chatbots, personalized health recommendations, and telemedicine.

7. Conclusion

This paper has traced the development of text representation methodologies from the
foundational Vector Space Model to advanced Attention-based architectures. Beginning with
the Vector Space Model, which utilized TF-IDF to numerically represent text, we observed
its limitations in capturing contextual semantics. The Distributional Hypothesis provided
a theoretical basis for more nuanced vector representations like Word2Vec, significantly en-
hancing our ability to capture word meanings based on context. RNNs marked a significant
advancement in processing sequential data but were constrained by issues like vanishing gra-
dients, which were effectively addressed by LSTM networks. LSTMs improved the handling
of long-term dependencies, making them vital for various NLP tasks. The introduction of
the Attention mechanism and the subsequent Transformer architecture revolutionized text
representation by allowing models to selectively focus on different parts of the input, cap-
turing complex dependencies with unprecedented accuracy. This evolution highlights the
remarkable strides made in text representation, culminating in sophisticated models that
continue to push the boundaries of natural language processing.

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.



2024] TEXT REPRESENTATION JOURNEY 141

Firth, J. (1957). A synopsis of linguistic theory, 1930-1955. Studies in Linguistic Analysis,
10–32.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146–162.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8), 1735–1780.
Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based

neural machine translation. arXiv preprint arXiv:1508.04025.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed

representations of words and phrases and their compositionality. Advances in Neural
Information Processing Systems, 26.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18, 613–620.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,  L.,
and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30.





Special Proceedings: ISBN #: 978-81-950383-5-0
26th Annual Conference, 26-28 February 2024; pp 143-160

Exploring COVID-19 Spatial Patterns in Indian Districts:
Ridge and Lasso Geographic Weighted Models for Spatial

Heterogeneity and Multicollinearity

Megha Sharma1 and Shalini Chandra1
1Department of Mathematics and Statistics

Banasthali Vidyapith, Rajasthan, India

Received: 22 June 2024; Revised: 28 July 2024; Accepted: 31 July 2024

Abstract
This study conduct a comprehensive spatial analysis of COVID-19 across districts

in India utilizing data from www.covidindia.org for confirmed cases and deaths, and inte-
grating population characteristics from the National Family Health Survey 5 (2019-2021)
and supplementary sources. The objective of the study is to uncover risk factors through
spatial modelling while mitigating multicollinearity using the concept of LASSO and ridge
regression. Employing spatial analysis, we identify COVID-19 hotspots and coldspots across
districts. High-impact districts including Mumbai, Pune, Chennai, Kolkata, and Bengaluru
are highlighted, along with lesser-affected districts in central and north-eastern regions. Anal-
ysis used geographical weighted regression (GWR) models, incorporating ridge and LASSO
techniques to assess the impact of demographic, socioeconomic, climatic, and comorbidity
factors on COVID-19 while accounting for spatial relationships. Notably, the GWR with
LASSO (GWL) outperforms the other models, with lower RMSE and a notably higher R2

value. This study reveal significant risk factors such as sanitation facilities, healthcare ameni-
ties, women’s education, tobacco/alcohol usage, urban population and density, comorbidity,
as well as climatic conditions. The GWL model’s localized coefficients offer valuable insights
into predictor relationships within each spatial unit.

Key words: COVID-19; Geographic weighted model; LASSO regression; Spatial association;
Ridge regression.

1. Introduction

The COVID-19 pandemic began in Wuhan, China, in December 2019, caused by
the SARS-CoV-2 virus (Li et al., 2020). The COVID-19 pandemic has had a profound
impact on individuals’ lives, the global economy, and public health. India has been hit
particularly hard, suffering economic disruption, unemployment, and a decline in GDP due
to COVID-19. The country’s healthcare system struggled with resource shortages, limited

Corresponding Author: Megha Sharma
Email: meghasharma15aug@gmail.com



144 M. SHARMA AND S. CHANDRA [SPL. PROC.

hospital space, and personnel shortages (Sridhar, 2023, Dutta et al., 2021). The pandemic has
also triggered social and psychological issues, including increased domestic violence, mental
health challenges, and gender inequality (Sardar et al., 2020). Numerous previous studies
have identified that social inequalities can facilitate the spread of diseases (Ahmed et al.,
2020). Poor living conditions (Pereira and Oliveira, 2020), population density (Rocklöv
and Sjödin, 2020), inadequate access to healthcare, and a large proportion of susceptible
population, such as the older and those with existing medical conditions (Dutta et al., 2021),
are all factors that make any region vulnerable to the spread of the virus. Temperature has
also been associated with COVID-19 severity, with similar findings in China (Chen et al.,
2020), Indonesia (Tosepu et al., 2020), Turkey (Chung et al., 2021), and the USA (Bashir
et al., 2020). Additional risk factors like the prevalence of slums within cities (Sridhar,
2023), smoking habits, and many more contribute to an increased risk of transmission and
disparities in access to prevention and treatment measures.

Spatial models have emerged as valuable tools for determining the relationships be-
tween the spread of infectious diseases and associated risk factors, incorporating the spatial
dimension. Spatial methods are employed to model particular variables at diverse geograph-
ical locations, allowing us to address the diversity caused by regional differences (known as
spatial heterogeneity) within the data. One effective method for identifying spatial hetero-
geneity is the Geographically Weighted Regression (GWR) model, which is highly effective
in accurately estimating parameters when analyzing COVID-19 data (Sarkar et al., 2021,
Ramı́rez-Aldana et al., 2020, Appiah-Otoo and Kursah, 2022, Adekunle et al., 2020). The
GWR model helps illustrate how the association between independent and dependent vari-
ables varies across distinct locations within the study area. However, a challenge arises
when the risk factors examined within each local model exhibit linear relationships, which
is referred to as local multicollinearity. This multicollinearity issue obstructs the precision
of parameter estimates and makes it difficult to distinguish the individual effects of these
variables.

In the context of addressing the challenge posed by multicollinearity in data, various
alternative methodologies have arisen as effective solutions. One such prominent technique is
ridge regression, initially proposed by Hoerl and Kennard in 1970 (Hoerl and Kennard, 1970),
which has become widely adopted for mitigating the issues associated with multicollinear-
ity. This shrinkage technique incorporates penalty terms into the regression framework to
shrink the coefficients, resulting in more stable parameter estimates and mitigate the effect
of multicollinearity. Ridge regression introduces a positive bias into the parameter estima-
tion process, effectively guiding the coefficients towards zero. Although this approach yeilds
baised results, it reduces variance. Recognizing the potential benefits of combining different
methodologies, researchers have explored various approaches, such as combining ridge re-
gression with the Liu estimator (Kejian, 1993) or integrating ridge regression with principal
component regression (Baye and Parker, 1984, Chandra and Sarkar, 2016), among others.
Additionally, in 1996, Tibshirani introduced a novel technique that has gained extensive at-
tention. The technique combines the advantages of ridge regression with variable selection
method, known as the Least Absolute Shrinkage and Selection Operator (LASSO) (Tib-
shirani, 1996). LASSO leverages the LARS algorithm (Least Angle Regression) to shrink
estimated coefficients towards zero and selectively sets less significant variables to precisely
zero. The resulting model is notably interpretable, retaining only the most meaningful pre-
dictors relevant to the outcome variable.
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Similar to their role in classical regression models, Ridge and LASSO techniques serve
to mitigate the impact of multicollinearity in spatial context. Likewise, in the context of
GWR model, tackling local multicollinearity is achievable through the incorporation of ridge
regression and the LASSO method. Specifically, the utilization of ridge regression within the
GWR framework is referred as GWRR, while the integration of the LASSO method with
GWR as GWL (Wheeler, 2007). In this study, GWRR and GWL models were applied to
investigate spatial heterogeneity and address multicollinearity concerns during the analysis
of the COVID-19 pandemic across 626 districts in India.

2. Data

2.1. Data collection

This study included districts from all states and union territories in India, except six
states: Assam, Delhi, Goa, Manipur, Telangana, and Sikkim, with no available COVID-19
updates at the district level in the state bulletin. This study took into account district
boundaries as of 2019. We extracted district-level data on daily confirmed cases of COVID-
19 and associated deaths in India from the website www.covidindia.org. This public domain
collects data through state bulletins and official handles. They halted the operation after 18
months of daily updates. As a result, this study limits the availability of data until October
2021. So far, several variables have impacted COVID-19 spread during these pandemic
outbreaks, from which some of the essential independent variables that may have affected
COVID-19 spread in Indian districts have been selected. Table 1 lists these independent
variables, their descriptions containing the reason behind taking these variables into our
study, and the sources from which they were obtained.

The data were sourced from various sources, with the primary contributor being
National Family Health Survey (NFHS-5). It is initiated by the Ministry of Health & Family
Welfare (MoHFW), Government of India, plays a vital role in assessing health conditions
in India. This extensive health survey is periodically conducted nationwide, offering health-
related indicators at the district, state, and national levels. NFHS-5 was conducted in India
during the time period of 2019-2021.

2.2. Data preparations and cleaning

India has undergone several surges of COVID-19 since the onset of the pandemic.
Specifically, India encountered two distinct waves of COVID-19 between December 2019 and
October 2021. These waves occurred during the periods of March 2020 to December 2020 and
January 2021 to October 2021, respectively. This research studied the cumulative confirmed
cases (CCC ) and cumulative deaths (deaths) during the first and second waves at the district
level in India. To facilitate the analysis, initial data preparation with a data cleaning pro-
cedure aimed at addressing issues like incomplete and duplicate entries by cross-referencing
data from various sources. Given the multi-sourced nature of the data, a pivotal step in-
volves data merging, wherein information from diverse origins is consolidated to establish
a unified reference point. As the data on risk factors and COVID-19 incidences originates
from distinct sources, it is imperative to standardize the data before any analysis can take
place. Standardization, in this context, entails bringing different variables onto a common
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Table 1: Lists of independent variables, their descriptions and justification and
the sources

Abre-
viation Indicators Assumptions/ Justifications Data sources

V1 Population below age
15 years

Older population have higher risk of
death after infected.

National Family
Health Survey
(NFHS-5) (2019-21)
(District factsheet)

V2 Population living in
households with electricity The environment in which people live

plays a significant role in the transmission
of COVID-19. Factors such as overcrowding,
sanitation and hand hygiene all contribute to
susceptibility and should not be overlooked.

V3
Population living in
households that use an
improved sanitation facility

V4 Households using clean
fuel for cooking

V5
Households with any usual
member covered under a
health insurance

Accessible healthcare systems,
affordability, capacity, and health security
are vital for managing epidemics and
promoting treatment-seeking.

V6 Women who are literate Women’s literacy empowers them with
knowledge, enabling them to understand
COVID-19 prevention, access reliable
information, and make informed decisions.

V7
Educated women
with 10+ years
of schooling

V8 Proportion of women
undernourished Undernourished and obesity weakened

immunity and elevate risk due to underlying
health problems when facing COVID-19.V9 Proportion of women

obese
V10 Tobacco use among

those 15+ Smoking or tobacco or any kind of alcohol
being exposed in any form can reduce the
risk of COVID-19 infection (WHO 2020).V11 Alcohol use among

those 15+
V12 Population Density High population density and urban areas

posing a higher risk for the spread of the
highly contagious SARS-CoV-2 virus.

Office of the
Registrar General
of IndiaV13 Proportion of urban

population

V14 Health Center [Sub center
+PHCs+ CHCs]

Higher population per healthcare institution
lower resilience in dealing with COVID-19.

Rural Health
statistics

V15 Hypertension among Adults Blood Sugar Level and Hypertension among
Adults (age 15+) may regulate the severity
of COVID-19 cases.

(NFHS-5)
V16 Adults’ blood sugar levels

(Age 15+)

V17 Average
temprature The severity of COVID-19 associated

with temperature and relative humidity
NASA open
data portal

V18 Relative
Humidity

V19 Proportion of poor
population

Studies have shown that areas with high
poverty rates tend to have higher rates of
COVID-19 infections.

Global Data Lab



2024] COVID-19 SPATIAL PATTERN IN INDIAN DISTRICTS 147

scale to enable comparisons across variable types. These steps were undertaken prior to the
transformation of the data into district-level counts and its merging with India’s district
administrative boundary shape file from the DIV-GIS database using ArcGIS Desktop 10.7.

2.3. Data description

This study involves 19 dependent variables and two independent variables (CCC and
deaths), with data collected from diverse sources across 626 districts in India, resulting in
around 13,000 observations—an extensive dataset for analysis. Emphasizing spatial analysis
as the foundation, we prioritize reviewing the data before applying statistical methods.

During the first and second phases of the pandemic, specific Indian districts, includ-
ing Bangalore, Mysuru, Belagavi, Pune, Mumbai, Thane, Nagpur, Ernakulam, Malappuram,
Nashik, Kollam, Kolkata, Chennai, Coimbatore, Chittoor, and others in Kerala, Tamil Nadu,
Andhra Pradesh, West Bengal, witnessed elevated COVID-19 cases and deaths. Geographi-
cal variations were evident, with northern and central states like Lucknow, Varanasi, Kanpur,
Jaipur, Jodhpur, Ludhiana, and Jalandhar heavily affected, while areas like Hathras, Ma-
hoba, Burhanpur, Agar Malwa, Mandla, and Baranala reported fewer cases. Central and
northeastern regions generally had lower confirmed cases and deaths in both waves.

According to the data, higher population density is observed in Bihar, West Bengal,
and Kerala, with 29 districts among the top 10%. On average, 4.24% of the population in
these districts is aged 65 and above. Notably, Maharashtra, Kerala, Karnataka, Goa, and
Punjab display a significant prevalence of districts with an aging population. Specifically,
15 out of Maharashtra’s 36 districts and 9 out of Kerala’s 14 districts rank in the top
10% for the percentage of elderly population. On average, 20.19% of households in Indian
districts lack water supply within their premises. The data reveal pronounced water supply
challenges in numerous districts of Odisha, Madhya Pradesh, and Rajasthan. Noteworthy
is that 12 out of 14 districts in Kerala and 21 out of 30 districts in Tamil Nadu are in the
highest quartile (>27%) for the proportion of women grappling with obesity. Additionally, 10
districts in Andhra Pradesh and 5 in Maharashtra fall into this category. Kerala, Goa, Tamil
Nadu, and Andhra Pradesh also exhibit a significant presence of districts with the highest
percentages (>7.5%) of the population facing elevated blood sugar levels. The data highlight
certain districts in Rajasthan, such as Jaisalmer and Barmer, known for extremely high
temperatures. Districts in the northern plains, including parts of Uttar Pradesh, Bihar, and
Haryana, may also experience high temperatures. Gujarat, Maharashtra, and certain parts
of Kerala might encounter high humidity levels. Alcohol and tobacco consumption is notably
high in districts of northeastern states, Punjab, Goa, and select districts in Rajasthan.

According to the National Family Health Survey (NFHS-5), about 41% of India’s
total population has at least one member enrolled in health insurance or a health scheme.
Rajasthan and Andhra Pradesh lead with the highest proportions of households covered (88%
and 80%, respectively), while the Andaman and Nicobar Islands and Jammu and Kashmir
show the lowest coverage, each below 15%.
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2.4. Visualization and exploration

By using visualization techniques, patterns and discrepancies in the data are identi-
fied. The most widely used approach for visualizing this type of data is through choropleth
maps that employ quantile breaks. These maps use various colors to depict the intensity of
variables of interest in each geographic region. Such maps have been included in the study to
present the spatial distribution of COVID cases and deaths in further sections. Exploration
of spatial data includes cluster analysis to identify whether observed spatial patterns are
random, using either nonspecific (global) or specific (local) techniques. Moran’s I statistic,
a global technique, is employed to ascertain cluster presence across the entire study area.
Moran’s I computes global spatial autocorrelation among observations and ranges from -1
to 1. Negative values indicate dispersion (clustering of dissimilar values), positive values in-
dicate clustering (clustering of similar values), and values near zero suggest absolute spatial
randomness, implying no autocorrelation. However, because Moran’s I statistic is incapable
of providing precise information on cluster locations, the LISA (local indicators of spatial
association) tool was utilized to calculate local spatial autocorrelation. This method de-
scribes significant correlations at specific locations as local spatial clusters (hot spots) or
correlations between observations and neighboring observations Anselin (1995). The next
section is about the models and estimators considered in this study.

3. The models and estimators

3.1. Geographical weighted regression (GWR)

The GWR model estimated local interactions between the dependent and independent
variables by fitting a regression model to each feature (spatial unit) in the dataset (Brunsdon
et al. (1998)). The GWR model for each feature is

yi = βi0 +
m∑

j=1
Xijβij + ϵi, i = 1, 2, ..., n. (1)

where yi represents the dependent variable at a specific location i, βi0 stands for the intercept
parameter at that same location i, βij symbolizes the local regression coefficient pertaining
to the jth explanatory variable at location i, Xij signifies the value of the jth explanatory
variable at location i, and ϵi corresponds to the random error observed at location i. The
parameters estimates for each independent variable at ith location is given by

ˆβ(i) = (XT W (i)X)−1XT W (i)y (2)

where ˆβ(i) is m × 1 vector of parameter estimates, W (i) is spatial weight matrix calculated
by the exponential kernel function which is defined as

wk(i) =


[
1 −

(
dik

bw

)2
]2

, if k ∈ {Ni}

0, if k /∈ {Ni}
(3)

where dik is the distance between feature location i & k with bandwidth bw derived from
the Euclidean distance between observation locations and neighboring points, this measure
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ensures that the region remains influenced by proximate neighbors within this radius. The
set Ni includes observations within this N th nearest neighbor distance. Weights are zero for
observations beyond this range, except for observation i which gets a weight of 1. Kernel
function assigns higher weights to observations that are closer to the calibration location i.
To fit the GWR model, the kernel bandwidth is estimated through cross-validation (CV)
using all feature locations, followed by weight calculation using (3). CV function is outlined
as

CV (bw) =
n∑

i=1
[yi − ŷ ̸=i(bw)]2 (4)

where, ŷ ̸=i(bw) is the estimated value of y achieved by excluding the data point at the ith

location during prediction. The bandwidth bw will be derived through an iterative procedure
aiming to minimize the CV score.

3.2. Addressing multicollinearity: diagnosis and remediation

Collinearity’s presence among independent variables can diminish the precision of co-
efficients (Wheeler and Tiefelsdorf (2005)). There are valuable diagnostic tools designed to
uncover collinearity issues that might disrupt the interpretation of estimated regression coef-
ficients. These diagnostic methods are derived from conventional regression techniques. Ap-
proaches for identifying collinearity among independent variables comprise metrics like vari-
ance inflation factors (VIF) and condition indices. Moreover, Ridge regression and LASSO
are frequently employed methods for mitigating the multicollinearity.

Ridge regression

Ridge regression was uniquely formulated to alleviate the impacts of collinearity
through the imposition of penalties on the magnitudes of regression coefficients. This strat-
egy diminishes the impact of variables with comparatively low variance within the model.
The parameter for ridge regression is determined by minimizing the sum of squared errors,
introducing constraints that compel coefficients to approach zero (Hoerl and Kennard, 1970).
More precisely, the ridge estimator coefficient is derived by minimizing the equation

β̂R =
n∑

i=1

yi − β0 −
m∑

j=1
xijβi

2

(5)

with ∑m
j=1(βi)2 ≤ ρ, where ρ is a control shrinkage amount. Then parameter estimates is

obtained by
ˆβ(i)R = (XT X + CI)−1XT y (6)

where I is an identity matrices and C represents positive coefficient bias.

Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is the regularization and penalization technique which shrinks the regres-
sion coefficients towards zero, also puts least significant variable coefficients to zero. This
leads to a simplified and interpretative model, retaining only the significant predictors for
the outcome variable (Tibshirani, 1996). The coefficients of Lasso parameters cannot be
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directly calculated through closed-form equations, unlike Ridge regression. Instead, they are
determined using quadratic programming techniques. LASSO is defined as follows as

β̂ = argmin
n∑

i=1

yi − β0 −
p∑

j=1
xijβj

2

. (7)

where ∑p
i=j|β̂j| ≤ tp (threshold parameter). It is established that tp is a parameter governing

the level of shrinkage in LASSO coefficient estimation, where tp ≥ 0.

3.3. Geographic Weighted Ridge Regression (GWRR)

GWRR is a modified technique within the domain of spatial regression, in which
GWR model combine with the ridge regression (Wheeler, 2009). Estimator of parameters of
GWRR model at ith location is obtained by

ˆβ(i)GW RR = (XT W (i)X + CI)−1XT W (i)y. (8)

The process involves predicting bandwidth values to form a weighted matrix, minimizing
bias using CV, and iteratively determining the coefficient value C for each bandwidth. These
results are then applied to estimate spatial model with ridge regression coefficients.

3.4. Geographically Weighted LASSO (GWL)

LASSO’s application within a GWR model, later recognized as Geographically Weighted
LASSO (GWL), addresses spatial variations and local multicollinearity. GWL offers unbiased
coefficient estimates and enhances prediction accuracy (Wheeler, 2009). LASSO parameter
estimation in GWL is executed concurrently, relying on a pre-established kernel bandwidth.
During the GWL parameter estimation process, the shrinkage (s) value is determined prior
to the final LASSO solution. Shrinkage parameter estimation in GWL’s LASSO model is
achieved through cross-validation (CV), resulting in a distinct shrinkage parameter for each
geographical location.

4. Model selection criteria

Coefficient of determination (R2) and root mean square error (RMSE) were used to
compare the performances of various models. R2 measures the goodness of fit; its values
range from 0 to 1. Furthermore RMSE calculated how closely predicted values align with
actual observations by measuring the average error magnitude. The model with lower RMSE
value and higher value of R2 better fits the observed data. In this study, analysis have been
performed in R software version 4.3.1 using various packages such as sp, spgwr, spdep, gwrr,
and spatstat.

5. Empirical findings

5.1. Visualization and exploration

This study employed choropleth maps using quantile breaks to visualize the total
confirmed cases and total deaths during the pandemic outbreak, yielding successful results.
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These maps use various colors to depict the intensity of variables of interest in geographic
region. Referring to Figure 1, the districts that exhibited the highest numbers of confirmed
COVID-19 cases and deaths were Bangaluru, Mysuru, Belagavi, and 13 other districts in
Karnataka. Additionally, in Maharashtra, the districts of Pune, Mumbai, Thane, Nagpur,
and 29 out of 35 districts stood out. Similar trends were observed in Kerala, Tamil Nadu,
Andhra Pradesh, and West Bengal, particularly in districts such as Ernakulam, Malappu-
ram, Nashik, Kollam, Kolkata, Chennai, Coimbatore, Chittoor, and their adjacent districts.
These districts were among the most affected during the entire duration of the pandemic
analyzed in this study. There were marked geographical distinctions among the northern
and central states of India, with some districts like Lucknow, Varanasi, Kanpur, Jaipur,
Jodhpur, Ludhiana and Jalandhar experiencing a high level of contagion while other areas
like Hathras, Mahoba, Burahnpur, Agar Malwa, Mandla and Baranala and the locations
around them having a much lesser effect. In contrast, the central and northeastern regions
districts had the fewest confirmed cases and deaths in both waves. The global Moran’s I
statistic values for cumulative confirmed cases and deaths due to COVID-19 were significant
for both waves (0.31, 0.43, and 0.27, 0.43, respectively, with p-value=0.0001[< 0.05]), in-
dicating strong spatial autocorrelation among Indian districts. Further, the LISA tool was
employed to identify significant local clustering and detect non-clustered areas within the
study that may be missed by global tests.

Using the LISA tool, the study found that the districts with the highest concentra-
tion of confirmed cases and deaths during both waves were the same, including Maharashtra,
Kerala, Andhra Pradesh, West Bengal, and Karnataka. In contrast, the northern and cen-
tral regions exhibited low clustering during the first wave, and the central region was also
identified as having low clustering in the second wave (see Figure-2) and only a few districts
fell into the high-low and low-high clusters.

5.2. Spatial modelling

The dataset encompassing all independent variables used in this study exhibits con-
sistent values across both waves of COVID-19. With the aim of exploring the influence of
these variables on the occurrences of COVID-19 cases and related fatalities, a comprehen-
sive approach was adopted by examining the entire temporal span. The outcomes of the
Global Moran’s I test [Value of Global Morna’s I= 0.42 for CCC and 0.45 for deaths] and
the Breusch-Pagan test with p-value = 0.0001 < 0.05 indicate that the data employed in
this study exhibit noteworthy spatial heterogeneity.

5.2.1. Local multicollinearity

The presence of multicollinearity among independent variables can be ascertained
by examining the VIF values of local observations and the condition index specific to that
particular location. The summary of VIF values and condition indices is presented in the
Table 2 as the GWR model incorporates all these independent variables to predict total
confirmed cases and total number of deaths.

Upon referencing the table 2, it becomes evident that numerous locations exhibit VIF
values and condition indices exceeding 30, indicating a significant level of concern regard-
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(a) (b)

(c) (d)

Figure 1: Quantitative spatial distribution of Cumulative confirmed cases (a, c)
and Total deaths (b, d) in 1st wave and 2nd wave respectively in Indian districts
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(a) (b)

(c) (d)

Figure 2: LISA clusters of Cumulative confirmed cases (a, c) and Total deaths
(b, d) associated with COVID-19 in 1st wave and 2nd wave respectively in Indian
districts



154 M. SHARMA AND S. CHANDRA [SPL. PROC.

Table 2: Summary table of VIF and condition index at local level

CCC deaths
VIF Min. Mean Max. min. Mean Max.
V1 3.049 3.23 3.416 3.037 3.954 4.955
V2 1.525 1.541 1.555 1.493 1.682 1.889
V3 2.516 2.657 2.87 2.208 3.056 5.138
V4 3.3 3.446 3.547 3.161 3.964 5.407
V5 1.339 1.419 1.452 1.327 1.828 2.244
V6 6.164 6.292 6.47 6.189 8.00 10.517
V7 5.055 5.194 5.462 4.759 6.672 9.71
V8 26.09 28.49 33.56 16.99 24.53 46.43
V9 19.36 20.12 22.43 14.28 21.31 31.89
V10 1.766 1.813 1.898 1.643 2.135 2.71
V11 1.688 1.814 2.155 1.18 1.877 3.338
V12 1.321 1.326 1.336 1.303 1.408 1.527
V13 2.509 2.551 2.593 2.302 2.63 3.096
V14 1.061 1.067 1.076 1.086 1.166 1.403
V15 25.89 28.06 32.71 17.13 23.41 42.63
V16 21.79 23.44 25.01 16.24 23.5 34.16
V17 1.829 2.008 2.336 1.275 3.074 7.281
V18 2.442 2.561 2.75 1.886 3.372 5.957
V19 2.546 2.71 2.906 1.876 3.298 4.901
CI 18.15 19.96 24.26 16.26 22.26 40.51

ing multicollinearity at particular location. This degree of multicollinearity contributes to
heightened variability in the coefficient parameters, leading to less stable results. Further-
more, the existence of multicollinearity gives rise to an unstable model, a fact that becomes
apparent through the modification of the classical GWR model. This modification involves
the integration of multicollinearity mitigation techniques such as LASSO and ridge regres-
sion. The enhanced GWR model’s effectiveness can be observed in the Table 3, where a
comparison is made between the GWR model, the GWRR (Geographically Weighted Ridge
Regression) model, and the GWL (Geographically Weighted LASSO Regression) model.

Table 3: Comparison table of modified and unmodified GWR model

GWR GWRR GWL

CCC
RMSE 0.7921 0.5322 0.4630
R2 0.4558 0.7162 0.8371
bw 4.9686 0.7724 0.0361

deaths
RMSE 0.6978 0.4597 0.4398
R2 0.534 0.8214 0.8625
bw 3.1805 0.6197 0.3012

Upon evaluating the RMSE scores and R-squared values, it becomes apparent that
the GWL model delivers the most accurate fit across the entire duration (refer to the Table
3). The GWL model is capable of explaining an average of 83% of the variation in cumulative
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COVID-19 cases and 86% of the variation in COVID-19-related deaths across all districts
of India, taking care of the challenge posed by multicollinearity. Furthermore, the GWL
model provides a coherent interpretation for the disparities in confirmed COVID-19 cases
and associated deaths among Indian districts. A comprehensive summary of coefficient
estimates for all independent variables within the GWL model will be presented in the
subsequent section.

5.2.2. GWL model summary

In GWL modelling, similar to how LASSO works, the importance of coefficients
gradually decreases until they become zero due to shrinkage. When a coefficient reaches
zero, it loses its influence on the outcomes of the model. Through an iteration process
driven by cross-validation, GWL yields a bandwidth value of 0.09 for CCC and 0.89 for
deaths. This bandwidth parameter, along with the associated shrinkage value, contributes
to the delineation of GWL’s specific parameters, all of which are detailed in the Table-4.

Referring to the summarized Table-4, it becomes evident that certain independent
variables - such as Population age, households with electricity, the percentage of women who
are obese, and relative humidity - possess either a zero or near-zero mean coefficient value
across all regions in the context of modelling total confirmed cases. This observation signifies
that these variables exert negligible influence on the incidence of COVID-19 cases. Similarly,
when it comes to predicting the number of deaths, both relative humidity and household
electrification also demonstrate insignificant effects. However, in contrast to COVID-19
cases, the prediction of COVID-19 deaths shows a positive association with individual age,
underscoring the elevated risk of mortality among the elderly population subsequent to
infection.

The cumulative confirmed COVID-19 cases in an Indian district are linked positively
to factors such as the availability of sanitation facilities and healthcare services, the per-
centage of undernourished women, tobacco and alcohol consumption, population density,
urbanization, average temperature, and the education level of women. Conversely, they are
negatively associated with the number of people living in poverty. However, concerning the
total number of COVID-19 related deaths, there is a negative correlation with the availability
of sanitation facilities and health insurance coverage.

The data presented in the Table-4 indicates that the GWL model zeroes out coef-
ficients for various factors in different locations, resulting in varied parameter magnitudes
across regions. As a result, the GWL model generates distinct models with differing coeffi-
cients for various locations. To illustrate this, we have provided the model for the two most
severely impacted districts (Pune and Bengaluru) in different zones.

y∗(TCCP une) = 4.55 − 0.0525V 3∗ + 0.115V 4∗ + 0.24V 6∗ + 0.13V 7∗

− 0.65V 8∗ + 0.11V 9∗ + 0.33V 11∗ + 0.33V 13∗ + 0.51V 16∗ + 0.20V 18∗

y∗(DeathsP une) = 2.33 + 0.09V 1∗ − 0.001V 3∗ + 0.0086V 4∗ + 0.076V 6∗

− 0.047V 8∗ + 0.032V 9∗ + 0.75V 11∗ + 0.007V 13∗ + 0.078V 16∗ + 0.0091V 17∗
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Table 4: Summary statistics for GWL parameter estimates

CCC deaths
Intercept V1 V2 V3 V4 Intercept V1 V2 V3 V4

Min. -2.361 -0.018 -0.016 -0.025 0.000 -2.516 -0.04321 -0.027 -0.147 0.000
1st Qu -0.150 0.000 0.000 0.000 0.011 -0.141 0.000 0.000 0.000 0.110
median 0.000 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.137
mean 0.039 0.001 0.000 0.002 0.036 0.0257 -0.003 0.000 -0.010 0.119
3rd Qu. 0.000 0.000 0.000 0.000 0.054 0.000 0.000 0.000 0.000 0.155
Max. 4.301 0.126 0.000 0.131 0.101 4.908 0.111 0.000 0.000 0.209

V5 V6 V7 V8 V9 V5 V6 V7 V8 V9
Min. -0.087 -0.054 0.000 -0.591 -0.514 -0.145 0.000 -0.016 -0.660 -0.413
1st Qu 0.000 0.000 0.075 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 0.000 0.000 0.104 0.000 0.000 0.000 0.036 0.016 0.000 0.000
mean -0.002 -0.001 0.117 0.003 -0.014 -0.001 0.048 0.020 -0.015 -0.005
3rd Qu. 0.000 0.000 0.169 0.000 0.000 0.000 0.076 0.034 0.000 0.000
Max. 0.029 0.037 0.355 0.070 0.000 0.000 0.337 0.143 0.000 0.000

V10 V11 V12 V13 V14 V10 V11 V12 V13 V14
Min. -0.002 -0.038 0.000 0.000 0.000 0.000 0 0.000 0.024 0.000
1st Qu. 0.000 0.000 0.030 0.110 0.000 0.000 0.000 0.143 0.080 0.000
median 0.000 0.000 0.094 0.125 0.000 0.000 0.000 0.199 0.090 0.000
mean 0.001 0.003 0.088 0.113 0.005 0.001 0.000 0.176 0.083 0.001
3rd Qu. 0.000 0.000 0.136 0.135 0.000 0.000 0.000 0.245 0.101 0.000
Max. 0.089 0.062 0.246 0.152 0.089 0.116 0.101 0.344 0.110 0.029

V15 V16 V17 V18 V19 V15 V16 V17 V18 V19
Min. 0.000 0.000 -0.003 -0.052 -0.119 0.000 0.000 -0.068 -0.182 -0.136
1st Qu. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mean 0.039 0.012 0.028 0.010 -0.003 0.006 0.006 0.024 0.000 -0.001
3rd Qu. 0.058 0.000 0.032 0.000 0.000 0.000 0.000 0.045 0.000 0.000
Max. 0.602 0.489 0.221 0.222 0.000 0.520 0.440 0.147 0.113 0.000

y∗(TCCBengaluru) = 0.213 − 0.0034V 6 + 0.029V 12∗ + 0.23V 13∗ − 0.65V 14∗

+ 0.063V 15∗ + 0.031V 16∗

y∗(DeathsBengaluru) = 1.84 + 0.004V 1∗ + 0.0076V 8∗ + 0.043V 9∗ + 0.0027V 13∗

+ 0.032V 16∗ + 0.0038V 17∗

6. Discussion

The current research implemented spatial analysis techniques to analyse the spatial
distribution and clustering of COVID-19 in Indian districts. The data indicated a significant
spatial heterogeneity in the distribution of COVID-19 across the country, with clusters of
cases and deaths found to be almost identical for both waves with high intensity. The main
reason for the lack of change in hotspots from the first to the second wave is attributed to
the need to identify and monitor hotspots in the first wave properly. Further, the resurgence
of cases has been linked to mass gatherings and non-adherence to safety protocols such as
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wearing masks, social distancing, and handwashing. Significant clustering of COVID-19 cases
was identified in specific districts of Maharashtra, Kerala, Andhra Pradesh, West Bengal,
and Karnataka, forming clusters characterized by high numbers of COVID-19 cases and
deaths. Conversely, districts in the northern and southern regions formed clusters with low
COVID-19 cases and deaths. These findings imply that the risk of infection was not same
across districts. The observed spatial autocorrelation suggests that the disease may spread
from high-risk districts to neighbouring areas, underscoring the importance of coordinated
efforts to control the spread of the disease across all districts. The findings of this study
suggest that proper identification and monitoring of hotspots in the first wave could have
enabled more effective management of COVID-19 cases in the second wave.

Spatial models have demonstrated their usefulness as tools for comprehending and
examining pandemic behaviour. Nevertheless, the issue of multicollinearity often poses a
challenge for these models. In the present study, it was observed that the independent
variables utilized to identify risk factors exhibited a considerable degree of collinearity. In
response to this concern, the ridge and LASSO techniques were initially employed on the
spatial models. It was discovered that among the spatial models implemented in this re-
search, the GWL model exhibited superior performance. By integrating spatially varying
coefficients, the GWL model effectively captured localized fluctuations and heterogeneity
in the association between the dependent and independent variables, while also addressing
collinearity concerns among the independent variables. Although the GWL model generates
different models and identifies significant independent variables for different locations, this
study also determined the independent variables that, on average, influence COVID-19 cases
and deaths across Indian districts.

The findings of the GWL model demonstrated a positive relationship between the
high temperatures and the spread of the COVID-19 virus. This relationship is supported by
epidemiological evidence indicating that an increase in ambient temperature can result in a
higher transmission rate (Chen et al. (2020), Tosepu et al. (2020), Bashir et al. (2020)). The
virus can endure in the air longer at higher temperatures and be more easily transmitted
through droplets. Additionally, greater access to healthcare facilities was positively corre-
lated with more accurate diagnosis and reporting of COVID-19 cases and deaths, which may
explain the higher number of cases and deaths in these areas. Furthermore, areas with a
high proportion of the population having alcohol and tobacco consumption, and high liter-
acy rates among women were also positively associated. Smoking and drinking habits can
weaken the immune system and make individuals more susceptible to the virus. High lit-
eracy rates among women could increase awareness of the virus and its symptoms, increase
testing, more accurate diagnosis and reporting of cases, and increase transmission oppor-
tunities. Consistent with prior investigations, the proportion of the population residing in
urban settings and the density of specific districts exerted anticipated effects on COVID-19
incidence and mortality within those particular areas. Conversely, certain variables like rel-
ative humidity, household access to electricity, and possession of health insurance exhibited
negligible influence on COVID-19 patterns in Indian districts. Furthermore, no specific age
group demonstrated disproportionate susceptibility to COVID-19; however, elderly individ-
uals were identified as having an elevated risk of mortality attributed to the virus.

The GWL model introduces spatial variability in coefficients, capturing differences in
various locations. The range of coefficients gives insight into how relationships between vari-
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ables change across space. The GWL model’s findings help understand the degree to which
the identified risk factors account for differences in COVID-19 cases and deaths in diverse
districts. For instance, districts like Mumbai, Chennai, Pune, Kolkata, Sagar, Jabalpur,
Narshimpur, Raisen, Porbandar, Junagarh, and Somnath exhibit significant variation in
COVID-19 outcomes (ranging from 80 to 86 percent). This highlights the strong impact
of the identified risk factors in these areas. Conversely, the considered variables struggle
to explain variations in certain districts, particularly in parts of Punjab (such as Bhatinda,
Faridkot, Moga) and the northeastern region. Similarly, regions like Sirsa, Panchkula, and
districts in Himachal Pradesh, JK, and Ladhak have limited explanatory capability. These
anomalous ranges of coefficient estimate in these regions suggest that other unaccounted
factors may play a more significant role in shaping COVID-19 outcomes.

The overall findings suggest that addressing multicollinearity in spatial models can
significantly enhance their robustness and reliability. By mitigating the impact of collinear-
ity among independent variables, researchers can obtain more accurate and trustworthy
results. Consequently, this enables the identification of high-risk districts where targeted
interventions can be implemented. Measures such as rigorous testing and contact tracing,
targeted lockdowns, and intensified public health messaging can be strategically deployed
to effectively control and mitigate the spread of the virus in these specific areas. However,
limitations of the study include its reliance on reported case counts and its focus on only
two waves of the pandemic due to data unavailability, which may not capture the full impact
of the virus. Therefore, future research should address these shortcomings to develop more
effective strategies for mitigating them.

7. Conclusion

This study aimed to employ spatial econometric modelling methods to enhance un-
derstanding of the spatial structures and associations among locations in India and to analyse
the transmission patterns of COVID-19. By considering spatial proximity, the study assessed
the impact of demographic, socioeconomic, climatic, and comorbidity on total COVID-19
cases and deaths across districts in India. Additionally, this study addressed the issue of mul-
ticollinearity in spatial models through the utilization of ridge and LASSO techniques. This
approach successfully reduced interdependence among variables and improved the model’s
accuracy, allowing for the identification of key risk factors associated with the phenomenon
under investigation. Significantly, the study brought to light the influence of distinct district
factors on the occurrence of COVID-19. These factors encompass sanitation facilities, acces-
sibility to healthcare, pre-existing medical conditions like high blood pressure and diabetes,
women’s educational levels, rates of tobacco and alcohol consumption, climatic conditions,
and the presence of undernourished women. Moreover, the research established that older
populations are at a heightened risk of mortality following infection with COVID-19. The
findings of this study can inform the development of prevention strategies and strengthen
public health capacities, particularly in regions where the healthcare system may be limited.
However, it is worth noting that a limitation of the analysis was the lack of district-level
data on deaths beyond October 2021 in India.
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Abstract
The interpretation of clinical laboratory results of patients depends crucially on an

established reference interval for each biochemical analyte. Often, the health status of a
patient is decided based on the values of multiple analytes, and this calls for the use of a
multivariate reference region, so that the possible cross-correlations among the analytes can
be taken into consideration. If multivariate normality can be assumed, one of the recom-
mendations in the laboratory medicine literature is to use an ellipsoidal prediction region
as a reference region. However, an ellipsoidal region cannot detect if a particular analyte
is within the normal range; a rectangular prediction region is necessary for this purpose.
Under multivariate normality, rectangular prediction regions are available in the literature,
and these can be used as reference regions for assessing the outlyingness of individual ana-
lytes. The present work is motivated by the need to construct such regions without making
the multivariate normality assumption. Two approaches are pursued in our work: based on
Box-Cox transformation of each marginal variable, and based on estimating each marginal
density using a kernel density estimator. A non-parametric bootstrap is then employed for
estimating the required prediction factors. Through simulations, it is noted that the result-
ing rectangular prediction regions meet the coverage probability requirements satisfactorily.
The methodology can also be adopted for computing one sided prediction limits, or a com-
bination of one-sided prediction limits for some variables, and two-sided prediction intervals
for the rest. Algorithms are provided to compute the regions, and illustrative examples are
also given.

Key words: Bootstrap; Box-Cox transformation; Kernel density estimator; One-sided pre-
diction limits; Two-sided prediction intervals.

1. Introduction

Reference intervals are used in numerous medical applications such as the interpre-
tation of blood tests, clinical urine tests, vital signs, and so forth. Due to the extensive
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applications of reference intervals in the field of laboratory medicine, Horn and Pesce (2005)
have called it “the most widely used medical decision-making tool.” A reference interval
is defined as the interval that contains 95% of the “central measurements” for a reference
population. Thus, the endpoints of a two-sided reference intervals are the 2.5th and 97.5th
percentiles of the reference population. If only a one-sided reference limit is of interest, then
the required reference limit is either the 95th percentile (for an upper reference limit), or the
5th percentile (for the lower reference limit).

Since the population percentiles are unknown in actual practice, reference ranges are
typically constructed based on data from a random sample of individuals (reference subjects).
The selection of reference subjects is obviously critically important, and the prevailing view
is that the reference subjects should consist of healthy subjects. For example, Wellek (2011)
mentions that a population suitable for establishing reference values should consist of people
free of the disease condition one aims to detect. A naive way to construct reference intervals
using the available data is to use estimated sample percentiles. Under such a scheme, the
percentage of the population covered by the resulting reference interval will be different from
95%. As an alternative to this, a common approach is to compute a 95% prediction interval
and use it as a reference interval. This approach has been recommended in practice; see
the document by the National Committee for Clinical Laboratory Standards (2010) and the
User’s Guide by Horn and Pesce (2005). Another option, advocated by authors such as Liu
et al. (2021) and Lucagbo and Mathew (2023) is to compute a 95% tolerance interval, which
can be used to assess the uncertainty in the estimated reference intervals. In this study, we
adopt the prediction interval criterion.

For complex diagnoses, such as for kidney function or liver function, several analytes
are needed to properly assess the health status of a patient. For such scenarios, the use of
separate univariate reference intervals is an inefficient way to proceed since such an approach
disregards the cross-correlations among the analytes. Moreover, it increases the risk of false-
positive diagnoses (Harris, 1981; Winkel et al., 1972). When multiple analytes are needed
to assess the health status of individuals, a multivariate reference region (MRR), which
accounts for the cross-correlations among analytes, is needed. Nonetheless, MRRs are not
without shortcomings. The conventional approach to compute MRRs, especially under the
assumption of multivariate normality, is to construct ellipsoidal regions. Unfortunately,
ellipsoidal reference regions are difficult to interpret. Moreover, ellipsoidal reference regions
tend to produce false negative results in the presence of only one or two extreme components
(Albert and Harris, 1987; Strike, 1991). Finally, ellipsoidal regions are unable to detect
component-wise outliers. In other words, whenever patients are diagnosed as non-healthy
based on an MRR, no conclusion can be drawn on which specific analyte/s have caused the
positive result. For this reason, Wellek (2011) notes that MRRs “have only a marginal role
in the practice of clinical chemistry and laboratory medicine.”

To address the above difficulties associated with ellipsoidal reference regions, this
paper aims to derive rectangular reference regions, which are easily interpretable regions
that can detect the outlyingness of specific analytes. In view of the fact that laboratory
test results are typically skewed (or at least not normally distributed), we shall derive such
regions under a nonparametric framework. Previous work on nonparametric reference regions
includes that of Wellek (2011) and Young and Mathew (2020). The work of Wellek (2011)
includes both parametric and nonparametric estimation of rectangular reference regions.
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Rectangular prediction regions are derived in Young and Mathew (2020); however, fairly
large sample sizes are required for meeting the coverage probability requirement.

In the present investigation, we aim to develop rectangular nonparametric prediction
regions to be used as reference regions. The methodologies described in this study are based
on either transforming the marginal data using a Box-Cox transformation, or estimating the
marginal densities through kernel density estimation. The accuracy of these approaches will
be assessed by reporting the relevant coverage probabilities. We investigate the performance
of the proposed methodologies using sample sizes starting from n = 50.

1.1. Rectangular prediction regions

We now define the criterion to be used in obtaining the rectangular nonparametric
reference region. Our goal is to find a rectangular reference region of the form (1)

[c1, d1] × [c2, d2] × · · · × [cp, dp] , (1)

subject to the prediction region criterion in (2)

P

( p⋂
i=1

{Xi ∈ [ci, di]}
)

= 1 − α. (2)

It should be clear that the set of intervals [ci, di], i = 1, 2, · · · , p, satisfying the above require-
ment is not unique. Nevertheless, it is to be expected that each marginal interval [ci, di],
i = 1, 2, · · · , p, can be appropriately specified if we know the marginal distributions. In the
absence of any information on the marginal distributions, we shall explore two options. The
first option is to apply separate Box-Cox transformations to each set of marginal data, so
that each marginal distribution is approximately normal. We can now specify a common
prediction factor on the transformed scale, which can be estimated via a nonparametric
bootstrap subject to the requirement in (2). Details of this appear in Section 2. The second
approach, described in Section 3, uses the kernel density estimate (KDE) of the marginal
densities, which also leads to a common prediction factor. In the same section, we also ex-
tend the KDE idea in order to construct mixed-sided prediction regions. These are regions
where some variables have an upper prediction limits and the rest have two-sided prediction
intervals. Section 4 gives numerical results on estimated coverage probabilities in order to
assess the accuracy of the proposed methodologies and illustrates the methodologies through
a real-life example. Section 5 gives some brief concluding remarks.

2. Nonparametric prediction regions using the Box-Cox transformation

Our first strategy to deal with the problem of computing nonparametric rectangular
prediction regions is to transform the marginal data so that it has a normal distribution,
approximately. Ichihara and Boyd (2010) note that “Since almost all distributions of labora-
tory test results are non-Gaussian, it is essential to convert these to a Gaussian distribution.”
They investigate transformation to normality using the Box-Cox transformation (Box and
Cox, 1964) and also a modified Box-Cox formula introduced by Ichihara and Kawai (1997).
The International Federation of Clinical Chemisty (IFCC) Expert Committee on Reference
Intervals has actually recommended the Box-Cox transformation to normality for the pur-
pose of computing reference intervals (Solberg, 1987). In other words, the idea of using the
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Box-Cox transformation in the context of computing reference intervals is already mentioned
in the literature, but only in the univariate context.

We shall employ the Box-Cox transformation to develop rectangular reference regions
in a nonparametric setup. The prediction factor is computed based on the transformed data,
under the assumption that the data are approximately normal. Here we want to point out
that we shall apply the Box-Cox transformation to the sample from each univariate marginal
distribution. In other words, the transformation is univariate, not multivariate. As will be
seen shortly, normality will not be fully utilized when we derive the prediction factor, since
we will be employing a nonparametric bootstrap procedure. However, normality is perhaps
necessary to justify the use of a common prediction factor.

Suppose that the data X1, X2, . . . , Xn consist of a random sample coming from an
unknown multivariate distribution with nonnegative support, where

Xi = (Xi1, Xi2, . . . , Xip)′

is a p-variate vector, i = 1, 2, . . . , n. For each fixed j = 1, 2, . . . , p, X1j, X2j . . . , Xnj, form a
random sample from the univariate marginal distribution of the jth component. We assume
that these random variables can be transformed as

Yij = gj (Xij) (3)

so that their distribution is approximately normal. The transformation could be different
for the different components. Once such a transformation has been identified, we can then
construct prediction regions for the transformed data Yij, i = 1, 2, . . . , n; j = 1, 2, . . . , p.
Since the transformed data are assumed to be approximately normal, we restrict the two-
sided prediction region to be of the symmetric form

Ȳj ± κ
√

Sy,jj (4)

for j = 1, 2, . . . , p, and our goal is to estimate κ. Here Ȳ =
(
Ȳ1, Ȳ2, . . . , Ȳp

)′
is the sample

mean vector, and Sy,jj is the jth diagonal element of the sample covariance matrix among
the transformed sample values Yi = (Yi1, Yi2, . . . , Yip)′, i = 1, 2, . . . , n.

Introduced by Box and Cox (1964), the Box-Cox transformation, as it has come to
be called in the statistical literature, is a well-known method to transform skewed data to
normality. For a random variable X that assumes positive values, the Box-Cox transformed
quantity, say Y , takes the form

Y =
{

Xλ−1
λ

, λ ̸= 0
log X, λ = 0

(5)

where λ > 1 for negatively skewed data and λ < 1 for positively skewed data. The value of
λ is to be estimated using the data on X. In this study, λ is estimated through maximum
likelihood.

Once a λj has been estimated based on X1j, X2j, . . . , Xnj, for each fixed j = 1, 2, . . . , p,
we shall choose the form of gj (·) in (3) to be

Yij = gj (Xij) =
{

X
λj

ij , λj ̸= 0
log Xij, λj = 0,

(6)
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instead of (5). Since Xij assumes positive values, if λj ̸= 0 it follows that Yij in (6) is always
positive. Therefore, the back-transformed value Y

1/λj

ij is always defined. This is not always
the case with (5), where the back-transformed value is (λY + 1)1/λ, which can be undefined
if λY + 1 < 0. For this reason, once the value of λj is identified, the power transformation
in (6) will be adopted. The next goal is to estimate κ to form prediction regions of the form
(4).

Let X = (X1, X2, . . . , Xp)′ be the future observation to be predicted, and let Y =
(Y1, Y2, . . . , Yp)′ =

(
Xλ1

1 , Xλ2
2 , . . . , Xλp

p

)′
be its transformed version. We shall find the value

of κ that satisfies

P
(
Yj ∈ Ȳj ± κ

√
Sy,jj ∀ j = 1, 2, . . . , p

)
= 1 − α.

That is,

P

∣∣∣∣∣∣Yj − Ȳj√
Sy,jj

∣∣∣∣∣∣ ≤ κ ∀ j = 1, 2, . . . , p

 = 1 − α.

Equivalently,

P

max
1≤j≤p

∣∣∣∣∣∣Yj − Ȳj√
Sy,jj

∣∣∣∣∣∣ ≤ κ

 = 1 − α. (7)

The choice of a common κ is justified in view of the approximate normality of the marginal
components of the Y . The statement (7) facilitates the estimation of κ via a nonparametric
bootstrap, by sampling with replacement from the collection {X1, X2, . . . , Xn}. Since the
λs are unknown parameters, they are also estimated in each bootstrap sample. Algorithm 1
gives the procedure to estimate κ; we shall denote the estimate by k.

2.1. Remarks on back-transforming the data

Caution must be taken in Step 10 of Algorithm 1, where the prediction region is
transformed back to the original scale. First of all, since for λj ̸= 0, Yij = X

λj

ij where Xijs
are positive, the prediction regions in the Yij scale should contain only nonnegative limits.
In some instances, however, the lower limit of an interval Ȳj − k

√
Sjj,y could be negative. In

such a case, we recommend that the lower limit just be changed to 0.

It is possible for λ̂j to be negative. Whenever this happens concurrently with a
negative lower limit, then the quantity

(
Ȳj − k

√
Sjj,y

)1/λ̂j

(10)

is undefined, even when the lower limit is changed to 0. The case where both lower limit and
λj are negative occurs rarely in the simulations, but it occurs more often when the sample
size is small than when large, presumably because λj cannot be estimated accurately from a
small sample. Such a phenomenon never occurred in the simulations included in this paper,
but the authors have seen it occur when the sample size is small (such as when n = 30).
Nonetheless, such an occurrence is still highly unlikely when p is small (e.g., 2 or 3). Since
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Algorithm 1 Nonparametric prediction regions using the Box-Cox transformation

1. Let X1, X2 . . . , Xn be the data and write Xi = (Xi1, Xi2, . . . , Xip)′, i = 1, 2, . . . , n.

2. For each j = 1, 2, . . . , p, estimate the Box-Cox transformation parameter λj for the observa-
tions X1j , X2j , . . . , Xnj . Let λ̂j be the estimated value of λj .

3. For each λ̂j in Step 2, compute

Yij =

X
λ̂j

ij , λ̂j ̸= 0
log Xij , λ̂j = 0

, i = 1, 2, . . . , n, j = 1, 2, . . . , p.

Define Yi = (Yi1, Yi2, . . . , Yip)′, i = 1, 2, . . . , n.

4. Take B random samples with replacement of size n+1 from the collection {X1, X2, . . . , Xn},
call these X∗

1b, X∗
2b, . . . X∗

nb, X∗
b , where b = 1, 2, . . . , B. Write X∗

b =
(
X∗

1b, X∗
2b, . . . , X∗

pb

)′
and

X∗
ib =

(
X∗

i1b, X∗
i2b, . . . , X∗

ipb

)′
, i = 1, 2, . . . , n, b = 1, 2, . . . , B.

5. For each bootstrap sample in Step 4, estimate the transformation parameter for the obser-
vations in the jth column of the data matrix, and denote this estimate by λ̂∗

jb.

6. For each λ̂∗
jb in Step 5, compute

Y ∗
ijb =


(
X∗

ijb

)λ̂∗
jb

, λ̂∗
jb ̸= 0

log X∗
ijb, λ̂∗

jb = 0
, and Y ∗

jb =


(
X∗

jb

)λ̂∗
jb

, λ̂∗
jb ̸= 0

log X∗
jb, λ̂∗

jb = 0
,

where i = 1, 2, . . . , n, j = 1, 2, . . . , p, b = 1, 2, . . . , B. Write Y ∗
ib =

(
Y ∗

i1b, Y ∗
i2b, . . . , Y ∗

ipb

)′
and

Y ∗
b =

(
Y ∗

1b, Y ∗
2b, . . . , Y ∗

pb

)′
.

7. Compute k∗
b = max

1≤j≤p

∣∣∣∣Y ∗
jb−Ȳ ∗

jb√
S∗

b,jj

∣∣∣∣ , b = 1, 2, . . . , B, where Ȳ ∗
jb is the jth element in the sample

mean of Y ∗
1b, Y ∗

2b, . . . , Y ∗
nb; Y ∗

jb is the jth component of Y ∗
b ; and S∗

b,jj is the jth diagonal
element in the sample covariance matrix of Y ∗

1b, Y ∗
2b, . . . Y ∗

nb.

8. Compute k as the (1 − α)-quantile of k∗
1, k∗

2, . . . , k∗
B.

9. The prediction region for the transformed data is given by[
Ȳ1 ± k

√
Sy,11

]
×
[
Ȳ2 ± k

√
Sy,22

]
× · · · ×

[
Ȳp ± k

√
Sy,pp

]
, (8)

where Ȳj and Sy,jj are respectively the jth element and jth diagonal element in the sample
mean vector and sample covariance matrix of Y1, Y2, . . . , Yn.

10. Finally, the prediction region for the original data is given by

[
Ȳ1 ± k

√
Sy,11

]1/λ̂1
×
[
Ȳ2 ± k

√
Sy,22

]1/λ̂2
× · · · ×

[
Ȳp ± k

√
Sy,pp

]1/λ̂p

, (9)

where we define [a, b]1/q =
[
a1/q, b1/q

]
if q > 0 ,

[
b1/q, a1/q

]
if q < 0, and

[
ea, eb

]
if q = 0.
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(10) is undefined when we run into this situation, we can address this problem by redefining
the interval corresponding to the particular component of X, say the jth. For example, it
is reasonable to redefine it as [(

Ȳj + k
√

Sjj,y

)1/λ̂j

, ∞
)

.

We therefore end up with a prediction region that is a mix of one and two-sided intervals
(called a mixed-sided reference region in Section 5). It is not clear how we can compare
expected volumes in such a scenario.

The reference region given in (9) can also exhibit erratic behaviors, for example,
when at least one of Ȳj − k

√
Sjj,y and Ȳj + k

√
Sjj,y is very close to 0 and λ̂j < 0. Ideally,

having a large sample size is the best remedy to avoid the above undesirable behaviors of
reference regions. When this is not possible (for example, due to cost considerations), we
would like to recommend the following: instead of back-transforming to the original scale,
do a “forward-transform” of the future observation to see if it falls inside the reference range
in the transformed scale. That is, whenever λ̂j ̸= 0, consider the transformation

(X1, X2, . . . , Xp)′ 7−→
(
X λ̂1

1 , X λ̂2
2 , . . . , X λ̂p

p

)′

and when λ̂j = 0, use Xj 7−→ log Xj, and then use the region in (8) as the reference region,
instead of (9). We emphasize that the limits in (8) are always defined.

2.2. One-sided prediction regions

Modifications of Algorithm 1 that are necessary to compute one-sided regions are
straightforward whenever we do not run into problems involving the sign of λj or the lower
limit, or when we choose to adopt the reference region in the transformed scale. To compute
a one-sided upper prediction region, we first estimate the prediction factor κ that satisfies

P
(
Yj ≤ Ȳj + κ

√
Sy,jj ∀ j = 1, 2, . . . , p

)
= 1 − α

⇐⇒ P

max
1≤j≤p

Yj − Ȳj√
Sy,jj

≤ κ

 = 1 − α. (11)

Condition (11) implies that the modification is to be done in Step 7 of Algorithm 1, in which
the quantity kb will be redefined as

kb = max
1≤j≤p

Y ∗
jb − Ȳ ∗

jb√
S∗

jj,b

.

For a (1 − α)-one-sided upper prediction region, we can take k to be the (1 − α)-quantile of
k1, k2, . . . , kB, and the prediction region in the Y -scale is given by(

−∞, Ȳ1 + k
√

S11,y

]
× · · · ×

(
−∞, Ȳp + k

√
Spp,y

]
.
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If λ̂j > 0 for all j = 1, . . . , p, the prediction region in the X-scale can then be defined as(
−∞,

(
Ȳ1 + k

√
S11,y

)1/λ̂1
]

× · · · ×
(

−∞,
(
Ȳp + k

√
Spp,y

)1/λ̂p

]
.

When λ̂j < 0, the corresponding univariate reference limit simply becomes a lower limit
instead of an upper limit. Finally, if λ̂j = 0, then the corresponding interval becomes(

−∞, exp
(
Ȳj + k

√
Sjj,y

)]
.

Similarly, for a (1 − α)-one-sided lower prediction region, we note that the prediction factor
should satisfy

P
(
Ȳj + κ

√
Sy,jj ≤ Yj ∀ j = 1, 2, . . . , p

)
= 1 − α

⇐⇒ P

 min
1≤j≤p

Yj − Ȳj√
Sy,jj

< κ

 = α.

Thus we change the definition of kb in Step 7 of Algorithm 1 to be

kb = min
1≤j≤p

Y ∗
jb − Ȳ ∗

jb√
S∗

jj,b

,

and then we take the estimated prediction factor k to be the α-quantile of k1, k2 . . . , kB. The
prediction region in the Y -scale is given by[

Ȳ1 + k
√

S11,y, ∞
)

× · · · ×
[
Ȳp + k

√
Spp,y, ∞

)
.

If λ̂j > 0 for all j = 1, 2, . . . , p, then in the X-scale the (1 − α)-one-sided lower prediction
region is given by[(

Ȳ1 + k
√

S11,y

)1/λ̂1
, ∞

)
× · · · ×

[(
Ȳp + k

√
Spp,y

)1/λ̂p

, ∞
)

,

and we deal with a zero or negative λ̂j analogously.

3. Nonparametric prediction regions using kernel density estimation

We shall now explore an alternative approach to construct nonparametric rectangular
prediction regions. The approach consists of obtaining a kernel density estimate of the un-
known probability density function, and then use the probability integral transform based on
the estimated density function to derive a rectangular prediction region. Such an approach
provides us with a justification for using common prediction limits for each marginal com-
ponent in the transformed scale, quite analogous to the use of a common prediction factor κ
in the transformed scale in Section 2. An inverse transformation can then be used to obtain
the required prediction limits in the original scale. We shall now present the details.
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3.1. One-sided upper and lower prediction regions

We shall first present our approach for computing upper prediction limits; the case of
lower prediction limits can be handled similarly. The case of two-sided prediction regions will
be explained later. Suppose we want to compute upper one-sided prediction limits for the
components of the random vector X = (X1, X2, . . . , Xp)′, using the sample X1, X2, . . . , Xn

from the distribution of X. Thus we have to use the data to estimate γ1, γ2, . . . , γp that
satisfy

P (X1 ≤ γ1, X2 ≤ γ2, . . . , Xp ≤ γp) = 1 − α. (12)

If we can find one-to-one transformations Yj = gj (Xj) , j = 1, 2, . . . , p, so that
Y1, Y2, . . . , Yp are identically distributed random variables, then it makes sense to have a
common upper limit ζ that satisfies

P (Y1 ≤ ζ, Y2 ≤ ζ, . . . , Yp ≤ ζ) = P
(

max
1≤j≤p

Yj ≤ ζ
)

= 1 − α. (13)

If the distribution functions Fj (x) of all the Xjs, j = 1, 2, . . . , p, were completely known, then
an obvious transformation that one can use is Yj = gj (Xj) = Fj (Xj), j = 1, 2, . . . , p. Clearly,
the transformed random variables Fj (Xj) , j = 1, 2, . . . , p, are identically distributed as
U (0, 1) random variables. However, since the Fj (Xj) , j = 1, 2, . . . , p are unknown, the idea
is to estimate them marginally using kernel density estimation (KDE). Call the estimated
distribution functions F̂j, j = 1, 2, . . . , p, and let z be an estimate of ζ satisfying (13), where
Yj = F̂j, j = 1, 2, . . . , p. We can now obtain estimates of the upper limits γj, j = 1, 2, . . . , p,
satisfying (12) as γ̂j = cj = F̂ −1

j (z) , j = 1, 2, . . . , p. Obviously, since the upper limits so
computed are estimates obtained from the data, we do not expect (12) to hold exactly. We
shall explore this shortly based on numerical results.

Kernel density estimation is a nonparametric statistical method used to estimate
an unknown PDF or CDF. Whenever we have a random sample X1, X2, . . . , Xn from a
continuous univariate distribution with an unknown density function f (x), the kernel density
estimate of f (x), say f̂ (x), is given by:

f̂ (x) = 1
n

n∑
i=1

1
h

K
(

x − Xi

h

)

where h denotes the bandwidth, which can be thought of as a smoothing parameter. The
kernel function K (·) satisfies K (·) ≥ 0 and

∞�
−∞

K (t) dt = 1.

In this study, we shall use the Gaussian kernel K (t) = ϕ (t), where ϕ (·) is the standard
normal density function. Our interest is in estimating the CDF, say F (·). The corresponding
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estimate, say F̂ (t), is given by:

F̂ (t) =
� t

−∞
f̂ (u) du =

� t

−∞

1
n

n∑
i=1

1
h

K
(

u − Xi

h

)
du

=
� t

−∞

1
n

n∑
i=1

1
h

ϕ
(

u − Xi

h

)
du = 1

n

n∑
i=1

Φ
(

t − Xi

h

)
, (14)

where Φ (·) denotes the standard normal CDF. Moreover, our choice for the bandwidth h
will be Silverman’s Rule of Thumb, given by

h = 0.9 min (S, IQR/1.34) n−1/5. (15)

This bandwidth appears to be the preferred choice whenever K (·) is chosen to be the Gaus-
sian kernel (Silverman, 1986).

We point out that since F̂j is a one-to-one function, F̂ −1
j (z) always exists and hence

the resulting region based on KDE always has defined limits, unlike the case for Box-Cox
transformation. Algorithm 2 gives the steps necessary to compute nonparametric one-sided
upper and lower prediction limits using KDE. In order to understand Step 5 in the algorithm,
we recall that when we have a random sample of univariate observations X1, X2, . . . , Xn,
and we want to construct a 100(1 − α)% nonparametric upper prediction limit for a future
observation, the upper prediction limit is given by the rth order statistic X(r), where r =
⌈(1 − α) (n + 1)⌉. Similarly, to construct a 100(1 − α)% lower prediction limit for a future
observation, the required limit is given by X(r), where r = ⌊α (n + 1)⌋ (Meeker et al., 2017).

3.2. Two-sided prediction regions

We shall now develop the methodology to compute nonparametric two-sided pre-
diction regions using kernel density estimation. In constrast to (12), we need to estimate
γ11, γ21, . . . , γp1 and γ12, γ22, . . . , γp2 that satisfy the condition:

P (γ11 ≤ X1 ≤ γ12, γ21 ≤ X2 ≤ γ22, . . . , γp1 ≤ Xp ≤ γp2) = 1 − α. (16)

Similar to the development of one-sided prediction regions, if the distribution func-
tions Fj (x), j = 1, 2, . . . , p, were completely known, then we can use the transformation
Yj = Fj (Xj) and find the common upper and lower prediction limits ζ1 and ζ2 satisfying

P (ζ1 ≤ Yj ≤ ζ2, j = 1, 2, . . . , p) = 1 − α. (17)

Since Yj, j = 1, 2, . . . , p are all U (0, 1) random variables, and since the U (0, 1)
distribution is symmetric, it makes sense to set ζ1 = 1 − ζ2. Thus, write (17) as

P (1 − ζ2 ≤ Yj ≤ ζ2, j = 1, 2, . . . , p) = P (max {Yj, 1 − Yj} ≤ ζ2, j = 1, 2, . . . , p) (18)

= P
(

max
1≤j≤p

max {Yj, 1 − Yj} ≤ ζ2

)
= 1 − α. (19)

As in the one-sided case, since Fj (x) , j = 1, 2, . . . , p, are unknown, we estimate them via
KDE. Let F̂j, j = 1, 2, . . . , p, be the estimated CDFs and let z be the estimate of ζ2 that
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Algorithm 2 Nonparametric one-sided upper (lower) prediction regions based on KDE

1. Let X1, X2, . . . , Xn be the random sample, where each Xi = (Xi1, Xi2, . . . , Xip)′ , i =
1, 2, . . . , n is a (p × 1) column vector of measurements from the ith subject.

2. For each j = 1, 2, . . . , p, estimate the distribution function of the jth component using
KDE (see (14)).The data used to estimate Fj are X1j, X2j, . . . , Xnj. Call the estimated
CDF F̂j.

3. Compute Yij = F̂j (Xij) for each Xij, i = 1, 2, . . . , n, and j = 1, 2, . . . , p.

4. Compute zi = max
1≤j≤p

Yij

(
zi = min

1≤j≤p
Yij

)
, for each i = 1, 2, . . . , n.

5. Compute the nonparametric (1 − α) upper (lower) prediction limit of the z1, z2, . . . , zn.
Denote this upper (lower) limit by z; thus z = z(r), where r = ⌈(1 − α) (n + 1)⌉
(r = ⌊α (n + 1)⌋).

6. Now compute for cj = F̂ −1
j (z) , j = 1, 2, . . . , p.

7. The (1 − α)-nonparametric upper (lower) prediction region is given by

(−∞, c1] × (−∞, c2] × · · · × (−∞, cp] ([c1, ∞) × [c2, ∞) × · · · × [cp, ∞)) .

satisfies (19). We can estimate the prediction limits in (16) as γ̂j1 = F̂ −1
j (1 − z) and γ̂j2 =

F̂ −1
j (z), j = 1, 2, . . . , p. Algorithm 3 gives the procedure to compute the nonparametric two-

sided prediction region using KDE. Step 6 of Algorithm 3 is motivated by the fact that ζ2 has
been expressed in (19) as the (1 − α)-quantile of the random variable max

1≤j≤p
max {Yj, 1 − Yj}.

Here we would like to make an important remark concerning Step 6 in Algorithm 2.
The computation of the order statistic-based nonparametric upper prediction limit in Step
6 requires the independence of z1, z2, . . . , zn. However, these quantities are not independent
since the F̂js are not independent. In formulating the algorithm, we have simply ignored
this. The estimated coverage probabilities that we shall shortly report will indicate the effect
of ignoring the lack of independence among z1, z2, . . . , zn.

3.3. Mixed-sided nonparametric prediction regions using kernel density esti-
mation

In many applications, we are interested in prediction regions that are a combination
of one-sided and two-sided intervals, since some variables may require two-sided reference
limits while others are appropriately bounded by one-sided reference limits. We shall refer to
such regions as mixed-sided prediction regions. For example, we may be interested in finding
the region [c1, d1] × (−∞, d2] such that

P (c1 ≤ X1 ≤ d1, X2 ≤ d2) = 1 − α.
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Algorithm 3 Nonparametric two-sided prediction regions based on KDE

1. Let X1, X2, . . . , Xn be the random sample, where each Xi = (Xi1, Xi2, . . . , Xip)′ , i =
1, 2, . . . , n, is a (p × 1) column vector of measurements from the ith subject.

2. For each j = 1, 2, . . . , p, estimate the distribution function of the jth component using
KDE (see (14)).The data used to estimate Fj are X1j, X2j, . . . , Xnj. Call the estimated
CDF F̂j.

3. Compute Yij = F̂j (Xij) for each Xij, i = 1, 2, . . . , n, and j = 1, 2, . . . , p.

4. Compute Uij = max {Yij, 1 − Yij} for each Yij, i = 1, 2, . . . , n, and j = 1, 2, . . . , p.

5. Compute zi = max
1≤j≤p

Uij, for each i = 1, 2, . . . , n.

6. Compute the nonparametric (1 − α) upper prediction limit of the z1, z2, . . . , zn. Denote
this upper limit by z; thus z = z(r), where r = ⌈(1 − α) (n + 1)⌉.

7. Compute cj = F̂ −1
j (1 − z) and dj = F̂ −1

j (z), j = 1, 2, . . . , p.

8. The (1 − α)-nonparametric two-sided prediction region is given by

[c1, d1] × [c2, d2] × · · · × [cp, dp] .

We now take up the problem of computing mixed-sided nonparametric prediction
regions. Suppose our data consists of the random sample X1, X2, . . . , Xn, where each Xi is
p-variate. Moreover, let X = (X1, X2, . . . , Xp)′ be the observation that we wish to predict
and assume that it has the same distribution as the Xis and is independent of them. Without
loss of generality, we develop a procedure to compute two-sided prediction limits for the first
p1 components of X and upper prediction limits for the remaining p − p1 components.
In doing so, we use a KDE-based approach since this approach generally shows superior
performance over the Box-Cox transformation-based approach, as we have seen in Section 4.

Let Fj (·) be the CDF of Xj, j = 1, 2, . . . , p. If we can find scalar quantities u, u′,
and v, all three being functions of X1, X2, . . . , Xn, that satisfy

PX,X1,...,Xn

(
F −1

j (u′) ≤ Xj ≤ F −1
j (u) , ∀j = 1, . . . , p1

and Xj ≤ F −1
j (v) , ∀j = p1 + 1, . . . , p

)
= 1 − α, (20)

then the region[
F −1

1 (u′) , F −1
1 (u)

]
×· · ·×

[
F −1

p1 (u′) , F −1
p1 (u)

]
×
(
−∞, F −1

p1+1 (v)
]
×· · ·×

(
−∞, F −1

p (v)
]

(21)

is a (1 − α)-mixed-sided nonparametric prediction region for X. The condition in (20) is
equivalent to

PX,X1,...,Xn (u′ ≤ Fj (Xj) ≤ u, ∀j = 1, . . . , p1

and Fj (Xj) ≤ v, ∀j = p1 + 1, . . . , p) = 1 − α. (22)
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Since each Fj (Xj) follows a U (0, 1) distribution, we can choose u′ = 1 − u. Furthermore,
since infinitely many possible values of u and v can satisfy (22), we shall impose a constraint
on u and v so as to arrive at a unique solution. The constraint to be imposed is that the
marginal probabilities in (22) should be equal. This amounts to choosing u and v such that
v = 2u−1. We can see this by observing that if U and V are U (0, 1) random variables, then
imposing the condition P (1 − u ≤ U ≤ u) = P (V ≤ v) implies v = 2u − 1. Substituting
these expressions for u′ and v, (22) becomes

PX,X1,...,Xn (1 − u ≤ Fj (Xj) ≤ u, ∀j = 1, 2, . . . , p1

and Fj (Xj) ≤ 2u − 1, ∀j = p1 + 1, . . . , p) = 1 − α. (23)

Since

1 − u ≤ Fj (Xj) ≤ u, ∀j = 1, 2, . . . , p1

⇐⇒ max
{

max
1≤j≤p1

Fj (Xj) , max
1≤j≤p1

(1 − Fj (Xj))
}

≤ u, (24)

Fj (Xj) ≤ 2u − 1, ∀j = p1 + 1, . . . , p ⇐⇒ max
p1+1≤j≤p

{
1 + Fj (Xj)

2

}
≤ u (25)

then we can write (23) as

PX,X1,...,Xn (max {h1 (X) , h2 (X) , h3 (X)} ≤ u) = 1 − α, (26)

where

h1 (X) = max
1≤j≤p1

Fj (Xj)

h2 (X) = max
1≤j≤p1

(1 − Fj (Xj))

h3 (X) = max
p1+1≤j≤p

{
1 + Fj (Xj)

2

}
.

From (26) we can conclude that u is a (1 − α)-upper prediction limit of

max {h1 (X) , h2 (X) , h3 (X)} .

Since the distribution functions Fj (·) are unknown, we estimate them using KDE. Algorithm
4 gives the steps to compute the mixed-sided nonparametric prediction region using KDE.

3.4. KDE with logarithmic transformation

Studies such as Geenens and Wang (2016) and Jones et al. (2018) suggest that
whenever the density is supported on the set of positive real numbers, we should first apply
a logarithmic transformation on the observations before estimating the density function.
Geenens and Wang (2016) argue that the KDE approach to estimate the density of a positive
random variable is inadequate due to the boundary bias problem and the fact that such a
density might have a long right tail. Charpentier and Flachaire (2014) also mention that
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Algorithm 4 Mixed-sided nonparametric prediction regions based on KDE

1. Let X1, X2, . . . , Xn be the random sample, where each Xi = (Xi1, Xi2, . . . , Xip)′ , i =
1, 2, . . . , n is a (p × 1) column vector of measurements from the ith subject.

2. For each j = 1, 2, . . . , p, estimate F̂j via KDE using X1j, X2j, . . . , Xnj.

3. Compute Yij = F̂j (Xij) for all j = 1, 2, . . . , p, and i = 1, 2, . . . , n.

4. Compute ui = max
{

max
1≤j≤p1

Yij, max
1≤j≤p1

(1 − Yij) , max
p1+1≤j≤p

(
1+Yij

2

)}
, for each i =

1, 2, . . . , n.

5. Compute the nonparametric (1 − α)-upper prediction limit of the u1, u2, . . . , un. De-
note this upper limit by u; thus u = u(r), where r = ⌈(1 − α) (n + 1)⌉.

6. Compute cj = F̂ −1
j (1 − u) and dj = F̂ −1

j (u), j = 1, 2, . . . , p1; and dj = F̂ −1
j (2u − 1),

j = p1 + 1, . . . , p.

7. The (1 − α)-mixed-sided nonparametric prediction region is given by [c1, d1] × · · · ×
[cp1 , dp1 ] × (−∞, dp1+1] × · · · × (−∞, dp].

doing a preliminary logarithmic transformation before applying KDE can provide a better
fit for heavy-tailed densities.

To apply this idea to the proposed KDE-based procedure, we can modify Algorithm
2 (or Algorithm 3 for the two-sided case) by taking the logarithm component-wise of each
Xi, i = 1, 2, . . . , n in Step 1 before proceeding to the other steps, and then exponentiating
each limit in Step 6 of Algorithm 2 (or Step 7 Algorithm 3 ) to get the reference limits in the
original scale. We shall refer to this procedure as the KDE with log transform procedure.

4. Numerical results and an example

In order to evaluate the performance of the proposed procedures to construct predic-
tion regions in the nonparametric case, simulations will be carried out to estimate coverage
probabilities and expected volumes for data generated from a multivariate lognormal dis-
tribution with mean vector in the logarithmic scale of 0, and covariance matrix in the
logarithmic scale Σ = (1 − ρ) Ip + ρ1p1′

p where ρ = 0.5, and 1p is the (p × 1) column vector
of 1s and Ip is the (p × p) identity matrix. We use the R package compositions of van den
Boogaart and Tolosana-Delgado (2008) to generate samples from the multivariate lognormal
distribution. We examine the performance for sample sizes n = 50, 100, and 200 and refer
to these as small, moderate and large sample sizes. We also use dimensions p = 2 and
3 since most applications of MRRs involve only at most three analytes. For the Box-Cox
transformation-based procedure, we use B = 500 bootstrap samples to estimate the predic-
tion factor. For the KDE-based procedure, the inverse function in Step 6 of Algorithm 2
and Step 7 in Algorithm 3 and all other occurrences of the inverse function in this study are
computed using the R package GoFKernel of Pavia (2015). The coverage probabilities are
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based on 5000 simulated samples, and the results are given in Table 1.

From the numerical results in Table 1, we can see that the coverage probabilities of the
proposed methodologies are generally close to the nominal level of 0.95, even for a sample of
size n = 50. Furthermore, it seems that the KDE-based procedure is slightly more accurate
than the Box-Cox transformation-based procedure. It is worth comparing our sample sizes
with those of Young and Mathew (2020), who also propose nonparametric reference regions.
Young and Mathew (2020) examine the performance of their procedure only for sample sizes
300 and 1000. We note that for these dimensions, the coverage probabilities for n = 100 in
Table 1 are already comparable to Young and Mathew’s results for n = 300.

Table 2 gives the expected volumes obtained from the proposed methodologies. Table
2 shows that for both the Box-Cox transformation-based procedure and the KDE-based pro-
cedure, the expected volume decreases with the sample size. We can see that the KDE-based
prediction regions have smaller expected volumes than the Box-Cox transformation-based
prediction regions. This implies that the KDE-based procedure results in better precision in
estimating the prediction region. On the basis of the results in Tables 1 and 2, the KDE-based
procedure has better overall performance than the Box-Cox transformation-based procedure.
We note that in computing the expected volume for the Box-Cox transformation-based pro-
cedure, we replaced any negative lower limit with zero except when λ̂j = 0, in which case
a negative lower limit is kept negative. In Table 3 we present the results of the proposed
KDE-based one-sided lower and upper prediction regions. The results show accurate cover-
age, even for small sample sizes.

Table 1: Estimated coverage probabilities of the nonparametric rectangular pre-
diction regions based on Box-Cox transformation and KDE for nominal level =
0.95

Box-Cox KDE
p = 2 p = 3 p = 2 p = 3

n = 50 0.9344 0.9396 0.9582 0.9414
n = 100 0.9408 0.9396 0.9472 0.9428
n = 200 0.9480 0.9398 0.9428 0.9460

Table 2: Expected volumes of the nonparametric two-sided prediction regions
based on Box-Cox transformation and KDE for nominal level = 0.95

Box-Cox KDE
p = 2 p = 3 p = 2 p = 3

n = 50 116.06 2,476.42 95.41 1061.11
n = 100 96.67 1,582.25 60.11 823.90
n = 200 89.76 1,342.86 53.02 660.93
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Table 3: Estimated coverage probabilities of the nonparametric one-sided lower
and upper prediction regions based on KDE for nominal level = 0.95

Lower Upper
p = 2 p = 3 p = 2 p = 3

n = 50 0.9588 0.9594 0.9518 0.9512
n = 100 0.9430 0.9436 0.9526 0.9526
n = 200 0.9476 0.9452 0.9464 0.9488

4.1. Comparison of nonparametric procedures when sampling from a highly
skewed distribution

We now compare the performances of the KDE-based procedures (both with and
without a preliminary log transformation) and the Box-Cox transformation approach to
compute prediction regions when we sample from a highly skewed distribution. In the
simulations, we generate the data from a gamma distribution with density function given in
(27)

f (x) = 1
ληΓ (η)xη−1e−x/λ, x ≥ 0, (27)

with shape parameter η = 0.04 and scale parameter λ = 1. This distribution has skewness
2/

√
η = 10. Table 4 shows the estimated coverage probabilities. We can see that Box-Cox

transformation-based procedure results in estimated coverage probabilities very close to 0.95.
On the other hand, the usual KDE procedure on the original data is too conservative. While
in the previous results, we have seen that the KDE-based procedure outperforms the Box-
Cox transformation-based procedure, Table 4 suggests that the Box-Cox-based procedure
is more robust to highly skewed distributions, and the KDE-based procedure breaks down
under such extreme skewness. Nonetheless, the KDE with log transform procedure rectifies
the coverage.
Table 4: Estimated coverage probabilities of the Box-Cox transformation-based
and the KDE-based two-sided prediction regions under highly skewed distribu-
tions

Box-Cox transformation KDE KDE with log transform
n = 50 0.9424 0.9934 0.9668
n = 100 0.9500 0.9898 0.9514
n = 200 0.9490 0.9936 0.9564

4.2. An example: assessment of liver function

To apply the proposed procedure to compute nonparametric rectangular prediction
regions, we use the liver function data from Appendix 4.2 of Harris and Boyd (1995). The
measurements are from single blood specimens taken from 596 male medical students during
the years 1987-1991 at the University of Virginia. Among the measurements taken from
each subject are two liver enzymes: alanine transaminase (ALT) in U/L and aspartate
transaminase (AST) in U/L. After the removal of three outliers, the summary statistics are
given in Table 5.
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Table 5: Summary statistics for measurements on ALT and AST taken from the
liver function data of Harris and Boyd (1995)

Analyte Mean Median S.D. Skewness
ALT 26.97 23.00 17.83 3.63
AST 23.66 22.00 9.51 1.80

Figure 1 shows the density plots for these two analytes. Clearly, both analytes are
skewed to the right. Table 5 above also shows that the sample coefficient of skewness is pos-
itive. Thus, we use our proposed procedures to compute nonparametric prediction regions.
The resulting MRRs using both the Box-Cox transformation and KDE-based approaches are
given in Table 6. According to Mayo Clinic (2020), the normal levels for ALT and AST are,
respectively, 7-55 and 8-48. Therefore, while the lower limits of the MRR for our proposed
procedures agree closely with the lower limits of the reference intervals used in practice, the
upper limits are quite different. We hasten to say that these enzymes can be erratically
large, in some conditions they can be in the 1000s range (eMedicine Health, 2020). Figure 1
also shows that there are several outlying measurements for ALT, and this could be a factor
leading to the unexpectedly high upper reference limit for ALT.

Figure 1: Density plot of ALT and AST
Table 6: MRR for liver function data computed as a two-sided prediction region
using Box-Cox transformation and KDE

Analyte Box-Cox KDE
ALT 7.2-84.8 7.1-79.1
AST 9.0-54.8 8.8-52.0
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4.3. Numerical results on mixed-sided nonparametric prediction regions

We shall now evaluate the performance of our proposed procedure to compute mixed-
sided nonparametric prediction regions using KDE, described in Section 3. We generate
data from the same distribution used in previous subsections. That is, we estimate coverage
probabilities for data generated from a multivariate lognormal distribution with mean 0 and
covariance matrix Σ = (1 − ρ) Ip + ρ1p1′

p, where ρ = 0.5 on the logarithmic scale. The 95%
prediction regions will be computed based on 5000 simulated samples. Moreover, we use
sample sizes n = 50, 100, 200, and (p, p1) = (2, 1) and (3, 2). Table 7 shows the results.
It appears that a sample of size n = 50 is sufficient for the proposed methodology to yield
accurate results.

Table 7: Estimated coverage probabilities of the mixed-sided nonparametric
prediction regions based on KDE for nominal level = 0.95

p = 2, p1 = 1 p = 3, p1 = 2
n = 50 0.9548 0.9448
n = 100 0.9510 0.9450
n = 200 0.9510 0.9502

5. Discussion

The problem of constructing multivariate reference regions has received proper at-
tention in the literature only recently, except the computation of traditional ellipsoidal pre-
diction regions under the multivariate normality assumption. There are two difficulties
associated with the latter region; first, the multivariate normality assumption is not always
valid and second, ellipsoidal regions are not appropriate for deciding which among several
analytes are outside the normal range. The nonparametric rectangular regions that we have
constructed address both of these issues satisfactorily. A different construction of nonpara-
metric rectangular prediction regions is described in Young and Mathew (2020); however, the
resulting region exhibits satisfactory coverage probabilities only under relatively large sample
sizes. While our work is focused on the computation of rectangular prediction regions only,
an important issue is whether a prediction region is appropriate for the purpose for which a
reference region is to be used. Some of the recent literature has emphasized tolerance regions,
and rectangular tolerance regions are indeed available in the parametric setup of multivari-
ate normality, and in a nonparametric scenario; see Lucagbo and Mathew (2023) and Young
and Mathew (2020). Here we do want to note that some laboratory medicine experts have
pointed out the role of prediction intervals and regions; see Horn and Pesce (2005), National
Committee for Clinical Laboratory Standards (2010), and Trost (2006). In particular, while
discussing ellipsoidal regions, Trost (2006, p. 38) notes that “Reference intervals referred to
in this document are arguably the closest to prediction intervals since we want exactly 95%
of the future observations from reference individuals to fall inside the bounds”. We shall not
further consider the issue of what criterion is appropriate for the construction of a reference
region; this clearly requires input from experts in laboratory medicine.

In our work we have employed two approaches for computing a nonparametric rect-
angular prediction regions: using the Box-Cox transformation and using kernel density esti-
mation. Estimated coverage probabilities lead us to the conclusion that both approaches are
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satisfactory. Based on estimated coverage probabilities and expected volumes, our overall
recommendation is the solution based on kernel density estimates. A problem of consider-
able interest in the context of reference regions is the computation of such regions that are
covariate dependent, perhaps using a multivariate regression model. We hope to address this
problem in the near future.
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Abstract
Adaptive Cluster Sampling (ACS) due to Thompson’s (1990) is a useful tool to survey

rare and clustered population. Salehi and Seber (1997) described a two-stage ACS design
that used simple random sampling without replacement (SRSWOR) of primary units and
then the ACS of secondary units within each of the selected primary unit. Two variations on
this design were proposed in their paper depending on whether networks in secondary units
are allowed to cross primary unit boundaries or not.

In executing the adaptive sampling design, it is observed that the collection of infor-
mation from all neighbouring rare units becomes challenging due to various hazards. Pal and
Patra (2021) duly addressed the issue and proposed predictors of the population total con-
sidering appropriate superpopulation models with suitable assumptions in single stage ACS.
The current work is an attempt to find predictors for two-stage ACS under same situation.
To illustrate the findings, a numerical example has been carried out.

Key words: Adaptive cluster sampling; Horvitz-Thompson estimator; Prediction approach;
Superpopulation; Two-stage designs; Unequal probability sampling.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Let U = (1, 2, . . . , N) be a finite population and y = (y1, y2, . . . , yN) be the variable
of interest bearing rarity and clustered characteristics. It is challenging to survey such popu-
lation through any traditional sampling methods due to the absence of such units in sample
with enough number. Thus, the estimation procedures related to the traditional sampling
methods such as simple random sampling, stratified sampling may underestimate the popu-
lation parameters. Thompson’s (1990) adaptive cluster sampling reduces the effort to adapt
enough number of rare units in the sample and increases the precision. This design has been
recently gaining attention because of its greater efficiency. Thompson (1991a) introduced
the idea of primary units and secondary units in ACS. The design was further extended by
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Thompson (1991b, 1992). Chaudhuri (2000), Pal and Patra (2021, 2023); Patra and Pal
(2023) developed this design under unequal probability sampling designs. A monograph of
Seber and Salehi (2013) covers many advents of this design.

In estimating τ = ∑n
i=1 yi by ACS design, an initial sample s of size n is drawn by

a probability sampling design and the y-values are observed. Wherever the observed unit
satisfies the pre-considered condition of rarity say, yi > c, the uniquely defined neighbouring
units (for example - South, North, East, and West) are observed for further detection of
rarity. Now, if some of them are found to meet the rarity condition, their neighbouring units
are also observed and such procedure continues until a unit is detected with no rarity. It
is worth noting that the neighbourhood relation is symmetric. Now, to proceed further in
details, one need to know few related terminologies like cluster, edge units, network etc. All
neighbouring units corresponding to an initial sampling unit form a cluster. Edge unit is the
neighbouring unit that does not satisfy the rarity condition. Thus, each cluster is bounded
by edge units. Eliminating all edge units from a cluster, the remaining units that meet the
pre-considered rarity condition belong to the network of that particular initial sampling unit.
It is also noteworthy, if a unit in s does not satisfy the rarity condition, its network consists
of that unit only.

Salehi and Seber (1997), Rocco (2008) and many others, strengthened the literature
of Two-stage ACS design. In their proposal, a sample of primary units (PSU) is selected
first by simple random sampling without replacement (SRSWOR). Then, an initial sample
is taken from secondary units within each selected primary unit, to carry out the ACS
design. Surveyors then have two possibilities to stop the adaptively adding procedure of
secondary units. Either they can stop at the boundary of PSU (non-overlapping scheme)
or allow overlapping into neighbouring PSUs (overlapping scheme). However, in execution
stage, surveyors may be unable to observe all the neighbouring secondary units due to
hazardous conditions. This deficiency was highlighted in Pal and Patra (2021) for single
stage ACS design under unequal probability sampling. Appropriate superpopulation models
were adopted there to employ Royall (1970) prediction approach. Implementation of Pal and
Patra (2021) approach in two-stage ACS design becomes critical for overlapping scheme.
Thus, some modifications are needed following Royall (1976), Valliant et al. (2000). In
this paper, the main contribution is to develop prediction approach for two-stage ACS-
overlapping scheme.

Section 2 elaborately describes the estimation procedure of two-stage ACS design.
The next section describes how a superpopulation approach can be used in two-stage ACS
to predict the population total or mean in presence of various hazards. Suitable predictors
and mean square errors (MSEs) are derived in Section 4. Section 5 illustrates our contribution
with a numerical example. Finally, it is concluded in Section 6.

2. Two-stage ACS

Suppose the population U of size N can be partitioned into M primary units of sizes
Ni, i = 1, 2, . . . , M and yij denotes the y-value of the jth (j = 1, 2, . . . , Ni) secondary unit
of the ith primary unit. Also let τ = ∑Ni

j=1 yij be the sum of the y-value in the ith primary
unit and τ = ∑M

i=1 τi be the population total. A rarity condition is defined as yij > c and
neighbouring units might be observed only if this rarity condition is satisfied for a given unit.
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According to Salehi and Seber (1997)s two stage ACS design, at first, simple random
sample (SRS) of size m is drawn from a M primary stage units (PSU). Next, an initial sample
si of size ni (i = 1, 2, . . . , m) is drawn from secondary stage units (SSU) of ith selected PSUs
by SRS, such that n = ∑n

i=1 ni - total initial sample size. Then, the neighbourhoods may be
added adaptively to build up a cluster as well as network.

Now in two-stage ACS, two design-based situations arise. In the first-design, the clus-
ters are truncated at selected PSU’s boundaries so that each PSU can be treated separately
and it is termed as Non-overlapping scheme. The other one, called overlapping scheme,
ignores the PSU boundary so that total population units N can be partitioned into distinct
networks. We narrate these two schemes below in details, in the subsections 2.1 - 2.2, with
Horvitz-Thompson estimation procedure only. However, Salehi and Seber (1997) described
the estimation procedures for Hansen and Hurwitz (1943) and Horvitz and Thompson (1952)
both.

2.1. Non-overlapping scheme

In the non-overlapping scheme, the modified Horvitz-Thompson estimator for the
population mean (µ = τ

N
) is

µ̂N
HT = 1

N
(M

m∑
i=1

τ̂i

m
)

where τ̂i = ∑Ki
k=1 y∗

ik( Iik

αik
) is the unbiased estimate of ith primary units total having variance

var (τ̂i) = ∑Ki
r=1

∑Ki
s=1 y∗

iry
∗
is(αirs−αirαis

αirαis
).

To the above equations, Ki denotes the number of networks of the ith primary unit
and αik = 1 − (Ni−mik

ni
)

(Ni
ni

) is the probability that the initial sample of unit in ith primary unit

intersect the network k. Also, αikkT = αik + αikT −
(

1 − (Ni−mik−mikT
ni

)
(Ni

ni
)

)
is the probability

that the initial sample of unit in ith primary unit intersect both the networks k and kT . The
sum of y-value associate with the network k is denoted here by y∗

ik.

The variance estimator of µ̂N
HT is

V (µ̂N
HT ) = 1

N2 M(M − m)σ2
M

m
+ 1

N2
M

m

M∑
i=1

var(τ̂i)

taking σ2
M = 1

M−1
∑M

i=1 (τi − τ)2 and τ = 1
M

∑M
i=1 τi.

An unbiased estimate of V (µ̂N
HT ) is

v(µ̂N
HT ) = 1

N2 M(M − m)s2
M

m
+ 1

N2
M

m

m∑
i=1

v̂ar(τ̂i)

where v̂ar(τ̂i) = ∑χi
r=1

∑χi
s=1 y∗

iry
∗
is(αirs−αirαis

αirsαirαis
).



184 SANGHAMITRA PAL AND DIPIKA PATRA [SPL. PROC.

Here, χi denotes the number of distinct networks intersected in the ith primary unit.

2.2. Overlapping scheme

Here, all population units can be partitioned into K number of distinct networks,
ignoring the PSU boundaries.

Thus, the modified Horvitz-Thompson estimator is

µ̂O
HT = 1

N

(
K∑

k=1

y∗
kJk

αk

)
.

In the above equation, Jk is the indicator function with the value 1 or 0 if the initial
sample of size n = ∑m

i=1 ni intersects network k or not and y∗
k is the sum of y−values for the

network k. Salehi and Seber (1997) derived the variance of µ̂O
HT (V

(
µ̂O

HT

)
) and an unbiased

variance estimate
(
v
(
µ̂O

HT

))
as follows,

V
(
µ̂O

HT

)
= 1

N2

K∑
k=1

K∑
kT =1

y∗
ky∗

kT (αkkT − αkαkT )
αkαkT

v
(
µ̂O

HT

)
= 1

N2

χ∑
k=1

χ∑
kT =1

y∗
ky∗

kT (αkkT − αkαkT )
αkkT αkαkT

.

Here, χ denotes the number of distinct networks in the sample and αk is the inclusion
probability for the network k and αkkT is the probability that the initial sample intersects
both networks k and kT . In order to evaluate V

(
µ̂O

HT

)
and v

(
µ̂O

HT

)
, one needs to know the

expressions for αkkT and αk which are derived in the Appendix of Salehi and Seber (1997).
Here, we have just written the formulas.
αk = P [Jk = 1]

=
∑

i∈Bk

m

M

1 −

(
Ni−mik

ni

)
(

Ni

ni

)
−

∑
i

∑
iT <i

m(m − 1)
M(M − 1)

1 −

(
Ni−mik

ni

)
(

Ni

ni

)

1 −

(
N

iT −m
iT k

ni

)
(

N
iT

n
iT

)
+ . . .

+ (−1)gk+1 m(m − 1) . . . (m − gk + 1)
M(M − 1) . . . (M − gk + 1)

∏
i∈Bk

1 −

(
Ni−mik

ni

)
(

Ni

ni

)


and
αkkT = P

[
Jk = 1, Jk

T = 1
]

where Bk is the set of PSUs intersected by the network k having gk number of elements and
mik is the number of units of network k located in ith PSU.

3. Prediction approach in two stage sampling scheme

A finite population problem can be formulated as prediction problem and can be
solved using Bayesian approach. A more classical superpopulation approach is also possible
using Royall (1976)s theorem of best linear unbiased estimator.
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Suppose, the objective is to estimate the population total

τ =
M∑

i=1

Ni∑
j=1

yij =
M∑

i=1
τi

by two-stage design which can be expressed as

τ =
∑
i∈s

∑
j∈si

yij +
∑
i∈s

∑
j∈sc

i

yij +
∑
i∈sc

Ni∑
j=1

yij. (1)

Here, s is the PSU sample of size m and sc is the set of PSU units not in s. Similarly, si is
the SSU sample of ith(i ∈ s) PSU and sc

i is the complementary of si.

In the above expression, it is obvious that the first term is known from the sample.
However the second and third terms are unknown and it should be estimated.

The prediction approach of finite population theory considers the total τ is a realiza-
tion of a random vector T. For a given sample,

T =
∑
i∈s

∑
j∈si

yij + Z (2)

with Z = ∑
i∈s

∑
j∈sc

i
yij +∑

i∈sc

∑Ni
j=1 yij.

Now, expressing T as (2), the problem of estimating T is equivalent to the prediction of Z.

Mathematically,
T̂ =

∑
i∈s

∑
j∈si

yij + Ẑ (3)

clarifies the matter.

The following probability model is adopted here to establish the relationship among
N random variable Yij ; i = 1, 2 . . . .M j = 1, 2 . . . Ni:

E (Yij) = θ
Cov (Yij, Ylm) = σ2

i , i = l, j = m
= ρiσ

2
i , i = l, j ̸= m

= 0, i ̸= l

(4)

It is assumed here that the random variables within cluster i have common mean θi and
variance σT 2

i and covariance ρT
i σT 2

i and the {θT
i } are the realizations of uncorrelated random

variables with common mean θ and variance φ2. Then the model (4) applies with σ2
i =

φ2 + σT 2
i and ρi = φ2+ρT

i σ
T 2
i

φ2+σT 2
i

.

Royall (1976) suggested an optimal (BLU) estimator in such case and this can be expressed
as

T̂ ∗ =
∑
i∈s

∑
j∈si

yij +
∑
i∈s

(Ni − ni)
[
ωiysi + (1 − ωi) θ̂

]
+
∑
i/∈s

Niθ̂ (5)
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where ωi = ρini

(1−ρi+niρi
) and θ̂ = ∑

i∈s θiysi is the weighted average of sample means with

weights θi =
[

niσ
2
i

(1−ρi+niρi)

]
/[∑i∈s

niσ
2
i

(1−ρi+niρi)] .

Here, in T̂ ∗, non-sampled units in sample cluster i can be estimated by ωiysi +
(1 − ωi) θ̂ and all the units in non-sampled clusters are estimated by θ̂.

This T̂ ∗ further can be written as T̂ ∗ = ∑
i∈s (1 + gi)niysi taking∑i∈U Ni = N and∑i∈s ni = n,

and gi = [ωi
(Ni−ni)

ni
+ {N − n −∑

i∈s ωi (Ni − ni)} θi

ni
].

The error variance of T̂ ∗ can be written as

V ar
(
T̂ ∗ − T

)
= V ar

∑
i∈s

giniysi −
∑
i∈s

∑
j∈sc

i

yij −
∑
i/∈s

Ni∑
j=1

yij


= V ar

∑
i∈s

∑
j∈sc

i

yij

+ V ar

∑
i/∈s

Ni∑
j=1

yij

+ V ar

(∑
i∈s

giniysi

)
+ 2cov

∑
i∈s

∑
j∈sc

i

yij,
∑
i/∈s

Ni∑
j=1

yij


− 2cov

∑
i∈s

giniysi,
∑
i/∈s

Ni∑
j=1

yij

− 2cov

∑
i∈s

giniysi,
∑
i∈s

∑
j∈sc

i

yij


= V ar

∑
i∈s

∑
j∈sc

i

yij

+ V ar

∑
i/∈s

Ni∑
j=1

yij

+ V ar

(∑
i∈s

giniysi

)
− 2cov

∑
i∈s

giniysi,
∑
i∈s

∑
j∈sc

i

yij


= v + V ar

(∑
i∈s

giniysi

)
− 2cov

∑
i∈s

giniysi,
∑
i∈s

∑
j∈sc

i

yij


= v +

(∑
i∈s

ρiσ
2
i n

2
i g

2
i +

∑
i∈s

(1 − ρi) σ2
i nig

2
i

)
− 2

∑
i∈s

ρiσ
2
i gini(Ni − ni)

= v −
∑
i∈s

ρiσ
2
i (Ni − ni)2 +

∑
i∈s

ρiσ
2
i [nigi − (Ni − ni)]2 +

∑
i∈s

(1 − ρi)σ2
i nig

2
i

where

v = V ar

∑
i∈s

∑
j∈sc

i

yij

+ V ar

∑
i/∈s

Ni∑
j=1

yij


=
∑
i∈s

(Ni − ni) σ2
i [1 − ρi + (Ni − ni) ρi] +

∑
i/∈s

Niσ
2
i [1 − ρi + Niρi].

4. Proposed predictors for two-stage ACS

Simple random sampling without replacement scheme is frequently used in ACS de-
sign to draw an initial sample. Chaudhuri (2000) clarified that any sampling method ad-
mitting an unbiased estimator for a population total may be extended to adaptive sampling
design yielding unbiased estimator. This work insisted us to select PSUs adapting an un-
equal probability sampling, say PPSWOR instead of SRSWOR in case of Two-stage ACS
design, as discussed in Section 2.
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4.1. Non-overlapping scheme

Therefore, an unbiased estimator of population total τ = ∑M
i=1 τi = ∑M

i=1
∑Ni

j=1 yij is

e =
m∑

i=1

τ̂i

πi

(6)

taking τ̂i as the estimate of ith PSU total. This

τ̂i =
χi∑

k=1

y∗
ik

αik

, (7)

if networks are truncated at selected PSU (Non-overlapping scheme). Here, y∗
ik = ∑

j∈A(i,k) yij

is the sum of the y−values present in A(i, k), the kth network of ith PSU. This network A(i, k)
can be partitioned into two parts captured Ac(i, k) and uncaptured Auc(i, k). Obviously,
A(i, k) = Ac(i, k) ∪ Auc(i, k).

It is obvious that E(e) = E1E2(e) = E1
(∑m

i=1
τi

πi

)
= ∑M

i=1 τi = τ . E1 denotes here the
expectation due to first stage unit selection and E2 , the expectation due to second stage.

The variance of e can be written as,

V (e) = E1V2(e) + V1E2(e)

where E1(V 2(e)) = E1(V 2

(∑m
i=1

1
πi

∑χi
k=1

y∗
ik

αik

)
) = E1(

∑m
i=1

1
π2

i
V2
(∑χi

k=1
y∗

ik

αik

)
)

= E1

 m∑
i=1

1
π2

i

 Ki∑
k=1

Ki∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikαikT

)

=
M∑

i=1

1
πi

 Ki∑
k=1

Ki∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikαikT

)

and V1(E2(e)) = V1
(∑m

i=1
τi

πi

)
= ∑

i<j

∑M
=1 (πiπj − πij)( τi

πi
− τj

πj
)2.

To compute unbiased estimate of V (e), let assume

v1(e) =
m∑

i=1

1
π2

i

 χi∑
k=1

χi∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikkT αikαikT

)+
∑
i<j

m∑
=1

(
πiπj − πij

πij

)
( τ̂i

πi

− τ̂j

πj

)2
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Therefore, E (v1(e)) = E1E2 (v1(e))

= E1

 m∑
i=1

1
π2

i

 Ki∑
k=1

Ki∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikαikT

)
+ E1

∑
i<j

m∑
=1

(
πiπj − πij

πij

)((
τi

πi

− τj

πj

)2 + V2 (τ̂i)
π2

i

+ V2 (τ̂j)
π2

j

))
=

m∑
i=1

1
πi

 Ki∑
k=1

Ki∑
kT =1

y∗
iky∗

ikT

(
αikkT − αikαikT

αikαikT

)+
∑
i<j

M∑
=1

(πiπj − πij)(
τi

πi

− τj

πj

)2

+
∑
i<j

M∑
=1

(πiπj − πij)(
V2 (τ̂i)

π2
i

+ V2 (τ̂j)
π2

j

)

= V (e) +
∑
i<j

M∑
=1

(πiπj − πij)(
V2 (τ̂i)

π2
i

+ V2 (τ̂j)
π2

j

)

where V2 (τ̂i) = ∑Ki
k=1

∑Ki

kT =1 y∗
iky∗

ikT

(
α

ikkT −αikα
ikT

αikα
ikT

)
.

Thus,

v(e) = v1(e) −
∑
i<j

m∑
=1

(πiπj − πij)
πij

 V̂2 (τ̂i)
π2

i

+ V̂2 (τ̂j)
π2

j

 (8)

is an unbiased estimator of V (e) where V̂2 (τ̂i) = ∑χi
k=1

∑χi

kT =1 y∗
iky∗

ikT

(
α

ikkT −αikα
ikT

α
ikkT α

ik
α

ikT

)
.

Now, in case surveyors are unable to gather information from all units belonging to a network,
then mathematically it can be express as

y∗
ik =

∑
j∈A(i,k)

yij =
∑

j∈Ac(i,k)
yij +

∑
j∈Auc(i,k)

yij.

Undoubtedly, second term of this expression is unknown and can be predicted easily following
Section 3.1 and 3.2 of Pal and Patra (2021). We avoid here the unnecessary repetition.

However, the complication arises if the surveyor decided to ignore PSU boundaries for net-
work construction. Below we describe prediction steps in this case, in details.

4.2. Overlapping scheme

In this case, we need to consider the distinct networks included in two-stage. Thus,
an unbiased estimator of the population total τ may be written as

e∗ =
χ∑

k=1

y∗
k

α∗
k

(9)

where α∗
k = ∑

i∈Bk
πi

(
1 − (Ni−mik

ni
)

(Ni
ni

)

)
−∑

i

∑
iT <i πiiT

(
1 − (Ni−mik

ni
)

(Ni
ni

)

)(
1 − (N

iT −m
iT k

ni
)

(N
iT

n
iT

)

)
+ . . . +

(−1)gk+1πiiT .....l

∏
i∈Bk

(
1 − (Ni−mik

ni
)

(Ni
ni

)

)
and α∗

kkT = P [Jk = 1, JkT = 1]. Here Bk, with gk

number of elements, is the set of those primary units intersected by kth network.
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The variance is V (e∗) =
(∑χ

k=1
∑χ

kT =1 y∗
ky∗

kT

(
α∗

kkT −α∗
kα∗

kT

α∗
k

α∗
kT

))
and an unbiased estimate of

variance is v (e∗) =
(∑χ

k=1
∑χ

kT =1 y∗
ky∗

kT

(
α∗

kkT −α∗
kα∗

kT

α∗
kkT α∗

k
α∗

kT

))
. However, the computation of α∗

k

and α∗
kkT are not an easy task. Thus, a modification is needed.

We take Chaudhuri (2000)s approach here to propose an unbiased estimator of τ as

eT ∗ =
m∑

i=1

τ̂i

πi

=
m∑

i=1

1
πi

Ni

ni

ni∑
j=1

tij

 (10)

where tij = 1
dij

∑M
i=1

∑
j∈A(i,j) yij is the average of y−values of the units belong to the network

A(i, j), ignoring the PSU boundaries. It is much easier to compute than the previous one
(equation 9).

Taking expectation, we get

E
(
eT ∗

)
= E2E1

 m∑
i=1

1
πi

Ni

ni

ni∑
j=1

tij

 = E2(
M∑

i=1

1
πi

(Ni

ni

ni∑
j=1

tij)πi)

= E2

 M∑
i=1

Ni

ni

ni∑
j=1

tij


=

M∑
i=1

Ni∑
j=1

tij =
M∑

i=1

Ni∑
j=1

yij (see Thompson’s (1990) and Chaudhuri (2000))

= τ, the population total.

Table 1: Two-stage ACS structure for population

PSU SSU Networks of SSU Cardinality of Statistic
Networks based on SSU

1 y11, y12, . . . , y1N1 A(1; 1), A(1; 2) . . . A(1, N1) d11, d12, . . . ., d1N1 t11, t12, . . . ., t1N1

2 y21, y22, . . . ., y2N2 A(2; 1), A(2; 2) . . . A(2, N2) d21, d22, . . . ., d2N2 t21, t22, . . . ., t2N2

. . . . . . . . . . . . . . .
yi1, yi2, . . . , yiNi

A(i; 1), A(i; 2) . . . , A(i, Ni) di1, di2, . . . , diNi
ti1, ti2, . . . , tiNi

M yM1, yM2, . . . ., yMNM
A(M ; 1), A(M ; 2) . . . , A(M, NM) dM1, dM2, . . . , dMNM

tM1, tM2, . . . , tMNM

The variance can be written as

V
(
eT ∗

)
= E2V1

(
eT ∗

)
+ V2E1

(
eT ∗

)
= ∑

i<j

∑M
=1 (πiπj − πij)( τi

πi
− τj

πj
)2 +∑M

i=1
N2

i

ni
(1 − fi)S2

i

where S2
i = 1

Ni−1
∑Ni

j=1 (tij−ti)2 and ti = 1
Ni

∑Ni
j=1 tij

An unbiased estimator of V
(
eT ∗

)
is

v
(
eT ∗

)
=
∑
i<j

m∑
=1

(πiπj − πij

πij

)( τ̂i

πi

− τ̂j

πj

)2 +
m∑

i=1

N2
i

ni

(1 − fi) s2
i (11)
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where s2
i is an unbiased estimator of S2

i .

Let A(i; j) can be written as Ac(i; j) ∪ Auc(i; j) where Ac(i; j) is the observed units
and Auc(i; j) is a set of unobserved units of the network of jth unit of ith PSU. Also, let
the cardinality of each set is known and it is possible due to satellite imagery or previous
records.

Then, tij = 1
dij

∑M
i=1

∑
j∈A(i,j) yij may be treated as

tij = 1
dij

∑
i∈s

∑
j∈Ac(i;j)

yij +
∑
i/∈s

∑
j∈Ac(i;j)

yij

+
∑

i∈s

∑
j∈Auc(i;j)

yij

+
∑

i/∈s

∑
j∈Auc(i;j)

yij

 (12)

= 1
dij

[(
∑
i∈s

sum of observed units from ith PSU +
∑
i/∈s

sum of observed units from ith PSU)

+
∑
i∈s

sum of unobserved from ith PSU +
∑
i/∈s

sum of unobserved from ith PSU]

for a network A(i; j)

Similarly, dij− cardinality of the network A(i; j) can be partitioned as

dij =
∑

i∈s

di1(ij) +
∑
i/∈s

di2(ij)
+

∑
i∈s

di3(ij) +
∑
i/∈s

di4(ij) (13)

= (d1(ij) + d2(ij)) + d3(ij) + d4(ij) (14)

where di1(ij) is the number of observed units belongs to ith(i ∈ s) PSU from A(i; j) network
and di2(ij) is the number of observed units belongs to ith(i /∈ s) PSU but from the network
A(i; j). Similarly, di3(ij) and di4(ij) are the numbers of unobserved units belongs to sampled
and non-sampled PSU from A(i; j) network, respectively.

Thus to estimate tij, we need to predict the terms ∑i∈s

∑
j∈Auc(i;j) yij and ∑i/∈s

∑
j∈Auc(i;j) yij.

Now, following Royall (1976)s prediction approach and adopting the model (4) with
restrictions ρi = ρ and σ2

i = σ2, we get
E (Yij) = δ

Cov (Yij, Ylm) = σ2, i = l, j = m
= ρσ2, i = l, j ̸= m
= 0, i ̸= l

(15)

With the model (15), we may get

est

∑
i∈s

∑
j∈Auc(i;j)

yij

 =
∑
i∈s

di3(ij)
[
wiysi + (1 − wi) δ̂

]
. . . using (5)

where wi = ρdi1(ij)
1−ρ−ρdi1(ij) and δ̂ = ∑

i∈s δiysi with δi =
[ di1(ij)

(1−ρ−ρdi1(ij)) ]

[
∑

i∈s

di1(ij)
(1−ρ−ρdi1(ij)) ]

.
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Here, ysi = 1
di1(ij)

∑
j∈Ac(i;j) yij ∀i ∈ s is the average of those observed units from a sampled

PSU i, belongs to the network Ac(i; j).

It is noteworthy that ρ is generally unknown to us. It can be estimated by analysis of
variance (ANOVA) technique (see Valliant et al. (2000) chapter 8), if prior information is
not given.

With the assumption y∗ =
∑

i∈s
di1(ij)ysi∑

i∈s
di1(ij) =

∑
i∈s

di1(ij)ysi

d1(ij) , sum of squares of the ANOVA is
derived based on the following relation:

∑
i∈s

∑
j∈Ac(i;j)

(yij − y∗)2=
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi + ysi − y∗)2

=
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi)2 +
∑
i∈s

∑
j∈Ac(i;j)

(ysi − y∗)2 + 2
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi) (ysi−y∗)

=
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi)2 +
∑
i∈s

∑
j∈Ac(i;j)

(ysi − y∗)2

=
∑
i∈s

∑
j∈Ac(i;j)

(yij − ysi)2 +
∑
i∈s

di1(ij)(ysi − y∗)2

Table 2: ANOVA table for a sample taken by two-stage adaptive cluster sampling

Source Sum of squares Degrees of
freedom

Expected mean
squares

Between Clus-
ters

∑
i∈s di1(ij)(ysi − y∗)2 m∗ − 1 σ2(1−ρ)+ ρσ2

m∗−1{d1(ij)−∑
i∈s

d2
i1(ij)

d1(ij) }
Within Clusters ∑

i∈s

∑
j∈Ac(i;j) (yij − ysi)2 d1(ij) − m∗ σ2(1 − ρ)

m∗ =Number of sampled PSUs in the cluster

Now, for the term ∑
i/∈s

∑
j∈Auc(i;j) yij,

est

∑
i/∈s

∑
j∈Auc(i;j)

yij

 =
∑
i/∈s

di4(i; j)δ̂ . . . using (5)

Thus, our suggested optimal (BLU) predictor is

t̂ij = 1
dij

∑
i∈s

∑
j∈Ac(i;j)

yij +
∑
i/∈s

∑
j∈Ac(i;j)

yij

+
∑
i∈s

di3(ij)
[
wiysi + (1 − wi) δ̂

]
+
∑
i/∈s

di4(ij)δ̂


(16)
and the above can be written as

t̂ij =
 1

dij

∑
i∈s

∑
j∈Ac(i;j)

yij

+ 1
dij

∑
i∈s

(1 + g∗
i )di1(ij)ysi (17)
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where
g∗

i =
{

di3(ij)
di1(ij)wi + δi

di1(ij)
∑
i∈s

di3(ij) (1 − wi) + δi

di1(ij)d4(ij)
}

.

Now, the error variance of t̂ij can be derived as below.

MSE
(
t̂ij

)
= V ar

(
t̂ij − tij

)
(18)

= V ar

 1
dij

∑
i∈s

g∗
i di1(ij)ysi − 1

dij

∑
i∈s

∑
j∈Auc(i;j)

yij − 1
dij

∑
i/∈s

∑
j∈Auc(i;j)

yij


= 1

d2
ij

V ar

∑
i∈s

∑
j∈Auc(i;j)

yij

+ V ar

∑
i/∈s

∑
j∈Auc(i;j)

yij

+ V ar

(∑
i∈s

g∗
i di1(ij)ysi

)
− 1

d2
ij

2 cov

∑
i∈s

g∗
i di1(ij)ysi ,

∑
i∈s

∑
j∈Auc(i;j)

yij


= 1

d2
ij

[
v∗ +

(∑
i∈s

ρσ2d2
i1(ij)g∗2

i +
∑
i∈s

(1 − ρ)σ2di1(ij)g∗2
i

)
− 2

∑
i∈s

ρσ2g∗
i di1(ij)di3(ij)

]

= 1
d2

ij

[
v∗ − ρσ2∑

i∈s

d2
i3(ij) + ρσ2∑

i∈s

(di1(ij)g∗
i − di3(ij))2 +

∑
i∈s

(1 − ρ)σ2di1(ij)g∗2
i

]

where v∗ = V ar
(∑

i∈s

∑
j∈Auc(i;j) yij

)
+ V ar

(∑
i/∈s

∑
j∈Auc(i;j) yij

)
= ∑

i∈s di3(ij)σ2 (1 − ρ + di3(ij)ρ) +∑
i/∈s di4(ij)σ2 (1 − ρ + di4(ij)ρ).

Thus,

êT ∗ =
m∑

i=1

τ̂ ∗
i

πi

=
m∑

i=1

1
πi

Ni

ni

ni∑
j=1

t̂ij

 (19)

becomes our final estimator of population total with variance estimator

v
(
êT ∗

)
=
∑
i<j

m∑
=1

(πiπj − πij

πij

)( τ̂ ∗
i

πi

−
τ̂ ∗

j

πj

)2 +
m∑

i=1

N2
i

ni

(1 − fi) s∗2
i +

m∑
i=1

ni∑
j=1

MSE(t̂ij) (20)

where s∗2
i = 1

ni−1
∑ni

j=1 (t̂ij−t̂i)2 and t̂i = 1
ni

∑ni
j=1 t̂ij.

Note that t̂ij = tij if values of all units in the network A(i, j)is known.

5. Numerical Example

To illustrate our proposed methodology in prediction approach for Two-stage ACS-
overlapping scheme numerically, we consider here Population 1 - the point-objects population
of Thompson’s (1990) which is further reproduced in Rocco (2008)-page-319 as Figure 1. The
population contains N = 400 units and it is partitioned into M = 20 primary units each of
Ni = 20 (∀i = 1, 2, . . . , M) secondary units. From Population 1, it can be seen that very few
units having y− values greater than 0 and the population total is τ = ∑20

i=1
∑20

j=1 yij = 190.
Now, we assume the rarity condition for ACS design is y > 0.
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Figure 1: Two-stage ACS data

Table 3 represents the information gathered from a sample with six PSUs each with
five SSUs. This sample is selected by Lahiri (1951)-Midzuno (1952)-Sen (1953) sampling
scheme for first stage units and SRSWOR for second stage units. With this sampled data,
we mainly illustrate the proposed methodology numerically for overlapping scheme, step-
by-step. Here, m = 6 and ni = 5 ∀ i = 1, 2, . . . , m. The 1st column of Table 3 shows
the selected PSUs. Inclusion probabilities of the selected PSUs are computed for Lahiri-
Midzuno-Sen scheme and mentioned in 2nd column. Also, y − values of selected SSUs are
shown in the table (4th column) along with the network size (5th column), if two-stage ACS-
overlapping scheme is performed. It can be seen that in this case there are only 2 SSUs
having non-zero y −value and based on these SSUs, we can capture more rare units through
ACS design. In this way, we found a network of 11 units ignoring the PSU boundaries, of
which some are unobserved. Here the unobserved units are marked by red circle.

Table 3: Sampled data

Selected
PSU

Inclusion Prob-
ability (πi)

Selected SSU(j) for
a particular PSU(i)

y-values
(yij)

Cardinality of
Network(dij)

1 0.323 11,17,14, 07,10 0,5,0,0,0 01,06,01,01,01
5 0.309 05,09,01,13,18 0,0,0,0,0 01,01,01,01,01
9 0.325 04,11,17,20,03 0,0,0,13,0 01,01,01,11,01
10 0.270 02,11,10,18,12 0,0,0,0,0 01,01,01,01,01
12 0.268 19,16,08,05,10 0,0,0,0,0 01,01,01,01,01
17 0.276 05,03,18,10,15 0,0,0,0,0 01,01,01,01,01

Now, let us consider the network of 20th SSU of 9th PSUs (A(9; 20)-orange shaded
area) which can be treated as Ac(9; 20) ∪ Auc(9; 20). The set of observed units, Ac(9; 20)
contains 15th, 16th, 19th, 20th units from 9th PSU and 9th, 13th units from 10th PSU and
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also 2nd , 3rd units from 14th PSU. The set of unobserved units, Auc(9; 20) contains 18th

unit from 9th PSU, 17th unit from 10th PSU and 4th unit from 14th PSU.

Thus, the cardinality of the network A(9; 20) can be partitioned as 11 = (4 + 2) +
(1 + 1) + (1 + 1) + 1, according to equations (13) and (14).

Now from equation (12) we get,∑
i∈s

∑
j∈Ac(i,j) yij = (5 + 5 + 39 + 13) + (2 + 22 ) = 62 + 24 = 86 and∑

i/∈s

∑
j∈Ac(i,j) yij = (1 + 10) = 11.

However, ∑i∈s

∑
j∈Auc(i,j) yij and ∑i/∈s

∑
j∈Auc(i,j) yij are unknown to us and can be predicted

through equation (4.2.7) and ANOVA with ρ and σ2 , two unknown again.

Now, to predict ρ and σ2, let us first compute sum of squares for between cluster (SSB) and
within cluster (SSW).

Here, SSB = ∑
i∈s di1(ij)(ysi − y∗)2 = 4(62

4 − 86
6 )2 + 2(24

2 − 86
6 )2 = 16.33 and SSW =∑

i∈s

∑
j∈Ac(i;j) (yij − ysi)2 = 979 and ρ = −0.538, σ2 = 159.103.

It is noteworthy that under model (16), ρ can be negative however there is a lower bound.
In this case the lower bound is −0.599. To get better idea of this, readers may consider
Valliant et al. (2000, page 261). The above mentioned two unknown sums can be predicted
by ∑

i∈s di3(ij)
[
wiysi + (1 − wi) δ̂

]
, ∑i/∈s di4(ij)δ̂ respectively and the predicted values are

28.103, 14.051. The values of wi and δ̂ are computed as per given formulas in Section 4.
Thus, t̂ij = 1

11(86 + 11 + 28.103 + 14.051) = 12.65. Note that, the actual tij is 9.727 if all
units of this network (A(9; 20)) are observed.

Therefore, based on the sampled data (see Table 3) the final estimate of population
total is 229.9957 ≈ 230 (using equation 19) and the estimated variance is 16074.43 (using
equation 20). It is worth noting that if all units from the sampled networks are observed,
then the estimated population total and estimated variance are 194.0203 and 10722.75 re-
spectively. In other words, if all units from a sampled network are observed, one may get
better result. It is obvious condition. However, these two situations are incomparable.

6. Conclusion

Two-stage sampling has several advantages over ordinary single stage (one-stage)
sampling. In application of two-stage sampling in ACS, we add many units stopping at the
PSU boundary or crossing across the PSU boundary. It is quite obvious that the surveyors
may be unable to gather information from one or more rare units. Under such a situation,
prediction approach under linear regression model considering correlation structure within
network in two-stage ACS is satisfactory. Thus, to achieve a practical solution in two-stage
ACS, we have employed Royalls prediction approach. In practice, it brings a novelty in
prediction of the population total involving rare units under two stage sampling.
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Abstract
Stunting, the most prevalent form of child malnutrition, is characterized by a lack of

height relative to age in children. Globally, 5.2 million children under five dies, with catas-
trophic stunting rates in central and southern Asia. Pakistan, India, and Afghanistan have
the highest malnutrition rates in South Asia. India has about 270 million poor individu-
als and one-third of malnourished children. The National Family Health Survey (NFHS-5),
2019-21 found that 35.5% of Indian children under five are stunted. Factors influencing nu-
tritional status include social, economic, educational, and maternal health issues. Despite
efforts, India struggles to significantly curb child undernutrition, especially in states like Ut-
tar Pradesh, Bihar, Rajasthan, Madhya Pradesh, Chhattisgarh, and Jharkhand, classified
as low SDI states based on their Socio-Demographic Index (SDI) in the Global Burden of
Disease study for 2019. The objective of this study is to train and evaluate machine learning
(ML) classification algorithms on the National Family Health Survey (NFHS-5), 2019-21
dataset for predicting stunting among children under five years of age in states with a low
socio-demographic index (LSDI). The machine learning models applied in this study include
logistic regression (LR), random forest (RF), support vector classification (SVC), decision
tree classifier (DTC), and gradient boosting classifier (GBC) algorithms. The performance
of the ML algorithms are evaluated and compared using accuracy, recall, precision, F1-score,
receiver operating curve (ROC) and recall curves on test dataset and 5-fold cross validation
dataset. Important features of childhood stunting are also identified using Random Forest
algorithm. It is observed that out of 82,158 children, 39% were stunted. Among the al-
gorithms applied, the GBC algorithm achieved the highest accuracy in predicting stunting,
with 65.5% on the testing data and 65 % ± 7% on the 5-fold cross validation data. In LSDI
states of India, social structure and mother education are found to be major predictors of
stunting in children under five, according to the random forest model for features impor-
tance. These results can aid in the swift diagnosis of stunting and the prompt development
of preventive measures.

Key words: Stunting; Malnutrition; Child development; Healthy growth; Machine learning.
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1. Introduction

Stunting is one of the most serious health and welfare issues across the world with
more than 149 million children, which accounts for 21% of all children under the age of five,
suffer from stunted growth. Moreover, the majority, 91%, of these children reside in low- and
middle-income countries (LMICs) like India (UNICEF, 2020). Stunting is a condition that
occurs when children suffer from prolonged inadequate nutrition and is defined as weight-
for-height < −2 SD (standard deviation) in the WHO Growth Standard median (WHO,
2019).

Between 2005–06 and 2015–16, India has made a modest decrease in the prevalence
of stunting and underweight in children under five years, but the progress is insufficient
compared to its economic growth. Although there was a moderate decline in child under-
nutrition during this period, over one-third of children under five years old remain stunted
(Jose et al., 2018). This situation of stunting in India is quite evident in highly populated
regions, namely Uttar Pradesh, Bihar, Rajasthan, and Madhya Pradesh etc. These states
also come at lower end of Socio demographic Index (SDI) paradigm. The Socio-demographic
Index (SDI) is a composite index of development that is significantly associated with health
impact. It represents the geometric mean of the indices ranging from 0 to 1 for mean edu-
cation among individuals aged 15 or older (EDU15+), total fertility rate under 25 (TFU25),
and lag distributed income (LDI) per capita. A location with an SDI of 0 has a theoretical
minimal level of health-related development, whereas a location with an SDI of 1 has a the-
oretical maximum level (Global Burden of Disease Collaborative Network, 2020). The SDI
quantiles are utilized for classification. Based on their SDI, the states Uttar Pradesh, Bihar,
Rajasthan, Madhya Pradesh, Chhattisgarh, and Jharkhand fall into the category of LSDI
states.

Over the years, classical statistical models have been utilised to discover character-
istics that are autonomously linked to stunting in children under the age of five (Mzumara
et al., 2018; Rakotomanana et al., 2017; Das and Gulshan, 2017). However, these methods
are not reliable in instances where the number of covariates exceeds the number of observa-
tions and when there is multicollinearity among variables. In addition, these models adhere
to stringent assumptions regarding the data and the method by which the data is gener-
ated. These assumptions include the distribution of errors and the linearity of parameters
with linear predictors. However, it is important to note that these assumptions may not
be valid in real-world scenarios (Rajula et al., 2020). Machine learning approaches surpass
traditional models by addressing the analytical difficulties associated with a large number of
covariates and multicollinearity. They also require fewer assumptions and can handle high
dimensional data, resulting in a more adaptable relationship between predictor and outcome
variables (Iniesta et al., 2016). These techniques have been utilised to forecast malnutrition
by employing various datasets (Shahriar et al., 2019; Jin et al., 2020; Markos et al., 2014;
Talukder and Ahammed, 2020). Moreover, machine learning techniques have demonstrated
their superiority over traditional statistical methods in solving categorisation difficulties.

In this study, we focused on training, evaluating, and selecting the optimal machine
learning classifier to predict stunting in children under five years old in low sociodemographic
index (LSDI) states of India. Utilizing data from the NFHS-5 (2019-21), we also aimed
to identify key variables that contribute to stunting. This model is intended to lay the
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groundwork for creating an intelligent system for diagnosing or predicting stunting. The
identified predictors of stunting will be prioritized in the development of interventions aimed
at preventing stunting among children under five in LSDI states of India.

2. Materials and methods

2.1. Data source

The data used in this study is obtained from the Children’s Recode (KR) dataset of
the National Family Health Survey (NFHS-5), conducted from 2019 to 2021. This dataset
includes one record for every child born to interviewed women within the five years preced-
ing the survey consisting 232920 children. Unit-level data is accessible through the Demo-
graphic Health Survey (DHS) data repository, and requests for access can be made via the
DHS Program website (www.dhsprogram.com/data/). The unit of analysis in this research
encompasses 424 districts from LSDI states of India, including a total of 104692 children
under the age of five years at the time of the survey.

2.2. Data pre-processing

The target variable in this study was stunting, defined according to the WHO stan-
dard as a height-for-age Z-score (HAZ) of less than −2 standard deviations (SD) (WHO,
2019). Various socioeconomic, demographic, and environmental factors were considered as
features in the analysis. Missing instances for each variable included in the study were ex-
cluded from the analysis. After removing the missing observations, we were left with 82,158
cases. Further, to prepare categorical features for machine learning, the traditional one-hot
encoding technique was utilized, in which multicategorical variables are transformed into
several binary feature vectors. The continuous variables in the study were standardized.

2.3. Feature selection

Random Forest (RF) feature selection was employed to identify the most significant
features. As suggested by Talukder and Ahammed (2020) for the application of RF feature
selection in constructing predictive models for malnutrition. This method assigns an impor-
tance score to each feature, and those with scores below the average were excluded from the
model. Figure 2 illustrates the importance scores associated with each feature.

2.4. Model training

The data was divided into a training dataset including 70% of the total data, and a
testing dataset comprising the remaining 30%. We have employed five commonly used ma-
chine learning classifiers, namely, logistic regression (LR), random forest (RF), decision tree
(DT), support vector classifier (SVC), and gradient boosting (Géron, 2022). The algorithms
are implemented using scikit-learn library in Python (Pedregosa et al., 2011).

2.5. Evaluation of model performance

The model’s performance on the test set was evaluated using metrics like as accuracy,
precision, recall, area under the curve (AUC), and F1 score.
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Suppose an output variable has two classes, namely, positive and negative classes.
A confusion matrix is a square matrix that includes the True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (PN) values. These values can be used to
calculate the one-dimensional performance measures (Luque et al., 2019).

Accuracy: It is the ratio of events that have been correctly classified to the total number
of cases in the dataset.

Accuracy = TP + TN

TP + FP + FN + TN

Precision: It measures the ratio of true positive correct predictions by the classifier out of
all positive predictions

Precision = TP

TP + FP

Recall: It measures the percentage of real positive predictions out of all actual positive
instances in the dataset.

Recall = TP

TP + FN

F1 score: The F1 score is computed by taking the harmonic mean of the precision and recall.

F1 score = 2 × Recall × Precision
Recall + Precision

Area under the Curve (AUC): The area under the curve (AUC) is the are under the
receiver operating characteristic (ROC) curve. ROC curve is a graphical representation of the
true positive rate (TPR) vs the false positive rate (FPR) at different thresholds. The AUC
provides an assessment of the overall model performance at every potential classification
threshold. It measures the degree of separability between positive and negative classes. The
value of AUC lies between 0 and 1. The higher the value, the better a model can distinguish
between positive and negative classes.

3. Results

Table 1 shows that the prevalence of stunting in rural areas is 40.15%, which is higher
compared to 32% in urban areas. Children whose mothers have no education exhibit the
highest prevalence of stunting at 46.9%, followed by those with only primary education at
42.9%. Households lacking improved sanitation facilities and those using unclean cooking
fuel have stunting prevalences of 45.3% and 41.6%, respectively. The prevalence of stunting
is highest among Muslim children (40.7%), followed by Hindu children (38.3%) and those of
other religions (37.1%). In Scheduled Castes, the prevalence is 40.5%. The average age of
the mothers having stunted child is 27 years, while the average weight of the stunted children
in the study is 10 kg.

Various machine learning models have been applied to predict the likelihood of stunt-
ing and the predictive performance of each classifier on the test and 5-fold cross-validation
datasets. The results have been presented in Table 2.
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Table 1: Prevalence of stunting in children under 5 in low sociodemographic
index states of India by characteristics; NFHS 2019-2021

Variable Category Frequency / Mean Percentage (%) / SD

Place of residence Urban 4933 32
Rural 26735 40.1

Highest educational level
No education 11291 46.9
Primary 4966 42.9
Secondary 13003 35.5
Higher 2409 24.5

Sanitation facility (Improved) No 12128 45.3
Yes 19541 35.3

Clean Cooking fuel No 21816 41.6
Yes 9852 33.2

Religion
Hindu 26964 38.3
Muslim 4199 40.7
Others 505 37.1

Caste
SC 8274 43.2
ST 4086 40.8
OBC 15484 37.8
Other 3825 31.7

Media Exposure No 13991 45.4
Yes 17678 34.4

Wealth index

Poorest 12796 47.3
Poorer 8095 40.4
Middle 5077 36
Richer 3485 29.8
Richest 2216 23.9

Mother Anemia No 11803 36.7
Yes 19865 39.8

Birth Order
1 9558 34.6
2 9629 37.2
3 6159 41.6
4 or more 6322 45.9

Sex of child Male 16822 39.4
Female 14846 37.6

Skilled Birth Attendant No 5179 45.4
Yes 26490 37.4

Institutional Births No 5811 47
Yes 25857 37

Delivery by Caesarean Section No 28849 39.8
Yes 2819 29.1

Size of child at birth No 5072 37.8
Yes 3695 43.2

Birth Weight less than 2.5 kg No 25927 37.4
Yes 5742 44.7

Infectious diseases in past 2 weeks No 24944 38.4
Yes 6725 39.3

Child immediately put on chest after the birth? No 5473 37.3
Yes 26196 38.8

Distance to health facility is a big problem No 22449 37.6
Yes 9220 41.1

Mother Age (in years) 27 5
Respondent’s height (in cm) 149.9 5.99
Mother BMI 20.72 3.35
Mother haemoglobin level (g/dl) 11.24 1.58
Child’s weight (in kg) 10.08 2.86
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Table 2: Summary of classification model performance in predicting stunting

Model Accuracy Precision Recall f1-score AUC

Logistic Regression 5-folds cross-validation 0.62±0.10 0.29±0.05 0.55±0.03 0.38±0.017 0.64±0.31
Test data 0.633 0.298 0.560 0.389 0.658

Random Forest Classifier 5-folds cross-validation 0.65±0.10 0.39±0.12 0.58±0.14 0.47±0.12 0.68±0.11
Test data 0.658 0.394 0.598 0.475 0.690

Support Vector Classifier 5-folds cross-validation 0.65±0.05 0.32±0.12 0.60±0.13 0.42±0.11 0.68±0.16
Test data 0.657 0.332 0.617 0.432 0.682

Gradient Boosting Classifier 5-folds cross-validation 0.65±0.07 0.40±0.10 0.59±0.13 0.49±0.11 0.70±0.06
Test data 0.665 0.412 0.608 0.492 0.702

Decision Tree 5-folds cross-validation 0.56±0.11 0.45±0.13 0.46±0.14 0.45±0.12 0.54±0.17
Test data 0.575 0.473 0.459 0.466 0.557

It can be seen from the Table 2 that the Decision Tree classifier was the least accurate
model on both the test and cross-validation sets, with accuracies of 57.5% and 56 ± 11%,
respectively. In contrast, the Gradient Boosting Classifier was the most effective model,
achieving accuracies of 66.5% on the test set and 65 ± 7% on the cross-validation set. The
Gradient Boosting model also had the highest F1 score at 49.2%, while Logistic Regression
had the lowest F1 score in both the testing and 5-fold cross-validation. The Random Forest
and Support Vector Machine classifiers had accuracy scores of 65.8% and 65.7%, respectively,
on the test dataset, with F1 scores of 47.5% and 43.2%, respectively (Table 2). The area
under the curve (AUC) was highest in the Gradient Boosting model at 70%, followed by the
Random Forest and Support Vector Classifier at 69% and 68%, respectively, and was the
lowest in the Decision Tree model.

Figure 1: Receiver operating characteristic curve of stunting model

The ROC curve analysis revealed that the Gradient Boosting model achieved the
highest Area Under the Curve (AUC) at 0.70, indicating superior performance in distin-
guishing between the positive and negative classes, followed by the Random Forest (AUC =
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0.69) and Support Vector Classifier (AUC = 0.68). Logistic Regression and Decision Tree
had lower AUC values of 0.66 and 0.56, respectively. The Decision Tree model performed the
worst showing the lowest precision and recall values, indicating it was less effective in han-
dling imbalanced datasets. These results underscore the robustness of the Gradient Boosting
model in providing a balanced trade-off between precision and recall, making it the most
reliable model among those evaluated (Figure 1).

Further, the importance scores of the determinants in the Random Forest model are
presented in Figure 2.

Figure 2: Features importance score

From the Figure 2, the key determinants of stunting can be identified, with the top
variables being “Other” Religion (0.16), “higher education of mother” (0.13), and “Rural”
place of residence (0.13). Other significant factors include “mother primary education”
(0.10), and “Other caste” (0.07). These results highlight the critical roles of education level,
religious affiliation, and place of residence in influencing stunting outcomes. Understanding
these variables can guide targeted interventions to address and reduce stunting in affected
populations.
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4. Discussion

Our study found that the Gradient Boosting Classifier had the highest predictive ac-
curacy and precision for stunting among children under five years in low socio-demographic
index states of India, using the fifth round of NFHS data. The Gradient Boosting Clas-
sifier achieved the largest Area Under the Curve (AUC), suggesting its superior ability to
distinguish between positive and negative classes. The Random Forest also performed well,
although not as well as the Gradient Boosting Classifier.

In addition, our study has revealed significant factors for predicting stunting in chil-
dren under the age of five in low socio-demographic index states of India. Some of the
identified top features include religions other than Hindu and Muslim, mother higher educa-
tion level, and a rural place of residence. Other significant factors include mother primary
education and other castes (other than SC/ST and OBC). These were identified commonly
as predictors of stunting in other studies also (Mzumara et al., 2018; Shahriar et al., 2019;
Mediani, 2020; Bwalya et al., 2015).

An important advantage of this study is its use of the NFHS dataset. The NFHS
employs a robust sampling procedure, providing a reliable representation of the under-five
population in both rural and urban areas of low socio-demographic index states in India.
Additionally, the model’s accuracy was assessed using test data, and 5-fold cross-validation
was employed to prevent overfitting. However, there are still certain possible constraints that
need to be considered. Consequently, the interpretability of the findings remains constrained.
Furthermore, despite our efforts to incorporate a wide range of covariates, we were unable
to eliminate the possibility of residual confounding resulting from unmeasured factors, such
as the mother’s height and weight. Additionally, certain details about the children were
obtained from their mothers’ memories, such as instances of diarrhoea and fever in the past
two weeks. However, it is possible that there is a bias in these recollections.

5. Conclusion

In this study, several machine learning models have been employed to predict the
prevalence of stunting in children under 5 years of age in LSDI states on India. The perfor-
mance of the models was compared using various performance metrics. The results suggest
that the Gradient Boosting Classifier model has highest predictive accuracy for stunting
compared to the other applied models in this study. Feature importance is also studied
using the random forest model. It suggests that social structure, mother education are the
important predictors of stunting among the children under five in low socio demographic
index states of India.
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Abstract
Mixed models have widespread appeal in many areas of statistical modeling from

biostatistics to small area estimation. Here we review a variety of recent approaches for
modernizing linear mixed model prediction including robust prediction via the observed best
predictor (OBP) to prediction for new test data using a classified random effect, namely clas-
sified mixed model prediction (CMMP). Finally, a brief mention will be made to a proposal
for using mixed model prediction to project outside of the range of the training data using
classified mixed model projections.
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1. Introduction

It is now well accepted that it is necessary to borrow strength from relevant domains
and resources to increase the efficiency of direct estimates and that linear mixed models
provide a pathway to do so. In this regard, the empirical best linear unbiased prediction, or
EBLUP, method has had a dominant influence (e.g., Rao 2003; Jiang and Lahiri 2006). The
method utilizes a linear mixed effects model (e.g., Jiang 2007) in order to borrow strength.
The standard procedure of computing the EBLUP is the following. First one derives the
best predictor (BP) of the mixed effects of interests, such as the small area means. Then,
one replaces the vector of the fixed effects by its maximum likelihood estimator (MLE),
assuming that the variance components are known (up to this stage one obtains the best
linear unbiased predictor, or BLUP). Finally, one replaces the unknown variance components
by their ML or REML estimators. It follows that the EBLUP is the BP, in which the unknown
fixed parameters, including the fixed effects and variance components, are estimated either
by ML or REML. The latter are known to be asymptotically optimal under estimation
considerations (e.g., Jiang 2007). However, in many cases, such as in SAE, the problem of
main interest is prediction, rather than estimation. The implication is that the EBLUP may
be regarded as a hybrid of optimal prediction (i.e., BP) and optimal estimation (e.g., ML).
Nevertheless, if prediction is of main interest, it would be more natural to have a purely
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predictive procedure, in which both the predictor and estimator are derived from predictive
considerations.

2. A general framework for the observed best predictor (OBP)

First, consider a general mixed model prediction problem (e.g., Robinson 1991). The
assumed model is y = Xβ + Zv + e, where X,Z are known matrices; β is a vector of fixed
effects; v, e are vectors random effects and errors, respectively, such that v ∼ N(0, G), e ∼
N(0,Σ), and v, e are uncorrelated. Suppose that the true underlying model is y = µ+Zv+e,
where µ = E(y). Here, again, E without subscript represents expectation with respect to
the true distribution, which may be unknown but is not model-dependent. Following Jiang
et al. (2011), our interest is prediction of a vector of mixed effects that can be expressed as
θ = F ′µ + R′v, where F,R are known matrices. Suppose that G,Σ are known. Then, the
best predictor (BP) of θ, in the sense of minimum MSPE, under the assumed model is given
by Ea(θ|y) = F ′µ+R′Ea(v|y) = F ′Xβ +R′GZ ′V −1(y−Xβ), where Ea denotes expectation
under the assumed model, V = Var(y) = Σ +ZGZ ′ and β is the true vector of fixed effects,
under the assumed model. If we write B = R′GZ ′V −1 and Γ = F ′ −B, then the BP can be
expressed as

Ea(θ|y) = F ′y − Γ(y −Xβ). (1)

Now let θ̌ denote the right side of (1) with a fixed, but arbitrary β. Then, it can be shown
that MSPE(θ̌) = E(I1 − 2I2 + (y − Xβ)′Γ′Γ(y − Xβ)}, where I1, I2 do not depend on β.
Thus, the best predictive estimator (BPE) (Jiang et al. 2011) of β is obtained by minimizing
the expression inside the expectation, that is, β̃ = (X ′Γ′ΓX)−1X ′Γ′Γy, assuming that Γ′Γ is
nonsingular and X is full rank. Once the BPE is obtained, the OBP of θ (Jiang et al. 2011),
is given by the right side of (1) with β replaced by β̃. On the other hand, the BLUP of θ
is given by the right side of (1) with β replaced by β̂ = (X ′V −1X)−1X ′V −1y, which is the
MLE of β. To compare the predictive performance of the OBP and BLUP, let us consider a
class of empirical best predictors (EBPs) that can be expressed as

θ̌ = F ′y − Γ(y −Xβ̌), (2)

where β̌ is a weighted least squares (WLS) estimator of β expressed as β̌ = (X ′WX)−1X ′Wy
and W is a positive definite weighting matrix. Note that (2) is the BP (1) with β replaced
by β̌ (and hence explains the name EBP). Also note that the BPE and MLE are special
cases of the WLS, hence the OBP and BLUP are special cases of the EBP.

2.1. Special Case 1: The Fay-Herriott Model

The Fay-Herriot model (Fay and Herriot 1979) is widely used in small area estimation
(SAE). It was proposed to estimate the per-capita income of small places with population
size less than 1,000. The model can be expressed as a mixed effects model:

yi = x′
iβ + vi + ei, i = 1, . . . ,m, (3)

where xi is a vector of known covariates, β is a vector of unknown regression coefficients,
vi’s are area-specific random effects and ei’s are sampling errors. It is assumed that the vi’s
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and ei’s are independent with vi ∼ N(0, A) and ei ∼ N(0, Di). The variance A is unknown,
but the sampling variances Di’s are assumed known. The problem of interest is estimation
of the small area means, which, at least by a higher-order approximation, are equal to the
mixed effects θi = x′

iβ + vi, i = 1, . . . ,m. Thus, without loss of generality, we treat the θi’s
as the small area means, so the problem is prediction of the mixed effects.

One should note that the true small area means should not depend on the assumed
model. In fact, it is easy to see that under the weak assumption

yi = µi + vi + ei, we have θi = E(yi|vi) = E(yi) + vi, i = 1, . . . ,m, (4)

where µi = E(yi). The advantage of expressions (4) is that they are not model-dependent,
which is a key to our approach. Here, E denotes the expectation with respect to the true
distribution of yi, which may be unknown, but not model-dependent. The most popular
precision measure of a predictor is its mean squared prediction error (MSPE; e.g., Prasad &
Rao 1990, Das et al. 2004). Write θ = (θi)1≤i≤m and let θ̃ = (θ̃i)1≤i≤m be a predictor of θ.
Then, the (overall) MSPE of θ̃ is given by

MSPE(θ̃) = E(|θ̃ − θ|2) =
m∑
i=1

E(θ̃i − θi)2. (5)

Once again, the expectation in (5) is with respect to the true underlying distribution (of
whatever random quantities that are involved), which is unknown but not model-dependent.
Under the assumed Fay-Herriot model, and given the parameters ψ = (β′, A)′, the BP is
given by

θ̃(ψ) = Em,ψ(θ|y) =
[
x′
iβ + A

A+Di

(yi − x′
iβ)
]

1≤i≤m
, (6)

or θ̃(ψ)i = x′
iβ + Bi(yi − x′

iβ), 1 ≤ i ≤ m, where Bi = A/(A + Di), and Em,ψ represents
(conditional) expectation under the assumed model with ψ being the true parameter vector.
Note that Em,ψ is different from E unless the model is correct, and ψ is the true parameter
vector. For simplicity, let us assume, for now, that A is known. Then, the precision of θ̃(ψ),
which is now denoted by θ̃(β) because A is no longer a parameter, is measured by

MSPE{θ̃(β)} =
m∑
i=1

E{Biyi − θi + x′
iβ(1 −Bi)}2 = I1 + 2I2 + I3, (7)

where I1 = ∑m
i=1 E(Biyi − θi)2, I2 = ∑m

i=1 x
′
iβ(1 − Bi)E(Biyi − θi), and I3 = ∑m

i=1(x′
iβ)2(1 −

Bi)2. Note that I1 does not depend on β. As for I2, we have E(Biyi − θi) = (Bi − 1)E(yi).
Thus, we have I2 = −∑m

i=1(1 − Bi)2x′
iβE(yi). It follows that the left side of (7) can be

expressed as

MSPE{θ̃(β)} = E
{
I1 +

m∑
i=1

(1 −Bi)2(x′
iβ)2 − 2

m∑
i=1

(1 −Bi)2x′
iβyi

}
. (8)

The right side of (8) suggests a natural estimator of β, by minimizing the expression inside
the expectation, which is equivalent to minimizing Q(β) = ∑m

i=1(1 −Bi)2(x′
iβ)2 − 2∑m

i=1(1 −
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Bi)2x′
iβyi = β′X ′Γ2Xβ − 2y′Γ2Xβ, where X = (x′

i)1≤i≤m, y = (yi)1≤i≤m and Γ = diag(1 −
Bi, 1 ≤ i ≤ m). A closed-form solution is given by

β̃ = (X ′Γ2X)−1X ′Γ2y =
{

m∑
i=1

(1 −Bi)2xix
′
i

}−1 m∑
i=1

(1 −Bi)2xiyi. (9)

Here we assume, without loss of generality, that X is of full column Note that β̃ is different
from the MLE of β,

β̂ = (X ′V −1X)−1X ′V −1y =
(

m∑
i=1

xix
′
i

A+Di

)−1 m∑
i=1

xiyi
A+Di

, (10)

where V = diag(A+Di, 1 ≤ i ≤ m) = Var(y). While β̂ maximizes the likelihood function, β̃
minimizes the “observed” MSPE which is the expression inside the expectation on the right
side of (8). We call β̃ given by (9) the best predictive estimator, or BPE, of β. Note that the
BPE has the property that its expected value,

E(β̃) = (X ′Γ2X)−1X ′Γ2E(y), (11)
is the β that minimizes MSPE{θ̃(β)}. However, the expression (11) is not computable.

A predictor of the mixed effects θ is then obtained by replacing β in the BP (6) by its
BPE. We call this predictor the observed best predictor, or OBP. The reason is that the BPE
is the minimizer of the observed MSPE. If the observed MSPE were the true MSPE, the BPE
would give us the BP. However, because, instead, we are dealing with the observed MSPE,
the corresponding predictor (obtained by the same procedure with the MSPE replaced by
the observed MSPE) should be called the observed BP.

2.2. Special Case 2: The nested error regression model

Consider sampling from finite subpopulations Pi = {Yik, k = 1, . . . , Ni}, i = 1, . . . ,m.
Suppose that auxiliary data Xikl, k = 1, . . . , Ni, l = 1, . . . , p are available for each Pi, and a
super-population nested-error regression model (Battese et al. 1988) hold for all subpopula-
tions:

Yik = X ′
ikβ + vi + eik, k = 1, . . . , Ni, (12)

where Xik = (Xikl)1≤l≤p, the vi’s are small-area specific random effects, and eik’s are addi-
tional errors, such that the random effects and errors are independent with vi ∼ N(0, σ2

v)
and eik ∼ N(0, σ2

e). The small area mean for Pi is then µi = N−1
i

∑Ni
k=1 Yik.

Now suppose that yij, j = 1, . . . , ni are observed for the ith subpopulation, i =
1, . . . ,m. Let the corresponding auxiliary data be xij, j = 1, . . . , ni, i = 1, . . . ,m. Write
yi = (yij)1≤j≤ni

, y = (yi)1≤i≤m, ȳi· = n−1
i

∑ni
j=1 yij and x̄i· = n−1

i

∑ni
j=1 xij. Let ψ = (β′, σ2

v , σ
2
e)′

denote the vector of parameters under the nested-error regression model (12). Under this
model with ψ being the true parameter vector, the BP for µi is

µ̃i(ψ) = Em,ψ(µi|y) = 1
Ni


ni∑
j=1

yij +
∑
k/∈Ii

Em,ψ(Yi,k|yi)


= X̄ ′

iβ +
{
ni
Ni

+
(

1 − ni
Ni

)
niσ

2
v

σ2
e + niσ2

v

}
(ȳi· − x̄′

i·β), (13)
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where Em,ψ denotes the model-based conditional expectation given that ψ is the true pa-
rameter vector, Ii is the set of sampled indexes such that Yik is in the sample iff k ∈ Ii,
and X̄i = N−1

i

∑Ni
k=1 Xik is the subpopulation mean of the Xik’s for the ith subpopulation

(which is known). Note that (13) is a model-based BP. The performance of the model-based
BP is then evaluated by the design-based MSPE. This is because the latter is almost free
of model assumptions, and therefore robust to model misspecifications [we could not do this
under the Fay-Herriot model, however, because the sampling data were not available at the
unit level; instead, we considered a model under very weak assumptions]. The design-based
MSPE is given by MSPE{µ̃(ψ)} = Ed{|µ̃(ψ) − µ|2} = ∑m

i=1 Ed{µ̃i(ψ) − µi}2, where
µ̃(ψ) = [µ̃i(ψ)]1≤i≤m, µ = (µi)1≤i≤m and Ed denotes the design-based expectation. Assume,
for simplicity, simple random sampling within each subpopulation Pi. Then, it can be shown
that

MSPE = Ed

[
m∑
i=1

{µ̃2
i (ψ) − 2ai(σ2

v , σ
2
e)X̄ ′

iβȳi· + bi(σ2
v , σ

2
e)µ̂2

i }
]
, (14)

where ai(σ2
v , σ

2
e) = (1−ni/Ni)σ2

e/(σ2
e+niσ2

v) and bi(σ2
v , σ

2
e) = 1−2[ni/Ni+(1−ni/Ni){niσ2

v/(σ2
e+

niσ
2
v)}]. Thus, the BPE of ψ is obtained by minimizingQ(ψ) = ∑m

i=1{µ̃2
i (ψ)−2ai(σ2

v , σ
2
e)X̄ ′

iβȳi·+
bi(σ2

v , σ
2
e)µ̂2

i }, which is the expression inside the expectation in (14). Here µ̂2
i is a design-based

unbiased estimator of µ2
i , given by µ̂2

i = n−1
i

∑ni
j=1 y

2
ij−(Ni−1){Ni(ni−1)}−1∑ni

j=1(yij− ȳi·)2.
A similar numerical procedure can be developed to compute the BPE. Given the BPE
ψ̃ = (β̃′, σ̃2

v , σ̃
2
e)′, the OBP of µi is given by µ̃i = µ̃i(ψ̃), 1 ≤ i ≤ m, where µ̃i(ψ) is given by

(13).

2.3. Estimation of MSPE of OBP

Obtaining a measure of uncertainty for OBP is particularly challenging. This is
because the OBP is derived by taking into account of the potential model misspecification.
Therefore, to derive a measure of uncertainty, the potential model misspecification also needs
to be taken into consideration when considering measures of uncertainty. More importantly,
it is desirable to evaluate uncertainty due to the potential model misspecification.

A standard measure of uncertainty is the MSPE. Let us first consider this under a
Fay-Herriot model. In proposing the OBP, Jiang et al. (2011) also proposed an MSPE
estimator under potential model misspecification, which we call the JNR estimator in the
sequel. The authors showed that the JNR estimator is second-order unbiased, that is, its
bias is o(m−1). However, the estimator is known to have large variation. To see why, note
that the leading term of the JNR estimator has the expression

(θ̂i − yi)2 +Di(2B̂i − 1), (15)

where θ̂i is the OBP of θi, Bi = A/(A + Di, and B̂i is Bi with A replaced by Â, the BPE
of A. The direct estimator, yi, is involved in (15), which has large variation compared to,
for example, Â. The latter is an estimator based on all of the data, yi, xi, 1 ≤ i ≤ m, which
has relatively small variation. In particular, the JNR estimator has a significantly nonzero
chance of taking negative values.

In addition to the JNR estimator, Jiang et al. (2011) also proposed a bootstrap
MSPE estimator. Although the bootstrap estimator is gauranteed non-negative, its bias was
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shown to be significantly larger than the JNR estimator. The method also seemed lack of
theoretical justification, in which the bootstrap samples were drown independently under
the model y∗

i ∼ θ̂i + e∗
i , where θ̂i is the OBP and e∗

i ∼ N(0, Di), 1 ≤ i ≤ m.

Liu et al. (2022a) proposed a OBOR estimator for the MSPE of OBP. Here, OBOR
is an abbreviation of one-bring-one-route. It is called OBOR because the estimator consists
of averages of terms, where each term involves yi, plus one other yj for j ̸= i. The average
is over m − 1 such yj’s for j ̸= i. The idea can be generalized to one-bring-two, one-bring-
three, etc., but the computational burden mounts as this moves on. In this regard, the JNR
estimator may also be viewed as a special case of one-bring-none. Although the OBOR
estimator reduces the variation over the JNR estimator, the result was not all satisfactory,
compared to a much better estimator found later.

A well-known method for obtaining a second-order unbiased MSPE estimator is the
Prasad-Rao (PR) linearization method (Prasad and Rao 1990). The method is developed
under the assumption that the underlying model is correct. In fact, the assumed model is
substantially used in the derivation of the P-R MSPE estimator. Given that, it would be
surprising to learn that, in spite of the model misspecification, the PR MSPE estimator for
OBP is, still, mostly correct. In fact, Liu et al. (2022b) found that the PR MSPE estimator
remains first-order unbiased in the sense that the bias of the estimator is O(m−1), even if
the underlying model is misspecified in its mean function. Furthermore, the same authors
showed the PR MSPE estimator can be modified to achieve the second-order unbiasedness,
again under the potential model misspecification in the mean function.

3. Classified mixed model prediction (CMMP)

The world has been witnessing an information explosion in many areas of society
from medicine to economics and business to social media for instance. The rapid increase
in the unprecedented amount of data has resulted in many new important shifts of interest
in the types of questions that can be potentially answered. These new shifts are focusing
more and more attention on knowledge at individual or subject levels. One of the currently
“hot” areas is precision medicine. The National Research Council of the United States in
2014 defined the latter as the “ability to classify individuals into subpopulations that differ
in their susceptibility to a particular disease, in the biology and/or prognosis of those disease
they may develop, or in their response to a specific treatment. Preventive or therapeutic
interventions can then be concentrated on those who will benefit, sparing expense and side
effects for those who will not”. Another area, in economic studies, is family economics,
which applies basic economic concepts to families, which are viewed as (small) firms or
companies. For example, China Household Finance Survey, the largest non-governmental
household panel survey since 2009, has so far collected massive financial and economical
data at household level. The latest wave, conducted in the summer of 2017, had more than
40,000 nationally and provincially representative households. More than 10,000 registered
users worldwide are using the data for their studies about China. In particular, the data
provide important information about household finance, which is a driving force of China’s
national economy (e.g., Zhang et al. 2014, Gan, Yin and Tan 2016).

The target of classical statistical inference is a (large) population, from which data
are collected, and to be used to make inference about the same population parameters, such
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as the mean, proportion, and regression coefficients. However, in each of the above subject
matter disciplines, the primary interest is inference at the subject levels. For example, in
precision medicine, the subject may be a patient, or small group of patients sharing similar
characteristics; in family economics, the subject is typically a family, whose definition may
vary depending on factors such as culture or interest.

Nevertheless, it should be noted that making inference about a specific subject does
not mean that the inference is based only on data collected from the subject, which is key.
The idea can be best explained using a mixed effects model (MEM; e.g., Jiang 2007). There
are fixed effects and random effects in a MEM. The fixed effects are parameters that are
common for all of the subjects; the random effects are typically subject-specific. The fixed
effects are estimated using all of the data, that is, combining all subjects, but what about
the random effects? This question has direct implications on how one predicts accurately
from such models (e.g. Welham et al. 2004). In mixed model prediction (MMP), the best
predictor for a characteristic of interest associated with a specific subject is derived, which
depends on the subject-specific data as well as the fixed effects and variance components,
which are population parameters. Thus, through MMP, inference about the subject-specific
characteristic borrows strength from data from other subjects, as well as information from
other sources.

In a significant recent development toward potentially much broader, modern-time
applications, Jiang et al. (2018) proposed a method called classified mixed model prediction
(CMMP) for two types of prediction problems - predicting the mixed effect associated with
a set of new observations and predicting future values associated with new sets of covariates.
The basic idea is to create a “match” between a group or cluster in the population, for which
one wishes to make prediction, and a (massive) training data, with known groups or clusters.
Once such a match is built, the traditional MMP method can be utilized to make accurate
predictions. Even more interestingly, it can handle the situation where a real match may
not exist.

To illustrate the CMMP method, let us focus on prediction of a mixed effect associated
with new observations. Suppose that we have a set of training data, yij, i = 1, . . . ,m, j =
1, . . . , ni in the sense that their classifications are known, that is, one knows which group, i,
that yij belongs to. The assumed model is a linear mixed model (LMM; e.g., Jiang 2007):

yi = E(yi|α) + ϵi = Xiβ + Ziαi + ϵi, (16)

where yi = (yij)1≤j≤ni
, Xi = (x′

ij)1≤j≤ni
is a matrix of known covariates, β is a vector of

unknown regression coefficients (the fixed effects), Zi is a known ni × q matrix, αi is a q × 1
vector of group-specific random effects, ϵi is an ni × 1 vector of errors, and α = (αi)1≤i≤m.
It is assumed that the αi’s and ϵi’s are independent, with αi ∼ N(0, G) and ϵi ∼ N(0, Ri),
where the covariance matrices G and Ri depend on a vector ψ of dispersion parameters, or
variance components. Our goal is to make a classified prediction for a mixed effect associated
with a new observation, yn. Suppose that

yn = E(yn|α) + ϵn = x′
nβ + z′

nαI + ϵn, (17)

where xn, zn are known vectors, I ∈ {1, . . . ,m} but one does not know which element i,
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1 ≤ i ≤ m, is equal to I. Furthermore, ϵn is a new error that is independent of yi, 1 ≤ i ≤ m,
and has mean zero. The mixed effect of interest is θ = E(yn|α) = yn − ϵn. From the training
data, one can estimate the parameters, β and ψ. Thus, we can assume that estimators
β̂, ψ̂ are available for β, ψ, respectively. Suppose that I = i. Then, it can be shown that
E(θ|y1, . . . , ym) = E(θ|yi) and, according to the normal theory,

E(θ|yi) = x′
nβ + z′

nGZ
′
i(Ri + ZiGZ

′
i)−1(yi −Xiβ). (18)

The right side of (18) is the BP under the assumed LMM, if the true parameters, β and ψ,
are known. Because the latter are unknown, we replace them by β̂ and ψ̂, respectively. The
result is called an empirical best predictor (EBP), noted by θ̃(i). In practice, however, I is
unknown. In order to identify I, we consider the MSPE of predicting θ by the BP when
I is classified as i, that is MSPEi = E{θ̃(i) − θ}2 = E{θ̃2

(i)} − 2E{θ̃(i)θ} + E(θ2). Using the
expression θ = yn − ϵn, we have E{θ̃(i)θ} = E{θ̃(i)yn} − E{θ̃(i)ϵn} = E{θ̃(i)yn}. Thus, we have

MSPEi = E{θ̃2
(i) − 2θ̃(i)yn + θ2}. (19)

Note that the E in (19) denotes the true expectation, which may be unknown; nevertheless,
the observed MSPE corresponding to (4) is the expression inside the expectation. Therefore,
a natural idea is to identify I as the index i that minimizes the observed MSPE. Because θ2

does not depend on i, this is equivalent to

I = argmini{θ̃2
(i) − 2θ̃(i)yn}. (20)

Denote the I identified by (20) by Î. Then, the classified mixed-effect predictor (CMMP) of
θ is given by θ̂ = θ̃(Î).

The basic idea of CMMP has been extended to multiple new observations from the
same, unknown group, and to prediction of a future observation. See Jiang et al. (2018) for
details. An important concept being exploited by CMMP is the idea that it captures what
is not captured by the fixed effect (the uncaptured) through the classified random effect. It
is important to note that the primary interest is not to identify the correct “match”, I. In
fact, in many applications such a match may not exist, that is, there is no group among
the training that matches exactly the group corresponding to the new observations. Even
if the exact match does exist, as the number of training data groups, m, increases, the
probability of identifying the correct group, that is, P(Î = I), goes to zero (as opposed to
going to one, as one might expect). But, regardless, the CMMP of the mixed effect, θ, is
consistent (in fact, converges in L2 to the true mixed effect), which is all we care about. For
example, it was demonstrated that CMMP significantly outperform the traditional regression
prediction whether or not the true match exists. The rationale behind the mismatch-led-
correct-prediction is because, as m increases, the difference between different groups becomes
smaller and smaller; thus, even though there is no exact match, there is a “close match”
between one of the training data groups and the new group, of which CMMP is able to take
advantage. This important, and interesting, feature makes the CMMP idea practically more
attractive because, in practice, an exact match may not exist but a close resemblance may
well be expected.
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Following the initial work of CMMP, Sun et al. (2018) extended the idea to classified
prediction of mixed effects associated with binary outcomes, such as conditional probabilities
associated with a group of new observations, and demonstrated similar properties to CMMP
for the resulting classified predictor. A number of recent results have been derived to extend
the idea of CMMP to topics like functional data analysis (Xiu & Jiang (2024)) and a psuedo-
Bayesian version of CMMP (Ma & Jiang (2023)).

3.1. Estimation of MSPE for CMMP

A standard uncertainty measure for a predictor is the MSPE. A “gold standard” for
the MSPE estimation is to produce a second-order unbiased MSPE estimator, that is, the
order of bias of the MSPE estimator is o(m−1), where m is the total number of clusters
in the training data. Typically, the o(m−1) term is, in fact, O(m−2), but this difference
is usually ignored. For the most part, there have been two approaches for producing a
second-order unbiased MSPE estimator. The first is the Prasad-Rao linearization method
(Prasad & Rao 1990). The approach uses Taylor series expansion to obtain a second-order
approximation to the MSPE, then corrects the bias, again to the second-order, to produce
an MSPE estimator whose bias is o(m−1). Various extensions of the Prasad-Rao method
have been developed; see, for example, Datta & Lahiri (2000), Jiang & Lahiri (2001), Das,
Jiang & Rao (2004), and Datta, Rao & Smith (2005). Although the method often leads to an
analytic expression of the MSPE estimator, the derivation is tedious, and the final expression
is likely to be complicated. More importantly, errors often occur in the process of analytic
derivations as well as computer programming based on the lengthy expressions. Furthermore,
the linearization method does not apply to situations where a non-differentiable operation
is involved in obtaining the predictor, such as shrinkage estimation (e.g., Tibshirani 1996),
CMMP (Jiang et al. 2018), as well as the CMMP described in what follows in the next
section.

The second approach to second-order unbiased MSPE estimation is resampling meth-
ods. Jiang, Lahiri & Wan (2002; hereafter JLW) proposed a jackknife method to estimate
the MSPE of an empirical best predictor (EBP). The method avoids tedious derivations
of the Prasad-Rao method, and is “one formula for all”. On the other hand, there are re-
strictions on the class of predictors to which JLW applies. Namely, JLW only applies to
empirical best predictor (EBP), that is, predictor obtained by replacing the parameters in-
volved in the best predictor (BP), which is the conditional expectation, by their (consistent)
estimators. The CMMP predictor, however, is not an EBP, because it involves a matching
process. Jiang, Lahiri & Nguyen (2018) proposed a Monte-Carlo jackknife method, called
McJack, which potentially applies to CMMP; however, the method is computationally very
expensive. Another resampling-based approach is double bootstrapping (DB; Hall & Maiti
2006a,b). Although DB is capable of producing a second-order unbiased MSPE estimator, it
is, perhaps, computationally even more intensive than the McJack. It is also unclear whether
DB can be extended to CMMP.

In a way, the method to be proposed below may be viewed as a hybrid of the lineariza-
tion method and resampling method, by combining the best part of each method. In short,
we use a simple, analytic approach to obtain the leading term of our MSPE estimator, and
a Monte-Carlo method to take care a remaining, lower-order term. The computational cost
for the Monte-Carlo part is much lesser compared to McJack. For example, the computa-
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tional burden of our method is about 1/m3 to 1/m2 of that for McJack. More importantly,
the method provides a unified, conceptually easy solution to a difficult problem, that is,
obtaining a second-order unbiased MSPE estimator for CMMP.

Let θ be the mixed effect corresponding to the new observations, and θ̂ the CMMP
predictor of θ. The MSPE of θ̂ can be expressed as MSPE = E(θ̂− θ)2 = E

[
E{(θ̂ − θ)2|y}

]
,

where y represents the available data. Suppose that the underlying distribution of y de-
pends on a vector of unknown parameters, ϕ. Then, the conditional expectation inside the
expectation is a function of y and ϕ, which can be written as a(y, ϕ) = E{(θ̂ − θ)2|y} =
θ̂2 − 2θ̂E(θ|y) + E(θ2|y) = θ̂2 − 2θ̂a1(y, ϕ) + a2(y, ϕ), where aj(y, ϕ) = E(θj|y), j = 1, 2. If
we replace the ϕ in a(y, ψ) by ϕ̂, a consistent estimator of ϕ, the result is a first-order un-
biased estimator, that is, we have E{a(y, ϕ̂) − a(y, ϕ)} = O(m−1). On the other hand, both
MSPE = E{a(y, ϕ)} and E{a(y, ϕ̂)} are functions of ϕ, denoted by b(ϕ) and c(ϕ), respec-
tively. It follows that d(ϕ) = b(ϕ) − c(ϕ) = O(m−1); thus, if we replace, again, to replace ϕ
by ϕ̂ in d(ϕ), the difference is a lower-order term, that is, d(ϕ̂) − d(ϕ) = oP(m−1) [see, e.g.,
Jiang 2010, sec. 3.4 for notation like oP and OP]. Now consider the estimator

M̂SPE = a(y, ϕ̂) + d(ϕ̂) = a(y, ϕ̂) + b(ϕ̂) − c(ϕ̂). (21)

We have E(M̂SPE) = E{a(y, ϕ)} + E{a(y, ϕ̂) − a(y, ϕ)} + E{d(ϕ̂)} = MSPE + E{d(ϕ̂) −
d(ϕ)} = MSPE + o(m−1). Essentially, this one-line, heuristic derivation shows the second-
order unbiasedness of the proposed MSPE estimator, (21), provided that the terms involved
can be evaluated.

Note that the leading term, a(y, ϕ̂), in (21) is guaranteed positive, a desirable property
for an MSPE estimator. The lower-order term, b(ϕ̂) − c(ϕ̂), corresponds to a bias correction
to the leading term. This term is typically much more difficult to evaluate than the leading
term. We propose to approximate this term using a Monte-Carlo method. Let Pϕ denote the
distribution of y with ϕ being the true parameter vector. Given ϕ, one can generate y under
Pϕ. Let y[k] denote y generated under the kth Monte-Carlo sample, k = 1, . . . , K. Then, by
the law of large numbers, we have b(ϕ)−c(ϕ) ≈ K−1∑K

k=1

{
a(y[k], ϕ) − a(y[k], ϕ̂[k])

}
≡ dK(ϕ),

where ϕ̂[k] denotes ϕ̂ based on y[k]. If K is sufficiently large, which one has control over during
the Monte-Carlo simulation, the difference between the two sides of the approximation is
o(m−1). Note that y[k], k = 1, . . . , K also depend on ϕ. Then, a Monte-Carlo assisted MSPE
estimator (Nguyuen et al. 2022), is given by

M̂SPEK = a(y, ϕ̂) + dK(ϕ̂) = a(y, ϕ̂) +K−1
K∑
k=1

{
a(y[k], ϕ̂) − a(y[k], ϕ̂[k])

}
(22)

where y[k], k = 1, . . . , K are generated as above with ϕ = ϕ̂, and ϕ̂[k] is, again, the estimator of
ϕ based on y[k]. (22) is called the Sumca estimator of the MSPE of θ̂ (Sumca is abbreviation
of “simple, unified, Monte-Caro assisted”).
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4. Classified mixed model projections

In many practical problems, there is interest in the estimation of mixed effect pro-
jections for new data that are outside the range of the training data. Examples include
predicting extreme small area means for rare populations or making treatment decisions
for patients who do not fit typical risk profiles. Standard methods have long been known
to struggle with such problems since the training data may not provide enough informa-
tion about potential model changes for these new data values (extrapolation bias). Rao
et al. (2024) proposed a new framework called Prediction Using Random-effect Extrapo-
lation (PURE) which involves constructing a generalized independent variable hull (gIVH)
to isolate a minority training set which is “close” to the prediction space, followed by a
regrouping of the minority data according to the response variable which results in a new
(but misspecified) random effect distribution. This misspecification reflects “extrapolated
random effects” which prove vital to capture information that is needed for accurate model
projections. Projections were then made using classified mixed model prediction (CMMP)
(Jiang et al. 2018) with the regrouped minority data. Let us assume that, for i = 1, . . . ,m,
y(k) follow a mixed model as follows:

y
(k)
i = X

(k)
i βk + Z

(k)
i bi + εi, (23)

where y(k)
i = (yij)1≤j≤n(k)

i
, X(k)

i = (x(k)
ij )T

1≤j≤n(k)
i

is a matrix of known covariates, Z(k)
i is a

matrix of known covariates, βk is a p-vector of unknown regression coefficients (the fixed
effects), bi is q-vector of group-specific random effects, and εi is an vector of errors. Notice
the different notation for the random effects from the previous CMMP in order to distinguish
the two methods.

The subscript (k) denotes the population k, and 1 ≤ k ≤ K. It is assumed that
bi ∼ N(0, G), εi ∼ N(0, Ri) and they are independent, and the covariance matrices G
and Ri depend on a vector ψ of variance components. Note βk is different for different
population k, and the random effects bi are the same across k populations. The total number
of observations in each population is n(k) = ∑m

i=1 n
(k)
i , and the overall total population

n = ∑K
i=1 n

(k). Note that n = ∑m
i=1 ni where ni is the number of observations in the group

i. If the data follows (23), people usually fit a one component mixed model that assumed
only one set of fixed effects parameters when the true model information is unknown, which
results in a convenient but “misspecified” model fit.

Assume new test observations, which follow:
yn,j = x′

nβn + z′
nbI + εn,j, 1 ≤ j ≤ nnew, (24)

where xn and zn are known vectors, and I belongs to one of the m groups. The new errors
εn,j are independent with mean zero, and variance Rnew and are assumed independent of
the training data. Notice βn ̸= βk, 1 ≤ k ≤ K. The mixed effect we wish to predict is
θn = E(yn,j | bI) = x′

nβ + z′
nbI where I ∈ {1, . . . ,m} but we do not know which group I

belongs to.

4.1. Generalized independent variable hull

Conn et al. (2015) proposed one possible definition of “the range of observation data”
which turns to early works on outlier detection in simple linear regression analysis. Cook
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(1979) referred that the smallest convex set containing all design points of a full-rank linear
regression model as the independent variable hull (IVH). The IVH definition is based on
linear model which require full rank of design matrix and i.i.d Gaussian error. Therefore, it
can not be applied to generalized models such as binary response or random effects. Cook
(1979) notes that design points with maximum prediction variance will be located on the
boundary of IVH, then Conn et al. (2015) defined a generalized independent variable hull
(gIVH) as a set of all predicted locations S0 for which

var(λi) ≤ max(var(λS)), (25)

where i ∈ S0, λi corresponds to the mean prediction at i, S denoted the set of locations
where data are observed, and λS denotes predictions at S. Conn et al. (2015) proposed
that the gIVH can be applied to determine whether predictions are interpolations (predictive
design points lying inside the gIVH) or extrapolations (predictive design points lying outside
the gIVH). This uses the generalization,

µ = Xaugβaug, (26)
where Xaug is an augmented design matrix to accommodate the random effects design ma-
trix Z and βaug is the corresponding regression parameter vector. We can then write the
prediction variance as,

var(λ̂) = var(µ̂) = Xaugvar(β̂aug)X ′
aug. (27)

One possibility is to use a flexible generalized additive model (GAM) (Hastie and Tibshirani,
1990) and then estimate the appropriate form of var(β̂aug). If y is not on the linear predictor
scale (e.g. generalized linear models outside of the normal model), then the delta method
can be used to estimate var(λ̂) (Conn et al. 2015). Outside of these situations, simulation
based methods like bootstrapping can be used to estimate the variance.

4.2. Prediction Using Random-effects Extrapolation (PURE)

Suppose we have a set of training data and test data as in (23) and (24). Let πk denote
the percentage of the population that comes from the population k, and ∑K

k=1 πk = 1. If
K = 2, we have π1 percent of the population comes from the minority and the rest 1 − π1
population comes from the majority. We define the following relevant features:

1. Extreme data: This is the test dataset which may or may not be outside of range of
the training data. Both cases can be handled here.

2. Majority data: Notationally, we can concatenate all observations in the full training
data as L = {(xl, yl); l = 1, . . . , (n1 +n2 + . . .+nm)}. Then define the majority dataset
as those further away from the test data. Let ‡ denotes the majority, we have a distance
measure d‡ = |median(var(λ‡)) − max(var(λS))| where var(λ‡) > max(var(λS)) and
λ‡ denotes the λ that calculated from the majority data. Similarly, d† denotes the
distance measure for the minority data and d‡ > d†. Therefore:

L ‡ = {(xl, yl)|d‡ > d†}.
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The original groupings are maintained so the majority data can be re-expressed ac-
cording to the groupings.

3. Minority data: This portion of the data that is the complement of the majority data.
This is found by a minority data decision rule to be described.

L † = {(xl, yl)|d† ≤ d‡}.

Again, the original groupings are maintained so the minority data can be re-expressed
according to these groupings.

4. Re-grouped minority data L †
R: For this, we take the minority data and re-group it ac-

cording to a hierarchical clustering algorithm with respect to the responses y resulting
in mr = m groupings with potentially revised memberships.

Rao et al. (2024) presented comprehensive simulation studies and analysis of data
from the National Longitudinal Mortality Study (NLMS) which demonstrated superior pre-
dictive performance in these very challenging paradigms. An asymptotic analysis revealed
why PURE resulted in more accurate projections.
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