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Abstract
In this article, a new continuous probability distribution called Arvind distribution

is developed and studied. The proposed distribution has only one parameter but it exhibits
a wide variety of shapes for density and hazard rate functions. A number of important
distributional properties including mode, quantile function, moments, skewness, kurtosis,
mean deviation, probability-weighted moments, stress-strength reliability, order statistics,
reliability and hazard rate functions, Bonferroni Lorenz and Zenga curves, conditional mo-
ments, mean residual and mean past life functions, and stochastic ordering of the Arvind
distribution are derived. For point estimation of the parameter of the proposed distribu-
tion, six estimation procedures including maximum likelihood, maximum product spacings,
least squares, weighted least squares, Cramér-von Mises, and Anderson-Darling estimators
are used. The interval estimation of the unknown parameter has also been discussed using
observed Fisher’s information. A vast simulation study has been conducted to examine the
behaviour of different estimation procedures. Finally, the applicability of the proposed model
is demonstrated by using three real-life datasets. The results of the real data analysis clearly
announce that the Arvind distribution can be a better alternative to several existing models
for modelling different types of data from various fields.

Key words: Arvind distribution; Maximum likelihood estimation; Maximum product spac-
ings; Least squares estimation; Stress strength reliability

AMS Subject Classifications: 62K05, 05B05

1. Introduction

In today’s competitive world, the data generated in numerous disciplines such as en-
gineering, economics, biological sciences, actuarial sciences, etc. is becoming more difficult
to analyze. As a consequence, for modelling such data, we require distributions that are

Corresponding Author: Ravindra Pratap Singh
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best suited for analyzing these multi-features and complicated data. For these reasons, the
invention of novel probability distributions has dominated statistical research during the
last few decades. In this order, the well-known reference was Mudholkar et al. (1996), who
described a particular generalization of the Weibull distribution and applied it to survival
data. Gupta and Kundu (1999) introduced generalized exponential distribution to provide
more flexibility over baseline exponential distribution. This model has decreasing and uni-
modal shapes of the density function and its hazard rate can take increasing, decreasing, and
U-shapes. Nadarajah and Kotz (2006) proposed beta exponential distribution with decreas-
ing and unimodal density whereas the hazard rate can exhibit decreasing and increasing
shapes. Nadarajah and Haghighi (2011) developed the Nadarajah-Haghighi distribution
to model increasing, decreasing, and constant hazard rate functions. Chaubey and Zhang
(2015) pioneered exponentiated Chen distribution with bathtub rate hazard function. Yadav
et al. (2021a) proposed Burr-Hatke exponential distribution to model decreasing density as
well as decreasing hazard rate function. Bakouch et al. (2021) proposed a unit half-normal
distribution with unimodal and asymmetric (left and right skewed) density and increasing
hazard rate function. El-Morshedy et al. (2021) proposed a new generalization of the odd
Weibull-G family by consolidating two notable families of distributions. Choudhary et al.
(2021) enhanced the modified Weibull distribution with an additional parameter to pro-
vide its density and hazard rate function greater flexibility. This distribution is capable of
modeling the bathtub-shaped, decreasing, increasing and the constant hazard rate function.
Recently, Alsuhabi et al. (2022) pioneered a four-parameter distribution named the extended
odd Weibull Lomax distribution. This model has increasing, and decreasing, bell shapes and
unimodal shapes of the density function and its hazard rate can take increasing and decreas-
ing shapes. They also show the applicability of this model to COVID-19 data. Promiscuous
crucial literature includes Tyagi et al. (2022) and Agiwal et al. (2023).

Traditional continuous models and their modified or generalized counterparts (in
the existing literature) sometimes become very restricted, for example, some models have
a complex form of density and hazard functions that are difficult to handle, and a few
models are limited to the model-specific type of failure rate, a non-existence of moments,
a high number of parameters, an excessive amount of complexity in calculations of some
characteristics, etc. Although some continuous distributions are less restrictive, there is still
room for the construction of more flexible continuous models that may be suitable for the
analysis of different types of data generated from distinct fields. With this motivation, we
developed a more flexible and simpler continuous distribution called Arvind distribution.
This distribution is extremely flexible compared to conventional and recently developed
continuous models and we have noticed this in real data applications. Another advantage of
Arvind distribution over other rival models is that it has just one parameter and therefore the
expressions of this distribution are not too complicated in both analytical and computational
handling.

The rest of the structure of this article is as follows. Section 2 introduced Arvind
distribution and portrayed various shapes of its density. In Section 3, we have derived var-
ious imperative distributional and reliability properties of Arvind distribution with some
numerical illustrations. In Section 4, different methods of estimation like maximum likeli-
hood, maximum product spacings, ordinary and weighted least squares, Cramér-von-Mises,
and Anderson-Darling have been used to estimate the unknown parameters of the proposed
model. Section 4 also includes the asymptotic confidence interval (ACI) for the unknown
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parameter based on Fisher’s information. A detailed simulation study is presented to inspect
the performance of various estimation methods in Section 5. In Section 6, the applicability
of Arvind distribution has been demonstrated using three case studies from different fields
over other well-known continuous models. In the end, some concluding remarks are provided
in Section 7.

2. Synthesis of the Arvind distribution

Before discussing the density function and form of the proposed model, we mention
the following proposition.

Proposition 1: For a random variable X with domain (0, ∞), the following function is a
valid cumulative distribution function (CDF).

F (x, θ) = P (X ≤ x) =
{

1 − exp(−θx2)
(1+θx) ; x > 0, θ > 0

0 ; otherwise
, (1)

where θ ∈ (0, ∞) is an unknown parameter.

Proof: Since, x > 0 and θ > 0, therefore, we can see that F (x, θ) ≤ 1 and F (x, θ) ≥ 0.
Furthermore lim

x→0
F (x, θ) = 0 = F (0, θ) implying that F (x, θ) is continuous at 0 and a fortiori

in R. It is clear that lim
x→+∞

F (x, θ) = 1. Now, for x > 0, we have

F ′(x, θ) = d

dx
F (x, θ) = θ (1 + 2x + 2θx2)

(1 + θx)2 exp(−θx2) ≥ 0,

implying that F (x, θ) is non-decreasing. The required properties for a valid CDF are satisfied,
therefore F (x, θ) is a valid CDF.

Based on Proposition 1, we can easily define the Arvind distribution as follows:
Definition 1: A continuous random variable X is said to follow Arvind distribution with
parameter θ if its CDF is of the form (1) or it can be specified by the following probability
density function (PDF)

f(x, θ) =
{

θ(1+2x+2θx2)
(1+θx)2 exp(−θx2); x > 0, θ > 0

0 ; otherwise
, (2)

here, it is clear that f(x, θ) ≥ 0 and
∞�
0

f(x, θ)dx = 1.
Some of the possible shapes of the PDF of the Arvind distribution for a few arbitrary values
of the parameter θ are portrayed in Figure 1. From this figure, we can easily see that the
PDF of the Arvind distribution is versatile enough as it takes a variety of shapes for different
values of θ. Also, the limiting behaviour of the PDF of Arvind distribution can be defined
as

lim
x→0

f(x, θ) = θ and lim
x→∞

f(x, θ) = 0.
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Figure 1: The PDF plots for Arvind distribution for different values of θ

3. Statistical properties of the Arvind distribution

The development of a probability distribution without discussing its statistical proper-
ties is not of much use. The Arvind distribution has many important distributional properties
and some of them are presented below:

3.1. Mode

A value of a random variable that maximizes its PDF is known as a mode. In the
case of Arvind distribution, the mode can be obtained by solving the following equation

∂ log f(x, θ)
∂x

= 0 ⇒ 2θ3x4 + 4θ2x3 + (2θ + θ2)x2 + θ − 1 = 0.

The above equation cannot be solved analytically in closed form. Therefore, we have obtained
the values of mode numerically for different values of θ, and these are listed in Table 1. From
these tabulated values of mode, we have verified the conclusion of the PDF plot that the
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proposed distribution is unimodal.

3.2. Quantile function, random number generation and median

The quantile function is an important tool to specify a probability distribution. It is
very useful in random number generation and computation of positional averages like median.
The quantile (Q) of the Arvind distribution can be obtained by solving the following equation

exp(−θQ2) − (1 + θQ)(1 − u) = 0, (3)

where u is the uniform random variable from U(0, 1). The median of the proposed distribu-
tion can be computed by putting u = 0.5 in Equation (3). We have numerically obtained
the median for different values of θ and these are listed in Table 1, and it concludes that the
median goes down as θ gets up. By solving Equation (3) for Q, we can generate random
numbers from the proposed distribution for different values of u from U(0, 1).

3.3. Moments, skewness and kurtosis

For portraying different characteristics of a probability distribution like mean, vari-
ance, skewness (Sk), and kurtosis (Kur), moments are very useful in statistical theory. Sup-
pose X is a random variable that follows Arvind distribution with parameter θ. Then, the
rth raw moment can be derived as

µ′
r = E(Xr) =

� ∞

0
xrf(x, θ)dx

=
� ∞

0
xr θ(1 + 2x + 2θx2)

(1 + θx)2 exp(−θx2)dx

= r

� ∞

0

xr−1 exp(−θx2)
(1 + θx) dx. (4)

In particular, the mean and variance of the proposed model can be presented as

µ = µ′
1 = E(X) =

� ∞

0

exp(−θx2)
(1 + θx) dx

and
µ2 = V ar(X) = µ′

2 − µ′
1

2

= 2
� ∞

0
x exp(−θx2)

(1+θx) dx −
[� ∞

0
exp(−θx2)

(1+θx) dx
]2

,

respectively. Similarly, we can obtain other central moments using raw moments. From
these raw moments, we can also calculate the Sk and Kur of the proposed model using the
following formula:

Sk = E(X4) − 3E(X2)E (X) + 2(E (X))3

(V ar(X))3/2 ,

and
Kur = E(X4) − 4E(X2)E (X) + 6E(X2)(E (X))2 − 3(E (X))4

(V ar(X))2 ,
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respectively. As we can easily observe the mean, variance, Sk, and Kur of the Arvind
distribution cannot be found in closed expressions, therefore we compute them numerically
for different values of θ, and these are listed in Table 1. From this table, we yield the following
outcomes:

• The mean and variance of the Arvind distribution decrease as the value of θ increases.

• As the value of the coefficient of skewness based on moments is positive, the proposed
model is positively skewed. Also, the Sk of the Arvind model increases as θ increases.

• From Table 1, since the value of the coefficient of kurtosis is less than 3, therefore, the
proposed distribution is platykurtic and its peakedness increases as θ increases.

Table 1: Descriptive statistics for Arvind distribution for different values of θ

θ Mode Median Mean Variance MD(µ) MD(m) Skewness Kurtosis
0.1 1.77056 2.21965 2.40702 2.11585 1.17113 0.97464 0.69274 0.29880
0.5 0.52137 0.83134 0.93373 0.40649 0.51371 0.40521 0.81903 0.47350
1 0.00003 0.52237 0.60513 0.19600 0.35623 0.26777 0.91400 0.64761

1.5 0.11719 0.39208 0.46573 0.12693 0.28611 0.20687 0.98351 0.79551
2 0.26459 0.31746 0.38531 0.09288 0.24423 0.17082 1.03954 0.92660

2.5 0.42256 0.26827 0.33191 0.07271 0.21563 0.14647 1.08699 1.04560
3 0.10358 0.23306 0.29340 0.05943 0.19453 0.12869 1.12840 1.15534
4 0.24065 0.18560 0.24089 0.04308 0.16495 0.10420 1.19865 1.35382
5 0.71926 0.15482 0.20627 0.03347 0.14484 0.08796 1.25747 1.53157
10 0.07255 0.08580 0.12588 0.01503 0.09546 0.05024 1.46474 2.24050
20 0.65754 0.04588 0.07548 0.00657 0.06161 0.02741 1.71150 3.24746

3.4. Mean deviation

If we take the average absolute deviation about the mean (or median) it is known
as the mean deviation about the mean (or median). Mean deviation about the mean (or
median) is another important tool for measuring dispersion besides the variance. Suppose µ
and m denote the mean and median, then the mean deviation about the mean (or median)
can be defined as

MD(ζ) = E |X − ζ| =
� ∞

0
|x − ζ| f(x, θ)dx = 2

{
ζF (ζ, θ) −

� ζ

0
xf(x, θ)dx

}
, (5)

where ζ = µ or m . Using the above expression with some simplification, the mean deviation
about mean (or median) for the Arvind distribution can be obtained as

MD(ζ) = E |X − ζ| = 2
{

ζ −
� ζ

0

exp(−θx2)
(1 + θx) dx

}
. (6)

The expression of mean deviation (6) cannot be bound up in closure form, so to measure
the behaviour of mean deviation about mean (or median), we have calculated these average
deviations numerically and they are listed in Table 1. This table announces that the mean
deviation about the mean (or median) decreases as θ increases and the mean deviation about
the median is smaller than the mean deviation about the mean as the theory claims.
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3.5. Probability weighted moments

The generalization of the simple moments is known as probability-weighted moments
(PWMs). They can be developed for a distribution whose ordinary moments can be derived.
For the Arvind random variable X, the (r, s)th PWM is given by

ςr,s = E [XrF s(x, θ)]

=
� ∞

0
xrF s(x, θ)f(x, θ)dx

=
� ∞

0
xr

(
1 − exp(−θx2)

1 + θx

)s
θ(1 + 2x + 2θx2) exp(−θx2)

(1 + θx)2 dx

=
s∑

j=0
(−1)jθ

(
s
j

)� ∞

0
xr

(
1

(1 + θx)j+2 + 2x

(1 + θx)j+1

)
exp(−(j + 1)θx2)dx.

After some simplification, the (r, s)th PWM of the Arvind distribution is given by

ςr,s =
s∑

j=0
(−1)j r

(j + 1)

(
s
j

)� ∞

0

xr−1 exp(−(j + 1)θx2)
(1 + θx)j+1 dx. (7)

3.6. Stress-strength reliability

The probability ϖ = P (X2 < X1) is referred to as stress-strength (S-S) reliability
if the random variable X1 represents the strength of a system under stress X2, assuming
that X1 and X2 are stochastically independent random variables. The S-S reliability is
widely used in reliability theory, especially in engineering concepts like different structures,
static fatigue of ceramic components, the aging of concrete pressure vessels, fatigue failure of
aviation structures, etc. The research on S-S reliability models has received a lot of attention
recently due to the expanded scope of S-S reliability. For more detail, see Goel and Singh
(2020). In our case, suppose X1 ∼ Arvind(θ1) and X2 ∼ Arvind(θ2) distributions, then S-S
reliability is given by

ϖ = P (X2 < X1) =
� ∞

0
P (X2 < X1|X1 = x)fX1(x, θ1)dx

=
� ∞

0
FX2(x, θ2)fX1(x, θ1)dx

=
� ∞

0

(
1 − exp(−θ2x

2)
(1 + θ2x)

)(
θ1(1 + 2x + 2θ1x

2) exp(−θ1x
2)

(1 + θ1x)2

)
dx

= 1 − θ1

� ∞

0

(1 + 2x + 2θ1x
2) exp(−(θ1 + θ2)x2)

(1 + θ2x)(1 + θ1x)2 dx. (8)

The expression (8) ϖ cannot be easily tractable in closed form. Therefore, to study the
behaviour of ϖ for different values of θ1 and θ2, we have computed ϖ numerically. The
outcomes of ϖ have been given in Table 2. From this table, we observe that

• For a fixed value of θ1, the value of ϖ increases as θ2 increases.
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• For a fixed value of θ2, the value of ϖ goes down as θ1 increases.

• When the values of θ1 and θ2 are equal, the value of ϖ becomes 0.5.

Table 2: The S-S reliability ϖ under different values of θ1 and θ2

θ1 →
θ2 ↓ 0.1 0.5 1 1.5 2 2.5 3 4 5 10 20
0.1 0.5 0.17715 0.10231 0.0734 0.05786 0.04808 0.04133 0.03255 0.02705 0.01526 0.00862
0.5 0.82285 0.5 0.34692 0.27031 0.22365 0.19196 0.1689 0.13737 0.11661 0.06916 0.04041
1 0.89769 0.65308 0.5 0.41108 0.35211 0.30975 0.27765 0.23187 0.2005 0.12452 0.07519

1.5 0.9266 0.72969 0.58892 0.5 0.43784 0.39151 0.35543 0.30244 0.26504 0.17049 0.1057
2 0.94214 0.77635 0.64789 0.56216 0.5 0.45243 0.41462 0.35785 0.31686 0.20963 0.13287

2.5 0.95192 0.80804 0.69025 0.60849 0.54757 0.5 0.46159 0.40289 0.35974 0.24359 0.15734
3 0.95867 0.8311 0.72235 0.64457 0.58538 0.53841 0.5 0.44045 0.39601 0.27348 0.17957
4 0.96745 0.86264 0.76813 0.69756 0.64215 0.59711 0.55955 0.5 0.45448 0.32402 0.21868
5 0.97295 0.88339 0.7995 0.73496 0.68314 0.64026 0.60399 0.54552 0.5 0.36549 0.25223
10 0.98474 0.93084 0.87548 0.82951 0.79037 0.75641 0.72652 0.67598 0.63451 0.5 0.37072
20 0.99138 0.95959 0.92481 0.8943 0.86713 0.84266 0.82043 0.78132 0.74777 0.62928 0.5

We have also portrayed a 3-D plot for ϖ under different values of θ1 and θ2 in Figure
2, this plot also announces that ϖ can take a variety of values from small to large for distinct
values of θ1 and θ2.

Figure 2: A 3-D plot for ϖ under different values of θ1 and θ2

3.7. Order statistics

Let X1, X2, ....., Xn be a random sample of size n generated from Arvind(θ) distribu-
tion and X1:n ≤ X2:n ≤ ..... ≤ Xn:n denotes the corresponding order statistics. Then, the
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PDF and CDF, respectively, of ith order statistics are given as

fi:n(x, θ) = n!
(i − 1)! (n − i)! [F (x, θ)]i−1[1 − F (x, θ)]n−if(x, θ)

= n!θ(1 + 2x + 2θx2) exp(−θ(n − i + 1)x2)(1 + θx − exp(−θx2))i−1

(i − 1)! (n − i)!(1 + θx)n+1 , (9)

and

Fi:n(x, θ) =
n∑

r=i

(
n
r

)
[F (x, θ)]r[1 − F (x, θ)]n−r

=
n∑

r=i

n−r∑
j=0

(−1)j

(
n
r

)(
n − r

j

)
[F (x, θ)]j+r

=
n∑

r=i

n−r∑
j=0

(−1)j

(
n
r

)(
n − r

j

)(
1 − exp(−θx2)

1 + θx

)j+r

. (10)

In particular, by putting i = 1 and i = n, respectively, we can find the PDF and CDF of
minimum and maximum order statistics. For odd sample size n, we can obtain the PDF and
CDF of the median order statistics by setting i = n+1

2 .

3.8. Reliability and hazard rate functions

The reliability function (RF) R(x, θ) and hazard rate function (HRF) h(x, θ) of the
Arvind(θ) distribution, respectively, are given by

R(x, θ) = P (X > x) = exp(−θx2)
(1 + θx) ; x ≥ 0, θ > 0, (11)

h(x, θ) = f(x, θ)
R(x, θ) = θ (1 + 2x + 2θx2)

(1 + θx) ; x ≥ 0, θ > 0. (12)

We have plotted the hazard rate for different values of θ in Figure 3. From this figure,
we can easily observe that the HRF of the Arvind distribution can increase, decrease, and
U-shaped. Also, the limiting behaviour of the HRF can be stated as:

lim
x→0

h(x, θ) = θ and lim
x→∞

h(x, θ) = ∞.

Also, the cumulative and reverse hazard rate (RHR) functions of the Arvind distribution,
respectively, are given by

H(x, θ) = θx2 + log(1 + θx); x ≥ 0, θ > 0, (13)

RHR(x, θ) = θ(1 + 2x + 2θx2) exp(−θx2)
(1 + θx)(1 + θx − e−θx2) ; x ≥ 0, θ > 0. (14)
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Figure 3: The HRF plot of Arvind distribution for different values of θ

3.9. Inequality measures: Lorenz, Bonferroni and Zenga curves

The Lorenz, Bonferroni, and Zenga curves are the most often used inequality mea-
sures in the literature (Lorenz (1905), Bonferroni (1930), and Zenga (2007)). These three
curves can be defined using simply the population mean and the means of certain subgroups.
Inequality curves are useful because they may be used to create a variety of orderings that
allow for distribution comparisons based on inequality. Such comparisons within the same
model make it possible to comprehend how distributional parameters influence inequality.
For the Arvind distribution, the Lorenz, Bonferroni, and Zenga curves, respectively, are
obtained as

L(p) = 1
µ

� q

0
xf(x)dx = 1

µ

[
−q exp(−θq2)

1 + θq
+
� q

0

exp(−θx2)
(1 + θx) dx

]
, (15)

B(p) = L(p)
p

, (16)
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Z(p) = p − L(p)
p(1 − L(p)) , (17)

where q = F −1(p) which can be computed numerically using Equation (3). Table 3 lists
numerical values for Lorenz, Bonferroni, and Zenga curves of Arvind distribution for different
values of q = F −1(p) and θ.

Table 3: Values for Lorenz, Bonferroni, and Zenga curves of Arvind distribution
for a variety of θ

θ → 0.5 1 2 5
p ↓ L(p) B(p) Z(p) L(p) B(p) Z(p) L(p) B(p) Z(p) L(p) B(p) Z(p)
0.05 0.00260 0.05191 0.95055 0.00207 0.04132 0.96066 0.00165 0.03298 0.96862 0.00124 0.02487 0.97635
0.1 0.01013 0.10126 0.90793 0.00827 0.08267 0.92497 0.00670 0.06704 0.93926 0.00512 0.05118 0.95370
0.15 0.02229 0.14863 0.87079 0.01860 0.12398 0.89262 0.01533 0.10219 0.91179 0.01184 0.07893 0.93211
0.2 0.03891 0.19453 0.83808 0.03310 0.16548 0.86309 0.02769 0.13843 0.88610 0.02165 0.10824 0.91149
0.25 0.05983 0.23933 0.80908 0.05178 0.20710 0.83619 0.04395 0.17579 0.86209 0.03481 0.13923 0.89181
0.3 0.08500 0.28334 0.78323 0.07469 0.24895 0.81167 0.06429 0.21430 0.83968 0.05167 0.17225 0.87286
0.35 0.11439 0.32683 0.76012 0.10190 0.29113 0.78929 0.08885 0.25385 0.81891 0.07243 0.20694 0.85499
0.4 0.14801 0.37002 0.73942 0.13349 0.33374 0.76891 0.11791 0.29478 0.79949 0.09748 0.24371 0.83798
0.45 0.18591 0.41314 0.72088 0.16960 0.37689 0.75037 0.15163 0.33697 0.78154 0.12723 0.28272 0.82183
0.5 0.22820 0.45640 0.70433 0.21037 0.42074 0.73358 0.19028 0.38055 0.76501 0.16206 0.32412 0.80660
0.55 0.27501 0.50002 0.68964 0.25600 0.46545 0.71848 0.23413 0.42569 0.74988 0.20248 0.36814 0.79228
0.6 0.32652 0.54419 0.67679 0.30674 0.51124 0.70502 0.28353 0.47255 0.73618 0.24892 0.41487 0.77906
0.65 0.38306 0.58932 0.66567 0.36293 0.55836 0.69324 0.33891 0.52140 0.72396 0.30212 0.46479 0.76690
0.7 0.44497 0.63567 0.65641 0.42500 0.60714 0.68323 0.40079 0.57256 0.71334 0.36278 0.51826 0.75601
0.75 0.51277 0.68369 0.64920 0.49353 0.65804 0.67518 0.46988 0.62650 0.70455 0.43187 0.57582 0.74662
0.8 0.58718 0.73397 0.64441 0.56936 0.71170 0.66947 0.54713 0.68392 0.69796 0.51064 0.63830 0.73913
0.85 0.66931 0.78742 0.64283 0.65371 0.76907 0.66687 0.63398 0.74586 0.69433 0.60094 0.70699 0.73426
0.9 0.76101 0.84556 0.64620 0.74860 0.83178 0.66914 0.73278 0.81420 0.69531 0.70570 0.78411 0.73357
0.95 0.86601 0.91159 0.65984 0.85826 0.90343 0.68131 0.84824 0.89289 0.70581 0.83075 0.87447 0.74167

3.10. Conditional moments

In the context of lifetime models, it is also useful to have a knowledge of the expression
E(Xr|X > x). This expression is called the rth conditional moment of the random variable
‘X’. The computation of mean deviations around the mean and the median, as well as the
mean residual life function (See, Section 3.11) are all areas in which the conditional moments
find widespread usage. The rth conditional moment of a random variable following Arvind(θ)
distribution can be obtained as

E(Xr|X > x) = 1
1 − F (x, θ)Λr(x, θ), (18)

where
Λr(x, θ) =

� ∞

x

vrf(v, θ)dv = xr exp(−θx2)
(1 + θx) + r

� ∞

x

vr−1 exp(−θv2)
1 + θv

dv.

3.11. Mean residual life

The expected value of the remaining lifetimes after a fixed time point x, is called
the mean residual life (MRL) function. Since it is representative of the aging mechanism,
the MRL function is put to considerable use in a broad range of fields, including reliability
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engineering, survival analysis, and biological research. For Arvind(θ) distribution, it can be
derived as

MRL(x, θ) = E(X − x|X > x) = 1
1 − F (x, θ)

� ∞

x

vf(v, θ)dv − x

= 1 + θx

exp(−θx2)

� ∞

x

exp(−θv2)
1 + θv

dv. (19)

From the above expression of MRL, we can easily observe that the MRL is an application
of conditional moments and it can be obtained by putting r = 1 in Equation (18).

3.12. Mean past life

The expected time elapsed from the failure of a system given that its lifetime is less
than or equal to a time point x(x ≥ 0) is referred to as the mean past life (MPL) function.
Similar to the MRL function, the MPL function has applications in a vast array of fields,
such as actuarial research, forensic science, reliability theory, and survival analysis. The
expression of the MPL function for Arvind(θ) distribution can be developed as

MPL(x, θ) = E(x − X|X ≤ x) = x − 1
F (x, θ)

� x

0
vf(v, θ)dv

= 1
F (x, θ)

[
x −

� x

0

exp(−θv2)
1 + θv

dv

]
. (20)

3.13. Stochastic ordering

It is crucial to compare two or more random variables indicating the state of things in
two or more circumstances. In the situation of two random variables that are independent,
stochastic orderings are extremely advantageous. For two independent random variables Y
and Z if FY (y) ≥ FZ(y) for all y, Y is said to be stochastically smaller than Z i.e. Y ≤stZ.
Similarly, we can define stochastic ordering in terms of hazard rate, mean residual life, and
likelihood ratio functions as

• hazard rate order (Y ≤hrZ) if hY (y) ≥ hZ(y) for all y.

• mean residual life order (Y ≤mrlZ) if MRLY (y) ≤ MRLZ(y) for all y.

• likelihood ratio order (Y ≤lrZ) if fY (y)/fZ(y) decreases in y.

The following implications Shaked and Shanthikumar (2007) are well-known

Y ≤lrZ ⇒Y ≤hrZ ⇒ Y ≤mrlZ

⇓
Y ≤stZ.

The Arvind distributions are ordered with respect to the strongest “likelihood ratio” ordering
as we can easily observe from the following theorem.
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Theorem 1: Let Y and Z be two independent random variables form Arvind(θ1) and
Arvind(θ2) distributions, respectively. If θ1 > θ2 then Y ≤lrZ and hence Y ≤hrZ, Y ≤mrlZ
and Y ≤stZ.

Proof: Firstly, we observe that

fY (y, θ1)
fZ(y, θ2)

= θ1(1 + 2y + 2θ1y
2)(1 + θ2y)2 exp(−θ1y

2)
θ2(1 + 2y + 2θ2y2)(1 + θ1y)2 exp(−θ2y2)

, y > 0.

Since, for θ1 > θ2,

d

dx
log

(
fY (y, θ1)
fZ(y, θ2)

)
= 2(θ2 − θ1)



2 + (6 + θ1 + θ2)y + (6(1 + θ2) + θ1(6 + θ2))y2

+2(θ2
1 + θ2(5 + θ2) + θ1(5 + 3θ2))y3

+2(2θ2
2 + θ2

1(2 + θ2) + θ1θ2(9 + θ2))y4

+8θ1θ2(θ1 + θ2)y5 + 4θ2
1θ2

2y6

(1 + 2y + 2θ1y2)(1 + 2y + 2θ2y2)(1 + θ1y)(1 + θ2y)


< 0,

i.e. fY (y)/fZ(y) is decreasing in y. It implies that Y ≤lrZ. The rest of the ordering is a
direct consequence of the results provided by Shaked and Shanthikumar (2007).

4. Parameter estimation of the Arvind distribution

Under this section, the estimation of the unknown parameter of the proposed model
has been discussed using six different classical approaches, namely, the method of maximum
likelihood, maximum product spacings, ordinary and weighted least squares, Cramér-von-
Mises, and Anderson Darling method of estimation. These methods are briefly discussed as
follows,

4.1. Maximum likelihood estimation

Suppose X
−

≡ X1, X2, ..., Xn be a random sample of size n from the Arvind distribu-
tion. Then, the log-likelihood (logL) function can be written as

log L = n log(θ) − θ
n∑

i=1
x2

i +
n∑

i=1
log

(
1 + 2xi + 2θx2

i

)
− 2

n∑
i=1

log (1 + θxi) . (21)

To find out the maximum likelihood estimator (MLE) of θ, the normal equation is given by

∂ log L

∂θ
= n

θ
−

n∑
i=1

[
x2

i + 2
(1 + θxi)

− 2x2
i

(1 + 2xi + 2θx2
i )

]
= 0. (22)

The solution of Equation (22) yields the MLE of θ. Unfortunately, the above normal equation
cannot be solved analytically. Therefore, we can use numerical iteration procedures such as
Newton-Raphson (NR) through the open-source programming language R.
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4.2. Observed Fisher’s information and asymptotic confidence interval

The observed Fisher’s information for Arvind(θ) distribution is specified by

Io(θ̂) = −∂2 log L

∂θ2 |θ = θ̂,

where the second-order derivative of the log-likelihood function (21) with respect to θ is
given by

∂2 log L

∂θ2 = − n

θ2 −
n∑

i=1

[
− 2xi

(1 + θxi)2 + 4x4
i

(1 + 2xi + 2θx2
i )

2

]
.

Using this Fisher’s information, the asymptotic variance of θ̂ can be obtained as

V aro(θ̂) = 1
Io(θ̂)

.

Under some regularity conditions, the sampling distribution of (θ̂ − θ)/
√

V aro(θ̂) can be ap-
proximated by a standard normal distribution. The large-sample 100× (1 − α) % confidence
interval (also called ACI) for θ is given by

[θ̂L, θ̂U ] = θ̂ ∓ zα/2

√
V aro(θ̂).

Using simulation, we can estimate the coverage probability P
[∣∣∣∣ (θ−θ̂)√

V aro(θ̂)

∣∣∣∣ ≤ zα/2

]
, here zp is

such that p =
∞�
zp

(1/
√

2π)e−z2/2dz.

4.3. Maximum product of spacings method of estimation

As an alternative to the approach of maximum likelihood, the maximum product
spacing (MPS) method was developed by Cheng and Amin (1979) for estimating the unknown
parameters of continuous univariate distributions. Cheng and Amin (1983) proved that this
technique is just as efficient as the maximum likelihood estimation and that it is consistent
under more general conditions. Suppose X1, X2, ..., Xn be a random sample from Arvind
distribution F (x, θ), and X1:n ≤ X2:n ≤ ... ≤ Xn:n be the corresponding ordered values.
Based on this random sample, let us define the uniform spacings as

Di(θ) = F (xi:n, θ) − F (xi−1:n, θ) , i = 1, 2, ..., n,

where F (x0:n, θ) = 0, F (xn+1:n, θ) = 1, and
n+1∑
i=1

Di(θ) = 1. The MPS estimator θ̂MP S of the
parameter θ is determined by maximizing the geometric mean of the spacings with respect
to θ, or, evenly, by maximizing the following function

H(θ) = 1
n + 1

n+1∑
i=1

log(Di(θ)).
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The estimator θ̂MP S can also be obtained by solving the following non-linear equation,

1
n + 1

n+1∑
i=1

1
Di(θ) [ξ(xi:n, θ) − ξ(xi−1:n, θ)] = 0, (23)

where ξ(xi:n, θ) =
(

xie
−θx2

i

1+θxi

) (
xi + 1

1+θxi

)
.

4.4. Ordinary and weighted least squares estimation

Swain et al. (1988) firstly introduced regression-based estimators called ordinary least
squares (OLS) and weighted least squares (WLS) estimators for estimating the unknown
parameters of the beta distribution. These two methods are based on the combination of the
non-parametric and parametric distribution functions. Suppose X1, X2, ..., Xn be a random
sample from Arvind distribution, and X1:n ≤ X2:n ≤ ... ≤ Xn:n be the corresponding ordered
values. Then, the OLS estimator of θ, say θ̂OLS can be derived by minimizing the following
function with respect to θ

V (θ) =
n∑

i=1

[
F (xi:n, θ) − i

n + 1

]2
.

Alternatively, we can obtain the OLS estimator of θ by solving the following expression for
θ,

n∑
i=1

[
F (xi:n, θ) − i

n + 1

]
ξ(xi:n, θ) = 0. (24)

The WLS estimator of θ, say θ̂W LS can be found by minimizing the following equation,

W (θ) =
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F (xi, θ) − i

n + 1

]2
.

The WLS estimator θ̂W LS can also be obtained by solving the following non-linear equation
with respect to θ,

n∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F (xi:n, θ) − i

n + 1

]
ξ(xi:n, θ) = 0, (25)

where ξ(xi:n, θ) is defined in Section 4.3.

4.5. Cramér-von-Mises estimation

Cramer-von-Mises type minimum distance estimator is a widely used minimum dis-
tance estimator since the empirical data suggests that the bias of this estimator is lower than
that of the other minimum distance estimators. In our case, the Cramér-von Mises (CVM)
minimum distance estimator of θ can be obtained by minimizing, the following function:

C(θ) = 1
12n

[
F (xi, θ) − 2i − 1

2n

]2
.
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Moreover, we can obtain the CVM estimator of θ by solving the following equation for θ,
n∑

i=1

[
F (xi:n, θ) − 2i − 1

2n

]
ξ(xi:n, θ) = 0, (26)

where ξ(xi:n, θ) is already defined in Section 4.3.

4.6. Anderson-Darling method of estimation

The Anderson-Darling estimator (ADE) is another sort of minimum distance estima-
tor that utilizes Anderson–Darling statistics. The ADE of θ, say θ̂ADE, can be obtained by
minimizing the following function with respect to θ,

A (θ) = −n − 1
n

n∑
i=1

(2i − 1)
{
log F (xi:n, θ) + log F̄ (xn+1−i:n, θ)

}
.

The estimator θ̂ADE can also be achieved by simplifying the following nonlinear equation
n+1∑
i=1

(2i − 1)
[

ξ(xi:n, θ)
F (xi:n, θ) − ξ(xn+1−i:n, θ)

F̄ (xn+1−i:n, θ)

]
= 0, (27)

where ξ(xi:n, θ) is given in Section 4.3.

5. A Monte Carlo simulation study

This section showcases the behaviour of different estimation procedures for estimating
the unknown parameter of the Arvind distribution. For this purpose, we have performed an
empirical experiment which utilizes the following steps:

1. Generate 2,500 samples of size n =10, 20, 40, 60, 80, and 100 from Arvind distribution
with θ = 0.5, 1.0, 2.0, and 4.0. For sample generation, Equation (3) has been used.

2. Calculate the MLE, MPS, OLS, WLS, CVM, and AD estimators for the 2,500 samples,
say θ̂j; j = 1, 2, ..., 2, 500. Also, compute the 95% ACI for the above-generated samples.

3. Determine the expected value (EV), mean-squared error (MSE), and average bias (AB)
for all point estimators, whereas, for 95% ACI, we compute the average lower confi-
dence limit (ALCL), average upper confidence limit (AUCL), average width (AW), and
coverage probability, i.e.,

EV = 1
2500

2500∑
j=1

θ̂j, MSE = 1
2500

2500∑
j=1

(
θ̂j − θ

)2
, AB = 1

2500

2500∑
j=1

(
θ̂j − θ

)
,

ALCL = 1
2500

2500∑
j=1

LCLj, AUCL = 1
2500

2500∑
j=1

UCLj,

AW = 1
2500

2500∑
j=1

(UCLj − LCLj), CP = 1
2500

2500∑
j=1

Ij(LCLj < θj < UCLj),
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where LCLj and UCLj denotes the upper and lower confidence limit for the jth sample,
respectively and Ij(•) is the indicator function takes value 1 if LCLj < θ < UCLj otherwise
0.

The simulation study was conducted using the R software and the codes are available
upon request. Various classical estimates of θ with their MSE, AB are listed in Table 4. On
the other hand, Table 5 contains the ALCL, AUCL, AW, and CP for 95% ACI.
From this empirical study, the following outcomes have been noted:

• We found that the average bias and MSE of all estimators approach zero for large n,
indicating that the parameter estimates are consistent and asymptotically unbiased.

• The performance of all of the estimating techniques is satisfactory. However, in the
overall comparison, for the proposed model, MPS is the most favourable estimation
procedure while CVM is the least favourable estimation method.

• Additionally, the hierarchy of the best estimation technique among the numerous meth-
ods taken into consideration for estimating the parameter of the proposed distribution,
as determined by the MSE, is as follows:

MPS → MLE → WLSE → ADE → LSE → CV M
(HighlyPreferable → Less Preferable)

• Except for MPS, all classical point estimators overestimate the parameter of the pro-
posed model.

• From Table 5, we can simply conclude that ACI performed well. Even with a small
sample size, for all values of θ, the asymptotic intervals computed here are able to
sustain nominal levels of coverage probability. Furthermore, when we increase the
sample size n, the AW of the ACI diminishes.

6. Application of Arvind distribution

The fitting capabilities of the Arvind distribution are shown in this section using
three real datasets. We have used three distinct datasets from different areas. The detailed
summary and graphical representation of these datasets can be found in Table 6 and Figure
4, respectively. The fitting of the proposed model has been compared with that of numerous
well-known conventional and recently developed models. A list of the rival models can be
found in Table 7. The fitted models’ parameters have been estimated using MLE estima-
tion for comparison’s sake. Based on -logL, the Akaike information criterion (AIC), the
corrected Akaike information criterion (CAIC), the Bayesian information criterion (BIC),
and Kolmogorov-Smirnov (KS) statistic with the related P-value, the model comparison has
been carried out. The open-source program R has been used to do the necessary calculations.
The datasets along with their fitting summary are as follows:
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Table 5: Classical confidence intervals for different values of n

θ n ALCL AUCL AW CP θ n ALCL Upper Width CP

0.5

10 0.1829 0.9497 0.7668 95.52

2.0

10 0.5978 4.0183 3.4205 95.33
20 0.2787 0.7839 0.5052 95.57 20 1.0360 3.2530 2.2170 95.65
40 0.3423 0.6874 0.3451 95.19 40 1.3160 2.8200 1.5030 95.25
60 0.3705 0.6493 0.2788 95.41 60 1.4400 2.6510 1.2120 95.37
80 0.3878 0.6283 0.2405 95.43 80 1.5150 2.5590 1.0440 95.36
100 0.3991 0.6133 0.2142 95.25 100 1.5634 2.4928 0.9294 95.21

1

10 0.3371 1.9475 1.6104 95.48

4.0

10 1.0020 8.3190 7.3160 95.02
20 0.5403 1.5933 1.0531 95.61 20 1.9600 6.6650 4.7050 95.47
40 0.6731 1.3899 0.7168 95.29 40 2.5600 5.7360 3.1760 95.13
60 0.7317 1.3103 0.5786 95.41 60 2.8200 5.3770 2.5560 95.37
80 0.7677 1.2665 0.4989 95.52 80 2.9780 5.1790 2.2010 95.35
100 0.7910 1.2352 0.4443 95.21 100 3.0810 5.0390 1.9580 95.29

Table 6: Summary of dataset I, II, and III

Dataset No. Minimum 1st Quartile Median Mean 3rd Quartile Maximum SD
I 0.3200 0.9150 1.4700 1.6750 2.0870 4.7500 1.0006
II 2.8870 5.3290 8.1440 9.8870 13.8360 23.3940 5.8567
III 0.1100 0.7175 1.2350 1.5427 1.9425 4.7300 1.1276

Figure 4: Graphical representation of dataset I, II, and III using boxplot
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Table 7: The Competitive models

Model Abbreviation Parameter(s) Author(s)
Lindley L θ Lindley (1958)

Inverse Lindley IL θ Sharma et al. (2015)
Inverted Modified Lindley IML θ Chesneau et al. (2020)

Exponential E λ -
Inverted Exponential IE β Lin et al. (1989)

Inverse Rayleigh IR σ Voda (1972)
Inverse Xgamma IXG θ Yadav et al. (2021b)
Inverted Gamma IG α, β Lin et al. (1989)
Inverse Weibull IW η, β Khan et al. (2008)

Inverted Nadarajah–Haghighi INH λ, α Tahir et al. (2018)
Inverted Topp-Leone ITL θ Hassan et al. (2020)

Burr-Hatke Exponential BHE λ Yadav et al. (2021a)
Maxwell Distribution M θ Bekker and Roux (2005)
Laplace Distribution La µ, b Kotz et al. (2001)

Inverse Lomax Distribution ILo α, β Kleiber (2004)
Exponential Poisson Distribution EP λ, β Kuş (2007)

Rayleigh R σ Siddiqui (1962)

Dataset (I): The first real dataset represents thirty successive values of March pre-
cipitation (in inches) in Minneapolis/St Paul Yousef et al. (2023). The data values are:
0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.

Under dataset I, the fitting of the Arvind distribution is compared with L, IL, IML,
E, IE, IR, IXG, IG, IW, and INH models. Table 8 lists the MLEs of the unknown parameters
(standard errors (SEs) between parentheses) with the values of the –logL, AIC, BIC, CAIC,
and KS statistic with associated P-value. Table 8 demonstrates that the suggested model
has the lowest -logL, AIC, BIC, CAIC, and KS statistic as well as the highest P-value, hence,
the Arvind distribution is superior to a number of competing models for this dataset. Figure
5 depicts the density and empirical vs fitted CDF plots for the proposed model with respect
to dataset I. This graph also indicates that the Arvind distribution closely resembles the
pattern of this real data.

Dataset (II): The second application takes into account the daily new cases of
COVID-19 that have been reported in India. The data can be accessed at https://www.
worldometers.info/coronavirus/country/india/ and describes the daily new cases (in
thousands) that occurred between the 16th of March 2021 and the 16th of April 2021. The
data values are as follows:
28869, 35838, 39643, 40950, 43815, 40611, 47264, 53419, 59069, 62291, 62631, 68206, 56119,
53158, 72182, 81441, 89019, 92998, 103793, 96557, 115269, 126315, 131893, 144829, 152682,
169914, 160694, 185248, 199509, 216850, 233943.

To facilitate fitting, this dataset has been divided by 10000. The Arvind distribution’s
fit to this COVID data is compared to the L, IL, ITL, IXG, BHE, M, La, ILo, EP, and INH
models. Table 9 summarizes the MLEs of the parameters (SEs between parentheses) as well

https://www.worldometers.info/coronavirus/country/india/
https://www.worldometers.info/coronavirus/country/india/
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Table 8: The goodness-of-fit statistics for various models under dataset I

Model MLE (SEs) -logL AIC BIC CAIC KS P-value
Arvind 0.1928 (0.0367) 39.7202 81.4403 82.8415 81.5832 0.0899 0.9685

L 0.9096 (0.1247) 43.1437 88.2875 89.6886 88.4303 0.1882 0.2383
IL 1.5835 (0.2267) 45.2212 92.4424 93.8436 92.5852 0.2279 0.0886

IML 1.247 (0.1906) 43.8683 89.7366 92.5390 90.1810 0.1975 0.1925
E 0.5971 (0.1090) 45.4744 92.9488 94.3500 93.0917 0.2352 0.0723
IE 1.1405 (0.2083) 46.2726 94.5452 95.9464 94.6881 0.2538 0.0420
IR 0.9267 (0.0846) 44.1365 90.2730 91.6740 90.4160 0.9360 0.0640

IXG 1.9440 (0.2680) 46.9850 95.9701 97.3713 96.1129 0.2632 0.0313

IG 2.5928 (0.6306),
2.9599 (0.7944) 40.3072 84.6144 87.4168 85.0589 0.1380 0.6174

IW 1.0163 (0.1273),
1.5495 (0.2026) 41.9170 87.8340 90.6364 88.2785 0.1523 0.4896

INH 3.0625 (2.8279),
0.2647 (0.2975) 44.5344 93.0689 95.8713 93.5133 0.1961 0.1989

Figure 5: Histogram and the empirical vs fitted CDF under datasets I

as the -logL, AIC, BIC, CAIC, and KS statistic with its P-value. The developed model
has the lowest -logL, AIC, BIC, CAIC, and KS statistic as well as the maximum P-value,
as shown in Table 9; as a consequence, the Arvind distribution surpasses other competing
models for this dataset. Figure 6 depicts the density and empirical vs fitted CDF for the
proposed model under dataset II. This figure also reveals that the Arvind distribution closely
follows the actual data pattern.
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Table 9: The goodness-of-fit statistics for various models under dataset II

Model MLE (SEs) -logL AIC BIC CAIC KS P-value
Arvind 0.0071 (0.0013) 95.0043 192.0085 193.4425 192.1465 0.1432 0.5032

L 0.1863 (0.0238) 96.7713 195.5426 196.9766 195.6805 0.1662 0.3216
IL 7.8937 (1.2790) 101.7100 205.4199 206.8539 205.5578 0.2593 0.0250

ITL 0.6169 (0.1108) 117.8740 237.7481 239.1820 237.8860 0.4094 <0.0001
IXG 8.4800 (1.3980) 102.7350 207.4706 208.9046 207.6086 0.2726 0.0158
BHE 0.0552 (0.1108) 103.7590 209.5174 210.9514 209.6554 0.2831 0.0108

M 0.0229 (0.0034) 97.5042 197.0083 198.4423 197.1463 0.2450 0.0401

La 8.1441 (0.0020),
4.6943 (0.8431) 100.4290 204.8579 207.7259 205.2865 0.1632 0.3434

ILo 0.6935 (0.2864),
10.6855 (3.7119) 102.8453 209.6907 212.5587 210.1193 0.2681 0.0186

EP 0.1010 (0.0182),
2.904e-07(0.01461) 102.0284 208.0567 210.9247 208.4853 0.2715 0.0165

INH 14.7742 (6.8420),
0.3258 (0.1251) 96.9953 197.9905 200.8585 198.4191 0.2028 0.1353

Figure 6: Histogram and the empirical vs fitted CDF under datasets II

Dataset (III): The third dataset includes the time between failures for repairable
items, Murthy et al. (2004). The data values are as follows:
1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23,
0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.

The Arvind distribution is fitted to this data and compared to the L, IL, E, R, IXG,
La, ILo, IG, IW, and INH models. Table 10 depicts the MLEs of the parameters (SEs between
parentheses) with the different fitting measures. The suggested model has the lowest -logL,
AIC, BIC, CAIC, and KS statistics, as well as the greatest P-value, as shown in Table 10;
as a result, the Arvind distribution excels other competing models for this dataset. Figure 7
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shows the density and empirical vs fitted CDF for the Arvind model under dataset II. This
graphic also demonstrates how well the Arvind distribution fits the actual data pattern.

Table 10: The goodness-of-fit statistics for various models under dataset III

Model MLE (SEs) -logL AIC BIC CAIC KS P-value
Arvind 0.2042 (0.0388) 40.9532 83.9063 85.3075 84.0492 0.1205 0.7763

L 0.9761 (0.1345) 41.5473 85.0946 86.4958 85.2374 0.1406 0.5931
IL 1.1605 (0.1619) 46.9329 95.8658 97.2670 96.0087 0.1412 0.5885
E 0.6484 (0.1184) 43.0054 88.0108 89.4120 88.1536 0.1845 0.2586
R 1.3434 (0.1226) 42.9183 87.8366 89.2378 87.9794 0.1865 0.2479

IXG 1.4160 (0.1892) 48.9037 99.8073 101.2085 99.9502 0.1556 0.4615

La 1.2374 (8.3889),
0.8074 (0.1474) 44.37386 92.74771 95.55011 93.19216 0.12375 0.7478

ILo 0.11873 (0.05041),
7.73475 (2.62162) 46.01338 96.02677 98.82916 96.47121 0.18931 0.2325

IG 1.4209 (0.3325),
1.1271 (0.3152) 45.5074 95.0147 97.8171 95.4591 0.1576 0.4452

IW 0.7665 (0.1388),
1.0730 (0.1314) 46.3756 96.7512 99.5536 97.1957 0.1338 0.6557

INH 0.8517 (0.2348),
1.0347 (0.5133) 46.3701 96.7402 99.5426 97.1846 0.1786 0.2942

Figure 7: Histogram and the empirical vs fitted CDF under datasets III

6.1. Other classical estimates for datasets I, II, and III

Here, we estimate the Arvind distribution’s unknown parameter using several different
approaches that have been used in this article. Under I, II, and III datasets, we also obtain
the 95% ACI for the unknown parameter θ. Table 11 includes estimates for θ from MLE,
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MPS, OLS, WLS, CVM, and AD estimation methods along with respective SEs, and 95%
ACI. In order to compare various approaches, Table 11 also contains the KS statistic and
corresponding P-value for all approaches. From Table 11, we can easily see the reverse trend
from the simulation section, as MPS is the least favourable estimation method for datasets
I, II, and III.

Table 11: Classical estimates for dataset I, II, and III

Dataset Methods Estimate SEs KS P-value ACI (Width)

I

MLE 0.1928 0.0367 0.0899 0.9685
[0.1209, 0.2647]

(0.1439)

MPS 0.1824 0.1941 0.0952 0.9484
OLS 0.1920 0.0039 0.0892 0.9707
WLS 0.1878 0.0051 0.0851 0.9816
CVM 0.1927 0.0048 0.0899 0.9684
ADE 0.1904 0.0401 0.0877 0.9751

II

MLE 0.0071 0.0013 0.1432 0.5032
[0.0046, 0.0096]

(0.0050)

MPS 0.0067 0.0068 0.1571 0.3877
OLS 0.0081 0.0003 0.1114 0.7960
WLS 0.0075 0.0004 0.1304 0.6209
CVM 0.0081 0.0003 0.1107 0.8026
ADE 0.0075 0.0015 0.1303 0.6220

III

MLE 0.2042 0.0388 0.1205 0.7763
[0.1281, 0.2803]

(0.1522)

MPS 0.1910 0.2029 0.1427 0.5745
OLS 0.2417 0.0050 0.0698 0.9986
WLS 0.2364 0.0066 0.0709 0.9982
CVM 0.2425 0.0049 0.0702 0.9985
ADE 0.2292 0.0499 0.0815 0.9886

7. Concluding remarks

A new lifetime model named Arvind distribution has been developed for modelling
different types of data. The suggested model’s PDF and HRF have a variety of forms that
make it possible to analyze a broad range of real data. Its impressive statistical proper-
ties have been derived. Six different estimation methods namely the maximum likelihood,
maximum product spacings, ordinary and weighted least square, Cramér-von Mises, and
Anderson-Darling are discussed for estimating the unknown parameter. The asymptotic
confidence interval has also been provided for the unknown parameter. An extensive sim-
ulation study has been performed to study the performance of the considered methods of
estimations. This study suggests that methods of maximum product spacings and maximum
likelihood are highly preferable whereas Cramér-von Mises is the least preferable method of
estimation for the proposed model.

The goodness-of-fit of the proposed distribution has been explained with three real
datasets from different fields and the fits of the proposed model have been found quite sat-
isfactory over other existing lifetime models like Lindley, inverse Lindley, inverted modified
Lindley, inverse Xgamma, inverse gamma, inverse Weibull, inverted Nadarajah-Haghighi,
Burr-Hatke Exponential, etc. As a result, we may draw the conclusion that the proposed
model may be utilized as a substitute for several well-known current models to analyze data
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produced from diverse fields. In the future, we will extend this work by implementing cen-
soring and different stress-strength models in the Arvind Distribution under various classical
and non-classical estimation procedures.
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Abstract
The slope parameter in simple linear regression measures the change in mean of

distribution of response variable for unit change in predictor variable. Some estimators based
on sample quasi ranges of predictor variables are proposed. The mean and variance of the
proposed estimators are derived. The relative efficiencies among the proposed estimators are
obtained. Also, these estimators are compared with the estimators available in the literature.
Few datasets are considered to illustrate the fitting of simple linear regression using proposed
estimators and comparing their performances.

Key words: Simple linear regression; Sample quasi ranges; Unbiased estimators; Variance;
Slope parameter; Relative efficiency.

AMS Subject Classifications: 62G05, 62J05

1. Introduction

Regression analysis helps in understanding the nature and strength of the relationship
among two or more variables. Linear regression model is helpful in modeling the relationship
among response variable (y) and the predictor variable (x). This model is used by economists
to relate variables such as consumption, savings with income; by environmental scientists to
relate environmental factors such as temperature, pollution levels with ecosystem or public
health; psychologists to relate human behavior with mental health and stress levels with
academic performances, etc. In addition, it is used in various domains of studies like finance,
marketing, real estate, pharmaceuticals, clinical trials, national development, education and
many others. The least square estimator is widely used in linear regression to estimate
the slope parameter. The literature reveals that the method of least squares was due to
Legendre (1805). Gauss (1809) claimed that he had been using the procedure since 1795.
Harter (1974), Stigler (1986) and Hald (1998) noticed that, “Euler (1749) and Mayer (1750)
independently developed a method known as method of averages” for fitting a linear equation
to observed data. Their method deals with arranging the predictor variables in descending
order and grouping them into as many numbers of existing parameters.
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Bose (1938) proposed three estimators based on method of successive differences,
method of differences at half range and method of range as alternative to least square esti-
mator for slope parameter in simple linear regression, when predictor variables are equidis-
tant. Wald (1940) observed that the efficiency of slope estimator will be maximum when
xi’s are arranged in ascending order. Nair and Shrivastava (1942) generalized procedure of
Bose (1938) to method of group averages to improve the relative efficiency of the estimators.

Liu and Preve (2016) proposed estimators to slope parameter in simple linear re-
gression based on robust measures of location, viz. median and trimmed mean. The focus
is on the case where predictor variable is assumed to be stochastic, having symmetric sta-
ble distribution and error having distribution either symmetric stable or a normal mixture.
Cliff and Billy (2017) developed simple averaging method based on the average of succes-
sive slopes. Prabowo et al. (2020) simplified this method and investigated its performance.
Singthongchai et al. (2021) developed improved simple averaging method replacing median
in the place of mean in the method due to Cliff and Billy (2017). Jlibene et al. (2021)
studied the least square estimator when the error has uniform distribution. Yao et al. (2021)
proposed best linear unbiased estimators using moving extremes ranked set sampling.

Bhat and Bijjargi (2023) proposed estimation procedures generalizing the methods
due to Bose (1938) including some adaptive estimators, in the presence of unequal distances
among predictor variables. Among the methods proposed, the method of differences among
ordered predictors lying equally on either side of the half range outperforms all other esti-
mators. Basically, this estimator is based on quasi ranges. The immediate quest that arises
is, whether the estimator is improved by taking some weights to quasi ranges. To investigate
this fact, we develop few estimators based on different types of weights to quasi ranges.

In this paper, we propose some estimators for slope parameter of simple linear re-
gression model based on sample quasi ranges given in Govindarajulu (2007). Suppose
xi , 1 ≤ i ≤ n are arranged in ascending order of magnitude, x(i) is the ith order statistic,
then, for n = 2m, the jth quasi range, j = 1, 2, · · · , m−1 is defined as the range of (n−2j)
sample values. Suppose qj is the jth quasi range, then qj is given by qj = x(n−j) − x(j+1). We
observe that, q0 = x(n) − x(1) is the range of n observations. Mosteller (2006) and Harter
(1959) used quasi ranges to estimate population standard deviation.

The proposed estimators are given in section 2, their mean and variance are derived in
section 3 and their performance using relative efficiency is investigated in section 4. The sim-
ple linear regression using proposed estimators along with their performances are illustrated
through examples in section 5. Section 6 contains conclusions.

2. Estimators based on sample quasi ranges

Consider the simple linear regression model,

yi = α + βxi + ei , 1 ≤ i ≤ n (1)

where, yi is response variable, xi is predictor variable, ei is independent and identically
distributed random error from distribution with zero mean and finite variance σ2. Here, α is
intercept parameter and β is slope parameter to be estimated from the data to explore the
linear relation between xi and yi. The slope parameter β represents the change in mean of



2024] LINEAR SLOPE ESTIMATORS BASED ON SAMPLE QUASI RANGES 31

distribution of y for unit change in x. The least square estimator of β is given by

β̂ul =
∑n

i=1 (xi − x) (yi − y)∑n
i=1 (xi − x)2 , (2)

where, x =
∑n

i=1 xi

n
and y =

∑n

i=1 yi

n
.

Among the methods proposed by Bose (1938), the estimator β̂eh obtained by method
of differences at half range outperforms other estimators and is given by

β̂eh =
∑m

i=1 (ym+i − yi)
m2d

, (3)

where d is distance among ordered xi.

In case of unequal distances among predictor variables, estimator due to Bhat and
Bijjargi (2023) based on method of distances among ordered observations lying equally on
either side of half range outperforms other proposed estimators and is given by

β̂ud =
∑m

i=1

(
y∗

m+i − y∗
m−i+1

)
∑m

i=1

(
x(m+i) − x(m−i+1)

) . (4)

Here, y∗
i is y observation corresponding to x(i), ith order statistic. β̂ud reduces to the method

of differences at half range given by

β̂uh =
∑m

i=1

(
y∗

m+i − y∗
i

)
∑m

i=1

(
x(m+i) − x(i)

) . (5)

Also, when distances among ordered predictor variables are equal, β̂ud = β̂uh reduces to β̂eh.

We propose estimators β̂k, k = 1, 2, · · · , 6 using quasi ranges respectively based
on the weights wk, k = 1, 2, · · · , 6. Representing arbitrary weight by aki, k = 1, · · · , 6,
i = 1, · · · , m, w1 is given by a1i = 1

m−i+1 , w2 by a2i = 1
i

, w3 by a3i = m−i+1∑m

i=1 m−i+1 ,
a4i = i∑m

i=1 i
, a5i = m − i + 1 and a6i = i. We see that, a1i, a4i and a6i relatively assign

heavier weights to quasi range with extreme order statistics, where as, a2i, a3i and a5i assign
lower weights. That is, a1i, a4i and a6i assign highest weight to q0, relatively lesser weight to
q1, q2, · · · and qm−1. Similarly, a2i, a3i and a5i assign lowest weight to q0, relatively heavier
weights to q1, q2, · · · and qm−1. As efficiency and robustness are vital to estimators, the
motivation for assigning various weights to the quasi ranges is to develop adaptive estimators
in terms of efficiency and robustness. In the presence of several estimators, researcher seeks
efficient estimator that closely estimates the parameter, whereas, robust estimator is sought
to estimate the parameter sensibly in the presence of outliers in the data.

The weights employed to propose various estimators are given in detail in Table 1.
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Table 1: Weights for proposition of estimators

range/quasi ranges y values w1 w2 w3 w4 w5 w6

q0 = x(n) − x(1) y∗
n − y∗

1 1 1
m

1∑m

i=1(m−i+1)
m∑m

i=1 i 1 m

q1 = x(n−1) − x(2) y∗
n−1 − y∗

2
1
2

1
m−1

2∑m

i=1(m−i+1)
m−1∑m

i=1 i 2 m−1
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

qm−2 = x(m+2) − x(m−1) y∗
m+2−y∗

m−1
1

m−1
1
2

m−1∑m

i=1(m−i+1)
2∑m

i=1 i m−1 2

qm−1 = x(m+1) − x(m) y∗
m+1 − y∗

m
1
m

1 m∑m

i=1(m−i+1)
1∑m

i=1 i m 1

The proposed estimators are given by

β̂1 =
∑m

i=1

(
y∗

m+i−y∗
m−i+1

m−i+1

)
∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) , (6)

β̂2 =
∑m

i=1

(
y∗

m+i−y∗
m−i+1

i

)
∑m

i=1

(
x(m+i)−x(m−i+1))

i

) , (7)

β̂3 =
∑m

i=1
(m−i+1)(y∗

m+i−y∗
m−i+1)∑m

i=1(m−i+1)∑m
i=1

(m−i+1)(x(m+i)−x(m−i+1))∑m

i=1(m−i+1)

, (8)

β̂4 =
∑m

i=1
i(y∗

m+i−y∗
m−i+1)∑m

i=1 i∑m
i=1

i(x(m+i)−x(m−i+1))∑m

i=1 i

, (9)

β̂5 =
∑m

i=1 (m − i + 1)
(
y∗

m+i − y∗
m−i+1

)
∑m

i=1 (m − i + 1)
(
x(m+i) − x(m−i+1)

) = β̂3 (10)

and

β̂6 =
∑m

i=1 i
(
y∗

m+i − y∗
m−i+1

)
∑m

i=1 i
(
x(m+i) − x(m−i+1)

) = β̂4. (11)

To obtain these estimators under the situation that the predictor variables are equidistant,
d

∑m
i=1 (2i − 1) is substituted in the place of ∑m

i=1

(
x(m+i) − x(m−i+1)

)
.



2024] LINEAR SLOPE ESTIMATORS BASED ON SAMPLE QUASI RANGES 33

For odd number of sample sizes, i.e. n = 2m + 1, the middle pair of observation,
(y∗

m+1, x(m+1)) is not considered. When the distances among x(i)’s are unequal and the
weights are equal, the estimators β̂k, k = 1, 2, 3, 4 reduce to β̂ud and to β̂eh when distances
are equal.

3. Mean and variance of the proposed estimators

In this section, the mean of the proposed estimators and their variances are obtained.
The mean of β̂1 is given by

E
(
β̂1

)
= E

 ∑m

i=1

(
y∗

m+i
−y∗

m−i+1
m−i+1

)
∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) 
= 1∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)E
(∑m

i=1

(
y∗

m+i−y∗
m−i+1

m−i+1

) )
= 1∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) ∑m
i=1

1
m−i+1E

(
y∗

m+i − y∗
m−i+1

)
= 1∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) ∑m
i=1

β
m−i+1

(
x(m+i) − x(m−i+1)

)
= 1∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) ∑m
i=1 β

(
x(m+i)−x(m−i+1)

m−i+1

)

E
(
β̂1

)
= β. (12)

Hence, β̂1 is an unbiased estimator of β.

The variance of β̂1 is given by

V
(
β̂1

)
= V

 ∑m

i=1

(
y∗

m+i
−y∗

m−i+1
m−i+1

)
∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)
= 1[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2 V
(∑m

i=1

(
y∗

m+i−y∗
m−i+1

m−i+1

) )
= 1[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2

(∑m
i=1

1
(m−i+1)2 V (y∗

m+i − y∗
m−i+1)

)
= 1[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2

(∑m
i=1

1
(m−i+1)2 2σ2

)

V
(
β̂1

)
=

2σ2 ∑m
i=1

1
(m−i+1)2[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2 (13)

Under equidistant x(i)’s,

V
(
β̂1

)
=

2σ2 ∑m
i=1

1
(m−i+1)2[

d
∑m

i=1

(
2i−1

m−i+1

)]2 (14)
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Similarly, we observe that, all the proposed estimators are unbiased estimators of β and
they have different variances. The variances of β̂k , k = 1, 2, 3, 4. for equal and unequal
distances among x(i)’s are furnished in Table 2.

Table 2: Variance of β̂k , k = 1, 2, 3, 4

Estimator V
(
β̂k

)
under unequal distances V

(
β̂k

)
under equal distances

β̂1

2σ2
∑m

i=1
1

(m−i+1)2[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2
2σ2

∑m

i=1
1

(m−i+1)2

[d ∑m

i=1( 2i−1
m−i+1)]2

β̂2

2σ2
∑m

i=1
1
i2[∑m

i=1

(
x(m+i)−x(m−i+1)

i

)]2
2σ2

∑m

i=1
1
i2

[d ∑m

i=1( 2i−1
i )]2

β̂3
2 σ2

∑m

i=1(m−i+1)2

[∑m

i=1 (m−i+1)(x(m+i)−x(m−i+1))]2
48 σ2

d2n(n+1)(n+2)

β̂4
2 σ2

∑m

i=1 i2

[∑m

i=1 i(x(m+i)−x(m−i+1))]2
48 (n+1)σ2

d2n(n+2)(2n−1)2

When the distances among x(i)’s are equal, the least square estimator given in (2)
reduces to

β̂el =
∑n

i=1 (xi − x) (yi − y)
d2 n(n2−1)

12

(15)

and its variance given by
V

(
β̂el

)
= 12 σ2

d2n (n2 − 1) (16)

When d = 1, σ = 1, V (β̂k) is computed from Table 2 for various values of n and are given
in Table 3 and plotted in Figure 1.

Table 3: V
(
β̂k

)
, k = 1, 2, 3, 4 for various values of n

n V
(
β̂4

)
V

(
β̂1

)
V

(
β̂3

)
V

(
β̂2

)
V

(
β̂el

)
V

(
β̂eh

)
6 0.057851 0.058299 0.142857 0.15680 0.057143 0.074074
8 0.024000 0.024638 0.066667 0.081333 0.023810 0.031250
10 0.012188 0.012810 0.036364 0.049158 0.012121 0.016000
14 0.004409 0.004879 0.014286 0.023236 0.004396 0.005831
18 0.002068 0.002409 0.007018 0.013380 0.002064 0.002743
22 0.001131 0.001384 0.003953 0.008650 0.001129 0.001503
26 0.000684 0.000877 0.002442 0.006033 0.000684 0.000910
30 0.000445 0.000595 0.001613 0.004440 0.000445 0.000593
40 0.000188 0.000276 0.000697 0.002409 0.000188 0.000250
50 0.000096 0.000154 0.000362 0.001506 0.000096 0.000128
70 0.000035 0.000064 0.000134 0.000746 0.000035 0.000047
100 0.000012 0.000026 0.000047 0.000356 0.000012 0.000016
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Figure 1: Variance of various slope estimators for different values of n

From Table 3 and Figure 1, we observe that, for all n, V
(
β̂4

)
< V

(
β̂1

)
< V

(
β̂3

)
<

V
(
β̂2

)
. Among the proposed estimators, β̂4 has minimum variance and for n > 22, V

(
β̂4

)
is equal to V (β̂el). The V

(
β̂4

)
is less than V

(
β̂eh

)
and for n ≤ 30, V

(
β̂1

)
is less than

V
(
β̂eh

)
. Also, for increasing value of n, V

(
β̂k

)
, k = 1, 2, 3, 4 is decreasing.

4. Performance of the proposed estimators

In this section, we study the performance of proposed estimators using relative effi-
ciencies. The relative efficiency (RE) of two estimators, namely, A and B is given by

RE(A, B) = V (B)
V (A) . (17)

We conclude that, A is better than B in terms of its performance if RE(A, B) > 1.
The RE among proposed estimators for both cases where in predictor variables have unequal
distance and equal distance are derived and given in Table 4. A comparison among β̂k , k =
1, 2, 3, 4 is carried out in Table 5 in terms of computed values of RE for various values of
n when x(i)’s are equidistant. Using Table 5, RE of β̂4 with respect to (wrt) β̂1, β̂2, β̂3, RE
of β̂1 wrt β̂2, β̂3 and RE of β̂3 wrt β̂2 are given in Figure 2.

From Table 5 and Figure 2, it is observed that, RE
(
β̂4, β̂2

)
> RE(β̂4, β̂3) > RE(β̂4, β̂1)

and RE
(
β̂1, β̂2

)
> RE

(
β̂1, β̂3

)
. Hence, β̂4 is performing better than all other proposed es-

timators, β̂1 performs better than β̂2, β̂3 and β̂3 outperforms β̂2. Also, RE of β̂4 wrt β̂1, β̂2,
β̂3, RE of β̂1 wrt β̂2 and RE of β̂3 wrt β̂2 increases for increasing values of n, whereas, RE of
β̂1 wrt β̂3 decreases for n > 14. As β̂4 outperforms β̂1, β̂2 and β̂3, we compute RE(β̂4, β̂el)
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Table 4: RE among proposed β̂k , k = 1, 2, 3, 4

For unequal distances among x(i)’s For equal distances among x(i)’s

RE(β̂1, β̂2)

[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2[∑m

i=1

(
x(m+i)−x(m−i+1)

i

)]2
[∑m

i=1( 2i−1
m−i+1)]2

[∑m

i=1( 2i−1
i )]2

RE(β̂1, β̂3)

[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2 ∑m

i=1(m−i+1)2

[∑m

i=1 (m−i+1)(x(m+i)−x(m−i+1))]2 ∑m

i=1
1

(m−i+1)2

48 [∑m

i=1( 2i−1
m−i+1)]2

n(n+1)(n+2)
∑m

i=1
1

(m−i+1)2

RE(β̂1, β̂4)

[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2 ∑m

i=1 i2

[∑m

i=1 i(x(m+i)−x(m−i+1))]2 ∑m

i=1
1

(m−i+1)2

24(n+1)[∑m

i=1( 2i−1
m−i+1)]2

n(n+2)(2n−1)2 ∑m

i=1
1

(m−i+1)2

RE(β̂2, β̂3)

[∑m

i=1

(
x(m+i)−x(m−i+1)

i

)]2 ∑m

i=1(m−i+1)2

[∑m

i=1 (m−i+1)(x(m+i)−x(m−i+1))]2 ∑m

i=1
1
i2

24[∑m

i=1( 2i−1
i )]2

n(n+1)(n+2)
∑m

i=1
1
i2

RE(β̂2, β̂4)

[∑m

i=1

(
x(m+i)−x(m−i+1)

i

)]2 ∑m

i=1 i2

[∑m

i=1 i(x(m+i)−x(m−i+1))]2 ∑m

i=1
1
i2

24(n+1)[∑m

i=1( 2i−1
i )]2

n(n+2)(2n−1)2 ∑m

i=1
1
i2

RE(β̂3, β̂4) [∑m

i=1 (m−i+1)(x(m+i)−x(m−i+1))]2

[∑m

i=1 i(x(m+i)−x(m−i+1))]2
(n+1)2

(2n−1)2

Table 5: RE among proposed estimators for various n

n RE(β̂4, β̂1) RE(β̂4, β̂2) RE(β̂4, β̂3) RE(β̂1, β̂2) RE(β̂1, β̂3) RE(β̂3, β̂2)
6 1.007729 2.710394 2.469380 2.689600 2.450440 1.097598
8 1.026578 3.388911 2.777778 3.301130 2.705850 1.220003
10 1.050994 4.033234 2.983472 3.837540 2.838730 1.351845
14 1.106672 5.270092 3.240021 4.762070 2.927710 1.626545
18 1.165107 6.469979 3.393396 5.553050 2.912470 1.906650
22 1.223496 7.649354 3.495281 6.251810 2.856780 2.188423
26 1.280902 8.815233 3.567861 6.881760 2.785450 2.470600
30 1.337024 9.971084 3.622270 7.457780 2.709190 2.752773
40 1.471540 12.835320 3.712642 8.722070 2.523000 3.456978
50 1.598491 15.673980 3.768181 9.804740 2.357310 4.159215
70 1.834458 21.303790 3.832739 11.613810 2.089310 5.558644
100 2.155869 29.691210 3.882138 13.772790 1.800680 7.648769

and RE(β̂4, β̂eh) for various values of n and furnish in Table 6.

From Table 6, we notice that, RE(β̂4, β̂eh) > 1, increases as n increases, stabilizes at
1.3333 and RE(β̂4, β̂el) ∼= 1 for increasing values of n.

5. Illustration

In this section, we illustrate the performance of β̂k , k = 1, 2, 3, 4 through some
examples considered in literature. We compute β̂∗ and its variance, where β̂∗ is any estimator
of β. Also, we compute RE(β̂4, β̂∗). To fit the simple linear regression model given in (1),
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Figure 2: RE among proposed estimators
Table 6: RE of β̂4 wrt β̂el and β̂eh

n RE(β̂4, β̂el) RE(β̂4, β̂eh)
6 0.987755 1.280423
8 0.992063 1.302083
10 0.994490 1.312727
14 0.996923 1.322449
18 0.998045 1.326619
22 0.998650 1.328782
26 0.999012 1.330046
30 0.999246 1.330848
40 0.999565 1.331921
50 0.999718 1.332424
70 0.999853 1.332866
100 0.999927 1.333103

the intercept parameter α is estimated using various β̂∗,

α̂∗ = y − β̂∗x (18)

and
α̂′

∗ = ỹ − β̂∗x̃, (19)

where x̃, ỹ are median of x and y values respectively. Using various estimators, the regression
lines are fitted.

Example 1: The data due to Anscombe (1973) taken from R software consists of four
datasets known as Anscombe’s quartet. Here, we consider the data of third quartet given in
Table 7.

Using equation (2), (5), (6), (7), (8) and (9), β̂ul, β̂uh, β̂1, β̂2, β̂3 and β̂4 and their variances
are computed. The relative efficiency of β̂4 wrt other estimators are computed.
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Table 7: Third quartet due to Anscombe (1973)

x 10 8 13 9 11 14 6 4 12 7 5
y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Table 8: Computed values of β̂∗, V(β̂∗) and RE(β̂4, β̂∗) for example 1

β̂∗ Value of β̂∗ V(β̂∗) ( in 10−2) RE(β̂4, β̂∗)
β̂ul 0.49972 0.9090 σ2 1
β̂uh 0.48700 1.1111 σ2 1.22222
β̂1 0.46727 0.9660 σ2 1.06353
β̂2 0.45175 2.9272 σ2 3.21994
β̂3 0.46700 2.2448 σ2 2.46939
β̂4 0.49972 0.9090 σ2 -

Figure 3: RE of β̂4 wrt β̂∗

From Figure 3 and computed V(β̂∗) given in Table 8, it is observed that, performance
of β̂4 and β̂ul are equivalent. Also, β̂4 and β̂1 are better than β̂uh. From Figure 4(a) and
4(b), it is observed that, all the regression lines fitted using various β̂∗ show slight change in
their slopes. In Figure 4(b), as α is estimated using α̂′

∗, we see a shift in the intercept and
the outlier present in the data has not influenced the regression lines where as the influence
of outlier observation is evident in Figure 4(a).

Example 2: This example is due to Montgomery et al. (2021) and is given in Table 9. The
dataset explains, the shear strength (Y i) of bond between two types of propellant used to
manufacture a rocket motor and age in weeks (X i) of the batch of propellant.

From Figure 5 and Table 10, it is observed that, the performance of β̂4 and β̂ul is
almost identical. Also, β̂1 and β̂4 are performing better than β̂uh. From Figure (6), we
observe that, various regression lines fitted using α̂∗ differ in their intercepts than those
fitted using α̂′

∗. In both cases β̂4 and β̂ul are the lines of best fit.
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Figure 4: The fitted regression lines using α̂∗ and α̂′
∗

Table 9: Data due to Montgomery et al. (2021)

Sr. no. y x Sr. no. y x
1 2158.7 15.5 11 2165.2 13
2 1678.15 23.75 12 2399.55 3.75
3 2316 8 13 1779.8 25
4 2061.3 17 14 2336.75 9.75
5 2207.5 5.5 15 1765.3 22
6 1708.3 19 16 2353.5 18
7 1784.7 24 17 2414.4 6
8 2575 2.5 18 2200.5 12.5
9 2357.9 7.5 19 2654.2 2
10 2256.7 11 20 1753.7 21.5

Table 10: Computed values of β̂∗, V(β̂∗) and RE(β̂4, β̂∗) for example 2

β̂∗ Value of β̂∗ V(β̂∗) ( in 10−2) RE(β̂4, β̂∗)
β̂ul -35.9 0.09037 σ2 0.994988
β̂uh -34.62457 0.11788 σ2 1.297978
β̂1 -36.31487 0.11260 σ2 1.240828
β̂2 -33.28090 0.63480 σ2 6.989736
β̂3 -32.74453 0.29373 σ2 3.234026
β̂4 -35.6700 0.09082 σ2 -

Example 3: The dataset studied by Graybill and Iyer (1994) is considered. The variable y
is average systolic blood pressure (BP) at 8 A.M. over two weeks and x is age of individuals
ranging 21 to 70 years. The dataset is given in Table 11.
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Figure 5: RE of β̂4 wrt β̂∗

Figure 6: The fitted regression lines using α̂∗ and α̂′
∗

Figure 7: RE of β̂4 wrt β̂∗

From computed values of β̂∗, V(β̂∗) given in Table 12 and Figure 7, it is observed
that, all the values of β̂∗ are nearly same. β̂4 performs better than β̂1, β̂2, β̂3, β̂uh and is
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Table 11: Data due to Graybill and Iyer (1994)

Sr. no. x y Sr. no. x y
1 34 116 13 40 135
2 26 112 14 34 126
3 51 151 15 67 172
4 58 161 16 23 100
5 34 122 17 47 139
6 40 129 18 42 135
7 31 119 19 61 163
8 57 158 20 38 128
9 56 144 21 57 159
10 53 150 22 66 177
11 29 111 23 42 135
12 50 148 24 53 149

Table 12: Computed values of β̂∗, V(β̂∗) and RE(β̂4, β̂∗) for example 3

β̂∗ Value of β̂∗ V(β̂∗) ( in 10−2) RE(β̂4, β̂∗)
β̂ul 1.60900 0.02771 σ2 0.98823
β̂uh 1.59288 0.03749 σ2 1.33702
β̂1 1.61958 0.03296 σ2 1.17546
β̂2 1.59735 0.21211 σ2 7.56455
β̂3 1.56162 0.10074 σ2 3.59272
β̂4 1.60938 0.02804 σ2 -

Figure 8: The fitted regression lines using α̂∗ and α̂′
∗

almost equivalent to β̂ul. Also, β̂1 performs better than β̂uh, β̂2 and β̂3. From Figure 8(a)
and 8(b), we observe that, all the regression lines plotted using various β̂∗, α̂∗ and α̂′

∗ are
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identical.

Example 4: The data is taken from from nseindia.com and bseindia.com. It explains
daily closing price (x) of index NIFTY50 from National Stock Exchange (NSE) and daily
closing price (y) of index SENSEX50 from Bombay Stock Exchange (BSE). The data consists
of 988 observations of 4 years from 2017 to 2020. Here, we furnish the values of estimators,
their variances and relative efficiencies along with fitting of regression lines using various
estimators.

Table 13: Computed values of β̂∗, V(β̂∗) and RE(β̂4, β̂∗) for example 4

β̂∗ Value of β̂∗ V(β̂∗) ( in 10−10) RE(β̂4, β̂∗)
β̂ul 1.05800 8.593147 σ2 0.94391
β̂uh 1.06240 13.97219 σ2 1.53477
β̂1 1.00837 38.82940 σ2 4.26520
β̂2 1.09918 3754.035 σ2 412.3605
β̂3 1.06689 57.23892 σ2 6.28739
β̂4 1.06061 9.10377 σ2 -

Figure 9: RE of β̂4 wrt β̂∗

From Table 13, the computed values of β̂∗ and V (β̂∗), RE(β̂4, β̂2) is too high to record
in Figure 9. The proposed estimator, β̂4 performs better than β̂1, β̂3 and β̂uh. From Figure
10, we notice that all the regression lines fitted either using α̂∗ or α̂′

∗ seem to be the same as
number of observations are very large.

6. Conclusions

• Some estimators based on quasi ranges are proposed for slope parameter of simple
linear regression model, yi = α + βxi + ei, i = 1, 2, · · · , n.

• Among the proposed estimators, viz. β̂k, k = 1, 2, · · · , 6 based on weighted sample
quasi ranges, β̂5 reduces to β̂3 and β̂6 reduces to β̂4.

• When equal weights are assigned to each quasi range, all the proposed estimators
reduce to β̂ud.

nseindia.com
bseindia.com
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Figure 10: The fitted regression lines using α̂∗ and α̂′
∗

• For equal weights and equidistant x(i)’s, all the proposed estimators reduce to β̂eh, due
to Bose (1938).

• All the proposed estimators are unbiased estimators of slope parameter β.

• The variance of proposed estimators is decreasing with the increasing values of n.

• Among the estimators proposed, β̂4 outperforms β̂1, β̂2, β̂3; β̂1 outperforms β̂2, β̂3 and
β̂3 outperforms β̂2.

• RE
(
β̂4, β̂1

)
, RE(β̂4, β̂2), RE(β̂4, β̂3), RE(β̂1, β̂2) and RE(β̂3, β̂2) increase as n in-

creases, but RE(β̂1, β̂3) increases upto n = 14 and decreases for n > 14.

• β̂4 outperforms β̂uh, due to Bhat and Bijjargi (2023) and its performance is equivalent
to least square estimate β̂ul.

• As a4i and a1i assign relatively heavier weights to quasi ranges with extreme order
statistics, the estimators β̂4 based on a4i and β̂1 based on a1i are relatively more
efficient than other estimators.

• β̂2 based on a2i and β̂3 based on a3i exhibit robustness to outliers if present in the data,
since a2i and a3i assign lower weights to quasi ranges with extreme order statistics.
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Abstract
Panel count data refer to the data arising from studies concerning recurrent events

where study subjects are observed only at distinct time points. If these study subjects
are exposed to recurrent events of several types, we obtain panel count data with multiple
modes of recurrence. In the present paper, we propose a nonparametric test to compare
cause specific rate functions of panel count data with more than one mode of recurrence.
We carry out simulation studies to evaluate the performance of the test statistic in a finite
sample setup. The proposed test is illustrated using two real-life panel count data sets, one
arising from a medical follow-up study on skin cancer chemo prevention trial and the other
on a warranty database for a fleet of automobiles.

Key words: Cause specific rate functions; Chi-Square test; Kernel estimation; Panel count
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1. Introduction

Panel count data arise from longitudinal studies on recurrent events where each sub-
ject is observed only at discrete time points. In many situations, continuous observation is
impossible due to cost, feasibility or other practical considerations. As a result, the num-
ber of occurrence of the events between consecutive observation times are only available;
the exact recurrence times remain unknown (Kalbfleisch and Lawless (1985); Sun and Tong
(2009); Zhao et al. (2011)). Panel count data is also termed interval count data or interval
censored recurrent event data (Lawless and Zhan (1998); Thall and Lachin (1988)). In panel
count data, the number of observation times and observation time points may vary for each
subject. If each subject is observed only once, the number of recurrences of the event up to
the observation time is only available. This special case of panel count data is commonly
known as current status data.

The standard methods in the analysis of panel count data are focused on the rate
function or the mean function of the underlying recurrent event process. Thall and Lachin
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(1988) and Lawless and Zhan (1998) considered the analysis of panel count data using rate
functions. An estimator for the mean function based on isotonic regression theory was devel-
oped by Sun and Kalbfleisch (1995). Wellner and Zhang (2000) discussed likelihood based
nonparametric estimation methods for the mean function and proposed a nonparametric
maximum likelihood estimator (NPMLE) and a nonparametric maximum pseudo-likelihood
estimator (NPMPLE) for the same. They also showed that NPMPLE is exactly the one
studied in Sun and Kalbfleisch (1995). Some recent research works in this area include Zhou
et al. (2017), Xu et al. (2018), Wang et al. (2019), Jiang et al. (2020) and Wang and Lin
(2020) among others.

When an individual (subject) in the study is exposed to the risk of recurrence due to
several types of events at each point of observation, we obtain panel count data with multiple
modes of recurrence. Such data naturally arise from survival and reliability studies where
the interest is focused on the recurrence of competing events which can be observed only at
discrete time points. For example, consider the data on skin cancer chemo prevention trial
discussed in Sun and Zhao (2013). The cancer recurrences of 290 patients with a history of
non-melanoma skin cancers are observed at different monitoring times. The types of cancers
are classified into basal cell carcinoma and squamous cell carcinoma and the recurrences due
to both types of cancers at each monitoring time are observed for each individual. Covariate
information on age, gender, number of prior tumours and DFMO status is also observed for
each individual. As a result, we obtain panel count data with multiple modes of recurrence.
A detailed analysis of the data is given in Section 4.

Even though recurrent event data exposed to multiple modes of recurrence is studied
by many authors in literature (Cook and Lawless, 2007), panel count data with multiple
modes of recurrence is less explored in literature. Sreedevi and Sankaran (2021) derived
an expression for the cause specific mean functions and developed a nonparametric test
for comparing the effect of different causes on recurrence times based on the developed
estimators. Sankaran et al. (2020) considered non parametric estimation of cause specific
rate functions and studied their properties. When study subjects are exposed to multiple
modes of recurrence, it is important to test whether the effect of different modes are identical
on the lifetime (Gray (1988)). Many authors including Aly et al. (1994) and Sankaran et al.
(2010) addressed the above testing problem for right censored data. When the current status
data is only available, Sreedevi et al. (2012) developed a test for independence of time to
failure and cause of failure. Comparison of cumulative incidence functions of current status
data with continuous and discrete observation times is studied by Sreedevi et al. (2014) and
Sreedevi et al. (2019) respectively. Even though current status data can be considered as a
special case of panel count data, the estimation procedures are different for both data types
and the aforementioned tests cannot be used in the present situation.

The test proposed by Sreedevi and Sankaran (2021) can be used for comparing the
mean functions of panel count data with more than one recurrence mode. However, there are
several advantages in using the rate functions for the analysis of panel count data compared
to the mean functions. Often, we assume that the mean function follows a non-homogeneous
Poisson process, but this assumption is not required for analysing rate functions directly.
In addition, rate functions are not constrained by the non decreasing property as of mean
functions and hence it is easy to understand the changing recurrence patterns with rate
functions. This motivated us to propose a test to compare the cause specific rate functions
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proposed by Sankaran et al. (2020).

The paper is organized as follows. In Section 2, we discuss the estimation of the cause
specific rate functions and then propose a non parametric test to compare the rate functions
of panel count data with multiple modes of recurrence. We also discuss the asymptotic
properties of the proposed test statistic. In Section 3, we report the results of the simulation
study conducted to evaluate the performance of the proposed test in finite samples. We
illustrate the practical usefulness of the method by applying it to two real data sets in Section
4. Finally, Section 5 summarizes the major conclusions of the study with a discussion on
future works.

2. Inference procedures

We study cause specific rate functions and their properties in detail in this section.
Further, a non parametric test for comparing cause specific rate functions is presented.

2.1. Cause specific rate functions

Consider a study on n individuals from a homogeneous population who are exposed
to the recurrent events due to {1, 2, ..., J} possible causes. Assume that the event process is
observed only at a sequence of random monitoring times. Consequently, the counts of the
event recurrences due to each cause in between the observation times are only available; the
exact recurrence times remain unknown. As a result, we observe the cumulative number
of recurrences up to every observation time due to each cause. Define a counting process
Nj = {Nj(t); t ≥ 0} where Nj(t) denotes the number of recurrences of the event due to
cause j up to time t. Define µj(t) = E(Nj(t)) as the mean function of the recurrent event
process due to cause j which are termed as cause specific mean functions. Define rj(t)dt =
dµj(t) = EdNj(t) as the rate function of the recurrent event process due to cause j, for
j = 1, 2, ..., J . rj(t) is referred to as the cause specific rate function. By studying cause
specific rate functions, one can easily understand the difference in recurrence patterns due
to various causes (modes) of recurrence.

In panel count data, we can note that the number of observation times as well as
observation time points may be different for each individual. Let Mi be an integer-valued
random variable denoting the number of observation times for i = 1, 2, .., n. Also let Ti,p

denote the pth observation time for ith individual for p = 1, 2, ..Mi and i = 1, 2, .., n. As-
sume that the number of recurrences due to different causes is independent of the number
of observation times as well as observation time points. Let N j

i,p denote the number of
recurrences of the event observed for ith individual due to cause j , for p = 1, 2, ..., Mi,
i = 1, 2, ..., n and j = 1, 2, ..., J . Now we observe n independent and identically distributed
copies of {Mi, Ti,p, N1

i,p, ..., NJ
i,p}, p = 1, 2, ..., Mi. The observed data will be of the form

{mi, ti,p, n1
i,p, ..., nJ

i,p}, p = 1, 2, ..., mi and i = 1, 2, ..., n.

Sankaran et al. (2020) introduced various estimators for cause specific rate functions
and established their practical utility through numerical illustrations. The empirical estima-
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tors for the cause specific rate functions rj(t)’s are defined as

r̂j(t) =

∑n
i=1

[∑mi
p=1

(nj
i,p−nj

i,p−1)I(ti,p<t≤ti,p−1)
(ti,p−ti,p−1)

]
∑n

i=1 I(t ≤ ti,p) j = 1, 2, ..., J. (1)

In this definition, the numerator gives the average number of recurrences due to cause
j and the denominator is the number of individuals at risk at time t. Hence the estimators
r̂j(t)’s are the average of rate functions due to cause j, over all individuals. The cause specific
mean functions can be directly estimated from Equation (1). When J = 1, Equation (1)
reduces to the empirical estimator of the rate function given in Sun and Zhao (2013) and
the expression is given by

r̂(t) =
∑n

i=1

[∑mi
p=1

(ni,p−ni,p−1)I(ti,p<t≤ti,p−1)
(ti,p−ti,p−1)

]
∑n

i=1 I(t ≤ ti,p) (2)

where ni,p denotes the number of recurrences of the event observed for ith individual due to
all possible modes of recurrence up to time p, for p = 1, 2, ..., Mi, i = 1, 2, ..., n. By definition,
r̂(t) = ∑J

j=1 r̂j(t). In practice, the estimators of cause specific rate functions presented in
Equation (1) change only at the observed time points. Accordingly, Sankaran et al. (2020)
proposed a smoothed version of the estimators of cause specific rate functions using kernel
estimation techniques and also studied the asymptotic properties.

Let K(t) be a non-negative kernel function symmetric about t = 0 with
� ∞

−∞ K(t)dt =
1. Also, let hn > 0 be the bandwidth parameter. Let b1 < b2 < ... < bl are the distinct
observed time points in the set {Ti,p, p = 1, 2, ..., Mi, i = 1, 2, ..., n}. Define r̂qj = r̂j(bq), for
q = 1, 2, ..., l, j = 1, 2, ..., J . Now, the kernel estimators of rj(t)’s are given as

r̂∗
j (t) =

l∑
q=1

wq(t)r̂qj j = 1, 2, ..., J. (3)

where
wq(t) =

w∗
q(t, hn)∑l

u=1 w∗
u(t, hn)

q = 1, 2, ..., l.

and
w∗

q(t, hn) = h−1
n K

(
t − bq

hn

)
with

K(t) = (2π)−1/2exp(−t2/2).

The smoothed estimators r̂∗
j (t) of the cause specific rate functions are weighted av-

erage of r̂j(t)’s. Smoothed estimators of overall rate functions can also be constructed in a
similar way (Sun and Zhao (2013)). Clearly, r̂∗(t) = ∑J

j=1 r̂∗
j (t), where r̂∗(t) is the kernel

estimator of the overall rate function. In practice, the bandwidth hn for which the MSE is
minimum is selected to employ smoothing.



2024] COMPARISON OF CAUSE SPECIFIC RATE FUNCTIONS 51

The asymptotic properties of the estimators r̂∗
j (t)’s are studied and derived in Sankaran

et al. (2020). Without loss of generality, assume that the kernel function K(x) satisfies the
following mild regularity conditions.
C1 : K(x) is bounded ie sup{K(x), x ∈ R} < ∞
C2 : |xK(x)| → 0 as |x| → ∞
C3 : K(x) is symmetric about 0, ie K(−x) = K(x), x ∈ R
Also suppose that, as n → ∞ the bandwidth parameter hn satisfies the conditions (i) hn → 0
(ii) nhn → ∞ and (iii) nh2

n → ∞.
Under the assumptions C1, C2 and C3, Sankaran et al. (2020) showed that for fixed t,
the estimators r̂∗

j (t)’s are asymptotically normal with mean λj(t) = E(r̂∗
j (t)) and standard

deviation σj(t) = s.d(r̂∗
j (t)) for j = 1, 2, ..., J .

2.2. Test statistic

In this study, we focus on comparing the cause specific rate functions due to various
recurrence modes. This may be helpful in selecting the appropriate treatment for a group of
patients in a clinical study or to evaluate a newly introduced system in reliability experiments.
To develop a test statistic, we now consider the hypothesis,

H0 : rj(t) = rj′(t) for all t > 0, j ̸= j′ = 1, 2, ..., J

against
H1 : rj(t) ̸= rj′(t) for some t > 0 and j ̸= j′ = 1, 2, ..., J. (4)

Since r(t) = ∑J
j=1 rj(t), the above hypothesis can also be written as

H0 : rj(t) = r(t)
J

for all t > 0, j ̸= j′ = 1, 2, ..., J

against
H1 : rj(t) ̸= r(t)

J
for some t > 0 and j ̸= j′ = 1, 2, ..., J. (5)

To test H0 against H1, we choose r̂∗
j (t) as the smoothed estimators for the cause

specific rate functions defined in Equation (3). A smoothed estimator for the overall rate
function r(t) specified in Equation (2) is constructed by omitting the information on the
mode of recurrence. Let r̂∗(t) denote smoothed estimator of the overall rate function. A
similar procedure of estimating the overall mean function by ignoring the cause of recurrence
information is used in Sreedevi and Sankaran (2021) for comparing cause specific mean
functions.

To develop a test statistic for comparing cause specific rate functions, consider the
function

vj(t) =
� t

0
w(u)

r̂∗
j (u) − r̂∗(u)

J

 du for all j = 1, 2, . . . , J (6)

where w(.) is an appropriate data dependent weight function which is used to compensate
the effect of censoring. The weight functions are also employed to increase the efficiency of



52 SANKARAN P. G., ASHLIN MATHEW P. M., AND SREEDEVI E. P. [Vol. 22, No. 2

the test statistic and to set it asymptotically distribution free (Pepe and Mori (1993)). The
function vj(.) is similar to the one proposed by Sreedevi and Sankaran (2021) to compare
the cause specific mean functions of panel count data. Now to test the null hypothesis given
in Equation (4), we propose the test statistic

Z(τ) = v′(τ)
∑̂

(τ)−1v(τ) (7)

where τ is the largest monitoring time in the study and v(τ) = (v1(τ), . . . , vk(τ))′ ;∑ (τ)−1

is the generalized inverse ∑̂(τ), where ∑̂(τ) is a consistent estimator of ∑(τ), the variance-
covariance matrix of v(τ). The matrix ∑(τ) involves variances of r̂∗

j (τ) and r̂(τ) and co-
variances between r̂∗

j (τ) and r̂∗
j′(τ) for j ̸= j′ = 1, 2, . . . , J and that between r̂∗

j (τ) and r̂(τ).
The bootstrap procedure is used to find the estimate of the variance-covariance matrix, since
the expression for ∑(τ) is complex. To find the asymptotic distribution of Z(τ) given in
Equation(7), consider the quantity

vj(t) =
� t

0
w(u)

r̂∗
j (u) − r̂∗(u)

J

 du for all j = 1, 2, . . . , J

which can be written as

vj(t) =
� t

0
w(u)

[
r̂∗

j (u) − rj(u)
]

d(u) +
� t

0
w(u)

[
rj(u) − r(u)

J

]
du

+
� t

0
w(u)

r(u)
J

− r̂∗(u)
J

 du, j = 1, 2, . . . J

Now under H0, rj(t) = r(t)/J for all t, we get

vj(t) =
� t

0
w(u)

[
r̂∗

j (u) − rj(u)
]

du +
� t

0
w(u)

r(u)
J

− r̂∗(u)
J

 du, j = 1, 2, . . . , J

Now from the asymptotic properties of the kernel estimators of cause specific rate
functions discussed in Sankaran et al. (2020) it follows that, under H0 for any τ > 0, the
limiting distribution of v(τ) = (v1(τ), . . . , vJ(τ))′ is a J− variate normal with mean zero
vector and variance-covariance matrix ∑(τ), where τ is the largest monitoring time in the
study. Accordingly, under the regularity conditions stated in Section 2.1, the quadratic form
Z(τ) follows a χ2 distribution with (J−1) degrees of freedom. We reject H0, if Z(t) ≥ χ2

α,(J−1)
where χ2

α,(J−1) is the ordinate value of chi-square distribution with (J −1) degrees of freedom
at α level.

3. Simulation studies

We conduct simulation studies to evaluate the performance of the proposed test statis-
tic in finite samples. The situation with two modes of recurrence is considered here. We
generate panel count data of the form {mi, ti,p, n1

i,p, n2
i,p} for p = 1, 2, ..., mi and i = 1, 2, ..., n

to carry out simulation. The number of observation times mi for each individual is generated
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Table 1: Empirical Type I error and power of the test in percentage for
the weight functions w(.) = 1, w(.) = n and w(.) = ̂r∗(t)

n n

( θ1, θ2, θ3) α 100 200 500 (θ1, θ2, θ3 ) α 100 200 500
w(t) = 1

(1,1,1) 5 5.8 5.4 5.1 (1,1,2) 5 5.6 5.2 4.9
1 2 1.7 1.3 1 1.7 1.4 1.1

(1,2,1) 5 65.8 71.4 79.5 (1,2,2) 5 66.8 74.8 80.7
1 63.7 67.2 73.1 1 65.2 73.1 75.2

(1,3,1) 5 74.5 81.9 86.4 (1,3,2) 5 81.5 87.7 92.4
1 73.0 78.6 83.1 1 79.4 85.6 91.6

(1,4,1) 5 90.3 92.1 97.2 (1,4,2) 5 96.5 98.2 99.9
1 87.4 91.8 94.5 1 96.8 98.2 99.1

(1,5,1) 5 98.9 100 100 (1,5,2) 5 100 100 100
1 98.4 99.7 100 1 99.8 100 100

w(t) = n

(1,1,1) 5 4.5 4.7 5.2 (1,1,2) 5 4.4 4.8 5.1
1 2 1.7 1.3 1 1.4 1.3 0.9

(1,2,1) 5 67.1 73.2 78.4 (1,2,2) 5 70.4 79.5 84.7
1 66.7 69.2 74.1 1 68.1 74 79

(1,3,1) 5 79.6 83.9 86.4 (1,3,2) 5 85.2 89.3 94.7
1 73.0 78.6 83.1 1 80.5 87.2 93.7

(1,4,1) 5 94.3 98.1 99.9 (1,4,2) 5 99.9 100 100
1 87.4 96.8 97.2 1 99.8 99.9 100

(1,5,1) 5 100 100 100 (1,5,2) 5 100 100 100
1 100 100 100 1 99.8 100 100

w(t) = r̂∗(t)
(1,1,1) 5 4.7 5.2 5 (1,1,2) 5 5.5 4.8 5.1

1 0.7 1.2 0.9 1 1.3 1.2 1
(1,2,1) 5 73.2 81.0 85.7 (1,2,2) 5 76.9 84.1 85.4

1 71.1 78.9 84.3 1 71.0 77.2 84.2
(1,3,1) 5 89.5 92.5 98.4 (1,3,2) 5 88.8 91.4 97.5

1 83.2 88.6 96.9 1 85.0 87.3 96.0
(1,4,1) 5 99.9 100 100 (1,4,2) 5 100 100 100

1 99.7 100 100 1 99.8 99.8 100
(1,5,1) 5 100 100 100 (1,5,2) 5 100 100 100

1 100 100 100 1 100 100 100
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from a discrete uniform distribution U(1, 10) for i = 1, 2, ..., n. Thus the maximum num-
ber of observations for each individual is restricted up to 10. Then we generate gap times
between each observation from uniform distribution U(0, 5). The discrete observation time
points ti,p for p = 1, 2, ..., mi and i = 1, 2, ..., n are generated using the above-mentioned time
gaps. A bivariate Poisson distribution with parameters (θ1, θ2, θ3) is employed to generate
recurrent processes n1

i,p and n2
i,p.

The joint mass function of the bivariate Poisson distribution with parameters (θ1, θ2, θ3)
is given by

f(x, y) = exp{−(θ1 + θ2 + θ3)}
θ1

x

x!
θ2

y

y!

min(x,y)∑
k=0

(
x

k

)(
y

k

)
k!
(

θ3

θ1θ2

)k

. (8)

The marginal distribution of X and Y is Poisson distribution with E(X) = θ1 + θ3, E(Y ) =
θ2 + θ3 and cov(X, Y ) = θ3 gives a measure of dependence between random variables X
and Y . Sankaran et al. (2020) used a similar procedure to generate panel count data with
multiple modes of recurrence.

In the above simulation framework, if we set θ1 = θ2 and assign a non-zero value
for θ3, it corresponds to a situation where the cause specific rate functions are identical.
Accordingly, the null hypothesis H0 will be true. When the difference between θ1 and θ2
increases, the difference between the two rate functions also increases which results in a
situation where the null hypothesis is false. Hence the parameter combination with θ1 = θ2
gives the type I error of the test and all other choices of parameter combinations give the
power of the proposed test. We carry out simulation studies for different combinations of
(θ1, θ2, θ3) to calculate the empirical type I error and power of the test. For this purpose,
observations of different sample sizes n = 100 or n = 200 or n = 500 are simulated and
the process is repeated 1000 times. We employ three different choices of weight functions
similar to Sreedevi and Sankaran (2021) which are (i) w(t) = 1, (ii) w(t) = n, the number
of individuals in the study and (iii) w(t) = r̂∗(t), the smoothed estimator of overall rate
function.

Table 1 gives the type I error and the power of the proposed test statistic in percentage
for significance level α = 0.05 and α = 0.01. From Table 1, we can see that type I error of
the test approaches the chosen significance level. The test is efficient in terms of power also.
Also, as the difference between θ1 and θ2 increases, the power of the test also increases.

4. Data analysis

The proposed inference procedures are illustrated using two real-life data sets in this
section.

4.1. Skin cancer chemo prevention trial data

We consider the data arising from the skin cancer chemo prevention trial given in Sun
and Zhao (2013) for demonstration. The study was conducted to test the effectiveness of
the DFMO (DIfluromethylornithire) drug in reducing new skin cancers in a population with
a history of non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma.
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The data consists of 290 patients with a history of non-melanoma skin cancers. The obser-
vation and follow-up times differ for each patient. The data has the counts of two types of
recurring events basal cell carcinoma and squamous cell carcinoma which we treat here as
two modes of recurrence (Sreedevi and Sankaran (2021)).

Table 2: Test statistic values of the proposed test
for different weight functions

Weight function Test statistic p -value
1 26.97 < .0005
n 31.92 < .0005
r̂∗(.) 37.74 < .0005

Figure 1: Kernel estimates of cause specific rate functions due to basal cell
carcinoma and squamous cell carcinoma for hn = 1.76

In the data set, the number of observations on an individual varies from 1 to 17
and the time of observation varies from 12 to 1766 days. The cause specific rate functions
due to basal cell carcinoma and squamous cell carcinoma are estimated using Equation (3).
Further, the proposed procedures are applied to evaluate the test statistic. Table 2 gives the
chi-square test statistic values of the proposed test for different weight functions. From the
value of the test statistic, it is clear that we reject the null hypothesis and conclude that
the rate functions due to basal cell carcinoma and squamous cell carcinoma are significantly
different.

The plots of the kernel estimators with bandwidth parameter value hn = 1.76 is given
in Figure 1. The bandwidth value hn = 1.76 is chosen, which minimizes the MSE of the
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estimates, r̂∗
j (t) for j = 1, 2.

From Figure 1, it can be noted that the recurrence rate of basal cell carcinoma is
greater than the recurrence rate of squamous cell carcinoma at all time points, which clearly
indicates the rejection of H0. Since the rate functions are not monotonic, the change points
of recurrence patterns can also be easily identified from the graph.

4.2. Automobile warranty claims data

We apply the proposed methods to the automobile warranty claims data studied in
Somboonsavatdee and Sen (2015). The data set comprises the recurrent failure history of a
fleet of automobiles. The outcome of interest is the repeated mileages at failure for multiple
vehicles of a certain model and make, obtained from the warranty claim database which also
includes the labour code associated with the failure. In the data, the source and specifics
are masked for de-identification purposes.

Table 3: Test statistic values of the proposed test
for different weight functions

Weight function Test statistic p -value
1 49.15 < .0005
n 68.96 < .0005
r̂∗(.) 79.55 < .0005

Figure 2: Kernel estimates of cause specific rate functions due to three modes
of recurrences for hn = 1.67
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The database consists of the recurrent failure history of 456 vehicles subjected to
type I censoring at 3000 miles. Fourteen different labor codes of the warranty claims of each
vehicle were recorded with mileage at filing. Due to the absence of a specific description
of the component associated with labor code, the grouping was determined on the basis of
the rate of failures. The fourteen individual labor codes were combined into three broad
groups of failure modes FM1, FM2 and FM3, where FM1 comprises labor codes with shape
parameters ranging between 0.2 and 0.36, FM2 covers labor codes with shape parameter
estimates between 0.4 and 0.55, whereas FM3 combines the remaining codes that have the
slowest rate of growth with shape parameter estimates varying between 0.7 and 0.93. Table
IV in Somboonsavatdee and Sen (2015) presents the data on 172 vehicles that have at least
one documented record of warranty claim for repair.

We observed the recurrent failure history data at 1000, 2000 and 3000 mileages at
which the number of failures due to each mode is noted, thereby making the recurrent event
data as a panel count data with multiple modes of recurrence. The complete data set used
in our study is given in Table 4 in Appendix.

Table 3 gives the chi-square test statistic values of the proposed test for different
weight functions for automobile warranty data. For all choices of weight functions, we reject
the null hypothesis and conclude that the rate functions due to the three modes of failure are
significantly different. The plots of the kernel estimators with bandwidth parameter value
hn = 1.67 is given in Figure 2. The bandwidth value hn = 1.67 is chosen as it minimizes
the MSE of the estimates. From Figure 2, it can be noted that the recurrence rates of each
mode of recurrence (FM1, FM2 and FM3) are distinct at all observed miles, which clearly
indicates the rejection of H0.

5. Conclusion

In the present paper, we developed non parametric inference procedures for the anal-
ysis of panel count data with multiple modes of recurrence based on cause specific rate
functions. We proposed a test statistic to test the equality of cause specific rate functions.
A simulation study was carried out by generating the data from a bivariate Poisson process
to assess the performance of the proposed test in finite samples. Two real-life data sets, one
from skin cancer chemo prevention trial (Sun and Zhao (2013)) and the other from automo-
bile warranty claims (Somboonsavatdee and Sen (2015)) were analysed to demonstrate the
practical utility of the procedures.

The nature of dependence between time to failure and cause of failure is important for
modelling competing risks data. Even though the problem is studied under right censoring,
it is unexplored for panel count data. We can use either cause specific mean functions or
cause specific rate functions to tackle this problem. Works in this direction will be done
separately. Regression analysis of panel count data with multiple modes of recurrence using
rate functions is also under investigation.
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ANNEXURE
Table 4: Automobile warranty data

ID MIL FM1 FM2 FM3 TOTAL ID MIL FM1 FM2 FM3 TOTAL
1 1000 1 1 0 2 45 1000 2 0 0 2
1 3000 1 0 0 1 46 1000 0 1 0 1
2 1000 0 0 2 2 47 1000 1 0 0 1
3 3000 0 0 1 1 47 3000 0 1 0 1
4 2000 0 0 1 1 48 1000 1 1 0 2
5 1000 1 1 1 3 49 1000 0 1 0 1
5 2000 1 0 0 1 50 1000 0 0 1 1
6 1000 0 0 1 1 51 3000 0 0 1 1
7 1000 1 0 0 1 52 1000 0 0 1 1
8 1000 1 0 0 1 53 2000 1 0 0 1
9 1000 0 1 0 1 54 1000 0 1 0 1

10 2000 0 0 2 2 55 1000 1 0 0 1
11 1000 1 0 0 1 56 1000 0 1 0 1
12 1000 1 0 0 1 57 1000 0 2 0 2
13 3000 0 0 1 1 57 2000 1 0 1 2
14 1000 0 1 1 2 58 1000 0 0 1 1
15 1000 0 1 0 1 59 1000 0 1 0 1
15 2000 0 1 0 1 60 1000 0 1 0 1
16 2000 0 1 1 2 61 2000 1 0 0 1
16 3000 0 1 0 1 62 1000 0 1 0 1
17 1000 1 2 1 4 63 2000 0 0 1 1
17 2000 1 0 0 1 64 1000 0 0 1 1
18 3000 0 0 1 1 65 1000 1 0 0 1
19 1000 0 1 0 1 66 1000 2 1 0 3
20 1000 1 0 0 1 67 1000 1 0 0 1
21 1000 0 1 0 1 67 3000 0 0 1 1
22 3000 0 1 0 1 68 1000 0 1 0 1
23 1000 1 0 0 1 69 2000 0 1 0 1
24 3000 1 0 0 1 70 1000 1 0 0 1
25 1000 0 1 0 1 71 1000 1 0 0 1
26 1000 1 0 1 2 72 2000 0 0 2 2
26 2000 1 2 0 3 73 1000 1 0 0 1
26 3000 0 2 0 2 73 2000 0 0 1 1
27 3000 0 1 0 1 74 1000 1 0 1 2
28 2000 0 0 1 1 74 2000 0 0 1 1
29 1000 1 0 1 2 75 1000 1 0 0 1
30 3000 0 2 0 2 76 1000 0 0 1 1
31 2000 0 1 0 1 77 1000 0 1 1 2
32 2000 0 1 0 1 78 1000 0 1 0 1
33 3000 0 0 1 1 79 3000 0 0 1 1
34 1000 0 1 0 1 80 1000 1 0 0 1
35 1000 0 0 1 1 81 1000 0 0 1 1
35 2000 1 0 0 1 82 1000 1 0 0 1
36 1000 0 1 0 1 83 1000 0 0 1 1
37 1000 1 0 0 1 84 2000 0 0 1 1
37 2000 0 0 1 1 85 1000 0 2 0 2
38 1000 1 1 0 2 86 1000 0 0 1 1
39 1000 0 2 0 2 86 2000 0 2 0 2
40 1000 0 2 0 2 87 1000 1 0 0 1
41 3000 0 0 1 1 88 2000 0 0 1 1
42 1000 0 0 1 1 88 3000 0 0 1 1
43 1000 0 0 1 1 89 3000 1 0 0 1
44 3000 0 1 0 1 90 1000 0 0 2 2
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ID MIL FM1 FM2 FM3 TOTAL ID MIL FM1 FM2 FM3 TOTAL
90 3000 0 0 1 1 135 1000 0 0 1 1
91 1000 0 1 0 1 136 1000 0 0 1 1
92 1000 0 1 0 1 137 1000 0 0 1 1
93 1000 0 0 1 1 138 1000 0 0 1 1
94 1000 1 1 0 2 138 3000 1 0 0 1
95 1000 1 0 0 1 139 1000 1 0 0 1
96 2000 0 0 1 1 140 1000 1 0 0 1
97 2000 0 0 1 1 141 3000 0 1 0 1
98 1000 0 1 0 1 142 1000 0 1 1 2
98 2000 1 1 1 3 143 1000 1 0 0 1
99 1000 1 0 0 1 143 3000 0 0 1 1

100 1000 1 0 1 2 144 1000 0 1 0 1
101 1000 0 0 1 1 144 2000 0 0 2 2
102 1000 1 0 0 1 145 1000 0 1 0 1
103 1000 1 0 0 1 146 1000 1 0 1 2
104 2000 0 0 1 1 146 3000 0 0 1 1
105 1000 1 0 0 1 147 1000 0 1 0 1
106 1000 0 0 2 2 148 3000 0 0 1 1
107 3000 0 1 0 1 149 1000 1 0 0 1
108 1000 1 0 0 1 150 1000 1 0 0 1
108 3000 0 0 1 1 151 1000 0 0 1 1
109 2000 0 0 1 1 152 1000 1 0 0 1
109 3000 0 1 0 1 153 1000 0 1 0 1
110 1000 1 0 1 2 154 3000 1 0 0 1
111 1000 1 0 0 1 155 1000 0 1 0 1
112 1000 0 1 0 1 156 3000 0 1 0 1
113 1000 0 0 1 1 157 2000 0 0 1 1
114 1000 1 0 0 1 158 3000 0 0 1 1
115 1000 0 1 1 2 159 1000 0 0 1 1
116 1000 1 0 0 1 160 3000 0 0 1 1
117 2000 0 1 1 2 161 1000 0 1 2 3
118 2000 0 0 1 1 161 2000 0 1 2 3
119 2000 1 0 0 1 161 3000 1 0 2 3
120 1000 1 0 1 2 162 2000 1 0 0 1
121 1000 0 0 1 1 163 1000 0 1 0 1
121 3000 0 0 1 1 164 3000 0 0 1 1
122 1000 1 0 1 2 165 1000 0 2 2 4
123 2000 0 1 0 1 165 2000 0 1 1 2
124 1000 1 0 0 1 165 3000 0 1 1 2
125 2000 0 0 1 1 166 1000 1 0 1 2
126 1000 2 0 1 3 167 1000 0 1 0 1
126 3000 0 0 2 2 167 3000 0 1 0 1
127 2000 0 0 1 1 168 1000 0 1 0 1
128 2000 0 1 0 1 169 1000 1 0 0 1
129 1000 2 3 1 6 169 2000 0 0 4 4
129 2000 0 0 1 1 169 3000 0 1 0 1
130 1000 0 1 0 1 170 1000 0 1 0 1
131 1000 1 0 0 1 170 2000 0 0 1 1
132 3000 0 0 1 1 171 1000 0 0 1 1
133 2000 1 0 1 2 172 2000 0 0 1 1
134 2000 0 1 1 2
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Abstract
Accurate prediction of agricultural prices is crucial due to their complex and nonlin-

ear nature. Due to the perishable nature of TOP (Tomato, Onion and Potato) vegetable
produce, price fluctuates based on supply and demand. It is necessary to forecast harvest
period TOP prices, so growers can make informed production decisions and also farmers
can plan their market situation to enhance their profits. This research introduces novel
Deep Learning (DL) models based on hidden states to enhance the precision of TOP price
forecasting. The Hidden Markov Model (HMM) is employed to identify hidden states and
uncover underlying patterns in TOP price data. The hidden states identified by HMM serve
as a feature extraction technique and are utilized in four DL models, viz., Multilayer Percep-
tron (MLP), Recurrent Neural Networks (RNN), Gated Recurrent Units (GRUs) and Long
Short-Term Memory (LSTM). The integration of HMM with DL aims to improve forecasting
accuracy compared to HMM and traditional DL models. The models are evaluated using
a real dataset from Azadpur Mandi in Delhi, providing practical insights into forecasting
accuracy. The performance of the models is evaluated using standard metrics such as Root
Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute
Error (MAE). Additionally, the Diebold-Mariano (DM) test has been conducted to compare
the accuracy of the proposed approach with baseline DL models. The findings demonstrate
that the hybrid approach of Hidden Markov (HM) combined with DL models yields superior
forecasting performance compared to existing models.
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1. Introduction

Forecasting of prices for any commodity or product needs hardly be emphasized. Ef-
fective planning and strategic decision-making are facilitated by precise and timely price
information, coupled with accurate forecasting. However, analyzing agricultural commodity
prices presents unique challenges when compared to non-farm goods and services due to their
vulnerability owing to unforeseen events like droughts, floods, disease and pest outbreaks,
as well as factors such as seasonality, demand fluctuations, climate variability, market im-
perfections, globalization and speculative trading, see Yin et al. (2020) and Manogna and
Mishra (2021). Moreover, the nonlinear and nonstationary characteristics of price data fur-
ther complicate the process of price forecasting, see Xiong (2018).

Vegetable-growing farmers in India are not in a comfortable situation despite the
significant increase in the production of tomatoes, onions, and potatoes, collectively known
as TOP vegetables. While India holds the position of the world’s second-largest producer of
overall vegetables, with a total production of 137.99 million metric tonnes (MMT) com-
pared to China’s 600.01 MMT, recent statistics show that Tomato, Onion and Potato
production reached 21.18, 26.64 and 56.17 MMT respectively in 2021–22 (source; https:
//www.statista.com). Unfortunately, the farmers are currently facing various challenges
due to overproduction which resulted in distress sales, crop burning, and the unfortunate
practice of discarding their produce on the roads, especially during periods of bearish market
conditions Guresen et al. (2011)Consequently, it becomes essential to address these issues
and stabilize prices by providing storage facilities for farmers during bearish times, offering
guidance on selling vegetables during inflationary periods, and imparting knowledge on the
supply value chain for increasing the value of vegetables for the betterment of the farmers
income. In this study, a real dataset from Azadpur mandi in Delhi has been utilized to shed
light on these aspects.

This work has been undertaken on the premise that hybridizing Hidden Markov Mod-
els (HMMs) with DL models may offer many advantages over classical DL models. HMMs
excel at modeling sequential data, capturing temporal dependencies and leveraging limited
labelled data while providing interpretability and handling noisy or incomplete data. In-
corporating HMM-based hidden states in DL models provides intermediate representations
within these states, facilitating training by providing forecasts within each state and at the
same time proceeding with forecasting successively by using the information from previous
states. Thus, this explicit modeling of sequential dependencies by HMMs offers a structured
framework for DL model training which enhances the predictive capabilities. In addition,
while DL approaches offer advantages such as manual feature extraction and resource avail-
ability, their effectiveness heavily relies on large datasets. This distinguishes DL techniques
from traditional machine learning methods. However, there is still uncertainty regarding
the specialization and generalization capabilities of DL models compared to conventional
methodologies as the former are computationally intensive, demanding speed and high-end
computing resources. DL models are often regarded as black-box models, lacking inter-
pretability and transparency in their decision-making processes. Furthermore, DL models
are prone to overfitting, especially when dealing with noisy datasets Singh et al. (2023) Hence
DL models can be challenging to train and fine-tune, requiring expertise in hyperparameter
optimization and architectural design. To address this, our proposed approach combines
the strengths of both methodologies by combining an HMM with DL to analyze underlying

https://www.statista.com
https://www.statista.com
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patterns in the data series with the aim of overcoming challenges such as overfitting and
circumventing local minima traps. By combining the strengths of HMMs and DL models,
improved data efficiency, better sequential modeling, interpretability and robustness can be
achieved.

The rest of the paper is structured as follows. In Section 2, a review of the literature
has been studied. In Section 3, related work along with the background knowledge is dis-
cussed. In Section 4, an empirical study has been conducted using a real dataset focusing on
the TOP price series with results and discussion. Finally, Section 5 concludes the paper by
summarizing the findings with suitable remarks and discussing future prospects following a
list of references.

2. Review of literature

Extensive research has focused on improving price forecasting through the utilization
of diverse and advanced time series models, see Wang et al. (2020). These modeling ap-
proaches, designed to enhance price forecasting, can be broadly categorized into two main
groups: statistical models and artificial intelligence (AI) based models, see Yu et al. (2017).

The ARIMA model, introduced by Box and Jenkins in 1970, is widely used in time
series analysis, particularly in forecasting financial data, see [Kocak (2017); Adebiyi et al.
(2014); Ariyo et al. (2014); Jarque and Bera (2011); Avinash et al. (2022)]. However, its capa-
bilities are limited when it comes to modeling nonlinear data. To overcome this, alternative
nonlinear time series models have emerged, including regime-switching models like SETAR
model (Mehdizadeh et al. (2019)),STAR model [Athanasopoulos and De Silva (2012)] and
GARCH model [Lin (2018)].These models capture nonlinearity but often require specific
relationships in the data and lack generalization ability, as highlighted by Weron (2014).

To address the challenges posed by complex dependencies and nonlinear relation-
ships in time series data, HMMs were developed on the basis of pioneering work by Baum
and colleagues [Baum and Petrie (1966); Baum and Sell (1968); Baum (1972)]and its first
application in the formulation of a statistical method of representing speech was made by
Rabiner (1989). HMMs assume that the observed data is generated by a Markov process
with hidden states, enabling them to capture nonlinearity and temporal dependencies in the
data. By modeling these hidden states, HMMs can effectively uncover latent variables and
extract essential features such as trend, seasonality, and volatility. However, it is important
to note that the applicability of HMMs may vary depending on the characteristics of the
time series data. Chaotic patterns with long-range dependencies may not align well with the
assumptions of HMMs [Awad et al. (2015); Abdollahi and Ebrahimi (2020)]. Additionally,
training an HMM model requires a substantial amount of data, which can be challenging
in the context of price forecasting due to noisy data and external factors that may impact
the model’s performance and also they assume Markovian behavior, which may not hold in
all scenarios, limiting their ability to capture complex dependencies. HMMs may struggle
to model nonlinear relationships and can be sensitive to initial parameter values, affect-
ing their performance. Determining the appropriate number of hidden states is challenging
and HMMs lack transparency and interpretability. Additionally, handling continuous or
high-dimensional data can be difficult for HMMs, requiring discretization or dimensionality
reduction.
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To overcome these challenges, Machine Learning (ML) models have gained promi-
nence in financial time series forecasting due to their ability to learn from data, inter-
pretability and lack of assumptions explained by Makridakis et al. (2018).Various ML mod-
els, including Artificial Neural Networks (ANNs)/ Multilayer Perceptron (MLP) [Haykin
(2009)],Support Vector Regression (SVR) [Henrique et al. (2018)], Random Forest (RF) [Nti
et al. (2019)],eXtreme Gradient Boosting (XGBoost) [Basak et al. (2019)] and ensemble
models such as stacking [Jiang et al. (2020)]and bagging [Wang et al. (2009)] have been uti-
lized in financial time series forecasting. ML models, being data-driven and adaptable, offer
advantages over traditional model-based approaches. However, ANN has certain limitations
such as slow convergence to the optimal solution and the risk of overfitting [Wang et al.
(2016)]. In the absence of domain knowledge, DL excels at feature extraction, outperform-
ing other methods, except for a few feature engineering techniques like the requirement of a
substantial amount of labelled training data to achieve optimal performance.

Deep architectures, achieved by adding additional layers, leverage multiple levels of
nonlinear processes by increasing model complexity. Deep Neural Networks (DNNs) with
more layers can effectively handle complex functions using fewer parameters. These models
include the Recurrent Neural Network (RNN), Gated Recurrent Units (GRUs) [Althelaya
et al. (2018)] and Long Short-Term Memory (LSTM) [Nelson et al. (2017); Jaiswal et al.
(2022); Zaheer et al. (2023); Heidarpanah et al. (2023); Latif et al. (2023)]

In recent research, several notable studies have explored the integration of Hidden
Markov Models (HMMs) with various ML/ DL techniques to enhance the accuracy of time
series forecasting across different domains. For instance, Chen et al. (2019) proposed a
novel approach combining a Generative Adversarial Network (GAN) with an Iteratively Re-
fined HMM for completely unsupervised speech recognition. Hassan (2009)combined hidden
Markov and fuzzy model for stock market forecasting. Similarly, Hashish et al. (2019) devel-
oped a hybrid model that leveraged HMMs and optimized LSTM networks to predict Bitcoin
prices. Yao and Cao (2020)introduced a neural network-enhanced HMM based structural
time series model tailored explicitly for tourism demand forecasting. Building upon these
advancements, Peng et al. (2021) devised an HMM-LSTM model for proactive traffic predic-
tion in 6G wireless networks. Additionally, Khan et al. (2022) investigated the potential of
an HM-BiLSTM-based system for event detection and classification, focusing specifically on
food intake recognition. These studies collectively highlight the effectiveness of integrating
HMMs with deep learning techniques to tackle complex time series forecasting challenges in
diverse domains.

This highlights the need for further research in the area of the agriculture domain. In
this study, an attempt has been made on the TOP price series from Azadpur Mandi (Delhi)
by using HMM to extract relevant features that can be fed separately to MLP, RNN, GRU,
and LSTM to improve the accuracy of forecasting. This approach can be beneficial when
the underlying system is complex and difficult to model using traditional methods.

3. Material and methods

In this study, five baseline models viz., HMM, MLP, RNN, GRU and LSTM models
and the proposed HMM hybridized with the DL models viz. HM-MLP, HM-RNN, HM-GRU
and HM-LSTM have been fitted. A brief description of the baseline models considered are
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given subsequently followed by the proposed methodology of the hybrid models.

3.1. Hidden markov model (HMM)

HMMs are probabilistic models that generate a series of observations (Y ) based on
a series of underlying hidden states (S). HMMs are commonly employed to model time-
dependent data and have found practical use in diverse fields including speech recognition,
molecular biology and computer vision, see Ghahramani (2001).

HMMs are built upon two fundamental assumptions. Firstly, HMM assumes that an
observation at a particular time t, denoted as Yt, is generated by an underlying process where
the corresponding state, St, remains hidden from the observer. Secondly, it assumes that
this hidden state St follows a first-order Markov property, meaning that the current state St,
given the previous state St−1, is independent of all states prior to t−1. Likewise, the output
of an HMM also adheres to the Markov property. Consequently, the joint distribution of a
sequence of hidden states and observations can be factorized as presented by equation (1).

P (S1:T , Y1:T ) = P (S1)P (Y1|S1)
T∏

t=2
P (St|St−1)P (Yt|St) (1)

where P (S1:T , Y1:T ) represents the joint distribution of the sequence of hidden states (S1:T )
and observations (Y1:T ). P (S1) is the initial probability distribution of the first hidden state
S1. P (Y1|S1) is the probability of observing Y1 given the state S1. P (St|St−1) is the transition
probability from state St−1 to state St. P (Yt|St) is the probability of observing Yt given the
state St. Overall, the equation describes how the joint distribution of hidden states and
observations in an HMM can be factorized based on the initial state probability, observation
probabilities given the states, and transition probabilities between states.

HMM is defined by three key components: A, B, and π, while implicitly determined
by the number of observations (N) and the number of hidden states (M). Where A rep-
resents the state transition probability M × M matrix, B represents the probability of the
observations M × N matrix, and π is the initial state distribution. Thus, HMM can be
defined as λ = (A, B, π).

Hidden Markov Models (HMMs) are utilized to address three fundamental problems,
which can be summarized as follows:

1. Problem 1: Given the model λ = (A, B, π), along with a sequence of observations Y ,
determine the likelihood of the observed data with respect to the given model through
the forward-backward or Expectation-Maximization algorithm.

2. Problem 2: Given the model λ = (A, B, π), along with a sequence of observations
Y , determine the optimal sequence of hidden states that underlie the Markov process
through the Viterbi algorithm.

3. Problem 3: Given a sequence of observations Y , estimate the parameters of the model,
namely A, B, and π, through the Baum-Welch algorithm.

In this study, our approach involves constructing an HMM based on a given sequence
of observations. Subsequently, by calculating the likelihood of the data and determining
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the optimal sequence of hidden states through the Viterbi algorithm, following the standard
methodology, which can be found in, Giudici and Abu Hashish (2020).

3.2. Multilayer perceptron (MLP)

ANN is a mathematical model inspired by the human brain’s information processing
and analysis capabilities, used to solve a wide range of nonlinear problems. ANN offers
advantages such as parallel processing, learning from experience (dataset) and the ability to
approximate various functions with high accuracy. It finds applications in forecasting and
classification tasks, with the Multilayer Perceptron (MLP) being the most well-known ANN
model. MLP is particularly popular for time series forecasting [Aizenberg et al. (2016)].Typ-
ically, an MLP consists of an input layer, hidden layer(s), and an output layer, with neurons
connected by weighted links. The mathematical equations describing the neural network are
represented by equation (2).

ŷ =
s0∑

j=0
Wjk · ξ

(
sh∑

i=0
Wij · x

)
(2)

ξ(α, x) =
{

α · (ex − 1), if x < 0
x, otherwise

(3)

where x and ŷ are the input and output of the network, respectively. s0 and sh are the
sizes of the output layer and hidden layers. Wij are the weights of the connections between
the input and hidden layers, and Wjk are the weights of the connections between the hidden
and output layers. ξ is the Exponential Linear Unit (ELU) presented in equation (3) in its
general form when α = 1. It becomes the Rectified Linear Unit (ReLU) when α = 0.

3.3. Recurrent neural networks (RNNs)

RNNs are a type of neural network that is well-suited for modeling time series data.
RNNs use a series of interconnected neurons to model the functional relationship between
input features in the recent past and a target variable in the future. By repeatedly learning
from a training set of historical data, RNNs can capture the transitions of an internal (hidden)
state over time and make more accurate predictions about future events as shown in Figure
(1).

However, RNNs have a major limitation: they can suffer from the gradient vanishing
problem, where the gradient becomes too small over time and the network is unable to retain
information from long-term inputs. This can limit the accuracy of RNNs, particularly when
modeling time series data with long-term dependencies. To overcome this problem, other
variants of RNNs were developed, including the LSTM and the GRU network.

3.4. Long short term memory (LSTM)

Hochreiter and Schmidhuber (1997)recognized that traditional RNNs were unable to
retain important historical information for extended periods of time. To address this issue,
they developed the LSTM model, which introduced gate mechanisms to the RNN framework.
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Figure 1: The architecture of RNN model

LSTM is an advanced form of RNN developed specifically for handling sequential data like
texts and sentences [Alom et al. (2019)]. While a basic RNN is designed to retain and transfer
information from one step to the next, it encounters the issue of a vanishing gradient, where
long-term information cannot be effectively utilized. Consequently, significant amounts of
previous information cannot be stored adequately, resulting in less accurate forecasting. The
mathematical formulation of LSTM is represented by equations 4-9

ft = σ(Wfxt + Ufht−1 + bf ) (4)
it = σ(Wixt + Uiht−1 + bi) (5)
c̃t = γ(Wcxt + Ucht−1 + bc) (6)
ct = ft × ct−1 + it × c̃t (7)
ot = σ(W0xt + U0ht−1 + bo) (8)
ht = ot × γ(ct) (9)

Figure 2: The architecture of LSTM cell
The LSTM mechanism is centred around a cell state, denoted as ct, which serves

as a storage unit for information. This information is regulated through three gates: the
forget gate (ft), the input gate (it), and the output gate (ot). These gates determine whether
incoming sequential data should be retained to preserve relevant information for subsequent
stages. The forget gate, as indicated by equation 4,decides whether information should be
added or omitted. If ft is close to one (or zero), the information from the input and hidden
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state will be preserved (or removed) accordingly. The input gate computes an update to
the cell state, evaluating the importance of the input for the subsequent cell. Additionally,
the output gate generates the output for the hidden states based on equation 9.Notably,
the activation functions used in LSTM are the hyperbolic tangent function (tanh) and the
sigmoid function (σ), employed respectively as the activation function as shown in Figure 2.

3.5. Gated recurrent units (GRUs)

GRUs share similarities with LSTM units as they possess a comparable design and
can yield similar outcomes in certain cases. However, GRUs differ from LSTM units with the
absence of an output gate. Instead, they employ an update gate and a reset gate to control
the flow of information into and out of memory as shown in Figure 4. This gating mechanism
allows the network to effectively retain information from long-term inputs, enabling more
precise predictions in detail explanations by equations 10-13. GRUs offer a potent solution
for addressing the vanishing gradient problem in RNNs and find extensive use in various
applications including polyphonic music modeling, speech signal processing, handwriting
recognition and time series data forecasting. They are particularly beneficial when working
with smaller datasets compare to LSTM.

Figure 3: The architecture of GRU cell

The process can be described as:

Zt = σ(xtw
z + ht−1U

z + bz) (10)
rt = σ(xtw

r + ht−1U
r + br) (11)

h̃t = tanh(rt · ht−1U + xtW + b) (12)
ht = (1 − Zt) · h̃t + Zt · ht−1 (13)

where wz, wr, and W denote the weight matrices for the corresponding connected input
vectors. U z, U r, and U represent the weight matrices of the previous time step and bz, br,
and b are biases. The σ denotes the sigmoid function, rt denotes the reset gate, zt denotes
the update gate and h̃t denotes the candidate hidden layer.
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3.6. Proposed hidden markov based deep learning modeling

The entire analysis was conducted using Python software, employing the ”Gaus-
sianHMM” and ”TensorFlow” libraries (see Appendix). These provided a user-friendly in-
terface for constructing and training DL models. The experiments were conducted on a
system equipped with an AMD Ryzen 7 5700U processor and 8 GB of RAM, which proved
sufficient for training and evaluating each DL model. The processing time for each model
ranged from 25 to 30 minutes while employing the grid search validation technique.

The proposed methodology is represented schematically in Figure 4. To start with,
pre-processing is done on the time series data. For this, normalization is employed to rescale
the values of the series between 0 and 1 while preserving their shape for the modal price
series. The normalization equation 14 used as follows:

Yt = Xt − Xmin

Xmax − Xmin
(14)

where Xmin, Xmax, and Xt are the minimum, maximum and observation at time t, re-
spectively and Yt is the rescaled value. In Python, the ‘Min-Max Scaler’ function of the
“Scikit-learn” package is used for this purpose. Thereafter, the data is split into, say, 90%
training and 10% testing data subsets. The training dataset is then used for training classical
Hidden Markov Models (HMM) and baseline Deep Learning (DL) models, such as Multi-
layer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU),
and Long Short-Term Memory (LSTM), with optimized hyperparameters obtained through
grid search. In addition, the training data is used to fit an HMM and extract hidden states
using the Viterbi algorithm, employing grid search cross-validation. These hidden states are
then utilized to train the proposed hybrid models, namely HM-MLP, HM-GRU, HM-RNN,
and HM-LSTM. Finally, the performance of different models on the time series is evaluated
using metrics such as Root Mean Squared Error (RMSE), Mean Absolute Percentage Error
(MAPE) and Mean Absolute Error (MAE). Additionally, the Diebold-Mariano (DM) test is
conducted to compare the accuracy of the proposed approaches vis-à-vis baseline DL models
and also among themselves.

4. Results and discussion

In the present study, the weekly TOP (Tomato, Onion, and Potato) prices (in Rs.
/Quintal) from 01 Jan 2006 to 16 June 2023 (obtained from the Agmarknet; https://
agmarknet.gov.in) of Azadpur market, Delhi were used, whose time plots are depicted
in Figure (5, 6 and 7) for TOP commodity price series. This market situated within the
Indo-Gangetic plains is characterized by the latitude and longitude coordinates of approxi-
mately 28.7078° N and 77.1676° E. This market holds immense significance as one of Asia’s
largest wholesale fruit and vegetable markets, serving as a crucial link in the agricultural
supply chain. Commodities from various regions across the Indo-Gangetic plains converge
at Azadpur Mandi, further highlighting its importance as a major hub for agricultural trade.
Its strategic location, extensive infrastructure, and role as a price benchmark contribute
significantly to its economic importance.

The summary statistics of the datasets are presented in Table 1. Additionally, the
Jarque-Bera test [Jarque and Bera (1987)] and Shapiro-Wilk’s test [Shapiro and Wilk (1965)]

https://agmarknet.gov.in
https://agmarknet.gov.in
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Figure 4: Proposed Hidden Markov (HM) based Deep Learning (DL) modeling

were used to assess the normality of the TOP price series. The tests were significant indicat-
ing that all the series are non-normal. Furthermore, the datasets displayed positive skewness
but mesokurtic for tomato and potato, while exhibiting leptokurtosis in the case of the Onion
price series.
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In addition, tests were conducted for the presence of stationarity. The results of
the tests (Table 2) reveal weak stationarity under the Augmented Dickey-Fuller (ADF) and
Phillips Perron (PP) tests. Subsequently, the nonlinearity of the data series was assessed
using the Brock- Dechert-Scheinkman (BDS) test (Table 3). The results highlighted that the
weekly TOP price series of all three commodities considered exhibited nonlinear patterns.

Figure 5: Time plot of weekly Tomato price of Azadpur market

Figure 6: Time plot of weekly Onion price of Azadpur market

The TOP price series comprised 911 observations, which were split into training (90%;
822 data points) and subsequent data points as testing (10%; 89 data points) sets. There
were a few missing values in the data series; hence, imputation was done by taking the
average of preceding and succeeding observations in the weekly data series. Initially, HMMs
were fitted by employing the Viterbi algorithm with grid search cross-validation (2-12 hidden
states) to determine the optimal number of hidden states. Results revealed that six hidden
states were found for Tomato, and eight hidden states for both Onion and Potato price series,
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Figure 7: Time plot of weekly Potato price of Azadpur market

Table 1: Descriptive statistics and normality tests of the weekly data series of
TOP commodities

Descriptive Statistics Tomato price series Onion price series Potato price series
Mean (Rs. /Quintal) 1244.95 1236.51 916.14

Median (Rs. /Quintal) 1035.06 1031.00 775.92
Maximum (Rs. /Quintal) 4049.75 4638.50 2946.33
Minimum (Rs. /Quintal) 150.08 329.33 207.81
Std. Dev. (Rs. /Quintal) 733.60 799.19 480.28

CV (%) 58.89 64.59 52.39
Skewness 1.19 1.89 1.52
Kurtosis 0.99 3.61 2.91

Jarque-Bera test statistic 253.12** 1039.41** 673.43**

Shapiro-Wilk test statistic 0.89** 0.79** 0.87**

Table 2: Stationarity test of the weekly price series for TOP commodities

Commodities ADF test PP test ConclusionTest Statistic p value Test Statistic p value
Tomato 5.48 < 0.001 4.95 < 0.001 Stationary
Onion 4.56 < 0.001 4.57 < 0.001 Stationary
Potato 4.30 < 0.001 4.37 < 0.001 Stationary

enabling the capturing of complex dynamics and trends to enhance feature engineering in
subsequent DL models to be trained (as shown in Figures (8, 9 and 10).

Following the confirmation of stationarity, nonlinearity, feature extraction from HMM,
and normalization of the modal price data for TOP, Classical HMM was fitted based on the
hidden states obtained by the Viterbi algorithm, and the forecasts were obtained for testing
data sets and are shown in Figures (11, 12 and 13). Thereafter, the DL models viz., MLP,
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Table 3: Nonlinearity BDS test results with different embedding dimensions for
TOP commodities at 0.5, 1, 1.5 and 2 σ respectively

Commodities Embedding dimension 2 Embedding dimension 3 ConclusionStatistics p value Statistics p value
Tomato 1442.11 <0.001 613663.83 <0.001 Nonlinearity

1249.30 <0.001 303035.76 <0.001
527.43 <0.001 70621.75 <0.001
486.41 <0.001 35310.50 <0.001

Onion 440.29 <0.001 43244.29 <0.001 Nonlinearity
453.90 <0.001 41327.66 <0.001
465.56 <0.001 39211.17 <0.001
479.76 <0.001 36843.34 <0.001

Potato 1248.17 <0.001 326417.51 <0.001 Nonlinearity
1008.86 <0.001 72434.55 <0.001
689.48 <0.001 22456.71 <0.001
568.79 <0.001 9869.33 <0.001

Table 4: Optimal hyperparameters for the various DL models

Model Batch Size No. of Epochs No. of HL No. of units / HL
T O P T O P T O P T O P

MLP 64 32 32 57 68 89 2 1 1 32,64 64 128
RNN 128 64 32 76 72 45 1 1 1 32 32 64
GRU 32 64 64 78 56 73 1 1 1 64 64 32

LSTM 64 32 32 87 52 85 1 1 1 128 128 64
HM-MLP 64 16 64 176 147 67 1 1 1 32 32 32
HM-RNN 32 64 32 168 128 112 1 1 1 32 32 8
HM-GRU 16 64 32 52 64 64 1 1 1 64 32 16

HM-LSTM 32 32 32 100 106 65 1 1 1 32 64 16

RNN, LSTM and GRU were also trained. The primary objective of this study is to assess the
performance of Hidden Markov hybridized DL (HM-DL) models in forecasting price series.

For training the DL and HM-DL models, hyperparameters play a crucial role as they
significantly impact the performance of forecast accuracy to overcome the local minima trap.
The batch size in DL models determines how many samples are processed before updating
the model’s weights. Larger batch sizes can provide more stable gradients but may require
more computational resources. The number of epochs specifies how many times the model
is trained on the entire dataset. Increasing the number of epochs can potentially improve
model performance, but it also increases the risk of overfitting. To mitigate overfitting, early
stopping criteria based on mean square error have been applied to select the best weights
during training. The number of input units in the model determines the number of variables
the model takes as inputs. Having a larger number of input units allows the model to capture
more complex relationships in the data but may increase computational costs. A range of
hyperparameter values were used in grid search cross-validation on DL models viz., MLP,
RNN, GRU, LSTM, and their hybrid HMM cum DL versions, i.e., HM-MLP, HM-RNN,
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Figure 8: Hidden states obtained from HMM on Tomato price series

Figure 9: Hidden states obtained from HMM on Onion price series

Figure 10: Hidden states obtained from HMM on Potato price series
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Figure 11: Predicted price by HMM on Tomato price series

Figure 12: Predicted price by HMM on Onion price series

HM-LSTM, and HM-GRU as follows: the number of lags - fixed as 24 weekly data points
for the TOP crop price series; batch size - 8, 16, 32, 64, 128, 256; the number of epochs - 200
with early stopping criteria; the number of hidden layers (HL) - 1, 2, 3; and the number of
hidden units - 8, 16, 32, 64, 128, 256, 512, which led to 126 combinations of candidate models
for each DL model. For training, each DL model took around 25-30 minutes on average as
computing time. The optimal combination of hyperparameters determined is shown in Table
(4).

Using these optimal hyper-parameters, DL models trained were utilized for forecasting
prices for the test data period. The performance of the models based on RMSE, MAPE and
MAE revealed that hybridized HM-DL models perform well as compared to all other models
for forecasting of TOP price are shown in Table 5 and Figures (14, 15 and 16).
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Figure 13: Predicted price by HMM on Potato price series

Table 5 revealed that HMM seems to perform better for forecasting the Potato price
series compared to the other two series when considering the results of the testing datasets.
Comparison of MAPE values for the baseline DL models with that of the HM-DL models
clearly showed that the HM-DL models perform better. By and large, the RMSE of the
forecasts for the proposed HM-DL models, namely HM-MLP, HM-RNN, HM-GRU, HM-
LSTM, were lower than their corresponding baseline models, namely MLP, RNN, GRU,
LSTM, by 9.77–17.50%, 15.02–44.39%, and 7.94–32.60% respectively for the tomato, onion,
and potato prices, except for two cases where the baseline DL models seem to be better.

Table 5: Performance of various models on TOP price series data of Azadpur
mandi, Delhi

Price series Tomato Onion Potato
Evaluation measures RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE

Training
set

(90%)

HMM 221.19 20.29 180.67 274.55 13.75 159.24 165.38 17.31 127.01
MLP 190.49 10.72 147.63 215.25 16.40 175.39 77.90 7.44 57.21
RNN 150.18 10.72 111.24 211.20 12.01 144.80 99.66 8.84 70.43
GRU 154.46 12.48 118.03 135.32 6.86 85.77 91.29 8.22 63.52

LSTM 152.32 12.73 117.73 133.73 7.16 87.13 69.89 6.51 50.05
HM-MLP 201.14 17.10 156.20 146.06 9.62 103.23 101.84 10.00 73.85
HM-RNN 128.16 9.82 95.92 106.64 5.10 63.95 64.87 5.70 44.99
HM-GRU 147.05 12.64 116.31 116.98 7.23 79.96 73.95 8.00 58.35

HM-LSTM 129.85 10.06 97.92 115.57 6.20 73.53 71.56 6.48 49.73

Testing
set

(10%)

HMM 263.76 11.63 189.88 214.58 13.79 169.36 146.32 10.03 101.63
MLP 294.16 12.90 220.85 168.42 9.44 123.58 111.66 9.04 86.15
RNN 216.24 9.00 162.60 159.50 9.94 128.64 110.07 8.52 83.85
GRU 220.87 9.40 163.11 116.69 6.16 84.78 122.18 9.03 90.95

LSTM 226.01 10.38 176.56 121.50 6.26 85.58 96.66 7.02 68.33
HM-MLP 265.43 12.66 207.15 122.24 6.33 86.61 113.09 8.44 83.45
HM-RNN 240.59 12.55 176.23 88.69 4.62 63.21 79.58 5.80 58.86
HM-GRU 193.94 8.41 135.98 99.16 5.91 78.68 82.35 6.56 64.22

HM-LSTM 186.45 8.02 133.40 95.57 4.91 68.04 88.99 5.79 60.79
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Figure 14: Forecasted Tomato price series obtained from DL and HM-DL models

The proposed HM-RNN model is the best among the HM-DL models proposed. The MAPE
of the forecasts for the proposed HM-DL models, namely HM-MLP, HM-RNN, HM-GRU,
HM-LSTM, were lower than their corresponding baseline models, namely MLP, RNN, GRU,
LSTM, by 0.24–3.55%, 0.25–5.32%, and 0.60–2.72% respectively for the Tomtao, Onion and
Potato prices. This reduction is more pronounced for the proposed HM-RNN model with a
reduction as high as 5.32%.

It is also emphasized here that the proposed HM-DL models took almost the same
computational time while training them when compared to the baseline DL models. The
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Figure 15: Forecasted Onion price series obtained from DL and HM-DL models

HMM models, when fitted in isolation on the three data series considered, seem to perform
inferior as compared to other models, and hence HMM does not capture well the peaks and
chaotic patterns present in the price series, even though it could capture the overall trend
and latent structure of the data. Moreover, HMM cannot be used for long-term predictions,
as the Markovian property assumes a simple conditional dependence of the present on the
recent past.

For all the training datasets of the three TOP commodities, consistently HMM-RNN
model has been found to be best fitted. On the testing datasets, while for the Onion and



2024] PRICE FORECASTING OF TOP COMMODITIES USING HM-DL APPROACH 81

Figure 16: Forecasted Potato price series obtained from DL and HM-DL models

Potato prices, HMM-RNN model performed well as compared to the hybrid and conventional
DL models, for the Tomato dataset, HMM-LSTM performed well as compared to HMM-RNN
and other models. On further inspection, it has been found that, in the Tomato test dataset,
three significant spikes were found with HMM-LSTM also capturing the long memory of
the data quite well (as shown in figure 14)while in the other two test datasets (Onion and
Potato), only one moderate spike each was present as shown in Figure (15 and 16).

Overall, from the Diebold-Mariano (DM) tests in Figures (17, 18 and 19), it can be
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Figure 17: Various forecasting model comparison using DM test on Tomato price
series

Figure 18: Various forecasting model comparison using DM test on Onion price
series
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Figure 19: Various forecasting model comparison using DM test on Potato price
series

inferred that the RMSEs of the HM-DL models viz., HM-MLP, HM-RNN, HM-GRU, HM-
LSTM were all significantly different (read lower) as compared to their DL counterparts for
the Onion price series. For the Tomato series, HM-LSTM and for the Potato series, both
HM-RNN and HM-GRU were found to be statistically significantly different.

HM based DL models have the advantage of adjusting to the pattern of the data
within each of the hidden states found and hence the effect of non-stationarity of the data
will be minimal. Meanwhile, HMM-DL models are able to handle data volatility, non-
stationarity and non-normality better. However, in situations with datasets which are of
relatively lesser size as compared to very large data sets, the application of HMM-DL models
might underperform due to overfitting. In this study, careful hyperparameter tuning has been
made to ensure model performance that avoided the overfitting issues.

To sum up, it can be concluded that Hidden Markov-Deep Learning (HMM-DL)
approaches are more effective in forecasting TOP prices than traditional methods like HMM
and baseline DL models. Thus, combining HMM with DL techniques seems to improve
prediction accuracy even further, especially for long-term predictions like those required for
agricultural commodities pricing.

This study demonstrates the effectiveness of HM-DL models for the accurate predic-
tion of TOP vegetable prices. The proposed models provide farmers, traders, and Mandis
with enhanced capabilities for reliable price forecasting and informed decision-making. Fur-
thermore, the analysis enables farmers to optimize storage capacity by identifying periods of
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low prices for storing vegetables and selling them during periods of higher prices, minimizing
losses, as these can be readily seen by the stakeholders in the plots of forecasts. Overall, the
hybrid HM-DL models offer a comprehensive understanding of market dynamics and provide
valuable insights for optimizing decision-making in the agricultural sector.

5. Concluding remarks

This work proposed a novel Deep Learning (DL) approach based on hidden states
to enhance the precision of TOP price forecasting. The hidden states identified by HMM
serve as a feature extraction technique and were utilized in four DL models. The integration
of HMM with DL and HMM models improved the forecasting accuracy compared to HMM
and traditional DL models. The Diebold-Mariano (DM) tests, by and large, revealed that
the RMSEs of the proposed HM-DL models were all significantly different (read lower)
as compared to their DL counterparts for the onion price series. It is also emphasized
here that the proposed HM-DL models took almost the same computational time while
training them when compared to the baseline DL models. The findings demonstrate that
the hybrid approach of Hidden Markov (HM) combined with DL models yields superior
forecasting performance compared to existing models. Future research directions can extend
the current study’s univariate analysis of vegetable price series by incorporating multiple
related variables, including weather conditions, market demand and economic indicators
into the hybrid models. Moreover, other sectors such as finance, energy, and healthcare
which involve complex time series data, can benefit from integrating HMM and DL models
to improve forecasting accuracy and facilitate informed decision-making.
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APPENDIX

The following Python code implements the Hidden Markov Deep Learning (HM-DL)
models for time series prediction.

#HM -DL models implementation by Python software

import pandas as pd
from sklearn.model_selection import train_test_split

# Load your dataset
my_data = pd.read_csv(’path_to_your_data.csv’)

# Convert ’Date’ column to datetime if necessary
my_data[’Date’] = pd.to_datetime(my_data[’Date’])

# Ensure the data is sorted by date
my_data.sort_values(’Date’, inplace=True)

# Split data into train and test sets
train_size = int(len(my_data) * 0.9)
train_data , test_data = my_data [: train_size], my_data[train_size :]

from hmmlearn import hmm

# Initialize Gaussian HMM
# This assumes you’ve decided on the number of components based on

your data (AIC/BIC)
model = hmm.GaussianHMM(n_components=number_of_states)

# Train HMM on the prices from the training data
model.fit(train_data [[’Price ’]]. values)

# Find the Viterbi path
hidden_states = model.predict(train_data [[’Price ’]]. values)

# Append Viterbi path to the training data
train_data[’ViterbiPath ’] = hidden_states

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN , GRU , LSTM , Dense
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import mean_squared_error

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN , GRU , LSTM , Dense
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import mean_squared_error
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# Define a function to create a deep learning model of a specified
type

def create_dl_model(input_shape , num_hidden_layers , num_hidden_units
, dl_type):
model = Sequential ()

if dl_type == ’HM -MLP’:
for i in range(num_hidden_layers):

model.add(Dense(num_hidden_units , activation=’relu’,
input_shape=input_shape if i == 0 else (
num_hidden_units ,)))

elif dl_type == ’HM -GRU’:
for i in range(num_hidden_layers):

return_sequences = i < (num_hidden_layers - 1)
model.add(GRU(num_hidden_units , return_sequences=

return_sequences , input_shape=input_shape if i == 0
else (num_hidden_units ,)))

elif dl_type == ’HM -LSTM’:
for i in range(num_hidden_layers):

return_sequences = i < (num_hidden_layers - 1)
model.add(LSTM(num_hidden_units , return_sequences=

return_sequences , input_shape=input_shape if i == 0
else (num_hidden_units ,)))

elif dl_type == ’HM -RNN’:
for i in range(num_hidden_layers):

return_sequences = i < (num_hidden_layers - 1)
model.add(SimpleRNN(num_hidden_units , return_sequences=

return_sequences , input_shape=input_shape if i == 0
else (num_hidden_units ,)))

else:
raise ValueError("Unsupported␣deep␣learning␣type")

model.add(Dense (1))
model.compile(loss=’mean_squared_error ’, optimizer=Adam())
return model

# Grid search over hyperparameters
best_rmse = float(’inf’)
best_model = None
best_params = {}

batch_sizes = [8 ,16 ,32 ,64 ,128 ,256]
num_hidden_layers = [1, 2,3]
num_hidden_units = [8 ,16 ,32 ,64 ,128 ,256 ,512]
num_epochs = 200 # Use early stopping criteria if needed.

for dl_type in [’HM-MLP’, ’HM-GRU’, ’HM-LSTM’, ’HM-RNN’]:
for batch_size in batch_sizes:

for num_layers in num_hidden_layers:
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for num_units in num_hidden_units:
# Create model
dl_model = create_dl_model(input_shape =(lags , 2),

num_hidden_layers=num_layers , num_hidden_units=
num_units , dl_type=dl_type)

# Convert the series to a supervised learning
problem , split into input and output

# X_train , y_train = ...

# Train model
dl_model.fit(X_train , y_train , epochs=num_epochs ,

batch_size=batch_size , verbose =0)

# Predict on training set and calculate RMSE
train_predictions = dl_model.predict(X_train)
train_rmse = mean_squared_error(y_train ,

train_predictions , squared=False)

# Update best model if RMSE improves
if train_rmse < best_rmse:

best_rmse = train_rmse
best_model = dl_model
best_params = {’batch_size ’: batch_size , ’

num_layers ’: num_layers , ’num_units ’:
num_units , ’dl_type ’: dl_type}
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Abstract
We have proposed a single parameter lifetime distribution function that has increas-

ing and decreasing hazard rates. The proposed distribution can be used as a heavy-tailed
alternative to the exponential, Weibull and gamma distributions. We discuss the different
statistical properties, survival characteristics and stress-strength reliability. Different esti-
mation procedures are used to estimate the parameter by using different methods which are
given as estimation based on percentiles, least squares estimators, weighted least squares
estimators, maximum likelihood estimators, Cramer-von-mises method of estimation and
maximum product of the spacing method of estimation. We have compared the performance
of these estimators with the help of simulation study. Also for different values of parameter
we have found the estimates of hazard rate function and survival function. The proposed
distribution is fitted to real data sets and it is observed that the proposed distribution is
fitting quite well to the data.
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1. Introduction

Lifetime distributions are common statistical tools used for the modeling and analysis
of lifetime phenomena for different characteristics of lifetime data sets. The statistical liter-
ature contains very sophisticated multi-parameter distributions to analyze different kinds of
data sets. Johnson et al. (1995) and Mann et al. (1974) discuss the importance of exponen-
tial distribution which is a single parameter distribution. The hazard rate of the exponential
distribution is constant, which restricts its use in lifetime data analysis.

We are proposing a new single parameter distribution. The proposed distribution
is obtained as a survival of a series system, which consists of two components, where one
component follows inverse exponential and another follows Lomax distribution. Also, for
the proposed distribution, we have studied the distributional properties of the series system.
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The proposed distribution has increasing hazard rate, decreasing hazard rate and first in-
creasing then decreasing hazard rate. Also, it can be used as a heavy-tailed alternative to
the exponential, Weibull and gamma distributions. This motivates us to introduce a new
distribution and study some of its statistical properties. The proposed distribution can be
used as a heavy-tailed alternative to the exponential, Weibull and gamma distributions.

The cumulative distribution function (CDF) of the proposed distribution is obtained
by multiplying Lomax distribution and inverse exponential

F (x | θ) =

(
1 − θ

x+θ

)
(e−θ/x) ; x ≥ 0, θ > 0

0 ; otherwise
(1)

the corresponding probability density function (PDF) is given as,

f(x | θ) =


θ(2x+θ)
x(x+θ)2 e−θ/x ; x ≥ 0, θ > 0
0 ; otherwise

(2)

the hazard rate function (HRF) of the distribution for given t and it is denoted as h(t)

h(t) = f(t)
S(t) = θ(2t + θ)

t(t + θ)(teθ/t + θeθ/t − t) (3)

and survival function (SF) and it is denoted as S(t)

S(t) = 1 − t

t + θ
e−θ/t (4)

the corresponding reversed hazard rate and it is denoted as r(t),

r(t) = f(t)
F (t) = θ(2t + θ)

t2(t + θ)

similarly, the cumulative hazard function and it is denoted as H(t)

H(t) = −log[S(t)] = −log

[
1 − t

(t + θ)e−θ/t

]

The plots of different characteristics of the proposed distribution are given in Figure (1)
distribution function, Figure (2) probability density function, Figure (3) survival function
and Figure (4) is hazard function. Figure (4) shows that the hazard rate first increases and
then decreases for a given θ. This distribution can found its use in wide applications such
as the analysis of the business failure lifetime data, income and wealth inequality, size of
cities, actuarial science, medical and biological sciences, engineering, lifetime and reliability
modeling.

In this article, we have proposed a new single parameter probability distribution and
discuss its statistical properties. In section 2, we find the rth moments and moments exist
only for r < 1 and discuss the quantile function, skewness and kurtosis and also discuss the
entropy of distribution.
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In section (3) and section (4) we discuss the order statistics and stress strength reli-
ability respectively. Similarly, in section (5) we discuss the different methods of estimation
to estimate the parameter. In section (6), we mainly compare the different methods of es-
timations such as maximum likelihood estimators (MLE), estimators based on percentiles
(PCE), least squares estimators (LSE), Weighted least squares estimators (WLSE), Cramer-
von-Mises method of estimation (CME) and the maximum product of spacings method of
estimations (MPSE), by mean squared errors (MSE) using extensive simulation techniques,
Similarly, we estimate the HRF and SF. Real-life data applications are presented and dis-
cussed in section (7) and Concluding remarks can be found in section (8)
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2. Some statistical properties

In this section, we discuss the different statistical properties, viz, moments, quantile
function, skewness, kurtosis and entropy.

2.1. Moments

The rth moments about origin is

E[Xr] =
� ∞

0
xr θ(2x + θ)

x(x + θ)2 e−θ/x dx (5)

the moments exits only for r < 1 and r ≥ 0 does not exits (see Appendix[1])

E[Xr] = θr

[
r∑

k=0

(
r

k

)
(−1)(r−k)Γ(k, 1) +

r−1∑
k=1

(
r − 1

k

)
(−1)(r−k)Γ(k, 1)

]

where, Γ(k,α) is the upper incomplete gamma function defined by

Γ(k, α) =
� ∞

α

e−xxk−1dx α ≥ 0

An integral in equation (5) is evaluated by mathematically (see Fisher and Kılıcman (2012))
and also computational method using the Monte Carlo method. First, we draw a sample
from the proposed distribution with parameter θ = 1.5 with sample size n. We calculate
the sample mean E[xr] = 1

n

∑n
i=1 xr

i . The sample mean values are plotted with respect to
different sample sizes. For r = 0.2, it is convergent which is shown in the Figure (5).

Figure 5: Moments at r=0.2 Figure 6: Moments at r=1.58
The value of the integration for θ = 1.5 is 1.44. Which can be seen in Figure (5).

The above integral equation (5) is not convergent for r ≥ 1. This integral is evaluated by
using the Monte Carlo method for θ = 1.5 and r = 1.5. Observing the plot in Figure (6) the
integration is not convergent, as can be seen from Figure (6).
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2.2. Quantile function

The quantile function Q(p) can be obtained by using the equation (1)

p = Q(p)
Q(p) + θ

e−θ/Q(p) (6)

where Q(p) is the quantile of order p and 0 < p < 1. If we put p=1
2 in equation (6) then

we get the value of the median. Since moments of the proposed distribution does not exist,
we can use the Moor measures of kurtosis (see Moors (1988)) and the Bowley measures of
skewness(see Bowley (1920)) based on quantile and corresponding expressions are given in
equation (7) and (8), respectively

K =
Q(7

8) − Q(5
8) + Q(3

8) − Q(1
8)

Q(6
8) − Q(2

3) (7)

S =
Q(3

4) − 2Q(1
2) + Q(1

4)
Q(3

4) − Q(1
4) (8)

2.3. Entropy

The concept of information entropy was introduced by Shannon (1948). Entropy mea-
sures the expected amount of information or “uncertainty” inherent in the possible outcomes
of the variable. If the entropy is high then it indicates higher uncertainty.

2.4. Shannon entropy

Shannon’s Entropy is simply the amount of information contained in a variable. It is
defined as H(f) = E [−logf(x)],

H(f) = E

[
−log

[
θ(2x + θ)
x(x + θ)2 e−θ/x

]]
(9)

To calculate the Shannon entropy by equation (9), solving by Monte Carlo integration
method. The generate the xi from proposed distribution and calculating,
−1
n

∑n
i=1 log

[
θ(2xi+θ)
xi(xi+θ)2 e−θ/xi

]
, we see that above Figure (7) value converges at 3.24 for given

value of θ = 1.5.

2.5. Renyi entropy

In the information theory, if X is a random variable with density function f(x), the
Renyi entropy is a measure of uncertainty of the random variable defined and it is denoted
as H(γ)

H(γ) = 1
1 − γ

log

(� ∞

0
[f(x)]γ dx

)

H(γ) = 1
1 − γ

log

(� ∞

0

[
θ(2x + θ)
x(x + θ)2 e−θ/x

]γ

dx

)
(10)
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Similarly, we can calculate the integral of equation (10) by the same method we see that the
integral does not converge because in the Figure (8) plot does not converge at any point and
mathematically when moments does not exits for r ≥ 1 then Renyi entropy does not exits.

Figure 7: Shannon Entropy Figure 8: Renyi Entropy

2.6. Regularly varying tail behavior of the proposed distribution

A distribution function F with survival function (SF), S(y) = 1 − F (y), is said to be
heavy-tailed if for every t ≥ 0, limy→∞

1−F (y)
e−ty = ∞ (see section 2.4 of Rolski et al. (2009)).

A distribution function F is said to belong to the regularly varying class if

lim
y→∞

1 − y
y+θ

e−θ/y

e−ty

lim
y→∞

etx

(y + θ)2 lim
y→∞

θ(2 + θ
y
)e

−θ
y

2tθ

lim
y→∞

θtety = ∞ ∀ t ≥ 0

3. Distributions of order statistics and ordering property

First, we know the PDF, CDF and the moment of the ith order statistics x(i). Let
X1, X2, ......., Xn are random samples of size n from the proposed continuous distribution,
then the PDF of order statistics is given by the following formula

f(i,n)(x | θ) = n!
(n − i)!(i − 1)!

[
x

x + θ
e−θ/x

]i−1 [
1 − x

x + θ
e−θ/x

]n−i θ(2x + θ)
x(x + θ)2 e−θ/x
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The PDF of maximum of X1, X2, ......., Xn is

f(x(n) | θ) = n [F (x)]n−1 f(x) = n
[

x

x + θ
e−θ/x

]n−1 θ(2x + θ)
x(x + θ)2 e−θ/x

The PDF of minimum of X1, X2, ......., Xn is

f(x(1) | θ) = n [1 − F (x)]n−1 f(x) = n
[
1 − x

x + θ
e−θ/x

]n−1 θ(2x + θ)
x(x + θ)2 e−θ/x

The joint CDF of minimum and maximum distribution of X1, X2, ......., Xn is

Fx(1),x(n)(x, y) = P [x(1) ≤ x, x(n) ≤ y] = [F (y)]n − [F (y) − F (x)]n

Fx(1),x(n)(x, y) =
[

y

y + θ
e−θ/y

]n

−
[

y

y + θ
e−θ/y − x

x + θ
e−θ/x

]n

The joint PDF of minimum and maximum of X1, X2, ......., Xn is

fx(1),x(n)(x, y) = n(n − 1)[F (y) − F (x)]n−2f(x)f(y)

fx(1),x(n)(x, y) = n(n − 1)
[

y

y + θ
e−θ/y − x

x + θ
e−θ/x

]n−2
θ2(2x + θ)(2y + θ)
xy(x + θ)2(y + θ)2 e−θ( x+y

xy
)

4. Stress-strength reliability

Stress-strength reliability (SSR) describe the life of a component having a random
strength X that is subject to a random stress Y. The component fails at an instant, when the
stress applied to it exceeds the strength and the component function satisfactorily whenever
X > Y . Let X and Y follows the proposed distribution with parameters θ1 and θ2 then,

R = P [X > Y ] =
� ∞

0
P [X > Y |Y = y]fY (y)dy

P [X > Y ] =
� ∞

0

θ2(2y + θ2)
(y + θ1)(y + θ2)2 e−( θ1+θ2

y )dy

Table 1: True value of SSR of given value of θ1 and θ2

H
HHH

HHθ2

θ1 0.2 0.8 1.0 1.5 2.0 2.5 5.0
0.2 0.5000 0.2156 0.1820 0.1313 0.1027 0.0845 0.0005
0.8 0.7844 0.5000 0.4486 0.3584 0.2994 0.2575 0.1524
1.0 0.8179 0.5514 0.5000 0.4073 0.3447 0.2994 0.1820
1.5 0.8687 0.6415 0.5926 0.5000 0.4338 0.3839 0.2461
2.0 0.8972 0.7005 0.6552 0.5661 0.5000 0.4485 0.2994
2.5 0.9155 0.7424 0.7005 0.6160 0.5514 0.5000 0.3447
5.0 0.9552 0.8475 0.8179 0.7539 0.7005 0.6552 0.5000
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5. Statistical inference

In this section, we discuss six classical methods of estimation, viz. method of MLE,
method of LSE, method of WLSE, method of CME, method of PCE and methods of MPSE.

5.1. Estimation based on percentiles

Among the most easily obtained estimators of the parameters of the Weibull distri-
bution are the graphical approximation to the best linear unbiased estimators. It can be
obtained by fitting a straight line to the theoretical points obtained from the distribution
function and the sample percentile points. This method was originally explored by Kao
(1959), see also Mann et al. (1974) and Johnson et al. (1995). It is possible for the Weibull
case because of the nature of its distribution function. In the case of a proposed distribu-
tion also it is possible to use the same concept to obtain the estimator of θ based on the
percentiles, because of the structure of its distribution function.
Now

F (x | θ) = x

x + θ
e−θ/x

If pi denotes some estimate of F (x | θ) then the estimate of θ can be obtained by minimizing
n∑

i=1
[pi(xi + θ) − xie

−θ/xi ]2 (11)

Partially differentiate equation (11) with respect to θ, we get
n∑

i=1
[(pi((xi + θ) − xie

−θ/xi)(pi + e−θ/xi)] = 0 (12)

Solving equation (12) using non-linear method and find the value of θ for different value of
pi, for example pi = (i/(n + 1)) is the most used estimator of F (x(i)), as (i/(n + 1)) is the
expected value of F (x(i)). We have also used this pi here. Some of the other choices of pi’s
are pi = ((i − 3/8)/(n + 1/4)) or pi = ((i − 1/2)/n) (see Mann et al. (1974)) although they
have not pursued here. We get the value of θ is know as θ̂P CE substituting the θ̂P CE in
equation (3) and (4), we can get the estimators of HRF estimate h(x) SF S(x) given as

ĥ(x)P CE = θ̂P CE(2x + θ̂P CE)
x(x + θ̂P CE)(xeθ̂P CE/x + θ̂P CEeθ̂P CE/x − x)

(13)

and
Ŝ(x)P CE = 1 − x

x + θ̂P CE

e−θ̂P CE/x (14)

5.2. Least squares estimators

In this method we provide the regression based method estimators of the unknown
parameters, which was originally suggested by Swain et al. (1988) to estimate the parameters
of Beta distributions. It can be using some other cases also. Suppose X1, ..., Xn is a random
sample of size n from distribution function G(.) and suppose x(i); i = 1, ..., n denotes the
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ordered sample. The proposed method uses the distribution of G(X(i)). For a sample of size
n, we have

E(G(X(i))) = i

n + 1

V (G(X(i))) = i(n − i + 1)
(n + 1)2(n + 2)

See Johnson et al. (1995). Using the expectations and the variances, two variants of the least
squares methods can be used. The least square estimate can be obtained by minimizing the,

LS(θ) =
n∑

i=1

[
xi

xi + θ
e−θ/xi − i

n + 1

]2
(15)

When differentiated equation (15) with respect to θ and equated to 0. Then we get the value
of θ which is called θ̂LSE. Substituting these θ̂LSE in equation (3) and (4), we can get the
estimators of HRF estimate h(x), SF S(x) given as,

ĥ(x)LSE = θ̂LSE(2x + θ̂LSE)
x(x + θ̂LSE)(xeθ̂LSE/x + θ̂LSEeθ̂LSE/x − x)

(16)

and
Ŝ(x)LSE = 1 − x

x + θ̂LSE

e−θ̂LSE/x (17)

5.3. Weighted least squares estimators

The weighted least squares estimation minimizes the equation given below,
n∑

i=1
Wi

(
G(Xi) − i

n + 1

)2

with respect to the unknown parameters, where

Wi = 1
V (G(X(i)))

= (n + 1)2(n + 2)
i(n − i + 1)

Therefore, in case of distribution the weighted least squares of θ can be obtained by mini-
mizing

W (θ) =
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F (xi | θ) − i

n + 1

]2

W (θ) =
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
xi

xi + θ
e−θ/xi − i

n + 1

]2
(18)

Differentiating the above equation (18) with respect to θ and equating to 0 we get the
estimate of θ and the estimated value of θ is denoted as θ̂W LSE. Substituting the θ̂W LSE, in
equation (3) and (4) , we can get the estimate ĥ(x) and Ŝ(x) given below,

ĥ(x)W LSE = θ̂W LSE(2x + θ̂W LSE)
x(x + θ̂W LSE)(xeθ̂W LSE/x + θ̂W LSEeθ̂W LSE/x − x)

(19)

and
Ŝ(x)W LSE = 1 − x

x + θ̂W LSE

e−θ̂W LSE/x (20)
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5.4. Maximum likelihood estimator

In this section, the MLE of the distribution function is considered. If X1, X2..., Xn is
a random sample from proposed distribution with parameter θ, then the likelihood function,
L(θ), is

L =
n∏

i=1

θ(2xi + θ)
xi(xi + θ)2 e−θ/xi

log(L(θ)) = nlog(θ) +
n∑

i=1
log(2xi + θ) −

n∑
i=1

log(xi) −
n∑

i=1
2log(xi + θ) −

n∑
i=1

θ

xi

(21)

Differentiating the above equation (21) with respect to θ and ∂logL(θ)
∂θ

= 0 we get
n

θ
+

n∑
i=1

1
(2xi + θ) −

n∑
i=1

2
(xi + θ) −

n∑
i=1

1
xi

= 0 (22)

The above equation is a non-linear equation which can be solved by a simple iterative proce-
dure can be used to find a solution and we can estimate the value of θ and the estimated value
is called as θ̂MLE substituting the θ̂MLE, in equation (3) and (4), we can get the estimators
of HRF estimate h(x), SF S(x) given as,

ĥ(x)MLE = θ̂MLE(2x + θ̂MLE)
x(x + θ̂MLE)(xeθ̂MLE/x + θ̂MLEeθ̂MLE/x − x)

(23)

and
Ŝ(x)MLE = 1 − x

x + θ̂MLE

e−θ̂MLE/x (24)

5.5. Cramer-von-Mises method of estimation

To motivate our choice of CME type minimum distance estimators, Macdonald (1971)
provided empirical evidence that the bias of the estimator is smaller than the other minimum
distance estimators. Thus, the proposed estimators are based on the Cramer-von Mises
statistics given by,

C(θ) = 1
12n

+
n∑

i=1

[
F (x, θ) − 2i − 1

2n

]2

C(θ) = 1
12n

+
n∑

i=1

[
xi

xi + θ
e−θ/xi − 2i − 1

2n

]2
(25)

Then the Cramer-von-Mises estimator are obtained by minimizing the above equation (25)
with respect to θ, ∂C(θ)

∂θ
= 0. This estimator can also be obtained by solving the following

non-linear equation. We get the estimated value of θ and the estimated value is called as
θ̂CME

n∑
i=1

[(
xi

xi + θ
e−θ/xi − 2i − 1

n

)(
− 2xi + θ

(xi + θ)2 e−θ/xi

)]
= 0 (26)

Substituting the θ̂CME, in equation (3) and (4), we can get the estimators of HRF estimate
h(x), SF S(x) given as,

ĥ(x)CME = θ̂CME(2x + θ̂CME)
x(x + θ̂CME)(xeθ̂CME/x + θ̂CMEeθ̂CME/x − x)

(27)
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and
Ŝ(x)CME = 1 − x

x + θ̂CME

e−θ̂CME/x (28)

5.6. Maximum product of spacing method of estimation

The Maximum Product of Spacing method of estimation (MPSE) is an alternative to
MLE for the estimation of the unknown parameters of continuous uni-variate distributions.
This method is used for estimating parameter, In this method estimation of the parameter
θ is obtained by maximizing the geometric mean of the spacing with respect to θ

G(θ) =
[

n+1∏
i=1

[
F (x(i,n)|θ) − F (x(i−1,n)|θ)

]] 1
n+1

Taking log on both sides the above equation we get,

logG(θ) = 1
n + 1

n+1∑
1

log
[
F (x(i,n)|θ) − F (x(i−1,n)|θ)

]
(29)

To maximize the above equation (29) we differentiate with respect to θ, ∂logG(θ)
∂θ

= 0, we get
the estimated value of θ and the estimated value is called as θ̂MP SE shown in equation (30),
substituting the θ̂MP SE, in equation (3) and (4), we can get the estimators of HRF estimate
h(x), SF S(x) given as,

1
n + 1

∑n
i=1

(
(2xi+θ)
(xi+θ)2 e−θ/xi − (2xi−1+θ)

(xi−1+θ)2 e−θ/xi−1
)

∑n
i=1

(
xi

xi+θ
e−θ/xi − xi−1

xi−1+θ
e−θ/xi−1

) = 0 (30)

ĥ(x)MP SE = θ̂MP SE(2x + θ̂MP SE)
x(x + θ̂MP SE)(xeθ̂MP SE/x + θ̂MP SEeθ̂MP SE/x − x)

(31)

and
Ŝ(x)MP SE = 1 − x

x + θ̂MP SE

e−θ̂MP SE/x (32)

6. Simulation study

In this section, we generate random sample from the proposed distribution by using
the inverse transformation method. We used the Monto Carlo simulation study to assess
the performance of the proposed estimators (PSE, LSE, WLSE, MLE, CME, MPSE) of the
parameter θ for the proposed distribution. We used the particular values of θ= 0.2, 1.05,
2.5, 5 and the corresponding sample size is n= 5, 15, 30, 50, 100, 500 for each design we
draw the sample of size n from the original sample and it is replicated 10,000 times. We
calculate the mean of parameters θ using PSE, LSE, WLSE, MLE, CME and MPSE, and
their corresponding MSEs, the results are reported in Table (6). It is observed that all
the methods follow the same pattern, by increasing sample size the corresponding MSEs are
decreasing in all the methods of estimation. On basis of MSEs we find the Maximum Product
of Spacing method of estimation is the best method of estimation among the method used.
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Similarly, the simulation for hazard estimations and survival estimations for same sample
sizes and for a given value of t= 0.75, 1, 1.5 and given θ̂MLE we calculate the hazard and
survival estimations and corresponding calculate MSEs for 10,000 times. The calculated
average estimate of hazard and survival estimation with corresponding MSE and the results
are reported in Table (7) and Table (8). It is observed that the HRF estimation and SF
estimation also follow the same pattern as with, the increase in the sample size corresponding
MSEs decreases.

7. Real data applications

In this Section, we use two data sets and comparing the existing model. For more
details we see in Shukla (2019) and Shanker et al. (2015).

7.1. Data set 1

We use the survival times of a group of patients suffering from head and neck cancer
disease and treated using a combination of radiotherapy and chemotherapy which is reported
by Shukla (2019) and Shanker et al. (2015).
432.00 140.00 119.00 47.38 58.36 195.00 155.00 339.00 209.00 112.00 194.00 519.00 68.46
25.87 179.00 78.26 159.00 84.00 31.98 110.00 1776.00 725.00 173.00 41.35 94.00 74.47 633.00
319.00 127.00 146.00 281.00 23.56 92.00 249.00 37.00 23.74 133.00 130.00 12.20 63.47 81.43
55.46 817.00 469.00

Table 2: Values of the estimate of parameter for given real data set 1 and corre-
sponding AIC, AICc, BIC, KS and p-value

Model θ̂ -2ln L AIC AICc BIC KS p-value
Lindley 0.00891 579.16 581.16 581.26 582.95 0.219 0.0243

Exponential 0.00447 564.02 566.02 566.11 567.80 0.145 0.2838
PDMLE 45.33775 558.77 560.77 560.86 562.55 0.089 0.8509
PDMP SE 41.95271 558.98 560.98 561.07 562.76 0.074 0.9562

Table 3: Value of hazard estimate and survival estimate for real data set 1 for
given value of time t

t θMP SE
ˆh(t)MP SE

ˆS(t)MP SE θMLE
ˆh(t)MLE

ˆS(t)MLE

t=223.48(mean) 41.9527 0.00357 0.30216 45.33775 0.00351 0.32131
t=128.50(median) 0.00531 0.45611 0.00516 0.48057

7.2. Data set 2

We use the times between successive failures of air conditioning equipment in a Boeing
720 airplane data set which is reported by Shukla (2019) and Shanker et al. (2015) come
from data set (13). 386 70 57 12 59 29 74 27 153 48 326 21 26 29 502.

In Table 2 and Table 4 estimated values of parameter, -2lnL, AIC, AICc, BIC, KS
statistics and p value are given and the basis of these value our proposed distribution is better
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Table 4: Values of the estimate of parameter for given real data set 2 and corre-
sponding AIC, AICc, BIC, KS and p-value

Model Estimate -2ln L AIC AICc BIC KS p-value
Lindley 0.01636 181.34 183.34 183.65 184.05 0.386 0.0159

Exponential 0.00824 173.94 175.94 176.25 176.65 0.277 0.1662
PDMLE 23.12604 169.25 171.25 171.56 171.96 0.176 0.6789
PDMP SE 21.82070 169.29 171.29 171.60 172.00 0.158 0.7923

Table 5: Value of hazard estimate and survival estimate for real data set 2 for
given value of time t

t θMP SE
ˆh(t)MP SE

ˆS(t)MP SE θMLE
ˆh(t)MLE

ˆS(t)MLE

t=121.2667(mean) 21.8207 0.00664 0.29206 23.12604 0.00656 0.30598
t=57(median) 0.01126 0.50685 0.01098 0.52587

than exponential distribution and one parameter Lindley distribution. It is also observed
that estimate by using MPSE value provide better fit for both data sets 1 and 2 on basis
of KS statistics and p value but there is no difference of -2lnL, AIC, AICc, BIC. It is same
line supports the results for simulation study for our proposed distribution MPSE is better
results than other methods.
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8. Conclusions

In this article, we have proposed a new probability distribution, which is having an in-
creasing hazard rate and decreasing hazard rate, heavy-tailed properties hold. Moments exist
only for r < 1 and moments for r ≥ 1 is divergent. Oder statistics and stress strength re-
liability properties are obtained and also find the quantile function, skewness and kurtosis.
Simulation is conducted for different estimation methods (MLE, PSE, LSE, WLSE, CME,
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and MPSE ) are used to estimate used to obtain the estimate of θ, h(t) and S(t). Discuss the
different statistical properties of the proposed distribution. In the simulation, it found that
MPSE performed best among the different methods of estimation. We used two data sets to
find the suitability proposed distribution and use the MPSE for this purpose. It is observed
that our proposed probability distribution is fitted well to the data sets. The new proposed
probability distribution performed well as compared to competitor models like exponential,
Lindley, etc in terms of various model selection criteria like AIC, AICc, BIC, KS, and p value.
The above comparison is tabulated in Tables 2, 3, 4, and 5. Several inferential aspects of the
proposed model are yet to study, which we may be adjust in further another publication.
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Appendix 1
Table 6: True values of θ and estimates (MLE, LSE, WLSE, PCE, CME, MPSE)
and corresponding MSEs.

Methods n = 5 n = 15 n = 30 n = 50 n = 100 n = 500
MLE 0.25281 0.21462 0.20761 0.20496 0.20222 0.20047

(0.02638) (0.00446) (0.00198) (0.00115) (0.00053) (0.00010)
LSE 0.47376 0.21083 0.20579 0.20364 0.20134 0.20042

(24.1709) (0.0056) (0.0025) (0.0014) ( 0.00065) (0.00013)
WLSE 0.49936 0.20992 0.20543 0.20346 0.20141 0.20042

θ = 0.2 (24.7952) (0.0052) (0.0023) (0.0013) ( 0.00059) (0.00012)
PCE 0.12575 0.17549 0.18882 0.19144 0.19647 0.19927

(0.0211) (0.0241) (0.0097) ( 0.0032) (0.0018) (0.00031)
CME 0.34324 0.21302 0.20692 0.20433 0.20169 0.20049

(5.8857) (0.0057) (0.0025) (0.0014) (0.00065) (0.00013)
MPSE 0.16493 0.18012 0.18796 0.19204 0.19501 0.19866

(0.0114) ( 0.0034) (0.0017) (0.0010) (0.00052) (0.00009)
MLE 1.28750 1.13026 1.08756 1.07410 1.06000 1.05201

(0.6111) (0.1270) (0.0539) (0.0304) (0.0145) (0.0028)
LSE 1.33088 1.11065 1.07748 1.06844 1.05637 1.05169

(1.5951) (0.1558) (0.0672) (0.0375) (0.0179) (0.0035)
WLSE 1.31587 1.10524 1.07561 1.06750 1.05628 1.05153

θ = 1.05 (1.5474) (0.1450) (0.0624) (0.0344) (0.0164) (0.0032)
PCE 0.67763 0.91507 0.99103 1.01397 1.03069 1.04593

(0.8187) (0.4546) (0.2164) (0.1123) (0.1210) (0.00884)
CME 1.34438 1.12206 1.08345 1.07204 1.05818 1.05205

(1.3668) (0.1588) (0.0681) (0.0378) (0.0181) (0.00356)
MPSE 0.86779 0.948460 0.98447 1.00631 1.02222 1.04252

(0.3252) (0.0954) (0.0474) (0.0282) (0.0142) (0.00278)
MLE 3.00848 2.69749 2.59059 2.55393 2.53204 2.50549

(3.1287) (0.7112) (0.3106) (0.1735) (0.0841) (0.0161)
LSE 3.16709 2.64741 2.56482 2.54427 2.52676 2.50419

(9.0752) (0.8941) (0.3808) (0.2230) (0.1057) (0.0199)
WLSE 3.13132 2.63481 2.55994 2.54115 2.525 2.50432

θ = 2.5 (8.7689) (0.8299) (0.3514) (0.2038) (0.0965) (0.0182)
PCE 1.64480 2.18839 2.33701 2.41562 2.46184 2.4732

(7.2999) (2.0666) (1.1109) (0.6250) (0.2943) (0.0505)
CME 3.21388 2.67504 2.57896 2.55280 2.53108 2.50505

(8.5114) (0.9103) (0.3854) (0.2248) (0.1062) (0.0199)
MPSE 2.07919 2.6378 2.34567 2.39264 2.44134 2.48291

(1.9694) (0.5314) (0.2727) (0.1613) (0.0802) (0.0161)
MLE 5.57307 5.17582 5.19181 5.10321 5.05499 5.01262

(10.2351) (10.1722) (1.2233) (0.7032) (0.3364) (0.0643)
LSE 6.18395 5.29498 5.15390 5.07877 5.03796 5.01025

(30.3224) (3.6853) (1.5322) (0.8862) (0.4194) (0.0808)
WLSE 6.09790 5.26990 5.14333 5.07328 5.03828 5.01056

θ = 5 (28.0626) (3.42865) (1.4120) (0.8149) (0.3841) (0.0736)
PCE 3.54518 4.37968 4.70454 4.80893 4.91191 4.98667

(1324.831) (8.5011) (5.1263) (2.8744) (1.1243) (0.2073)
CME 6.29332 5.34993 5.18218 5.09584 5.04661 5.01199

(30.64088) (3.7582) (1.5522) (0.8934) (0.4212) (0.0809)
MPSE 4.11762 4.52001 4.70706 4.78218 4.87486 4.96747

(7.5738) (2.2041) (1.0637) (0.6579) (0.3261) (0.0641)
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Table 7: True value of h(t) and estimate(MLE) & corresponding MSEs for
t = 0.75, t = 1, & t = 1.5

θ & t Method n = 5 n = 15 n = 30 n = 50 n = 100 n = 500
θ̂ 0.25496 0.21564 0.20654 0.20479 0.20201 0.20018

θ = 0.2 h(t) 0.89696 0.95072 0.96372 0.96625 0.97028 0.97295
t = 0.75 ˆh(t) 0.92154 0.95615 0.96617 0.96768 0.97099 0.97309

(0.07605) (0.01336) (0.00475) (0.00274) (0.00118) (0.00021)
θ̂ 1.32072 1.13019 1.08827 1.07346 1.06291 1.05226

θ = 1.05 h(t) 0.22596 0.29048 0.30731 0.31433 0.31943 0.32204
t = 0.75 ˆh(t) 0.29245 0.29895 0.30068 0.30124 0.30149 0.30264

(0.04675) (0.01539) (0.00744) (0.00446) (0.00221) (0.00042)
θ̂ 3.15398 2.69375 2.59982 2.56007 2.52611 2.50674

θ = 2.5 h(t) 0.01920 0.03520 0.03982 0.04196 0.04387 0.04500
t = 0.75 ˆh(t) 0.06857 0.05317 0.04951 0.04783 0.46915 0.45614

(0.00997) (0.00227) (0.00107) (0.00061) (0.00029) (0.00005)
θ̂ 6.16170 5.39945 5.20226 5.11701 5.06865 5.01182

θ = 5 h(t) 0.00035 0.00098 0.00127 0.00142 0.00152 0.001642
t = 0.75 ˆh(t) 0.01562 0.00395 0.00281 0.00236 0.00198 0.00173

(0.00936) (0.00005) (0.00001) (0.000006) (0.000002) (0.0000003)
θ̂ 0.25237 0.21597 0.20773 0.20481 0.20250 0.20052

θ = 0.2 h(t) 0.74177 0.77309 0.78042 0.78303 0.78511 0.78690
t = 1 ˆh(t) 0.75393 0.77579 0.78165 0.78374 0.78546 0.78697

(0.03941) (0.00668) (0.00238) (0.00122) (0.00052) (0.00008)
θ̂ 1.34594 1.13448 1.09333 1.07245 1.06215 1.05246

θ = 1.05 h(t) 0.23958 0.29552 0.30791 0.31441 0.31767 0.32076
t = 1 ˆh(t) 0.29889 0.31263 0.31598 0.31926 0.32005 0.32123

(0.03540) (0.01036) (0.00493) (0.00293) (0.00145) (0.00028)
θ̂ 3.17655 2.69800 2.59951 2.55627 2.52797 2.50549

θ = 2.5 h(t) 0.13842 0.18462 0.19426 0.19889 0.20248 0.20504
t = 1 ˆh(t) 0.09068 0.08216 0.07953 0.07877 0.07798 0.07737

(0.01150) (0.00324) (0.00157) (0.00092) (0.00045) (0.00009)
. θ̂ 6.08392 5.39642 5.20642 5.11668 5.05185 5.01264

θ = 5 h(t) 0.002234 0.00442 0.00534 0.00584 0.00622 0.00647
t = 1 ˆh(t) 0.02941 0.01040 0.00853 0.00779 0.00724 0.00667

(0.01348) (0.00020) (0.00007) (0.00003) (0.00001) (0.000002)
θ̂ 0.25543 0.21631 0.20744 0.20483 0.20254 0.200619

θ = 0.2 h(t) 0.54324 0.56002 0.56392 0.56507 0.56609 0.56694
t = 1.5 ˆh(t) 0.54795 0.56097 0.56434 0.56532 0.56621 0.56697

(0.01839) (0.00264) (0.00078) (0.00039) (0.00015) (0.00002)
θ̂ 1.34439 1.13237 1.09132 1.07585 1.06092 1.05250

θ = 1.05 h(t) 0.25025 0.28903 0.29727 0.30045 0.30355 0.30531
t = 1.5 ˆh(t) 0.28143 0.29741 0.30125 0.30273 0.30467 0.30554

(0.01869) (0.00488) (0.00226) (0.00129) (0.00062) (0.00012)
θ̂ 3.15152 2.69424 2.59652 2.55265 2.52997 2.50530

θ = 2.5 h(t) 0.07607 0.10256 0.10932 0.11251 0.11419 0.11605
t = 1.5 ˆh(t) 0.11653 0.11604 0.11597 0.11643 0.11614 0.11644

(0.00998) (0.00313) (0.00150) (0.00089) (0.00044) (0.00008)
θ̂ 6.04436 5.41528 5.18005 5.1028 5.0607 5.01264

θ = 5 h(t) 0.01142 0.01728 0.02017 0.02122 0.02181 0.02251
t = 1.5 ˆh(t) 0.040103 0.026824 0.025033 0.024219 0.02329 0.02281

(0.00668) (0.00062) (0.00027) (0.00015) (0.00007) (0.00001)
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Table 8: True value of S(t) and estimate(MLE) & corresponding MSEs for
t = 0.75, t = 1, & t = 1.5

θ & t Method n = 5 n = 15 n = 30 n = 50 n = 100 n = 500
θ̂ 0.25496 0.21564 0.20654 0.20479 0.20201 0.20018

θ = 0.2 S(t) 0.46877 0.41739 0.40466 0.40218 0.39821 0.39557
t = 0.75 ˆS(t) 0.43577 0.40951 0.40106 0.40007 0.39716 0.39537

(0.02359) (0.00719) (0.00349) (0.00207) (0.001044) (0.00021)
θ̂ 1.32072 1.13019 1.08827 1.07346 1.06291 1.05226

θ = 1.05 S(t) 0.93211 0.90319 0.89505 0.89159 0.88904 0.88773
t = 0.75 ˆS(t) 0.88859 0.89339 0.89531 0.89619 0.89697 0.89715

(0.01056) (0.00358) (0.00174) (0.00104) (0.00052) (0.00010)
θ̂ 3.15398 2.69375 2.59982 2.56007 2.52611 2.50674

θ = 2.5 S(t) 0.99713 0.99399 0.99300 0.99253 0.99211 0.99185
t = 0.75 ˆS(t) 0.98202 0.98870 0.99015 0.99080 0.99121 0.99167

(0.00133) (0.00016) (0.00006) (0.00003) (0.00001) (0.000003)
θ̂ 6.16170 5.39945 5.20226 5.11701 5.06865 5.01182

θ = 5 S(t) 0.99997 0.99990 0.99987 0.99986 0.99985 0.99983
t = 0.75 ˆS(t) 0.99339 0.99946 0.99966 0.99973 0.99978 0.99982

(0.00502) (0.000001) (0.0000003) (0.0000001) (0.00000003) (0.000000004)
θ̂ 0.25237 0.21597 0.20773 0.20481 0.20250 0.20052

θ = 0.2 S(t) 0.37961 0.33735 0.32731 0.32370 0.32084 0.31837
t = 1 ˆS(t) 0.35642 0.33190 0.32479 0.32225 0.32011 0.31823

(0.01929) (0.00562) (0.00274) (0.00161) (0.00081) (0.00015)
θ̂ 1.34594 1.13448 1.09333 1.07245 1.06215 1.05246

θ = 1.05 S(t) 0.88904 0.84933 0.83992 0.83489 0.83235 0.82992
t = 1 ˆS(t) 0.83001 0.82987 0.83040 0.82908 0.82946 0.82935

(0.01692) (0.00569) (0.00283) (0.00175) (0.00088) (0.00017)
θ̂ 3.17655 2.69800 2.59951 2.55627 2.52797 2.50549

θ = 2.5 S(t) 0.94869 0.92345 0.91775 0.91496 0.91278 0.91120
t = 1 ˆS(t) 0.96381 0.97194 0.97422 0.97506 0.97579 0.97638

(0.00329) (0.00063) (0.00028) (0.00016) (0.00007) (0.00001)
θ̂ 6.08392 5.39642 5.20642 5.11668 5.05185 5.01264

θ = 5 S(t) 0.99967 0.99929 0.99911 0.99901 0.99894 0.99889
t = 1 ˆS(t) 0.98283 0.99773 0.99831 0.99853 0.99869 0.99884

(0.01260) (0.000014) (0.000004) (0.000002) (0.0000008) (0.0000001)
θ̂ 0.25543 0.21631 0.20744 0.20483 0.20254 0.200619

θ = 0.2 S(t) 0.27930 0.24339 0.23495 0.23245 0.23024 0.22838
t = 1.5 ˆS(t) 0.26506 0.24039 0.23361 0.23166 0.22985 0.22831

(0.01376) (0.00352) (0.00166) (0.00097) (0.00048) (0.00009)
θ̂ 1.34439 1.13237 1.09132 1.07585 1.06092 1.05250

θ = 1.05 S(t) 0.78479 0.73215 0.72035 0.71576 0.71124 0.70866
t = 1.5 ˆS(t) 0.72525 0.71401 0.71150 0.71062 0.70868 0.70815

(0.02417) (0.00839) (0.00430) (0.00254) (0.00129) (0.00026)
θ̂ 3.15152 2.69424 2.59652 2.55265 2.52997 2.50530

θ = 2.5 S(t) 0.96055 0.94065 0.93515 0.93250 0.93108 0.92951
t = 1.5 ˆS(t) 0.91684 0.92465 0.92706 0.92764 0.92865 0.92902

(0.00834) (0.00238) (0.00111) (0.00066) (0.00032) (0.00006)
θ̂ 6.04436 5.41528 5.18005 5.1028 5.0607 5.01264

θ = 5 S(t) 0.99646 0.99413 0.99289 0.99243 0.99216 0.99185
t = 1.5 ˆS(t) 0.97250 0.98850 0.99002 0.99065 0.99129 0.99167

(0.01145) (0.00018) (0.00006) (0.00003) (0.00001) (0.000002)
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Appendix 2

1: Distribution Function

F (x | θ) =

(
1 − θ

x+θ

)
(e−θ/x) ; x ≥ 0, θ > 0

0 ; otherwise
(33)

Proof

• F (−∞) = 0

• F (+∞) = 1

• If x ≤ y then F (x|θ) ≤ F (y|θ)

• F (x|θ) is right continuous.

Hence F (x|θ) is a distribution function.

2: rth Moment

The rth moments about origin exits only for r < 1

E[Xr] =
� ∞

0
xr θ(2x + θ)

x(x + θ)2 e−θ/x dx (34)

when we put the θ/x = t and simplify it then we get

E[Xr] = θr

[� ∞

0

1
tr(1 + t)e−t dt +

� ∞

0

1
tr(1 + t)2 e−t dt

]

First term of integral we say I1 and second term of integral we say that I2
Now, put r=1 we get I1 is

I1 =
� ∞

0

[1
t

− 1
1 + t

]
e−t dt

First term of above integral we say I3 and second term of integral we say that I4
Now, The I3 is negative integer for gamma function which is divergent (see Fisher and
Kılıcman (2012)) and I4 is incomplete gamma function which is finite, so equation (34) is
divergent
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Abstract
Earlier binary (k, r)-regular LDPC codes have been constructed using balanced in-

complete block designs, mutually orthogonal Latin rectangles, partial geometries, group
divisible designs, resolvable group divisible designs and finite geometries. Here we have con-
structed LDPC codes from certain triangular and L2-type designs which are free of 4–cycles.

Key words: LDPC Codes; Association schemes; Partially balanced incomplete block designs;
Triangular designs; L2-type designs

AMS Subject Classifications: 62K10, 05B05

1. Introduction

1.1. LDPC codes

A binary (k, r)-regular low–density parity–check (LDPC) code is the null space of a
s × t sparse parity-check matrix H (i.e. the majority of entries must be zero) over a Galois
field GF (2) of order 2 such that each row has r nonzero elements and each column has k
nonzero elements where r ≪ t and k ≪ s. The minimum distance of a code is equal to
the minimum number of nonzero columns in the parity-check matrix such that a nontrivial
linear combination of these columns sums to zero over GF (2) [see Wicker (1995), p. 84 and
Johnson and Weller (2003), p. 1416].

Parity-check matrices (or LDPC codes) may be represented as Tanner bipartite graphs
with vertex set V ∪W where V is comprised of code bits and W is comprised of parity-check
equations. There exists an edge {v, w}, v ∈ V and w ∈ W , in this bipartite graph if and
only if v is a term in the check equation w. A cycle in a graph is a sequence of connected
vertices which start and end at the same vertex in the graph and no other vertices occur
more than once. The length of the cycle is the number of edges it contains and the girth of
a graph is the length of its smallest cycle. Since the Tanner graph is bipartite, the length of
a cycle must be even and at least 4.
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An LDPC code performs well with iterative decoding provided the corresponding
Tanner graph have a reasonably large girth, i.e., the graph should be free of short cycles.
The cycles that affect the performance the most are the cycles of length four. These short
cycles severely limit the performance of iterative decoding. For codes with these short cycles,
iterative decoding becomes correlated after two iterations. Therefore, cycles of length four
must be avoided in code construction [see Bonello et al. (2011) and Xu et al. (2005)].

An LDPC code is free of 4-cycles if no two distinct columns (or two distinct rows)
of H have more than one nonzero component in common or the inner product of any two
distinct rows or any two distinct columns of the parity-check matrix H is less than or equal
to 1. This constraint on H is known as the row-column constraint (or RC constraint), see
Diao et al. (2013). The RC-constraint confirms that the girth of the LDPC codes generated
by such H is at least six.

1.2. Balanced incomplete block design

A balanced incomplete block design (BIBD) or a 2− (v, k, λ) design is an arrangement
of v elements into b = (λ(v2 − v))/((k2 − k)) blocks, each of size k(< v) such that every
element is replicated r times and any two distinct elements occur together in λ blocks.

A BIBD is resolvable if the b blocks each of size k can be partitioned into r resolution
classes such that

(i) Each resolution class contains b/r blocks;
(ii) Every element is replicated exactly once in each resolution class.

A BIBD with k = 3 and λ = 1 is usually known as Steiner’s triple system (STS) or
Steiner 2–design and a resolvable Steiner’s triple system is known as Kirkman triple system
(KTS), see Raghavarao (1971), Johnson and Weller (2001) and Ray–Chaudhuri and Wilson
(1971).

Example 1: Consider a resolvable BIBD with parameters: v = 9, b = 12, r = 4, k = 3, λ = 1
whose resolution classes are:
RI: [(1 2 3) (4 5 6) (7 8 9)]; RII: [(1 4 7) (2 5 8) (3 6 9)]; RIII: [(1 5 9) (2 6 7) (3 4 8)]; RIV:
[(1 6 8) (2 4 9) (3 5 7)].

1.3. Association scheme

A relationship defined on a set of v elements is called an association scheme with two
associate classes if it satisfies the following conditions:

(a) Any two distinct elements are either 1st or 2nd associates of each other and any element
is the 0-th associate of itself,

(b) Each element has nj; j-th associates (j = 0, 1, 2) and
(c) For every pair of elements which are j-th associates of each other, there are pj

u,w

elements that are u-th associates of one and w-th associates of the other (j, u, w =
0, 1, 2).
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1.4. Partially balanced incomplete block (PBIB) design

Given an association scheme with two associate classes on a set of v elements, a
PBIB design based on this association scheme is a block design with v elements and b blocks
satisfying the following conditions:

(i) Each element appears at most once in a block,
(ii) Each block has a fixed number of elements, say k,
(iii) Each element appears in a fixed number of blocks, say r, and
(iv) Every pair of elements which are j-th (j = 1, 2) associates of each other appear together

in λj blocks (λ1 ̸= λ2).
Some special classes of PBIB designs known as group divisible, triangular and L2-type

Latin square designs are described below:

1.5. Group divisible design

Let v = mn(m, n ≥ 2) elements be arranged in an m × n array, say M . A group
divisible (GD) association scheme on these v = mn elements is defined as follows: two
elements are first associates if they occur in the same row of M and second associates,
otherwise.

A PBIB design based on GD association scheme is said to be GD design. The integers:
v = mn, b, r, k, λ1 and λ2 are known as parameters of the GD design and they satisfy the
relations: bk = vr;(n − 1)λ1 + n(m − 1)λ2 = r(k − 1). Furthermore, if r − λ1 = 0 then the
GD design is singular (S); if r − λ1 > 0 and rk − vλ2 = 0 then it is semi–regular (SR) and
if r − λ1 > 0 and rk − vλ2 > 0 then the design is regular (R).

Example 2: Consider the following resolvable solution of an SRGD design SR9 with pa-
rameters: v = 8, b = 16, r = 4, k = 2, λ1 = 0, λ2 = 1, m = 2, n = 4 as given in Clatworthy
(1973):
RI: [(1 5) (2 6) (3 7) (4 8)]; RII: [(2 7) (1 8) (4 5) (3 6)]; RIII: [(4 6) (3 5) (2 8) (1 7)]; RIV:
[(3 8) (4 7) (1 6) (2 5)].
The arrangement of v = 8 elements in 2 × 4 array is given as: 1 2 3 4

5 6 7 8.

1.6. Triangular design

A triangular association scheme is an arrangement of v = (s(s − 1))/2 elements in an
s × s array such that the positions on the principal diagonal are left blank, the (s(s − 1))/2
positions above and below the principal diagonal are filled with the v elements in such a
way that the resultant arrangement is symmetric about the principal diagonal. Then any
two elements which occur in the same row or same column are first associates; otherwise
they are second associates. A PBIB design based on triangular association scheme is called a
triangular design. The integers v = (s(s−1))/2, b, r, k, λ1 and λ2 are known as parameters of
the triangular design and they satisfy the relations: bk = vr; 2(s−2)λ1+((s−2)(s−3))/2λ2 =
r(k − 1).

Example 3: Consider a triangular design T9 given in Clatworthy (1973) with parameters:
v = b = 10, r = k = 3, λ1 = 1, λ2 = 0 whose blocks are given as: (1 2 5); (8 9 10); (2 3 8); (5
7 9); (2 4 9); (5 6 8); (3 4 10); (6 7 10); (1 4 7); (1 3 6)
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The arrangement of 10 elements in 5 × 5 array is given as:

∗ 1 2 3 4
1 ∗ 5 6 7
2 5 ∗ 8 9
3 6 8 ∗ 10
4 7 9 10 ∗

.

1.7. L2-type design

An L2-association scheme is an arrangement of v = s2 elements into an s×s array such
that any two elements in the same row or in the same column of the array are 1st associates;
otherwise they are 2nd associates. A PBIB design based on L2-association scheme is known
as an L2- type design. The integers v = s2, b, r, k, λ1 and λ2 are known as parameters of the
L2-type design and they satisfy the relations: bk = vr; 2(s − 1)λ1 + (s − 1)2λ2 = r(k − 1).

Example 4: Consider an L2-type design as given in Clatworthy (1973) with parameters:
LS26: v = b = 9, r = k = 4, n1 = n2 = 4, λ1 = 1, λ2 = 2 whose blocks are given as:
(1 2 6 9); (2 4 6 8); (1 4 8 9); (2 5 7 9); (2 3 4 7); (3 4 5 9); (1 5 6 7); (3 6 7 8); (1 3 5 8)

The arrangement of v = 9 elements in 3 × 3 array is given as:
1 4 7
2 5 8
3 6 9

.

SRX, TX and LSX numbers are from Clatworthy (1973). For details on BIB, GD, triangular
and L2-type designs, we refer to Dey (2010), Raghavarao (1971), Raghavarao and Padgett
(2005).

2. Earlier constructions

Low-density parity-check (LDPC) codes were introduced by Gallager (1962). LDPC
codes can be divided into two types: random codes and structured codes. Random LDPC
codes are constructed by computer search while structured LDPC codes are constructed by
algebraic and combinatorial methods. Earlier constructions of regular LDPC codes from
combinatorial designs may be summarized below in Table 1:

A recent survey on algebraic constructions of LDPC codes may also be found in
Saurabh and Sinha (2023). The purpose of this paper is to construct binary regular LDPC
codes based on triangular and L2- type designs. The incidence matrix of such block design is
used as parity-check matrix of the code which satisfies row-column constraint which ensures
that the girth of the proposed code is at least six and the corresponding LDPC code (or
Tanner graph) is free of 4-cycles. We are describing below the method to obtain LDPC codes
from BIB and GD designs:

2.1. LDPC codes from BIB and GD designs

The following Lemmas [see Saurabh and Sinha (2023)] describe the constructions of
LDPC codes from BIB and two associate class PBIB designs:

Lemma 1: The existence of two associate classes PBIB design with parameters: v, b, r, k, λ1,
λ2 ∈ 0, 1 implies the existence of a (k, r)-regular LDPC codes free of four cycles with code
length b and code rate about 1 − k/r(k < r).
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Table 1: Combinatorial structures and corresponding LDPC codes

No. Combinatorial Structure Reference
1 BIB designs Ammar et al. (2004), Lan et al. (2008)
2 Resolvable BIB designs Johnson and Weller (2001, 2003)
3 Group divisible designs Shan and Li (2013)
4 Resolvable group divisible designs Xu et al. (2015)
5 α(> 1)-resolvable group divisible designs Saurabh and Sinha (2023)
6 Semipartial geometries Li et al. (2008)
7 Partial geometries Johnson and Weller (2004), Diao et al.

(2016), Xu et al. (2019)
8 Finite geometries Kou et al. (2001)
9 Mutually orthogonal Latin rectangles Vasic et al. (2002)
10 Euclidean geometries and partial BIBDs Mahadevan and Morris (2002)
11 Oval designs Weller and Johnson (2003)
12 Cyclic 2-(v,3,1) designs Vasic and Milenkovic (2004)
13 Mutually orthogonal Latin squares Zhang et al. (2010)
14 Difference covering arrays Donovan et al. (2022)
15 Cubic semi–symmetric graphs Crnkovic et al. (2022)

As a special case of Lemma 1, we can obtain the following result:

Lemma 2: The existence of a BIB design with parameters: v, b, r, k, λ = 1 implies the
existence of a (k, r)-regular LDPC codes free of four cycles with code length b and code rate
about 1 − k/r(k < r).

2.2. LDPC codes from resolvable BIB and GD designs

2.2.1. LDPC codes from resolvable BIB designs

Johnson and Weller (2003) used following series of Kirkman triple systems (KTSs) in
the construction of LDPC codes:
Series 1: v = 3(4t + 1), b = (4t + 1)(6t + 1), r = 6t + 1, k = 3, λ = 1.
Series 2: v = 3(6t + 1), b = (6t + 1)(9t + 1), r = 9t + 1, k = 3, λ = 1;
where s = 6t + 1 is a prime or prime power.

Since the series I and II of KTSs are resolvable BIB designs, their incidence matrices
N may be partitioned in to ‘r’ submatrices as N = (N1|N2|N3|N4| . . . |Nr) where each Ni is
v × (v/k) matrix such that each row sum of Ni (1 ≤ i ≤ r) is one. Further juxtaposing set
of any p(4 ≤ p ≤ r) submatrices of N we obtain series of LDPC codes with length vp/3 and
code rate about 1 − 3/p [see Saurabh and Sinha (2023)]. This method may also be used to
obtain LDPC codes from a resolvable BIB design with λ = 1 other than above Series (1 and
2) of resolvable BIB designs.

2.2.2. LDPC codes from resolvable GD designs

Xu et al. (2015) considered submatrices of the incidence matrix of a resolvable GD
design with parameters: v = mn, b, r, k, λ1 = 0, λ2 = 1 as the parity-check matrix to con-
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struct series of regular LDPC codes as follows:
Consider a resolvable GD design with parameters: v = mn, b, r, k, λ1 = 0, λ2 = 1. Then its
incidence matrix N may be partitioned in to ‘r’ submatrices as N = (N1|N2|N3|N4| . . . |Nr)
where each Ni is v × (v/k) matrix such that each row sum of Ni(1 ≤ i ≤ t) is one. Further
juxtaposing set of any p(1 ≤ p ≤ r) submatrices of N we obtain series of LDPC codes with
length vp/k and code rate about 1 − k/p.

Xu et al. (2015) used the results of Assaf and Hartman (1989), Greig (1999) and
Sun and Ge (2009) on the existence of resolvable GD designs for the construction of LDPC
codes. Some of the series obtained as special cases of their results are given below:

Series 3 [Assaf and Hartman (1989)]: There exists a resolvable GD design with parameters:
v = 12s, b = 16s2, r = 4s, k = 3, λ1 = 0, λ2 = 1, m = 3, n = 4s.

Series 4 [Greig (1999)]: There exists a resolvable GD design with parameters: v = 32s, b =
64s2, r = 8s, k = 4, λ1 = 0, λ2 = 1, m = 4, n = 8s.

Series 5 [Sun and Ge (2009)]: There exist resolvable GD designs with parameters: v =
s(s2 − 1), b = (s2 − 1)2, r = s2 − 1, k = s, λ1 = 0, λ2 = 1, m = s, n = s2 − 1 where s is a prime
or prime power.

The following series of resolvable designs obtained as a special case of Theorem 10 of
Saurabh and Sinha (2023) may also be used in LDPC codes:

Series 6: There exists a resolvable SRGD design with parameters: v = q(q − t), b = q2, r =
q, k = q − t, λ1 = 0, λ2 = 1, m = q − t, n = q(1 ≤ t ≤ q − 1) where q is a prime or prime
power.

3. LDPC codes from triangular and L2-type designs

3.1. Some series of BIB designs

The following series of BIB designs may be found in Raghavarao (1971, pp. 77–78)
for s being a prime or prime power:

Series 7: v′ = b′ = s2 + s + 1, r′ = k′ = s + 1, λ′ = 1.
Series 8: v′ = (s + 1)(s2 + 1), b′ = (s2 + 1)(s2 + s + 1), r′ = s2 + s + 1, k′ = s + 1, λ′ = 1.
Series 9: v′ = s2, b′ = s(s + 1), r′ = s + 1, k′ = s, λ′ = 1.
Series 10: v′ = s3, b′ = s2(s2 + s + 1), r′ = s2 + s + 1, k′ = s, λ′ = 1.

3.2. Some series of triangular designs

The series (10–12) of triangular designs given below may be found in Raghavarao
(1971) and Dey (2010):

Series 11: For v = (s(s − 1))/2; s ≥ 5 and block size k = 2, there exist triangular designs
with parameters:

(i) b = (s(s − 1)(s − 2))/8, r = 2(s − 2), λ1 = 1, λ2 = 0.
(ii) b = (s(s − 1)(s − 2)(s − 3))/8, r = ((s − 2)(s − 3))/8, λ1 = 0, λ2 = 1.

Series 12: The existence of a triangular design with parameters v = (2s − 1)s, b = (2s −
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1)(2s−3), r = 2s−3, k = s, λ1 = 0, λ2 = 1 implies the existence of another triangular design
with parameters v = (2s−1)(s−1), b = (2s−1)(2s−3), r = 2s−3, k = s−1, λ1 = 0, λ2 = 1.

Series 13: The existence of a BIB design: v′ = s − 1, b′, r′, k′, λ = 1 implies the existence of a
triangular design with parameters: v = (s(s − 1))/2, b = sb′, r = 2r′, k = k′, λ1 = 1, λ2 = 0.

Then utilizing the series (7–10) of BIB designs respectively in Series 13, we obtain
the following series (14–17) of triangular designs respectively:

Series 14: v = ((s2 + s + 1)(s2 + s + 2))/2, b = 2v, r = 2(s + 1), k = s + 1, λ1 = 1, λ2 = 0.

Series 15: v = {(s + 1)(s2 + 1) + 1}{(s + 1)(s2 + 1)}/2, b = {(s + 1)(s2 + 1) + 1}{(s2 + 1)(s2 +
s + 1)}, r = 2(s2 + s + 1), k = s + 1, λ1 = 1, λ2 = 0.

Series 16: v = (s2(s2 + 1))/2, b = s(s2 + 1)(s + 1), r = 2(s + 1), k = s, λ1 = 1, λ2 = 0.

Series 17: v = (s3(s3 +1))/2, b = s2(s3 +1)(s2 +s+1), r = 2(s2 +s+1), k = s, λ1 = 1, λ2 = 0.

3.3. Some series of L2-type designs

Consider the following series of L2-type design as given in Raghavarao (1971) and
Dey (2010):

Series 18: The existence of a BIB design with parameters: v′ = s, b′, r′, k′, λ = 1 implies
the existence of an L2-type design with parameters: v = s2, b = 2sb′, r = 2r′, k = k′, λ1 = 1,
λ2 = 0.

Further applying the series (7–10) of BIB designs respectively in series 18, we obtain
the following series (19–22) of L2-type designs respectively:

Series 19: v = (s2 + s + 1)2, b = 2v, r = 2(s + 1), k = s + 1, λ1 = 1, λ2 = 0.

Series 20: v = (s + 1)2(s2 + 1)2, b = 2(s + 1)(s2 + 1)2(s2 + s + 1), r = 2(s2 + s + 1), k =
s + 1, λ1 = 1, λ2 = 0.

Series 21: v = s4, b = 2s3(s + 1), r = 2(s + 1), k = s, λ1 = 1, λ2 = 0.

Series 22: v = s6, b = 2s5(s2 + s + 1), r = 2(s2 + s + 1), k = s, λ1 = 1, λ2 = 0.

Example 5: Using BIB design: v = 4, b = 6, r = 3, k = 2, λ = 1 in Series 13, we obtain a
triangular design T1 : v = 10, b = 30, r = 6, k = 2, λ1 = 1, λ2 = 0 whose incidence matrix N
is:

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
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Since any two distinct columns (or rows) of N intersect in at most one element, N satisfies
RC-constraint. Hence we obtain a (2,6)-regular LDPC code free of 4-cycles with code length
30 and code rate about 0.66.

Further using BIB design: v = 4, b = 6, r = 3, k = 2, λ = 1 in Series 18, we obtain an
L2-type design LS3 : v = 16, b = 48, r = 6, k = 2, λ1 = 1, λ2 = 0. This design may be used
to obtain (2,6)-regular LDPC code free of 4-cycles with code length 48 and code rate about
0.66.

A correspondence between resolvable BIB/GD designs, triangular/ L2-type designs
and LDPC codes is given in Table 2 where p denotes the number of resolution classes:

Table 2: Resolvable BIB/GD designs, Triangular/ L2-type designs and LDPC
codes

No. Resolvable BIB designs Code length Code rate
1 Series 1 p(4m + 1) 1 − (3/p); 4 ≤ p ≤ 6m + 1
2 Series 2 p(6m + 1) 1 − (3/p); 4 ≤ p ≤ 9m + 1
3 Series 3 4sp 1 − (3/p)(4 ≤ p ≤ 4s)
4 Series 4 8sp 1 − (4/p)(5 ≤ p ≤ 8s)
5 Series 5 p(s2 − 1) 1 − (s/p); (s + 1 ≤ p ≤ s2 − 1)
6 Series 6 pq2 1 − ((q − t))/p;

q is a prime or prime power
7 Series 11 (i) s(s−1)(s−2)

8
(s−3)
(s−2)

8 Series 11 (ii) s(s−1)(s−2)(s−3)
8

(s2−5s−10)
(s−2)(s−3)

9 Series 14 (s2 + s + 1)(s2 + s + 2) 0.5
10 Series 15 {(s + 1)(s2 + 1) + 1}× (2s2+s+1)

2(s2+s+1)
(s2 + 1)(s2 + s + 1)

11 Series 16 s(s2 + 1)(s + 1) (s+2)
2(s+1)

12 Series 17 s2(s3 + 1)(s2 + s + 1) (2s2+s+2)
2(s2+s+1)

13 Series 19 2(s2 + s + 1)2 0.5
14 Series 20 2(s + 1)(s2 + 1)2 × (s2 + s + 1) (2s2+s+1)

2(s2+s+1)

15 Series 21 2s3(s + 1) (s+2)
2(s+1)

16 Series 22 2s5(s2 + s + 1) (2s2+s+2)
2(s2+s+1)

4. Discussion and conclusion

It is observed that LDPC codes obtained from series 1 of resolvable BIB designs have
shorter code length than those obtained from series 2 for the same code rate. Hence the
codes obtained from series1 are better than those obtained from series 2. Further by putting
p = 4s in series 3 we obtain LDPC codes with code length 16s2 and code rate R1 = 1−(3/4s)
whereas by putting p = 2s in series 4 we obtain LDPC codes with same code length 16s2

but different code rate R2 = 1 − (2/s) = 1 − (8/4s) < R1. Thus the codes obtained from
series 3 are better than those obtained from series 4.

LDPC codes obtained from series 11(i) have shorter code length in comparison to
the codes obtained from series 11 (ii) with better code rates if s < 19 as their differences is
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(s−3)
(s−2) − (s2−5s−10)

(s−2)(s−3) = −(s−19)
(s−2)(s−3) .

Further LPDC codes obtained from series (14-17) of triangular designs have shorter
code length in comparison to the codes obtained from series (19-22) of L2-type designs w.r.t.
fixed code rate. Hence the codes obtained from series (14-17) of triangular designs are better
than those obtained from series (19-22) of L2-type designs respectively. For example consider
LDPC codes obtained from series 14 and 19. The two codes have same code rate 0.5 but the
differences of their code lengths is 2(s2+s+1)2−(s2+s+1)(s2+s+2) = s(s+1)(s2+s+1) > 0.

Similarly differences of code lengths between series 15 and 20 is s(s2 + s + 1) > 0,
series 16 and 21 is s(s + 1)(s2 − 1) > 0 and series 17 and 22 is (s2 + s + 1)(s3 − 1) > 0. Also
the differences of code lengths obtained from series 15 and 17 is {(s + 1)(s2 + 1) + 1}(s2 +
1)(s2 + s + 1) − s2(s3 + 1)(s2 + s + 1) > 0 with almost same code. Hence series 17 yields
better LDPC codes in comparison to series 15.

Apart from the above discussed designs, PBIB designs based on partial geometry
may also be used in LDPC codes. For example the PBIB designs: PG2, PG5, PG6a from
Clatworthy (1973) yield LDPC codes free of 4–cycles and positive code rates. Some LDPC
codes with shorter code lengths and higher code rates from Table 2 are given below in Table
3:

Table 3: LPDC codes with shorter code length and higher code rate from Table
1

No. Designs Code length Code rate
1 Series 1 p(4m + 1) 1 − (3/p); 4 ≤ p ≤ 6m + 1
2 Series 3 16s2 1 − (3/4s)
3 Series 5 p(s2 − 1) 1 − (s/p); (s + 1 ≤ p ≤ s2 − 1)
4 Series 6 pq2 1 − ((q − t))/p;

q is a prime or prime power
5 Series 11 (i) s(s−1)(s−2)

8
(s−3)
(s−2) ; s < 19

6 Series 14 (s2 + s + 1)(s2 + s + 2) 0.5
7 Series 16 s(s2 + 1)(s + 1) (s+2)

2(s+1)

8 Series 17 s2(s3 + 1)(s2 + s + 1) (2s2+s+2)
2(s2+s+1)
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Abstract
Calibration approach is a systematic way of including the auxiliary information in

order to increase the precision of the estimates of a population parameter. In this paper, we
have suggested some calibration estimators for estimating the mean of a stratified population
under non-response. An efficient use of suitable auxiliary information has been elaborated to
obtain a better estimate of the population mean under certain conditions. We have obtained
new stratum weights for which the variance of the suggested calibration estimators would
achieve its minimum. An empirical study has also been carried out to verify the theoretical
outcomes.

Key words: Calibration approach; Auxiliary information; Stratified random sampling; Pop-
ulation mean; Non-response.
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1. Introduction

Calibration offers a methodical approach to incorporate the auxiliary information in
increasing the precision of the estimates. The concept behind the calibration is to find out
the new calibrated weights in such a way that the mean square error of the estimators would
be minimized. To construct the new calibrated weights, the chi-square distance measure and
some calibration constraints based on auxiliary information can be utilized. Deming and
Stephan (1940) were the first to pick up the idea of calibration in a sample survey. Deville
and Särndal (1992) adopted the idea of calibration approach in estimating the population
parameters. Särndal (2007) provides a deep study of the calibration approach, including
methods for avoiding extreme weights, estimation of complex parameters and estimation
under a complex sampling design. Kim and Park (2010) prove that an instrumental vari-
able calibration estimator and a functional-form calibration estimator are asymptotically
equivalent.

Consider a sample ’s’ of size n which is drawn from a population of Nunits by sim-
ple random sampling without replacement (SRSWOR) scheme. The study variable Y is
observed for each unit in the sample hence the observation yi is known for all i ∈ s since
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the values y1, y2, ..., yNare known for the entire population. To estimate the population total
Y ∗ = ∑N

i=1 yi, Deville and Särndal (1992) have suggested the calibration estimator, which is
constructed as

⌢

Y = ∑
i∈S piyi, where the calibration weights pi’s are chosen to minimize their

average distance from the basic design weights di = 1/πi that are used in the Horvitz and
Thompson (1952) estimator given by

⌢

Y HT =
∑
i∈S

diyi (1)

subject to the constraint ∑
i∈S

pixi = X∗ (2)

where X∗is the known population total for the auxiliary variable Xwhich is observed for
each unit in the sample hence the observation xi is known for all i ∈ s. The most common
distance measure is given as

ϕ =
∑
i∈S

(di − pi)2

diqi

(3)

where qi’s are known positive weights uncorrelated withdi. Then the resulting calibration
estimator is given as follows:

⌢

Y =
∑
i∈S

piyi =
⌢

Y HT +
⌢

B
(
X∗−

⌢

XHT

)
(4)

where
⌢

B= [∑i∈S diqix
2
i ]

−1 [∑i∈S diqixiyi] and
⌢

XHT = ∑
i∈S dixi. The definition of

⌢

Y is equiva-
lent to a generalized estimator with the choice of qi.

The authors such as Rao (1994), Estevao and Särndal (2009), Sud et al. (2014), Han
(2018), Gautam et al. (2020), Jaiswal et al. (2023), Singh et al. (2023) and others have
contributed a lot to the survey sampling in estimating the population parameters with a
view to justify the concept of calibration approach.

2. Literature reviews under stratified random sampling

Consider a finite population U = (U1, U2, ..., UN) of size Nand it is divided into k
homogeneous groups (called strata). Let the size of ith stratum be Ni (i = 1, 2, ..., k) and
hence ∑k

i=1 Ni = N . Let Y and X be the study and auxiliary variables with respective
population means Y and X. A sample of size ni is drawn by SRSWOR scheme from the ith

stratum such that ∑k
i=1 ni = n. Let (yij,xij) be the observed values of (Y, X) on the jth unit

in the ith stratum (j = 1, 2, ..., Ni). The classical unbiased estimator of the population mean
Y is given by

yst =
k∑

i=1
wiyi (5)

where yi is the mean based on ni units for the study variable and wi = Ni

N
.

In the availability of auxiliary information, Singh et al. (1998) suggested a new
calibration estimator of the population mean Y as

yc,st =
k∑

i=1
w∗

i yi (6)
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where w∗
i is a new calibrated weight such that it minimizes the chi- square distance function

φ =
k∑

i=1

(w∗
i − wi)2

wiqi

(7)

subject to the calibration constraint

k∑
i=1

w∗
i xi = X (8)

where qi is the tuning parameter for the ith stratum and xi is the mean based on ni units
for the auxiliary variable.

The calibration constraint given in equation (8) is similar as used by Dupont (1995)
and Hidiroglou and Särndal (1998) for two-phase sampling design. Minimization of chi-
square distance function given in equation (7) subject to the calibration constraint (8) leads
to the calibrated weights

w∗
i = wi + wiqixi∑k

i=1 wiqix2
i

[
X −

k∑
i=1

wixi

]
(9)

Substituting the value of w∗
i from equation (9) into equation (6), one can get combined

regression-type estimator given by

yc,st =
k∑

i=1
wiyi +

∑k
i=1 wiqixiyi∑k
i=1 wiqix2

i

[
X −

k∑
i=1

wixi

]
(10)

An estimator of the variance of the calibration estimator yc,st is represented as

V̂
(
yc,st

)
=

k∑
i=1

w2
i (1 − fi) s2

ei

ni

(11)

where s2
ei = 1

ni−1
∑ni

j e2
ij, fi = ni

Ni
, eij = (yij − yi) − b (xij − xi)and b =

∑k

i=1 wiqixiyi∑k

i=1 wiqix
2
i

.

Moreover, there are several authors who have implemented the notion of calibration
approach in estimating the parameters of a stratified population. Tracy et al. (2003), Kim
et al. (2007), Koyuncu and Kadilar (2013, 2014), Clement and Enang (2015), Nidhi et al.
(2017), Rao et al. (2017), Ozgul (2019) and others have proposed a number of calibration
estimators in stratified random sampling.

The occurrence of non-response is inherent in sample surveys. Rubin (1976) de-
lineated three key concepts, viz., (i) Missing at Random (MAR), (ii) Missing Completely
at Random (MCAR) and (iii) Observed at Random (OAR). MAR method addresses non-
response scenarios by assuming that missing data occur randomly and depend only on ob-
served information. Utilizing Multiple Imputation (MI), this technique generates multiple
plausible imputations, which reflect the uncertainty associated with missing values. MCAR
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is a category of missing data mechanism in which the likelihood of a data point being missing
has no connection to either observed or unobserved data. In the context of OAR, the data
adhere to this pattern if, for every conceivable missing data value, the probability of the
observed missing pattern, given both observed and unobserved data, is independent of the
specific values within the observed data. It is to be noted that the non-response error is not
so important if the characteristics of the non-responding units are similar to those of the
responding units. But, such similarity of characteristics between the responding and non-
responding units is not always attained in custom. In such a situation, it is much difficult
to get the précised estimates of the parameters. To deal with the problem of non-response,
Hansen and Hurwitz (1946) suggested a technique of sub-sampling of non-respondents. Later
on, Khare (1987), Chaudhary et al. (2012, 2018) have discussed the problem of non-response
in estimating the parameters of a stratified population.

It is to be mentioned that there are two types of non-response; (i) unit non-response
and (ii) item non-response. In the subsequent sections, we have tried to propose an efficient
calibration method of estimation of the population mean Y in stratified random sampling
utilizing the information on an auxiliary variable X under unit non-response. The calibration
estimators have been pioneered out under the situation in which the knowledge about the
population mean of the auxiliary variable is available in advance. It is further assumed that
the study variable is suffering from the non-response, whereas the auxiliary variable does
not suffer from the non-response. The theoretical facts have been demonstrated through an
empirical study.

3. Proposed calibration estimators

In the presence of non-response, the sampling strategy given in section-2 has been
extended to the further process. It is noted that out of ni units, ni1 units respond and ni2units
do not respond on the study variable Y . Adopting Hansen and Hurwitz (1946) technique of
sub-sampling of non-respondents, a sub-sample of hi2

(
= ni2

gi
; gi > 1

)
units is selected from

the ni2 non-responding units using SRSWOR scheme and information is collected from all
the hi2 units. The usual estimator of the population mean Y under non-response (without
using auxiliary information) is given by

y∗
st =

k∑
i=1

wiy
∗
i (12)

where y∗
i = ni1yni1+ni2yhi2

ni
. yni1 and yhi2 are respectively the means based on ni1 responding

units and hi2 non-responding units for study variable in the ith stratum.

The estimate of the variance of the estimator y∗
st is given as

V [y∗
st] =

k∑
i=1

w
2
i (1 − fi)

ni

s∗2
yi +

k∑
i=1

w
2
i (gi − 1) Wi2

ni

s2
yi(2) (13)

where s∗2
yi = 1

n∗
i −1

∑n∗
i

j (yij − y∗
i )

2, s2
yi(2) = 1

hi2−1
∑hi2

j (yij − yhi2)
2, n∗

i = ni1+hi2 and Wi2
(
= Ni2

Ni

)
is the non-response rate in the population for the ith stratum.

Here, we have considered the situation in which the non-response occurs on the study
variable, whereas the auxiliary variable is free from the non-response. In this situation, we



2024] CALIBRATION APPROACH FOR ESTIMATING THE POPULATION MEAN 125

have suggested some calibration estimators of the population mean Y when the information
about the population mean X of the auxiliary variable is known in advance. Following
Singh et al. (1998), we now propose a calibration estimator of the population mean Y in the
presence of non-response as

y∗
st(C) =

k∑
i=1

δ∗
i yi

∗ (14)

where δ∗
i is an adjusted calibrated weight for the ith stratum.

In order to get the optimum value of calibrated weight δ∗
i , we now minimize the

chi-square distance function

φ∗ =
k∑

i=1

(δ∗
i − wi)2

wiqi

(15)

subject to the calibration constraint
k∑

i=1
δ∗

i xi = X (16)

Let us define the Lagrange function

L =
k∑

i=1

(δ∗
i − wi)2

wiqi

− 2λ

(
k∑

i=1
δ∗

i xi − X

)
(17)

where λ is the Lagrange multiplier.

Differentiating the equation (17) with respect to δ∗
i and equating the derivative to

zero, we get
∂L

∂δ∗
i

= 2(δ∗
i − wi)
wiqi

− 2λxi = 0

⇒ δ∗
i = wi + λwiqixi (18)

Putting the value δ∗
i from equation (18) into the equation (16), we have

λ = X −∑k
i=1 wixi∑k

i=1 wiqix2
i

(19)

Substituting the value of λ form equation (19) into equation (18), we get the optimum
calibrated weights as

δ∗
i = wi + wiqixi∑k

i=1 wiqix2
i

[
X −

k∑
i=1

wixi

]
(20)

Putting the value of δ∗
i from equation (20) into the equation (14), the proposed

calibration estimator becomes

y∗
st(C) =

k∑
i=1

wiyi
∗ +

∑k
i=1 wiqixiyi

∗∑k
i=1 wiqix2

i

[
X −

k∑
i=1

wixi

]
(21)
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The estimators of the bias and variance of the calibration estimator y∗
st(C) are respec-

tively given by

B̂
(
y∗

st(C)

)
=

k∑
i=1

wib
∗xi

[
Ni (Ni − ni)

(Ni − 1) (Ni − 2) · 1
nixi

{
µ̂30i

s2
xi

− µ̂21i

s∗
xyi

}

+Wi2 (gi − 1)
nixi

{
µ̂30i(2)

s2
xi

−
µ̂21i(2)

s∗
xyi

}] (22)

V̂
(
y∗

st(C)

)
=

k∑
i=1

w
2
i (1 − fi)

ni

(
s∗2

yi + b∗2s2
xi − 2b∗s∗

xyi

)
+

k∑
i=1

w
2
i (gi − 1) Wi2

ni

s2
yi(2) (23)

where b∗ =
∑k

i=1 wiqixiyi
∗∑k

i=1 wiqix
2
i

, s2
xi = 1

ni−1
∑ni

j (xij − xi)2, s∗
xyi = 1

n∗
i −1

∑n∗
i

j (xij − x∗
i ) (yij − y∗

i ),

x∗
i = ni1xni1+ni2xhi2

ni

and n∗
i = ni1 + hi2. xni1 and xhi2 are respectively the means based on ni1 responding units

and hi2 non-responding units for auxiliary variable in the ith stratum.

µ̂30i = 1
ni−1

∑ni
j (xij − xi)3, µ̂21i = 1

n∗
i −1

∑n∗
i

j (xij − x∗
i )

2 (yij − y∗
i ),

µ̂30i(2) = 1
hi2−1

∑hi2
j (xij − xhi2)3 and µ̂21i(2) = 1

hi2−1
∑hi2

j (xij − xhi2)2 (yij − yhi2).

Particular cases:

(i) For instance, if qi = 1
xi

, then the equation (21) reduces to the well-known combined ratio-

type estimator of the population mean Y under non-response, i.e., y∗
st(C)R =

∑k

i=1 wiy
∗
i∑k

i=1 wixi

X.

(ii) Putting qi = 1 into the equation (21), it reduces to the combined regression-type
estimator of the population mean Y under non-response, i.e., y∗

st(C)Reg = ∑k
i=1 wiyi

∗ +∑k

i=1 wixiyi
∗∑k

i=1 wix
2
i

[
X −∑k

i=1 wixi

]
.

We now propose an improved calibration estimator of the population mean Y under
non-response as follows:

y∗∗
st(C) =

k∑
i=1

δ∗∗
i yi

∗ (24)

where δ∗∗
i is the new calibrated weight for the ithstratum.

The new calibrated weight δ∗∗
i is chosen such that the chi-square type distance

φ∗∗ =
k∑

i=1

(δ∗∗
i − wi)2

wiqi

(25)

is minimum, subject to the constraints
k∑

i=1
δ∗∗

i xi = X (26)

k∑
i=1

δ∗∗
i = 1 (27)
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Let us consider the Lagrange function

∆ =
k∑

i=1

(δ∗∗
i − wi)2

wiqi

− 2ϕ1

(
k∑

i=1
δ∗∗

i xi − X

)
− 2ϕ2

(
k∑

i=1
δ∗∗

i − 1
)

(28)

where ϕ1 and ϕ2 are the Lagrange multipliers.

Differentiating the equation (28) with respect to δ∗∗
i and equating the derivative to

zero, we get
∂∆
∂δ∗∗

i

= 2(δ∗∗
i − wi)
wiqi

− 2ϕ1xi − 2ϕ2 = 0

{
Since

∂

∂x
(F1 ± F2 ± · · · ± Fn) = ∂

∂x
F1 ± ∂

∂x
F2 ± · · · ± ∂

∂x
Fn

}

⇒ δ∗∗
i = wi + wiqi (ϕ1xi + ϕ2) (29)

Let us put the value of δ∗∗
i from equation (29) into the equation (26). The resulting

equation is given as

ϕ1

k∑
i=1

wiqix
2
i + ϕ2

k∑
i=1

wiqixi = X −
k∑

i=1
wixi (30)

Let us now substitute the value of δ∗∗
i from equation (29) into the equation (27). The

resulting equation becomes

ϕ1

k∑
i=1

wiqixi + ϕ2

k∑
i=1

wiqi = 0 (31)

The equations (30) and (31) can be written in the following matrix form:

Aϕ = B (32)

where A =
[ ∑k

i=1 wiqix
2
i

∑k
i=1 wiqixi∑k

i=1 wiqixi
∑k

i=1 wiqi

]
, ϕ =

[
ϕ1
ϕ2

]
and B =

[
X −∑L

h=1 whxh

0

]
.

The inverse of the matrix A is given as

A−1 = 1
|A|

[ ∑k
i=1 wiqi −∑k

i=1 wiqixi

−∑k
i=1 wiqixi

∑k
i=1 wiqix

2
i

]

where |A| = ∑k
i=1 wiqix

2
i

∑k
i=1 wiqi −

(∑k
i=1 wiqixi

)2
.

The solution of the system of equation (32) is given by
[

ϕ1
ϕ2

]
= 1

|A|

 ∑k
i=1 wiqi

(
X −∑k

i=1 wixi

)
−∑k

i=1 wiqixi

(
X −∑k

i=1 wixi

)  (33)
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From equation (33), we have

ϕ1 =
∑k

i=1 wiqi

(
X−
∑k

i=1 wixi

)
|A|

ϕ2 =
−
∑k

i=1 wiqixi

(
X−
∑k

i=1 wixi

)
|A|

 (34)

Thus, the optimum weight δ∗∗
i becomes

δ∗∗
i = wi + wiqixi

∑k
i=1 wiqi − wiqi

∑k
i=1 wiqixi∑k

i=1 wiqix2
i

∑k
i=1 wiqi −

(∑k
i=1 wiqixi

)2

(
X −

k∑
i=1

wixi

)
(35)

Substituting the value of δ∗∗
i from equation (35) into the equation (24), the proposed

calibration estimator becomes

y∗∗
st(C) =

k∑
i=1

wiy
∗
i + β̂

(
X −

k∑
i=1

wixi

)
(36)

where β̂ =

(∑k

i=1 wiqixiy
∗
i

)(∑k

i=1 wiqi

)
−
(∑k

i=1 wiqiy
∗
i

)(∑k

i=1 wiqixi

)
(∑k

i=1 wiqix
2
i

)(∑k

i=1 wiqi

)
−
(∑k

i=1 wiqixi

)2 .

Now, the estimators of the bias and variance of the proposed calibration estimator
y∗∗

st(C) are respectively represented as

B̂
(
y∗∗

st(C)

)
=

k∑
i=1

wiβ̂xi

[
Ni (Ni − ni)

(Ni − 1) (Ni − 2) · 1
nixi

{
µ̂30i

s2
xi

− µ̂21i

s∗
xyi

}

+Wi2 (gi − 1)
nixi

{
µ̂30i(2)

s2
xi

−
µ̂21i(2)

s∗
xyi

}] (37)

V̂
(
y∗∗

st(C)

)
=

k∑
i=1

w
2
i (1 − fi)

ni

(
s∗2

yi + β̂2s2
xi − 2β̂s∗

xyi

)
+

k∑
i=1

w
2
i (gi − 1) Wi2

ni

s2
yi(2) (38)

Note: The equation (37) can provide the non-response versions of a number of combined-
type estimators of the population mean Y for the suitable choices of qi.

4. Simulation study

In this section, a simulation study has been carried out with a view to verify the
performance of the proposed calibration estimators. We have considered a hypothetical data
set which is generated using R software under the condition of normal distribution. Here,
we first define the two random variables Y ∗ and X∗ i.e., Y ∗ ∼ N (0, 1) and X∗ ∼ N (0, 1).
Now, we generate a set of correlated random variables with correlation coefficient ρ using
the transformations Y ∗∗ = Y ∗ and X∗∗ = ρY ∗ +

√
1 − ρ2X∗ [See Reddy et al. (2010)].

Finally, we define the random variables Y and X using the transformations Y = µY +σY Y ∗∗

and X = µx + σXX∗∗. The above transformations constitute the random variables which
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are normally distributed with some meansµY , µX and variancesσ2
Y , σ2

X . In this data set, a
population of 15000 units has been shaped out. The population is divided into four strata
with respective sizes 6000, 3000, 1500 and 4500. The sample size has been fixed as 3000. The
sample size for each stratum has been determined under proportional allocation. To carry
out the simulation analysis, the number of runs has been considered as 1000. The summary
of the data set is given in Table 1.

Table 1: Distribution of population

Stratum Stratum Sample Distribution of Distribution of Correlation
No.(i) size(Ni) size(ni) of Y i.e. X i.e. coefficient between

Y ∼ N (µY , σY ) X ∼ N (µX , σX) Y and X

1 6000 1200 N (200, 20) N (100, 10) 0.78
2 3000 600 N (230, 17) N (120, 15) 0.82
3 1500 300 N (240, 22) N (145, 22) 0.8
4 4500 900 N (235, 23) N (135, 19) 0.75

Table 2 depicts the estimate of the variance of the usual estimator y∗
st and proposed

calibration estimators y∗
st(C) and y∗∗

st(C) at the different levels of non-response rate Wi2 and
inverse sampling rate gi. The percentage relative efficiency (PRE) of the proposed calibration
estimators y∗

st(C) and y∗∗
st(C) with respect to the usual estimator y∗

st has also been computed.

Table 2: Estimate of variance and PRE of the estimators y∗
st, y∗

st(C), and y∗∗
st(C)

Wi2∀i gi∀i
Estimate of Variance PRE

y∗
st y∗

st(C) y∗∗
st(C) y∗

st y∗
st(C) y∗∗

st(C)

0.1
1 0.04522 0.03329 0.02214 100 135.843 204.295
2 0.04794 0.03592 0.02482 100 133.47 193.16

2.5 0.05055 0.03857 0.02745 100 131.076 184.169
3 0.05325 0.04123 0.03013 100 129.164 176.754

0.2
1.5 0.04789 0.03591 0.02479 100 133.376 193.223
2 0.05325 0.04128 0.03015 100 128.988 176.627

2.5 0.05861 0.04667 0.03551 100 125.572 165.059
3 0.06385 0.05186 0.04075 100 123.124 156.708

0.3
1.5 0.05057 0.03858 0.02746 100 131.069 184.145
2 0.05838 0.04648 0.03534 100 125.61 165.184

2.5 0.06642 0.05437 0.04329 100 122.161 153.414
3 0.07448 0.06241 0.05133 100 119.352 145.1

0.4
1.5 0.05224 0.04027 0.02915 100 129.712 179.227
2 0.06175 0.04984 0.03869 100 123.902 159.61

2.5 0.07157 0.05951 0.04843 100 120.266 147.784
3 0.08125 0.06921 0.0581 100 117.403 139.848

From the Table 2, it is revealed that the estimates of the variance of the proposed
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calibration estimators y∗
st(C) and y∗∗

st(C) are much smaller than the usual estimator y∗
st and

hence the PRE of the proposed calibration estimators y∗
st(C) and y∗∗

st(C) is much higher as
compared to the usual estimatory∗

st. It is further revealed that the estimates of the variance
of the proposed calibration estimators y∗

st(C) and y∗∗
st(C) increase with the increase in non-

response rate Wi2 and inverse sampling rate gi as well. Such kind of outcomes is intuitively
anticipated. Table 3 represents the estimate of the bias of the proposed calibration estimators
y∗

st(C) and y∗∗
st(C) at the different levels of non-response rate Wi2 and inverse sampling rate gi.

Table 3: Estimate of bias of estimators y∗
st(C)and y∗∗

st(C)

Wi2∀i gi∀i
Estimate of Bias
y∗

st(C) y∗∗
st(C)

0.1
1 -0.00119 -0.0005
2 -0.00128 -0.0006

2.5 -0.00134 -0.0006
3 -0.00139 -0.0006

0.2
1 -0.00115 -0.0005
2 -0.00137 -0.0006

2.5 -0.00163 -0.0007
3 -0.00168 -0.0008

0.3
1 -0.00116 -0.0005
2 -0.00153 -0.0007

2.5 -0.0017 -0.0008
3 -0.00186 -0.0008

0.4
1 -0.00115 -0.0005
2 -0.00171 -0.0008

2.5 -0.00192 -0.0009
3 -0.00209 -0.0009

The Table 3 reveals that both calibration estimators y∗
st(C) and y∗∗

st(C) provide negative
bias of very less magnitude. A negative bias in the estimator of the finite population mean
suggests that on an average, the estimator leads to underestimate the true mean of the
population. Alternatively, if one has to take multiple samples from the population and
compute the mean using the estimator, the average of these computations would be below
the true population mean.

5. Concluding remarks

We have suggested some calibration estimators for estimating the mean of a stratified
population in the presence of non-response. The information on a single auxiliary variable
has been utilized to develop the calibration estimators. The chi-square distance measure has
been used in obtaining the new stratum weights under the given constraints. The calibration
estimators have been proposed under the situation in which the non-response occurs on study
variable, whereas the auxiliary variable is free from the non-response. The basic properties
of the proposed calibration estimators have been discussed in detail. The expressions for
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the estimators of the bias and variance of the proposed calibration estimators have been
derived. To examine the behavior of the proposed calibration estimators, a simulation study
has been carried out by generating an artificial data set. The Table 2 shows that the
proposed calibration estimators y∗

st(C) and y∗∗
st(C) perform very well as compared to the usual

estimatory∗
st. From Table 3, it is also revealed that both calibration estimators y∗

st(C) and
y∗∗

st(C) confer bias of very less extent.
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Abstract
Configuration of sub-assemblies in series is recommended in some environments.

Reliability assessment of two-component series system receiving shocks from a single source
is studied. Shocks are of two types: damage shocks and fatal shocks. The component fails
either due to exceedance of damage to its threshold or when it experiences a fatal shock.
The two cases of fixed and random thresholds are considered. Computation and comparison
of estimators of two models is done through simulation.

Key words: Series system; Damage shock; Fatal shock; Threshold; Reliability Assessment.
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1. Introduction

Configuration of sub-assemblies of a system in different ways is attempted (explored)
to meet certain requirements. The two fundamental configurations of subassemblies are
series and parallel. These have been studied extensively by reliability engineers, economists,
life science and social science researchers. One can quote several examples, wherein series
configurations of sub-assemblies is considered such as water heaters, lamps in a circuit, water
pumps, freezers and refrigerators, solar panels, etc. Series configuration is needed when the
same current must flow through all the sub-assemblies, easy overheating of components is
to be avoided, voltage is to be increased to meet the minimum operating requirements of
the inverter in solar appliances. In this paper, an attempt is made to study the reliability
of two component series system receiving shocks from single source wherein the shocks are
of two types: damage shocks and fatal shocks. The pioneering work on shock models is
by Esary and Marshall (1973). A-Hameed and Proschan (1973),A-Hameed and Proschan
(1975) have considered non-stationary shock models and shock models with underlying birth
process. Ross (1981) has studied generalized Poisson shock models. Survival under the pure
birth shock model was studied by Klefsjö (1981). Shanthikumar and Sumita (1983) have
discussed on general shock models with correlated renewal sequences. Semi-Markov shock
models with additive damages is studied by Posner and Zuckerman (1986). Anderson (1987)
has proposed limit theorems for general shock models. Some multivariate distributions were
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derived from non-fatal shock models by Savits (1988). Gut (1990) and Skoulakis (2000) have
contributed to the literature on general shock models for reliability system and cumulative
shock models respectively. Mallor and Santos (2003) have dealt with classification of shock
models in system reliability. Applications of Poisson shock models in insurance and credit
risk is studied by Lindskog and McNeil (2003). Inference for reliability of shock models is
studied by Chikkagoudar and Palaniappan (1981), Kunchur and Munoli (1993), Munoli and
Suranagi (2007),Munoli and Suranagi (2009) and Munoli and Bhat (2011).

Several researchers have contributed to the fields of modelling system reliability, its
optimization, bounds on system reliability and inference for system reliability. Here are
few references of contributions to these fields: Rutemiller (1966), Zacks and Even (1966),
Chung (1995), R̊ade (1976), Nakagawa and Rosenfeld (1979), Weier (1981), Necsulescu and
Krausz (1986), Fujii and Sandoh (1984), Wani and Kabe (1971), Hanagal (1996), Munoli and
Mutkekar (2011a), Munoli and Mutkekar (2011b). In the present study, a two-component
series system is subjected to a sequence of shocks occurring randomly in time as events of
Poisson process. Shocks are occurring with intensity λ, λ > 0. Shocks are of two types;
damage shocks and fatal shocks. Any shock will be a damage shock with probability ‘p’ and
fatal shock with probability (1 − p). Every damage shock causes some amounts of damage
to both components. Damages are non-accumulating. The component fails whenever the
damage exceeds threshold (u) of the component. If not, the component functions as good
as new one. On the other hand, the component may also fail when it experiences a fatal
shock. The two components function independently. The system fails when either of the two
components fail (series system). Let X and Y denote respectively the amount of damages to
first failing component of the system and surviving component of the system. X and Y are
assumed to be exponential random variables (r.v.’s) with parameter θ, θ > 0. The system
reliability at time ‘t’ is given by

S1(t) =
∞∑

k=0

e−pλt(pλt)k

k! e−(1−p)λt P k (1)

The above expression represents the following:

The first term e−pλt(pλt)k

k! is the expression for the probability that system has expe-
rienced ‘k’ number of damage shocks during (0, t), e−(1−p)λt represents the probability that
the system did not experience a fatal shock during (0, t). P k is the probability that the
system survives with k number of shocks that it has experienced during (0, t). The system
may experience during (0, t) no shock or one shock or two shocks,. . . ; hence the summation
with k = 0, 1, 2, . . . . P k is given by

P k = P (Both components survive with k number of damage shocks)
= P (X1 < u, . . . , Xk < u) . P (Y1 < u, . . . , Yk < u)

=
(
1 − e−uθ

)k
.
(
1 − e−uθ

)k

=
(
1 − e−uθ

)2k
(2)

Now, substituting the value of P k from expression (2) in the expression for S1(t) (expression
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(1)) and simplifying, we get the expression for reliability of series system as

S1(t) = e−λt[1−p(1−e−uθ)2
] (3)

The real-life examples from health science and finance for a shock model with damage shocks
and fatal shocks are:

Example 1: Heart disease is the leading cause of death worldwide. The common heart
diseases are heart attack and cardiac arrest. Heart attacks occur when blood flow to the heart
muscle is temporarily blocked, starving the muscle tissue of oxygen which causes scarring
and damage to heart muscle (damage shock with amount of damage tolerable and the person
survives with this heart attack). For a heart attack to lead to death the damage to the heart
needs to be large enough resulting in irregular heart beat and stop eventually (failure due to
damage exceeding threshold). Cardiac arrest is an abrupt loss of heart function, breathing
and consciousness. It results from an electric disturbance in the heart that disrupts its
pumping action, stopping blood flow to the different organs and can lead to death (fatal
shock).

Example 2: While lending loans to customers, financial institutes choose customers who
fetch the institute high profit. If a loanee defaults (fatal shock), it will be a loss to financial
institute. On the other hand, the loanee may do some partial repayments, close the loan
account by paying off the loan early. In this case the lender will lose a proportion of the
interest. Here partial repayments are damages due to shocks and due to closing the loan
account early is failure due to damage exceeding the shock.

These examples are discussed in detail in Munoli and Suhas (2019).

The rest of the paper is organized as follows: Life testing experiment is explained
in Section 2. MLE’s of the parameters of the model and their asymptotic distribution are
obtained in Section 3. Computation of estimators is dealt with in Section 4. Section 5
deals with the case of thresholds of the components being r.v’s. Comparison of two cases of
fixed and random thresholds is made in Section 6, conclusions are also outlined in the same
section.

2. Life testing experiment

Suppose, ‘r’ two-component systems having life distribution (1 − S1(t)) are subjected
to a life testing experiment, and the experiment continues until all the systems fail. For the
ith system, let the first failure (of two components) occur at the mth

i shock, i = 1, 2, . . . , r,
which coincides with system failure (also known as a series system). Out of ‘r’ number
of first failing components, ‘r1’ components fail due to damage exceeding threshold ‘u’,
and r2(= r − r1) components fail due to experiencing a fatal shock. Let Xij and Yij,
i = 1, 2, . . . , r; j = 1, 2, . . . , mi, be the random variables representing damages due to
the jth damage shock to failing and surviving components of the ith system. The Xij′s
and Yij′s are assumed to be independent exponential random variables with parameter θ
(θ > 0). Let tij be the time epoch at which the ith system experienced the jth shock
(j = 1, 2, . . . , mi; i = 1, 2, . . . , r). The inter-arrival times (ti,j − ti,j−1) are exponential ran-
dom variables with parameter pλ.
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For ‘r1’ systems, first failure (out of two components) has occurred due to damage ex-
ceeding the threshold, the joint pdf of the r.v’s mi, ti1, ti2, . . . , timi

, Xi1, . . . , Ximi−1, Yi1, . . . ,
Yimi

is
r1∏

i=1
(pλ)mie−pλtmi θmi−1e−θ

∑mi−1
j=1 xij e−uθ θmi e−θ

∑mi
j=1 yij (4)

It is assumed that the amount of damage due to a shock at which component has failed (due
to damage exceeding its threshold) is not observable but is known to exceeds its threshold.

For ‘r2’ systems, the first failure (out of 2 components) has occurred due to fatal
shock and the joint pdf of r.v’s mi, ti1, . . . , timi

, Xi1, . . . , Ximi−1, Yi1, . . . , Yimi−1 is given by

r2∏
i=1

(pλ)mi−1e−pλtmi−1θmi−1e−θ
∑mi−1

j=1 xij .(1 − p)λ e−(1−p)λ(tmi −tmi−1)θmi−1e−θ
∑mi−1

j=1 yij (5)

In this case, as the system failure has occurred due to experiencing a fatal shock at
mth

i shock, the damages due to fatal shock for both surviving and failing components are not
observed. Combining (4) and (5), the joint pdf L1 of all random variables of the experiment
is given by

L1 = pm−r2λme−pλt.. θ2m−r1−2r2 e−θ(x..+y..+r1u) (1 − p)r2 e−λt′ (6)

where,

t.. = ∑r1
i=1 tmi

+ 2∑r2
i=1 tmi−1−

∑r2
i=1 tmi

t′ = ∑r−r1
i=1 (tmi

− tmi−1)

x.. = ∑r
i=1

∑ri−1
j=1 xij

y.. = ∑r1
i=1

∑mi
j=1 yij +∑r2

i=1
∑mi−1

j=1 yij

m = ∑r
i=1 mi

3. MLE’s of parameters

Treating L1 as function of parameters, the MLE’s of parameters are obtained as

p̂ = [m − (r − r1)] t′

mt′ + (r − r1) t..
(7)

λ̂ = mt′ + (r − r1) t..

t′(t.. + t′) (8)

θ̂ = 2m − 2r + r1

x.. + y.. + r1u
(9)

Using invariance property of MLE’s, the MLE Ŝ1(t) of S1(t) is obtained by substituting p̂,
λ̂ and θ̂ for p, λ and θ respectively in expression (3).

In order to obtain asymptotic distribution of p̂ , λ̂ and θ̂, Fisher information matrix
I(p, λ, θ) is obtained as
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I(p, λ, θ) =


2m−2r+r1

θ2 0 0
0 m−(r−r1)

p2 + r−r1
(1−p2) E(t..)

0 E(t..) m
λ2



=


2m−2r+r1

θ2 0 0
0 b E(t..)
0 E(t..) m

λ2

 (10)

where,

b = m−(r−r1)
p2 + r−r1

(1−p2) , E(t..) = ∑r1
i=1

mi

pλ
+ 2∑r−r1

i
mi−1

pλ
−∑r−r1

i=1 [mi−1
pλ

+ 1
(1−p)λ ]

Using multivariate central limit theorem and asymptotic properties of MLE (under regularity
conditions), we have

((p − p̂) ,
(
λ − λ̂

)
, (θ − θ̂)) → N3(0, I−1)

and I−1 is given by

I−1 =


θ2

2m−2r+r1
0 0

0 m
mb−λ2(E(t..))2 − λ2E(t..)

mb−λ2[E(t..)]2

0 − λ2[E(t..)]2

mb−λ2[E(t..)]2
bλ2

mb−λ2[E(t..)]2

 (11)

4. Simulation study

Validation of the model and computation of estimators is made through Monte-Carlo
simulation. The random variables of the model are generated for different values of r, t and
parameter combinations as below:

For the ith series system of two components, the r.v’s ti1, ti2, . . . , timi
, Xi1, . . . , Ximi−1,

Yi1, Yi2, . . . , Yimi−1, Yimi
in the case of system failure due to damage shock are generated as

follows:

Step 1: Let u = u0 and a random number wi is generated from U(0, 1). If 0 < wi <
p(= p0) , then the system failure is considered as failure due to damage shock.

Step 2: Initialize mi = 0, for θ = θ0 the r.v. Xi1, Yi1 following exponential distribution
with parameter θ0 are generated. With this mi is incremented by 1. Xi1 and Yi1 are compared
with u0. If both Xi1 < u0 and Yi1 < u0 , the process of exponential r.v’s generation with
parameter θ0 and comparing with u0 is repeated with incrementation of mi by 1 with every
repeatation. The iteration at which either of Xij or Yij exceeds u0, mi is noted.

Step 3: mi number of inter-arrival times having exponential distribution with param-
eter p0λ0 are generated. Addition of these inter-arrival times results in timi

.

Step 4: If wi > p0, then system failure is considered as failure due to fatal shock. Step
2 and 3 are repeated with the difference that (mi − 1) interarrival times having exponential
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distribution with parameter (p0λ0) are generated, adding all these, ti,mi−1 is obtained. One
inter-arrival time (ti,mi

− ti,mi−1) is generated having exp((1 − p0) λ0) distribution.

Steps 1 to 4 are repeated for r = 25, 30, 40, 50.

The statistics x.., y.., r1, m, t.., t′ are computed, using which MLE Ŝ1(t) of S1(t)
are obtained at given mission time. Also using the considered set of parameter combinations
S1(t) is also obtained for same mission times. The discrepancy between theoretical S1(t)
and estimated Ŝ1(t) is studied through bias for three sets of parameter combinations and are
presented in Table 1, Table 2 and Table 3.

Table 1: Survival probabilities and bias for p = 0.7, λ = 0.3, u = 0.95, θ = 0.8

Absolute Bias
t S1(t) r=25 r=30 r=40 r=50
0.5 0.886703 0.024142 0.009437 0.008541 0.002917
0.75 0.834963 0.034296 0.013352 0.01208 0.004119
1 0.786242 0.043307 0.016791 0.015188 0.005171
1.25 0.740364 0.051269 0.019796 0.017901 0.006085
1.5 0.697163 0.058268 0.022405 0.020256 0.006874
1.75 0.656483 0.064384 0.024654 0.022283 0.00755
2 0.618176 0.06969 0.026574 0.024013 0.008124

Table 2: Survival probabilities and bias for p = 0.4, λ = 0.4, u = 1.75, θ = 0.7

Absolute Bias
t S1(t) r=25 r=30 r=40 r=50
0.5 0.849827 0.047447 0.042041 0.005374 0.003764
0.75 0.783422 0.066517 0.058848 0.007443 0.005211
1 0.722206 0.082895 0.073223 0.009163 0.006412
1.25 0.665773 0.096855 0.085421 0.010575 0.007397
1.5 0.61375 0.108646 0.095668 0.011717 0.008192
1.75 0.565792 0.118495 0.104174 0.012622 0.00882
2 0.521581 0.126606 0.111126 0.013319 0.009303
2 0.52709 0.091367 0.047135 0.04284 0.007813

Table 3: Survival probabilities and bias for p = 0.65, λ = 0.5, u = 1.2, θ = 1.1

Absolute Bias
t S1(t) r=25 r=30 r=40 r=50
0.5 0.849827 0.047447 0.042041 0.005374 0.003764
0.75 0.783422 0.066517 0.058848 0.007443 0.005211
1 0.722206 0.082895 0.073223 0.009163 0.006412
1.25 0.665773 0.096855 0.085421 0.010575 0.007397
1.5 0.61375 0.108646 0.095668 0.011717 0.008192
1.75 0.565792 0.118495 0.104174 0.012622 0.00882
2 0.521581 0.126606 0.111126 0.013319 0.009303
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5. A random threshold case

Assuming that the thresholds of two components of the series system are independent
r.v’s having exponential distribution with parameter σ, σ > 0; and with other modelling
features same as in Section 1, the reliability of the system at mission time ‘t’ is given by

S2(t) = e−λt[1−p( θ
θ+σ )]2

(12)

In order to assess S2(t), considering the life testing experiment of ‘r’ systems with
life distribution (1 − S2(t)) and following on the lines of Section 2, the joint distribution of
the random variables mi, ti1, ti2, . . . , timi

, Xi1, . . . , Ximi−1, Yi1, Yi2, . . . , Yimi−1, Yimi
, ui,1, ui,2

for all ‘r’ systems is given by

L2 = pm−r2λme−pλt..θ2m−r1−2r2e−θ(x..+y..)(1 − p)r2e−λt′
(

σ

σ + θ

)r1

σ2re−σu (13)

where, t.., t′, x.., y.., m are as defined in (6) with u. = ∑r1
i=1 ui,1 +∑r2

i=1 ui,2 Using L2, the
MLE’s of p, λ, θ, σ are obtained as

p̂ = [m − (r − r1)] t′

mt′ + (r − r1) t..
(14)

λ̂ = mt′ + (r − r1) t..

t′(t.. + t′) (15)

and σ̂ and θ̂ are obtained numerically using Newton-Raphson method by solving the equa-
tions given below

(σ + θ) (x.. + y..) + r1 = 0 (16)
1
σ

(
2r1 + 2r2 + r1θ

σ + θ

)
− u. = 0 (17)

Using invariance property of MLE, MLE Ŝ2(t) of S2(t) is obtained as

Ŝ2(t) = e
−λ̂t

[
1−p̂

(
θ̂

θ̂+σ̂

)]2

(18)

Ŝ2(t) is computed using Monte-Carlo simulation procedure. For the ith system, for genera-
tion of random variables mi,ti1,ti2,. . . ,timi

,Xi1,. . . ,Ximi−1,Yi1,Yi2,. . . ,Yimi
and computation of

Ŝ2(t), Section 4 is referred. The random thresholds Ui1, Ui2 are generated from exponential
distribution with parameter σ = σ0 and results are presented in Table 4, Table 5 and Table
6.

From above tables, it is evident that for both the sets of parameter combinations under
the two cases of fixed and random thresholds of components, bias of estimators decreases as
the number of systems on test (r) increases.
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Table 4: Survival probabilities and bias for p = 0.7, λ = 0.3, σ = 0.7, θ = 0.8

Absolute Bias
t S2(t) r = 25 r = 30 r = 40 r = 50
0.5 0.886802 0.072797 0.069117 0.06289 0.061482
0.75 0.835103 0.104912 0.099509 0.090392 0.088335
1 0.786418 0.134412 0.127362 0.115497 0.112826
1.25 0.740571 0.161466 0.152842 0.138364 0.135112
1.5 0.697397 0.186231 0.176103 0.159144 0.155342
1.75 0.65674 0.208854 0.19729 0.177978 0.173656
2 0.618454 0.229475 0.216541 0.194998 0.190186

Table 5: Survival probabilities and bias for p = 0.4, λ = 0.4, σ = 0.3, θ = 0.7

Absolute Bias
t S2(t) r = 25 r = 30 r = 40 r = 50
0.5 0.851462 0.054733 0.045812 0.040406 0.035388
0.75 0.785685 0.076962 0.064254 0.056585 0.049486
1 0.724988 0.096202 0.080112 0.070441 0.061515
1.25 0.668981 0.112745 0.093647 0.082213 0.07169
1.5 0.6173 0.126859 0.105096 0.092118 0.08021
1.75 0.569612 0.138785 0.114674 0.100354 0.087252
2 0.525608 0.148745 0.122579 0.107099 0.092979

Table 6: Survival probabilities and bias for p = 0.65, λ = 0.5, σ = 0.4, θ = 1.1

Absolute Bias
t S2(t) r = 25 r = 30 r = 40 r = 50
0.5 0.849922 0.097285 0.087879 0.069802 0.029125
0.75 0.783553 0.138312 0.124615 0.098482 0.04062
1 0.722367 0.174835 0.157104 0.123524 0.050357
1.25 0.665959 0.207239 0.185722 0.14527 0.058528
1.5 0.613955 0.23588 0.210813 0.164031 0.065305
1.75 0.566013 0.261086 0.232694 0.180093 0.070845
2 0.521814 0.283157 0.251655 0.193718 0.075288

6. Comparison, results analysis and conclusion

The estimators for two models of series systems with components having fixed thresh-
old and random threshold are compared by computing the mean square errors of Ŝi(t), i =
1, 2 using

MSEi

(
Ŝi(t)

)
= 1

M

∑M
j=1

(
Si(t) − Ŝij(t)

)2
; i = 1, 2 for m = 10000

The relative efficiencies of Ŝ2(t) as compared Ŝ1(t) are obtained as the ratio of MSE (Ŝ1(t))
to MSE (Ŝ2(t)) and are presented in Table 7.

From Table 7, it is clear that the estimators of the series system with fixed threshold
are more efficient as compared to estimators of series system with random threshold. Hence,
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Table 7: Relative efficiency of Ŝ2 (t) as compared to Ŝ1 (t)

P=0.7, λ=0.3, u=0.95, P=0.4, λ=0.4, u=1.75, P=0.65, λ=0.5, u=1.2,
σ=0.7, θ=0.8 σ=0.3, θ=0.7 σ=0.4, θ=1.1

t S1(t) S2(t) Efficiency S1(t) S2(t) Efficiency S1(t) S2(t) Efficiency
0.5 0.8848 0.8868 0.0423 0.8521 0.8515 0.06055 0.84985 0.84995 0.1773
0.75 0.8323 0.8351 0.0411 0.7865 0.7857 0.0593 0.7834 0.7836 0.1732
1 0.7830 0.7864 0.0400 0.7260 0.7250 0.0581 0.7222 0.7224 0.1692
1.25 0.7365 0.7406 0.0389 0.6702 0.6690 0.0570 0.6658 0.6660 0.1652
1.5 0.6928 0.6974 0.0378 0.6186 0.6173 0.0558 0.6138 0.6140 0.1612
1.75 0.6517 0.6567 0.0368 0.5710 0.5696 0.0547 0.5658 0.5660 0.1573
2 0.6130 0.6185 0.0357 0.5271 0.5256 0.0536 0.5216 0.5218 0.1534

the study is suggestive of series system with components having fixed threshold, which results
in gain in reliability of series system. This is because when the thresholds are r.v.’s and if
one of the component’s thresholds turns out to be too small, then system will be less reliable.
Instead, maintaining the threshold of weakest component at certain level (optimum) would
be the wise criteria to enhance system reliability.
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Abstract
Measurement error models (MEMs) provide a flexible framework to model the method

comparison data by incorporating measurement errors. However, these models often rely on
normality assumptions, which are frequently violated in practice due to skewness and heavy
tails. Furthermore, repeated data with measurement errors (MEs) are often observed in
medical research, epidemiological studies, economics, and the environment. Thus, this re-
search aims to assess the extent of similarity and agreement between the two methods using
the replicated measurement error model (RMEM) under asymmetric and heavy-tailed distri-
butions with a matching degree for true covariate and errors. The expectation-maximization
(EM) approach is applied to fit the model. A simulation study is used to test the proposed
methodology, demonstrated by evaluating subcutaneous fat data. The Total Deviation In-
dex (TDI) and Concordance Correlation Coefficient (CCC) were used to further assess the
agreement between the methods. Our suggested model works well for analyzing replicated
method comparison data with measurement errors, skewness, and heavy tails.

Key words: Agreement; Heavy-tailed distributions; Replicated measurement error model;
EM algorithm; Concordance correlation; Total deviation index.

1. Introduction

Method comparison study refers to comparing two or more methods that analyze the
outcome for understanding the agreement between the methods. Generally, a comparison is
made between the already established methods and the new methods to see whether there is
enough agreement between them. If the method comparison study of the continuous variables
is agreeable to each other or similar, it reflects that both methods can be interchangeably
used. With the vast development in the field of health and sciences, method comparisons
play a vital role in determining the better of the existing practices and new innovative
methods that are put into use. The methods include an assay, equipment, medical device,
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observation, measurement techniques, and variables of interest such as blood pressure, pulse
rate, level of cholesterol, the level of concentration of the chemical used, etc. Currently, we
have new techniques evolving in the health sector as a result of advancement, and these
new techniques might be much more effective, less invasive, economical, faster, and easy
to handle. However, the medical practitioner needs analysis of these more recent methods
that are to be compared with the already existing methods or standards to understand the
outcome.

Numerous method comparison studies are being conducted in the field of health
and science to evaluate the techniques used. Comparing the measurements of continuous
variables helps us determine the better of the prevailing methods or if they can be used
interchangeably. In method comparison studies, every subject has at least one measurement
from each method. Our focus in this research is where measurements are replicated. The first
step in the methodology is to model the method comparison data where the mixed-effects
model is commonly used. It is to be noted that the model assumes independent normal
distribution for both random effects and errors, and the measurement variability is constant
over the whole measurement range (Bland and Altman, 1999, 2007; Carrasco and Jover,
2003; Carstensen et al., 2008; Carrasco et al., 2009; Hedayat et al., 2009; Choudhary, 2008).
Secondly, the evaluation of agreement between the methods is conducted using inference on
one or more measures of agreements that quantify how much they agree well. When the
difference in measurements is small, it reflects a good agreement between the two methods.
There are numerous agreement measures, including the CCC (Lin, 1989; Barnhart et al.,
2007; Nawarathna and Choudhary, 2013, 2015) and the TDI (Lin, 1989; Nawarathna and
Choudhary, 2013, 2015; Choudhary, 2009; Choudhary and Yin, 2010) have attracted the
greatest attention in the statistical literature.

In many real-world situations, accurately measuring the true value of a variable is
challenging. Instead, we can only observe it with some degree of error. This discrepancy
between the observed and true values is known as ”Measurement Error (ME)”. Imagine
trying to hit a target with a bow and arrow. The true bullseye represents the actual value
we aim to measure, while the observed values are scattered around it due to measurement
error. These errors can arise from various factors, such as different measurement methods,
instruments, human error, or external influences. Ignoring these errors can lead to biased
estimates and increased variability in statistical inferences. Therefore, it is essential to
consider measurement errors to ensure accurate and reliable statistical analysis.

MEMs, which have been discussed in Nawarathna and Choudhary (2015), Dunn and
Roberts (1999), Alanen (2010), typically assume normality for both the true covariate and
error terms. However, in practice, the method comparison data often reflects skewness and
heavy tails, indicating departures from normality. This is exemplified by the subcutaneous
fat data discussed in Carstensen et al. (2020), demonstrating these characteristics. While
data transformations can be used to achieve normality, limiting transformations to (natural)
logarithmic transformations in method comparison studies is generally advised, as Bland and
Altman (1999) recommend. However, the log transformation may not always be successful.
In such cases, alternative approaches should be considered. Nonparametric methods, as
suggested by King and Chinchilli (2001), King et al. (2007), and Choudhary (2010), do
not rely on distributional assumptions. Generalized Estimating Equations (GEE), discussed
by Barnhart et al. (2002, 2005), and Lin et al. (2007), offer a semiparametric approach
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by directly modeling the moments of the data without assuming a specific distribution.
Additionally, parametric models can be utilized based on distributions other than the normal
distribution, as explored by Sengupta et al. (2015). These alternative approaches provide
flexibility in modeling method comparison data, accounting for its specific characteristics
beyond the assumptions of normality.

The parametric mixed-effects model approach developed by Sengupta et al. (2015) of-
fers a methodology for analyzing method comparison data with skewness and heavy tails. In
the context of MEM, Duwarahan and Nawarathna (2022) modified the STcT-MEM (Tomaya
and de Castro, 2018) specifically for unreplicated method comparison data with known error
variances. However, no MEM model is designed for replicated method comparison data.
Inspired by this gap, we aim to modify a model within the MEM framework to analyze
replicated method comparison data with skewed and heavy-tailed features. In our approach,
building upon the work of Cao et al. (2017), we consider MEMs for replicated data under
scale mixtures of skew-normal (SMSN) distributions for the true covariate and scale mixtures
of normal (SMN) distributions for the error terms with the matching degree. Specifically,
we use the skew-t (ST) distribution for the true covariate and the t distribution for the error
term. We also consider the skew-normal (SN) and normal (N) distributions for comparative
purposes. The primary objective of this paper is to modify the above model to analyze
method comparison data, assess the agreement between the two methods, and determine if
they can be used interchangeably.

Additionally, our proposed methodology provides a unified framework that can handle
various types of data, including normally distributed, skewed, and heavy-tailed data. It
encompasses the N-RMEM (normal-distributed replicated measurement error model) and
SN-RMEM (skew-normal-distributed replicated measurement error model) as special cases.
Specifically, when the degrees of freedom reach infinity, the SN-RMEM turns into a special
case of the ST-RMEM (skew-t-distributed replicated measurement error model). Similarly,
when the degrees of freedom tends to infinity and the skewness parameter is zero, the N-
RMEM becomes a special case of the ST-RMEM. This flexibility allows for comprehensive
analysis and comparison of different types of method comparison data.

The remainder of the paper is organized as follows. Section 2 introduces the ST-
RMEM for method comparison data. Section 3 discusses the proposed methodology for
evaluating similarity and agreement under ST-RMEM. Section 4 investigates the proposed
model’s performance using simulated studies. Section 5 illustrates our method using subcu-
taneous fat data, and the concluding section summarizes the findings and conclusions. The
statistical program R (R Core Team, 2021) was used to perform all of the computations
given in this research.

2. Framework for method comparison data

This section describes a framework for analyzing research that compares two methods
when taking several measurements on each subject. Let Yijk, k = 1, 2, . . . , nj, j = 1, 2, i =
1, 2, . . . , m denote the kth replicate measurement of the jth method on the ith subject. Here
m is the number of subjects in the study, and nj is the number of measurements on method
j. It is to be noted that nj ≥ 2. Here Method 1 is the reference method, while Method 2 is
the test method. Let n = n1 + n2 represent the total number of measurements taken on the
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subject and N = nm represent the total number of measurements in the dataset.

If multiple measurements are found on each subject, it is referred to as ‘repeated
measurements data’ and categorized as unlinked, linked, and longitudinal data. These cate-
gories are essential as it influences the way the data are modeled. In this research, we focus
on unlinked data. Unlinked data refers to the measurements obtained from the two methods
separately, and multiple measurements on a subject taken by a method are independent
replications of the same underlying measurement. In this case, it is not mandatory for the
methods to have the same number of replications on a subject. As always, measurements
from various subjects are presumed to be independent.

Let Np(µ, Σ), SNp(µ, Σ,λ), tp(µ, Σ, ν), and STp(µ, Σ,λ, ν) indicate the p dimen-
sional N, SN, t, and ST distributions, respectively. Here, µ ∈ Rp is a location vector, Σ is a
p × p positive definite scale matrix, λ ∈ Rp is a vector of skewness parameters, and ν(> 0) is
degrees of freedom. Let G(α, β) represent the gamma distribution with parameters α(> 0)
and β(> 0), and HN(0, σ2) represent the half-normal (0, σ2) distribution. Let Ip denote
a p × p identity matrix. The symbol Σ1/2 represents a square root of the symmetric and
positive definite matrix Σ. This implies that Σ1/2(Σ1/2)T = Σ, where the symbol T denotes
transposition. The inverse of Σ is denoted as Σ−1.

2.1. Definition of ST-RMEM

The classical replicated measurement error model is

Xik = bi + δik; k = 1, 2, . . . , p and
Yil = yi + ϵik; l = 1, 2, . . . , q

yi = α + βbi + ei; i = 1, 2, . . . , m

(1)

where bi, yi be the unobserved true covariate and response, and they are observed p and q
times, respectively; α is the fixed bias; slope β is its proportional bias; δik, ϵik are measure-
ment errors of Xik and Yil, respectively; ei is the equation error, which indicates that the
true variables bi and yi are not completely connected if other factors other than bi are also
involved in the variation in yi, and δik, ϵik, ei are uncorrelated with each other. Moreover,
ei is known as ‘method-subject interaction’ in a mixed-effects model. When a measurement
error model is used, it may be noted that they are frequently incorporated in the testing
method but not in the standard method. However, when a mixed-effects model is used, they
are always included in both methods. A slope β with a non-unit value suggests a difference
in the proportionate biases (or scales) of the methods.

Consider a (p+q) dimensional random vectorZi = (XT
i ,Y T

i )T , whereXi = (Xi1, Xi2,
. . . , Xip)T is a p dimensional random vector and Yi = (Yi1, Yi2, . . . , Yiq)T is a q dimensional
random vector. From (1), the model can be written as

Zi = A+Bbi +ψi (2)

where A =
[

0p

α1q

]
, B =

[
1p

β1q

]
, ψi =

[
δi

ei1q + ϵi

]
with δi = (δi1, . . . , δip)T , ϵi = (ϵi1, . . . , ϵiq)T .

It is standard to assume that bi, ei, δik and ϵik are independent and

bi ∼ N1(µb, ϕb), ei ∼ N1(0, ϕe), δik ∼ N1(0, ϕδ), and ϵik ∼ N1(0, ϕϵ). (3)
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Normality assumption is sometimes unfeasible due to the skewness, heavy-tailed ness, and
outliers. To overcome this problem, Cao et al. (2017) developed the ST-RMEM by consider-
ing ST for true covariate and t distribution for error terms with the same degrees of freedom.
It follows

bi ∼ ST1(µb, ϕb, λb, ν), ei ∼ t1(0, ϕe, ν), δik ∼ t1(0, ϕδ, ν), and ϵik ∼ t1(0, ϕϵ, ν). (4)

It can be hierarchically represented as

Zi | bi, Ui = ui ∼ Nn(A+Bbi, Σ1/Ui),
bi | Ui = ui, Vi = vi ∼ N1(µb + γbvi, τb/Ui),

Vi | Ui = ui ∼ HN (0, 1/Ui),

Ui ∼ G(ν

2 ,
ν

2).

(5)

where n = p + q, γb = ϕ
1/2
b δb, δb = λb√

1+λ2
b

, τb = ϕb(1 − δ2
b ), Σ1 =

[
ϕδIp 0p×q

0q×p ϕe1q1T
q + ϕεIq

]
.

The mean vector and variance matrix of Zi are as follows.

E(Zi) = A+BE(bi), ν > 1 and

Var(Zi) = ν

ν − 2ϕbBB
T − ζ2Bγbγ

T
b B

T + ν

ν − 2Σ1, ν > 2 (6)

where E(bi) = µb + ζγb, with ζ =
√

ν
π

Γ( ν−1
2 )

Γ( ν
2 ) and Γ(·) denotes the gamma function, and its

conditional distribution is expressed as

Zi | Ui ∼ SN n(A+Bµb, Σ/Ui,λ), (7)

where Σ = ϕbBB
T + Σ1 and λ = λbϕbΣ−1/2B√

ϕb+λ2
b
Λb

with Λb = ϕb

c
, c = 1 + ϕbB

T Σ−1
1 B.

Cao et al. (2017) used an EM algorithm to estimate the parameters due to the complexity
of the likelihood function.

2.2. ST-RMEM for method comparison data

Let Yij = (Yij1, Yij2, . . . , Yijnj
)T denote the nj measurement vector from method j(=

1, 2). The vector Yi = (Y T
i1 ,Y T

i2 )T denote all measurements on subject i. Let Ỹ = (Ỹ1, Ỹ2)T

represent paired observations from the two methods on a randomly chosen subject from the
population. The basic ST-RMEM can now be used flexibly to model replicated method
comparison data. This model implies that Method 1 is a well-known method used as a
reference method in the comparison. It is of the form

Yi1k = bi + δi1k;
Yi2k = α + βbi + ei + ϵi2k; i = 1, 2, . . . , m k = 1, 2, . . . , nj.

(8)

where α and β are the fixed bias and proportional bias of method 2, respectively, bi denotes
the true unobservable measurement for the ith subject, ei is the equation error, and δi1k,
ϵi2k are random errors. Both fixed and proportional biases result in systematic measuring
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mistakes. However, Method 1 does not assume a fixed or proportionate bias for identifiability
reasons.

This model can be expressed in the matrix notation of (2) by setting Zi = Yi,ψi =[
δi1

ei1n2 + ϵi2

]
where δi1 = (δi11, . . . , δi1n1)T , ϵi2 = (ϵi21, . . . , ϵi2n2)T , and (p, q) = (n1, n2). It

further assumes that
bi ∼ ST1(µb, ϕb, λb, ν), ei ∼ t1(0, ϕe, ν), δi1k ∼ t1(0, ϕδ, ν), and ϵi2k ∼ t1(0, ϕϵ, ν). (9)

where bi, ei, δi1k, and ϵi2k are mutually independent. This model is a modification of the
ST-RMEM, previously mentioned in this section. It can be considered when the data
shows skewness and heavy-tailedness in method comparison. It can handle two or more
measuring methods, replicated and un-replicated measurements, as well as balanced and
unbalanced designs. In the un-replicated case (i.e., nj = 1) there is no need to include
the equation error term. The unknown parameter vector of the model (9) is denoted by
θ = (α, β, µb, ϕb, λb, ϕe, ϕδ, ϕε)T , and we use the EM algorithm to obtain the maximum like-
lihood estimates (MLEs) of these parameters. The SN-RMEM gets to be a special case of
the ST-RMEM (9) when ν → ∞.

bi ∼ SN1(µb, ϕb, λb), ei ∼ N1(0, ϕe), δi1k ∼ N1(0, ϕδ), and ϵi2k ∼ N1(0, ϕϵ) (10)
When the skewness parameter λb = 0 and the degrees of freedom parameter ν → ∞, it is a
standard N-RMEM.

bi ∼ N1(µb, ϕb), ei ∼ N1(0, ϕe), δi1k ∼ N1(0, ϕδ), and ϵi2k ∼ N1(0, ϕϵ) (11)

3. Assessment of similarity and agreement

3.1. Similarity measures

A method comparison study aims to assess the similarity of measuring methods and
their agreement. This evaluation is performed by drawing conclusions based on similarity and
agreement measures, which are functions of the model parameters. Evaluation of similarity
is a comparison of characteristics, including biases, precisions, and scales of the methods,
to find out how the methods differ. In the case of the model (8), the similarity is assessed
by analyzing biases with intercept (α) and slope (β). The scales of the methods are the
same if the slope is 1. In addition, the true values of the methods are also the same if
the intercept is zero. Method precisions can be determined using the ratio, denoted as
λ = error variance of Method 1

error variance of Method 2 . If λ = 1, methods 1 and 2 are equally accurate, but if λ < 1,
Method 1 is more accurate than Method 2, and if λ > 1, Method 2 is more accurate than
Method 1. However, this necessitates that these methods be on the same scale. For example,
the precisions of two thermometers measured in Fahrenheit and Celsius cannot be compared
until one is converted to the same scale. Hence, the test method’s scale can be adjusted to
equal that of the reference method by dividing Ỹ2 by the slope β. As a result, the precision
ratio is β2λ and is referred to as the ’squared sensitivity ratio’.

3.2. Agreement measures

The evaluation of similarity is just a comparison of the methods’ marginal distribu-
tions. Evaluation of agreement is an analysis of the methods’ joint distribution, including
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their marginal distributions. Further, the closeness of the two methods’ measurements is re-
ferred to as agreement. When their measurements are identical, the methods agree perfectly.
In this ideal case, the bivariate distribution of Ỹ1 and Ỹ2 is concentrated on the 45° line; as
a result, the joint distribution becomes degenerate at zero.

In practice, we use measures of an agreement to quantify the extent of the agreement.
In spite of the fact that a number of agreement measures are available (Barnhart et al.,
2007), two among them, to be specific, the CCC and the TDI, have received the foremost
consideration in the statistical literature. These are explained below.

3.2.1. Concordance correlation coefficient

This measure was introduced by Lin (1989), and it is defined as

CCC = 2cov(Ỹ1, Ỹ2)
[E(Ỹ1) − E(Ỹ2)]2 + Var(Ỹ1) + Var(Ỹ2)

(12)

It lies in [−1, 1], and a high CCC score indicates good agreement. A score of 1 indicates per-
fect positive agreement, whereas -1 denotes excellent negative agreement. More information
on this measure’s properties and generalizations to various data types, and models can be
found in Barnhart et al. (2007) and Lin et al. (2012).

3.2.2. Total Deviation Index

Lin (2000) introduced this measure, defined as

TDI(p) = 100 pthpercentile of |D̃ = Ỹ1 − Ỹ2| for a specified p. (13)

In practice, the value of p is assumed to be between 0.80 and 0.95. It is a non-negative mea-
sure, with smaller values indicating higher agreement and zero indicating perfect agreement.
The confidence bounds of this measure reflect how significant a measurement difference may
be in a given large fraction of the population. As a result, if all of the discrepancies in this
interval are acceptable from a practical standpoint, the methods are said to be in satisfactory
agreement. Lin et al. (2002) and Choudhary (2008) provided extensive information on this
measure.

In order to evaluate the agreement between methods, we first fit a model to the
method comparison data Yijk, k = 1, . . . , nj, j = 1, 2, i = 1, . . . , m, using the maximum
likelihood (ML) approach, as indicated in section (2.2). Let θ̂ be the ML estimator of
the parameter vector of θ. According to asymptotic theory, when n is large, the sampling
distribution of θ̂ approximately follows a multivariate normal distribution with mean θ and
variance I−1 under specific regularity constraints, where I is the observed information matrix
Lehmann (1998).

Consider φ as a scalar measure of agreement between two methods. Its ML es-
timator φ̂ is produced by substituting θ with θ̂. When φ is a differentiable function of
θ, the delta method can be used to estimate the sample distribution of φ̂, expressed as
φ̂ ∼ N(φ,DTI−1D), where D = ∂φ

∂θ
is the Jacobian matrix evaluated at θ = θ̂, and they

are typically estimated numerically. The 100(1 − α)% two-sided confidence bounds for the
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agreement measure φ are φ̂ ± z1−αSE(φ̂), where z1−α is the (1 − α)th percentile of N1(0, 1)
and SE(φ̂) = (DTI−1D) 1

2 . In specific, in case small values for φ infer good agreement
(e.g., TDI), at that point, require an upper bound. Though in case large values for φ in-
fer good agreement (e.g., CCC), at that point, require a lower bound. After applying a
normalizing transformation, the confidence intervals are computed to make stride accuracy
for parameters or parameter functions whose range does not span the entire real line. The
results are rearranged back to the initial scale. Particularly, TDI is transformed using a log
transformation, while CCC is transformed using Fisher’s z-transformation. These confidence
boundaries are then used to assess if the methods agree sufficiently.

This approach makes sense only if there is no proportionate bias in the test procedure.
Thus, the test method needs to be adjusted such that its scale matches to that of the
reference method before the agreement can be evaluated (Nawarathna and Choudhary, 2015;
Choudhary and Nagaraja, 2017). Therefore, we first transform Ỹ2 as Ỹ2

∗ = Ỹ2/β to make Ỹ2
on the same scale as Ỹ1. The measures of agreement in the transformed case are functions
of parameters of the bivariate distribution of (Ỹ1, Ỹ2

∗), respectively, and the equation of
these agreement measures can be determined by inserting the moments from their respective
bivariate distributions into their definitions. After this transformation, these measures follow
from (12)-(13) that

CCC∗ = 2cov(Ỹ1, Ỹ2
∗)

[E(Ỹ1) − E(Ỹ2
∗)]2 + Var(Ỹ1) + Var(Ỹ2

∗)
(14)

TDI∗ = 100 pthpercentile of |D̃∗ = Ỹ1 − Ỹ2
∗| for a specified p. (15)

3.3. Agreement evaluation under different models

3.3.1. ST-RMEM

As previously mentioned, Ỹj denotes a single measurement using the jth method
(j = 1, 2) on a randomly selected subject from the population to derive the expressions for
measures of the agreement under the assumed ST-RMEM. Moreover, a companion model
for Ỹ = (Ỹ1, Ỹ2)T is generated from the model (8).

Ỹ = A+Bb̃ + ψ̃ (16)

where A =
[
0
α

]
; B =

[
1
β

]
; ψ̃ =

[
δ1

e + ϵ2

]
.

Further, b̃ ∼ ST1(µb, ϕb, λb, ν) and ψ̃ ∼ t2(0, Σ̃1, ν) with Σ̃1 =
[
ϕδ 0
0 ϕe + ϕε

]
.

The mean vector and variance matrix of Ỹ ∗ = (Ỹ1, Ỹ ∗
2 = Ỹ2/β) are as follows from (16) that

E(Ỹ ∗) = A∗ +B∗E(bi), ν > 1 and

Var(Ỹ ∗) = ν

ν − 2ϕbB
∗B∗T − ζ2B∗γbγ

T
b B

∗T + ν

ν − 2Σ̃1
∗
, ν > 2

(17)

whereA∗ =
[

0
α/β

]
;B∗ =

[
1
1

]
; E(bi) = µb+ζγb with ζ =

√
ν
π

Γ( ν−1
2 )

Γ( ν
2 ) and Σ̃∗

1 =
[
ϕδ 0
0 1

β2 (ϕe + ϕε)

]
.
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Further, we can write using the hierarchical representation (7),

Ỹ =
(

Ỹ1
Ỹ2

)
|U ∼ SN2(A+Bµb, Σ̃/U, λ̃) (18)

where A =
[0
α

]
;B =

[1
β

]
; Σ̃ =

[
ϕb + ϕδ βϕb

βϕb β2ϕb + ϕe + ϕϵ

]
and λ̃ = λbϕbΣ̃−1/2B√

ϕb+λ2
b
Λb

are counterparts of
Σ and λ. After the transformation, it becomes

Ỹ ∗ =
(

Ỹ1
Ỹ ∗

2

)
|U ∼ SN2(A∗ +B∗µb, Σ̃∗/U, λ̃∗) (19)

where Σ̃∗ =
[
ϕb + ϕδ ϕb

ϕb ϕb + 1
β2 (ϕe + ϕϵ)

]
and λ̃∗ = λbϕbΣ̃∗−1/2B∗√

ϕb+λ2
b
Λb

with Λb = ϕb
c ,

c = 1 + ϕbB
∗T Σ̃∗

1
−1B∗, Σ̃∗

1 =
[
ϕδ 0
0 1

β2 (ϕe + ϕϵ)

]
.

Furthermore, we know, if Y ∼ SNq(µb, ϕb, λb) and δb = λb

(1+λ2
b
)

1
2

, γb = ϕ
1
2
b δb, τb = ϕb(1 − δ2

b ).

Then
mT Y ∼ SN1

(
mT µb,m

T ϕbm,mT ϕ
1
2
b δb/(mT τbm)

1
2

)
, (20)

where m ∈ Rq with at least one non-zero element (Sengupta et al., 2015). It follows from (20) that
the difference D̃ = Ỹ1 − Ỹ2 is

D̃|U ∼ SN1
(
mT (A+Bµb),mT Σ̃m/U,mT Σ̃1/2δ̃/(mT Γ̃m)1/2

)
, (21)

where m = (1, −1)T , δ̃ = λ̃/(1 + λ̃T λ̃)1/2 and Γ̃ = Σ̃ − Σ̃1/2δ̃δ̃T Σ̃1/2.
When considering transformation, D̃∗ = Ỹ1 − Ỹ ∗

2 is

D̃∗|U ∼ SN1
(
mT (A∗ +B∗µb),mT Σ̃∗m/U,mT Σ̃∗1/2δ̃∗/(mT Γ̃∗m)1/2

)
, (22)

where δ̃∗ = λ̃∗/(1 + λ̃∗T λ̃∗)1/2 and Γ̃∗ = Σ̃∗ − Σ̃∗1/2
δ̃∗δ̃∗T Σ̃∗1/2.

We can now derive the equations for CCC and TDI under ST-RMEM (16) for transformed
data. As described in (14), the CCC∗ for transformed data can be computed as

CCC∗ =
2
[

ν
ν−2ϕb − ζ2γbγ

T
b

]
[mT (A∗ +B∗µb)]2 +

[
ν

ν−2ϕb − ζ2γbγ
T
b + ν

ν−2ϕδ

]
+
[(

ν
ν−2ϕb − ζ2γbγ

T
b

)
+ 1

β2

(
ν

ν−2ϕϵ + ν
ν−2ϕe

)]
(23)

Next, as we know from equation (15), the TDI∗ is defined as the pth quantile of D̃∗ with a given
large probability of 0 < p < 1, and it can be obtained by solving

TDI∗ = P (|D̃∗| ≤ t) =
ˆ ∞

0
{F ∗(t) − F ∗(−t)} f(u|ν) du, t > 0 (24)

where F ∗ is the distribution function of D̃∗|U and f(u|ν) is the density of U .
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3.3.2. SN-RMEM

For the model (10), the mean vector and variance matrix of Ỹ ∗ are

E(Ỹ ∗) = A∗ +B∗E(bi), and

Var(Ỹ ∗) = ϕbB
∗B∗T

(
1 − 2δT

b δb

π

)
+ Σ̃∗

1,
(25)

where E(bi) = µb +
√

2
π γb.

The hierarchical representation of Ỹ is
(

Ỹ1
Ỹ2

)
∼ SN2(A+Bµb, Σ̃, λ̃), and after the transformation,

the marginal distribution of (Ỹ1, Ỹ ∗
2 ) is

(
Ỹ1
Ỹ ∗

2

)
∼ SN2(A∗ +B∗µb, Σ̃∗, λ̃∗).

Then, CCC∗ can be defined as

CCC∗ =
2ϕb

(
1 − 2δ2

b
π

)
(

α
β

)2
+
[
ϕb

(
1 − 2δ2

b
π

)
+ ϕδ

]
+
[
ϕb

(
1 − 2δ2

b
π

)
+ 1

β2 (ϕε + ϕe)
] (26)

Next, D̃∗ = Ỹ1 − Ỹ ∗
2 and m = (1, −1)T .

D̃∗ ∼ SN1
(
α/β,mT Σ̃∗m,mT Σ̃∗1/2δ̃∗/(mT Γ̃∗m)1/2

)
. (27)

The TDI∗ for SN-RMEM is

P (|D̃∗| ≤ t) = F ∗(t) − F ∗(−t); t > 0 (28)

where F ∗ is the distribution function of D̃∗.

3.3.3. N-RMEM

The mean vector and variance matrix of Ỹ ∗ are, according to the standard model (11),

E(Ỹ ∗) = A∗ +B∗µb and
Var(Ỹ ∗) = ϕbB

∗B∗T + Σ̃∗
1.

(29)

The marginal distribution of (Ỹ1, Ỹ ∗
2 ) is

(
Ỹ1
Ỹ ∗

2

)
∼ N2(A∗ +B∗µb, Σ̃∗).

Next, D̃∗ = Ỹ1 − Ỹ ∗
2 can be represented as

D̃∗ ∼ N1
(
α/β,mT Σ̃∗m

)
. (30)

The N-RMEM adaptation of CCC∗ can now be defined as

CCC∗ = 2ϕb(
α
β

)2
+ [ϕb + ϕδ] +

[
ϕb + 1

β2 (ϕε + ϕe)
] (31)

The TDI∗ under N-RMEM can be determined as

P (|D̃∗| ≤ t) = Φ
(

t − E(D̃∗)
sd(D̃∗)

)
− Φ

(
−t − E(D̃∗)

sd(D̃∗)

)
(32)

where Φ denotes the cumulative distribution function (CDF) of a standard N distribution.
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4. Simulation study

A simulation study is performed to evaluate the performance of the MLEs under the ST-
RMEM, SN-RMEM, and N-RMEM models designed for analyzing method comparison data. We
generated the data for two different methods, considering sample sizes of m = 20, 50, and 100, using
models (5) and (8) that incorporated ST distribution for true covariate and t distribution for the
error term (ν = 5). The initial values of the parameters are µb = 1, α = 0.02, β = 0.96, log(ϕb) =
0.03, log(ϕδ) = −5, log(ϕε) = −6, log(ϕe) = −6, and we set λb = 5 and 10 for comparison. These
findings were inspired by the ML estimate from the real data set studied in Section 5. Furthermore,
we assume that the repeated number of observations per method is three. We then compute the
MLEs using the EM algorithm on the sample data using the ST, SN, and N distributions with
equation error, respectively. For the assessment of the estimations, we compute the sample bias
(BIAS), standard deviation (SD), root mean square error (RMSE), and coverage probability (CP)
after 1000 repeats. Table 1 summarizes the findings. The R programming language (R Core Team,
2021) was used to do all calculations.

Table 1 shows BIAS, SD, and RMSE values for the ST distribution are lower in all circum-
stances. As a result, the performance of the ST distribution is better than that of the SN and N
distributions, which may be due to their skewed and heavy-tailed characteristics. Additionally, the
estimates become more exact when the sample size rises from 20 to 100. When m = 100, all cover-
age probabilities (CPs) are near the nominal value of 95 percent. For smaller and moderate sample
sizes, most of the CPs are also around 95 percent, and some are considerably lower. However, the
CPs for all cases rise as the sample size increases. As a result, whether the skewness is moderate
or heavy, we may state that the ST-RMEM CPs outperform other models.

Table 2 presents the efficiencies of ST-RMEM-based estimators in relation to the SN-RMEM
and N-RMEM models calculated by dividing the MSE under the SN-RMEM and N-RMEM models
by the MSE under the ST-RMEM. Notice that the relative efficiencies are greater than one in all
situations, meaning that ST-RMEM is more accurate than SN-RMEM and N-RMEM. Furthermore,
when n rises, the relative efficiencies improve.

We also compute the Akaike information criterion (AIC) and Bayesian information criterion
(BIC) values when the data is produced via ST-RMEM. These values are shown in Table 3, and
the findings reveal that ST-RMEM performs better than other models since it has lower values.
Furthermore, as the sample size rises, the estimates become more exact. Table 4 presents estimated
type I error probabilities for the 5% level Likelihood Ratio (LR) test, where the null hypothesis
claims that a smaller model (SN-RMEM or N-RMEM) gives a good fit and the alternative hypoth-
esis states that a larger model (ST-RMEM) provides a good fit. For the small sample size, values
are close to 5%, showing the minimal difference between the two models. The values are fewer than
5% for moderate and large sample sizes, indicating that ST-RMEM is preferable. In summary, the
ST-RMEM performs much better than the N-RMEM and SN-RMEM in the presence of skewed
and heavy-tailedness.

5. Application to fat data

The subcutaneous fat thickness (Carstensen et al., 2020) was measured in centimeters at the
Steno Diabetes Center to compare the measurements of two experienced observers, ‘KL’ (Method
1) and ’SL’ (Method 2). The study includes 43 persons (subjects), and the measurements (cm)
from each method are repeated three times on each subject. The three replicates are interchange-
able within the subject and method, and the repeated measurements are unlinked. The design is
balanced with 43×3×2=258 observations, and measurements vary from 0.39 to 4.20 cm. Figure 1
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depicts a histogram and normal Q-Q plot for subcutaneous fat, revealing that the data is positively
skewed and heavy-tailed. The trellis plot of this data, shown in Figure 2, reveals considerable
overlap in the measurements given by the methods. At the same time, it is evident that SL values
are lower than KL for the majority of persons. A few cases show quite substantial disparities, im-
plying a skewed distribution of differences. The measures show significant within-subject variation,
although it is small when compared to between-subject variation. The dataset is homoscedastic,
and there are no obvious outliers.

Figure 3 shows scatterplots and Bland-Altman plots of randomly chosen and averaged over
replications. The scatter plots reveal a high correlation between the methods, confirming that KL
readings are greater than SL readings since most points are above the line of equality, and the
Bland-Altman plots indicate that the scales of the methods may differ. Moreover, it should be
noted that the data were obtained on persons from a Diabetes Center, and numerous factors, such
as a person’s food habits and laboratory conditions, might influence a measurement. As a result,
these measures are prone to inaccuracy. Thus, the measurement error model gives a better fit for
this data.

The modeling of data is the preliminary step in the analysis. Initially, we fit the data using
the modified ST-RMEM (9), where bi follows ST distribution, measurement errors (δik, ϵik), and
equation errors (ei) follows multivariate t distribution. In this case, the degree of freedom (ν) is
treated as a known parameter, determined by the Schwarz information criteria (Schwarz, 1978).
There are a total of eight parameters in this model. The numDeriv package (Gilbert and Varadhan,
2019) in R is used to compute the required numerical derivatives. Secondly, we fit the SN-RMEM
(10) where bi follows SN distribution, measurement errors (δik, ϵik), and equation errors (ei) follow
multivariate N distribution. This model also has eight unknown parameters. Next, we fit the
N-RMEM (11), which has seven unknown parameters. We then compute the MLEs of parameter
θ using the EM algorithm and their standard errors (SEs) under the above models.

Table 5 provides these parameter estimates, SEs, and 95% confidence limits for the above
RMEMs. AIC and BIC values based on the RMEM model under the above distributions are shown
in Table 6. The model is better when the AIC value is small, and we find that the AIC value is
small for ST-RMEM. Furthermore, the LR test is used to determine if the null hypothesis H0 :
SN-RMEM model is preferred to the alternative hypothesis H1 : ST-RMEM model is preferable.
It is important to test the hypothesis H0 to see if the inclusion of the degrees of freedom (ν)
is meaningful. The p-value for this LR test is < 0.0001. Therefore, the parameter (ν) must be
taken into account. Thus, the modified ST-RMEM fits significantly better than N-RMEM and
SN-RMEM.

The examination of similarity is the second step in the analysis. The proportionate bias
estimate (β) is 0.97 (SE = 0.02), and the 95% confidence interval is [0.93, 0.99]. As a result, there is
evidence of a minor downward proportionate bias, but it is marginal. Furthermore, the estimated
fixed bias (α) is 0.02 (SE = 0.03), with a 95% confidence range of [-0.04, 0.08]. Although this
interval includes 0, it also demonstrates a minor fixed bias. Because there is evidence of small bias,
the methods have unequal scales. Thus, their precision is measured using a squared sensitivity
ratio, and the value is 1.16 (> 1), indicating that Method 2 (SL) is more precise than Method
1(KL).

The next step is an assessment of the agreement. As previously indicated, due to a little bias
in SL measurement, we rescaled its measurement Ỹ2 as Ỹ2

∗ = Ỹ2/β. The estimated transformation
is Ỹ2

∗ = Ỹ2/0.97. We compute the estimates and 95% one-sided confidence limits for the agreement
measures examined in Section 3.2 for the converted data, which are also shown in Table 6. To obtain
these estimates, first, perform Fisher’s z-transformation for CCC∗ and the log transformation for
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TDI∗. The CCC∗ estimate for ST-RMEM is 0.990, as defined in (23), and its lower bound is 0.984;
both are close to one, suggesting good agreement amongst the methods. Next, we make an inference
on the agreement measure TDI∗ (with p = 0.90), which is given by (24). It has an estimate of
0.034 and an upper bound of 0.050. This upper bound indicates that 90% of discrepancies in
measurements from the methods lie within -0.05 to 0.05 with 95% confidence. Since the true value
range is around 4, this discrepancy may be regarded as acceptable. As a result, we may conclude
that the methods are in good agreement. This obviously suggests that the KL and rescaled SL
methods agree sufficiently to be deemed interchangeable.

6. Conclusions

This paper develops the methodology for analyzing replicated method comparison data
using the MEM framework with the ST distribution for true covariate and the t distribution
for errors. We considered the same degree for true covariates and errors. This methodology
is sufficient enough to accommodate normally distributed, skewed, heavy-tailed data and both
together. The main advantage of this model is that it can assess similarity and agreement between
methods, regardless of whether or not the methods use the same nominal unit of measurement.
We concentrated here on a comparison of two methods. However, the model may be expanded
to include more than two methods. Simulation experiments and the use of subcutaneous fat data
confirmed the efficiency and reliability of findings under the ST-RMEM model. Furthermore, we
determined that the ST-RMEM model performs best with skewed and heavy-tailed data. Our
proposed model would yield appropriate results for method comparison data with measurement
error, skewness, and heavy tails, which are frequent in many fields such as economics, health, and
the environment.

Data availability statement

The subcutaneous fat dataset is available in Carstensen et al. (2020).
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Table 2: Relative efficiencies of ST-RMEM-based estimators relative to the N-
RMEM and SN-RMEM

m Quantity λ = 5 λ = 10
MSESN/MSEST MSEN/MSEST MSESN/MSEST MSEN/MSEST

20 α 1.669 1.564 1.645 1.615
β 1.697 1.591 1.689 1.664
µb 1.542 6.880 1.494 39.476

log(ϕb) 2.214 16.298 2.899 125.044
λb 12.140 - 14.691 -

log(ϕδ) 2.941 2.869 3.041 3.004
log(ϕϵ) 2.230 2.230 2.261 2.261
log(ϕe) 2.420 1.864 2.552 2.008

50 α 2.518 2.353 2.478 2.436
β 2.599 2.427 2.542 2.479
µb 2.987 11.626 2.784 79.822

log(ϕb) 6.929 46.536 7.531 384.150
λb 17.174 - 15.026 -

log(ϕδ) 4.310 4.195 4.420 4.386
log(ϕϵ) 3.144 3.145 3.244 3.244
log(ϕe) 4.950 3.322 4.451 3.514

100 α 4.281 4.007 4.079 4.016
β 4.466 4.172 4.272 4.160
µb 5.886 20.898 4.224 150.331

log(ϕb) 16.624 106.344 8.354 860.975
λb 14.090 - 9.108 -

log(ϕδ) 8.006 7.790 8.370 8.245
log(ϕϵ) 4.114 4.114 4.215 4.215
log(ϕe) 7.444 5.211 6.147 5.975
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Table 3: Results of model selection criteria when the ST-RMEM is the data
generating model

Set m Criterion Models
ST-RMEM SN-RMEM N-RMEM

λ = 5 20 AIC -127.966 -114.127 -114.254
BIC -120.001 -106.161 -107.284

50 AIC -334.621 -291.235 -286.153
BIC -319.325 275.939 -272.769

100 AIC -681.815 -585.752 -571.630
BIC -660.974 -564.911 -553.394

λ = 10 20 AIC -130.099 -115.218 -115.177
BIC -122.133 -107.252 -108.206

50 AIC -341.021 -295.815 -288.066
BIC -325.725 -280.519 -274.681

100 AIC -695.410 -596.829 -575.334
BIC -674.569 -575.987 -557.098

Table 4: Estimated type I error probabilities for 5% level likelihood ratio test

Set m H0 : SN-RMEM model is preferable H0 : N-RMEM model is preferable
H1 : ST-RMEM model is preferable H1 : ST-RMEM model is preferable

λ = 5 20 0.067 0.044
50 0.008 0.002
100 < 0.001 < 0.001

λ = 10 20 0.062 0.032
50 0.008 0.001
100 < 0.001 < 0.001
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Table 6: Model selection criteria and measures of agreement for transformed
subcutaneous fat data. Lower bound for CCC∗ and upper bound for TDI∗ are
presented

Models AIC BIC CCC∗ TDI∗

Estimate 95% Bound Estimate 95% Bound
ST-RMEM -278.806 -259.171 0.990 0.984 0.034 0.050
SN-RMEM -261.149 -241.514 0.987 0.977 0.056 0.083
N-RMEM -264.469 -247.289 0.987 0.980 0.232 0.263

Figure 1: Histogram (a-b) and normal Q-Q plot (c-d) of the subcutaneous fat
data. Left panel for ’KL’ observer and right panel for ’SL’ observer
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Figure 2: Trellis plot for subcutaneous fat data
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Figure 3: Scatterplot with line of equality (left) and Bland-Altman plots with
zero line (right) for subcutaneous fat thickness measurements. One measurement
per method from each of the 43 subjects is randomly selected for this plot. Same
as the top panel but based on 43 average measurements
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Abstract
In this paper, network node with self-similar priority based input traffic is modeled

into finite buffer single server queuing system, and is analyzed through level dependent quasi
birth-death (QBD) process with preemptive priority mechanism. Here, input process follows
transient Markovian arrival process (MAP), and service time (packet lengths) follows Phase
type (PH) distribution, which is more general than deterministic and exponential distri-
butions. The queuing behavior of the system at arbitrary times through the performance
metrics, namely, queue length, mean waiting time, and packet loss probability is investi-
gated. For this, time dependent state probability vector of transition rate matrix is obtained
using method of product integrals which in turn gives performance measures, and compu-
tational complexity of analysis is presented. This type of analysis is useful in dimensioning
the network node to provide Quality of Service (QoS) guarantee.

Key words: Self-similar; Quasi birth and death process; Markovain arrival process; Phase
type; Transition rate matrix; Waiting time; Loss probability.

AMS Subject Classifications: 60G18, 60K25, 68M20

1. Introduction

Performance of communication system depends on network nodes. The network nodes
namely, switch, router, and multiplexer in B-ISDN (Broadband Integrated Switching Digital
Network), play a vital role in communication, and therefore it is essential to analyze the
performance of nodes for providing QoS. In general, analysis of network nodes is made by
queueing methods, and this queueing based analysis has a long history of success in plan-
ning and dimensioning of networks. The fundamental studies of network traffic namely LAN
(Leland et al., 1994), WAN (Paxson and Floyd, 1995), and WWW (Crovella and Bestavros,
1997) at AT & T Bell labs disclosed that these traffic are self-similar, and degrade perfor-
mance of system. It is clear that self-similar nature of traffic is emulated by homogeneous
Markovian Modulated Poisson process which was superposition of Interrupted Poisson Pro-
cess (IPP) or Switched Poisson Process (SPP) over different time scales. In the papers
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(Andersen and Nielsen, 1998; Yoshihara et al., 2001; Shao et al., 2005), performance anal-
ysis was made under steady state conditions, as such is not so useful for real time network
traffic analysis. Recently, Abhilash and Malla Reddy (2022) proposed a fitting procedure
for time dependent Markovian process, namely, MMPP with Sinusoidal arrival rates based
on second order statistics, and proved that resultant MMPP emulates self-similar nature of
network traffic in prescribed time scales. On the other hand, in B-ISDN, high demand causes
congestion, and pertinent issues can be handled using priority queueing mechanism. Priori-
tization based on the importance is most common feature in all modern internet applications
to offer QoS. Priority mechanism is a concept of scheduling of different classes of arrivals to
a single server. It has wide range of applications not only in engineering, but in inventory of
manufacturing industries and health care systems (Zhao and Alfa, 1995; Brahimi and Wor-
thington, 1991; Cohen et al., 1988). There are different priority disciplines like preemptive,
non-preemptive and discretionary priority. Each discipline has a scheduling procedure. In
the literature, there are number of supplements based on priority scheduling, the outline
of few fundamental priority queueing models in continuous-time was evident in the papers
(Miller, 1960; Kleinrock, 1976; Takagi, 1991) and references therein. White and Christie
(1958) studied M/M/1 queues with multiclass arrivals using preemptive priorities and anal-
ysis is made by generating functions of state probabilities. Later, Marks (1973) proposed an
algorithm for computing probabilities of queue length. Sandhu and Posner (1989) analyzed
voice/data communication using priority M/G/1 queue. Boxma et al. (1999) worked on
heavy traffic using M/G/1 queue with priority classes and regularly varying heavy tailed
service time distributions. Sharma and Virtamo (2002) consider finite buffer queue with
priorities to model the system in the internet and obtain algorithms for workload, waiting
time, and packet loss. Takine and Hasegawa (1994) derived LST of waiting time of customers
based on MAP/G/1 queue with state dependent service time distributions. Takahashi and
Miyazawa (1994) gave relation between queue length and waiting time distribution in a pri-
ority queue with batch arrivals. Takada and Miyazawa (2002) obtain moments of buffer
contents for a Markov modulated fluid queue with preemptions. Jin and Min (2007) pro-
pose a novel analytical model for priority queueing system with heterogeneous LRD input
traffic. Tarabia (2007) investigated the impact of catastrophes on single server preemp-
tive priority queue using generating functions. Sampath et al. (2013)studied performance
of wavelength division multiplexing optical packet switch employing wave length conversion
techniques under self-similar input traffic. Zhao et al. (2015) analyzed sojourn time of two
classes of customers using MAP/PH/1 queue with discretionary priority based on service
stages. Ravi Kumar et al. (2017) evaluated performance of self-similar traffic input model in
terms of high priority and low priority packet loss probabilities using MMPP/PH/c/K queu-
ing system. Also, Malla Reddy and Ravi Kumar (2014, 2016, 2021)explored performance of
network routers (synchronous and asynchronous) with self-similar input traffic using vari-
ous multiserver queueing systems employing priority mechanism in the papers. From above
cited papers, one can observe that priority discipline was used in various contexts to analyze
systems, but in all the above cases performance analysis was made under steady state with
homogeneous arrival and service processes, which are not realistic. As mentioned earlier,
in present work, a network node with self-similar input traffic is modeled into transient
MAP/PH/1/N queue with preemptive priority mechanism. Time dependent analysis of the
system is made by level dependent quasi birth and death process, and arrival process follows
MMPP with sinusoidal arrival rates (which is a special case of MAP). Performance measures,
namely, queue length, mean waiting time, and packet loss of high priority and low priority
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packets are presented numerically.

The paper is organized as follows: Queueing model description is given in section
2. In section 3, performance analysis of system is presented. In section 4, computation
complexity of algorithm is presented, and numerical results are illustrated in section 5.
Finally, conclusions are given in section 6.

2. Queuing model

It is assumed that the packet arrivals are of high priority (Type I) and low priority
(Type II) packets. Assume that Type I packet arrivals follows the MMPP characterized
by (QI , ΛI(t)), where QI , ΛI(t) are matrices of order nI . Where as, Type II packet arrivals
follow the MMPP characteriazed by (QII , ΛII(t)), where QII , ΛII(t) are matrices of order
nII . Here nI , nII represent number of states of underlying Markov chains of Type I and
Type II arrivals, respectively. As in Andersen and Nielsen (1998); Yoshihara et al. (2001);
Shao et al. (2005); Abhilash and Malla Reddy (2022), modeling of self-similar traffic involves
superposition of two-state MMPPs (In particular IPPs). The ith IPP of Type I and Type II
arrival process are given as follows:

QI
i =

[
−c1i c1i

c2i −c2i

]
, ΛI

i (t) =
[
λI

i (t) 0
0 0

]

and, QII
i =

[
−d1i d1i

d2i −d2i

]
, ΛII

i (t) =
[
λII

i (t) 0
0 0

]
, 1 ≤ i ≤ r (1)

The superposition of r IPPs and a Poisson process of Type I and Type II arrival process are,
respectively, given as

QI = QI
1
⊕

QI
2
⊕

· · ·
⊕

QI
r

ΛI = ΛI
1(t)

⊕
ΛI

2(t)
⊕

· · ·
⊕

ΛI
r(t)

⊕
λI

p(t)
QII = QII

1
⊕

QII
2
⊕

· · ·
⊕

QII
r

ΛII = ΛII
1 (t)

⊕
ΛII

2 (t)
⊕

· · ·
⊕

ΛII
r (t)

⊕
λII

p (t) (2)

Here, ⊕,
⊗ represent Kronecker’s sum and product respectively, and λI

p(t), λII
p (t)

are time dependent Poisson arrival rates of Type I and Type II arrivals. The superpo-
sition of MMPPs (QI , ΛI(t)), (QII , ΛII(t)) is turned into a MAP with representation of
(D0, D1(t), D2(t)), where D0 = DI

0
⊕

DII
0 denote transitions of no arrival in both types,

D1(t) = ΛI(t)⊗ InII
and D2(t) = InI

⊗ΛII(t) denotes transitions corresponding to Type I
and Type II arrivals, respectively, where DII

0 = QII − ΛII(t), DI
0 = QI − ΛI(t). The mean

arrival rate of Type I and Type II packets are given by (Abhilash and Malla Reddy, 2022)

λI
m(t) = 1

t

(
π

� t

0
D1(x) dx e

)
, λII

m (t) = 1
t

(
π

� t

0
D2(x) dx e

)
(3)

where e represents column vector of 1’s with appropriate size, and π is unique vector satis-
fying π(QI + QII) = 0, πe = 1. The system is modeled into a single server queue with finite
buffer capacity. Server provides priority scheduled service for Type I and Type II packets
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with preemptive discipline. That is, if Type I packet arrives, when Type II packet is in
service, service process is interrupted, and after completion of the service, if there are no
Type I packets, it starts processing of left over Type II packet as it is new one. Otherwise, it
would go for another Type I packet. Assume that service process of the Type I and Type II
packets follows continuous-time PH distributions denoted by (α, T ) and (β, S) respectively,
with same dimension p , where, α, β are vectors of size 1 × p, T, S are p × p matrices, and
t0 = −Te, s0 = −Se . The mean service time of Type I and Type II packets are obtained
by µI = −αT −1e, µII = −βS−1e , respectively. Buffer capacity of system is taken to be
N . Finally, the resultant queueing system of network node is MAP/PH/1/N queue with
preemptive priority. LetNII(t)(NI(t)) be the number of Type II (Type I) packets in the
system at time t, including packet in service. The thresholds for Type I and Type II packets
are K1, K2 respectively, where N equals to K1 + K2 . The arrival phase of superposed MAP
at time t is denoted by A(t) , and service phase of system is denoted by B(t). Therefore,
arrival process of system is characterized by a multi-dimensional continuous time Markov
chain F (t) = {N I(t), N II(t), A(t), B(t), t ≥ 0}, The state space of is given by:

F1 = {(0, 0, a, 0), a = 1, . . . , n}
F2 = {(mI , 0, a, b), mII > 0; a = 1, . . . , n; b = 1, . . . , p}
F3 = {(0, mII , a, b), mII > 0; a = 1, . . . , n; b = 1, . . . , p}
F4 = {(mI , mII , a, b), mI > 0, mII > 0; a = 1, . . . , n; b = 1, . . . , p}

Here, F1 represents idle state of server with arrival at phase at a. F2 represent mI(> 0)
Type I packets and no Type II packets in queue. F3 represent mII(> 0) Type II packets and
no Type I packet in queue. F4 represent there are mI(> 0), mII(> 0) of Type I and Type
II packets are in queue. In three cases, arrival is in phase a, and service is in phase b. If
stages of F (t) are arranged in lexicographical order. The level dependent block tridiagonal
generator matrix of system occupancy at time t is given by

Q(t) =



A0(t) A1(t) 0 0 . . . 0 0 0
B2(t) A0(t) A1(t) 0 . . . 0 0 0

0 A2(t) A0(t) A1(t) . . . 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 . . . A2(t) A0(t) A1(t)
0 0 0 0 . . . 0 A2(t) A0(t) + A1(t)


where all block matrices in Q(t) are square matrices of finite order, and are defined as follows,

A0(t) =



D0 D2(t)
⊗

β 0 0 . . . 0 0 0
I
⊗

s0 D0
⊕

S D2(t)
⊗

I . . . 0 0 0
0 I

⊗
s0β D0

⊕
S D2(t)

⊗
I . . . 0 0 0

... ... ... ... . . . ... ... ...
0 0 0 0 . . . I

⊗
s0β D0

⊕
S D2(t)

⊗
I

0 0 0 0 . . . 0 I
⊗

s0β M



A0(t) =


D0

⊕
T D1(t)

⊗
I 0 0 0 0

0 D0
⊕

T D1(t)
⊗

I 0 0 0
... ... ... . . . ... ...
0 0 0 0 D0

⊕
T D1(t)

⊗
I

0 0 0 0 0 D0
⊕

T + D1(t)
⊗

I


(K2+1)×(K2+1)
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A1(t) =


D1(t)

⊗
α 0 0 0

0 D1(t)
⊗

I 0 0
0 0 . . . 0
0 0 0 D1(t)

⊗
I


(K2+1)×(K2+1)

B2(t) =


I
⊗

t0 0 0 0
0 I

⊗
t0α 0 0

0 0 . . . 0
0 0 0 I

⊗
t0α


(K2+1)×(K2+1)

A1(t) = diag[D1(t)
⊗

I, D1(t)
⊗

I, . . . , D1(t)
⊗

I]K2+1,

A2(t) = diag[I
⊗

t0α, I
⊗

t0α, . . . , I
⊗

t0α]K2+1,

where M = D0
⊕

S + D2(t)
⊗

I, I is an identity matrix of an appropriate order and A0(t)
is of order (K2 + 1) × (K2 + 1).

3. Performance analysis

Let π(t) = (π0(t), π1(t), . . . , πK1(t)) be transient state probability vector of Q(t). That
is, π(t) satisfies (Stewart, 1994)

d

dt
π(t) = Q(t)π(t) (4)

=⇒ π(t) = π(0) exp

(� t

0
Q(x) dx

)
(5)

By using Theorem. 2.4.3 in (Slav́ık, 2007), one can get

π(t) = π(0)
n∏

k=0
(I + Q(tk)h) (6)

where h = tk − tk−1, n is number of partitions of the interval (0, t] , and π(0) is state
probability vector at time t = 0 . Here, each πj(t) is vector corresponding to the set of states
with j Type I packets, and is in the form of πj(t) = (πj0(t), πj1(t), . . . , πjK2(t). Each πjk(t)
represents the probability that there exist j Type I packets, and k Type II packets are in
the system. The performance measures are given as follows:
The Mean waiting time of Type I packets (Zhao et al., 2015)

MWTT ypeI = E[N I(t)]
λI

m(t) = 1
λI

m(t)

K1∑
j=1

jπj(t)e (7)

Let assume Y = ∑K1
i=1 πj(t), and Y = {Y:0(t), Y:1(t), . . . , Y:K2(t)}, where each Y:mII

(t) is a
row vector corresponding to mII Type II customers in the system. The Mean waiting time
of Type II packets is

MWTT ypeII = E[N II(t)]
λII

m (t) = 1
λII

m (t)

K2∑
k=1

k (Y:k(t) + π0k(t)) e

 (8)
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Since, buffer capacity is finite, If Type I (Type II) packet arrives, and finds that there are
K1 (K2) packets in system, then the packet is lost. The loss probability of Type I and Type
II packets (Zhao et al., 2015) in small time duration ∆ are, respectively

P I
loss = 1

λI
m(t + ∆)

[
πK1(t)

(� t+∆

t

(
D1(x)

⊗
I
)

dx

)
e

]
(9)

P II
loss = 1

λII
m (t + ∆)

[
(Y:K2(t) + π0K2(t))

(� t+∆

t

(
D2(x)

⊗
I
)

dx

)
e

]
(10)

4. Computational complexity

In this section, one can present computational complexity of performance measures
(Malla Reddy and Ravi Kumar, 2016; Chen et al., 2007; Wang et al., 2000), namely, mean
waiting time and packet loss probability of Type I and Type II packets, which are given in
Eqs.(7-10). The complexity of MWTT ypeI , MWTT ypeII is of the order O ((K2 + 1)nm), O
((K1 + 1)nm) respectively, due to it involves product of several row and column vectors. The
complexity of P I

loss, P II
loss is of the order O ((K2 + 1)2n2m2), O ((K1 + 1)2n2m2) respectively.

But, the Eqs. (7-10) involves transient state probability vector of generator matrix Q(t) (with
dimensions((K1 + 1)(K2 + 1)nm), which is obtained by using method of Product integrals,
and it is given in Eq. 6. Since, the problem of finding state probability vector involves
addition and product of matrix Q(t) several times. The computational complexity of finding

product
n∏

i=0
(I + Q(ti)h) is of the order O

(
((K1 + 1)(K2 + 1)nm)2.37

)
(using Coppersmith-

Winograd algorithm), and complexity of addition is of the order O((K1 + 1)2(K2 + 1)2n2m2).
Therefore, the overall computation complexity of the algorithm according to Big-O analysis
is of order O

(
((K1 + 1)(K2 + 1)nm)2.37

)
.

5. Numerical results

In this section, performance measures of the system are presented numerically. For
arrival process of Type I and Type II packets, the numerical values given in Table 1 and
2 are used. The number superposed MMPPs are taken to be 2, and sinusoidal arrival
rates are taken in the form of a + bjsint , where a is whole arrival rate and bj varies in
between (0, 1). For Type I packet arrivals transition rates are given in Table 1 and arrival
rates are same for three samples (based on traffic parameters) of Type I packets, these are
λI

1(t) = 1 + 0.3 × sin t, λI
2(t) = 1 + 0.7 × sin t. For Type II packet arrivals transition rates are

given in Table 2, and arrival rates are same for three samples (based on traffic parameters),
these are λII

1 (t) = 1 + 0.4 × sin t, λII
2 (t) = 1 + 0.8 × sin t. Assume that service distribution

follows two phase distribution, i.e, Erlang distribution(E2) with varying service rates. Figs.
1-6 show that waiting time and packet loss for Type I and Type II packets increases as traffic
intensity increases at every time instant, and also represent that waiting time and packet
loss increase as Hurst parameter (H) increases. From Figures 7 and 8, one can observe that
mean waiting time increases, and packet loss decreases as threshold of Type I increases at
every particular instant of time for H = 0.9.
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Table 1: Values of traffic parameters and fitting parameters of Type I
arrival rates

Sample Parameters of Self-similar Input Traffic r=2
c11 c21

Sample 1 H = 0.7, λw(t) = 1, and σ2 = 0.6 0.196 0.001
Sample 2 H = 0.8, λw(t) = 1, and σ2 = 0.6 0.0102 0.000188
Sample 3 H = 0.9, λw(t) = 1, and σ2 = 0.6 0.005198 0.0005

Table 2: Values of traffic parameters and fitting parameters of Type II
arrival rates

Sample Parameters of Self-similar Input Traffic r=2
d11 d21

Sample 1 H = 0.7, λw(t) = 1, and σ2 = 0.6 0.23 0.0013
Sample 2 H = 0.8, λw(t) = 1, and σ2 = 0.6 0.05 0.00092
Sample 3 H = 0.9, λw(t) = 1, and σ2 = 0.6 0.003 0.000272

Figure 1: Traffic intensity vs mean waiting time with N = 10, t = 1

Figure 4: Traffic intensity vs packet loss with N = 10, t = 3, ∆ = 0.5
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Figure 2: Traffic intensity vs packet loss with N = 10, t = 1, ∆ = 0.5

Figure 3: Traffic intensity vs mean waiting time with N = 10, t = 3

Figure 5: Traffic intensity vs mean waiting time with N = 10, t = 5
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Figure 6: Traffic intensity vs packet loss of Type II packets with N = 10, t =
5, ∆ = 0.5

Figure 7: Traffic intensity vs mean waiting time of Type I packets with t = 3, H =
0.9

6. Conclusions

In this paper, network nodes with self-similar input priority based traffic are modeled
into transient MAP/PH/1 queueing system, and its performance analysis is made by using
level dependent quasi-birth and process with preemptive priority mechanism. The system
is approximated by a finite buffer and transient state probability vector is obtained by
the method of product integrals. Numerical results show that how traffic intensity, Hurst
parameter, and threshold effects mean waiting time and packet loss of HP and LP packet
arrivals at different time instants.
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Figure 8: Traffic intensity vs packet loss of Type I packets with t = 3, H = 0.9, ∆ =
0.5
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Abstract
The present study investigates the impact of COVID-19 and restrictions imposed

on wheat in different agricultural markets of India. The COVID-19 pandemic has had a
significant impact on various sectors worldwide, including the food market. In India, the
wheat crop harvest coincided with the lockdown imposed to control the spread of the virus.
Monthly wholesale price data of seven states viz. Chhattisgarh, Uttar Pradesh, Madhya
Pradesh, West Bengal, and Maharashtra were exercised from agricultural marketing portal
of India. We compared monthly prices of April, May and June across 2019, 2020 and 2021.
Linear piecewise regression was used to understand the impact COVID-19 on market whole
sale price during different phases. The result revealed that wheat prices were at minimum
support price in most of the states. Time series analysis showed the immediate impact of
lockdown on decreased monthly wholesale price in all the states. Price risk was calculated
using Cuddy Della Valle instability index (CDVI). Maharashtra showed the highest average
monthly whole sale price and maximum price risk. The findings suggest that the agricultural
markets have demonstrated a significant level of resilience in coping with the adverse effects
of the COVID-19 pandemic. This is attributed to the provision of adequate policy support
that has helped to mitigate the impact of the pandemic on the sector.

Key words: COVID-19; Whole sale Price; Wheat; Agricultural commodity; Price risk.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Undoubtedly, the COVID-19 pandemic and the subsequent nationwide lockdown en-
forced in March 2020 have caused a significant economic impact, affecting every sector of the
economy, including the agricultural sector and its related markets. The agricultural industry
in India, unlike many other countries, is a crucial source of livelihood, accounting for 60% of
all rural employment (Varshney et al., 2023). Therefore, it has been severely impacted by
the pandemic, just like other sectors of the economy. The greatest current global problem
the world has faced since World War II is the COVID-19 pandemic. It has been impacting
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life and the economy across the world since December 2019. It has brought a threatening
challenge to the Indian economy and society. The COVID-19 has affected all walks of life
(Cariappa et al., 2021). A nationwide lockdown of 21days was declared by the government
of India with an aim to restrict the spread of Coronavirus. The effort of India to contain the
spread of Coronavirus has been applauded worldwide (Varshney et al., 2021). It stalled the
economy across all enterprises, including agriculture. Consequently, the agricultural value
chain during the initial phase of the lockdown faced a huge economic shock. This led to a
serious detrimental effect on the health of the rural Indian economy. Agricultural marketing
channel was also affected in a way. Unlike different countries across the globe, agricultural
enterprises in India account for single largest source of employment generation with more
than 60 percent of the population directly depending on agriculture.

Agriculture and allied sectors carry immense importance to the rural economy of
India. It contributes nearly one-sixth to the Indian national income and provides employment
to nearly 50% of the workforce. It is vital for ensuring food security of the nation and also
influences the growth of secondary and tertiary sector of the economy through its forward and
backward linkages. The COVID-19 pandemic has occurred at a time when the global and
Indian economic growth was already expected to decelerate (NABARD 2020). The economic
implications of the novel Coronavirus (COVID-19) pandemic have brought the agricultural
sector into sharp focus and heightened its responsibility to feed and employ thousands who
might have lost livelihoods. At this time when most sectors of the economy are reported to
be under significant stress, the agricultural sector continues to be promising and cushioning
the economy. The most important factor of the lockdown was the total breakdown in supply
chain both at global and Indian scale. There was a decline in global exports of agricultural
goods. During the lockdown there was no proper management of sowing, harvesting and
marketing of crops. There were different restrictions: (a) disruptions in procurement of food
grain by different agencies; (b) disruptions in assembling of harvests from farms by traders;
(c) paucity of farm workers for harvesting of rabi crops; (d) unavailability of truck drivers;
(e) barriers in the transport of commodities; (f) inadequate operations of APMC mandis and
(g) closures in the retail markets.

In the present context we make effort to access the impact of spread of COVID-19
and lockdown on the wholesale price of wheat across different states of India (Rawal and
Verma, 2020). The impact on the price may be conceptualised as combined effect of response
from consumers, wholesalers and retailers through stakeholders. Price and quantities traded
of different agricultural commodities whose harvesting begin from late march is very crucial
to the liquidity of farmer and how their lives are being affected by the pandemic. Several
researchers across the globe believe that the empirical evidence of COVID-19 pandemic on
food and agricultural market is still evolving with time (Sendhil et al., 2013). For example,
Mahajan and Tomar (2020) reported that there was a decline of 10% in the accessibility
of various commodity through online mode during the initial phase of lockdown (Ramaku-
mar, 2020). They have also reported a decline of about 20% in market arrival of vegetable
and fruits in few cities during lockdown months (March and April). The major reason for
the decline in arrival of fruits and vegetables is disruption supply chain in agriculture mar-
ket (Sharma et al., 2021). A sharp increase in the retail and wholesale prices for various
commodities including pulses and edible oils was witnessed immediately after the lockdown
(Narayanan and Saha, 2020). They reported that movement restrictions were the prime
reason and contributed in increased prices. We have taken 5 different states: Uttar Pradesh,
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Madhya Pradesh, Gujarat, Maharashtra. We have focused are study on agricultural com-
modities. The present paper is organised in four sections. The first section presents a short
description of COVID-19 pandemic and its impact on agriculture, few recent studies related
to COVID-19 impact on agricultural commodity. The second section describes the data
used and methodology applied in present study. The third section presents the result and
analysis. The fourth section discusses the result and fifth section ends with conclusion.

2. Data and methodology

2.1. Average monthly wholesale price

Data used for the present research were assessed from Agriculture Marketing In-
formation portal (Source: https://agmarknet.gov.in) of Indian government, which provide
commodity wise state wise monthly average wholesale price. It is the price at which the
grain markets or mandis sell wheat to the wholesalers, who in turn sell it to retailers or food
processing industries. The wholesale price of wheat is influenced by various factors such
as demand and supply, production, transportation costs, and government policies. It is an
important indicator of the overall performance of the wheat market in India. The study
period includes January 2019 to June 2021. In the entire study period first wave and second
phase of COVID-19 disrupted the agricultural marketing chain which entirely affected the
consumer behaviour and price of different agricultural commodities. For the entire study
period wheat wholesale price data for 5 states (Chhattisgarh, Gujarat, Madhya Pradesh,
Uttar Pradesh and Rajasthan) were analysed.

3. COVID-19 events in India

Lockdown during COVID-19 has impacted agriculture marketing chain in different
ways in different phases of lockdown, which started from the end of march 2020. Table 2 rep-
resents the Descriptive statistics of monthly average whole sale price. To analyse the impact
of COVID-19 lockdown on the wholesale price of agricultural commodities categorisation of
period is very important. The different phases of the lockdown along with the activities
exempted during each period is summarised in Table 1.

Table 1: Lockdown and unlock timelines and activities allowed

Lockdown Duration Activities allowed
Phase-1 25th March to 14th

April 2020
Nearly all activities were suspended

Phase-2 15th April to 3rd May
2020

Allowed agricultural activities starting 20th
April 2020

Phase-3 4th May to 17th May
2020

Lockdown in Green, Orange and Red zones

Phase-4 18th May to 31st May
2020

Movement allowed with some conditions
across districts and states.

Unlock 1 1st June to 30th June Reopening phase with an economic focus.
Source: Ministry of Home Affairs, Govt. of India
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4. Methodology

The price variation during the lockdown period and normal year has been analysed
using piecewise linear regression tool. This analysis is used if the data follows different linear
trend over different time segment. The piecewise linear regression can be conceptualised as
follows:

y(x) = n1β1(x − b1), b1 < x ≤ b2

n2 + β2(x − b2), b2 < x ≤ b3

nn + βnb(x − bnb−1), bnb−1 < x ≤ bnb

Where b1 is the x location of first break point, b2 is the x location of second break point,
and so forth until the last break point bnb for nb number of break points.

4.1. Price risk

Cuddy Della Valle instability index (CDVI) (Cuddy and Valle, 1978), represented the
modified form of coefficient of variation which capture the price risk. CDVI has been used
in this study to analyse the risk in monthly wholesale price for before and after lockdown
period. It can be computed as follows:

CDV I = CV
√

(1 − R2)

where, CV is coefficient of variation and R2 is coefficient of determination.

4.2. Percentage change

We used PC to analyse the impact of lockdown on wholesale price of wheat. It is a
simple mathematical concept that represents the degree of change over time. The value of
percentage change is positive then there is a increase in percentage of that unit over time,
while negative value shows a depicts a decrease in percentage over time. It can be calculated
using the following formula:

%change = (price during lockdown-price before lockdown)
(price before lockdown) x100

5. Results and discussion

5.1. Monthly wholesale price

The monthly time series wholesale price data of wheat for all six states are represented
in Figure 1. The wholesale price witnessed decrease after March 2020 for all the states.
Maharashtra showed highest wholesale price after Lockdown, while Chhattisgarh showed
the least wholesale price trend.

5.2. Descriptive statistics

The descriptive statistics of monthly average whole sale price is summarised in Table
2. The mean monthly wholesale price before lockdown was higher than that of after lockdown
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Figure 1: Time series variation of average monthly wholesale price of wheat

for all the states. The highest average monthly whole sale price was found for Maharashtra
among different states. Chhattisgarh showed least whole sale price among six states after
lockdown. Different states showed different statistics trend in India. In the present study
difference in monthly whole sale price for different region is attributed to disruption in supply
chain management in different region due to COVID-19 pandemic.

Table 2: Descriptive statistics of monthly average whole sale price

Lock-
down

Chhatt-
isgarh

Gujarat Madhya
Pradesh

Mahara-
shtra

Rajasthan Uttar
Pradesh

Mean Before 1769.94 2161.94 1956.85 2576.21 1925.53 1886.45
After 1596.54 1856.46 1863.10 2248.81 1803.69 1873.65

Maximum Before 1981.83 2438.54 2088.29 2908.84 2047.86 1975.11
After 2314.00 2399.09 2163.06 2951.27 2125.06 2039.25

Minimum Before 1476.88 2000.36 1868.54 2305.86 1793.75 1826.45
After 788.90 1680.44 1695.45 1969.46 1602.00 1672.04

Sd Before 147.45 131.60 76.81 176.54 78.36 52.47
After 378.76 192.65 127.98 242.78 160.32 124.80

Skewness Before -0.611 0.572 0.545 0.320 -0.051 0.227
After -0.779 2.12 1.101 2.08 0.769 -0.536

Kurtosis Before -0.191 -0.142 -0.890 -0.548 -1.021 -1.396
After 2.030 5.161 1.41 6.18 0.196 -0.922

5.3. Price risk

The price risk was analysed before and after COVID-19 is presented in Figure 2. All
states except Uttar Pradesh showed higher price risk after COVID-19. Maharashtra showed
highest price risk, while Uttar Pradesh showed least price risk among different states.
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Figure 2: Price risk before and after lockdown

5.4. Percent change (%)

To understand the impact of lockdown on average whole sale price, we have calculated
percent change for all states. The percent change analysis is presented in Figure 3. The
result revealed that all states showed percent decrease in average monthly whole sale price
compared to normal year 2019. Gujarat showed highest percentage decrease in average
monthly wholesale price, while Uttar Pradesh showed least percent decrease among different
states considered in the present study.

Figure 3: Percent change analysis of different states
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6. Conclusion

In the present study an attempt was made to capture the impact of COVID-19 on
average monthly whole sale price of wheat across different state in India. Time series analysis
showed the immediate impact of lockdown on decreased monthly wholesale price in all the
states. Price risk was calculated using Cuddy Della Valle instability index (CDVI) also that
there was increase in price risk after lockdown across all the states, except Uttar Pradesh.
Measures taken by Government of India after lockdown has been reflected in increase in
monthly wholesale price of wheat in post lockdown months. The percentage change analysis
showed clear impact of lockdown on average monthly wholesale price of wheat in comparison
to normal year (2019).
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Abstract
In order to identify the vulnerable components whose joint effect would have changed

system performance and ensure the required reliability of various multistate systems, joint
importance measures of relevant components are used in the early design of systems. Due to
the complexity of multistate systems that have the properties of non-linearity, uncertainty,
and randomness, which make it difficult to analyze the reasons of failure mechanisms, model
the system, estimate its reliability, and evaluate the joint importance measures of its compo-
nents. This paper discussed measures of joint importance of three components for repairable
multistate systems based on the classical Birnbaum measure. Eight importance measures
are studied in detail. These joint importance measures provide a time-dependent analysis of
the relevancy of components, thus adding insights on the contributions of the joint effect of
three components on the system reliability or performance over time. An illustrative exam-
ple is given. The results of the study show that joint importance measures can be a valuable
decision-support tool for designers and engineers in the design of systems.

Key words: Birnbaum importance; Multistate systems; Repairable components; Joint im-
portance measures.

1. Introduction

The evaluation of joint importance measures for identifying group of relevant compo-
nents in complex systems is a major concern of reliability engineers and designers. Impor-
tance and joint importance measures are widely used to identify the impact and locate the
vulnerable spots at the early design stages. The identification of most important compo-
nent or group of components in a repairable multistate complex system by investigating the
improvement resulted in performance measures like reliability or availability or unreliabil-
ity/risk or unavailability etc with the improvement in corresponding component performance
measures, is to be addressed in detail in situation where minor repair or replacement after
complete failure of components admits. The concept of the joint importance measures of
components or subsystems or modules is crucial, in order to ensure and improve the product
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quality, reliability, and safety. This is also essential for allocating the limited resources at
the design stage, to reduce the cost and providing maintenance to take proper care of crucial
components at the operation stage. The information provided by the joint importance mea-
sures can be used to give proper repair/replacement activities to the components. Thereby
one can ensure the system performance in high level always for the continuous supply of
service for the allocated mission. Quantifying the joint importance of components using an
efficient method becomes essential in multistate systems, at the early design stage. However,
the determination of the relevant components or subsystems at the early stage is challenging,
because it is usually difficult to analyze and describe non-linear dependent relationships of
components in complex systems, and obtain sufficient reliability information from the joint
operational condition of components or system, Borgonovo and Apostolakis (2001).

The development of importance measures and its use can be seen in Birnbaum (1969),
Fussell and Vesely (1972), Barlow and Proschan (1975) and Natvig (1985), see also Natvig
(1979) and Natvig and G̊asemyr (2009). Since these measures solely depend on the proba-
bilistic characteristics of the system’s components and its structure, these traditional mea-
sures of importance can be characterized as generic. In power generation system, commu-
nication systems, network systems, the multistate approach can be adopted. Fundamental
results on multistate system(MSS)s is available in Griffith (1980). The extensions of the
Birnbaum measure for binary state systems to the multistate case can be seen in Dui et al.
(2019). Natvig et al. (2011) and Natvig et al. (2009) studied on Importance measures for
repairable systems. Algorithm for solution of a problem of maximum flow in a network with
power estimation is given by Dinic (1970). Dui et al. (2015) has given semi-Markov process-
based integrated importance measures for multi-state systems. Borgonovo and Apostolakis
(2001) discussed a new importance measure for risk-informed decision making. Optimiza-
tion of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic al-
gorithm is given by Cai et al. (2016). Cai et al. (2017) discussed maintenance optimization
of continuous state systems. Huseby and Natvig (2009) has introduced advanced discrete
simulation methods applied to repairable multi-state systems. Huseby and Natvig (2013)
has given discrete event simulation methods applied to advanced importance measures of
repairable components in multistate network flow systems. Importance and sensitivity anal-
ysis of multistate systems using the universal generating function is carried out by Levitin
and Lisnianski (1999). Generalized importance measures for multistate elements based on
performance level restrictions can be seen in Levitin et al. (2003). Natvig (2011) has given a
detailed description of multistate systems reliability theory with applications. Natvig et al.
(2009) has given application of Natvig measures of component importance in repairable sys-
tems. Ramirez-Marquez and Coit (2005) introduced new composite importance measures
for multi-state systems with multistate components. Ramirez-Marquez and Coit (2007) ex-
plained Multi-state component relevancy analysis for reliability improvement in multi-state
systems. Ramirez-Marquez et al. (2006) has given new ideas on multi-state component
relevancy and importance. Si et al. (2012b) proposed Integrated importance measure of
component states based on loss of system performance. Si et al. (2012a) discussed the
integrated importance measure of multistate coherent systems for maintenance processes.
Si et al. (2013) has introduced component state-based integrated importance measure for
multi-state systems. Si et al. (2019) proposed system reliability allocation and optimiza-
tion based on generalized Birnbaum importance measure. Wu and Coolen (2013) has given
a cost-based importance measure for system components: an extension of the Birnbaum
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importance. Wu et al. (2016) used component importance to optimization of preventive
maintenance policy.Zhu et al. (2017) discussed Birnbaum importance based heuristics for
multi-type component assignment problems. Monte-Carlo simulation analysis of the effects
on deferent system performance levels on the importance on multistate components is given
by Zio and Podofillini (2003). Zio and Podofillini (2006) discussed components interactions in
the differential importance measure. Zio et al. (2004) described estimation of the importance
measures of multistate elements by Monte-Carlo simulation. Zio et al. (2007) has given an
example in railway industry of importance measures-based prioritization for improving the
performance of multi-state systems. Dui et al. (2019) proposed system performance-based
joint importance analysis guided maintenance for repairable systems. Dui et al. (2020)
introduced component joint importance measures for maintenances in submarine blowout
preventer system. A detailed study on joint importance measures for unrepairable systems
can be seen in Chacko and Manoharan (2008, 2011), Chacko (2020, 2023a) and Chacko
(2023b).

The investigation of component joint performance with regard to the variation in sys-
tem performance is crucial for the repair or replacement activities (Chacko (2022)). Existing
Joint importance measures for components in multistate systems are used to identify group
of components for unrepairable components and systems (Chacko (2022, 2021)). But, some-
times, systems are repairable or its components can be repaired/replaced as a cost effective
strategy. The main objective of this paper is to study on joint importance measures for three
components of repairable systems which are defined in the Birnbaum sense, a method of ob-
serving change in system performance with respect to change in component performance.
Moreover, a multistate behavior to the components is assumed.

In the present paper, generic joint importance measures for three components of
a repairable systems are studied in detail, which measure the interaction effect of three
repairable components. Each component is assumed to follows periodic life cycles, starting
out in the top state, say Mi, i = 1, 2, . . . , n and then moving through the intermediate states
k, Mi > k > 0, until they reaches down state 0. Then, they are repaired or replaced, and a
new life cycle starts. Moreover, repair at intermediate states is also assumed. Component
i is allowed to have minor repair at state k, Mi > k > 0, to reach to state k + 1. If the
component reaches the state 0, it will undergo corrective maintenance or replacement to
bring the component to as good as new condition.

The present paper includes four sections. In section 2, the new joint importance
measures are discussed. Applications are given in section 3. An illustrative example is given
in section 4. Conclusions are given in final section.

2. Relevancy and importance in multistate systems

In a binary system setup, the Birnbaum-importance(B-importance) of component i
(Birnbaum (1969)) is the probability that ith component is relevant for the system. That is

IB(i; p) = Pr{ϕ(X) = 1|Xi = 1} − Pr{ϕ(X) = 1|Xi = 0} (1)

This measure is generic since it is defined based on probability and system structure function.
Here we consider joint importance measures for three repairable components in MSS setup
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based on B –importance. For that, a multistate system of n components is considered. Joint
importance measures for three components of the multistate system are discussed.

Let X(t) = (X1(t), X2(t), ..., Xn(t)) be the state vector of n components and ϕ(X(t))
represent state of the system, where Xi(t) represent state of the component i at time t, Xi(t)
takes the values in Si = {0, 1, . . . , Mi}, i ∈ {1, 2, . . . , n}. That is,

ϕ(X(t)) = ϕ(X1(t), ..., Xn(t)) = k, k ∈ {0, 1, 2, . . . , M}, M = Max{1≤i≤n}{Mi}.

where ϕ(xi, X(t)) = ϕ(X1(t), ..., Xi−1(t), xi, Xi+1(t), ..., Xn(t)),
i.e,(xi, X(t)) = (X1(t), ..., Xi−1(t), xi, Xi+1(t), ..., Xn(t)).

We also define a function fi : Si → R that represents the component’s physical state
at time t given by fi(Xi(t)) = fi(xi) if Xi(t) = xi ∈ Si, i ∈ {1, 2, . . . , n}. For example
fi represents the flow capacity of the component in a network system. It is important
to understand that the functions fi, i ∈ {1, 2, . . . , n}, do not necessarily have to be non-
decreasing and hence provide modeling flexibility by avoiding this restriction.

To define the relevancy of the repairable components in system functioning, let us
define two functions X+

i (t) and X−
i (t), for i = 1, 2, . . . , n.

X+
i (t) denotes the next state of component i and is defined by

X+
i (t) = Xi(t) − 1, if Xi(t) > 0 and = Mi, if Xi(t) = 0 (2)

Since it’s a repairable periodic cycle component, on reaching state 0, the component is
repaired. Hence its next state at time t from 0 will be Mi.

Similarly, we define X−
i (t) as the previous state of component i and is given by

X−
i (t) = Xi(t) + 1, if Xi(t) < Mi and = 0, if Xi(t) = Mi (3)

Here when the component at time t is in the highest possible state Mi, it implies that the
previous state will be 0, since the component was repaired. A component is said to be
in n-relevant or p-relevant at time t, if there is change in system state when component
move either to next state by gradual degradation or to previous state at time t by minor
maintenance. That is, component is said to be n-relevant, while component moves to its
next state at time t if

ϕ(Xi(t), X(t)) ̸= ϕ(X+
i (t), X(t)) or ϕ(Xi(t), X(t)) − ϕ(X+

i (t), X(t)) ̸= 0. (4)

Similarly, we say that component i is p-relevant while component i moves back to its previous
state at time t if

ϕ(X−
i (t), X(t)) ̸= ϕ(Xi(t), X(t)) or ϕ(X−

i (t), X(t)) − ϕ(Xi(t), X(t)) ̸= 0. (5)

We define ϕi(t) = ϕ(Xi(t), X(t)), ϕ+
i (t) = ϕ(X+

i (t), X(t)) and ϕ−
i (t) = ϕ(X−

i (t), X(t)).

Then component i is n-relevant if, nREL(i) = ϕ+
i (t) − ϕi(t) is not equal to zero.

Hence, component i is n-relevant at time t if it would result in a system state change, while
changing the component i to its next state.
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Then we denote component i is p-relevant if say, pREL(i) = ϕi(t) − ϕ−
i (t) is not

equal to zero. Hence, component i is p-relevant at time t if it would result in a system state
change, while changing the component i back to its previous state.

For an easier representation, define the following functions,

ϕ∗∗
ij (t) = ϕ(Xi(t), Xj(t), X(t)), ϕ+∗

ij (t) = ϕ(X+
i (t), Xj(t), X(t)),

ϕ∗+
ij (t) = ϕ(Xi(t), X+

j (t), X(t)), ϕ++
ij (t) = ϕ(X+

i (t), X+
j (t), X(t)),

ϕ+−
ij (t) = ϕ(X+

i (t), X−
j (t), X(t)), ϕ∗−

ij (t) = ϕ(Xi(t), X−
j (t), X(t))

ϕ−+
ij (t) = ϕ(X−

i (t), X+
j (t), X(t)), ϕ−∗

ij (t) = ϕ(X−
i (t), Xj(t), X(t))

ϕ−−
ij (t) = ϕ(X−

i (t), X−
j (t), X(t)), ϕ∗∗∗

ijk (t) = ϕ(Xi(t), Xj(t), Xk(t), X(t))

ϕ+∗∗
ijk (t) = ϕ(X+

i (t), Xj(t), Xk(t), X(t)), ϕ∗+∗
ijk (t) = ϕ(Xi(t), X+

j (t), Xk(t), X(t))

ϕ++∗
ijk (t) = ϕ(X+

i (t), X+
j (t), Xk(t), X(t)), ϕ∗∗+

ijk (t) = ϕ(Xi(t), Xj(t), X+
k (t), X(t))

ϕ+∗+
ijk (t) = ϕ(X+

i (t), Xj(t), X+
k (t), X(t)), ϕ∗++

ijk (t) = ϕ(Xi(t), X+
j (t), X+

k (t), X(t))

ϕ+++
ijk (t) = ϕ(X+

i (t), X+
j (t), X+

k (t), X(t)), ϕ−∗∗
ijk (t) = ϕ(X−

i (t), Xj(t), Xk(t), X(t))

ϕ∗−∗
ijk (t) = ϕ(Xi(t), X−

j (t), Xk(t), X(t)), ϕ−−∗
ijk (t) = ϕ(X−

i (t), X−
j (t), Xk(t), X(t))

ϕ∗∗−
ijk (t) = ϕ(Xi(t), Xj(t), X−

k (t), X(t)), ϕ−∗−
ijk (t) = ϕ(X−

i (t), Xj(t), X−
k (t), X(t))

ϕ∗−−
ijk (t) = ϕ(Xi(t), X−

j (t), X−
k (t), X(t)), ϕ−−−

ijk (t) = ϕ(X−
i (t), X−

j (t), X−
k (t), X(t))

Suppose, at time t, simultaneously ith component is changing to its next state and jth

component is also changing to its next state. Then their states are jointly nn-relevant, if

nnREL(i, j) = ϕ∗∗
ij (t) − ϕ+∗

ij (t) − ϕ∗+
ij (t) + ϕ++

ij (t) ̸= 0 (6)

Suppose ith component is changing to its next state and jth component is changing back to
its previous state. Then components i and j are jointly np-relevant, if

npREL(i, j) = ϕ∗−
ij (t) − ϕ+−

ij (t) − ϕ∗∗
ij (t) + ϕ+∗

ij (t) ̸= 0 (7)

Suppose ith component is changing back to its previous state and jth component is changing
to its next state. Then components i and j are jointly pn-relevant, if

pnREL(i, j) = ϕ−∗
ij (t) − ϕ∗∗

ij (t) − ϕ−+
ij (t) + ϕ∗+

ij (t) ̸= 0 (8)

Suppose ith component is changing back to its previous state and jth component is also
changing back to its previous state. Then components i and j are jointly pp-relevant, if

ppREL(i, j) = ϕ−−
ij (t) − ϕ∗+

ij (t) − ϕ−∗
ij (t) + ϕ∗∗

ij (t) ̸= 0 (9)

Now, to measure the effect of joint movement of three components, in either direction, let
us consider the following statements.



194 V. M. CHACKO, ANN SANIA AND AMRUTHA M. [Vol. 22, No. 2

Suppose, at time t, ith component is changing to its next state, jth component is
also changing to its next state and kth component is also changing to its next state. Then
components i, j and k are jointly nnn-relevant, if

nnnREL(i, j, k) = ϕ∗∗∗
ijk (t) − ϕ+∗∗

ijk (t)−ϕ∗+∗
ijk (t) + ϕ++∗

ijk (t)−
ϕ∗∗+

ijk (t) + ϕ+∗+
ijk (t) + ϕ∗++

ijk (t) − ϕ+++
ijk (t) ̸= 0 (10)

Suppose at time t, ith component is changing to its next state, jth component is changing
back to its previous state and kth component is changing to its next state. Then components
i, j and k are jointly npn-relevant, if

npnREL(i, j, k) = ϕ∗−∗
ijk (t) − ϕ+−∗

ijk (t)−ϕ∗∗∗
ijk (t) + ϕ+∗∗

ijk (t)−
ϕ∗−+

ijk (t) + ϕ+−+
ijk (t) + ϕ∗∗+

ijk (t) − ϕ+∗+
ijk (t) ̸= 0 (11)

Suppose ith component is changing back to its previous state, jth component is changing to
its next state and kth component is changing to its next state. Then components i, j and k
are jointly pnn-relevant, if

pnnREL(i, j, k) = ϕ−∗∗
ijk (t) − ϕ∗∗∗

ijk (t)−ϕ−+∗
ijk (t) + ϕ∗+∗

ijk (t)−
ϕ−∗+

ijk (t) + ϕ∗∗+
ijk (t) + ϕ−++

ijk (t) − ϕ∗++
ijk (t) ̸= 0 (12)

Suppose ith component is changing back to its previous state, jth component is also changing
back to its previous state and kth component is changing to its next state.Then components
i, j and k are jointly ppn-relevant, if

ppnREL(i, j, k) = ϕ−−∗
ijk (t) − ϕ∗−∗

ijk (t)−ϕ−∗∗
ijk (t) + ϕ∗∗∗

ijk (t)−
ϕ−−+

ijk (t) + ϕ∗−+
ijk (t) + ϕ−∗+

ijk (t) − ϕ∗∗+
ijk (t) ̸= 0 (13)

Suppose, at time t, ith component is changing to its next state, jth component is also changing
to its next state and kth component is changing back to its previous state. Then components
i, j and k are jointly nnp-relevant, if

nnpREL(i, j, k) = ϕ∗∗−
ijk (t) − ϕ+∗−

ijk (t)−ϕ∗+−
ijk (t) + ϕ++−

ijk (t)−
ϕ∗∗∗

ijk (t) + ϕ+∗∗
ijk (t) + ϕ∗+∗

ijk (t) − ϕ++∗
ijk (t) ̸= 0 (14)

Suppose, at time t, ith component is changing to its next state, jth component is changing
back to its previous state and kth component is changing back to its previous state. Then
components i, j and k are jointly npp-relevant, if

nppREL(i, j, k) = ϕ∗−−
ijk (t) − ϕ+−−

ijk (t)−ϕ∗∗−
ijk (t) + ϕ+∗−

ijk (t)−
ϕ∗−∗

ijk (t) + ϕ+−∗
ijk (t) + ϕ∗∗∗

ijk (t) − ϕ+∗∗
ijk (t) ̸= 0 (15)

Suppose ith component is changing back to its previous state, jth component is changing to
its next state and kth component is changing back to its previous state. Then components
i, j and k are jointly pnp-relevant, if

pnpREL(i, j, k) = ϕ−∗−
ijk (t) − ϕ∗∗−

ijk (t)−ϕ−+−
ijk (t) + ϕ∗+−

ijk (t)−
ϕ−∗∗

ijk (t) + ϕ∗∗∗
ijk (t) + ϕ−+∗

ijk (t) − ϕ∗+∗
ijk (t) ̸= 0 (16)
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Suppose ith component is changing back to its previous state, jth component is changing
back to its previous state and kth component is also changing back to its previous state.
Then components i, j and k are jointly ppp-relevant, if

pppREL(i, j, k) = ϕ−−−
ijk (t) − ϕ∗−−

ijk (t)−ϕ−∗−
ijk (t) + ϕ∗∗−

ijk (t)−
ϕ−−∗

ijk (t) + ϕ∗−∗
ijk (t) + ϕ−∗∗

ijk (t) − ϕ∗∗∗
ijk (t) ̸= 0 (17)

To find the joint importance of three repairable components, in Birnbaum sense, the following
measures are proposed, by considering three components, i, j and k.

I ijk
NNNB(t) = P{nnnREL(i, j, k) ̸= 0} =

Mk∑
w=0

Mj∑
v=0

Mi∑
u=0

P [(ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w,

X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v, Xk(t) = w, X(t))) − (ϕ(Xi(t) = u, Xj(t) =
v − 1, Xk(t) = w, X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v − 1, Xk(t) = w, X(t)))]−
[(ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w − 1, X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v,

Xk(t) = w − 1, X(t))) − (ϕ(Xi(t) = u, Xj(t) = v − 1, Xk(t) = w − 1, X(t))−
ϕ(Xi(t) = u − 1, Xj(t) = v − 1, Xk(t) = w − 1, X(t))) ̸= 0]

(18)

I ijk
{NP NB}(t) = P{npnREL(i, j, k) ̸= 0} =

Mk∑
w=0

Mj∑
v=0

Mi∑
u=0

P [(ϕ(Xi(t) = u, Xj(t) = v + 1, Xk(t) =

w, X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v + 1, Xk(t) = w, X(t))) − (ϕ(Xi(t) = u,

Xj(t) = v, Xk(t) = w, X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v, Xk(t) = w, X(t)))]
− [(ϕ(Xi(t) = u, Xj(t) = v + 1, Xk(t) = w − 1, X(t)) − ϕ(Xi(t) = u − 1, Xj(t)
= v + 1, Xk(t) = w − 1, X(t))) − (ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w − 1,

X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v, Xk(t) = w − 1, X(t))) ̸= 0]
(19)

I ijk
{P NNB}(t) =P{pnnREL(i, j, k) ̸= 0} =

Mk∑
w=0

Mj∑
v=0

Mi∑
u=0

P [(ϕ(Xi(t) = u + 1, Xj(t) = v, Xk(t)

= w, X(t)) − ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w, X(t))) − (ϕ(Xi(t) = u + 1,

Xj(t) = v − 1, Xk(t) = w, X(t)) − ϕ(Xi(t) = u, Xj(t) = v − 1, Xk(t) = w,

X(t)))] − [(ϕ(Xi(t) = u + 1, Xj(t) = v, Xk(t) = w − 1, X(t)) − ϕ(Xi(t) = u,

Xj(t) = v, Xk(t) = w − 1, X(t))) − (ϕ(Xi(t) = u + 1, Xj(t) = v − 1, Xk(t) =
w − 1, X(t)) − ϕ(Xi(t) = u, Xj(t) = v − 1, Xk(t) = w − 1, X(t))) ̸= 0]

(20)

I ijk
{P P NB}(t) = P{ppnREL(i, j, k) ̸= 0} =

Mk∑
w=0

Mj∑
v=0

Mi∑
u=0

P [(ϕ(Xi(t) = u + 1, Xj(t) = v + 1, Xk(t)

= w, X(t)) − ϕ(Xi(t) = u, Xj(t) = v + 1, Xk(t) = w, X(t))) − (ϕ(Xi(t) = u+
1, Xj(t) = v, Xk(t) = w, X(t)) − ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w, X(t)))] −
[(ϕ(Xi(t) = u + 1, Xj(t) = v + 1, Xk(t) = w − 1, X(t)) − ϕ(Xi(t) = u, Xj(t) =
v + 1, Xk(t) = w − 1, X(t))) − (ϕ(Xi(t) = u + 1, Xj(t) = v, Xk(t) = w − 1,

X(t)) − ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w − 1, X(t))) ̸= 0]
(21)



196 V. M. CHACKO, ANN SANIA AND AMRUTHA M. [Vol. 22, No. 2

I ijk
NNP B(t) = P{nnpREL(i, j, k) ̸= 0} =

Mk∑
w=0

Mj∑
v=0

Mi∑
u=0

P [(ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w + 1,

X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v, Xk(t) = w + 1, X(t))) − (ϕ(Xi(t) = u, Xj(t)
= v − 1, Xk(t) = w + 1, X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v − 1, Xk(t) = w + 1,

X(t)))] − [(ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w, X(t)) − ϕ(Xi(t) = u − 1, Xj(t) =
v, Xk(t) = w, X(t))) − (ϕ(Xi(t) = u, Xj(t) = v − 1, Xk(t) = w, X(t)) − ϕ(Xi(t)
= u − 1, Xj(t) = v − 1, Xk(t) = w, X(t))) ̸= 0]

(22)

I ijk
NP P B(t) = P{nppREL(i, j, k) ̸= 0} =

Mk∑
w=0

Mj∑
v=0

Mi∑
u=0

P [ (ϕ(Xi(t) = u, Xj(t) = v + 1, Xk(t) =

w + 1, X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v + 1, Xk(t) = w + 1, X(t))) − (ϕ(Xi(t)
= u, Xj(t) = v, Xk(t) = w + 1, X(t)) − ϕ(Xi(t) = u − 1, Xj(t) = v, Xk(t) = w+
1, X(t)))] − [(ϕ(Xi(t) = u, Xj(t) = v + 1, Xk(t) = w, X(t)) − ϕ(Xi(t) = u − 1,

Xj(t) = v + 1, Xk(t) = w, X(t))) − (ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w, X(t))−
ϕ(Xi(t) = u − 1, Xj(t) = v, Xk(t) = w, X(t))) ̸= 0]

(23)

I ijk
P NP B(t) = P{pnpREL(i, j, k) ̸= 0} =

Mk∑
w=0

Mj∑
v=0

Mi∑
u=0

P [(ϕ(Xi(t) = u + 1, Xj(t) = v, Xk(t) = w

+ 1, X(t)) − ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w + 1, X(t))) − (ϕ(Xi(t) = u + 1,

Xj(t) = v − 1, Xk(t) = w + 1, X(t)) − ϕ(Xi(t) = u, Xj(t) = v − 1, Xk(t) = w+
1, X(t)))] − [(ϕ(Xi(t) = u + 1, Xj(t) = v, Xk(t) = w, X(t)) − ϕ(Xi(t) = u, Xj(t)
= v, Xk(t) = w, X(t))) − (ϕ(Xi(t) = u + 1, Xj(t) = v − 1, Xk(t) = w, X(t)) −
ϕ(Xi(t) = u, Xj(t) = v − 1, Xk(t) = w, X(t))) ̸= 0]

(24)

I ijk
P P P B(t) = P{pppREL(i, j, k) ̸= 0} =

Mk∑
w=0

Mj∑
v=0

Mi∑
u=0

P [(ϕ(Xi(t) = u + 1, Xj(t) = v + 1, Xk(t)

= w + 1, X(t)) − ϕ(Xi(t) = u, Xj(t) = v + 1, Xk(t) = w + 1, X(t))) − (ϕ(Xi(t) =
u + 1, Xj(t) = v, Xk(t) = w + 1, X(t)) − ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w + 1,

X(t)))] − [(ϕ(Xi(t) = u + 1, Xj(t) = v + 1, Xk(t) = w, X(t)) − ϕ(Xi(t) = u, Xj(t)
= v + 1, Xk(t) = w, X(t))) − (ϕ(Xi(t) = u + 1, Xj(t) = v, Xk(t) = w, X(t))−
ϕ(Xi(t) = u, Xj(t) = v, Xk(t) = w, X(t))) ̸= 0]

(25)

Clearly, I ijk
NNNB(t) is the joint importance measure of three components i, j and k

at time t when the three components i, j and k enters its next state, I ijk
NP NB(t) is the joint

importance measure of three components i, j and k at time t when the components i and
k enters its next state and the component j enters its previous state, I ijk

P NNB(t) is the joint
importance measure of three components i, j and k at time t when the component i enters
its previous state and the components j and k enters its next state and I ijk

P P NB(t) is the joint
importance measure of three components i, j and k at time t when both components i and
j enters its previous state and the component k enters the next state, I ijk

NNP B(t) is the joint
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importance measure of three components i, j and k at time t when the two components i
and j enters its next state and the component k enters the previous state, I ijk

NP P B(t) is the
joint importance measure of three components i, j and k at time t when the component i
enters its next state and components j and k enters its previous state, I ijk

P NP B(t) is the joint
importance measure of three components i, j and k at time t when the components i and k
enters its previous state and the component j enters its next state and I ijk

P P P B(t) is the joint
importance measure of three components i, j and k at time t when the three components i, j
and k enters its previous state.

3. Application

In multistate system reliability engineering, the problem of identification of most im-
portant component of group of component is required for giving proper repair or maintenance
activities to provide the system active for the completion of assigned mission. Most of the
existing measures are useful for this purpose if repair or maintenance is not considered. In
the proposed measures, the major advantage is that, one can measure importance and joint
importance measures when repair or maintenance is applied to the components. Adoption
of proper maintenance activity is unavoidable in system engineering. The proposed results
are useful to the multistate and binary state systems.

4. Illustration

To illustrate the joint importance of components, we consider a network flow system
which is given in Figure 1. In this example, there is a directed network flow system consisting
of 6 components represented by edges of the network.

Figure 1: Network flow system

The state functions of the components f1, f2, f3, f4, f5 and f6 represent the flow ca-
pacity functions of the components given by

f1(u) = f6(u) = 2.5 u, u = 0, 1, 2,

f2(u) = 1.5 u, u = 0, 1, 2,

f3(u) = f5(u) = 5.0 u, u = 0, 1,

f4(u) = 1.0 I(u = 1) + 2.5 I(u = 2), u = 0, 1, 2,
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where I is the indicator function. The physical state of the system is the amount of flow that
can be sent through the network from the source node 1 to the terminal node 6. In order to
express the system state as a function of the component states, we identify the minimal cut
sets in the network. These are K1 = {1}, K2 = {2, 3}, K3 = {3, 4}, K4 = {4, 5}, K5 = {6}.
According to the well-known max-flow-min cut theorem, we then have

ϕ(X(t)) = min
1≤j≤5

∑
i∈Kj

fi(Xi(t))

The probabilities of each component in its states are given by

p1(u) = p2(u) = p4(u) = p6(u) =


25
105 , u = 0
35
105 , u = 1
45
105 , u = 2

p3(u) = p5(u) =
{ 45

100 , u = 0
55
100 , u = 1

Here we have computed the physical joint importance I ijk(t) for all the possible combinations
of three components. The results are given in Table 1.

It is clear from the example that the component group (3,4,5) is the most important
set in any case considered. But the ranking of the rest of the three sets of components keeps
changing. The proposed measures give the investigator the ability to look at relevancy from
several angles, which is useful in a diagnostic environment as well as when the investigation
is done to support decisions for system improvement.

5. Conclusions

In the present paper, a repairable multistate system is considered. The single com-
ponent Birnbaum importance measure is generalized to three component joint importance
measure for multistate systems in eight different ways. The measures gives an insight re-
garding change in system performance to support decisions regarding improvement of the
system, through the movement of components in same/opposite directions. Since the pro-
posed measures are investigating the behavior of components on system performance, they
are useful in a diagnostic checking. These joint importance measures are highly appropri-
ate while considering repairable components. In order to locate the weakest group or more
consistent group, the proposed measures will be helpful. So more repair activities can be
ensured weakest group.
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Table 1: Joint importance of three components i, j and k

i,j,k I
(ijk)
NNNB I

(ijk)
NNP B I

(ijk)
NP NB I

(ijk)
NP P B I

(ijk)
P NNB I

(ijk)
P NP B I

(ijk)
P P NB I

(ijk)
P P P B

1,2,3 0.1895 0.1895 0.2211 0.2211 0.2211 0.2211 0.2579 0.2579
1,2,4 0.1119 0.1119 0.1306 0.1306 0.1306 0.1306 0.1523 0.1523
1,2,5 0 0 0 0 0 0 0 0
1,2,6 0.0639 0.0746 0.0746 0.0870 0.0746 0.0870 0.0870 0.1015
1,3,4 0.3286 0.3482 0.3286 0.3482 0.3833 0.3999 0.3833 0.3999
1,3,5 0.2487 0.2487 0.2487 0.2487 0.2902 0.2902 0.2902 0.2902
1,3,6 0.2542 0.2965 0.2542 0.2965 0.2965 0.3460 0.2965 0.3460
1,4,5 0.2394 0.3183 0.2394 0.2394 0.2793 0.2793 0.2793 0.2793
1,4,6 0.1927 0.2248 0.1927 0.2248 0.2248 0.2623 0.2248 0.2623
1,5,6 0.1026 0.3912 0.1026 0.1197 0.1197 0.1396 0.0490 0.1396
2,3,4 0.3317 0.3317 0.3317 0.3317 0.3869 0.3869 0.3869 0.3869
2,3,5 0 0 0 0 0 0 0 0
2,3,6 0.1895 0.2211 0.1895 0.2211 0.2211 0.2579 0.2211 0.2579
2,4,5 0 0 0 0 0 0 0 0
2,4,6 0.1119 0.1306 0.1119 0.1306 0.1306 0.1523 0.1306 0.1523
2,5,6 0 0 0 0 0 0 0 0
3,4,5 0.5804 0.5804 0.5804 0.5804 0.5804 0.5804 0.5804 0.5804
3,4,6 0.3286 0.3833 0.3428 0.3999 0.3286 0.3833 0.3428 0.3999
3,5,6 0.2487 0.2902 0.2487 0.2902 0.2487 0.2902 0.2487 0.2902
4,5,6 0.2394 0.2793 0.2394 0.2793 0.2394 0.2793 0.2394 0.2793
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Abstract
In this paper we develop a superior and ideal statistical model to provide optimal

modelling for the number of deaths resulting from COVID-19 infections. This paper intro-
duces the power modified Lindley-geometric distribution, a novel versatile three-parameter
discrete model built on the T-X methodology. In addition, to providing a generalized geomet-
ric distribution we offer a thorough list of its mathematical characteristics. The parameter of
the new model is estimated using four different estimation techniques: maximum likelihood,
Cramer-von Mises, least-square, and weighted least-square. The simulation experiment uses
four distinct estimating approaches to test the accuracy of the model parameters. Addition-
ally, we applied two datasets to the COVID-19 mortality data for the United Kingdom and
Egypt. These two instances of actual data were used to highlight the significance of our
distribution for modelling and fitting this particular kind of discrete data.

Key words: T-X family, Maximum likelihood; Cramer-von Mises; Least-square; Weighted
least-square; Data analysis.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

In our modern period, the abundance of data coming in from all fields has submerged
the interest in defining new flexible distributions. “Thoroughly changing” a baseline dis-
tribution is an easy and quick way to define these mathematical objects. The study of
tail properties and improving the goodness-of-fit of the associated models have both been
demonstrated to benefit from the addition of parameter(s). The most well-liked distribution
among those that have been suggested is the T-X family of distributions by Alzaatreh et al.
(2013). The following peculiar transformation is one of the most practical transformers for
T-X family of distributions W (F (x)) = −log(1 − F (x)), where the cumulative density func-
tion (CDF) of random variable X is represented by the notation F (x). To put it another
way, W (F (x)) is used to modify the distribution described by F (x) and define a new family
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of distributions based on a changed CDF. With the help of the T-X family, one may quickly
build discrete distributions in addition to continuous distributions. The T-geometric family,
which are the discrete analogues of the distribution of the random variable T , was defined
and explored by Alzaatreh et al. (2012) as a result. The CDF of T-geometric family is given
by

G(x; ϕ, b) =
−log(p(x+1))�

0

r(t; ϕ)dt = R[−log(p(x+1)); ϕ, p)] = R[b(x + 1); ϕ, b], x = 0, 1, 2, ...,

(1)
where b = −log p > 0 and ϕ the parameters of the CDF R(x; ϕ). Some of the families avail-
able in the modern literature are the Pareto-geometric, Weibull-geometric, Burr-geometric
and exponentiated exponential -
geometric distribution by Alzaatreh et al. (2012), Kumaraswamy-geometric distribution by
Akinsete et al. (2014) and exponentiated Weibull-geometric distribution by Famoye (2019).
The comprehensive review of T-X family of distributions may be found in Tomy et al. (2019).

Chesneau et al. (2021b) introduce a novel two-parameter lifetime distribution that is
the power version of the modified Lindley distribution and call it as power modified Lindley
(PML) distribution. It offers a compelling substitute for the Weibull and power Lindley
distributions as its primary goal. Let T be a random variable with the PML distribution.
The probability density function (PDF) and the CDF are each defined as

r(t; α, θ) = θα

1 + θ
tα−1e−2θtα

[
(1 + θ)eθtα + 2θtα − 1

]
, t > 0, (2)

R(t; α, θ) = 1 −
[
1 + θtα

1 + θ
e−θtα

]
e−θtα

, t > 0, (3)

where α >0 and θ >0. This distribution is derived by using the power parameter α in
modified Lindely distribution, has been proposed by Chesneau et al. (2021a).

This paper introduces a flexible three parameter discrete distribution called power
modified Lindley-geometric, which is based on T-geometric family of distribution and power
modified Lindley distribution. The main driving force behind the development of this new
discrete distribution was the fact that, in contrast to the amount of literature on continuous
cases, there was a dearth of research on the discrete families of distributions. Another fact is
that there are lots of researchers work to understand the patterns of the COVID-19 epidemic
and offer models that better suit the data and can be used to estimate the anticipated number
of cases and deaths to assist the government in making decisions on preventative measures.
And the new distribution is suitable for fitting COVID-19 data sets, which is the main
goal of this study. Another motivator is the characteristics of the suggested distribution
itself. In other words, the newly proposed discrete distribution features a probability mass
function (PMF) that is right-skewed, symmetric and left-skewed. Additionally, the new
distribution features hazard rate functions (HRF) that are increasing, decreasing and upside-
down bathtub-shaped. Additionally, we provided a comparison of the various estimation
techniques.
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Following is an outline of the remaining content: In Section 2, we provide a brand-new
discrete family of distributions. Section 3, a special case of the obtained new discrete discrete
family of distribution and its probabilistic characteristics are studied in detail. Section
4 discussed least-squares, weighted least squares, and the Cramer von Mises technique in
addition to maximum likelihood estimation. A thorough simulation analysis is employed in
Section 5 to evaluate the performance of these estimators. Applications to the two COVID-
19 data sets used to demonstrate how the new distribution performs are detailed in Section
6. A few closing thoughts are provided in Section 7.

2. Discrete power modified Lindley-X family of distribution

In this section, we introduce the discrete power modified Lindley-X (PML-X) family
of distributions, a new discrete family of distributions. Utilising the Alzaatreh et al. (2013)
T-X generalization technique, we enable the transformed random variable T to have the
PML distribution and the transformer random variable X is a discrete random variable,
with W (F (x)) = −log(1 − F (x)). Then the CDF of new family is given by

G(x; α, θ, ℑ) =
−log(1−F (x;ℑ))�

0

r(t; α, θ)dt = R(−log(1 − F (x; ℑ)))

= 1 −
[
1 + θ[−log(1 − F (x; ℑ))]α

1 + θ
e−θ[−log(1−F (x;ℑ))]α

]
e−θ[−log(1−F (x;ℑ))]α (4)

The corresponding PMF of the PML-X family of discrete distributions becomes.

g(x; α, θ, ℑ) = G(x) − G(x − 1)

=
[
1 + θ[−log(1 − F (x − 1; ℑ))]α

1 + θ
e−θ[−log(1−F (x−1;ℑ))]α

]
e−θ[−log(1−F (x−1;ℑ))]α

−
[
1 + θ[−log(1 − F (x; ℑ))]α

1 + θ
e−θ[−log(1−F (x;ℑ))]α

]
e−θ[−log(1−F (x;ℑ))]α (5)

where α > 0, θ > 0 and ℑ the parameters of the CDF F (x; ℑ), and the range of variation
of PML-X family of distribution depends on the random variable X with CDF F (x; ℑ).

In the following section, we examine one member of this family, the power modified
Lindley-geometric distribution, and provide its detailed features. The geometric distribution
was chosen because it has a simplified CDF form.

3. Power modified Lindley-geometric distribution

Let’s make the assumption that the transformed distribution is geometric with pa-
rameter p, 0 < p < 1, and that the survival function S(x) = 1 − F (x) = p(x+1).Then, the
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PMF of the new model using Equation (5) is given by

g(x; α, θ, b) =
[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

−
[
1 + θ(b(x + 1))α

1 + θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α ; x = 0, 1, 2, .... (6)

where b = −log p >0, α >0 and θ >0. We call this new distribution the power modified
Lindley-geometric (PMLG) distribution with parameters b, α and θ. Note that,

lim
x→+∞

g(x; α, θ, b) = 0, lim
x→0

g(x; α, θ, b) = 0 when b → 0 and

lim
x→0

g(x; α, θ, b) = 1 when b → ∞.

The corresponding CDF is given by

G(x; α, θ, b) = 1 −
[
1 + θ(b(x + 1))α

1 + θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α ; x = 0, 1, 2, ... (7)

and the hazard rate function (HRF) corresponding to the CDF is provided by

h(x; α, θ, b)) =

[
1 + θ(bx)α

1+θ
e−θ(bx)α

]
e−θ(bx)α −

[
1 + θ(b(x+1))α

1+θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α[

1 + θ(b(x+1))α

1+θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α

A graphic illustration of the PMF of the PMLG distribution in various forms is
shown in Figure 1. These graphs demonstrate the possibility of right-skewed, symmetric,
left-skewed, increasing decreasing curves for the PMF of the PMLG distribution. The HRF
of the PMLG distribution in Figure 2 is depicted in some of its potential shapes for various
parameter values. Figures show that the HRF can have a variety of shapes, including
increasing, decreasing and upside-down bathtub shapes. As a result, the PMLG distribution
is excellent at modelling a variety of data sets.

3.1. Probability generating function, rth moment function, mean and variance

The probability generating function (PGF) of PMLG distribution is given by

p(s) = 1 + (s − 1)
∞∑

x=1
sx−1

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

. (8)

Using Equation (6), the non-central rth moment of the PMLG distribution can be calculated
as follows:

µ′
r =

∞∑
x=0

xrg(x; α, θ, b)

=
∞∑

x=0
xr

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α −

∞∑
x=0

xr

[
1 + θ(b(x + 1))α

1 + θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α

.
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In particular, the first two moments of the PMLG distribution are given by

µ′
1 = E(X) =

∞∑
x=1

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

. (9)

µ′
2 =

∞∑
x=1

(2x − 1)
[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

. (10)

The variance of PMLG distribution is given as

V (X) =
∞∑

x=1
(2x − 1)

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α −

 ∞∑
x=1

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

2

.

(11)

Table 1 shows the mean and variance of the PMLG distribution for different values of
b, α and θ using statistical software. From this, we are able to understand that the variance
decreases with α and θ for different values of b. Furthermore, based on the values of b, α
and θ, the mean can be equal, lower or larger than its variance. As a result, many data sets
can be modelled using the characteristics of the PMLG distribution.

Table 1: The mean (variance) of PMLG for various choices of parameters

α −→ 0.5 1 2
θ ↓

b = 0.25 0.5 15.1411(337.0099) 8.8333( 61.9832) 5.1041( 6.0108)
1.5 3.3854( 49.6625) 2.4523(7.0107) 2.5990(2.2115)
2.5 1.0478(7.7934) 1.2522( 2.4986) 1.8552(1.3915)

b = 1 0.5 7.4605(143.5667) 1.8484(3.8987) 0.9007(0.4569)
1.5 0.6757(3.7225) 0.3203(0.3896) 0.2555(0.1952)
2.5 0.1470(0.3978) 0.0943(0.1015) 0.0869( 0.0795)

b = 1.75 0.5 4.6069(72.9978) 0.8633( 1.2649) 0.2662(0.1998)
1.5 0.3096(1.1287) 0.0837(0.0890) 0.0103(0.0102)
2.5 0.0532(0.1039) 0.0129(0.0131) 0.0005(0.0005)

3.2. Infinite divisibility

The Central Limit Theorem and waiting time distributions are closely related to
infinite divisibility. In accordance with Steutel and Van Harn (2003), If p(x), x ∈ N0 is
infinitely divisible, then p(x) < e−1 for all x ∈ N. We can observe that for the PMLG
distribution with parameters b = 0.4, α =2 and θ = 5, r(1) = 0.4346001 > e−1 = 0.367. It
follows that the PMLG distribution is not infinitely divisible. Additionally, since the discrete
concepts of self-decomposable and stable distributions are subclasses of infinitely divisible
distributions, we are able to conclude that the PMLG distribution cannot be either of these
properties.
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Figure 1: PMFs of some parameter values for the PMLG distribution
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Figure 2: HRFs of some parameter values for the PMLG distribution
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4. Parameter estimation

In this section, we focus on the many classical estimating techniques. There are
numerous and different classical approaches, some of which rely on the theory of maximisa-
tion and others on the theory of minimization. This section includes, maximum likelihood,
Cramer-von-Mises, least squares and weighted least squares approaches of estimation as part
of four classical estimation methods.

4.1. Maximum likelihood approach of estimation

If we choose x1, x2, . . . , xn to be a random sample from the PMLG distribution with
unknown parameters b, α and θ and, the likelihood function is given by

L(α, θ, b) =
n∏

i=1
g(xi; α, θ, b)

=
n∏

i=1

[
1 + θ(bxi)α

1 + θ
e−θ(bxi)α

]
e−θ(bxi)α −

[
1 + θ(b(xi + 1))α

1 + θ
e−θ(b(xi+1))α

]
e−θ(b(xi+1))α

.

The log-likelihood function follows immediately as

ℓ(b, α, θ) = log [L(b, α, θ)]

=
n∑

i=1
log


[
1 + θ(bxi)α

1 + θ
e−θ(bxi)α

]
e−θ(bxi)α

−
[
1 + θ(b(xi + 1))α

1 + θ
e−θ(b(xi+1))α

]
e−θ(b(xi+1))α

.

The first derivatives of ℓ(b, α, θ) with respect to b, α and θ are

∂ℓ(b, α, θ)
∂b

=
n∑

i=1

αθ∆1
b

{
e−θ(bxi)α

1+θ
[1 − θ(bxi)α] −

[
1 + θ

1+θ
∆1

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

−
n∑

i=1

αθ∆2
b

{
e−θ(b(xi+1))α

1+θ
[1 − θ(b(xi + 1))α] −

[
1 + θ

1+θ
∆2

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

∂ℓ(b, α, θ)
∂α

=
n∑

i=1

θ∆1log(bxi)
{

e−θ(bxi)α

1+θ
[1 − θ(bxi)α] −

[
1 + θ

1+θ
∆1

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

−
n∑

i=1

θ∆2log(b(xi + 1))
{

e−θ(b(xi+1))α

1+θ
[1 − θ(b(xi + 1))α] −

[
1 + θ

1+θ
∆2

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α
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∂ℓ(b, α, θ)
∂θ

=
n∑

i=1

∆1
{

e−θ(bxi)α

(1+θ)2 [(1 + θ)(1 − θ(bxi)α) − θ] −
[
1 + θ

1+θ
∆1

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

−
n∑

i=1

∆2
{

e−θ(b(xi+1))α

(1+θ)2 [(1 + θ)(1 − θ(b(xi + 1))α) − θ] −
[
1 + θ

1+θ
∆2

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

Where, ∆1 = e−θ(bxi)α(bxi)αand ∆2 = e−θ(b(xi+1))α(b(xi + 1))α.

Setting ∂ℓ(b,α,θ)
∂b

= 0, ∂ℓ(b,α,θ)
∂α

= 0 and ∂ℓ(b,α,θ)
∂θ

= 0, and then solving the equations
iteratively will yield the maximum likelihood (ML) estimators of b, α and θ. These equations
are complicated to solve analytically. One can use mathematical software to get numerical
solutions.

4.2. Cramer-von-Mises approach of estimation

The Cramer-von-Mises (CVM ) estimation approach is a significant estimation method
that was discussed in Macdonald (1971). The CVM estimation technique’s parameters can
be calculated by minimising the function CVM in respect to the unknown parameters.

CV M = 1
12 +

n∑
i=1

{
G(xi; α, θ, b) − 2i − 1

2n

}

= 1
12 +

n∑
i=1

{
1 −

[
1 + θ(b(xi + 1))α

1 + θ
e−θ(b(xi+1))α

]
e−θ(b(xi+1))α − 2i − 1

2n

}

4.3. Least square approach of estimation

Assume that x1, x2, . . . , xn is a randomly selected sample of size n from the PMLG
distribution and that x1:n, x2:n, . . . , xn:n signifies a corresponding ordered sample. Conse-
quently, the following quantity can be minimized to produce least squares (LS) estimators
for PMLG parameters

LS =
n∑

i=1

{
G(xi:n; α, θ, b) − i

n + 1

}2

=
n∑

i=1

{
1 −

[
1 + θ(b(xi:n + 1))α

1 + θ
e−θ(b(xi:n+1))α

]
e−θ(b(xi:n+1))α − i

n + 1

}2

with respect to b, α and θ respectively.

4.4. Weighted least square approach of estimation

The weighted least square (WLS) estimators of the unknown parameters for the
PMLG distribution are derived in this subsection. Let x1, x2, . . . , xn be a random sample and
x1:n, x2:n, . . . , xn:n be the corresponding ordered sample of size n from the PMLG distribution.
The following sum of squares errors can be minimised to generate the PMLG estimators
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WLS =
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

{
G(xi:n; α, θ, b) − i

n + 1

}2

=
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

{
1 −

[
1 + θ(b(xi:n + 1))α

1 + θ
e−θ(b(xi:n+1))α

]
e−θ(b(xi:n+1))α − i

n + 1

}2

with respect to b, α and θ respectively.

5. Simulation

Here, a simulation study is used to examine how well various estimates of the PMLG
distribution work. Using the PMLG distribution, we produce random data with varying
sample sizes and parameter values. The simulation research is run N= 1000 times with n
= 50, 100, 150, and 200 as the sample size and the chosen parameter values. We compute
the ML, CVM, LS and WLS estimates of b, α and θ. Based on the calculated results esti-
mates, average biases (Bias) and mean squared errors (MSEs) measurements are calculated.
The results of this simulation are shown in Tables 2 and 3. We can draw the following
interpretations from the tables:

• With larger sample sizes, all estimates experience a decreasing trend in MSEs and Bias
decays towards zero.

• The LS estimates MSEs are lower than those for the ML, WLS, and CVM estimates.

Table 2: The Bias and MSE of the ML, CVM, LS and WLS estimates for b=0.5,
α=0.4 and θ=0.045

n Bias(b̂) MSE(b̂) Bias(α̂) MSE(α̂) Bias(θ̂) MSE (θ̂)
50 ML 0.0322 1.3889 -0.4728 0.2365 -0.3687 0.2769

CVM -0.0348 0.0829 -0.4892 0.2447 -0.3869 0.1582
LS -0.0005 0.2704e-04 -0.0001 0.4885e-06 -0.0001 0.1155e-05

WLS -0.0303 0.2046 -0.4945 0.2471 -0.3941 0.1595
100 ML -0.0168 0.5318 -0.4434 0.2217 -0.3553 0.1421

CVM -0.0050 0.0335 -0.1889 0.0945 -0.1284 0.0627
LS -0.0002 0.2899e-05 -0.3202e-04 0.6908e-07 -0.4317e-04 0.1450e-06

WLS -0.0178 0.1858 -0.4163 0.2080 -0.3249 0.1388
150 ML 0.0267 0.4623 0.0003 0.4505e-04 0.0093 0.0537

CVM 0.0009 0.0001 -0.0045 0.0023 0.0042 0.0020
LS -0.6792e-05 0.4697e-06 -0.2010e-05 0.1184e-07 -0.2032e-06 0.2626e-07

WLS -0.0084 0.0997 -0.2404 0.1202 -0.1848 0.0779
200 ML 0.0003 0.6853e-04 -0.1957e-04 0.3828e-06 -0.0002 0.5283e-04

CVM 0.0003 0.5130e-04 -0.0010 0.0005 0.0009 0.0005
LS -0.3016e-06 0.9838e-07 -0.6776e-06 0.2865e-08 -0.7719e-06 0.590e-08

WLS 0.37691e-04 0.1421e-05 -0.0005 0.0002 0.0005 0.0002
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Table 3: The Bias and MSE of the ML, CVM, LS and WLS estimates for b=0.6,
α=0.5 and θ=0.05

n Bias(b̂) MSE(b̂) Bias(α̂) MSE(α̂) Bias(θ̂) MSE (θ̂)
50 ML -0.0143 0.3723 -0.5719 0.3436 -0.4532 0.5205

CVM -0.0172 0.1487 -0.4736 0.2841 -0.3554 0.19245
LS -0.0007 0.1823e-04 -0.0003 0.383e-04 0.0001 0.4367e-04

WLS -0.0459 0.0101 -0.5860 0.3519 -0.4846 0.2451
100 ML -0.0043 -0.0043 -0.3523 0.2123 -0.2616 0.4132

CVM -0.0107 0.0010 -0.1783 0.1071 -0.1120 0.0706
LS -0.0002 0.2613e-05 -0.1761e-04 0.2295e-07 -0.2939e-04 0.7558 e-07

WLS -0.0220 0.0301 -0.3597 0.2156 -0.282 0.1592
150 ML 0.0028 0.0070 0.1515e-04 0.21181e-06 -0.0007 0.0003

CVM -0.0030 0.0002 -0.0389 0.0233 -0.0291 0.0157
LS -0.3115e-04 0.2720e-06 -0.3128e-05 0.2699e-08 -0.5645e-05 0.8846e-08

WLS 0.0030 0.0095 -0.0027 0.0015 0.0026 0.0017
200 ML 0.0007 0.0002 -0.6898e-05 0.1166e-06 -0.0007 0.0002

CVM 0.9024e-04 0.4348e-05 -0.0011 0.0006 0.0006 0.0002
LS -0.1707e-04 0.1457e-06 -0.1788e-05 0.1598e-08 -0.3128e-06 0.4894e-08

WLS 0.0009 0.0007 -0.0012 0.0007 0.0007 0.0003

6. Application

This section uses two actual count data sets to demonstrate the significance of the
PMLG distribution over the existing models, namely exponentiated exponential-geometric
(EEG) distribution and Kumaraswamy-geometric (KG) distribution, in modelling count data
from the field of medicine. We used the maximum likelihood method to estimate the val-
ues of the unknown parameters in order to compare these distributions. Additionally, the
estimated log-likelihood function (ℓ̂), Akaike Information Criterion (AIC ), correct Akaike
information criterion (AICc), Anderson-Darling statistic (A), Cramér von Mises statistic
(W ) and Kolmogorov-Smirnov (K-S) statistic with p-value (p-V ) are used to compare the
fitted distributions. The following displays the considered data sets.

Data set I:The first data set shows the number of COVID-19-related deaths that
occurred on a daily basis in the United Kingdom from August 1 through August 28, 2021.
This information is obtained from the website
https : //www.worldometers.info/coronavirus/country/uk/, which lists the number of
deaths caused by COVID-19 in the United Kingdom on a daily basis. The data set is
provided below.
{65, 24, 138, 119, 86, 92, 103, 39, 37, 140, 104, 94, 100, 91, 61, 26, 170, 111, 113, 114, 104,
49, 40, 174, 149, 140, 100, 133}

Data set II:The second data set, which has 42 observations and is available on the
Worldometer website through
https : //www.worldometers.info/coronavirus/country/Egypt/, shows the number of daily
COVID-19 infection-related deaths that occurred in Egypt from 13 March to 30 April 2020.
The data are as follows.
{1, 2, 4, 5, 1, 1, 3, 6, 6, 4, 1, 5, 6, 6, 8, 5, 7, 7, 9, 9, 15, 17, 11, 13, 5, 14, 5, 13, 9, 19, 15, 11,
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14, 12, 11, 7, 13, 10, 20, 22, 21, 12}

Tables 4, 5, 6 and 7, contain the MLEs, (−ℓ̂), AIC and goodness-of-fit tests for
COVID-19 data sets. The analysis yields the PMLG distribution with the lowest −ℓ̂, AIC,
AICc, HQIC, A, W, K-S statistic, and highest p-V s. The PMLG distribution is the appro-
priate one based on these results. We can say from the two applications that the PMLG
distribution is the best model for capturing the daily deaths by COVID-19.

Figure 3 gives the total time test (TTT )-plots of PMLG distribution for the COVID-
19 data sets. The TTT -plots shows increasing HRF, allowing us to fit PMLG distribution.
Figure 4 display the probability-probability (PP) plots for the two data sets, respectively.
The PMLG distribution offers a better fit for the COVID-19 data sets, which support the
findings in Tables 4, 5, 6 and 7.

Table 4: Estimated values, −ℓ̂, AIC, and AICc for the data set I

Distribution Estimates −ℓ̂ AIC AICc
α̂ = 2.5303 143.5036 293.0072 294.0072

PMLG θ̂ = 8.6018
b̂ = 0.0039

EEG α̂ = 4.8971 146.008 296.0161 296.4961
θ̂ = 0.9774
p = 0.9941 144.3038 294.6075 295.6075

KG α̂ = 3.1638
θ̂ = 10.4923

Table 5: A, W and K-S with p-V s for the data set I

Distribution A W K-S p-V s
PMLG 0.5679 0.0941 0.14277 0.6179

EEG 1.0461 0.2023 0.2072 0.1805
KG 0.7393 0.1351 0.1720 0.3785

Table 6: Estimated values, −ℓ̂ and AIC and AICc for the data set II

Distribution Estimates −ℓ̂ AIC AICc
α̂ = 1.7357 129.0244 264.0489 264.6805

PMLG θ̂ = 11.6800
b̂ = 0.0227

EEG α̂ = 2.6088 130.1956 264.3913 264.699
θ̂ = 0.8385
p = 0.9734 129.243 264.486 265.1176

KG α̂ = 1.9437
θ̂ = 14.2437
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Table 7: A, W and K-S with p-V s for the data set II

Distribution A W K-S p-V s
PMLG 0.4625 0.0725 0.10275 0.767

EEG 0.8018 0.1447 0.13774, 0.403
KG 0.5264 0.0871 0.10979 0.692
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Figure 3: TTT-plots for the COVID-19 (a) data set I and (b) data set II
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Figure 4: PP-plots for the COVID-19 (a) data set I and (b) data set II

7. Conclusion

In this study, we suggested an entirely novel family of discrete PML-X distributions.
PMLG distribution is a specific instance of this family that is thoroughly researched. ML,
CVM, OLS and WLS techniques have been used to estimate the model parameters. A sim-
ulation study is conducted to evaluate the effectiveness of the various estimating techniques.
In order to demonstrate the significance and adaptability of defined distribution, two real
data sets are analysed at the end. We anticipate that the suggested model will replace
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various types of discrete distributions found in the statistical literature.
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Abstract
In every agricultural market, accurate agricultural commodity price forecasting is

essential for farmers, traders, policymakers, and government sectors. Decomposition of the
price series has sufficiently increased the forecast accuracy. In the past years, wavelet analysis
has been widely used for the decomposition of price series, where it converted time series
into high and low frequencies. Often, without accounting for the linearity of the frequencies
in wavelet-hybrid models, those frequencies are modeled directly. A major problem arises
when wavelet-hybrid models contain both linear and non-linear frequencies. Hence, a type
of wavelet-hybrid model was developed to solve this problem. Tomato’s monthly wholesale
price in the Mumbai market was used in this study. First, linear, and non-linear frequencies
are separated by the McLeod and Li test after the wavelet decomposition of the tomato
price series. Autoregressive Integrated Moving Average (ARIMA) and Time Delay Neural
Network (TDNN) were applied to linear and non-linear frequencies, respectively. Forecasts of
ARIMA and TDNN were reconstructed to obtain forecasts of the tomato price series. Finally,
our proposed wavelet-ARIMA-TDNN model was compared to ARIMA, TDNN, and Wavelet-
ARIMA, Wavelet-TDNN. The result revealed that our proposed method outperformed other
models.

Key words: McLeod and Li test; Non-linearity; Decomposition; Wavelet analysis; Wavelet-
ARIMA-TDNN.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

In a populous country like India, satisfying people’s daily food demands is cum-
bersome. Thus, farmers have the responsibility to increase food production, especially for
vegetables. It is due to the perishable nature of vegetables, which causes their prices to fluc-
tuate and affects farmers’ revenue. Therefore, predicting this price fluctuation is essential
for farmers, traders, policymakers, government sectors, etc. Forecasting this highly volatile
price is a very challenging task for forecasters. Understanding the nature of the price series
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is important for forecasting it. Generally, time series follow either a linear or non-linear
pattern.

The ARIMA model is one of the most important and widely used models for linear
time series. Due to its inherent statistical properties and use of the Box George et al. (1976)
approach, the ARIMA model is popular. On the other hand, ANNs provide good self-learning
and non-linear approximation skills when dealing with non-linear complex data sets. ANN
has some success with predicting applications with a lag, particularly for non-linear time
series. However, there is no specific model to handle all the circumstances. But we can get
good results through the appropriate application of suitable models.

The ARIMA model performs well as a predictor for linear time series. Singla et al.
(2021) found that ARIMA model outperformed wavelet-hybrid models for the onion price
series. But, the ARIMA model’s precision is insufficient to address complex non-linear situa-
tions. Jha and Sinha (2014) showed that ANN models provide better prediction accuracy for
non-linear patterns than ARIMA models. Although ANNs are effective against non-linear
time series, they might produce inconsistent results against linear models. Additionally, it
shows that the sampling size and noise level affect the performance of linear regression model
using ANN Markham and Rakes (1998).

Decomposition of time series is an essential process in modelling. Wavelet analysis
Antoniadis (1997) is extensively used for decomposition and converts the time series into high
and low frequencies. These frequencies are fitted using time series models, which are known
as wavelet-hybrid models. Generally, without considering the linearity or non-linearity of the
data’s frequencies, time series models are used for modelling the frequencies in wavelet-hybrid
models. Also, Paul et al. (2020) found that wavelet-ANN outperformed wavelet-ARIMA for
modelling sub-divisional rainfall data. Nury et al. (2017) reported that wavelet-ARIMA was
performed better than wavelet-ANN for temperature time series data. The above studies
indicate that the linearity or non-linearity of the frequencies is a significant factor in wavelet-
hybrid models. For instance, Anjoy et al. (2017) fitted the ANN model to all frequencies
due to their non-linearity. Similarly,Ray et al. (2020) were fitted WNN to high frequencies
and ANN to low frequency due to their non-linear pattern. Also, it is possible to get both
linear and non-linear frequencies after the wavelet decomposition of a time series. In such a
situation, it is not optimal to fit all frequencies using the same time series model.

In this research, the problem of containing both linear and non-linear frequencies was
addressed. According to this problem, the wavelet-ARIMA-TDNN model was developed to
obtain reliable and accurate forecasting.

2. Materials and Methods

Monthly wholesale prices of Tomato for the Mumbai market (Jan-2011 to Dec-2021)
was collected from AGMARKNET (https://agmarknet.gov.in/) website.
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2.1. Wavelet Analysis

Wavelets are underlying building block functions like trigonometric sine and cosine
functions. A wavelet function (Equation 1) oscillates about zero.

ψτ,s = 1√
|s|

ψ
(
t− τ

s

)
τ, s ∈ R, s ̸= 0 (1)

Here, τ - Translation parameter s - Scaling parameter.

Wavelets are well-described in Daubechies et al. (1992), Ogden (1997), and Percival
and Walden (2000). Based on scaling and translation parameters, two types of wavelet trans-
forms (continuous and discrete) exist. The continuous wavelet transform (CWT) provides
coefficients for the entire real axis, which are more than necessary for extracting frequencies.
On the other hand, due to scaling proportional steps of translation parameters, the dyadic
discrete wavelet transform (DWT) requires a sample size of multiples of two. If the sample
size is 2J , J is known as the maximum level of decomposition. Equation (2) is the dyadic
DWT.

ψm,n (t) = 1√
2
ψ
(
t− n2m

2m

)
(2)

where, 1√
2

- variance preserving factor; m- scaling parameter; n- translation parameter

(ranges from 1 to 2J−m).

These reasons lead to the requirement of a modified wavelet transform, which is known
as a maximal overlap discrete wavelet transform (MODWT).

2.2. Maximal Overlap Discrete Wavelet Transform

A MODWT (Equation 3) can be obtained from a slight modification of dyadic DWT.
In MODWT, the translation parameter is not proportional to the scaling parameter where
wavelets are convoluted in each time interval for all the dyadic scales, so there is no restriction
on sample size. For N sample size,

ψm,n (t) = 1√
2
ψ
(
t− n

2m

)
(3)

where n ranges from 1 to N .

It produces an overlapping tile in the time-frequency plane, so the transform is not
orthogonal Percival and Walden (2000). Because of the non-orthogonality, it demands an
orthogonal filter for perfect reconstruction. Based on linear filter operation, MODWT gives
high frequencies and low frequencies using synthesis filters. MODWT provides J high fre-
quencies and one low frequency at the J th decomposition level. The maximum level of
decomposition for the N sample size is J = log2(N). It ranges from 1 to J. This transform
partitions variance across the scale. Frequencies are reconstructed by inverse maximal over-
lap discrete wavelet transform (IMODWT). The variance of reconstructed series at any J th

level and variance of actual time series are always equal, which explains that MODWT is
the variance-preserving transform.
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Figure 1: Schematic representation of the proposed wavelet-ARIMA-TDNN
model

2.3. Wavelet-ARIMA-TDNN

Wavelet-hybrid models are the combination of wavelet analysis and time series anal-
ysis, in which time series are converted into high and low frequencies using wavelet analysis
and then fitted by any time series model to increase the forecast accuracy. In this research,
we developed a hybrid time series forecasting method that combines features of wavelet
transformation, ARIMA, and TDNN based on the non-linearity test.

Since some of the time series data contain both linear and non-linear frequencies, the
following method is developed:

Step 1: MODWT divides time series into high and low-frequency components.

Step 2: Test the non-linearity for each frequency using the McLeod and Li test.

Step 3: Identify the linear and non-linear frequencies which are fitted by ARIMA and TDNN,
respectively.

Step 4: Reconstruct the forecast value of frequencies obtained from fitted models by IMODWT.

Figure 1 shows the schematic representation of the wavelet-ARIMA-TDNN model. The Haar
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filter was used in this study. Among all types of filters, only the Haar filter has the property
of discontinuity. So, it can capture sudden changes in the signal.

2.4. Non-linearity test

McLeod and Li (1983) is the Ljung-Box test for squared time series data.

Q (m) = n(n+ 2)
m∑

j=1

r2
j

n− j
(4)

where, rj- autocorrelation at jth lag; m-number of lags. Under the null hypothesis of linearity,
the statistic (Q) is asymptotically distributed as a Chi-square distribution with m degrees
of freedom.

2.5. ARIMA

The combination of Autoregressive and Moving Average processes and the integration
is more efficient for achieving higher adaptability of actual time series data. It is denoted as
ARIMA (p, d, q). It is one of the linear nonstationary time series models, defined in equation
5. For seasonal time series, ARIMA expanded into SARIMA (p, d, q)(P,D,Q), which stands
for Seasonal Autoregressive Integrated Moving Average. It is stated in equation 6.(

1 −
p∑

i=1
∅iL

i

)
(1 − L)d

yt = c +
(

1 +
q∑

k=1
θkLk

)
εt (5)

(
1 −

p∑
i=1

∅iL
i

)1 −
P∑

j=1
ΦjLj

 (1 − L)

d

(1 − LD)y
t

= c +
(

1 +
q∑

k=1
θkLk

)(
1 +

Q∑
r=1

ΘrLr

)
εt (6)

where, L- lag operator; yt- time series; p- Autoregressive order; P- Seasonal autoregressive
order; d- No. of. Differences; D- No. of. Seasonal differences; q- Moving average order; Q-
Seasonal moving average order; εt- white noise.

2.6. Time-Delay Neural Network

An Artificial Neural Network is for modelling non-linear data sets Ogden (1997),
especially unknown relations between input and output datasets, through a data-driven and
self-adaptive approach. Over the last few decades, neural modelling systems have been used
to deal with a variety of prediction difficulties. The primary theoretical guideline for resolving
problematic situations with ANNs is based on the learning principle Valiant (1984). ANN
is inspired by human neurological science.

A network of basic processing nodes or neurons that are connected in a certain order
to carry out basic arithmetic manipulations is known as a neural network and can be used
to forecast future values of potentially noisy time series based on historical data Adamowski
and Chan (2011). A Time-delay neural network is an illustration of such a design (TDNN).
The number of layers and the total number of nodes in each layer must be selected to
create the neural network structure that is appropriate for a given application in time-series
prediction. A feed-forward neural network with a single hidden layer and an output node
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has been employed in the present investigation. In the hidden layer, the sigmoid function
has been used as an activation function with form for the y time series,

f (y) = 1
1+e−y

(7)

For g input lag, h hidden nodes in the hidden layer, and one output node, the total
number of parameters in a three-layer feed-forward neural network is h(g + 2) + 1.

3. Evaluation criteria

It is necessary to verify the model’s accuracy to choose the most suitable model for
forecasting. Root Mean Square Error (RMSE) is the standard deviation of the residuals of
the model; Mean Absolute Error (MAE) is the average difference of residuals of the model;
and Mean Absolute Percentage Error (MAPE) is the percentage of average absolute error
which give a way to compare the performance of the different models.

RMSE =
√√√√ 1
n

n∑
t=1

(
Yt−Ŷt

)2
(8)

MAE = 1
n

n∑
t=1

∣∣∣Yt−Ŷt

∣∣∣ (9)

MAPE = 1
n

(
n∑

t=1

∣∣∣∣∣Yt−Ŷt

Yt

∣∣∣∣∣
)

∗100 (10)

Finally, the Tomato price series forecast accuracy of the developed model (Wavelet-ARIMA-
TDNN) was compared to that of Wavelet-ARIMA and Wavelet-TDNN, and the single
ARIMA, TDNN in this investigation.

4. Results and Discussion

The tomato price series of the Mumbai market was used to apply the developed hybrid
methodology. Descriptive statistics of tomato price series of Mumbai market is given in Table
1. The data set was separated into training data (Jan-2011 to Dec-2020) and validation data
groups (Jan-2021 to Dec-2021). The validation data set is used to determine the predictive
accuracy after model fitting. The predicting outcomes of various methods, including ARIMA,
TDNN, Wavelet-ARIMA, and Wavelet-TDNN, were examined to compare the performance
of the suggested methodology with other related techniques in the field. The Ljung-Box
(LB) test Ljung and Box (1978) was used to test residual series.

For ARIMA fitting, ACF and PACF plots of stationary series were used to get the
possible orders for model fitting. Among all possible models, ARIMA (1,0,1) (2,1,1)[12] gave
low AIC and BIC values. Parameter estimates are given in Table 2. The performance of the
ARIMA model and its residual test is shown in Table 3.
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Table 1: Descriptive statistics of tomato price series in Mumbai market

Mean Standard
deviation

Minimum Maximum Range Skewness Kurtosis CV (%)

1439.09 835.67 459.17 4159.38 3700.21 1.18 0.57 58.07

Table 2: Fitted ARIMA model parameter estimates

Parameters C AR (1) MA (1) SAR (1) SAR (2) SMA (1)
Coefficient 7.54** 0.32* 0.41** 0.46** 0.22 -0.76

(S.E) (2.31) (0.14) (0.15) (0.16) (0.14) (0.22)
AIC 1698.66
BIC 1717.43

Table 3: Results of fitted ARIMA and TDNN models

Models Training set Validation set Ljung-Box
test

RMSE MAE MAPE RMSE MAE MAPE Statistic P
value

ARIMA 502.44 339.56 24.92 973.02 808.02 47.04 7.12 0.85
TDNN 594.04 419.45 26.51 855.03 783.06 46.63 20.96 0.06

This study applied an TDNN with a hidden layer, along with sigmoid and identity as
activation functions at the hidden and output layers, respectively as per prior studies Jha and
Sinha (2014). The backpropagation algorithm can be used to train feed-forward networks
in several different ways. In this study, the second-tier training speed was obtained using
the Levenberg-Marquardt algorithm Hagen and Menhaj (1994). Rapid convergence into the
modestly sized feed forward neural network is provided by this algorithm. Thus, functional
approximation issues were addressed by this technique Demuth and Beale (2002). For model
fitting, several combinations of input lags and hidden node sizes were tested. Input delays
ranged from 1 to 8, whereas hidden neurons ranged from 1 to 10. In the validation data
set for the tomato price series, three tapped delay and two hidden nodes (3:2s:1l) provided
the lowest RMSE, MAE and MAPE values. Table 3 shows the performance of the TDNN
model.

Table 4: Results of Wavelet-ARIMA model for all the decomposition levels

Decomposition
Level

Training set Validation set Ljung-Box
test

RMSE MAE MAPE RMSE MAE MAPE Statistic P
value

1 649.52 449.16 42.84 824.55 674.95 34.27 13.64 0.32
2 625.69 431.87 39.04 822.93 650.61 31.80 9.53 0.66
3 628.95 433.14 40.19 844.59 810.80 45.87 8.77 0.72
4 630.34 433.98 44.07 884.13 863.94 56.37 8.04 0.78
5 629.78 434.24 43.97 883.40 862.96 56.25 8.29 0.76
6 629.02 433.50 43.38 884.64 865.01 56.50 8.27 0.76
7 628.46 433.37 42.65 880.66 851.98 54.49 8.30 0.76
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Actual tomato price series were decomposed through MODWT from one to seven
(log2[120] = 6.9) decomposition levels. In each J th level of decomposition, tomato price
series were separated into J high frequencies (W 1, W2, . . . ,WJ) and one low frequency
(VJ) by the Haar mother wavelet, which is a frequently used wavelet, especially for the price
series. In the Wavelet-ARIMA model, all the high and low frequencies were fitted by ARIMA
for all the decomposition levels without conducting the non-linearity test, and the results
of Wavelet-ARIMA are reported in Table 4. Similarly, TDNN was used to fit all high and
low frequencies at every decomposition level for the Wavelet-TDNN model without taking
linearity into account. The results of Wavelet-TDNN are given in Table 5. Results of the
non-linearity test for all the high and low frequencies are shown in Table 6. In our developed
model, ARIMA was used to predict linear frequencies (W1 and W2) and TDNN was used for
modelling non-linear frequencies (W3, W4, W5, W6, W7, V1, V2, V3, V4, V5, V6, V7). Table 7
gives that the models were used to forecast the frequencies at each level of decomposition in
the developed hybrid model. Finally, the predicted values of different frequencies from fitted
ARIMA and TDNN were used to reconstruct the data series at each level of decomposition.

Table 5: Results of Wavelet-TDNN model for all the decomposition levels

Decomposition
Level

Training set Validation set Ljung-Box
test

RMSE MAE MAPE RMSE MAE MAPE Statistic P
value

1 342.76 246.59 19.22 595.83 462.56 30.49 11.84 0.46
2 422.48 306.10 23.37 487.13 393.36 26.16 35.19 <0.01
3 440.05 319.89 24.57 651.53 554.93 37.66 36.65 <0.01
4 454.30 325.86 24.96 788.35 735.23 48.05 34.93 <0.01
5 458.38 330.33 25.32 877.61 820.73 52.22 47.10 <0.01
6 462.07 333.82 25.61 770.39 698.75 44.37 36.38 <0.01
7 459.32 331.50 25.42 769.76 694.30 44.04 46.13 <0.01

McLeod and Li’s test for the actual series shows (Table 6) that the tomato price series
is non-linear. Both ARIMA and TDNN models were fitted for the tomato price series. But
TDNN gave better results than the ARIMA model. Therefore, TDNN performed well for
non-linear time series.

Table 6: Results of McLeod and Li test

Actual Series Statistic P value
Y 80.46 <0.01

Decomposed series
High frequency Statistic P value Low frequency Statistic P value

W1 11.95 0.98 V1 125.15 <0.01
W2 28.67 0.23 V2 216.08 <0.01
W3 97.03 <0.01 V3 324.69 <0.01
W4 127.27 <0.01 V4 806.21 <0.01
W5 297.19 <0.01 V5 667.16 <0.01
W6 589.54 <0.01 V6 924.31 <0.01
W7 697.13 <0.01 V7 226.14 <0.01
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Next, without considering the non-linearity, the Wavelet-ARIMA model was used for
model fitting, which was fitted at all the levels of decomposition. The 2nd decomposition
level gave better results than other decomposition levels. Although Wavelet-ARIMA was
fitted, Table 9 shows that it gave less RMSE, MAE and MAPE than the ARIMA model,
which confirm that wavelet analysis improves the performance of the ARIMA. Similarly,
Wavelet-TDNN was also tried for model fitting, which was fitted only at the first level of
decomposition. But Table 6 shows that the tomato price series consists of both significant
linear and non-linear frequencies. Due to modelling the linear high frequencies (W1 and W2)
using TDNN in Wavelet-TDNN, the Ljung-Box test shows that Wavelet-TDNN was not
fitted for other levels of decomposition. But Wavelet-TDNN enhanced the performance of
TDNN at single level decomposition. To overcome these contrasted applications of linear and
non-linear models, the developed hybrid model was applied to all the levels of decomposition.
Models used for Wavelet-ARIMA-TDNN at each decomposition level are given in Table 7.
The developed hybrid model (Wavelet-ARIMA-TDNN) was given better forecasts than the
Wavelet-ARIMA and Wavelet-TDNN models at every decomposition level. Finally, Wavelet-
ARIMA-TDNN gave a better forecast at the 2nd level of decomposition than at any other
level of decomposition (Table 8). In, W1, W2, and V2 are the outcome frequencies where high
frequencies are linear and a low frequency is non-linear. Two level decomposition of tomato
price series is given in Figure 2.

Table 7: Models used for Wavelet-ARIMA-TDNN at each decomposition level

Frequencies Decomposition level
1 2 3 4 5 6 7

W1 ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA
W2 - ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA
W3 - - TDNN TDNN TDNN TDNN TDNN
W4 - - - TDNN TDNN TDNN TDNN
W5 - - - - TDNN TDNN TDNN
W6 - - - - - TDNN TDNN
W7 - - - - - - TDNN
V1 TDNN - - - - - -
V2 - TDNN - - - - -
V3 - - TDNN - - - -
V4 - - - TDNN - - -
V5 - - - - TDNN - -
V6 - - - - - TDNN -
V7 - - - - - - TDNN

When some time series have both linear and non-linear frequencies, it is very difficult
to detect the relationship between such a series using either ARIMA or TDNN. The developed
hybrid method has captured this complicated relationship significantly. It is important
to note that the authors attempted to model this complicated relationship using Wavelet-
ARIMA and Wavelet-TDNN, which proved to be less effective than the developed model.
Hence, the model fitting and forecast accuracy became worse because ARIMA was unable
to model non-linear frequencies and TDNN was unable to capture the linear relationship of
the linear frequencies.
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Model performance for the validation set (Table 9) shows that a combination of
ARIMA and TDNN models based on the non-linearity test along with the MODWT can
improve the overall accuracy. Finally, our developed hybrid method can give more ap-
propriate results than the other methods such as ARIMA, TDNN, Wavelet-ARIMA, and
Wavelet-TDNN models, especially for the series that contain linear and non-linear frequen-
cies. Forecasts of the tomato price series from the developed model are given in Figure
3.

Table 8: Results of Wavelet-ARIMA-TDNN model for all the decomposition
levels

Decomposition
Level

Training set Validation set Ljung-Box
test

RMSE MAE MAPE RMSE MAE MAPE Statistic P
value

1 463.48 331.44 25.05 524.19 415.35 23.74 6.00 0.92
2 453.52 314.16 23.45 458.34 353.15 18.93 11.54 0.48
3 481.20 341.22 26.83 587.90 474.78 24.38 12.52 0.41
4 505.52 351.16 27.38 751.53 624.70 32.02 9.84 0.63
5 510.13 356.81 28.49 861.84 726.78 37.73 12.68 0.39
6 511.64 359.27 28.57 754.63 611.60 30.34 10.21 0.60
7 526.08 367.91 27.51 814.63 637.90 31.83 15.28 0.23

Figure 2: MODWT of tomato price series at level 2
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Table 9: Forecasting ability of five different models in the validation set

Models RMSE MAE MAPE
ARIMA 973.02 808.02 47.04

Wavelet-ARIMA 822.93 650.61 31.80
TDNN 855.03 783.06 46.63

Wavelet-TDNN 595.83 462.56 30.49
Wavelet-ARIMA-TDNN 458.34 353.15 18.93

Figure 3: Actual and predicted tomato price series with its forecasts

5. Conclusion

This paper has developed a wavelet-ARIMA-TDNN model for forecasting the tomato
price series in the Mumbai market. In the developed model, the McLeod and Li test was
used to separate the frequencies into linear and non-linear frequencies, whereas ARIMA and
TDNN were applied to model the linear and non-linear frequencies, respectively. Addition-
ally, the developed model is confirmed to be superior to Wavelet-ARIMA, Wavelet-TDNN,
ARIMA, and TDNN for modelling the series consisting of linear and non-linear frequencies.
The choice of the best model was determined by forecast accuracy in the validation data set.

Finally, this study supports the following statements: (1) the linear time series model
(non-linear time series model) is not appropriate for modelling the non-linear time series
(linear time series); (2) wavelet decomposition (MODWT) improves the performance of the
both time series models; and (3) whenever some time series contain both linear and non-linear
frequencies, logical application of linear and non-linear models to the respective frequencies
helps to enhance the wavelet-hybrid model fitting and forecasting.

Future research on other important non-linear models (LSTM, SVR, WNN, and so
on) for modelling non-linear frequencies, as well as the use of different mother wavelets, is
expected to improve our hybrid model.
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Abstract
In this article, we present a new univariate probability distribution containing three

parameters named exponentiated exponential power distribution. The density function and
failure rate function of this new distribution accommodate broad varieties of shapes. Some
mathematical and statistical properties of the proposed model are provided. Also, we have
performed a full Bayesian analysis of the proposed model. Using Stan software whose Markov
chain Monte Carlo (MCMC) techniques are based on a No-U-Turn sampler (NUTS) which is
an adaptive variant of Hamiltonian Monte Carlo (HMC); a more robust and efficient sampler.
We have presented the numerical as well as graphical analysis of the EEP model and found
that all chains are well mixed and conversed. Further, we have estimated the parameters of
the model and performed posterior predictive checks, and found that the underlying model
can be used to generate reliable samples. The developed techniques are applied to a real
data set, thus we can apply for full Bayesian analysis for the proposed model using these
Bayesian techniques. Hence it is expected that the EEP model will be a choice in the fields
of the theory of probability, applied statistics, bayesian inferences, and survival analysis.

Key words: Exponential power distribution; Posterior distribution; Bayesian analysis; HMC.

AMS Subject Classifications: 62F10, 62F15, 62E10

1. Introduction

Lifetime distributions are typically adapted to study the length of the lifetime of parts
of a system, or a device, and usually, we conduct the survival and reliability analysis. Gener-
ally, lifetime models are extensively employed in fields like bioscience, medicine, demography,
engineering, biology, insurance, etc. Several continuous probability distributions like expo-
nential, Weibull, Cauchy, gamma, etc. are generally found in the literature of probability
and applied statistics to study real-life data. Since the last decade, most scientists have been
paying attention to the family of exponential models for their capability to model real-life
data, and it has been observed that this model has performed well in several applications
because of the bearing of closed-type solutions to several survival analyses. It will simply be
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even underneath the assumption of a constant failure rate however in practice, the failure
rates don’t seem to be continuously constant. Hence, the chaotic use of the exponential
model appears to be insufficient and inappropriate. In this paper, we have presented a new
model by extending the exponential power (EP) distribution defined by (Smith and Bain,
1975). The shape of the hazard function of this distribution depends on the value of the
shape parameter α. For α ≥ 1, the hazard function is increasing and for α < 1, it has a U-
shape and exponentially increasing (towards the right) hazard function (Chen, 1999; Barriga
et al., 2011). The distribution and density function of EP distribution having parameters α
and λ are as follows

FEP (x) = 1 − exp
{
1 − e(λ x)α

}
; (α, λ) > 0, x ≥ 0. (1)

fEP (x) = α λα xα−1 e(λ x)α

exp
{
1 − e(λ x)α

}
; (α, λ) > 0, x ≥ 0. (2)

Using the EP distribution (Barriga et al., 2011) has defined a flexible lifetime model named
complementary exponential power (CEP) distribution. The CDF of CEP is

F (t; α, β, θ) =
[
1 − exp

(
1 − exp

{(
t

α

)β
})]θ

; t > 0.

To define the proposed new lifetime distribution we have used the technique presented by
(Gupta and Kundu, 1999). They defined the generalized exponential (GE) distribution by in-
serting a shape parameter to the exponential distribution and it is superior to an exponential
distribution, having decreasing and increasing failure rate hazard function. The cumulative
density function (CDF) and its probability density function (PDF) of GE distribution are

FGE (x; α, λ) =
{
1 − e−λ x

}α
; (α, λ) > 0, x > 0.

fGE (x; α, λ) = α λ e−λ x
{
1 − e−λ x

}α−1
(α, λ) > 0, x > 0.

Using the same technique (Mudholkar and Srivastava, 1993) developed a three-parameter
exponentiated Weibull (EW) distribution by inserting one additional shape parameter to the
Weibull distribution. The CDF of EW is

F (x) =
{
1 − exp

(
−αxβ

)}λ
; x > 0.

Another extension of exponential distribution has been developed by (Nadarajah and Haghighi,
2011) which can be taken alternative to exponentiated exponential, Weibull, and gamma dis-
tributions. Similarly exponentiated Chen (EC) distribution was defined by (Chaubey and
Zhang, 2015) with either unimodel or decreasing density shape and decreasing or bathtub
hazard shape. Dey et al. (2017) have redefined the exponentiated Chen distribution and ex-
tensively investigated the properties, and estimated the parameters using different methods.
The CDF of EC is

FEC (x; α, δ, λ) =
{
1 − exp

[
λ
(
1 − exδ

)]}α
; (α, δ, λ) > 0, x > 0.

The exponentiated exponential Poisson (EEP) was introduced by (Ristić and Nadarajah,
2014) with a flexible hazard function. Using the same technique (Ashour and Eltehiwy,
2015) has defined the exponentiated power Lindley having CDF as

F (t; α, β, θ) =
[
1 −

(
1 + θtβ

θ + 1

)
e−θtβ

]α

; t > 0.
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Another extension of exponential distribution has been defined by (Almarashi et al., 2019)
whose hazard function can have a variety of shapes. Similarly, EP distribution is also used
by (Joshi et al., 2020) and generated a flexible model named logistic-exponential power dis-
tribution that can have decreasing or increasing or bathtub-shaped hazard function. Sapkota
(2020) has defined exponentiated exponential logistic distribution and introduced a flexible
hazard function. Hence we are motivated to generalize the EP distribution to get a versatile
model by inserting only one shape parameter.

Further in this study, we have analyzed the suggested new model under the Bayesian
approach. It is a fundamental framework for reasoning about uncertainty in statistical
modeling and decision-making. It is a flexible and coherent approach that can handle vari-
ous statistical problems, ranging from simple parameter estimation to complex hierarchical
modeling and machine learning tasks. It provides a principled way to incorporate prior
knowledge, update beliefs based on data, and quantify uncertainty in the results (Lambert,
2018; McElreath, 2020). Under this approach, we have used the HMC algorithm which is
a powerful MCMC algorithm used to sample from complex probability distributions, espe-
cially in Bayesian statistics and machine learning. Unlike traditional MCMC methods, which
often suffer from slow exploration of high-dimensional spaces, HMC leverages the concept
of Hamiltonian dynamics from physics to efficiently explore the target distribution. HMC
treats the probability distribution as a potential energy surface, and the Markov chain as
a particle moving through this surface (Neal, 2011; Sapkota, 2022). HMC is more efficient
than traditional MCMC methods because it generates less correlated samples and requires
fewer evaluations of the target distribution’s gradient (Carpenter et al., 2017).

The remaining sections of this article are structured as follows: In the second section,
we introduce the new distribution and examine its statistical characteristics. Moving on to
the third section, we present some statistical properties of the EEP model. Section 4 is
dedicated to discussing the application of the suggested model under the classical approach.
Under the Bayesian approach, we formulate the proposed model, and its posterior analysis
is presented in sections 5, 6, and 7, respectively. In section 8, we showcase the compatibility
of the model, while section 9 delves into concluding remarks.

2. Exponentiated exponential power (EEP) distribution

Let X ∼ EEP (α, λ, θ) then the CDF of EEP distribution can be obtained by using
Equation (1) and written as

F (x) = [1 − exp {1 − exp (λxα)}]θ ; x > 0, (α, λ, θ) > 0. (3)

The PDF of EEP is obtained using Equation (2) as

f(x) = αλθxα−1 exp
{
1 + λxα − eλxα

} [
1 − exp

(
1 − eλxα

)]θ−1
; x > 0. (4)

Different shapes of PDF curves of EEP (α, λ, θ) distribution are presented in Figure 1.

2.1. Some special cases

• When θ = 1, obviously EEP distribution reduces to EP distribution (Smith and Bain,
1975).
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• When λ = 1, the EEP distribution reduces to EC distribution (Chaubey and Zhang,
2015).

• When λ = 1 and θ = 1, the EEP distribution reduces to Chen distribution (Chen,
2000).

• If λ = 1
αβ , then the EEP distribution reduces to CEP distribution (Barriga et al.,

2011).

2.2. Survival function of EEP distribution

The survival function for the time t is

S (t) = F (t) = 1 − [1 − exp {1 − exp (λtα)}]θ ; t > 0. (5)

2.3. The hazard function of EEP distribution

Suppose t be the time of an item or component or an event that will survive and we
would like to compute the probability of failing at time t + ∆t then the hazard function can
be defined as

h(t) = αλθtα−1 exp
{
1 + λtα − eλtα

} [
1 − exp

(
1 − eλtα

)]θ−1

1 − [1 − exp {1 − exp (λtα)}]θ
; t > 0. (6)

2.4. Reverse hazard function of EEP distribution

The reverse hazard function of EEP distribution is

Prev(x) = f (x; α, λ, θ)
F (x; α, λ, θ)

= αλθxα−1 exp
{
1 + λxα − eλxα

} [
1 − exp

(
1 − eλxα

)]θ−1
, x > 0.

2.5. Quantile function

Suppose X be a non-negative continuous random variable with a CDF FX(x) and
U ∈ (0, 1), then the uth quantile of X is,

Q (u) =
[1
λ

ln
{
1 − ln

(
1 − u1/θ

)}]1/α

; 0 < u < 1. (7)

We can also calculate the median through Equation (7) as

Median =
[1
λ

ln
{
1 − ln

(
1 − 2−1/θ

)}]1/α

To generate the random numbers for EEP distribution we can use

x =
[1
λ

ln
{
1 − ln

(
1 − v1/θ

)}]1/α

; 0 < v < 1. (8)
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2.6. Skewness of EEP distribution

Using quartiles, Bowley’s coefficient of skewness can be computed as,

Sk (B) = Q (1/4) − 2Q (1/2) + Q (3/4)
Q (0.75) − Q (0.25) .

2.7. Kurtosis of EEP distribution

The coefficient of kurtosis using octiles (Moors, 1988) is

Ku (M) = Q (0.875) + Q (0.375) − Q (0.625) − Q (0.125)
Q (0.75) − Q (0.25) .
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Figure 1: Graphs of PDF (left panel) and HRF (right panel) for different values
of α and θ and fixed λ = 1

3. Some statistical properties of EEP distribution

3.1. Moments

The Kth moment about origin using the quantile function see for details (Balakrishnan
and Cohen, 2014) and (Dey et al., 2017) can be computed as

µraw
k = E(Xr) =

∞�

0

xkf (x) dx =
1�

0

[Q (v)]kdv

=
1�

0

λ−k/α
[
log

{
1 − log

(
1 − v1/θ

)}]k/α
dv

= λ−k/α
∞∑

p=0

∞∑
q=0

Wp(k)Wq

(
k

α
+ p

)
(−1)

2k
α +p

1�

0

v
1
θ ( k

α
+p)+qdv.

(9)
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∴ µraw
k = λ−k/α

∞∑
p=0

∞∑
q=0

Wp(k)Wq

(
k

α
+ p

)
(−1)

2k
α +p

(Cpq)−1. (10)

here Wp(k) is the coefficient of log
(
1 − v1/θ

)
after the expansion of

[
log

{
1 − log

(
1 − v1/θ

)}]k/α
,

Wq

(
k
α

+ p
)

is the coefficient of vq after the expansion of
[
log

(
1 − v1/θ

)]k/α
and Cpq =

1
θ

(
k
α

+ p
)

+ q + 1.

Remark: Mean(µ1) and V ariance(µ2) of EEP distribution can be computed as

µ1 = λ−1/α
∞∑

p=0

∞∑
q=0

Wp(1)Wq

( 1
α

+ p
)

(−1)
2
α +p

(1
θ

( 1
α

+ p
)

+ q + 1
)−1

.

µ2 = λ−2/α
∞∑

p=0

∞∑
q=0

Wp(2)Wq

( 2
α

+ p
)

(−1)
4
α +p

(1
θ

( 2
α

+ p
)

+ q + 1
)−1

− (µ1)2 .

3.2. Moment generating function (MGF)

The expression for MGF of EEP distribution can be obtained by using the Equation
(10) as

MX(t) =
∞∑

s=0

ts

s!µ
raw
k = λ−k/α

∞∑
p=0

∞∑
q=0

∞∑
s=0

Wp(k)Wq

(
k

α
+ p

)
(−1)

2k
α +p ts

s! (Cpq)−1. (11)

3.3. Conditional moments (CM)

Let Y be a random variable from the EEP distribution, and then the CM for Y can
be expressed as

E
(
Y k/Y > y

)
= 1

S (y)

∞�
x

ykf (y) dy

= 1
S (y)

1�
v

Qk (v)dv

= 1
S (y)λ−k/α

∞∑
p=0

∞∑
q=0

∞∑
s=0

Wp(k)Wq

(
k

α
+ p

)
(−1)

2k
α +p 1 − F (y)Cpq

Cpq

,

(12)

here S (y) and F (y) are survival functions and CDF of EEC distribution.

3.4. Average residual life (ARL) function

ARL function of a component using quantile function can be calculated by

µARL (x) = 1
S (x)λ−1/α

∞∑
p=0

∞∑
q=0

Wp(1)Wq

( 1
α

+ p
)

(−1)
2
α +p 1 − F ( 1

θ ( 1
α

+p)+q+1) (x)(
1
θ

(
1
α

+ p
)

+ q + 1
) − x.



2024] EXPONENTIATED EXPONENTIAL POWER DISTRIBUTION 237

3.5. Mean deviation (MD)

Let µ and F (.) denote the mean and CDF of EEP distribution then MD can be
expressed as

µMD Mean (x) = 2µF (µ) − 2µ + 2
1�

µ

Qk (v)dv. (13)

= 2µF (µ) − 2µ + 2λ−1/α
∞∑

p=0

∞∑
q=0

Wp(1)Wq

( 1
α

+ p
)

× (−1)
2
α +p 1 − F ( 1

θ ( 1
α

+p)+q+1) (µ)(
1
θ

(
1
α

+ p
)

+ q + 1
) .

4. Classical analysis of the proposed model

4.1. Parameter estimation

In this subsection, we have used the maximum likelihood estimation (MLE) method
which is the most frequently used method for the point and interval estimation of the pa-
rameters of the model. Let x = (x1, . . . , xn) be a non-negative observed sample of size ‘n’
following the EEP (α, λ, θ) then we can define the likelihood function for the parameter
vector χ = (α, λ, θ )T as

L(χ) = (αλθ)n
n∏

i=1
xα−1

i exp
{
1 + λxα

i − eλxα
i

} [
1 − exp

(
1 − eλxα

i

)]θ−1
. (14)

Taking the logarithm to (14) we get the log-likelihood function as

ℓ (χ) = n ln (αλθ)+(α − 1)
n∑

i=1
ln xi +n+λ

n∑
i=1

xα
i −

n∑
i=1

eλxα
i +(θ − 1)

n∑
i=1

ln [1 − K (xi)]. (15)

Differentiating (15) with respect to parameters α, λ and θ, we get

∂ℓ

∂α
= n

α
+

n∑
i=1

ln xi + λ
n∑

i=1

[
xα

i ln xi

{
1 − ln xi

{
1 − (θ − 1)K (xi) {1 − K (xi)}−1

}}]
,

∂ℓ

∂λ
= n

λ
+

n∑
i=1

xα
i −

n∑
i=1

xα
i eλxα

i

{
1 − (θ − 1) {1 − K (xi)}−1 K (xi)

}
,

∂ℓ

∂θ
= n

θ
+

n∑
i=1

ln [1 − K (xi)],

where K (xi) = exp
(
1 − eλxα

i

)
. Manually it is quite difficult to solve these equations for

the parameters α, λ and θ. Using the appropriate software like R, Python, Matlab, etc. we
can solve them manually. Let χ = (α, λ, θ )T be the parameter vector and MLEs of χ is
χ̂ = (α̂, λ̂, θ̂), then (χ̂ − χ) → N3

[
0, (M (χ))−1

]
distributed as the normal distribution, here
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M (χ) is known as Fisher’s information matrix computed as,

M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 ,

where,
M11 = ∂2l

∂α2 , M12 = ∂2l

∂α∂λ
, M13 = ∂2l

∂α∂θ
,

M21 = ∂2l

∂λ∂α
, M22 = ∂2l

∂λ2 , M23 = ∂2l

∂θ∂λ
,

M31 = ∂2l

∂λ∂α
, M32 = ∂2l

∂θ∂λ
, M33 = ∂2l

∂θ2 ,

which can be calculated as,
∂2ℓ

∂α2 = − n

α2 + λ
n∑

i=1

{
xα

i (ln xi)2
}

− (θ − 1)
n∑

i=1
[1 + λ ln xi + αxi]

(
λxα

i eλxα
i ln xi

)2

K (xi) {1 − K (xi)}−1
[
1 + K (xi) {1 − K (xi)}−1

]
.

∂2ℓ

∂λ2 = − n

λ2 −
n∑

i=1
x2α

i eλxα
i (θ − 1) K (xi)

{
{1 − K (xi)}−1 K (xi) − {1 − K (xi)}−2 K (xi) eλxα

i

}
.

∂2ℓ

∂θ2 = − n

θ2 .

∂2ℓ

∂θ∂α
= λ

n∑
i=1

[
xα

i eλxα
i ln (xi) K (xi) {1 − K (xi)}−1

]
.

∂2ℓ

∂θ∂λ
=

n∑
i=1

[
xα

i eλxα
i {1 − K (xi)}−1 K (xi)

]
.

∂2ℓ

∂α∂λ
= −

n∑
i=1

xα
i ln xie

λxα
i

{
(1 + λxα

i )
{
1 − (θ − 1) {1 − K (xi)}−1 K (xi)

}
+ Zi

}
,

where
Zi = (θ − 1) λxα

i eλxα
i K (xi) {1 − K (xi)}−1 {1 + K (xi)} .

Now the observed information matrix can be calculated through algorithms like Newton-
Raphson and can be computed as,

[M (χ)]−1 =

 V (α̂) cov(α̂, λ̂) cov(α̂, θ̂)
cov(λ̂, α̂) V (λ̂) cov(λ̂, θ̂)
cov(θ̂, α̂) cov(θ̂, λ̂) V (θ̂)

 .

Hence, estimated 100(1 − δ)% CI for α, λ and θ can be created as, α̂ ± zδ/2SE(α̂), λ̂ ±
zδ/2SE(λ̂), and θ̂ ± zδ/2SE(θ̂).
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4.2. Illustration with real dataset

In this section, we examine a real dataset previously utilized by various researchers
to showcase the capabilities and applicability of the EEP distribution. Additionally, we
present the EEP distribution alongside several competing distributions, listed below, to offer
a comprehensive comparison.

• Exponential power (EP) distribution by (Smith and Bain, 1975).

• Power Lindley distribution (PL) by (Ghitany et al., 2015).

• Generalized Rayleigh (GR) distribution by (Kundu and Raqab, 2005).

• Marshall-Olkin Extended Exponential (MOEE) distribution by (Marshall and Olkin,
1997).

To compare the proposed distribution with the distributions as mentioned above we have
computed the Bayesian information criterion (BIC), Akaike information criterion (AIC),
negative log-likelihood (-LL), Hannan-Quinn information criterion (HQIC), and Corrected
Akaike Information criterion (CAIC) statistic. These statistics are obtained by using the
following expressions

AIC = −2ℓ(χ̂) + 2d.

BIC = −2ℓ(χ̂) + d log(n).

CAIC = 2d(d + 1)
n − d − 1 + AIC.

HQIC = −2ℓ(χ̂) + 2d log[log(n)].

Here χ̂ denotes estimated parameter space, n is the size of the sample and d is the number
of parameters of the model under study. In addition, to judge the goodness-of-fit of EEP
distribution Cramer-Von Mises (A2) , Kolmogorov-Smirnov (KS), and Anderson-Darling
(W ) statistics are presented and calculated as

KS = max
1≤j≤n

(
dj − j − 1

n
,

j

n
− dj

)
.

W = −n − 1
n

n∑
j=1

(2j − 1) [ln dj + ln (1 − dn+1−j)] .

A2 = 1
12n

+
n∑

j=1

[2j − 1
2n

− dj

]2
.

where the dj’s are the ordered observations, and dj = CDF (xj) .

4.2.1. Dataset

The dataset represents the waiting time (in minutes) of 100 clients (Ghitany et al.,
2008) before the client received service in a bank. The data set is,
“0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3,
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4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9,
7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7,
10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9,
14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0,
31.6, 33.1, 38.5”

4.2.2. Exploratory study of the dataset

The main aim of the exploratory data analysis is to explore more information about
the data. The latest statistical tools for data analysis incorporate exploratory data analysis.
The descriptive statistics of the dataset are presented in Table 1. The basic exploratory

Table 1: Summary statistics of the dataset

Minimum Q1 Median Mean Q3 Maximum Skewness Kurtosis
0.800 4.675 8.100 9.877 13.025 38.500 1.451 2.430

data analysis technique is applied to study the data and results are displayed respectively in
Table 1. Efficient modeling requires an excellent understanding of the properties of different
types of models. The parameters of the proposed model are estimated using the maximum
likelihood (ML) estimation method. To evaluate the validity of the model, we calculate the
Kolmogorov-Smirnov (KS) distance between the fitted distribution function and empirical
distribution function where the parameters are estimated by the ML estimation method.
The probability–probability (PP) plot and quantile-quantile (QQ) plot are used to check the
suitability of the proposed model.

4.2.3. Computation of MLE

The MLEs of EEP distribution are calculated with the help of R programming soft-
ware using maxLik() an R package developed by (Henningsen and Toomet, 2011) and they
are uniquely determined (see Figure 2). In Table 2, the MLEs with 95% confidence interval
(CI) and standard errors (SE) are presented.

Table 2: MLE and SE for α, λ, and θ of EEP distribution

Parameter MLE SE 95% CI
α 0.3407 0.0590 (0.2252, 0.4562)
λ 0.6068 0.1259 (0.3600, 0.8535)
θ 7.6150 2.6998 (2.3234, 12.9065)

4.2.4. Model validation

To check the validity of the proposed model we performed the Kolmogorov-Smirnov
(KS) test and we found that KS = 0.0358 and p-value = 0.9995 which indicates that the
proposed model can fit the data well. Further, we have presented the K-S plot (right panel)
and quantile-quantile (Q-Q) plot (left panel) to evaluate the validity of the model in Figure
3 and it also verifies the validity of the model.
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Figure 2: The graph of profile log-likelihood for α, λ, and θ
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Figure 3: The graph of Q-Q (left side) and K-S (right side) of the EEP distribu-
tion

4.2.5. Model selection

To select a good model we have computed the AIC, CAIC, BIC, and HQIC for
the proposed model as well as the other four models taken for comparison, and it is ob-
served that the EEP distribution has the highest value of LL and lowest values of AIC,
CAIC, BIC, and HQIC, hence we confirmed that the proposed distribution is better than
the competing distribution (Table 3) for more detail see (Lambert, 2018). To evaluate the fit
attained by EEP distribution among challenging distributions, the Anderson-Darling (W ),
Kolmogorov-Smirnov (KS), and the Cramer-Von Mises (A2) tests are conducted and results
are reported in Table 4. We have seen that the EEP distribution gets the smallest test statis-
tic with a higher p-value which indicates the EEP distribution gets consistently better fit
than those models taken under consideration. We have also presented the graphs to evaluate
the goodness-of-fit of EEP distribution with distributions that are taken for comparison in
Figure 4 (left panel) and the Kaplan-Meier (KM) estimate which is used to estimate the



242 LAXMI PRASAD SAPKOTA AND VIJAY KUMAR [Vol. 22, No. 2

reliability function of EEP distribution in Figure 4 (right panel) and exhibits good fit.

Table 3: AIC, CAIC, BIC, and HQIC, Log-likelihood (LL) statistics

Model AIC CAIC BIC HQIC LL
EEP 639.9793 640.2293 647.7948 643.1420 -316.9897
PL 640.6372 640.7609 645.8475 642.7460 -318.3186
MOEE 645.4241 645.5453 650.6344 647.5330 -320.7120
GR 647.0364 647.1601 652.2467 649.1450 -321.5182
EP 654.0395 654.1607 659.2499 656.1480 -325.0198

Table 4: Value of W, KS and A2 statistics with p-value

Model W(p-value) KS(p-value) A2(p-value)
EEP 0.0173(0.9990) 0.0358(0.9995) 0.1274(0.9997)
PL 0.0458(0.9025) 0.0520(0.9498) 0.3028(0.9359)
MOEE 0.0760(0.7164) 0.0596(0.8690) 0.6351(0.6150)
GR 0.2043(0.2595) 0.0945(0.3337) 1.0911(0.3126)
EP 0.2549(0.1822) 0.0930(0.3532) 1.6490(0.1447)
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Figure 4: PDF plot with a histogram of fitted distributions (left side) and KM
estimate with fitted quantiles (right side) of EEP distribution

5. Model formulation under the Bayesian approach

We usually assume the parameters Θ = (α, λ, θ) (for our study) as a constant in
the classical approach and the goal is to investigate the distribution of the observed data
set given Θ using the likelihood of the data sample. But the parameter Θ is considered
as a random variable whereas the observed data set is taken as constant in the Bayesian
approach (Lambert, 2018). In this type of modeling, prior information is used to support
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our assumption about the parameters of the distribution (Gelman et al., 2013). In Bayesian
modeling, the posterior distribution function is obtained by multiplying the prior distribution
function and the likelihood function of the model under consideration for more detail see
(McElreath, 2020). For Bayesian inference, we need the following elements

• The probability distribution function:f (x/Θ)
• Prior distribution: p (Θ)
• Likelihood: p (Data/Θ)
• Data:(x1, ..., xn)

5.1. Prior distribution p (Θ)

In Bayesian inference, a prior distribution (simply called prior) is the unconditional
probability distribution that is used to express our beliefs about the true value of the pa-
rameters before the data is taken into account. The term p (Θ) denotes the probability
distribution which represents our pre-data beliefs depending upon the different values of
the parameters Θ = (α, λ, θ) of our model. In this study, we have taken the weakly infor-
mative Gamma prior for the parameters Θ = (α, λ, θ) as α ∼ G (a1, b1), λ ∼ G (a2, b2) and
θ ∼ G (a3, b3). Particularly we have chosen (a1 = 0.001, b1 = 0.001), (a2 = 0.001, b2 = 0.001),
and (a3 = 0, b3 = 0.001) respectively for Gamma prior and most commonly used as weak prior
on variance which is nearly flat as in Figure (5). The prior distributions can be written as

p (α) = ba1
1

Γ(a1)
αa1−1 exp (−b1α) ; α > 0, (a1, b1) > 0.

p (λ) = ba2
2

Γ (a2)
λa2−1 exp (−b2λ) ; λ > 0, (a2, b2) > 0.

p (θ) = ba3
3

Γ(a3)
θa3−1 exp (−b3θ) ; θ > 0, (a3, b3) > 0.

5.2. Likelihood p (Data/Θ)

Given a set of data (x1, ..., xn), the likelihood function of EEP distribution can be
computed as

L (x) = (αλθ)n
n∏

i=1
xα−1

i exp
(
1 + λxα

i − eλxα
i

) [
1 − exp

(
1 − eλxα

i

)]θ−1
. (16)

5.3. Posterior distribution p (Θ/Data)

Let p (α, λ, θ/x) denote the posterior distribution and it can be obtained by using
Bayes’ rule as

p (α, λ, θ/x) ∝ L (α, λ, θ/x) × p (α, λ, θ) .

In the Bayesian inference technique, we use Bayes’ rule to estimate probability distribution
called posterior distribution which can be obtained as

p (Θ/data) ∝ p (data/Θ) p (Θ) .
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p (α, λ, θ/x) ∝ αn+a1−1θn+a3−1λn+a2−1
n∏

i=1
e−b1α−b2λ−b3θxα−1

i ×

exp
(
1 + λxα

i − eλxα
i

) [
1 − exp

(
1 − eλxα

i

)]θ−1
.

(17)

All the information needed for Bayesian analyses is contained in the posterior distribution
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Figure 5: Graph of Gamma prior for various values of the parameters

and the aim is to compute the numeric as well as graphic summaries of it through integra-
tion. But the posterior distribution is quite complicated and could not draw any inferences.
Hence we propose an alternative technique known as the simulation technique. This tech-
nique is based on the Markov Chain Monte Carlo (MCMC) method. MCMC draws samples
by running a cleverly constructed Markov Chain that eventually converges to the target
distribution i.e. posterior distribution p

(
α, λ, θ/x−

)
(Brooks, 1998).

There are many different techniques to construct such chains some of them are, Gibbs
sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) are special cases of the general
framework of (Metropolis et al., 1953) and (Hastings, 1970). In this article, we implement
MCMC algorithms through Stan (a probabilistic programming language) (Stan Development
Team, 2022), the HMC algorithm, and its adaptive variant the NUTS for more detail see
(Hoffman et al., 2014; Carpenter et al., 2017). Also Chaudhary and Kumar (2020) presented
the Bayesian estimate of Gompertz extension distribution having three parameters. Also,
Alizadeh et al. (2020) discussed the technique for estimating the model parameters of the
odd log-logistic Lindley-G family of distribution.

6. MCMC method

6.1. HMC method

HMC is computationally a bit costly as compared to Metropolis and Gibbs sampling
but its proposals are much more efficient (Gelman et al., 2015). As a result, HMC doesn’t
require as many samples to explore the posterior distribution. For more detail about the
HMC algorithm see (Beskos et al., 2013).
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6.1.1. No-U-Turn Sampler (NUTS)

NUTS engine routinely selects a suitable value for leapfrog step L in every iteration
to maximize the distance at every L and control the random walk behavior. Let ω1 and
ω0 be the current position and initial position of a particle and D be half of the distance
between the positions ω1 and ω0 at each leapfrog step. The aim is to run leapfrog steps until
ω1 starts to move backward towards ω0, which is achieved using the following algorithm,
where leapfrog steps are run until the derivative of D with respect to time becomes less than
0.

∂D

∂t
= ∂

∂t

[1
2 (ω1 − ω0)T (ω1 − ω0)

]
= (ω1 − ω0)T p < 0.

However, this algorithm doesn’t assure convergence or reversibility to the target distribution.
The NUTS solves this type of problem by performing a doubling method for slice sampling
(Neal, 2003). To generate the samples using NUTS, see (Hoffman et al., 2014). For more
details about NUTS, readers can go through (Nishio and Arakawa, 2019) and Devlin et al.
(2021).

6.1.2. Defining the model in STAN

For the Bayesian analysis of the EEP model, we have used the latest Bayesian analysis
software called Stan a high-level programming language that uses NUTS which is a variant of
HMC simulation (Hoffman et al., 2014). We have used the Rstan package (Stan Development
Team, 2020) to run STAN in R software (R Core Team, 2022). The Stan scripts in R for
the EEP model for the Bayesian analysis are presented in the appendix. We run the Stan
using the algorithm HMC and engine NUTS having 4 chains for 2000 iterations. By default,
Stan generates 1000 warm-up samples and 1000 real samples for a chain which are used for
inferences.

6.2. Convergence and efficiency diagnostics for NUTS/ HMC and Markov
chains

In the convergence diagnostic, we monitor the performance of NUTS/ HMC and
MCMC sampling as
NUTS/ HMC: Here we study the information about divergence, energy, tree-depth,
step-size, and acceptance statistic. Figure 6 (left panel) is the plot of the overlaid his-
tograms of the marginal energy distribution πE and the energy transition distribution π∆E

for all 4 chains. The plot shows the histograms that look well-matched and indicate that
the Hamiltonian Monte Carlo has performed robustly and Figure 6 (right panel) indicates
that there are no divergent transitions. In Figure 7 we have displayed the performance of
the NUTS sampling algorithm and Figure 8 are plots of the histogram of Rhat statistic, the
ratio of effective sample size and sample size, and the ratio of Monte Carlo Standard Error
(MCSE) and posterior SD. These plots show the good efficiency of the sampling algorithm
NUTS for detail see Betancourt (2017).
MCMC: The MCMC draws can be monitored by plotting the following graphs autocorre-
lation plots, rank plots, trace plots, ergodic mean plots, and pairs plots.
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Figure 6: Histograms of πE and π∆E for all 4 chains (left panel) and the divergent
transition status (x-axis) against the log-posterior and the acceptance statistic
(right panel) of the sampling algorithm for all chains
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Figure 9: Autocorrelation plots of the parameters α, λ, and θ for all chains

These are autocorrelation plots for all chains and indicate that the samples of a Monte
Carlo simulation are independent (Figure, 9). In Figure 10 we have displayed the histogram
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Figure 7: Average metropolis acceptance and step size for the parameters α, λ,
θ and log posterior
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Figure 8: Histogram of Rhat statistic, the ratio of effective sample size and
sample size, and the ratio of MCSE and posterior SD

of rank plots of α, λ, and θ for all four chains. Rank histograms visualize how the values
from the chains mix in terms of ranking. An ideal plot would show the rankings mixing or
overlapping in a uniform distribution. See (Vehtari et al., 2021) for details. In general, we
look for three possessions in the trace plots good mixing, stationarity, and convergence.

Good mixing implies that the chain quickly explores the full posterior region. It
doesn’t slowly wander, but rather rapidly zig-zags around, as a good Hamiltonian chain
should. Stationarity indicates the path of each chain staying within the same high probability
portion of the posterior distribution. Another way to imagine this is that the average value
of the chain is relatively stable from start to end. Convergence represents that independent,
multiple chains attach around the same area of high probability. Figure 11 shows the trace
plots for alpha, theta, and lambda are well mixing and convergent for all chains.

The Ergodic mean is computed as the average of all values of the samples for all chains
corresponding iterations. Figure 12 indicates that all chains converged smoothly around the
mean value. Figure 13 is a pairs plot of MCMC draws of α, λ, and θ. Univariate marginal
posteriors are shown along the diagonal as histograms. Bivariate plots are displayed above
and below the diagonal as scatter plots. The red colored draws represent, if present, the
divergent transitions. Divergent transitions can indicate problems with the validity of the
results. A good plot would show no divergent transitions. A bad plot would show divergent
transitions in a systematic pattern. We have also presented a detailed numerical summary
of the HMC and NUTS algorithm in Table 5 and statistics related to the posterior summary
are presented in Table 6.

Table 5: Informational statistic of NUTS/HMC for convergence of chains

accept stat stepsize treedepth n leapfrog divergent energy
All chains 0.9419 0.0446 3.9813 36.2755 0 319.991
chain1 0.9443 0.0574 3.8890 33.0920 0 319.913
chain2 0.9294 0.0505 3.9140 32.6420 0 320.035
chain3 0.9536 0.0468 4.0110 36.7580 0 320.111
chain4 0.9403 0.0235 4.1110 42.6100 0 319.907
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Figure 10: Rank histograms of α, λ, and θ

7. Posterior analysis

7.1. Numerical summary

Using the stan() function in R-Software we have estimated the posterior density of
the fitted EEP model. The numerical summaries of the posterior distribution after fitting the
EEP model for the data taken under study for all merged chains are reported in Table 6. The
MCMC estimate for α is 0.36±0.109 which is statistically significant. Similarly, the estimate
for λ is 0.62 ± 0.233, which is statistically significant. The estimate for θ is 10.926 ± 12.646
which is also statistically significant. No parameters have an effective sample size (n eff)
for estimating the posterior mean less than 10 % of the total sample size indicating that the
samples are efficient and Rhat(R̂) (estimated potential scale reduction statistic) provides the
analysis of sampling and its efficiency. Here Rhat is less than 1.01 indicating convergence of
all chains. Also, we have depicted the highest posterior density (HPD) credible interval and
credible interval in Table 7.

Table 6: Output summary of posterior samples for the EEP model

Parameters mean se mean sd 2.50% 50% 97.50% n eff Rhat
alpha 0.3553 0.0048 0.1094 0.1716 0.3454 0.6085 520 1.0039
lambda 0.6212 0.0109 0.2334 0.2339 0.5966 1.1632 458 1.0055
theta 10.9263 0.6267 12.6463 2.4253 7.2978 45.8048 407 1.0059
Log-posterior -318.4981 0.0410 1.2386 -321.6890 -318.1700 -317.1100 911 1.0033
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Figure 11: Trace plot of the parameters α, λ, and θ for all chains

7.2. Visual summary

Various graphical representations can be employed to visually summarize the poste-
rior distribution, such as histograms, boxplots, caterpillar plots, and density plots. In this
study, we utilized Gamma priors to plot histograms and kernel density estimates for α, λ,
and θ (Figure, 14), based on a total of 4000 posterior samples. These graphical presenta-
tions offer comprehensive insights into the parameters’ posterior distribution. Histograms
are particularly useful for understanding the distribution’s tail behavior, skewness, kurtosis,
the presence of outliers, and whether multi-modal behavior exists. Our analysis reveals that
α and λ exhibit almost symmetrical distributions, whereas θ demonstrates positive skewness
under Gamma prior. Furthermore, in Figure (15), we present histograms of posterior pa-
rameters using a Uniform prior. It is evident that the choice of prior significantly impacts
the resulting posterior distribution.
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Figure 12: The Ergodic mean plots for α, λ, and θ
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8. Model compatibility

8.1. Posterior predictive checks (PPCs)

A usual way to access the fit of a Bayesian model is to observe how well the predictions
can be made from the model that agrees with the observed data (Gelman, 2003; Gelman
et al., 2004). If our model is capable of fitting the data then it should generate data that
are quite similar to the observed data. The data that are used for posterior predictive
checks (PPCs) we can generate them by simulating the posterior predictive distribution.
The R package bayesplot presents different plotting functions for visual posterior predictive
checking; using observed data and simulated data from the posterior predictive distribution,
we can generate these graphical displays (Gabry et al., 2017).
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Table 7: HPD interval and credible interval for model parameters α, λ, and θ

Parameters HPD interval Credible Interval
alpha ( 0.141, 0.554) (0.1716, 0.6085)
lambda (0.168, 1.070) (0.2339, 1.1632)
theta (1.650, 31.20) (2.4253, 45.8048)
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Figure 14: Histogram with kernel density estimates of posterior samples for the
parameters α, λ, and θ respectively under a gamma prior
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yrep (left panel) and kernel density estimate of the observed dataset y (blue),
with density estimates for 40 simulated datasets yrep drawn from the posterior
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The posterior predictive distribution is the distribution of the outcome variable im-
plied by a model after using the observed data y (a vector of length N = 100) to update
our beliefs about unknown parameters Θ = (α, λ, θ) of the model. The posterior predictive
distribution for observation yrep can be written as,

p (ỹ/y) =
�

p (ỹ/Θ) p (Θ/y)dΘ.

For every simulation (draw) s = 1, ..., S of the parameters from the posterior distribution
Θ(s) ∼ p(Θ|y), we generate a vector of N outcomes ỹ(s) using the posterior predictive
distribution by simulating from the data model conditional on parameters Θ(s).

The result is an S × N(4000 × 100) matrix of draws ỹ. We have denoted the resulting
simulation matrix by yrep, this matrix is the replication of the observed data y rather than
predictions for future observations. To attain further clarity on our decision for the study
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of the posterior predictive checks we have taken the smallest, middle, and largest, i.e. (
yrep[1], yrep[50] and yrep[100]) replicated observations. We have presented a wide variety of
graphical model checks based on comparing observed data to draws from the posterior (or
prior) predictive distribution. To Compare the empirical distribution of the data y to the
distributions of simulated/replicated data yrep from the posterior predictive distribution an
empirical CDF estimate of each dataset (row) in yrep are overlaid with the distribution of
y (blue curve) is displayed in (Figure, 16, left panel) and kernel density estimate of the
observed dataset y (blue), with density estimates for 40 simulated datasets yrep drawn from
the posterior predictive distribution (Figure, 16, right panel). To analyze the predicting
capacity of posterior samples we have presented the visual summaries such as a histogram
with kernel density plot for observed data y and simulated data yrep[1], yrep[50] and yrep[100]
(Figure 17).

8.2. Model selection

The WAIC (Widely Applicable Information Criterion) is used to compare different
statistical models based on their out-of-sample predictive accuracy. The lower the WAIC
value, the better the model’s predictive performance. Hence EEP model is better than the
EP model see (Table, 8). Where elpd waic is the estimated log pointwise predictive density
using the WAIC. It represents the model’s fit to the data and is measured in terms of log-
likelihood. p waic is the effective number of parameters computed from the WAIC. It takes
into account both the actual number of parameters in the model and the model’s complexity
and waic is the value of the WAIC itself, which is a combination of the model fit (elpd waic)
and the effective number of parameters p waic. A lower WAIC indicates better predictive
performance.

Table 8: Model selection statistics

Estimate EEP distribution EP distribution
elpd waic -319.6 -326.9
p waic 1.5 1.2
waic 639.1 653.9

9. Conclusion

In this research work, we put forward a new distribution using the exponential power
model as a baseline distribution and named it exponentiated exponential power (EEP) dis-
tribution. We have explored some properties including the hazard rate function, cumulative
distribution function, survival function, probability density function, cumulative hazard func-
tion, order statistics, quantiles, the measures of skewness based on quartiles, and median,
and kurtosis based on octiles.

Also we have performed a full Bayesian analysis for the proposed model. Using Stan
software whose MCMC techniques are based on the NUTS which is an adaptive variant of
HMC; a more robust and efficient sampler. We have presented the numerical as well as
graphical analysis of the EEP model and found that all chains are well mixed and conversed.
Further, we have estimated the parameters of the model and performed posterior predictive
checks, and found that the underlying model can be used to generate reliable samples. The
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developed techniques are applied to a real data set, thus we can apply for full Bayesian
analysis for the proposed model using these Bayesian techniques. Hence it is expected that
the EEP model will be a choice in the fields of the theory of probability, applied statistics,
bayesian inferences, and survival analysis.
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ANNEXURE
f un c t i on s { real expexp power l pd f ( real y , real alpha ,

real lambda , real theta ){
return log ( alpha∗lambda∗ theta ) + ( alpha −1)∗
log ( y)+1+lambda∗yˆ alpha − exp( lambda∗yˆ alpha)+

( theta −1)∗ log(1−exp(1−exp( lambda∗yˆ alpha ) ) ) ;
}
real expexp power( real alpha , real lambda , real theta ){
return ( (1/lambda )∗ log(1− log(1−
( uniform rng ( 0 , 1 ) ) ˆ ( 1 / theta ) ) ) ) ˆ ( 1 /alpha ) ;
}

}
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data{
i n t N;
real y [N ] ;

}

parameters {
real <lower=0> alpha ;
real <lower=0> lambda ;
real <lower=0> theta ;

}

model{
for ( i in 1 : N) {

y [ i ] ˜ expexp power( alpha , lambda , theta ) ;
}
alpha ˜ gamma( 0 . 001 , 0 . 0 0 1 ) ;
lambda ˜ gamma( 0 . 001 , 0 . 0 0 1 ) ;
theta ˜ gamma(0 , 0 . 0 0 1 ) ;

}

generated q u a n t i t i e s {
vector [N] yrep ;
for ( i in 1 : N)
{

yrep [ i ]= expexp power rng ( alpha , lambda , theta ) ;
}

}

Data Creation in R software
y = c ( 0 . 8 , 0 . 8 , 1 . 3 , 1 . 5 , 1 . 8 , 1 . 9 , 1 . 9 , 2 . 1 , 2 . 6 , 2 . 7 , 2 . 9 ,
3 . 1 , 3 . 2 , 3 . 3 , 3 . 5 , 3 . 6 , 4 . 0 , 4 . 1 , 4 . 2 , 4 . 2 , 4 . 3 , 4 . 3 ,
4 . 4 , 4 . 4 , 4 . 6 , 4 . 7 , 4 . 7 , 4 . 8 , 4 . 9 , 4 . 9 , 5 . 0 , 5 . 3 , 5 . 5 ,
5 . 7 , 5 . 7 , 6 . 1 , 6 . 2 , 6 . 2 , 6 . 2 , 6 . 3 , 6 . 7 , 6 . 9 , 7 . 1 , 7 . 1 ,
7 . 1 , 7 . 1 , 7 . 4 , 7 . 6 , 7 . 7 , 8 . 0 , 8 . 2 , 8 . 6 , 8 . 6 , 8 . 6 , 8 . 8 ,
8 . 8 , 8 . 9 , 8 . 9 , 9 . 5 , 9 . 6 , 9 . 7 , 9 . 8 , 10 . 7 , 10 . 9 , 11 . 0 ,
11 . 0 , 11 . 1 , 11 . 2 , 11 . 2 , 11 . 5 , 11 . 9 , 12 . 4 , 12 . 5 , 12 . 9 ,
13 . 0 , 13 . 1 , 13 . 3 , 13 . 6 , 13 . 7 , 13 . 9 , 14 . 1 , 15 . 4 , 15 . 4 ,
17 . 3 , 17 . 3 , 18 . 1 , 18 . 2 , 18 . 4 , 18 . 9 , 19 . 0 , 19 . 9 , 20 . 6 ,
21 . 3 , 21 . 4 , 21 . 9 , 23 . 0 , 27 . 0 , 31 . 6 , 33 . 1 , 38 . 5 )
N <− l ength (y )
Data = l i s t ( y=y , N=N) .
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Abstract
In this paper, we extend the construction method of Srivastava for a linear trend-

free balanced incomplete block design of size k=2 into a linear trend-free group divisible
design. Another construction method for linear trend-free group divisible design has also
been developed.
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1. Introduction

In specific experiments where several treatments are compared in blocks and within
blocks, the treatments are applied to the experimental units sequentially over time or space;
there is a possibility that a systematic effect or trend effect influences the observations in
addition to the block and the treatment effects. In such a situation, a common polynomial
trend in one or more dimensions is assumed to exist over the plots in each block of a clas-
sical experimental design. One may think of a suitable design that is orthogonal to trend
effects, in the sense that the analysis of the design could be done in the usual manner as
if no trend effects were present. Bradley and Yeh (1980) have called such designs as Trend
Free Block (TFB) designs. The idea is that starting from a block design, a good design
is chosen by permuting the treatments to plot positions within blocks. For example, Latin
square and Youden square designs with blocks formed by their column are trend-free designs.
TFB design has been extensively studied in the literature by Yeh and Bradley (1983), Chai
and Majumdarn(1993), Lal et al. (2005), Gupta et al. (2020), Srivastava R. (accessed on
21.11.2023) gave on the construction of TFB designs.

2. Notation and preliminary results

We assume that within blocks there is a common polynomial trend of order p on
the k periods that can be expressed by the orthogonal polynomials ϕα(l), 1 ≤ α ≤ p, on
l = 1, 2, . . . , k, where ϕα(l) is a polynomial of degree α. The polynomials ϕ1(l), . . . , ϕp(l)
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satisfy
k∑

l=1
ϕα(l) = 0,

k∑
l=1

ϕα(l)ϕα′(l) = δαα′

where δαα′ denotes the Kronecker delta, α, α′ = 1, 2, . . . , p.

If the trend is linear then, p = 1.

Let a design d will be represented by a k × b array of symbols 1, . . . , ν, with columns
denoting blocks and row periods. Thus, if the entry in cell (l, j) of d is i, it means that
under d, treatment i, has to be applied in period l of block j. Let D(ν, b, k) be all connected
designs in b blocks, k periods based on ν treatments.

Let d ∈ D(ν, b, k) and Sdil denote the number of times treatment i appears in row
(period) l. It has been shown by Chai and Majumdar(1993) that a design is linear trend-free
block (LTFB) design iff

k∑
l=1

Sdilϕ1(l) = 0, i = 1, . . . , ν (1)

where ϕ1(l) is the orthogonal polynomials of degree 1, l = 1, 2, . . . , k and Sdil denotes the
number of times treatment i appears in row (period) l.

Condition (1) holds for binary as well as non-binary designs, and also irrespective of
whether k is large, equal or smaller than ν, see Lin and Dean (1991). The polynomials ϕ1(l)
satisfy the condition

ϕ1(l) = −ϕ1(k − l + 1) (2)

In addition,

ϕ1

(
k + 1

2

)
= 0, when k is odd.

3. Construction of linear trend-free group divisible (LTFGD) designs

3.1. Extension of Srivastava construction

Srivastava proposed a construction method of linear trend-free (LTF) balanced incom-
plete block design (BIBD) with parameters v∗ = 2q + 1, b∗ = v∗(v∗ − 1)/2, r∗ = v∗ − 1, k∗ =
2, λ∗ = 1 for q positive integer. Then, such designs can be converted into LTF group divisible
(GD) designs by augmenting some more treatments and blocks.

Theorem 1: The existence of an LTFBIBD with parameter v∗ = 2q + 1, b∗ = v∗(v∗ −
1)/2, r∗ = v∗ − 1, k∗ = 2, λ∗ = 1 implies that an LTFGD design with parameters v =
v∗m, b = b∗m, r = r∗, k = 2, λ1 = 1, λ2 = 0, m, n = v∗.

Proof: Let D be an LTFBIB design. Consider a group divisible association scheme (GDAS)
on m different groups each of n = v∗ different treatments.

By using all treatments of every group of the GDAS as the treatment of the design,
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then b∗m blocks are constructed, resulting in a new incomplete block design, d with v =
v∗m, b = b∗m.

Obviously, r = r∗, k = k∗, m, n = v∗.

As all the treatments in a group of the GDAS are treated as treatments of the given
BIBD, D, with λ∗ = 1 any two treatments in the same group of GDAS occur once in a block
of d, i.e., λ1 = 1.

By the construction method of LTFBIBD, no two treatments from different groups
can occur together in any block of d. It follows that λ2 = 0.

From (2), ϕ1(1) = −ϕ1(2)

By the construction method of LTFBIBD, ∑2
l=1 Sdilϕ1(l) = 0, i = 1, . . . , v∗.

Now,
2∑

l=1
Sdilϕ1(l) =

v∗m∑
i=1

[Sdilϕ1(1) + Sdilϕ1(2)]

As each period of the LTFBIB design are replicated m times by the construction
method of LTFGD design.

2∑
l=1

Sdilϕ1(l) = m
v∗m∑
i=1

[Sdilϕ1(1) + Sdilϕ1(2)] = 0

Hence, proof of the theorem is complete.

Starting from an LTFBIB design with the parameters v∗ = 5, b∗ = 10, r∗ = 4, k∗ =
2, λ∗ = 1 when every treatment occupies all the period (viz. 1st and 2nd) the same number
of times, i.e., twice, a LTFGD is constructed as an example of the theorem 1.

Example 1: Given a group divisible association scheme (m=2, n=5) as follows

1st group: 0, 1, 2, 3, 4;

2nd group: 5, 6, 7, 8, 9,

using the LTFBIB design with the parameters v∗ = 5, b∗ = 10, r∗ = 4, k∗ = 2, λ∗ = 1,

θ −1 1
B1 a b
B2 a c
B3 d a
B4 e a
B5 b c
B6 d e
B7 b d
B8 e b
B9 c d
B10 c e
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considering 0, 1, 2, 3, 4 and again 5, 6, 7, 8, 9, the elements in the 1st group and in the 2nd
group respectively as treatments of the LTFGD design, 20 blocks of LTFGD design with the
parameters v = 10, b = 20, r = 4, k = 2, λ1 = 1, λ2 = 0, m = 2, n = 5, and the first row
represent the orthogonal trend component of degree one without normalization,

θ −1 1
B1 0 1
B2 0 2
B3 3 0
B4 4 0
B5 1 2
B6 3 4
B7 1 3
B8 4 1
B9 2 3
B10 2 4
B11 5 6
B12 5 7
B13 8 5
B14 9 5
B15 6 7
B16 8 9
B17 6 8
B18 9 6
B19 7 8
B20 7 9

3.2. LTFGD designs for k ≥ 2

Consider a GDAS with m groups each of n elements where the ith group is given by

Gi = {(i − 1)n + 1, (i − 1)n + 2, · · · , in}

Consider m latin square arrays of the same order n (whether they are the same or not, but
the order should be the same).

Treating all the n elements of the ith group as the elements of the ith latin square
and considering each column of the resulting ith latin square array with elements from Gi,
as block for each group, n blocks are constructed as given by

B
(i)
j = l

(i)
j (3)

where l
(i)
j is the jth column of the ith resulting latin square array Li, say, with elements

(i − 1)n + 1, (i − 1)n + 2, . . . , in from the ith group Gi. Continuing the same process for i,
we have mn blocks.

Taking p (positive integer) copies of these mn blocks B
(i)
j where i = 1, 2, . . . , m; j =

1, 2, . . . , n, the configuration yields an LTFGD as shown in the following theorem.
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Theorem 2: A series of LTFGD design with parameters v = mn, b = mnp, r = np, k =
n; m, n, λ1 = r, λ2 = 0 for p positive integer can always be constructed.

Proof: As the GDAS under consideration is on m different groups, each of n different
elements, so v = mn.

By the construction method of blocks given in the relation (3), from each resulting
latin square array Li, n blocks l

(i)
j , are constructed. Counting the p copies of n blocks from

the resulting latin square array Li for all i; i = 1, 2, . . . , m, the configuration has mnp blocks.
Further, any treatment of the ith group Gi gets replicated once in each of the columns of the
resulting latin square array Li and gets replicated n times in those n blocks B

(i)
j given by

the relation (3); j = 1, 2, . . . , n. By the process of taking p copies of each block, r = np.
Since each column of these m latin square designs has n distinct treatments, then

k = n.
The construction method of blocks given in the relation (3), it can be seen that any

two treatments from the ith group of the GDAS occurs together exactly once in each column
of the latin square array, under consideration, i.e., the ith latin square array, as any element
in a latin square array occurs exactly once in each column of the latin square array. So,
from those n blocks constructed based on the ith latin square array, any two treatments from
the ith group of the GDAS occurs together in n blocks which have been constructed based
on that ith latin square array. Treating of p copies of each of the constructed blocks by the
construction method given in the relation (3) gives as λ1 = np = r.

From the construction method of blocks given in the relation (3), it is known that no
two treatments from different groups occur together in any block. Thus, λ2 = 0.

Since every treatment of the ith group appears n times in each position l.
Then,

Sdil = number of times treatment i appears in position l

= n
By, ϕ1(l) = −ϕ1(k − l + 1); where ϕ1(l) is the orthogonal polynomial of degree 1 and
ϕ1[(k + 1)/2] = 0; when k is odd,

We get, ϕ1(l) = −ϕ1(k); ϕ1(2) = −ϕ1(k − 1) and so on.
Now, for k = even

k∑
i=1

Sdilϕ1(l) = n
k∑

i=1
ϕ1(l)

= n

[
ϕ1(1) + ϕ1(2) + · · · + ϕ1

(
k

2 − 1
)

+ ϕ1

(
k

2

)
+ ϕ1

(
k

2 + 1
)

· · · + ϕ1(k − 1)

+ϕ1(k)]

= n

[
ϕ1(1) + ϕ1(2) + · · · + ϕ1

(
k

2

)
− ϕ1

(
k

2

)
− · · · − ϕ1(2) − ϕ1(1)

]
= n × 0
= 0
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Again, for k = odd
k∑

i=1
Sdilϕ1(l) = n

k∑
i=1

ϕ1(l)

= n

[
ϕ1(1) + ϕ1(2) + · · · + ϕ1

(
k + 1

2 − 1
)

+ ϕ1

(
k + 1

2

)

+ ϕ1

(
k + 1

2 + 1
)

+ · · · + ϕ1(k − 1) + ϕ1(k)
]

= n

[
ϕ1(1) + ϕ1(2) + · · · + ϕ1

(
k + 1

2 − 1
)

+ ϕ1

(
k + 1

2

)

− ϕ1

(
k + 1

2 − 1
)

− · · · − ϕ1(2) − ϕ1(1)
]

= n × 0
= 0

Hence, proof of the theorem is complete.
An example of Theorem 2 is shown as an illustration below,

Consider GDAS(m = 2, n = 3) such that G1 = (1, 2, 3); G2 = (4, 5, 6) and also
consider 2 latin square arrays of order 3.

L1 =

a b c
b c a
c a b

 , L2 =

β γ α
α β γ
γ α β


From these Latin squares L1 and L2, by the construction method given in the relation

(3), using the elements (1, 2, 3) and (4, 5, 6), respectively given below

L∗
1 = (l1

1, l1
2, l1

3) =

1 2 3
2 3 1
3 1 2

 ; L∗
2 = (l2

1, l2
2, l2

3) =

5 6 4
4 5 6
6 4 5


Considering each column of L∗

1 and L∗
2 as blocks for each group

B
(1)
1 = l1

1 =

1
2
3

 ; B
(1)
2 = l1

2 =

2
3
1

 ; B
(1)
3 = l1

3 =

3
1
2

 ;

B
(2)
1 = l2

1 =

4
5
6

 ; B
(2)
2 = l2

2 =

5
6
4

 ; B
(2)
3 = l2

3 =

6
4
5

 .

Taking 2 copies of these 6 blocks, the configuration yields an LTFGD design, as shown
in the example given below.

Example 2: Following is a plan of LTFGD design with the parameters v = 6, b = 12, r =
6, k = 3, m = 2, n = 3, λ1 = 6, λ2 = 0 and 1st row represents orthogonal trend component of
degree one without normalization.
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θ −1 0 1
B1 1 2 3
B2 2 3 1
B3 3 1 2
B4 4 5 6
B5 5 6 4
B6 6 4 5
B7 1 2 3
B8 2 3 1
B9 3 1 2
B10 4 5 6
B11 5 6 4
B12 6 4 5
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Abstract
Incorporation of changing environmental needs in the daily businesses of the life are

becoming the essential element for the long-term sustenance of the humanity considering
the degrading natural environment. Brundtland report by the United Nations signifies the
inclusion of sustainable practices to fulfil the needs of the present generation at the same time
preserving resources for the future generations. Realizing the presence of number of polluting
factors in the inventory management practices, this research attempts to give extensive
systematic review of the available literature which is also incorporating the uncertainty of the
components by considering their stochastic or probabilistic behaviour. This review assessed
32 research articles to write a comprehensive review where all the articles have incorporated
at least one probability distribution. This study identifies that transportation, storage and
production are the main contributors of carbon emissions and normal distribution is the most
preferred probability distribution and hence future research can be extended by incorporation
of other probability distributions in the model building of sustainable inventory management.

Key words: Carbon emission; Sustainable inventory management; Probability distributions;
Demand; Normal distribution; Lead time.

1. Introduction

Sustainable inventory management has become an increasingly important topic in re-
cent years, as businesses look to minimize their environmental footprint and promote social
responsibility. One of the key benefits of sustainable inventory management is the poten-
tial for cost savings. By reducing waste and increasing efficiency, businesses can lower their
costs and improve their bottom line. In addition to cost savings, sustainable inventory man-
agement also has the potential to improve a company’s reputation and increase customer
loyalty. As consumers become more environmentally conscious, they are increasingly look-
ing for companies that are committed to sustainability. However, implementing sustainable
inventory management can also present challenges. One of the main challenges is the lack
of clear and consistent definitions and metrics for sustainability. This can make it difficult
for businesses to know exactly what they need to do in order to be considered sustainable.
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Additionally, sustainable inventory management can require a significant investment in new
technologies and processes, which can be a barrier for small and medium-sized businesses.
To overcome these challenges, researchers have proposed a number of different methods and
technologies that can be used to achieve sustainability goals in inventory management. One
approach is the use of green supply chain management, which involves integrating environ-
mental considerations into all aspects of the supply chain, including inventory management.

A systematic literature review of sustainable inventory management reveals a grow-
ing body of research that explores the various aspects of this topic including the benefits
and challenges of implementing sustainable practices as well as the various methods and
technologies that can be used to achieve sustainability goals. However, it also points to the
challenges that businesses may face in implementing sustainable inventory management, and
the importance of clear definitions and metrics, as well as the use of advanced technologies.

Variability in demand, lead time or any other component of inventory problems nav-
igates the entire procedure of decision making of the practitioner and hence inclusion of it
will help to understand more diverse and realistic scenarios of the inventory problem. There
is enough literature where probabilistic nature of the demand or lead time has benefitted
to develop inventory models for real life scenarios. Among which research work on normal
distribution and gamma distribution is available for past many decades. Such as Burgin and
Wild (1967) developed a procedure to obtain the reorder level and reorder quantity when
lead time demand have probabilistic nature and obtained numerical expressions to particular
case for gamma distribution. In another study by Burgin (1972) where demand is normal
and lead times is gamma distributed exact expressions for reorder level and lost sales was
obtained. Another interesting use of probability distributions can be found in the study by
Lee et al. (2007) where mixture of two normal distributions is considered to obtain the order
quantity.

Examining such diverse applications of probability distributions in inventory manage-
ment this paper aims: (i) to lay out extensive analysis of the sustainable inventory manage-
ment problems which include probabilistic nature of components. (ii) to discover different
probability distributions used in the inventory management. (iii) to find the future research
directions with incorporation of various probability distributions in inventory management.

The research paper further subdivided into four sections where Section 2 provides the
review methodology followed for the inclusion of the articles for systematic literature review
which itself divided into different subsections based on analysis techniques used. Section 3
concludes on the overall study and Section 4 ends the research paper by giving limitations
and possible future research direction to the study.

2. Review methodology

For conducting systematic literature review, a review methods proposed by Becerra
et al. (2021, 2022), Pattnaik et al. (2021), Tinani and Kandpal (2017) based on which this
study can be broadly divided into two phases as articles selection phase and analysis phase.
Articles selection phase involves identification of keywords, searching through database, ab-
stract screening and full article screening based on the objectives. Whereas analysis phase
involves thorough examination of articles to provide valuable insights.
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2.1. Article selection phase

Figure 1: Flowchart of literature review

The search for the articles was conducted using Web of Science database for which
initially keywords were identified such as “sustainability”, “environment”, “carbon emission”,
“carbon tax”, “carbon footprint” and “carbon cap and trade” which were then combined
with the inventory management to prepare a search string as TS=(sustainab* OR green OR
environment* OR carbon OR ”carbon tax” OR ”carbon emission” OR “carbon footprint”
OR “carbon cap and trade”) AND TS= (”inventory management” OR ”inventory model*”
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OR ”inventory control”). According to Andriolo et al. (2014) significant number of papers
in sustainable inventory management are published after 2011, hence for this study articles
published before 2011 were filtered out. Further articles published in peer-reviewed journals
and available in English language are only considered. The above provided string displays
1590 publications carried out in March 2023 whose titles and abstracts were screened further
to identify the relevant articles based on the objectives, which were trimmed down to 20
articles. To make the review more comprehensive and inclusion of more papers into the
review as through the database only 20 research articles were shortlisted, therefore snowball
approach is adopted where references of the 20 articles were extensively explored which
helped to include 12 more relevant publications as per previously described criteria. Figure
1 depicts the flowchart of the literature review.

2.2. Analysis phase

2.2.1. Descriptive analysis of selected papers

(a) Distribution of articles based on Journal

Figure 2: Distribution of reviewed articles based on Journal

From the Figure 2 it can be observed that around 34% of the articles are published in
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the journals like ‘Journal of Cleaner Production’, ‘Computers & Industrial Engineering’,
‘International Journal of Logistics Systems and Management’ and ’European Journal of
Operational Research’. Other articles are distributed in other journals and one conference
proceeding each having one article.

(b) Distribution of articles based on publication year

Figure 3: Distribution of articles based on publication year
From the Figure 3 though there are articles publishing year on year from the inception of
the topic, approximately 70% are published during 2018-2023 which depicts the importance
of the topic in recent years.

2.2.2. Bibliographic coupling

When two research publications have a common third publication in their reference
lists, they are said to be bibliographically coupled. Third common publication is considered
as a coupling unit between the two (Kessler, 1963). The bibliographic method helps to create
the cluster of articles with common thread between them and further helped to identify the
major areas of study.

Figure 4 depicts the bibliographic network for the finally included 30 publications
excluding other unrelated publications. The Figure 4 provided below was created using the
VOSviewer software. In the following Figure 4 each circle presents the research publication
and the line between two publications indicates the number of common references. Publi-
cations having higher number of citations are shown by large circles and publications with
smaller circles have relatively less number of citations. Bibliographic coupling helps to as-
signing different publications to different clusters based on important attributes. From the
Figure 4 generated using bibliographic technique where 30 publications can be grouped into
4 clusters. These 4 clusters can be summarized as provided below. The 4 different clusters
can be identified by observing their colours in the bibliometric network.

Cluster 1: Transportation and perishability inventory models

This is the largest cluster in the network with 12 documents depicted with red colour
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in the figure provided below. Primary focus of the articles from this cluster is to develop
inventory models considering the environmental considerations but the prominent compo-
nents included are perishability of products, deteriorating items, costs and emissions related
to transportation, carbon emission policies, etc.

Cluster 2: Imperfect quality items inventory models

This cluster consists of 7 articles including the earliest article published which is
Wahab et al.(2011) which tried to provide optimum inventory policies for international supply
chain for both vendor and buyer while taking into account imperfect quality of items and
impact on the environment. Overall articles from this clusters attempted to incorporate the
imperfect products and production processes for inventory management. Articles of this are
represented with the blue colour in the bibliometric network.

Cluster 3: Hybrid production process inventory models

The cluster shown with the green colour in the figure, consisting of 7 articles this
cluster is dominated by the author Wakhid Jauhari having 4 articles. Articles from this
cluster focused on the inclusion of hybrid production processes while considering the range
of other scenarios which include imperfect production, multiple retailers, single manufacturer,
energy usage, etc.

Cluster 4: Demand and lead time uncertainty inventory models

This is the smallest cluster in the network consisting only 4 articles represented by
the yellow colour. Digiesi et al. (2013a, 2013b) proposed the order quantity models for
uncertain demand and lead time where as other two articles Kaur et al. (2020) and Kaur
and Singh (2018) attempted to assimilate linear programming approach to get the better
managerial insights.

Figure 4: Bibliographic network of selected articles

2.2.3. Classification of articles based on probability distributions of different com-
ponents

In a review conducted by Tinani and Kandpal (2017) , articles were classified based
on two types of uncertainty problems namely yield uncertainty and random yield diversifica-
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tion. Using the similar approach reviewed articles can be classified based on the probability
distributions for demand being the crucial component and other components of inventory
models as provided below.

(a) Probability distributions for demand component

The very first study in the reviewed articles where demand is considered uncertain
with some probability distribution i.e. Digiesi et al. (2013a), where demand for the product
is considered a stochastic independent variable which follows normal probability distribution
with some mean and standard deviation. Proceeding further it can be observed that Purohit
et al. (2016) also considered stochastic demand to formulate lot-sizing model using the
inverse cumulative distribution function assuming the normal distribution for the demand.
Further review of the articles also suggests that the choice of the normal distribution for the
demand is more frequent than any other probability distributions. Also other studies such
as Ahmad Jauhari (2022), Darma Wangsa (2017), Jauhari (2018), Jauhari et al. (2021),
Jauhari et al. (2023), Jauhari et al. (2023), Kaur et al. (2020), Kaur and Singh (2018),
Liao and Li (2021), Manupati et al. (2019), Modak and Kelle (2021), Rizky et al. (2021),
Suef et al. (2023), Tang et al. (2018) have all preferred demand to be normally distributed.
Interestingly, some studies have also incorporated other scenarios or probability distributions
like Ghosh et al.(2017) assumed normal distribution jointly for lead time and demand termed
as a lead time demand distribution. Further Stenius et al. (2018) developed a model where
demand follows Poisson distribution whereas Wang et al. (2020) assumed that each demand
zone has Poisson-normal compound demand during particular time period. Therefore, it can
be concluded that the normal distribution is the most popular choice among the authors for
formulation of inventory problems.

(b) Probability distributions for other components

Though demand is very decisive component of the inventory modelling, authors are
also interested to incorporate uncertainty in the inventory problems by considering them
as a random variable with some probability distributions. Among which contemplation of
fractions or percentage of defectives or imperfect items is very often. For instance Gautam
and Khanna (2018) and Kazemi et al. (2018) incorporated rate of defective items in the
model without specifying any probability distribution for the same. However, Gautam et al.
(2019), Mishra and Mishra (2022), Rizky et al. (2021) and Tiwari et al. (2018) preferred
Uniform distribution for the same in the prescribed inventory problem. De-la-Cruz-Márquez
et al. (2022) initially did not specify any probability distribution for imperfect items percent-
age at model development stage but for numerical example, author assumed it has Uniform
Distribution. It is also worthwhile to notice that many of the studies does not specify any
probability distributions while developing the theory. For example Lee et al. (2017) embod-
ied unspecified distribution for lead time, Tang et al. (2018) for inventory level, Gautam et
al. (2019) for number of items like scrap, repairable and non-repairable proportion of items,
Mahato et al. (2023) for time between process to go out of control which shows that this
component can also be expanded with experimenting with different probability distributions.
Further for inclusion of deterioration concept Hua et al. (2016) considered Exponential dis-
tribution of time to deterioration where as Murmu et al. (2023) considered two parameter
Weibull distributed deterioration rate. There are many such other components which have
assumed different probability distributions which are summarized in the table.
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2.2.4. Detailed analysis of the selected papers

This section aims to provide in depth analysis of selected papers by providing the
overview, sustainability factors incorporated, other factors considered for model building
with probability distribution and proposed future directions. Limited number of articles
in the final inclusion stage of this study allows starting the review and analysis procedure
from the earliest article published and going till the recent one. Considering the significance
of EOQ models at the international level Wahab et al. (2011) developed a model for ven-
dor and buyer when they are located in different countries while incorporating imperfect
quality items in terms of percentage of defective items in three different scenarios also rate
of exchange between two countries follows stochastic behaviour and to cater the needs of
sustainability, carbon emission costs are considered. This model can be further extended
as given by author by the inclusion of uncertainty in demand, lead time, credit, etc. and
other environmental factors such as green packaging, remanufacturing, cleaner production,
recycling, etc. Digiesi et al. (2013a) proposed the sustainable order quantity model when the
product demand is uncertain jointly considering logistic costs like safety stock, shortage cost
and environmental cost of transportation. Demand at the particular period is considered as
independent stochastic variable with equal expected demand and standard deviation. The
model building started with stating cost function adding associated costs. Further the loss
factor component was considered which was only related to the technological advancement
related to the energy sector in transportation. Lastly the cost function was optimised to
obtain the order quantity levels and optimal safety stock. Proposed model then applied to
automotive case study to obtain the insights on optimal solution.

On the similar lines Digiesi et al.(2013b) developed another sustainable order quantity
models when lead time is uncertain and demand is deterministic in nature following the
same approach as the previous article including logistic and environmental transportation
cost and developed model applied to real industrial case. Jauhari et al. (2014) arrived at
a model for vendor and buyer by integrating defective items produced in the production
process and unequal size of the shipment with the environmental carbon emission cost for
both vendor and buyer. The papers considered the probability distribution of defect rate
and further model building was formulated. They further analyzed that if the probability
of defects increases then it also increases the carbon emission cost. Authors also suggested
that the proposed model can be further extended by incorporating of defective raw material,
inspection and rework process for raw material, inspection error and application of other
distribution models of defective rate on vendor-buyer problem.

Purohit et al. (2016) studied the lot sizing inventory problem using mixed integer
linear programming approach with constraints on emission and service levels when demand
from the buyer is uncertain and dynamic which is normally distributed. This model con-
sidered wide ranging emissions generated during ordering, storage and purchasing and their
corresponding costs. The objective function for the proposed problem is to minimise the total
cost for the prescribed time period consisting of the four components. Additionally various
constraints such as cycle service level, identification of the optimum replenishment sched-
ule and emission constraints are incorporated. This study analysed the impact of various
emission factors and features related to product and system under the carbon cap-and-trade
policy assuming constant carbon price. This study can be extended by considering variable
carbon price, applying to real life cases and different supply structures. A detailed overview
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of the remaining articles is summarized in the Table 1 provided below mentioning the au-
thors, name of the publishing journal, probabilistic components used, sustainability factors
and proposed future research.

3. Conclusion and future research direction

This paper attempts to provide the comprehensive review of the inventory models
which included sustainability criteria where probability distributions are taken into con-
sideration for at least one of the components of inventory management. This study tries
to provide the detailed analysis of selected papers with sustainability criteria included, in-
corporated probability distributions and possible future prospects proposed by the reviewed
articles. It can be observed that carbon emissions due to transportation and costs associated
with it are the frequent components enclosed in the articles reviewed. Other emission fac-
tors such as emissions due to production and storage are also the prominent one. Therefore
incorporation of investments made to reduce emissions from the transportation, production
and storage could be exhaustive topic to move towards sustainability. Also it would be great
extension to consider the other carbon regulations more than carbon tax like cross border
adjustment mechanism, carbon penalty, etc. Another important concept identified that is
incorporation of uncertainty in demand where Normal distribution is the very much pre-
ferred distribution. As normal distribution has some limitations such as it is symmetric in
nature and assumes negative values as well. Hence consideration of other possible probability
distributions for demand as well as other components of the inventory model can provide
enormous and varied opportunities for the extension of the sustainable inventory models.

4. Limitations of study

This review can be extended by the considering the papers from the other databases
like Scopus and Google Scholar. Major focus of this research paper is on the order quantity
models and relevant studies with few papers with production inventory models. Hence the
present study can be explored with inclusion of more production problems and other supply
chain scenario models. This study does not focus much on the various quantitative and
qualitative methods employed in the prescribed paper. Though the database was thoroughly
examined there might be some possibility that some articles may have slipped and further
excluded from the process. Inclusion of such articles will help to broaden all the horizons of
study.
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Table 1: Summary of the articles

Authors Journal
Name

Sustainability
Factors

Inventory
components
with their
Probability
Distributions

Proposed Future research
work

Hua
et al.
(2016)

International
Journal of
Simulation
Modelling

Carbon cap and
trade mecha-
nism, emission
cost

Time to de-
terioration –
Exponential
Distribution

Incorporation of partial
backlogging, lost sales,
freshness having deteriora-
tion rate

Darma
Wangsa
(2017)

International
Journal of
Industrial
Engineering
Computa-
tions

Direct and in-
direct emissions
from transport
and industry
sector, carbon
emission tax

Demand –
Normal Distri-
bution

Consideration of multi-
manufacturer and multi-
buyer system, other indi-
rect emissions like waste
disposal, cleaner produc-
tion. Green manufacturing,
remanufacturing, recycling,
emission reduction invest-
ment costs

Ghosh
et al.
(2017)

Applied
Mathemati-
cal Modelling

Carbon emis-
sions from
production,
inventory,
transportation

Lead time de-
mand – Normal
Distribution

Model can be extended
to multi-echelon or reverse
supply chain with defective
and waste item, inclusion of
perishable products,

Lee
et al.
(2017)

Sustainability Carbon emis-
sion cost of
warehouse,
collection and
disposal of in-
ventory waste

Lead time – Un-
specified prob-
ability distribu-
tion

Extension can be done con-
sidering processing time at
custom, waiting time at
border and terminal han-
dling activities

Kazemi
et al.
(2018)

International
Journal of
Systems
Science: Op-
erations &
Logistics

Carbon emis-
sion cost and
tax of hold-
ing inventory,
warehousing,
obsolete items

Fraction of im-
perfect items -
Unspecified

Consideration of multiple
manufacturer and supplier
scenario, emissions from
transportations or energy
usage, imperfect supply
process

Stenius
et al.
(2018)

European
Journal of
Operational
Research

Emission cost of
transportation

Demand – Pois-
son Distribution
Shipment quan-
tity to each re-
tailer group –
Binomial Distri-
bution

Generalization of model by
considering other demand
distributions like compound
Poisson

Tang
et al.
(2018)

European
Journal of
Operational
Research

Emissions from
storage and
transportation

Demand –
Normal Dis-
tribution In-
ventory level
– Unspecified
Distribution

Carbon reduction consider-
ation, other sources of oper-
ational emissions
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Kaur
and
Singh
(2018)

Management
of Envi-
ronmental
Quality: An
International
Journal

Carbon emis-
sion and its
price and quota

Demand, Sup-
plier capacity,
Carrier capac-
ity – Normal
Distribution

Study can be extended by
considering uncertain lead
time, purchasing and trans-
portation cost, other quali-
tative factors

Jauhari
(2018)

International
Journal of
Logistics
Systems and
Management

Carbon emis-
sion cost due to
transportation
and production

Demand –
Normal Distri-
bution

Inclusion of inspection pro-
cess, consideration of differ-
ent supply chain structures,
periodic review policy

Gautam
and
Khanna
(2018)

Uncertain
Supply Chain
Management

Fixed and vari-
able cost of
carbon emis-
sions at vendor

Defective rate –
Unspecified Dis-
tribution

Further extended for the
case of multiple buyer and
items, also considering par-
tial backordering, pricing
discounts, inspection errors

Tiwari
et al.
(2018)

Journal of
Cleaner Pro-
duction

Costs of carbon
emissions from
transportation,
warehousing
and holding
deteriorating
items, emission
tax

Percentage of
Defective items
– Uniform Dis-
tribution

Impact of rework and
recycle activities on carbon
emission, Multi-product
and delay in payments can
be very good extension

Manupati
et al.
(2019)

Computers
& Industrial
Engineering

Carbon cap-
and-trade,
carbon tax

Demand –
Normal Distri-
bution

Extension can be done for
reverse closed loop supply
chain, some model restric-
tions can be relaxed

Gautam
et al.
(2019)

Journal of
Cleaner Pro-
duction

Costs of carbon
emission

Repairable
proportion,
non-repairable
proportion
and scrap
proportion –
Unspecified
Distribution
Defect Percent-
age – Uniform
Distribution

Inspection error can be in-
corporated, also some per-
missible delays can also
considered. Model can be
extended in fuzzy environ-
ment

Kaur
et al.
(2020)

Computers
& Industrial
Engineering

Carbon emis-
sions during
ordering, trans-
portation and
holding

Demand, Ma-
chine capacity,
carrier capacity,
supplier capac-
ity - Normally
distributed

Flexibility of supplier and
carrier selection, fuzzy envi-
ronments can be applied
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Wang
et al.
(2020)

Transportation
Research
Part - E

Carbon emis-
sions due to
transportation,
carbon cap

Demand zone –
Poisson-Normal
compound de-
mand Random
order inter
arrival time –
Exponential
Distribution
Random order
sizes – Normal
Distribution
Carbon price –
Uniform Distri-
bution

Consideration of vehicle
routing decisions, other
carbon regulation schemes,
more efficient heuristics

Modak
and
Kelle
(2021)

Journal of
Operational
Research
Society

Carbon foot-
print, carbon
tax, Emission
reduction due
to recycling

Demand –
Normal Distri-
bution

Can be extended to mul-
tiple products, manufactur-
ers and retailers case, also
internet marketing, recy-
cling activity influence can
be incorporated

Liao
and Li
(2021)

Computers
& Industrial
Engineering

Carbon emis-
sions in logistics
and storage

Demand –
Normal Dis-
tribution,
Exponential
Distribution

Study in hybrid manufac-
turing system, forward and
reverse production system
simultaneous consideration

Rizky
et al.
(2021)

Clean Tech-
nologies and
Environmen-
tal Policies

Carbon emis-
sion costs,
energy con-
sumption

Demand – Nor-
mal Distribu-
tion Defective
Percentage –
Uniform Distri-
bution

Model can be extended by
considering imperfect raw
material and impact of re-
turned product

Jauhari
et al.
(2021)

Journal of
Cleaner Pro-
duction

Carbon emis-
sion due to stor-
age, production,
transportation,
carbon tax

Demand –
Normal Distri-
bution

Extension can be done by
considering inspection er-
rors, variable production
rate, more parties like sup-
plier and distributors

Ahmad
Jauhari
(2022)

Cleaner Lo-
gistics and
Supply Chain

Carbon emis-
sions due to
production,
transportation
and storage,
investment in
green technol-
ogy

Demand –
Normal Distri-
bution

Inclusion of imperfect re-
working process and invest-
ment in quality, other car-
bon regulations like carbon
penalty, three party logistic
supply chain



2024] SYSTEMATIC REVIEW OF SUSTAINABLE PROBABILISTIC INVENTORY MODELS 279

Mishra
and
Mishra
(2022)

Arabian
Journal for
Science and
Engineering

Carbon emis-
sions and its
cost from
electricity
generation, de-
terioration, fuel
consumption by
vehicle, energy
consumption
from Warehouse

Defective Per-
centage –
Uniform Distri-
bution

Consideration of imper-
fect screening with errors,
demand variations like
stochastic and fuzzy, can
also be extended for manu-
facturer

De-la-
Cruz-
Márquez
et al.
(2022)

Mathematics Carbon emis-
sions and costs,
carbon tax

Percentage of
imperfect items
– Unspecified
in the model
(Uniform Dis-
tribution in
Numerical Ex-
ample)

Model can be extended by
incorporating investment in
preservation technology to
reduce deterioration

Mahato
et al.
(2023)

Environment,
Development
and Sustain-
ability

Pollution con-
trol costs and
scenarios

Time elapsed
after which
production
becomes out
of control –
Unspecified
Distribution
in the model
(Exponential
Distribution
in Numerical
example)

Model can be extended
by considering stochastic
demand and default risk
rate, partial backlogging,
investment in low carbon
technologies, transporta-
tion costs, screening errors,
recycling, inflation

Murmu
et al.
(2023)

Journal of In-
dustrial and
Management
Optimization

Carbon emis-
sion, emission
cap, carbon tax,
investment in
green technol-
ogy

Deterioration
rate – Two pa-
rameter Weibull
Distribution

Study can be expanded by
considering three parame-
ter weibull distributed de-
terioration rate, stochas-
tic demand, non linear
programming approach for
fuzzy environment, trade
credit, manufacturing pro-
cess reliability

Jauhari
et al.
(2023)

Annals of Op-
erations Re-
search

Carbon emis-
sions from
transportation,
storage, invest-
ment in green
technology,
carbon tax

Demand –
Normal Distri-
bution

Incorporation of human er-
rors in inspection, other
carbon reduction policies
like carbon penalty, carbon
cap and trade
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Suef
et al.
(2023)

Process Inte-
gration and
Optimization
for Sustain-
ability

Carbon emis-
sion from
storage, pro-
duction and
transportation,
investment in
green technol-
ogy, carbon tax

Demand –
Normal Distri-
bution

Investigation of influence of
routes of transportation on
emissions and costs, con-
sideration of imperfect pro-
duction and green trans-
porters

Jauhari
et al.
(2023)

Cogent Busi-
ness and
Management

Carbon emis-
sions, green
investment
and incentives,
energy con-
sumptions

Demand –
Normal Distri-
bution

Model can be extended by
considering imperfect pro-
duction process, other car-
bon policies like cap and
trade, carbon offset, carbon
cap
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Abstract
In this paper, the extropy of ranked set sample from Sarmanov family of distributions

is considered. By deriving the expression for extropy of concomitants of order statistics, the
expression for extropy of ranked set sample of the study variable Y in which an auxiliary
variable X is used to rank the units in each set, under the assumption that (X, Y ) follows
Sarmanov family of distributions is obtained.

Key words: Ranked set sampling; Sarmanov family of distributions; Concomitants of order
statistics; Extropy.

AMS Subject Classifications: 62B10, 94A20, 62D05

1. Introduction

Let (X, Y ) be a random vector with joint probability density function (PDF) f(x, y)
and cumulative distribution function (CDF) F (x, y). Let fX(x) and fY (y) be the marginal
PDFs and FX(x) and FY (y) be the marginal CDFs of X and Y respectively. Let (Xi, Yi),
i = 1, 2, ...n be a random sample of size n from the population with cdf F (x, y). If these
observations are arrange in increasing order of magnitude based on Xi’s, then the rth largest
observation Xr:n is the rth order statistic of Xi’s. Then the Y variable associated with Xr:n is
called concomitant of rth order statistic and it is denoted by Y[r:n]. David (1973) introduced
the concept of concomitants of statistics which is applicable in various areas like ranked set
sampling, double sampling, correlation analysis and in certain selection procedures. More
details on this idea was given in David and Nagaraja (1998).

McIntyre (1952) introduced an efficient sampling scheme named ranked set sampling,
as an alternative to simple random sampling (see, Chen et al. (2004)). The procedure of
ranked set sampling is as follows. Select n2 units randomly from the population. These
units are randomly alloted into n sets, each of size n. Then the units in each set are ranked
visually, judgement method or using some inexpensive methods. From the first set of n
units, choose the unit which has the lowest rank for actual measurement. From the second
set of n units the unit ranked second lowest is chosen. The process is continued until choose
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the unit which has the highest rank in the nth set. Then make measurement on variable of
interest of the selected units, which constitute the ranked set sample(RSS).

Ranked set sampling as described in McIntyre (1952) is applicable whenever sample
size is small and ranking of a set of sampling units can be done easily by a judgment method.
Suppose the variable of interest, say Y , is expensive to measure and difficult to rank the
units. In this case as an alternative method, Stokes (1977) modified the method by using
an auxiliary variable for ranking the sampling units in each set. Stokes (1977) explained
the ranked set sampling procedure as follows. Choose n2 units randomly from a bivariate
population. Arrange these units into n sets, each of size n and measure the auxiliary variable
X. In the first set, that unit for which smallest measurment on the auxiliary variable X is
chosen and take the measurement of the study variable Y , denoted by Y[1]. In the second
set, that unit for which second smallest measurement on the auxiliary variable X is chosen
and take the measurement of the study variable Y , denoted by Y[2]. Finally, in the nth
set, that unit for which largest measurment on the auxiliary variable X is chosen and take
the measurement of the study variable Y , denoted by Y[n]. Clearly Y[r], r = 1, 2, ...n are
concomitants of order statistics of the given random sample and are independent.

Bain (2017) give an example for the application of RSS as proposed by Stokes (1977).
Here the study variable Y represents the oil pollution of sea water and auxiliary variable X
represents the tar deposit in the nearby sea shore. Clearly collecting sea water sample and
measuring the oil pollution in it is difficult and costly. However the prevalence of pollution in
sea water is much reflected by the tar deposit in the surrounding terminal sea shore. In this
example ranking the pollution level of sea water based on the tar deposit in the sea shore
is more natural and scientific than ranking it visually or by judgement method. Applying
the concepts of concomitant of order statistics in ranked set sampling, Chacko and Thomas
(2007, 2008, 2009), Chacko (2017) and Mehta (2022) estimated the parameters of different
distributions belonging to Morgenstern family of distributions.

As an alternative to entropy defined by Shannon (1948), Lad et al. (2015) introduced
a new measure of uncertainty called extropy . Let X be a random variable with PDF fX(x)
and CDF FX(x). Then the extropy of X is defined as

J(X) = −1
2

� ∞

−∞
(fX(x))2dx (1)

= −1
2

� 1

0
fX(F −1(u))du, (2)

where F −1(u) = inf{x; FX(x) ≥ u}, u ∈ [0, 1] is the quantile function of FX(x).

Lad et al. (2015) gave some properties and applications of extropy measure. Qiu
(2017) discussed the characterization results, monotone properties, and lower bounds of
extropy of order statistics and record values. Zamanzade and Mahdizadeh (2019) discussed
the nonparametric estimation of extropy based on ranked set sampling. Eftekharian and
Qiu (2022) considered the information content of statified ranked set sampling in terms of
extropy. Qiu and Raqab (2022) discussed the properties of weighted extropy using Ranked
Set Samples.

Morgenstern (1956)introduced a bivariate family of distributions which can be con-
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structed with specific marginal distributions and the PDF is given by

f(x, y) = fX(x)fY (y)[1 + δ(2FX(x) − 1)(2FY (y) − 1)], −1 ≤ δ ≤ 1,

where δ is the association parameter, fX(x) and fY (y) are the marginal PDFs and FX(x) and
FY (y) are the marginal CDFs of X and Y respectively. One of the important limitations of
the Morgenstern family of distributions (MFD) is that the correlation coefficient lies between
-1/3 and 1/3. Several authors have modified the MFD to enhance the range of correlation
and extended the domain of applications. One of the important modifications of MFD was
given by Sarmanov (1966) in the sense that it provides the best improvement in correlation
level with only one parameter as in the MFD. The PDF of family of distributions of Sarmanov
(1966) is given by

f(x, y) = fX(x)fY (y)
[
1 + 3α(2FX(x) − 1)(2FY (y) − 1)

+ 5
4α2

(
3(2FX(x) − 1)2 − 1

)(
3(2FY (y) − 1)2 − 1

)]
, |α| ≤

√
7

5 (3)

where α is the association parameter. When the marginal distributions follow uniform, the
distribution attain its maximum correlation coefficient, α.

Alemany et al. (2020) give an example for application for Sarmanov family of distri-
butions given in (3). Here the study variable Y follows the average claim cost per insured
and X represents the number of claims of individual. This model can be used to obtain the
distribution of the total cost of claims based on the collective model, for a policyholder with
specific characteristics. If the profiles have larger dependency, the Sarmanov distribution
can be used to fit a non- linear dependence between frequency and severity (cost random
variable). The different applications of Sarmanov family of distributions are given in Abdal-
lah et al. (2016) and Bolancé et al. (2020). Barakat et al. (2022) discussed the properties of
concomitants of order statistics of Sarmanov family of distributions.

It is well known that ranked set sample provides more information than simple random
sample(SRS) of the same size about the unknown parameters of the underlying distribution
in parametric inferences (see, Chen et al. (2004) ). Jozani and Ahmadi (2014) explained the
concept of information content of RSS data and compared them with their counterparts in
SRS data. Raqab and Qiu (2019) described the monotone properties and stochastic orders
of ranked set sample and compared the results with their counterpart under SRS design.
Husseiny et al. (2022) discussed information measures in records and their concomitants
arising from Sarmanov family of distributions. Chacko and George (2024, 2023) discussed the
extropy properties of RSS for MFD and Cambanis type bivariate distributions. George and
Chacko (2023) considered the cumulative residual extropy properties of ranked set samples
for Cambanis type bivariate distributions.

In this paper, we derive the extropy of concomitant of order statistic Y[r:n] of a random
sample of size n from Sarmanov family of distributions. Since observations of a ranked set
sample, in which an auxiliary variable X is used to rank the units in each set, are nothing but
concomitant of order statistics, we derive the extropy of RSS when (X, Y ) follows Sarmanov
family of distributions. The properties and bounds for extropy of RSS are also derived. We
also consider the joint extropy of (XRSS, Y[RSS]), where XRSS =

(
X(1), X(2), ..., X(n)

)
is the
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RSS of X observations in which ranking in each unit is perfect and Y[RSS] =
(
Y[1], Y[2], ..., Y[n]

)
is the RSS of Y observations in which ranking in each unit is based on X observations.

The paper is organized as follows. In section 2, the expression for extropy of Y[r:n]
and also obtain upper and lower bounds of it. In section 3, we obtain the extropy of the RSS
arising from Sarmanov family of distributions and study its properties. Section 4 devotes
to obtain extropy of (Xr:n, Y[r:n]) and thereby obtain the extropy of (XRSS, Y[RSS]), where
XRSS =

(
X(1), X(2), ..., X(n)

)
is the ranked set sampling based on X observations in which

ranking in each unit is perfect and Y[RSS] =
(
Y[1], Y[2], ..., Y[n]

)
. Finally, in section 5 we give

the conclusion.

2. Extropy of concomitant of rth order statistic

Let Y[r:n] r = 1, 2, ...n be the concomitant of rth order statistic of a bivariate random
sample arising from Sarmanov family of distributions. If fr:n(x) is the pdf of rth order
statistic and fY X(y/x) is the conditional pdf of Y given X, then the pdf of concomitant of
rth order statistic, Y[r:n] is

fY [r:n](y) =
� ∞

−∞
fY X(y/x)fr:n(x)dx

=
� ∞

−∞
fY (y)

[
1 + 3α(2FX(x) − 1)(2FY (y) − 1)

+ 5
4α2

(
3(2FX(x) − 1)2 − 1

)(
3(2FY (y) − 1)2 − 1

)]
× n!

(r − 1)!(n − r)!(FX(x))r−1(1 − FX(x))n−rdx

= fY (y)
1 + d1(2FY (y) − 1) + d2

(
3(2FY (y) − 1)2 − 1

), (4)

where

d1 = 3α
2r − n − 1

n + 1 (5)

and

d2 = 5
2α2

(
1 − 6r(n − r + 1)

(n + 1)(n + 2)

)
. (6)
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Then by using (1) the extropy of Y[r:n] is given by

J(Y[r:n]) = −1
2

�
y

(fY [r:n](y))2dy

= −1
2

�
y

(fY (y))2

1 + d1(2FY (y) − 1) + d2

(
3(2FY (y) − 1)2 − 1

)2

dy

= −1
2

� 1

u=0
fY (F −1(u))

1 + d1(2u − 1) + d2

(
3(2u − 1)2 − 1

)2

du

= −1
2

� 1

u=0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du, (7)

where

ρ(r,n,α)(u) = 1 + d1(2u − 1) + d2

(
3(2u − 1)2 − 1

)
. (8)

Theorem 1: Let Y[r:n] be the concomitant of rth order statistic of a random sample of size
n arising from Sarmanov family of distributions, then the extropy of Y[r:n] can be written as

J(Y[r:n]) = −1
2

4∑
k=0

ak

k + 1E
(
F −1(Uk)

)
, (9)

where a0 = (1 − d1 + 2d2)2, a1 = 2(1 − d1 + 2d2)(2d1 − 12d2), a2 = (2d1 − 12d2)2 + 24d2(1 −
d1 + 2d2), a3 = 24d2(2d1 − 12d2), a4 = 144d2

2 and

E
(
F −1(Uk)

)
=
� 1

0
(k + 1)ukfY (F −1(u))du

with Uk follows Beta (k + 1, 1).

Proof: Since Y[r:n] is the concomitant of rth order statistic of a random sample of size n
arising from Sarmanov family of distributions, we have

(fY [r:n](y))2 = (fY (y))2

1 + d1(2FY (y) − 1) + d2

(
3(2FY (y) − 1)2 − 1

)2

= (fY (y))2
4∑

k=0
ak

(
FY (y)

)k
,

where a0 = (1 − d1 + 2d2)2, a1 = 2(1 − d1 + 2d2)(2d1 − 12d2), a2 = (2d1 − 12d2)2 + 24d2(1 −
d1 + 2d2), a3 = 24d2(2d1 − 12d2) and a4 = 144d2

2.
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Therefore, the extropy of Y[r:n] is given by

J(Y[r:n]) = −1
2

�
(fY [r:n](y))2dy

= −1
2

�
(fY (y))2

4∑
k=0

ak

(
FY (y)

)k
dy

= −1
2

4∑
k=0

ak

� 1

0
ukfY (F −1(u))du

= −1
2

4∑
k=0

ak

k + 1E
(
F −1(Uk)

)
,

where Uk follows Beta (k + 1, 1). Hence the theorem.

Remark 1: If r = 1 and r = n in (4), we get the concomitant of first order statistic and
largest order statistic of a random sample of size n. Then the extropy of concomitant of first
order statistic Y[1:n] and concomitant of largest order statistic Y[n:n] are given by

J(Y[1:n]) = −1
2

4∑
k=0

a
(1)
k

k + 1E
(
F −1(Uk)

)
,

where a
(1)
0 = (1 + q1 + 2q2)2, a

(1)
1 = −2(1 + q1 + 2q2)(2q1 + 12q2), a

(1)
2 = (2q1 + 12q2)2 +

24q2(1 + q1 + 2q2), a
(1)
3 = −24q2(2q1 + 12q2) and a

(1)
4 = 144q2

2
and

J(Y[n:n]) = −1
2

4∑
k=0

a
(n)
k

k + 1E
(
F −1(Uk)

)
,

where a
(n)
0 = (1− q1 +2q2)2, a

(n)
1 = 2(1− q1 +2q2)(2q1 −12q2), a

(n)
2 = (2q1 −12q2)2 +24q2(1−

q1 + 2q2), a
(n)
3 = 24q2(2q1 − 12q2) and a

(n)
4 = 144q2

2
with q1 = 3αn−1

n+1 and q2 = 5
2α

(
1 − 6n

(n+1)(n+2)

)
.

Remark 2: If α = 0, that is X and Y are independent, then d1 = 0 and d2 = 0 and hence
J(Y[r:n]) = −1

2 E
(
F −1(U0)

)
= J(Y ).

Corollary 1: Let (Xi, Yi), i = 1, 2, ...n be a bivariate sample of size n arising from Sarmanov
family of distributions. Then the extropy of concomitant of rth order statistic for α > 0 is
same as the extropy of concomitant of (n − r + 1)th order statistic for α < 0 .

Proof: Let J (α)(Y[r:n]) be the extropy of concomitant of rth order statistic for any α. We
have by (5) and (6), d1(n,α) = d1(n−r+1,−α) and d2(n,α) = d2(n−r+1,−α) . Therefore by (9),

J (α)(Y[r:n]) = J (−α)(Y[n−r+1:n]).

Example 1: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1, then

J(Y[r:n]) = −1
2

4∑
k=0

ak

k + 1 .
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Example 2: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0, then

J(Y[r:n]) = −θ2

2

4∑
k=0

ak

(k + 1)(k + 2) .

Theorem 2: Let Y[r:n] be the concomitant of rth order statistic of a random sample of size
n arising from Sarmanov family of distributions, the upper bound of J(Y[r:n]) can be written
as

J(Y[r:n]) ≤ −1
2

3∑
k=1

ak

k + 1E
(
F −1(Uk)

)
, (10)

where Uk follows Beta (k + 1, 1).

Proof: Since a0 ≥ 0 and a4 ≥ 0, by using Theorem 1 we can obtain the inequality (10)
directly . Hence the proof.

Example 3: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1, then

J(Y[r:n]) ≤ −1
2

3∑
k=1

ak

k + 1 .

Example 4: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0, then

J(Y[r:n]) ≤ −θ2

2

3∑
k=1

ak

(k + 1)(k + 2) .

Theorem 3: Let Y[r:n] be the concomitant of rth order statistic of a random sample of size
n arising from Sarmanov family of distributions, then the lower bound of J(Y[r:n]) is given
by

J(Y[r:n]) ≥ −1
2

E[(fY (y))2]
 1

2
 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

. (11)

Proof: From (7), we have

J(Y[r:n]) = −1
2

� 1

u=0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du

By applying Cauchy - Schwarz inequality, we have

J(Y[r:n]) ≥ −1
2

 � 1

u=0
(fY (F −1(u)))2du

 1
2
 � 1

u=0

(
ρ(r,n,α)(u)

)4
du

 1
2

. (12)
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Therefore
� 1

u=0
(fY (F −1(u)))2du =

�
y

(fY (y))3dy

= E[(fY (y))2]. (13)

Also
(
ρ(r,n,α)(u)

)4
=

( 4∑
k=0

akuk
)2

. (14)

On substituting (13) and (14) in (12) we get (11). Hence the proof.

Example 5: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1, then

J(Y[r:n]) ≥ −1
2

 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

.

Example 6: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0, then

J(Y[r:n]) ≥ −1
2

(
θ2

2
3

) 1
2

 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

.

3. Extropy of ranked set sample

Let Y[1],Y[2],...Y[n] be the RSS of size n arising from Sarmanov family of distributions
in which X observations are used to rank the units in each set. Clearly Y[r], r = 1, 2, ..., n

are independent and Y[r]
d= Y[r:n]. If Y[RSS] = {Y[r], r = 1, 2, ...n} , then the extropy of Y[RSS]

can be written as

J(YRSS) = −1
2

n∏
r=1

�
y

(fY [r:n](y))2dy

= −1
2

n∏
r=1

[−2J(Y[r:n])].

Therefore,

J(YRSS) = −1
2

n∏
r=1

4∑
k=0

ak

k + 1E
(
F −1(Uk)

)
.

Example 7: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1 ,then

J(YRSS) = −1
2

n∏
r=1

4∑
k=0

ak

k + 1 .
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Example 8: If (X, Y ) follows Sarmanov family of distributions given in (3) with fX(x) =
θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0, then

J(YRSS) = −1
2 θn

2

n∏
r=1

4∑
k=0

ak

(k + 1)(k + 2) .

Definition 1: (Shaked and Shanthikumar (2007)) Let X1 and X2 be two random variables
with cdfs F1 and F2 and pdfs f1 and f2 respectively. The left continuous inverses of F1 and F2
are given by F −1

1 (u) = inf{t : F1(t) ≥ u} and F −1
2 (u) = inf{t : F2(t) ≥ u}, 0 ≤ u ≤ 1. Then

X1 is said to be smaller than X2 in dispersive order denoted by X1 ≤disp X2 if F −1
2 (F1(x))−x

is increasing in x ≥ 0. Clearly if X1 ≤disp X2 , then f1(F −1
1 (u)) ≤ f2(F −1

2 (u)), for 0 ≤ u ≤ 1.

Theorem 4: Let (X, Y ) follows Sarmanov family of distributions given in (3) with marginal
cdfs FX(x) and FY (y) and pdfs fX(x) and fY (y) respectively. Let YRSS = {Y[r], r = 1, 2, ...n}
be the ranked set sample of size n arising from Sarmanov family of distributions in which
X observations are used to rank the units. Let (V, W ) be another pair of random variables
follows Sarmanov family of distributions given in (3) with marginal cdfs GV (v)and GW (w)
and pdfs gV (v) and gW (w) respectively. Let WRSS = {W[r], r = 1, 2, ...n} be the ranked set
sample of size n arising from (V, W ) in which V observations are used to rank the units. If
Y ≤disp W , then J(YRSS) ≤ J(WRSS).

Proof: We have

J(YRSS) = −1
2

n∏
r=1

� 1

u=0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du.

Since Y ≤disp W , we have fY (F −1(u)) ≥ gW (G−1(u)) for all u in (0, 1).
Therefore

J(YRSS) ≤ −1
2

n∏
r=1

� 1

u=0
gW (G−1(u))

(
ρ(r,n,α)(u)

)2
du

= J(WRSS).

Hence the proof.

3.1. Bounds of J(YRSS)

In this subsection, we obtain some lower bounds and upper bounds for J(YRSS). Be-
fore that we give some properties of ρ(r,n,α)(u) given in (8). We have tabulated the value of
ρ(r,n,α)(u) for r = 1, 2, ...10 and α = −0.5, −0.25, 0.25, and 0.5 and are given in Table 1 and
Table 2. We have also drawn the graphs of ρ(r,n,α)(u) for n = 10 and for α > 0 and α < 0
and are given in Figure 1 to Figure 4.

Remark 3: From Table 1 and Table 2, we have for a fixed α , ρ(r,n,α)(u) = ρ(n−r+1,n,α)(1−u).
The above inference also be seen from Figures 1, 2, 3 and 4.

Remark 4: From Figures 1 and 2 we have for α > 0, ρ(r,n,α)(u) is decreasing in r if 0 ≤
u < 0.5 and is increasing in r if 0.5 < u ≤ 1. Again for α < 0, ρ(r,n,α)(u) is increasing in r if
0 ≤ u < 0.5 and is decreasing in r if 0.5 < u ≤ 1.
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Figure 1: Graph of ρ(r,n,α)(u) against u when α > 0

Figure 2: Graph of ρ(r,n,α)(u) against u when α < 0
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Figure 3: Graph of ρ(r,n,α)(u) against r when α > 0

Figure 4: Graph of ρ(r,n,α)(u) against r when α < 0



296 MANOJ CHACKO AND VARGHESE GEORGE [Vol. 22, No. 2

Table 1: ρ(r,n,α)(u) when α is positive for n = 10

α=0.25
r u=0 u=0.25 u=0.5 u=0.75 u=1
1 1.7841 1.2855 0.9148 0.6719 0.5568
2 1.5341 1.2315 0.9716 0.7543 0.5795
3 1.3125 1.1740 1.0142 0.8331 0.6307
4 1.1193 1.1129 1.0426 0.9084 0.7102
5 0.9545 1.0483 1.0568 0.9801 0.8182
6 0.8182 0.9801 1.0568 1.0483 0.9545
7 0.7102 0.9084 1.0426 1.1129 1.1193
8 0.6307 0.8331 1.0142 1.1740 1.3125
9 0.5795 0.7543 0.9716 1.2315 1.5341
10 0.5568 0.6719 0.9148 1.2855 1.7841

α=0.5
r u=0 u=0.25 u=0.5 u=0.75 u=1
1 2.9091 1.5284 0.6591 0.3011 0.4545
2 2.1818 1.4489 0.8864 0.4943 0.2727
3 1.5682 1.3551 1.0568 0.6733 0.2045
4 1.0682 1.2472 1.1705 0.8381 0.2500
5 0.6818 1.1250 1.2273 0.9886 0.4091
6 0.4091 0.9886 1.2273 1.1250 0.6818
7 0.2500 0.8381 1.1705 1.2472 1.0682
8 0.2045 0.6733 1.0568 1.3551 1.5682
9 0.2727 0.4943 0.8864 1.4489 2.1818
10 0.4545 0.3011 0.6591 1.5284 2.9091

Theorem 5: Let Y1, Y2, ...Yn be a simple random sample from a distribution with cdf FY (y)
and pdf fY (y). Let {Y[r], r = 1, 2, ...n} be the RSS of size n arising from Sarmanov family
of distributions in which X observations are used to rank the units. If YSRS = {Y1, Y2, ..Yn}
and Y[RSS] = {Y[1], Y[2], ...Y[n]}, then for n ≥ 1,

J(YRSS)
J(YSRS) ≤

n∏
r=1

(
ρ(r,n,α)(u0)

)2
,

where u0 is the value of u which maximise ρ(r,n,α)(u).

Proof: We have

J(YSRS) = −1
2

n∏
r=1

�
y

(
fY (y)

)2
dy

= −1
2

n∏
r=1

� 1

0
fY (F −1(u))du.

Then,

J(YRSS) = −1
2

n∏
r=1

� 1

0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du.
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Table 2: ρ(r,n,α)(u) when α is negative for n = 10

α=-0.5
r u=0 u=0.25 u=0.5 u=0.75 u=1
1 0.4545 0.3011 0.6591 1.5284 2.9091
2 0.2727 0.4943 0.8864 1.4489 2.1818
3 0.2045 0.6733 1.0568 1.3551 1.5682
4 0.2500 0.8381 1.1705 1.2472 1.0682
5 0.4091 0.9886 1.2273 1.1250 0.6818
6 0.6818 1.1250 1.2273 0.9886 0.4091
7 1.0682 1.2472 1.1705 0.8381 0.2500
8 1.5682 1.3551 1.0568 0.6733 0.2045
9 2.1818 1.4489 0.8864 0.4943 0.2727
10 2.9091 1.5284 0.6591 0.3011 0.4545

α=-0.25
r u=0 u=0.25 u=0.5 u=0.75 u=1
1 0.5568 0.6719 0.9148 1.2855 1.7841
2 0.5795 0.7543 0.9716 1.2315 1.5341
3 0.6307 0.8331 1.0142 1.1740 1.3125
4 0.7102 0.9084 1.0426 1.1129 1.1193
5 0.8182 0.9801 1.0568 1.0483 0.9545
6 0.9545 1.0483 1.0568 0.9801 0.8182
7 1.1193 1.1129 1.0426 0.9084 0.7102
8 1.3125 1.1740 1.0142 0.8331 0.6307
9 1.5341 1.2315 0.9716 0.7543 0.5795
10 1.7841 1.2855 0.9148 0.6719 0.5568

Let u0 be the value of u which maximise ρ(r,n,α)(u). Then,

J(YRSS) ≥ −1
2

n∏
r=1

� 1

0

fY (F −1(u))(ρ(r,n,α)(u0))2

du

= −1
2

n∏
r=1

 � 1

0
fY (F −1(u))du

 n∏
r=1

ρ(r,n,α)(u0)
2

= J(YSRS)
n∏

r=1

(
ρ(r,n,α)(u0)

)2
.

Since J(YSRS) < 0,

J(YRSS)
J(YSRS) ≤

n∏
r=1

(
ρ(r,n,α)(u0)

)2
.

Hence the proof.

Theorem 6: Let YRSS = {Y[r], r = 1, 2, ...n} be the RSS of size n arising from Sarmanov
family of distributions in which X observations are used to rank the units then for all n ≥ 1,
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then the lower bound of extropty of YRSS is given by

J(YRSS) ≥ −1
2

EfY (y)2

 n
2 n∏

r=1

 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

.

Proof: We have

J(YRSS) = −1
2

n∏
r=1

� 1

u=0
fY (F −1(u))

(
ρ(r,n,α)(u)

)2
du.

Using Cauchy-Schwarz inequality

J(YRSS) ≥ −1
2

n∏
r=1

( � 1

u=0
fY (F −1(u))2du

) 1
2
( � 1

u=0

(
ρ(r,n,α)(u)

)4
du

) 1
2
.

We have
(

ρ(r,n,α)(u)
)2

= ∑4
k=0 akuk.

Therefore

J(YRSS) ≥ −1
2

(
EfY (y)2

) n
2

n∏
r=1

 � 1

0

( 4∑
k=0

akuk
)2

du

 1
2

.

Hence the proof.

4. Extropy of (XRSS, Y[RSS])

If X(r) is the observation measured on the auxiliary variable X of the unit chosen
from the rth set then X(r) is the rth order statistic of a random sample of size n. Since Y[r]
is the concomitant of X(r), the joint pdf of (X(r), Y[r]) is given by

h(X(r), Y[r]) = n!
(r − 1)!(n − r)!f(x, y)(FX(x))r−1(1 − FX(x))(n−r). (15)
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Then the extropy of (X(r), Y[r]) can be defined as

J(X(r), Y[r]) = −1
2

� ∞

−∞

� ∞

−∞

(
h(X(r), Y[r])

)2
dydx

= −1
2

� ∞

−∞

� ∞

−∞

(
n!

(r − 1)!(n − r)!

)2(
fX(x)

)2(
fY (y)

)2

×

1 + 3α(2FX(x) − 1)(2FY (y) − 1)

+ 5
4α2

(
3(2FX(x) − 1)2 − 1

)(
3(2FY (y) − 1)2 − 1

)2

×
(

FX(x)
)2(r−1)(

1 − FX(x)
)2(n−r)

dxdy

= −1
2

(
n!

(r − 1)!(n − r)!

)2
M00N00 + 9α2M20N20 + 25

16α2M02N02

+ 6αM10N10 + 5
2α2M01N01 + 15

2 α3M11N11

, (16)

where Mij and Nij for i = 0, 1 and 2 are given below.

Mij =
�

(fX(x))2(FX(x))2(r−1)(1 − FX(x))2(n−r)(2FX(x) − 1)i(3(2FX(x) − 1)2 − 1)jdx

= (2r − 2)!(2n − 2r)!
(2n − 1)! E

[
fX(F −1(U))(2U − 1)i(3(2U − 1)2 − 1)j

]
, (17)

where U follows beta distribution with parameters (2r − 1, 2n − 2r + 1) and

Nij =
�

(fY (y))2(2FY (y) − 1)i(3(2FY (y) − 1)2 − 1)jdy

= E
[
fY (F −1(V ))(2V − 1)i(3(2V − 1)2 − 1)j

]
, (18)

where V follows uniform distribution over (0, 1).
If XRSS = {X(1), X(2), .., X(n)}, then XRSS is the RSS of X observations in which ranking of
units in each set is perfect. Let (XRSS, Y[RSS]) = {(X(r), Y[r]), r = 1, 2, 3...n} then extropy of
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(XRSS, Y[RSS]) is given by

J(XRSS, Y[RSS]) = −1
2

n∏
r=1

� ∞

−∞

� ∞

−∞

(
h(X(r), Y[r])

)2
dydx

= −1
2

n∏
r=1

−2J(X(r), Y[r])

= −1
2

n∏
r=1

(
n!

(r − 1)!(n − r)!

)2

×

M00N00 + 9α2M20N20 + 25
16α2M02N02

+ 6αM10N10 + 5
2α2M01N01 + 15

2 α3M11N11

. (19)

Example 9: If (X, Y ) follows Sarmanov family of distributions given in (3) with marginal
pdfs of X and Y are fX(x) = 1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1 respectively, then

Mij = (2r − 2)!(2n − 2r)!
(2n − 1)! E

[
(2U − 1)i(3(2U − 1)2 − 1)j

]

=
� 1

0
(2u − 1)i(3(23 − 1)2 − 1)ju2r−2(1 − u)2n−2rdu

and

Nij = E
[
(2V − 1)i(3(2V − 1)2 − 1)j

]
=
� 1

0
(2v − 1)i(3(2v − 1)2 − 1)jdv.

Therefore,
M00 = (2r − 2)!(2n − 2r)!

(2n − 1)! ,

M10 = (2r − 2)!(2n − 2r)!
(2n − 1)!

(2r − 1)
n

− 1
,

M20 = (2r − 2)!(2n − 2r)!
(2n − 1)!

4(2r)(2r − 1)
(2n)(2n + 1) − 4(2r − 1)

2n
+ 1

,

M01 = (2r − 2)!(2n − 2r)!
(2n − 1)!

12(2r)(2r − 1)
(2n)(2n + 1) − 12(2r − 1)

2n
+ 2

,

M02 = 4(2r − 2)!(2n − 2r)!
(2n − 1)!

36(2r + 2)(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1)(2n)

− 72(2r + 1)(2r)(2r − 1)
(2n + 2)(2n + 1)(2n) + 48(2r)(2r − 1)

(2n + 1)(2n) − 12(2r − 1)
2n

+ 1
,
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and

M11 = 2(2r − 2)!(2n − 2r)!
(2n − 1)!

12(2r + 1)(2r)(2r − 1)
(2n + 2)(2n + 1)(2n) − 18(2r)(2r − 1)

(2n + 1)(2n)

+ 8(2r − 1)
2n

− 1


Also N00 = 1, N10 = 0, N20 = 1
3 , N01 = 0, N02 = 4

5 and N11 = 0. Then from (16),

J(X(r:n), Y[r:n]) = −1
2

(
n!

(r − 1)!(n − r)!

)2 (2r − 2)!(2n − 2r)!
(2n − 1)!

×

180α2(2r + 2)(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1)(2n)

− 360α2(2r + 1)(2r)(2r − 1)
(2n + 2)(2n + 1)(2n) + 252α2(2r)(2r − 1)

(2n + 1)(2n)

− 72α2(2r − 1)
2n

+ 8α2 + 1
.

Therefore,

J(XRSS, Y[RSS]) = −1
2

n∏
r=1

(
n!

(r − 1)!(n − r)!

)2 (2r − 2)!(2n − 2r)!
(2n − 1)!

×

180α2(2r + 2)(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1)(2n)

− 360α2(2r + 1)(2r)(2r − 1)
(2n + 2)(2n + 1)(2n) + 252α2(2r)(2r − 1)

(2n + 1)(2n)

− 72α2(2r − 1)
2n

+ 8α2 + 1
.

Example 10: If (X, Y ) follows Sarmanov family of distributions given in (3) with marginal
pdfs of X and Y are fX(x) = θ1e

−θ1x, x ≥ 0 and fY (y) = θ2e
−θ2y, y ≥ 0 respectively,then

Mij = (2r − 2)!(2n − 2r)!
(2n − 1)! θ1E

[
(1 − U)(2U − 1)i(3(2U − 1)2 − 1)j

]

= θ1

� 1

0
(1 − u)(2u − 1)i(3(23 − 1)2 − 1)ju2r−2(1 − u)2n−2rdu

and

Nij = θ2E
[
(1 − V )(2V − 1)i(3(2V − 1)2 − 1)j

]
= θ2

� 1

0
(1 − v)(2v − 1)i(3(2v − 1)2 − 1)jdv.
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Therefore,

M00 = (2r − 2)!(2n − 2r + 1)!
(2n)! θ1,

M10 = (2r − 2)!(2n − 2r + 1)!
(2n)! θ1

2(2r − 1)
(2n + 1) − 1

,

M20 = (2r − 2)!(2n − 2r + 1)!
(2n)! θ1

 4(2r)(2r − 1)
(2n + 1)(2n + 2) − 4(2r − 1)

(2n + 1) + 1
,

M01 = (2r − 2)!(2n − 2r + 1)!
(2n)! θ1

 12(2r)(2r − 1)
(2n + 1)(2n + 2) − 12(2r − 1)

(2n + 1) + 2
,

M02 = 4(2r − 2)!(2n − 2r + 1)!
(2n)! θ1

 36(2r + 2)(2r + 1)(2r)(2r − 1)
(2n + 4)(2n + 3)(2n + 2)(2n + 1)

− 72(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1) + 48(2r)(2r − 1)

(2n + 2)(2n + 1) − 12(2r − 1)
2n + 1 + 1


and

M11 = 2(2r − 2)!(2n − 2r + 1)!
(2n)! θ1

 122(2r + 1)(2r)(2r − 1)
(2n + 3)(2n + 2)(2n + 1)

− 18(2r)(2r − 1)
(2n + 2)(2n + 1) − 8(2r − 1)

2n + 1 − 1
.

Also, N00 = θ2
2 , N10 = −θ2

6 , N20 = θ2
6 , N01 = 0, N02 = 2θ2

5 and N11 = −2θ2
15 . Then from (16),

J(X(r:n), Y[r:n]) = −1
2

(
n!

(r − 1)!(n − r)!

)2 (2r − 2)!(2n − 2r + 1)!
(2n)! θ1θ2

×

 45α2(2r + 2)(2r + 1)(2r)(2r − 1)
4(2n + 4)(2n + 3)(2n + 2)(2n + 1)

− (2r + 1)(2r)(2r − 1)(45α2 − 24α3)
(2n + 3)(2n + 2)(2n + 1) + 36(2r)(2r − 1)(α2 + α3)

(2n + 2)(2n + 1)

− (32α3 + 27α2 + 4α)
2

α2(2r − 1)
2n + 1 + α3 + 51

24α2 + α + 1
2

.
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Therefore,

J(XRSS, Y[RSS]) = −θn
1 θn

2
2

n∏
r=1

(
n!

(r − 1)!(n − r)!

)2 (2r − 2)!(2n − 2r + 1)!
(2n)!

×

 45α2(2r + 2)(2r + 1)(2r)(2r − 1)
4(2n + 4)(2n + 3)(2n + 2)(2n + 1)

− (2r + 1)(2r)(2r − 1)(45α2 − 24α3)
(2n + 3)(2n + 2)(2n + 1) + 36(2r)(2r − 1)(α2 + α3)

(2n + 2)(2n + 1)

− (32α3 + 27α2 + 4α)
2

α2(2r − 1)
2n + 1 + α3 + 51

24α2 + α + 1
2

.

5. Conclusion

In this work, we considered the extropy of concomitants of order statistic arising from
Sarmanov family of distributions when ranking is subject to error. If we considered a ranked
set sampling in which an auxiliary variable is used to rank the units in each set, then the
observation of RSS are nothing but concomitants of order statistics. Hence by using the
results for extropy of concomitants of order statistics Y[r:n], we derived the extropy of RSS in
which units are ranked based on measurements made on an easily and exactly measurable
auxiliary variable X which is correlated with the study variable Y , under the assumption that
(X, Y ) follows Sarmanov family of distributions. The lower and upper bounds of extropy of
Y[r:n] were obtained. Moreover, we obtained the lower and upper bound of extropy of RSS.
The upper bound for the ratio of extropy of ranked set sample to that of simple random
sample were obtained. The extropy of (XRSS, Y[RSS]) were also obtained for Sarmanov family
of distributions, where XRSS is the RSS of the X observations and Y[RSS] is the RSS of the
Y observations in which X observations are used to rank.
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Abstract
Bose and Bush (1952) used projective geometry to construct orthogonal arrays of

strength two and three. Mukerjee et al. (2014) constructed some series of mappable nearly
orthogonal arrays (MNOAs) of strength two by using resolvable orthogonal arrays. This
paper proposes a method to construct nearly orthogonal arrays that are mappable to tight
orthogonal arrays of strength two by using projective geometry. The method is illustrated
through examples and the constructed MNOAs are tabulated for 1-flat, 2-flat, and 3-flat of
the projective geometry. Many new arrays are constructed with a better degree of orthogo-
nality.

Key words: Orthogonal arrays; Tight orthogonal array; Mappable nearly orthogonal arrays;
Projective geometry.

AMS Subject Classifications: 05B15

1. Introduction

Orthogonal arrays have been widely used in scientific, agricultural, and industrial in-
vestigations and in computer experiments. The concept of orthogonal arrays was introduced
by Rao (1946). Rao (1947) obtained the upper bound on the maximum number of factors
for a symmetric orthogonal array. Bose and Bush (1952) constructed orthogonal arrays of
strength two and three by using Galois field, difference schemes and projective geometry.
For more details on the construction and applications of orthogonal arrays see Hedayat et
al. (1999).

Wang and Wu (1992) systematically studied Nearly Orthogonal Arrays (NOAs) and
proposed some general combinatorial methods for their construction. Nguyen (1996) pro-
posed an algorithm for constructing NOAs by adding two level columns to the existing OAs.
These arrays are economic in run size but sacrifice the column orthogonality.
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Mukerjee et al. (2014) introduced the concept of Mappable Nearly Orthogonal Ar-
ray (MNOA) and developed a method for construction of these arrays by using resolvable
orthogonal arrays. In these arrays, each column is orthogonal to a large proportion of the
other columns and easily convertible to fully orthogonal array via a mapping of symbols in
each column to a possibly smaller set of symbols. The importance and applications of this
type of array have been of considerable interest because of their inherent better space filling
properties.

Mukerjee et al. (2014) have also illustrated through an example how an MNOA with
81 runs, 40 factors each with 9 symbols can achieve stratification on a 9 x 9 grid in 720
out of 780 two-dimensions and on a 3 x 3 grid in the remaining 60 two-dimensions. Thus,
having a better space filling properties than an OA with 81 runs, 40 factors each at 3 levels
and accommodating more factors than an OA with 81 runs, 10 factors with 9 symbols. An
important property of MNOAs is that an another MNOA can be obtained with the same
number of runs but less columns after deleting one or more columns from a MNOA Mukerjee
et al. (2014). However, the main intent is to increase the number of groups for attaining
a better degree of orthogonality instead of obtaining other orthogonal array after deleting
columns. Li et al. (2023) constructed mappable nearly orthogonal arrays with column-
orthogonality and enhance the projection uniformity on any one dimension by using the
constructed nearly column orthogonal MNOAs and rotation matrices. Singh et al. (2023 a)
constructed many new mappable nearly orthogonal arrays using difference matrix. Singh et
al. (2023 b) constructed mappable nearly orthogonal array using projective geometry.

In this paper, we propose a method to construct mappable nearly orthogonal arrays
of strength two using projective geometry. The constructed nearly orthogonal arrays are
mappable to tight symmetric orthogonal arrays of strength two.

Section 2 gives notations and definitions of orthogonal array, MNOA and projective
geometry. In Section 3, the steps of proposed method of construction of MNOA using
projective geometry are given. Some newly constructed mappable nearly orthogonal arrays
of strength two using proposed method are also given in this section. The constructed
MNOAs are listed in Table 3 to Table 5.

2. Preliminaries

The following results and definitions are important for the present study.

2.1. Orthogonal array

An N ×k matrix A, with entries from a set G of s(≥ 2) elements, is called a symmetric
orthogonal array of strength t, size N, k constraints and s levels if every (N × t) submatrix of
A contains all possible (1 × t) row vectors with the same frequency λ. The array is denoted
by OA[N, k, s, t] and the number λ is called index of the array. For a symmetric orthogonal
array N = λst.

Theorem 1: (Rao, 1947) In an OA[N, k, s, t] the following inequalities must hold:
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N − 1 ≥
(

k

1

)
(s − 1) + · · · +

(
k

u

)
(s − 1)u if t = 2u

and

N − 1 ≥
(

k

1

)
(s − 1) + · · · +

(
k

u

)
(s − 1)u +

(
k − 1

u

)
(s − 1)u+1 if t = 2u + 1

An orthogonal array is said to be tight orthogonal array if the equality holds in Theorem 1.
Theorem 1 gives the lower bound on the minimum number of runs required for the existence
of OA[N, k, s, t].

2.2. Mappable nearly orthogonal array

A mappable nearly orthogonal array MNOA
[
N,
∏m

i=1 sci
i ,
∏m

i=1
∏ci

j=1 rij

]
is an N × c̃

arrays whose c̃ = c1 + c2 + · · · + cm columns can be partitioned into m disjoint groups of
c1, c2, . . . , cm columns with the following properties:

I. for i = 1, . . . , m every column of the ith group is populated by si symbols;

II. any two columns from different groups are orthogonal;

III. for i = 1, . . . , m and for j = 1, . . . , ci the si symbols in the jth column of the ith group
can be mapped to a set of rij ≤ si symbols such that these mappings convert the array
into an orthogonal array OA[N,

∏m
i=1

∏ci
j=1 rij] of strength two.

In particular, if si = s, ci = c and rij = r for every i and j, then a mappable nearly
orthogonal array is denoted as A = MNOA[N, (sc)m, (rc)m].

By property II, in a mappable nearly orthogonal array before mapping, each of the ci

columns in the i group is orthogonal to at least a proportion π̃ = (c̃ − ci)/(c̃ − 1) of the other
columns. This leads to the following measures of the pre-mapping degree of orthogonality
among the columns:

π =
∑m

i=1 ciπi∑m
i=1 ci

= (c̃2 −
m∑

i=1
c2

i )/{c̃(c̃ − 1)} (1)

πmin = min1≤i≤mπi = (c̃ − max1≤i≤mci)/(c̃ − 1) (2)

if c1 = c2 = · · · = cm = c, then c̃ = mc, where m and c are the number of groups and number
of columns respectively and by (1) and (2) we have

π = πmin = (m − 1)c/(mc − 1) (3)

In this paper, symmetric orthogonal arrays are constructed, so every columns ci contains
same set of symbols.
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2.3. Projective geometry

The projective geometry PG(r, s) over Galois field GF (s) of order s, where s is
a prime or a power of a prime number, consists of ordered set (y0, y1, . . . , yr) called points
where yi, i = 0, 1, . . . , r, are elements of GF (s) and not all them are simultaneously zero. The
point (ay0, ay1, . . . ayr) represents the same point as (y0, y1, . . . , yr), for any a ∈ GF (s), (a ̸=
0). The collection of all those points which satisfy a set of (r − t) linearly independent
homogeneous equation with coefficients from GF (s), not all of them are simultaneously zero
within the same equation, is said to represents a t-flat in PG(r, s).

In particular a 0−flat, a 1−flat,. . . , a(r − 1)−flat respectively in PG(r, s) are known
as a point, a line, . . . , a hyperplane of PG(r, s). The number of points lying on a t-flats is
(t + 1).

3. Method of construction

Projective Geometry is a direct representation of orthogonal arrays of strength two.
Raghavarao (1971) obtained the orthogonal arrays OA[s(r+1), ( s(r+1)−1

(s−1) ), s, 2] using by PG(r, s).
Mukerjee et al. (2014) constructed mappable nearly orthogonal arrays of strength two using
resolvable orthogonal arrays. Here, we give a method to construct new series of mappable
nearly orthogonal arrays of strength two using projective geometry. The total number of
points in PG(r, s) is |PG(r, s)| = [ s(r+1)−1

(s−1) ]. The PG(r, s) has p = [( s(r+1)−1
st+1)−1 ] disjoint t-flats if

and only if (t + 1)|(r + 1). An orthogonal array OA[s(r+1), p, s(t+1), 2] can be constructed us-
ing the disjoint t-flats in PG(r, s). The method of construction is described in the following
steps and Theorem 2.

Step I: Consider the orthogonal array D = OA[s(t+1), q, s, 2]; q = [(s(t+1) − 1)/(s − 1)],
obtained from the collection of all points of PG(t, s). The array D is of order (s(t+1)×q)
and each column of D has ssymbols occurring equally often.

Step II: Replace the st occurrences of each of the s symbols in the kth column of D by
s(t+1) symbols from the set si = (0, 1, 2, . . . , (s(t+1) −1)) is as follows: For k = 1, 2, . . . q,
define

tkh = {hs, hs + 1, . . . , hs + (st − 1)}, h = 0, 1, 2, . . . , (s − 1) (4)

and replace the st occurrences of symbol h by the st members of tkh in order as obtained
in (4), that is, the first occurrence of h is replaced by hs and second occurrence by
hs + 1 and so on.

Step III: Let R denote the (s(t+1) ×q) array obtained from D after changing symbols of D
according to (4), so that each column of R is a permutation of {0, 1, . . . , (s(t+1) − 1)}
symbols. Let r(0), r(1), . . . , r(s(t+1) − 1) denote the s(t+1) rows of R.

Step IV: Consider an orthogonal array A = OA[s(r+1), p, s(t+1), 2] obtained from p =
[(s(r+1) − 1)/(s(t+1) − 1)] disjoint t-flats of PG(r, s). Let 0, 1, . . . , (s(t+1) − 1) denote
the symbols in the ith column of orthogonal array A = [ali]; l = 1, 2, . . . , s(r+1) and
i = 1, 2, . . . , p.
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Step V: Construct the following arrays using the array A and step III. Write
A = [A1 : A2 : . . . : Ap],

where Ai(i = 1, 2, . . . , p) is of order (sr+1 × 1) with st+1 symbols. Replace the st+1

symbols {0, 1, 2, . . . , (st+1 −1)} of Ai by the rows r(0), r(1), r(2), . . . . . . . . . ., r(s(t+1) −1)
of R respectively and denote it by Ti. Then

1. Ti is of order s(r+1) × q, having rows r(a1i), r(a2i), ..., r(as(r+1)i), for i=1, 2, . . . , p.
2. T = [T1 : T2 : · · · : Tp], of order s(r+1) × (pq) with symbols 0,1,2,. . . ,(s(t+1) − 1), is

the pre-mapping array.

Step VI: For the post mapping array, s(t+1) symbols are mapped to s symbols as follows:
For i=1,2,. . . ,p, consider Ti and use reverse mapping of (4) as

{hs, hs + 1, . . . . . . ., hs + (st − 1)} → h = 0, 1, 2, . . . , (s − 1)
in each of the q columns of Ti, to get Bi of order (s(r+1)×q) with s symbols {0, 1, . . . , (s−
1)} in every column. Write B = [B1 : B2 : · · · : Bp], then B is the post mapping array
B = OA[s(r+1), ((s)q)p]. Thus, the mappable nearly orthogonal array

MNOA[s(r+1), {(s(t+1))q}p, {(s)q}p]
is constructed and we have the following result.

Theorem 2: For given r, s and t where (t+1)|(r+1), an MNOA[s(r+1), {(s(t+1))q}p, {(s)q}p]
can always be constructed by using PG(t, s) and p distinct t-flats of PG(r, s).

The method of construction is illustrated through the following examples.

Example 1: Let t = 1, r = 3 and s = 2 in PG(r, s). Using step I, we obtain the array
D = OA[4, 3, 2, 1] of order (4 × 3) as

D =


0 0 0
1 0 1
0 1 1
1 1 0


Replace two symbols of set s = (0, 1) in each column of D by four symbols of set si =
(0, 1, 2, 3) as described in step II to obtain R, so that each column of R is a permutation of
four symbols 0, 1, 2, 3. The array R is

R =


0 0 0
2 1 2
1 2 3
3 3 1


Now, consider the orthogonal array A = OA[16, 5, 4, 2] obtained by using the five disjoint
1-flat of PG(3, 2) as given in step IV. The orthogonal array A is given below:

AT =


0 1 2 2 0 3 3 1 0 2 2 1 3 0 3 1
0 0 1 2 2 1 2 2 3 3 0 3 3 1 0 1
0 2 2 1 2 0 3 0 3 0 3 1 2 1 1 3
0 2 0 2 1 2 0 3 2 1 3 0 3 3 1 1
0 1 3 0 2 2 1 3 3 1 2 2 0 1 3 0
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Divide the columns of A into 5 groups, each group consisting of a single column
denoted by Ai and replace the entries of Ai by rows of R as described in Step V to get Ti

for i = 1, 2, . . . , 5 each of order 16 × 3. The pre-mapping array T = [T1 : T2 : T3 : T4 : T5] is
given in Table 1.

Table 1: Pre-mapping array using P G(3, 2) and t = 1

Group 1 Group 2 Group 3 Group 4 Group 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 1 2 3 1 2 3 2 1 2
1 2 3 2 1 2 1 2 3 0 0 0 3 3 1
1 2 2 1 2 3 2 1 2 1 2 3 0 0 0
0 0 0 1 2 3 1 2 3 2 1 2 1 2 3
3 3 1 2 1 2 0 0 0 1 2 3 1 2 3
3 3 1 1 2 3 3 3 1 0 0 0 2 1 2
2 1 2 1 2 3 0 0 0 3 3 1 3 3 1
0 0 0 3 3 1 3 3 1 1 2 3 3 3 1
1 2 3 3 3 1 0 0 0 2 1 2 2 1 2
1 2 3 0 0 0 3 3 1 3 3 1 1 2 3
2 1 2 3 3 1 2 1 2 0 0 0 1 2 3
3 3 1 3 3 3 1 2 3 3 3 1 0 0 0
0 0 0 2 1 2 2 1 2 3 3 1 2 1 2
3 3 1 0 0 0 2 1 2 2 1 2 3 3 1
2 1 2 2 1 2 3 3 1 2 1 2 0 0 0

For post mapping, map the symbols (0, 1, 2, 3) to (0, 1) using the reverse mapping of (4).
The post-mapping array is a symmetric tight orthogonal array OA[16, (23)5] of strength two
and it is given in Table 2.

Thus, using projective geometry PG(3, 2), the required mappable nearly orthogonal array
MNOA[16, (43)5, (23)5] is constructed, which is mappable to fully symmetric tight orthogonal
array of strength two.

Example 2: Let t = 1, r = 3 and s = 3 in PG(r, s). Using step I, we obtain the array
D = OA[9, 4, 3, 2] of order (9 × 4) as

D =



0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0


Replace three symbols of set s = (0, 1, 2) in each column of D by nine symbols of set
si = (0, 1, 2, 3, 4, 5, 6, 7, 8) as described in step II to obtain R, so that each column of R is a
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Table 2: Post-mapping array using P G(3, 2) and t = 1

Group 1 Group 2 Group 3 Group 4 Group 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 1 0 1 1 1 0 1
0 1 1 1 0 1 0 1 1 0 0 0 1 1 0
0 1 1 0 1 1 1 0 1 0 1 1 0 0 0
0 0 0 0 1 1 0 1 1 1 0 1 0 1 1
1 1 0 1 0 1 0 0 0 0 1 1 0 1 1
1 1 0 0 1 1 1 1 0 0 0 0 1 0 1
1 0 1 0 1 1 0 0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1 0 0 1 1 1 1 0
0 1 1 1 1 0 0 0 0 1 0 1 1 0 1
0 1 1 0 0 0 1 1 0 1 1 0 0 1 1
1 0 1 1 1 0 1 0 1 0 0 0 0 1 1
1 1 0 1 1 0 0 1 1 1 1 0 0 0 0
0 0 0 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 0 0 0 1 0 1 1 0 1 1 1 0
1 0 1 1 0 1 1 1 0 1 0 1 0 0 0

permutation of nine symbols 0, 1, 2, 3, 4, 5, 6, 7, 8. The array R is

R =



0 0 0 0
1 3 3 6
2 6 6 3
3 1 4 4
4 4 6 1
5 7 1 7
6 3 8 8
7 5 2 5
8 8 5 2


Now, consider the orthogonal array A = OA[81, 10, 9, 2] obtained by using the ten disjoint
1-flat of PG(3, 3) as given in step IV. The orthogonal array A is given in Table 6 in Annexure.

Divide the columns of A into 10 groups, each group consisting of a single column
denoted by Ai and replace the entries of Ai by rows of R as described in Step V to get Ti

for i = 1, 2, . . . , 10 each of order 81 × 4. The pre-mapping array T = [T1 : T2 : T3 : T4 : T5 :
T6 : T7 : T8 : T9 : T10] is given in Table 7 in Annexure.

For post mapping, map the symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, ) to (0, 1, 2) using the reverse
mapping of (4). The post-mapping array is a symmetric tight orthogonal array OA[81, (34)10]
of strength two and it is given in Table 8 in Annexure. Thus, using projective geometry
PG(3, 3), the required mappable nearly orthogonal array MNOA[81, (94)10, (34)10] is con-
structed, which is mappable to fully symmetric tight orthogonal array of strength two.

Similarly, we can construct many more design using our proposed method, some of
them are listed in the following tables along with the corresponding values of π.

It may be noted here that all values in the last column of the above tables are obtained
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Table 3: Some tight nearly orthogonal arrays based on t-flat and P G(r, s) for
t = 1

r s D = OA[st+1, q, s, 2] MNOA[sr+1, {(st+1)q)p}, {(s)q}p] π

3 2 D = OA[4, 3, 2, 2] MNOA[16, {(4)3}5, {(2)3}5)]∗ 0.8571
5 2 D = OA[4, 3, 2, 2] MNOA[64, {(4)3}21, {(2)3}21)] 0.9677
7 2 D = OA[4, 3, 2, 2] MNOA[256, {(4)3}85, {(2)3}85)] 0.9921
3 3 D = OA[9, 4, 3, 2] MNOA[81, {(9)4}10, {(3)4}10)]∗ 0.9230
5 3 D = OA[9, 4, 3, 2] MNOA[729, {(9)4}91, {(3)4}91)] 0.9890
7 3 D = OA[9, 4, 3, 2] MNOA[6561, {(9)4}820, {(3)4}820)] 0.9990
3 4 D = OA[16, 5, 4, 2] MNOA[256, {(16)5}17, {(4)5}17)]∗ 0.9523
5 4 D = OA[16, 5, 4, 2] MNOA[4096, {(16)5}273, {(4)5}273)] 0.9970
7 4 D = OA[16, 5, 4, 2] MNOA[65536, {(16)5}4369, {(4)5}4369)] 0.9998
3 5 D = OA[25, 6, 5, 2] MNOA[625, {(25)6}26, {(5)6}26)] 0.9677
5 5 D = OA[25, 6, 5, 2] MNOA[15625, {(25)6}651, {(5)6}651)] 0.9987
3 9 D = OA[81, 10, 9, 2] MNOA[6561, {(81)10}82, {(9)10}82)] 0.9890
5 9 D = OA[81, 10, 9, 2] MNOA[531441, {(81)10}6643, {(9)10}6643)] 0.9998
3 25 D = OA[125, 6, 5, 2] MNOA[15625, {(125)6}126, {(25)6}126)] 0.9923

Table 4: Some tight nearly orthogonal arrays based on t-flat and P G(r, s) for
t = 2

r s D = OA[st+1, q, s, 2] MNOA[sr+1, {(st+1)q)p}, {(s)q}p] π

5 2 D = OA[8, 7, 2, 2] MNOA[64, {(8)7}9, {(2)7}9)]∗ 0.9032
8 2 D = OA[8, 7, 2, 2] MNOA[512, {(8)7}73, {(2)7}73)] 0.9882
11 2 D = OA[8, 7, 2, 2] MNOA[4096, {(8)7}585, {(2)7}585)] 0.9985
5 3 D = OA[27, 13, 3, 2] MNOA[729, {(27)13}28, {(3)13}28)] 0.9669
8 3 D = OA[27, 13, 3, 2] MNOA[19683, {(27)13}757, {(3)13}757)] 0.9987
5 4 D = OA[64, 21, 4, 2] MNOA[4096, {(64)21}65, {(4)21}65)] 0.9853
8 4 D = OA[64, 21, 4, 2] MNOA[262144, {(64)21}4161, {(4)21}4161)] 0.9997
5 5 D = OA[125, 31, 5, 2] MNOA[15625, {(125)31}126, {(5)31}126)] 0.9920
5 9 D = OA[729, 91, 9, 2] MNOA[531441, {(729)91}730, {(9)91}730)] 0.9986

by using equation (3) and the MNOAs marked with ∗ are same as those obtained by Mukerjee
et al. (2014).

4. Conclusion

In this paper, a method is proposed to construct, mappable nearly orthogonal ar-
rays (MNOAs) using projective geometry. The constructed MNOAs are mappable to tight
orthogonal arrays of strength two. It is observed that some new MNOAs are constructed
with higher values of degree of orthogonality π and are therefore useful as better space filling
designs.
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Table 5: Some tight nearly orthogonal arrays based on t-flat and P G(r, s) for
t = 3

r s D = OA[st+1, q, s, 2] MNOA[sr+1, {(st+1)q)p}, {(s)q}p] π

7 2 D = OA[16, 15, 2, 2] MNOA[256, {(16)15}17, {(2)15}17)]∗ 0.9448
11 2 D = OA[16, 15, 2, 2] MNOA[4096, {(16)15}273, {(2)15}273)] 0.9965
7 3 D = OA[81, 40, 3, 2] MNOA[6561, {(81)40}82, {(3)40}82)] 0.9881
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Abstract
Reliability analysis, including stress-strength analysis, for given data is more widely

used in the reliability literature. A large number of new distributions are available, but many
of them are not showing a good fit for the data under consideration. This inspires a researcher
to introduce new lifetime distributions that demonstrate superior fitness in comparison to
the existing distributions. So that more accurate reliability estimates can be obtained for
the given data. The DUS transformation technique is widely used in reliability literature
to create better models. Power generalized DUS(PGDUS) transformation to lifetime dis-
tributions, which is found to be useful to introduce more appropriate flexible distributions
for the given data. Vinyl chloride data obtained from clean upgrading and monitoring
wells in mg/L have been analyzed using DUS inverse Kumaraswamy (DUS IK), inverse Ku-
maraswamy (IK), and Weibull distributions. As a substitute for these distributions, this
paper presents a new lifetime distribution employing PGDUS transformation, utilizing the
inverse Kumaraswamy distribution as the baseline. The statistical properties of the proposed
distribution are derived. The parameters of the proposed distribution are estimated using
the maximum likelihood (ML) method, maximum product spacing (MPS), method of mo-
ment, and method of least squares. Additionally, Bayesian parameter estimates are acquired
utilizing Lindley’s approximation and the Metropolis-Hastings algorithm. The consistency of
the model is verified using mean squared error (MSE) and biases, which are obtained based
on simulated values. Then, the proposed distribution is compared with the DUS-IK, IK, and
Weibull distributions. In this paper, single-component and multi-component stress-strength
reliability analyses are also conducted.

Key words: PGDUS transformation; inverse-Kumaraswamy distribution; Stress-strength re-
liability.

1. Introduction

An appropriate lifetime distribution is essential to conducting reliability analysis with
maximum accuracy. While using existing distributions, the fitness of the distributions for the
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given data is sometimes low. To overcome these problems, several researchers introduced new
distributions with more fitness characteristics. Appropriate distributions are necessary for
the stress-strength analysis in statistics and reliability engineering. Reliability distributions
have different failure rate properties, like increasing failure rate, decreasing failure rate,
bathtub and upside-down bathtub distributions, etc.

There are numerous ways to suggest new distributions in the statistical literature
by using some baseline distributions without incorporating scale, shape, or location parame-
ters, so that more appropriate statistical distributions can be made available in the statistical
literature. DUS transformation is one of several methods (see Kumar et al. (2015)). Gen-
eralizing this DUS transformation will lead to the introduction of new distributions, which
could be used while dealing with reliability analysis of parallel systems with components
having DUS-transformed distributions.

Kumaraswamy (1980) introduced the Kumaraswamy distribution, which is also known
as a beta-like distribution due to its similarity with the beta distribution in the sense that
both have the same basic shape parameter. But the probability density function (pdf), cu-
mulative distribution function (CDF), and quantile function are in closed form, which makes
Kumaraswamy distribution a more practical choice for many applications, including model-
ing of biomedical data, reliability engineering, finance, hydrology, etc. (see Kumaraswamy
(1976)) over Beta distribution.

Nowadays, many researchers focus on the inverse transformation of probability distri-
butions and their applications, which proves the increase in model flexibility. Abd Al-Fattah
et al. (2017) introduced the inverted Kumaraswamy (IK) distribution by introducing a
transformation

U = 1 − X

X
,

where X ∼ Kumaraswamy(α, β).
Iqbal (2017) generalized the IK distribution using a power transformation as

T = Uγ,

where U ∼ IK distribution, called generalized IK distribution. All monotonic and non-
monotonic failure rate patterns exhibits for this model. Jamal et al. (2019) proposed a new
generator function based on the IK distribution and introduced a generalized IK-G family
of distributions.

The DUS transformation approach was proposed by Kumar et al. (2015), utilizing
a few baseline distributions that are sparse in computation and interpretation since they
only ever contain the parameter(s) included in the baseline distribution. Let h(u) and H(u)
be the pdf and CDF of the baseline distribution, then the pdf g(u) and CDF G(u) of the
distribution obtained by the DUS transformation of the baseline distribution are given by

g(u) = 1
e − 1h(u)eH(u)

G(u) = 1
e − 1

(
eH(u) − 1

)
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Maurya et al. (2016) proposed the DUS transformation of the Lindley distribution,
and Tripati et al. (2019) introduced the DUS transformation of the exponential distribution.
Deepthi and Chacko (2020) introduced the DUS transformation of the Lomax distribution,
which is an upside-down bathtub-shaped failure rate model. Gauthami and Chacko (2021)
proposed the DUS inverse-Weibull distribution, which is also an upside-down bathtub-shaped
failure rate model. Anakha and Chacko (2022) introduced a non-monotonic hazard rate dis-
tribution using the DUS transformation with the IK distribution as the baseline distribution.

Figure 1: Parallel system

While considering a parallel system, for example, as shown in Figure 1, where each
component is distributed to any DUS-transformed baseline distribution. Then the resulting
distribution of parallel systems has to be investigated in detail. In order to address this
problem, Thomas and Chacko (2021) introduced a method called exponentiation of DUS
transformation, called PGDUS transformation, and introduced the PGDUS-Exponential
distribution with exponential as the baseline distribution. Weibull and Lomax distribu-
tions are used by Thomas and Chacko (2023) to introduce new distributions using PGDUS
transformation.

This paper introduces a new lifetime distribution for a system with components con-
nected in parallel in which each of the components follows the DUS transformation of the
IK distribution to study the distributions having monotone and non-monotone failure rate
functions.

Consider a random variable U with pdf h(u) and CDF H(u). Then the pdf q(u) and
CDF Q(u) of the PGDUS-IK(α, β, λ) distribution can be obtained as

q(u) = λ

(e − 1)λ
(eH(u) − 1)λ−1eH(u)h(u), λ > 0, u > 0 (1)

and

Q(u) =
(

eH(u) − 1
e − 1

)λ

, λ > 0, u > 0. (2)

respectively.
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Similarly, the failure rate function of the PGDUS-IK distribution can be written as

r(u) = λh(u)eH(u)(eH(u) − 1)λ−1

(e − 1)λ − (eH(u) − 1)λ
, λ > 0, u > 0. (3)

This paper is divided into 10 sections: the PGDUS-IK distribution is proposed in Sec-
tion 2. In Section 3, a detailed investigation into the properties of the PGDUS-IK distribution
is undertaken. Section 4 discusses the mean residual life function of the PGDUS-IK distri-
bution. In Section 5, the estimation of parameters for the proposed distribution has been
done using the methods of maximum likelihood (ML), maximum product spacing (MPS),
moments, and least squares. Also, bayesian estimators of α, β, and λ based on the squared
error loss function, by taking gamma priors, are derived. The asymptotic confidence interval
and bootstrap confidence interval for the unknown parameters of PGDUS-IK are derived in
Section 6. The efficacy of the proposed estimators is investigated in terms of their bias and
mean squared error (MSE) values in Section 7. Section 8 illustrates the applications of pro-
posed estimators using the vinyl chloride data given in Bhaumik et al. (2009). In Section 9,
stress-strength reliability for single components and for multi-components for the proposed
distribution is investigated. A Simulation study to investigate and compare the performance
of the reliability estimators is conducted, and data analysis for estimating single component
and multi-component reliability is given, in the same section. Conclusions are provided in
Section 10.

2. Power generalized DUS transformation of inverse-Kumaraswamy
distribution

Kumaraswamy (1980) introduced the Kumaraswamy (K) distribution, which is em-
pirically useful for a wide range of reliability applications. The pdf of the K distribution is
given as

f(y; α, β) = αβyα−1(1 − yα)β−1, 0 < y < 1, α > 0, β > 0. (4)

IK distribution has the following pdf, CDF, and failure rate function

h(u) = αβ(1 + u)−(α+1)(1 − (1 + u)−α)β−1, u > 0 , α > 0, β > 0, (5)
H(u; α, β) = (1 − (1 + u)−α)β, u > 0 , α > 0, β > 0, (6)

and

r(u) = αβ(1 + u)−(α+1)(1 − (1 + u)−α)β

1 − (1 − (1 + u)−α)β
, u > 0, α > 0, β > 0 (7)

respectively.

The DUS-IK distribution with pdf and CDF can be defined as

g(u) = αβ

e − 1(1 + u)−(α+1)
(
1 − (1 + u)−α

)β−1
e(1−(1+u)−α)β

, u > 0, α > 0, β > 0, (8)

and

G(u) = e(1−(1+u)−α)β − 1
e − 1 , u > 0, α > 0, β > 0 (9)
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respectively. The survival function will be

Ḡ(u) = e − e(1−(1+u)−α)β

e − 1 , for u > 0, α > 0, β > 0. (10)

PGDUS-IK(α, β, λ)

By using the PGDUS transformation to IK distribution, the pdf, CDF, and failure
rate functions can be written as

q(u) = αβλ

(e − 1)λ
(1 + u)−(α+1)(1 − (1 + u)−α)β−1e(1−(1+u)−α)β (e(1−(1+u)−α)β − 1)λ−1, (11)

Q(u) =
(

e(1−(1+u)−α)β − 1
e − 1

)λ

, (12)

and

r(u) = αβλ(1 + u)−(α+1)(1 − (1 + u)−α)β−1e(1−(1+u)−α)β (e(1−(1+u)−α)β − 1)λ−1

(e − 1)λ − (e(1−(1+u)−α)β − 1)λ
(13)

respectively, where, u > 0, λ > 0, α > 0, β > 0.

Figure 2: pdf plot for PGDUS-IK distribution

The PGDUS-IK(α, β, λ) distribution has both monotonic and non-monotonic hazard
rates.

3. Statistical properties

Statistical properties are discussed in this section.
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Figure 3: Failure rate plot of PGDUS-IK distribution

3.1. Moments

The rth raw moment of the PGDUS-IK(α, β, λ) distribution can be derived as follows

µ1
r = E(U r)

=
� ∞

0
ur αβλ

(e − 1)λ
(1 + u)−(α+1)(1 − (1 + u)−α)β−1e(1−(1+u)−α)β (e(1−(1+u)−α)β − 1)λ−1du

Substitute a = (1 − (1 + u)−α)β in the above integral,

µ1
r =

� 1

0

λ

(e − 1)λ
ea(ea − 1)λ−1

((
1 − a

1
β

)− 1
α − 1

)r

da

= λ

(e − 1)λ

� 1

0
ea

λ−1∑
s=0

(−1)s

(
λ − 1

s

)
(ea)λ−s−1

r∑
z=0

(−1)r−z

(
r
z

)((
1 − a

1
β

)− 1
α

)s

da

= λ

(e − 1)λ

λ−1∑
s=0

r∑
z=0

(−1)s+r−z

(
λ − 1

s

)(
r
z

) � 1

0

(
1 − a

1
β

)− s
α ea(λ−s)da

= βλ

(e − 1)λ

λ−1∑
s=0

r∑
z=0

∞∑
l=0

(−1)s+r−z+l

l!

(
λ − 1

s

)(
r
z

)
(λ − s)l

� 1

0
al
(
1 − a

1
β

)− s
α da

= βλ

(e − 1)λ

λ−1∑
s=0

r∑
z=0

∞∑
l=0

(−1)s+r−z+l

l!

(
λ − 1

s

)(
r
z

)
(λ − s)lβ

(
1 − s

α
, βl + β

)
. (14)

By putting r = 1, 2, ..., we get the corresponding raw moments as

µ1
1 = βλ

(e − 1)λ

λ−1∑
s=0

∞∑
l=0

{(−1)s+l+1 + (−1)s+l}
(

λ − 1
s

)
(λ − s)l

l! β
(
1 − s

α
, βl + β

)
. (15)

µ1
2 = βλ

(e − 1)λ

λ−1∑
s=0

∞∑
l=0

{(−1)s+l+2 + 2.(−1)s+l+1 + (−1)s+l}
(

λ − 1
s

)
(λ − s)l

l!

β
(
1 − s

α
, βl + β

)
. (16)



2024] PGDUS-IK DISTRIBUTION 329

3.2. Moment generating function

Let U ∼ PGDUS-IK(α, β, λ), it’s moments generating function is derived as

MU(t) = E(etu)

=
� ∞

0
etu αβλ

(e − 1)λ
(1 + u)−(α+1)(1 − (1 + u)−α)β−1e(1−(1+u)−α)β (e(1−(1+u)−α)β − 1)λ−1du

= αβλ

(e − 1)λ

∞∑
j=0

tj

j!� ∞

0
uj(1 + u)−(α+1)(1 − (1 + u)−α)β−1e(1−(1+u)−α)β (e(1−(1+u)−α)β − 1)λ−1du. (17)

Substituting a = (1 − (1 + u)−α)β and by solving, we get

MU(t) = βλ

(e − 1)λ

∞∑
j=0

tj

j!

λ−1∑
s=0

j∑
z=0

∞∑
l=0

(−1)s+j−z+l

l!

(
λ − 1

s

)(
j
z

)
(λ − s)lβ

(
1 − s

α
, βl + β

)
.

(18)

3.3. Characteristic function

The characteristic function of the distribution is derived as

ϕU(t) = βλ

(e − 1)λ

∞∑
j=0

λ−1∑
s=0

j∑
z=0

∞∑
l=0

(−1)s+j−z+l

j!l!

(
λ − 1

s

)(
j
z

)
(it)j(λ − s)lβ

(
1 − s

α
, βl + β

)
,

(19)

where i =
√

−1.

3.4. Cumulant generating function

The cumulant generating function of the distribution is derived as

KU(t) = log ϕU(t)

= log
(

βλ

(e − 1)λ

∞∑
j=0

λ−1∑
s=0

j∑
z=0

∞∑
l=0

(−1)s+j−z+l

j!l!

(
λ − 1

s

)(
j
z

)
(it)j(λ − s)l

β
(
1 − s

α
, βl + β

))

= log βλ

(e − 1)λ

+ log
( ∞∑

j=0

λ−1∑
s=0

j∑
z=0

∞∑
l=0

(−1)s+j−z+l

j!l!

(
λ − 1

s

)(
j
z

)
(it)j(λ − s)lβ

(
1 − s

α
, βl + β

))
,

(20)

where i =
√

−1.
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3.5. Quantile function

The ith quantile function, denoted by D(i), of PGDUS-IK(α, β, λ) distribution is
obtained by solving

Q(D(i)) = i, 0 < i < 1.

That is, (
e(1−(1+D)−α)β − 1

e − 1

)λ

= i

By solving this, the quantile function of the distribution is obtained as

D(i) =
(

1 −
(

log(1 + i
1
λ (e − 1))

) 1
β

)− 1
α

− 1, iϵ(0, 1). (21)

Median of PGDUS-IK(α, β, λ) can be derived by substituting i = 1
2 in D(i). That is,

Median =
(

1 −
(

log(1 + 0.5 1
λ (e − 1))

) 1
β

)− 1
α

− 1. (22)

Similarly, the inter-quartile range (IQR) of the distribution is,

IQR =
(

1 −
[

log(1 + 0.75 1
λ (e − 1))

] 1
β

)− 1
α

−
(

1 −
[

log(1 + 0.25 1
λ (e − 1))

] 1
β

)− 1
α

. (23)

3.6. Order statistics

Let U(1), U(2), ..., U(l) be the order statistics for the random sample U = (U1, U2, ..., Ul)
taken from PGDUS-IK(α, β, λ). The pdf and CDF are given as

q(r)(u) = l!
(r − 1)!(l − r)!q(u)(Q(u))r−1(1 − Q(u))l−r

= l!αβλ

(r − 1)!(l − r)!

(
(e − 1)λ − (e(1−(1+u)−α)β − 1)λ

)l−r

(1 + u)−(α+1)(1 − (1 + u)−α)β−1e(1−(1+u)−α)β (e(1−(1+u)−α)β − 1)λr−1

(e − 1)lλ
(24)

and

Q(r)(u) =
l∑

s=r

(
l
s

)
(Q(u))s(1 − Q(u))l−s

=
l∑

l=r

(
l
s

)(
e(1−(1+u)−α)β − 1

e − 1

)λs(
1 −

(
e(1−(1+u)−α)β − 1

e − 1

)λ)l−s

, (25)

respectively. Substituting r = 1 and r = l into equations (24) and (25) allows us to derive
the pdf and the CDF of the 1st and lth order statistics, respectively.
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3.7. Entropy

Renyi entropy is derived as

τR(ζ) = 1
1 − ζ

log
( �

qζ(u)du

)
, ζ > 0, ζ ̸= 1.

� ∞

0
qζ(u)du =

(
αβλ

(e − 1)λ

)ζ

� ∞
0 (1 + u)−ζ(α+1)(1 − (1 + u)−α)ζ(β−1)eζ(1−(1+u)−α)β (e(1−(1+u)−α)β − 1)ζ(λ−1)du

=
(

αβλ

(e − 1)λ

)ζ ζ(λ−1)∑
s=0

(−1)ζ(λ−1)−s

(
ζ(λ − 1)

s

)
� ∞

0
es(1−(1+u)−α)β (1 + u)−ζ(α+1)(1 − (1 + u)−α)ζ(β−1)eζ(1−(1+u)−α)β

du

=
(

αβλ

(e − 1)λ

)ζ ∞∑
z=0

ζ(λ−1)∑
s=0

(−1)ζ(λ−1)−s

z!

(
ζ(λ − 1)

s

)
(ζ + s)z

� ∞

0
(1 + u)−ζ(α+1)(1 − (1 + u)−α)ζ(β−1)+βzdu.

Using the transformation a = 1 − (1 + u)−α,

� ∞

0
qζ(u)du =

(
αβλ

(e − 1)λ

)ζ 1
α

∞∑
z=0

ζ(λ−1)∑
s=0

(−1)ζ(λ−1)−s

z!

(
ζ(λ − 1)

s

)
(ζ + s)z

β

(
ζ(β − 1) + βz + 1, ζ

(
1 + 1

α

)
− 1

α

)
.

Then Renyi entropy form will be

τR(ζ) = 1
1 − ζ

log
(

αβλ

(e − 1)λ

)ζ 1
α

∞∑
z=0

ζ(λ−1)∑
s=0

(−1)ζ(λ−1)−s

z!

(
ζ(λ − 1)

s

)
(ζ + s)z

β

(
ζ(β − 1) + βz + 1, ζ(1 + 1

α
) − 1

α

)

= 1
1 − ζ

log
(

αβλ

(e − 1)λ

)ζ 1
α

+ 1
1 − ζ

log
( ∞∑

z=0

ζ(λ−1)∑
s=0

(−1)ζ(λ−1)−s

z!

(
ζ(λ − 1)

s

)
(ζ + s)z

β

(
ζ(β − 1) + βz + 1, ζ(1 + 1

α
) − 1

α

))
(26)

where α > 0, β > 0, λ > 0, ζ > 0, ζ ̸= 1.
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4. Mean residual life function

The mean residual life function at age ν is defined as the expected remaining life
given survival at age ν and it is expressed as

MRL(ν) = 1
Q̄(ν)

� ∞

ν

udQ(u) − ν

= βλ

(e − 1)λ − (e(1−(1+ui)−α)β − 1)λ

λ−1∑
s=0

∞∑
l=0

{(−1)s+l+1 + (−1)s+l}
(

λ − 1
s

)
(λ − s)l

l!

β
(
1 − s

α
, βl + β

)
− ν. (27)

5. Estimation

To estimate the unknown parameters, methods of maximum likelihood, maximum
product spacing, moments, and least squares are described below. Let U = (U1, U2, ..., Ul)
be a random sample of size l taken from PGDUS-IK(α, β, λ).

5.1. Maximum likelihood estimation

To obtain the maximum likelihood estimate (MLE) of unknown parameters α, β, and
λ, consider

LF (u) =
l∏

i=1
q(u)

=
l∏

i=1

αβλ

(e − 1)λ
(1 + ui)−(α+1)(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β (e(1−(1+ui)−α)β − 1)λ−1

=
(

αβλ

(e − 1)λ

)l l∏
i=1

(1 + ui)−(α+1)(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β (e(1−(1+ui)−α)β − 1)λ−1,

(28)

the likelihood function and its logarithm will be

log LF (u) = l

(
log α + log β + log λ − λ log(e − 1)

)
− (α + 1)

l∑
i=1

log(1 + ui)

+ (β − 1)
l∑

i=1
log(1 − (1 + ui)−α) +

l∑
i=1

(1 − (1 + ui)−α)β

+ (λ − 1)
l∑

i=1
log

(
e(1−(1+ui)−α)β − 1

)
.
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To obtaine the MLEs, we find the first-order derivative of log L and equate it with zero.

∂ log LF

∂α
= l

α
−

l∑
i=1

log(1 + ui) + (β − 1)
l∑

i=1

(1 + ui)−α log(1 + ui)
(1 − (1 + ui)−α)

+ β
l∑

i=1
(1 + ui)−α log(1 + ui)(1 − (1 + ui)−α)β−1

+ β(λ − 1)
l∑

i=1

(1 + ui)−α(1 − (1 + ui)−α)β−1 log(1 + ui)e(1−(1+ui)−α)β

e(1−(1+ui)−α)β − 1 = 0

(29)
∂ log LF

∂β
= l

β
+

l∑
i=1

log(1 − (1 + ui)−α) +
l∑

i=1
(1 − (1 + ui)−α)β log(1 − (1 + ui)−α)

+ (λ − 1)
l∑

i=1

(1 − (1 + ui)−α)β log(1 − (1 + ui)−α)e(1−(1+ui)−α)β

e(1−(1+ui)−α)β − 1 = 0 (30)

∂ log LF

∂λ
= l

λ
− l log(e − 1) +

l∑
i=1

log
(
e(1−(1+ui)−α)β − 1

)
= 0. (31)

To solve equations (29), (30), (31) simultaneously, statistical software has to be used.

5.2. Maximum product spacing estimation

The maximum product spacing (MPS) estimation method was introduced by Cheng
and Amin (1983) and explored in detailed by Ranneby (1984). The MPS estimation method
ensures consistent estimators whether the MLE method exists or not.

To find the MPS estimators of α, β, and λ, first define the spacings

Di = Q(ui, α, β, λ) − Q(ui−1, α, β, λ); i = 1, 2, ..., l + 1.

Hence, MPS estimators are nothing but parameter values that maximize the geometric mean
of the spacings obtained from the observed samples. That is,

A =
(

l+1∏
i=1

Di

)1/l+1

(32)

=
(

l+1∏
i=1

(
e(1−(1+ui)−α)β − 1

e − 1

)λ

−
(

e(1−(1+ui−1)−α)β − 1
e − 1

)λ)1/l+1

.

log A = 1
l + 1

l+1∑
i=1

log
((

e(1−(1+ui)−α)β − 1
e − 1

)λ

−
(

e(1−(1+ui−1)−α)β − 1
e − 1

)λ)
.
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∂ log A

∂α
= βλ

l + 1

l+1∑
i=1

(
(1 + ui)−α(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β log(1 + ui)

(e(1−(1+ui)−α)β − 1)λ − (e(1−(1+ui−1)−α)β − 1)λ

(e(1−(1+ui)−α)β − 1)λ−1 − (e(1−(1+ui−1)−α)β − 1)λ−1

(1 + ui−1)−α(1 − (1 + ui−1)−α)β−1e(1−(1+ui−1)−α)β log(1 + ui−1)
(e(1−(1+ui)−α)β − 1)λ − (e(1−(1+ui−1)−α)β − 1)λ

)
, (33)

∂ log A

∂β
= λ

l + 1

l+1∑
i=1

(
(1 − (1 + ui)−α)βe(1−(1+ui)−α)β (e(1−(1+ui)−α)β − 1)λ−1 log(1 − (1 + ui)−α)

(e(1−(1+ui)−α)β − 1)λ − (e(1−(1+ui−1)−α)β − 1)λ

− (1−(1+ui−1)−α)βe(1−(1+ui−1)−α)β
(e(1−(1+ui−1)−α)β

−1)λ−1 log(1−(1+ui−1)−α)
(e(1−(1+ui)−α)β −1)λ−(e(1−(1+ui−1)−α)β −1)λ

)
,

(34)
and

∂ log A

∂λ
= 1

l + 1

l+1∑
i=1

( (e(1−(1+ui)−α)β − 1)λ log
(

e(1−(1+ui)−α)β −1
e−1

)
(e(1−(1+ui)−α)β − 1)λ − (e(1−(1+ui−1)−α)β − 1)λ

−
(e(1−(1+ui)−α)β − 1)λ log

(
e(1−(1+ui−1)−α)β

−1
e−1

)
(e(1−(1+ui)−α)β − 1)λ − (e(1−(1+ui−1)−α)β − 1)λ

)
. (35)

Setting the equations (33), (34) and (35) to zero, and solving simultaneously we get the
MPS estimates of α, β, and λ. It is easy to obtain estimates using R software by numerical
methods.

5.3. Method of moment estimation

The rth order moment of PGDUS-IK(α, β, λ) is

µ1
r = βλ

(e − 1)λ

λ−1∑
s=0

r∑
z=0

∞∑
l=0

(−1)s+r−z+l

l!

(
λ − 1

s

)(
r
z

)
(λ − s)lβ

(
1 − s

α
, βl + β

)
Taking r = 1, 2, and 3 we get first 3 raw moments of the PGDUS-IK distribution. Then, by
equating these raw moments to corresponding sample moments, we get

µ1
1 = 1

l

l∑
i=1

ui (36)

µ1
2 = 1

l

l∑
i=1

u2
i (37)

µ1
3 = 1

l

l∑
i=1

u3
i (38)

and solving these equations (36), (37), (38) simultaneously we get moment estimators. Sta-
tistical software can be used to solve these equations.



2024] PGDUS-IK DISTRIBUTION 335

5.4. Method of least square estimation

The least-square estimators for the parameters in PGDUS-IK(α, β, λ) can be derived
as follows:

LS =
l∑

i=1

(
Q(ui) − Qi

)2
.

where, Q(Ui) - theoretical CDF of the observation ui

and Qi - empirical CDF which is usually estimated by

Q̂i = i

l + 1 .

There for,

LS =
l∑

i=1

((
e(1−(1+ui)−α)β − 1

e − 1

)λ

− i

l + 1

)2

.

∂LS

∂α
= 0 =>

l∑
i=1

(1 + ui)−α log(1 + ui)
(
1 − (1 + ui)−α

)β−1
e(1−(1+ui)−α)β

(
e(1−(1+ui)−α)β − 1

)λ−1

((e(1−(1+ui)−α)β − 1
e − 1

)λ
− i

l + 1

)
= 0. (39)

∂LS

∂β
= 0 =>

l∑
i=1

(
1 − (1 + ui)−α

)β
log(1 − (1 + ui)−α)e(1−(1+ui)−α)β

(
e(1−(1+ui)−α)β − 1

)λ−1

((e(1−(1+ui)−α)β − 1
e − 1

)λ
− i

l + 1

)
= 0. (40)

∂LS

∂λ
= 0 =>

l∑
i=1

(
e(1−(1+ui)−α)β − 1

)λ
log

(
e(1−(1+ui)−α)β − 1

e − 1

)((e(1−(1+ui)−α)β − 1
e − 1

)λ
− i

l + 1

)
= 0.

(41)

Solving (39), (40), and (41) simultaneosuly with respect to α, β and λ gives the least
squares estimators. By using statistical softwares, we can find estimated values.
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5.5. Bayesian analysis

The joint posterior density function of (α, β, λ) can be written as

Φ(α, β, λ|U) = L(α, β, λ|U)w(α, β, λ)�
α

�
β

�
λ

L(α, β, λ|U)w(α, β, λ)dαdβdλ
,

where w(α, β, λ) is the joint prior density function of the parameters.

Then, the Bayes estimator under the squared error loss function is

I(U) = ẑB = Eθ|U(z(θ)) =
�

θ
z(θ)L(θ|U)w(θ)dθ�
θ
L(θ|U)w(θ)dθ

.

There is no easy closed form for this estimated value since it involves an integral ration.

Lindley (1980) proposed the procedure to approximate the ratio of the two integrals.
For a three-parameter distribution, Lindley’s approximation can be written as (see Ali and
Kanani (2021))

I(U) = v + (v1θ1 + v2θ2 + v3θ3 + θ4 + θ5) + 1
2
(
B1(v1σ11 + v2σ12 + v3σ13)

)
+ 1

2
(
B2(v1σ21 + v2σ22 + v3σ23)

)
+ 1

2
(
B3(v1σ31 + v2σ32 + v3σ33)

)
. (42)

where,
B1 = σ11M111 + 2σ12M121 + 2σ13M131 + 2σ23M231 + σ22M221 + σ33M331

B2 = σ11M112 + 2σ12M122 + 2σ13M132 + 2σ23M232 + σ22M222 + σ33M332

B3 = σ11M113 + 2σ12M123 + 2σ13M133 + 2σ23M233 + σ22M223 + σ33M333

v1 = ∂v(α, β, λ)
∂α

, v2 = ∂v(α, β, λ)
∂β

, v3 = ∂v(α, β, λ)
∂λ

v11 = ∂2v(α, β, λ)
∂2α

, v22 = ∂2v(α, β, λ)
∂2β

, v33 = ∂2v(α, β, λ)
∂2λ

where M - the logarithm of the likelihood function. Then

M1 = ∂M

∂α
, M2 = ∂M

∂β
, M3 = ∂M

∂λ

Mij = ∂2M

∂τi∂τj

, i, j = 1, 2, 3, (τi, τj) = (α, β, λ)

Mijk = ∂3M

∂τi∂τj∂τk

, (i, j, k) = 1, 2, 3, (τi, τj, τk) = (α, β, λ)

σij = − 1
Mij

θi = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3.

θ4 = v12σ12 + v13σ13 + v23σ23, θ5 = 1
2(v11σ11 + v22σ22 + v33σ33).

ρ = log(w(α, β, λ)), ρ1 = ∂ρ

∂α
, ρ2 = ∂ρ

∂β
, ρ3 = ∂ρ

∂λ
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The detailed derivations of equation (42) are given in the appendix.

When information is unavailable for the parameters we use non-informative prior, like
Uniform prior, where

w(θ) ∝ 1.

Since the parameter ranges from 0 to ∞, we can choose the gamma distribution as the prior
distribution. Therefore,

w(θ) ∝ αr−1βp−1λt−1e−(αs+βq+λv)

Then the Bayes estimators of the parameters become

α̂B = α̂ + θ1 + 1
2
(
B1σ11 + B2σ21 + B3σ31

)
. (43)

β̂B = β̂ + θ2 + 1
2
(
B1σ12 + B2σ22 + B3σ32

)
. (44)

λ̂B = λ̂ + θ3 + 1
2
(
B1σ13 + B2σ23 + B3σ33

)
. (45)

Metropolis-Hasting algorithm

The Metropolis-Hasting (MH) algorithm (see Tobias(2014)), a general Markov Chain
Monte Carlo (MCMC) technique, is used to generate samples from models that are com-
plicated. Metropolis et al. (1953) developed it initially, then Hastings (1970) developed it
afterwards. The MH algorithm, for sampling from a target distribution, let it be π, and let
q(θ∗

1|θ2, ..., θk, x) denotes a proposal density that generates a candidate θ∗
1.

Algorithm:

The MH algorithm is used to simulate a probability distribution p from another
probability distribution q, which is easier to simulate. Here p is called target distribution
and q is the proposal. Let θ(t) be the current draw from p(θ). The MH algorithm performs
as follows:
1. Draw θ∗ from q(θ|θ(1)).
2. Accept θ(t+1) = θ∗ with the probability min(1, p∗) where

p∗ = p(θ∗)q(θ(t)|θ∗)
p(θ(t))q(θ∗|θ(t)) .

Otherwise, set θ(t+1) = θ(t).

That is, accepting with the probability min(1, p∗) means that we will be drawing u
according to a uniform distribution on (0,1), and if u < min(1, p∗), then accept θ∗ is accepted;
otherwise, it’s not.

In the Bayesian context, the MH algorithm can be defined as follows: For that, the
posterior distribution will be the form

p(θ|y) ∝ LF (y|θ)w(θ).

where LF is the likelihood function and w is the prior distribution. The MH algorithm can
be used to simulate p(θ|y), by using t(θ|y) = LF (y|θ) ∗ w(θ) and a proposal distribution
q(θ1|θ2, y), as follows.
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1. Draw θ∗ from f(θ|θ(t), y).
2. Accept θ(t+1) = θ∗ with the probability min(1, p∗), where

p∗ = q(θ∗|y)g(θ(t)|θ∗, y)
q(θ(t)|y)g(θ∗|θ(t), y) .

Otherwise set θ(t+1) = θ(t).

6. Confidence interval

In this section, we propose the asymptotic confidence interval and the bootstrap
confidence interval, for the unknown parameters α, β, and λ of the PGDUS-IK distribution.

6.1. Asymptotic confidence interval

The asymptotic confidence intervals can be used when the MLEs are not in the closed
form. Let us consider the Fisher information matrix I as

I = E


−∂2 log LF

∂α2
−∂2 log LF

∂α∂β
−∂2 log LF

∂α∂λ
−∂2 log LF

∂α∂β
−∂2 log LF

∂β2
−∂2 log LF

∂β∂λ
−∂2 log LF

∂α∂λ
−∂2 log LF

∂β∂λ
−∂2 log LF

∂λ2

 .

The second partial derivative of log LF is briefly given in the appendix.

The asymptotic distribution of MLEs τ = (α, β, λ) is normal, with mean zero and
variance-covariance matrix I−1. That is,

l(τ̂ − τ) → N(0, I−1).

Hence, the asymptotic 100(1 − η)% confidence interval of α, β, and λ are

α̂ ± zη/2

√
V ariance(α̂),

β̂ ± zη/2

√
V ariance(β̂),

and

λ̂ ± zη/2

√
V ariance(λ̂),

respectively.

6.2. Bootstrap confidence interval

The bootstrap method is a powerful statistical technique used for estimating the
sampling distribution of a statistic by resampling with a replacement from the observed
data. Let α̂, β̂ and λ̂ be the MLEs of parameters α, β and λ. Here we discussed the bootstrap
percentile (Boot-p) confidence interval.

To do that, we need to generate a number (let B) of independent bootstrap samples
from u1, u2, ..., ul, and it is denoted as u∗

i1, u∗
i2, ..., u∗

il, for i = 1, 2, ..., B. Then, for each
bootstrap sample, we calculated the MLEs of α, β, and λ, and the bootstrap MLEs are
denoted as α̂∗, β̂∗, and λ̂∗, respectively.
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Boot-p method

Let Q̂1, Q̂2, and Q̂3 be the CDF of α̂∗, β̂∗, λ̂∗ respectively. Then (1 − η)% percentile
confidence intervals are (

Q̂−1
1 (η/2), Q̂−1

1 (1 − η/2)
)
,(

Q̂−1
2 (η/2), Q̂−1

2 (1 − η/2)
)
,

and(
Q̂−1

3 (η/2), Q̂−1
3 (1 − η/2)

)
respectively.

7. Simulation study

In this section, the simulation study is used to examine the performance of estimators
of PGDUS-IK(α, β, λ) distribution parameters.

By using the quantile function, a random sample of the PGDUS-IK(α, β, λ) distribu-
tion can be simulated by using

U =
(

1 −
(

log(1 + j
1
λ (e − 1))

) 1
β

)− 1
α

− 1, 0 < j < 1

where j from U(0, 1).

Here, differnt values of the sample size, l = 50, 100, 200, 300, and 400 are considered
and replicated 1000 times. The performance of MLE, MPS, and Bayes estimators of each
parameter is examined using their biases and MSE values(see Table 1). Bayes estimators
are obtained only by using informative prior gamma under the squared error loss function.
It is observed that, biases and MSE values decreases to zero as sample size l increases.

8. Application

This section compares the PGDUS-IK distribution to DUS-IK distribution, IK dis-
tribution, and Weibull distribution. For that, we are using a vinyl chloride data obtained
from clean upgrading monitoring wells in mg/L by Bhaumik et al. (2009) (Table 2).

A number of factors, including the p-value, log-likelihood value, Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogrov-Smirnov (K-S) statistic
can be applied to compare statistical models in order to evaluate which one has a better
relative goodness-of-fit with the data. Lower K-S statistic, AIC, and BIC values indicate
greater correspondence between the observed data and the model. Additionally, higher p-
values and log-likelihood values indicate a stronger fit between the model and the observed
data. If a single criterion consistently favors one model over another, that model is likely
the better choice.

Based on the table values (see Table 3), compared to the other distributions de-
scribed, PGDUS-IK(α, β, λ) possesses the lowest AIC, BIC and KS-statistic values moreover
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Table 1: Simulation study for MLE, MPS and Bayes estimation for the values
α = 0.4, β = 0.8, λ = 0.3

method l bias(α̂) bias(β̂) bias(λ̂) MSE(α̂) MSE(β̂) MSE(λ̂)
50 0.03124 0.26774 0.32454 0.01357 0.53269 4.10082
100 0.01458 0.16442 0.14788 0.00618 0.31273 0.67138

MLE 200 0.00782 0.06756 0.15049 0.00285 0.18506 0.43009
300 0.00497 0.04771 0.08236 0.00187 0.12485 0.14573
400 0.00307 0.03249 0.07471 0.00136 0.10573 0.13432
50 0.12090 1.08723 0.00376 0.03668 2.46970 0.47450
100 0.06039 0.73472 -0.02447 0.01127 1.16509 0.13256

MPS 200 0.03159 0.45171 -0.01279 0.00437 0.56686 0.07379
300 0.01998 0.36702 -0.01325 0.00256 0.39957 0.04617
400 0.01542 0.28923 -0.00465 0.00178 0.30120 0.03975
50 9.37736 2.68987 2.7458 0.00936 7.23541 7.53963
100 0.03769 2.20796 0.49767 0.007187 4.87509 0.24768

Bayesian 200 0.03386 1.03768 0.65245 0.00413 1.07678 0.42570
300 0.03319 0.9113 0.6275 0.002381 0.83049 0.39383
400 0.021983 0.2 -0.69736 0.00156 0.096756 0.48632

Table 2: Vinyl Chloride data

5.1 1.2 1.3 0.6 0.5 2.4
0.5 1.1 8.0 0.8 0.4 0.4
0.6 0.9 0.4 2.0 0.5 1.2
5.3 3.2 2.7 2.9 2.5 0.2
2.3 1.0 0.2 0.1 0.1 1.8
0.9 2.0 4.0 6.8

a high log-likelihood value and p-value by the MLE, MPS, and Bayesian methods. We can
therefore conclude that the PGDUS-IK distribution performs better than the given existing
distribution for modeling a parallel system.

In Table 4, the estimated parameter values (based on the ML method) along with
their 95% confidence interval, based on 1000 bootstrap samples for vinyl chloride data (see
Table 2), are given.

9. Stress-Strength reliability(SSR)

Single-component SSR

Let U indicate the strength of a component or system that is subjected to a random
stress, V. The system’s functioning is then defined by stress-strength reliability. If U and V
are distributed as PGDUS-IK(α, β, λ1) and PGDUS-IK(α, β, λ2), respectively, then stress-
strength reliability is defined as

R = P (V < U) =
� ∞

0
qU(u)QV (u)du

= αβλ1

(e − 1)λ1+λ2

� ∞

0
(1 + u)−(α+1)

(
1 − (1 + u)−α

)β−1
e(1−(1+u)−α)β

(
e(1−(1+u)−α)β − 1

)λ1+λ2−1

du.
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Table 3: Data Analysis

Distribution Estimates KS Statistic Log(L) p-value AIC BIC
2.0103

MLE 5.9354 0.0884 -55.4280 0.953 114.856 117.9088
0.3584
1.7439

PGDUS IK MPS 2.1148 0.1229 -56.1242 0.6834 116.2484 119.3011
0.9072
2.0004

Bayesian 4.2964 0.08707 -55.5094 0.9588 115.0187 118.0715
0.5078
1.9467

MLE 1.8296 0.0892 -55.5702 0.9497 115.1403 118.193
1.7365

DUS-IK MPS 1.8928 0.1244 -56.5598 0.6692 117.1196 120.1723
2.2306

Bayesian 2.8658 0.1569 -57.1064 0.3725 118.2127 121.2654
1.7409

MLE 2.1059 0.0966 -55.7707 0.909 115.5414 118.5941
1.5286

IK MPS 2.1388 0.1136 -59.4084 0.7729 122.8169 125.8696
1.9060

Bayesian 2.9559 0.1409 -57.00978 0.5095 118.0194 121.0721
1.0102

MLE 1.8879 0.0918 -55.4496 0.9366 114.8992 117.952
1.1075

Weibull MPS 2.2840 0.1735 -105.4977 0.2577 214.9953 218.0481
0.8033

Bayesian 1.5418 0.16938 -56.9383 0.2835 117.8766 120.9294

Take a =
(

e(1−(1+u)−α)β − 1
)λ1+λ2

, hence the stress-strength reliability becomes

R = λ1

λ1 + λ2
, λ1 > 0, λ2 > 0. (46)

To evaluate the reliability value, we need to estimate the parameters first.

Multi-component SSR

Let’s consider a system comprising identical d components, which operates success-
fully if at least c (1 ≤ c ≤ d) of these components survive a shared random stress. This

Table 4: Estimate value and 95 % bootstrap CI of Vinyl Chloride data

Method α β λ
MLE Estimate 2.0103428 5.9354142 0.3584253

CI (1.623967,2.791699) (1.981512,23.06395) (0.12504,1.286034)
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situation is called multi-component systems. Bhattacharya and Johnson (1974) first stud-
ied the multi-component stress-strength reliability system and defined the reliability of a
multi-component stress-strength model as

Rc,d = Pr{at least c of the (U1, U2, ..., Ud) exceed V }. (47)

Let U = (U1, U2, ..., Ud) be random strength variables from PGDUS-IK(α, β, λ1) with
CDF H(u), and V be the random stress variable from PGDUS-IK(α, β, λ2) with CDF Q(v).
Then the reliability of a multi-component stress-strength model defined by Bhattacharya
and Johnson (1974) is given as

Rc,d =
d∑

i=c

(
d
i

)� ∞

−∞
(1 − H(u))i(H(u))d−idQ(u)

=
d∑

i=c

(
d
i

)� ∞

0

αβλ2

(e − 1)λ2
(1 + u)−(α+1)

(
1 − (1 + u)−α

)β−1
e(1−(1+u)−α)β

(
e(1−(1+u)−α)β − 1

)λ2−1((
e(1−(1+u)−α)β − 1

e − 1

)λ1)d−i(
1 −

(
e(1−(1+u)−α)β − 1

e − 1

)λ1)i

du

=
d∑

i=c

(
d
i

)� ∞

0

αβλ2

(e − 1)λ2
(1 + u)−(α+1)

(
1 − (1 + u)−α

)β−1
e(1−(1+u)−α)β

(
e(1−(1+u)−α)β − 1

)λ1(d−i)+λ2−1(
(e − 1)λ1 −

(
e(1−(1+u)−α)β − 1

)λ1
)i

du

=
d∑

i=c

i∑
p=0

(
d
i

)(
i
p

)
(−1)pαβλ2

(e − 1)λ1(d+p−i)+λ2

� ∞

0
(1 + u)−(α+1)

(
1 − (1 + u)−α

)β−1
e(1−(1+u)−α)β

(
e(1−(1+u)−α)β − 1

)λ1(d+p−i)+λ2−1

du

=
d∑

i=c

i∑
p=0

(
d
i

)(
i
p

)
(−1)pλ2

λ1(d + p − i) + λ2
.

That is,

Rc,d =
d∑

i=c

i∑
p=0

(
d
i

)(
i
p

)
(−1)pλ2

λ1(d + p − i) + λ2
, λ1 > 0, λ2 > 0. (48)

Suppose U = (U1, U2, ..., Ud) are parallelly connected, then c = 1 and Rc,d will become

R1,d =
d∑

i=1

i∑
p=0

(
d
i

)(
i
p

)
(−1)pλ2

λ1(d + p − i) + λ2
, λ1 > 0, λ2 > 0.

Similarly, when U = (U1, U2, ..., Ud) are connected in series, so c = d and

Rd,d =
d∑

p=0

(
d
p

)
(−1)pλ2

λ1p + λ2
, λ1 > 0, λ2 > 0.
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9.1. Estimation of reliability

To obtain the estimates of both single-component SSR and multi-component SSR, we
need to get the respective parameter estimates. Hence, here we are using the ML method.
Let U = (U1 < U2 < ... < Ul) and V = (V1 < V2 < ... < Vz) be the random samples from
PGDUS-IK(α, β, λ1) and PGDUS-IK(α, β, λ2), respectively.

9.1.1. Estimation of R

The likelihood function for the observed samples for θ = (α, β, λ1, λ2) can be written
as follows:

LF (u, v, θ)

=
l∏

i=1

(
αβλ1

(e − 1)λ1
(1 + ui)−(α+1)(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β (e(1−(1+ui)−α)β − 1)λ1−1

)
z∏

j=1

(
αβλ2

(e − 1)λ2
(1 + vj)−(α+1)(1 − (1 + vj)−α)β−1e(1−(1+vj)−α)β (e(1−(1+vj)−α)β − 1)λ2−1

)

=
(

αβλ1

(e − 1)λ1

)l l∏
i=1

(1 + ui)−(α+1)(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β (e(1−(1+ui)−α)β − 1)λ1−1

(
αβλ2

(e − 1)λ2

)z z∏
j=1

(1 + vj)−(α+1)(1 − (1 + vj)−α)β−1e(1−(1+vj)−α)β (e(1−(1+vj)−α)β − 1)λ2−1.

Then,

log LF = (l + z)
(

log α + log β
)

+ l log λ1 + z log λ2 − (lλ1 + zλ2) log(e − 1)

− (α + 1)
(

l∑
i=1

log(1 + ui) +
z∑

j=1
log(1 + vj)

)
+ (β − 1)

(
l∑

i=1
log(1 − (1 + ui)−α)

+
z∑

j=1
log(1 − (1 + vj)−α)

)
+

l∑
i=1

(1 − (1 + ui)−α)β +
z∑

j=1
(1 − (1 + vj)−α)β

+ (λ1 − 1)
l∑

i=1
log

(
e(1−(1+ui)−α)β − 1

)
+ (λ2 − 1)

z∑
j=1

log
(
e(1−(1+vj)−α)β − 1

)
.

Compute the partial derivatives of the logLF with respect to the parameters α, β, λ1, and
λ2, respectively. That is,

∂ log LF

∂α
= l + z

α
−
(

l∑
i=1

log(1 + ui) +
z∑

j=1
log(1 + vj)

)

+ (β − 1)
(

l∑
i=1

(1 + ui)−α log(1 + ui)
(1 − (1 + ui)−α) +

z∑
j=1

(1 + vj)−α log(1 + vj)
(1 − (1 + vj)−α)

)

+ β

(
l∑

i=1
(1 + ui)−α(1 − (1 + ui)−α)β−1 log(1 + ui)

(49)
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+
z∑

j=1
(1 + vj)−α(1 − (1 + vj)−α)β−1 log(1 + vj)

+ (λ1 − 1)
l∑

i=1

(1 + ui)−α(1 − (1 + ui)−α)β−1 log(1 + ui)e(1−(1+ui)−α)β

e(1−(1+ui)−α)β − 1

+ (λ2 − 1)
z∑

j=1

(1 + vj)−α(1 − (1 + vj)−α)β−1 log(1 + vj)e(1−(1+vj)−α)β

e(1−(1+vj)−α)β − 1

)
,

∂ log LF

∂β
= l + z

β
+
(

l∑
i=1

log(1 − (1 + ui)−α) +
z∑

j=1
log(1 − (1 + vj)−α)

)
+∑l

i=1(1 − (1 + ui)−α)β log(1 − (1 + ui)−α) +∑z
j=1(1 − (1 + vj)−α)β log(1 − (1 + vj)−α)

+ (λ1 − 1)
(

l∑
i=1

(1 − (1 + ui)−α)βe(1−(1+ui)−α)β log(1 − (1 + ui)−α)
e(1−(1+ui)−α)β − 1

)

+ (λ2 − 1)
(

z∑
j=1

(1 − (1 + vj)−α)βe(1−(1+vj)−α)β log(1 − (1 + vj)−α)
e(1−(1+vj)−α)β − 1

)
,

∂ log LF

∂λ1
= l

λ1
− l log(e − 1) +

l∑
i=1

log
(
e(1−(1+ui)−α)β − 1

)
,

∂ log LF

∂λ2
= z

λ2
− z log(e − 1) +

z∑
j=1

log
(
e(1−(1+vj)−α)β − 1

)
.

Then, the MLEs of α, β, λ1, and λ2 can be determined by solving the following equations::

∂ log LF

∂α
= 0,

∂ log LF

∂β
= 0,

∂ log LF

∂λ1
= 0,

∂ log LF

∂λ2
= 0.

Substituting the estimated values for α and β, we get the MLE of λ1 and λ2 as

λ̂1 = l

l log(e − 1) −∑l
i=1(log(e(1−(1+ui)−α̂)β̂ ) − 1)

,

λ̂2 = z

z log(e − 1) −∑z
j=1(log(e(1−(1+vj)−α̂)β̂ ) − 1)

.

Hence, the MLE of R will be

R̂ = λ̂1

λ̂1 + λ̂2
, λ1 > 0 λ2 > 0. (50)

9.1.2. Estimation of Rc,d

To compute the MLE of multi-component reliability, Rc,d, assume that Ui1, Ui2, ..., Uid

and Vi, i = 1, 2, ..., l denote the observed data obtained using PGDUS-IK(α, β, λ1) with pdf
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h(u) and PGDUS-IK(α, β, λ2) with pdf q(v), respectively. The likelihood function can be
defined as:

LFc,d(u, v, θ) =
l∏

i=1

( d∏
j=1

h(uij)
)
q(vi)

= (αβ)l(d+1)λld
1 λl

2
(e − 1)l(dλ1+λ2)

l∏
i=1

(
d∏

j=1
(1 + uij)−(α+1)(1 − (1 + uij)−α)β−1e(1−(1+uij)−α)β

(
e(1−(1+uij)−α)β − 1

)λ1−1
)

(1 + vi)−(α+1)(1 − (1 + vi)−α)β−1e(1−(1+vi)−α)β

(
e(1−(1+vi)−α)β − 1

)λ2−1
.

The logarithm likelihood function will be

log LFc,d

= l(d + 1)
(

log α + log β
)

+ ld log λ1 + l log λ2 − l(dλ1 + λ2) log(e − 1)

− (α + 1)
(

l∑
i=1

d∑
j=1

log(1 + uij) +
l∑

i=1
log(1 + vi)

)
+ (β − 1)

(
l∑

i=1

d∑
j=1

log(1 − (1 + uij)−α)

+
l∑

i=1
log(1 − (1 + vi)−α)

)
+

l∑
i=1

d∑
j=1

(1 − (1 + uij)−α)β +
d∑

i=1
(1 − (1 + vi)−α)β

+ (λ1 − 1)
l∑

i=1

d∑
j=1

log
(
e(1−(1+uij)−α)β − 1

)
+ (λ2 − 1)

l∑
i=1

log
(
e(1−(1+vi)−α)β − 1

)
.

Consider the partial derivative of the logLFc,d with respect to the parameters and solving
them by equating to zero, we can obtain the MLEs of the unknown parameters α, β, λ1 and
λ2, respectively. That is,

∂ log LFc,d

∂α
= 0,

∂ log LFc,d

∂β
= 0,

∂ log LFc,d

∂λ1
= 0,

∂ log LFc,d

∂λ2
= 0

where

∂ log LFc,d

∂α
= l(d + 1)

α
−
(

l∑
i=1

d∑
j=1

log(1 + uij) +
l∑

i=1
log(1 + vi)

)

+ (β − 1)
(

l∑
i=1

d∑
j=1

(1 + uij)−α log(1 + uij)
(1 − (1 + uij)−α) +

l∑
i=1

(1 + vi)−α log(1 + vi)
(1 − (1 + vi)−α)

)

+ β

(
l∑

i=1

d∑
j=1

(1 + uij)−α(1 − (1 + uij)−α)β−1 log(1 + uij)

+
l∑

i=1
(1 + vi)−α(1 − (1 + vi)−α)β−1 log(1 + vi)

(51)
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+ (λ1 − 1)
l∑

i=1

d∑
j=1

(1 + uij)−α(1 − (1 + uij)−α)β−1 log(1 + uij)e(1−(1+uij)−α)β

e(1−(1+uij)−α)β − 1

+ (λ2 − 1)
l∑

i=1

(1 + vi)−α(1 − (1 + vi)−α)β−1 log(1 + vi)e(1−(1+vi)−α)β

e(1−(1+vi)−α)β − 1

)
.

∂ log LFc,d

∂β
= l(d + 1)

β
+
(

l∑
i=1

d∑
j=1

log(1 − (1 + uij)−α) +
l∑

i=1
log(1 − (1 + vi)−α)

)

+
l∑

i=1

d∑
j=1

(1 − (1 + uij)−α)β log(1 − (1 + uij)−α)

+
l∑

i=1
(1 − (1 + vi)−α)β log(1 − (1 + vi)−α)

+ (λ1 − 1)
(

l∑
i=1

d∑
j=1

(1 − (1 + uij)−α)βe(1−(1+uij)−α)β log(1 − (1 + uij)−α)
e(1−(1+uij)−α)β − 1

)

+ (λ2 − 1)
(

l∑
i=1

(1 − (1 + vi)−α)βe(1−(1+vi)−α)β log(1 − (1 + vi)−α)
e(1−(1+vi)−α)β − 1

)
.

∂ log LFc,d

∂λ1
= ld

λ1
− ld log(e − 1) +

l∑
i=1

d∑
j=1

log
(
e(1−(1+uij)−α)β − 1

)
.

∂ log LFc,d

∂λ2
= l

λ2
− l log(e − 1) +

l∑
i=1

log
(
e(1−(1+vi)−α)β − 1

)
.

By substituting the MLEs of α and β, the MLEs of λ1 and λ2 will be in the form

λ̂1 = ld

ld log(e − 1) +∑l
i=1

∑d
j=1 log

(
e

(1−(1+uij)−α̂)β̂−1
) ,

and

λ̂2 = l

l log(e − 1) +∑l
i=1 log

(
e

(1−(1+vi)−α̂)β̂−1
) .

Hence, the MLE of stress-strength reliability of the multi-component system will be

R̂c,d =
d∑

i=c

i∑
p=0

(
d
i

)(
i
p

)
(−1)pλ̂2

λ̂1(d + p − i) + λ̂2
, λ1 > 0, λ2 > 0.

9.2. Asymptotic distribution

This section discusses the asymptotic distribution of R and Rc,d by using their MLEs.
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9.2.1. Asymptotic distribution of R

The asymptotic distribution of MLE of R is normal with mean zero and variance-
covariance matrix I−1(θ). That is,

√
l + o(R̂ − R) → N(0, GT I−1(θ)G) (52)

where GT -
(

∂R
∂α

, ∂R
∂β

, ∂R
∂λ1

, ∂R
∂λ2

)
I−1(θ) - inverse of Fisher information matrix for unknown parameters

I(θ) = E



−∂2 log LF
∂α2

−∂2 log LF
∂α∂β

−∂2 log LF
∂α∂λ1

−∂2 log LF
∂α∂λ2

−∂2 log LF
∂α∂β

−∂2 log LF
∂β2

−∂2 log LF
∂β∂λ1

−∂2 log LF
∂β∂λ2

−∂2 log LF
∂α∂λ1

−∂2 log LF
∂β∂λ1

−∂2 log LF
∂λ2

1

−∂2 log LF
∂λ1∂λ2

−∂2 log LF
∂α∂λ2

−∂2 log LF
∂β∂λ2

−∂2 log LF
∂λ1∂λ2

−∂2 log LF
∂λ2

2


Second order partial derivative of the log-likelihood function with respect to each parameters
α, β, λ1, and λ2 are briefly derived and given in the appendix. Due to the complexity of the
expectations, an approximate estimation of the variance-covariance matrix of (α, β, λ1, λ2)
is I−1(α̂, β̂, λ̂1, λ̂2), where α̂, β̂, λ̂1, and λ̂2 are the estimates of the respective parameters.
From Eq.(45), we can obtain the approximate estimate of the variance of R̂ as

ˆV ariance(R̂) ≃ GT I−1G.

Thus,
(R̂ − R)√

ˆV ariance(R̂)
∼ N(0, 1).

This yields the asymptotic 100(1 − η)% confidence interval for R as

R̂ ± Zη/2

√
ˆV ariance(R̂)

where R̂ is the MLE of R and Zη/2 is the upper (η/2)th quantile of the standard Normal
distribution.

9.2.2. Asymptotic distribution of Rc,d

Similarly, for large sample size, the asymptotic distribution of MLE of Rc,d is given
by √

l + ld(R̂c,d − Rc,d) → N(0, GT I−1G)
where GT -

(
∂Rc,d

∂α
,

∂Rc,d

∂β
,

∂Rc,d

∂λ1
,

∂Rc,d

∂λ2

)
and I−1 - variance-covariance matrix or inverse of the Fisher information matrix
and is given by

I−1 = E



−∂2 log LFc,d

∂α2
−∂2 log LFc,d

∂α∂β

−∂2 log LFc,d

∂α∂λ1

−∂2 log LFc,d

∂α∂λ2
−∂2 log LFc,d

∂α∂β

−∂2 log LFc,d

∂β2
−∂2 log LFc,d

∂β∂λ1

−∂2 log LFc,d

∂β∂λ2
−∂2 log LFc,d

∂α∂λ1

−∂2 log LFc,d

∂β∂λ1

−∂2 log LFc,d

∂λ2
1

−∂2 log LFc,d

∂λ1∂λ2
−∂2 log LFc,d

∂α∂λ2

−∂2 log LFc,d

∂β∂λ2

−∂2 log LFc,d

∂λ1∂λ2

−∂2 log LFc,d

∂λ2
2



−1
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The second order partial derivative of log-likelihood function with respect to the parameters
α, β, λ1, and λ2 are derived and given in the appendix. An approximate estimation of the
variance-covariance matrix, I−1(α̂, β̂, λ̂1, λ̂2), of the parameters can be obtained by replacing
the values with the estimate values of α, β, λ1 and λ2, respectively. Hence we may estimate
the variance of R̂c,d as

ˆV ariance(R̂c,d) ≃ GT I−1G

= V ariance(λ̂1)
(∂Rc,d

∂λ1

)2
+ V ariance(λ̂2)

(∂Rc,d

∂λ2

)2
+ 2∂Rc,d

∂λ1

∂Rc,d

∂λ2
I−1

12 (53)

where

V ariance(λ̂1) =
(

E
(

− ∂2 log LFc,d

∂λ̂1
2

))−1

V ariance(λ̂2) =
(

E
(

− ∂2 log LFc,d

∂λ̂2
2

))−1

and

I−1
12 =

(
E
(

− ∂2 log LFc,d

∂λ̂1∂λ̂2

))−1

.

for large sample size,
(R̂c,d − Rc,d)√

ˆV ariance(R̂c,d)
∼ N(0, 1)

and the asymptotic 100(1 − η)% confidence interval for Rc,d is given by

R̂c,d ± Zη/2

√
ˆV ariance(R̂c,d)

where R̂c,d is the MLE of Rc,d and Zη/2 is the upper (η/2)th quantile of the standard Normal
distribution.

9.3. Simulation study

Here, a simulation study is carried out to compare the performance of MLEs of R and
Rc,d in terms of their biases and MSEs. Here we use the parameter values (α, β, λ1, λ2) =
(2.5, 0.5, 6, 5), then the theoretical value of R is 0.5454545.Additionally, we calculate the
confidence intervals using the ML method.The simulation results of R are given in Table
5. For Rc,d, take the values (c, d) = {(2, 4), (3, 6), (1, 3)} in each sample size (l,z). The
simulation results of Rc,d are reported in Table 6.

From the simulation results of both R and Rc,d, it is noted that as the sample size
(l, z) increases, the biases and MSE values decrease. For the single-component stress-strength
model, we considered (l, z) = {(10, 10), (30, 30), (50, 50), (100, 100)}. In the case Rc,d, we are
considering another combination of sample size (l, z) as given in Table 6. The theoretical
values of Rc,d for different values of (c, d) = {(2, 4), (3, 6), (1, 3)} are 0.6476762, 0.6228523,
and 0.7826087, respectively.
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Table 5: Simulation study for Stress-Strength reliability for parameter values
α = 2.5, β = 0.5, λ1 = 6, λ2 = 5, R = 0.5454545

(l,z) R̂ Bias MSE 95% ACI
(10,10) 0.5477 0.0022 0.0144 (0.54750, 0.54793)
(30,30) 0.5467 0.0012 0.0041 (0.54564, 0.54772)
(50,50) 0.5451 -0.0004 0.0026 (0.52439, 0.56579)

(100,100) 0.5453 -0.0002 0.0013 (0.48744, 0.60314)

Table 6: Simulation study for Multi-component Stress-Strength reliability for
parameter values α = 2.5, β = 0.5, λ1 = 6, λ2 = 5

R2,4 = 0.6476762, R3,6 = 0.6228523, R1,3 = 0.7826087
(c,d) l R̂cd Bias MSE 95% ACI
(2,4) 10 0.6824 0.0347 0.0012 (0.68195, 0.68270)

30 0.6767 0.0289 0.0008 (0.66641,0.68694)
40 0.6542 0.0065 4.1882e-05 (0.65342,0.65488)
80 0.6296 -0.0179 0.0003 (0.62722,0.63228)
500 0.6447 -0.0029 8.9723e-06 (0.61204,0.6773)

(3,6) 10 0.5876 0.0353 0.0013 (0.57622, 0.59892)
20 0.6552 0.03231 0.0010 (0.58033,0.72999)
50 0.6413 0.0184 0.0003 (0.63725,0.64531)
100 0.6366 0.0138 0.0002 (0.53606,0.73716)
500 0.6337 0.0108 0.0001 (0.62503,0.64230)

(1,3) 10 0.8313 0.0487 0.0024 (0.27759,1.38508)
40 0.7972 0.01457 0.0002 (0.72687, 0.86749)
80 0.7860 0.00342 1.1702e-05 (0.78464,0.78856)
100 0.7729 0.0022 4.6651e-06 (0.75395,0.79199)
500 0.7846 0.00191 3.7655e-06 (0.75172,0.81736)

9.4. Data analysis

In this section, we analyze two real datasets introduced by Badar and Priest (1982)
to illustrate the use of our proposed estimation method. The first data set (denoted by U) is
strength measured in GPA for single carbon fibers tested under tension at a gauge length of
20mm. The second one (denoted by V) is the strength measured in GPA for single carbon
fiber tested under tension at a gauge of 10 mm.

The PGDUS-IK(α, β, λ) model fits both data sets. The estimated values of the pa-
rameters are obtained. Log-likelihood values, KS values with corresponding p-values, CVM
values with corresponding p-values, AIC, and BIC values for both datasets are given in the
table. The estimated value for reliability is obtained as 0.2127864.

In the case of the multi-component stress-strength model, the same data set fits with
the model for each value of (c, d) = {(1, 3), (2, 4), (3, 6)}. The parameter estimators,reliability
estimate value, K-S values with p-value, and CVM values with p-value are given in Table 8.
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Table 7: Stress-Strength Data analysis

Estimates K-S(p-value) CVM(p-value) Log-Likelihood AIC BIC

α̂ = 7.47 X 0.13565 0.36097 -47.36073 98.72146 103.0077
β̂ =2476.96 (0.1966) (0.09158)
λ̂1=1.36468 Y 0.087442 0.07484 -135.015 274.03 278.3136
λ̂2=5.04871 (0.7211) (0.724)

Table 8: Data Analysis of Multi-Component SSR Model

(c,d) Estimates U V
R̂c,d K-S (p) CVM (p) K-S (p) CVM (p)

7.3788
(1,3) 0.45163 2124.06 0.13587 0.35368 0.08338 0.07191

1.4377 (0.1952) (0.09586) (0.7735) (0.7417)
5.2369
7.3625

(2,4) 0.23708 2072.29 0.13651 0.35254 0.08263 0.07148
1.4474 (0.1909) (0.09655) (0.7829) (0.7443)
5.2571
7.3441

(3,6) 0.18989 2017.05 0.13725 0.35133 0.08178 0.07104
1.4574 (0.1862) (0.09729) (0.7935) (0.747)
5.2762

10. Summary

The present paper proposes a new lifetime distribution, called the PGDUS-IK dis-
tribution, with parameters α, β, and λ, respectively, by using the PGDUS transformation
on the IK (α, β) distribution for modeling a parallel system. The statistical properties, in-
cluding moments, moment generating function, characteristic function, cumulant generating
function, quantile function, order statistics, and entropy, are derived. Also, the expected
additional lifetime given that the system has survived until a time t is defined in terms of
its mean residual life function. Then we move on to the topic estimation of unknown pa-
rameters α, β, and λ of the proposed distribution. In this paper, we consider different types
of estimation methods, such as the MLE method, the method of maximum product spacing
estimation, the method of moment estimation, the method of least squares estimation, and
bayesian analysis, respectively. The confidence interval is a range of values that describes the
uncertainty around an estimate. For PGDUS-IK(α, β, λ), asymptotic confidence interval and
bootstrap confidence interval are obtained. Simulation of data from the proposed distribution
is obtained by three different methods: MLE, MPS, and Bayesian. Table 1 shows that, biases
and MSEs for the parameters α, β, and λ decrease with increasing sample size. A dataset of
vinyl chloride data obtained from clean upgrading and monitoring wells is used for the data
analysis. It can be concluded that the proposed PGDUS-IK is effective in providing a better
fit of data when compared with other competing distributions, such as the DUS-IK, IK, and
Weibull distributions. Stress-strength reliability for single-component and multi-component
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models is discussed. Reliability estimates in both models are obtained from the parameter
estimate values. The asymptotic distributions of single-component stress-strength reliability
and multi-component stress-strength reliability are derived. As the sample size increases,
the biases and MSEs of the simulated estimator of reliability in both models decrease. Both
the single-component SSR model and the multi-component SSR model are applied to real
data obtained from Badar and Priest (1982) and show that both models fit the data.
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Appendix

log LF (x) = l

(
log α + log β + log λ − λ log(e − 1)

)
− (α + 1)

l∑
i=1

log(1 + ui)

+ (β − 1)
l∑

i=1
log(1 − (1 + ui)−α) +

l∑
i=1

(1 − (1 + u)−α)β

+ (λ − 1)
l∑

i=1
log

(
e(1−(1+ui)−α)β − 1

)
.

∂2 log LF

∂α2 = −l

α2 + (β − 1)
l∑

i=1

(
(1 + ui)−α−1(1 − (1 + ui)−α + (1 + ui) log2(1 + ui))

(1 − (1 + ui)−α)2

)

+ β
l∑

i=1
(1 + ui)−α(1 − (1 + ui)−α)β−2 log2(1 + ui)(β(1 + ui)−α − 1)

+ β2(λ − 1)
l∑

i=1

(
(1 + ui)−2α(1 − (1 + ui)−α)β−2 log2(1 + ui)e(1−(1+ui)−α)β

(e(1−(1+ui)−α)β − 1)2(
e(1−(1+ui)−α)β − (1 − (1 + ui)−α)β−1 − 1

))

− β(λ − 1)
∑l

i=1(1 + ui)−α(1 − (1 + ui)−α)β−2e(1−(1+ui)−α)β log2(1 + ui)
(e(1−(1+ui)−α)β − 1)

∂2 log LF

∂β2 = −l

β2 +
l∑

i=1
(1 − (1 + ui)−α)β log2(1 − (1 + ui)−α)

+
(

(λ − 1)
l∑

i=1

(1 − (1 + ui)−α)βe(1−(1+ui)−α)β log2(1 − (1 + ui)−α)
(e(1−(1+ui)−α)β − 1)2(

e(1−(1+ui)−α)β − (1 − (1 + ui)−α)β − 1
))

∂2 log LF

∂α∂β
=

l∑
i=1

(1 + ui)−α log(1 + ui)
1 − (1 + ui)−α

+ β
l∑

i=1
(1 + ui)−α(1 − (1 + ui)−α)β−1 log(1 + ui)(log(1 − (1 + ui)−α) + 1)

− β(λ − 1)
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i=1

(
(1 + ui)−α(1 − (1 + ui)−α)2β−1e(1−(1+ui)−α)β log(1 + ui)

(e(1−(1+ui)−α)β − 1)2

log(1 − (1 + ui)−α)
)

+ (λ − 1)
l∑

i=1

(
(1 + ui)−α(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β

e(1−(1+ui)−α)β − 1

(1 + β(1 − (1 + ui)−α) log(1 + ui) log(1 − (1 + ui)−α)
)

∂2 log LF

∂λ2 = −l

λ2
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∂2 log LF

∂α∂λ
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l∑
i=1

(1 + ui)−α(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β log(1 + ui)
e(1−(1+ui)−α)β − 1

∂2 log LF
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=
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i=1

(1 − (1 + ui)−α)βe(1−(1+ui)−α)β log(1 − (1 + ui)−α)
e(1−(1+ui)−α)β − 1
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∂2α
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∂2β
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∂2λ
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∂α∂β
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∂α∂λ
, M23 = M32 = ∂2M

∂β∂λ
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log2(1 + ui)
((1 + ui)−α(1 − (1 + ui)−α)β−2e(1−(1+ui)−α)β

(
β(1 + ui)−α − 1

)
e(1−(1+ui)−α)β − 1

− β(1 + ui)−2α(1 − (1 + ui)−α)2(β−1)e(1−(1+ui)−α)β

(e(1−(1+ui)−α)β − 1)2

)
M122 = M221 = M212

=
∑

(1 + ui)−α log(1 + ui)(1 − (1 + ui)−α)β−1 log(1 − (1 + ui)−α)(
2 + log(1 − (1 + ui)−α)

)
+ (λ − 1)
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(1 + ui)−α log(1 + ui) log(1 − (1 + ui)−α)(

(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β (e(1−(1+ui)−α)β − 1 − (1 − (1 + ui)−α)β)(
e(1−(1+ui)−α)β − 1

)2
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+(λ − 1)∑(1 + ui)−α log(1 + ui) log(1 − (1 + ui)−α)(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β(
β(1 − (1 + ui)−α)β log(1 − (1 + ui)−α)(

e(1−(1+ui)−α)β − 1
)4 + (1 + (1 − (1 + ui)−α)β)(

e(1−(1+ui)−α)β − 1
)4
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1 + β log(1 − (1 + ui)−α)
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1 + (1 − (1 + ui)−α)β(1 + e(1−(1+ui)−α)β )

))
− 2(1 − (1 + ui)−α)2β−1e2(1−(1+ui)−α)β (1 + (1 − (1 + ui)−α)β)log(1 − (1 + ui)−α)(
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)

+ β(λ − 1)
∑

(1 + ui)−2α log2(1 + ui)
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(e(1−(1+ui)−α)β − 1)2
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M113 = M131 = M311 = β2∑(1 + ui)−2α(1 − (1 + ui)−α)β−1 log2(1 + ui)e(1−(1+ui)−α)β

e(1−(1+ui)−α)β − (1 − (1 + ui)−α)β−1 − 1
(e(1−(1+ui)−α)β − 1)2

−
∑ β(1 + ui)−α(1 − (1 + ui)−α)β−2e(1−(1+ui)−α)β log2(1 + ui)

e(1−(1+ui)−α)β − 1

M223 = M232 = M322 =
∑(

log2(1 − (1 + ui)−α)(1 − (1 + ui)−α)βe(1−(1+ui)−α)β

(
e(1−(1+ui)−α)β − 1 − (1 − (1 + ui)−α)β

)
(e(1−(1+ui)−α)β − 1)2

)
M331 = 0 = M332

M222 = 2l

β3

∑
(1 − (1 + ui)( − α))β log3(1 − (1 + ui)−α)

+ (λ − 1)
∑

(1 − (1 + ui)−α)βe(1−(1+ui)−α)β log3(1 − (1 + ui)−α)
e(1−(1+ui)−α)β (1 + 2(1 − (1 + ui)−α)β) − (1 − (1 + ui)−α)β(3 + (1 − (1 + ui)−α)β) − 1

(e(1−(1+ui)−α)β − 1)2

− 2
∑

(1 − (1 + ui)−α)2βe2(1−(1+ui)−α)β log3(1 − (1 + ui)−α)
e(1−(1+ui)−α)β − (1 − (1 + ui)−α)β − 1

(e(1−(1+ui)−α)β − 1)3

M333 = 2l
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In the case stress-strength reliability,

∂2 log LF

∂λ2
1

= −l

λ2
1

∂2 log LF

∂λ2
2

= −o

λ2
2

∂2 log LF

∂λ1∂λ2
= 0

∂2 log LF

∂β∂λ1
=

l∑
i=1

(1 − (1 + ui)−α)βe(1−(1+ui)−α)β log(1 − (1 + ui)−α)
e(1−(1+ui)−α)β − 1

∂2 log LF

∂β∂λ2
=

o∑
j=1

(1 − (1 + vj)−α)βe(1−(1+vj)−α)β log(1 − (1 + vj)−α)
e(1−(1+vj)−α)β − 1

∂2 log LF

∂α∂λ1
= β

l∑
i=1

(1 + ui)−α(1 − (1 + ui)−α)β−1e(1−(1+ui)−α)β log(1 + ui)
e(1−(1+ui)−α)β − 1

∂2 log LF

∂α∂λ2
= β

o∑
j=1

(1 + vj)−α(1 − (1 + vj)−α)β−1e(1−(1+vj)−α)β log(1 + vj)
e(1−(1+vj)−α)β − 1

∂2 log LF

∂α∂β
=

l∑
i=1

(1 + ui)−α log(1 + ui)
(1 − (1 + ui)−α) +

o∑
j=1

(1 + vj)−α log(1 + vj)
(1 − (1 + vj)−α)

∂2 log LF

∂β2 = − l + o

β2 +
l∑

i=1
(1 − (1 + ui)−α)β log2(1 − (1 + ui)−α)

+
o∑

j=1
(1 − (1 + vj)−α)β log2(1 − (1 + vj)−α)

+ (λ1 − 1)
l∑

i=1

(
(1 − (1 + ui)−α)β log2(1 − (1 + ui)−α)e(1−(1+ui)−α)β

e(1−(1+ui)−α)β − 1

− (1 − (1 + ui)−α)2β log2(1 − (1 + ui)−α)e(1−(1+ui)−α)β

(e(1−(1+ui)−α)β − 1)2

)

+ (λ2 − 1)
o∑

j=1

(
(1 − (1 + vj)−α)β log2(1 − (1 + vj)−α)e(1−(1+vj)−α)β

e(1−(1+vj)−α)β − 1
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− (1 − (1 + vj)−α)2β log2(1 − (1 + vj)−α)e(1−(1+vj)−α)β

(e(1−(1+vj)−α)β − 1)2

)
∂2 log LF

∂α2 = − l + o

α2 − (β − 1)
(

l∑
i=1

(1 + ui)−α log2(1 + ui)
(1 − (1 + ui)−α)2 +

o∑
j=1

(1 + vj)−α log2(1 + vj)
(1 − (1 + vj)−α)2

)

+ β

(
l∑

i=1
(1 + ui)−α(1 − (1 + ui)−α)β−2(β(1 + ui)−α − 1) log2(1 + ui)

+
o∑

j=1
(1 + vj)−α(1 − (1 + vj)−α)β−2(β(1 + vi)−α − 1) log2(1 + vj)

)

+ β(λ1 − 1)∑l
i=1

(
− β (1+ui)−2α(1−(1+ui)−α)2(β−1)e(1−(1+ui)−α)β log2(1+ui)

(e(1−(1+ui)−α)β −1)2

+ (1 + ui)−α(1 − (1 + ui)−α)(β−2)e(1−(1+ui)−α)β (β(1 + ui)−α − 1) log2(1 + ui)
e(1−(1+ui)−α)β − 1

)

+ β(λ2 − 1)∑o
j=1

(
− β (1+vj)−2α(1−(1+vj)−α)2(β−1)e(1−(1+vj )−α)β

log2(1+vj)
(e(1−(1+vj )−α)β

−1)2

+ (1 + vj)−α(1 − (1 + vj)−α)(β−2)e(1−(1+vj)−α)β (β(1 + vj)−α − 1) log2(1 + vj)
e(1−(1+vj)−α)β − 1

)

In the case of multi-component stress-strength reliability, the log-likelihood function is given
as

log LFc,d = l(d + 1)
(

log α + log β
)

+ ld log λ1 + l log λ2 − l(dλ1 + λ2) log(e − 1)

−(α + 1)
(∑l

i=1
∑d

j=1 log(1 + uij) +∑l
i=1 log(1 + vi)

)
+ (β − 1)

(∑l
i=1

∑d
j=1 log(1 − (1 + uij)−α)

+
l∑

i=1
log(1 − (1 + vi)−α)

)
+

l∑
i=1

d∑
j=1

(1 − (1 + uij)−α)β +
d∑

i=1
(1 − (1 + vi)−α)β

+(λ1 − 1)∑l
i=1

∑d
j=1 log

(
e(1−(1+uij)−α)β − 1

)
+ (λ2 − 1)∑l

i=1 log
(
e(1−(1+vi)−α)β − 1

)
.

∂2 log LFc,d

∂λ2
1

= −ld

λ2
1

∂2 log LFc,d

∂λ1∂λ2
= 0 = ∂2 log LFc,d

∂λ2∂λ1
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∂2 log LFc,d

∂α∂λ1
= β
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i=1

c∑
j=1

(1 + uij)−α(1 − (1 + uij)−α)β−1e(1−(1+uij)−α)β log(1 + uij)
e(1−(1+uij)−α)β − 1

∂2 log LFc,d

∂β∂λ1
=

l∑
i=1
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j=1
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∂2 log LFc,d

∂λ2
2
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λ2
2

∂2 log LFc,d
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= β
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l∑
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+
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+ β

(
l∑

i=1

c∑
j=1

(1 − (1 + uij)−α)β−1 log(1 − (1 + uij)−α)(1 + uij)−α log(1 + uij)

+
l∑
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(1 − (1 + vi)−α)β−1 log(1 − (1 + vi)−α)(1 + vi)−α log(1 + vi)
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+
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(e(1−(1+uij )−α)β

−1)2

)
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l∑
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(β log(1−(1+vi)−α)+1)(e(1−(1+vi)−α)β −1)−β(1−(1+vi)−α)β log(1−(1+vi)−α)

(e(1−(1+vi)−α)β −1)2

)
∂2 log LFc,d

∂2β
= − l(d + 1)

β2 +
l∑

i=1

c∑
j=1

(1 − (1 + uij)−α)β log2(1 − (1 + uij)−α)

+
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(1 − (1 + vi)−α)β log2(1 − (1 + vi)−α) + (λ1 − 1)
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i=1

c∑
j=1

e(1−(1+uij)−α)β
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(1 − (1 + uij)−α)β log2(1 − (1 + uij)−α)
(
e(1−(1+uij)−α)β − 1 − (1 − (1 + uij)−α)β
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(e(1−(1+uij)−α)β − 1)2

+ (λ2 − 1)
l∑

i=1
e(1−(1+vi)−α)β (1 − (1 + vi)−α)β log2(1 − (1 + vi)−α)

(
e(1−(1+vi)−α)β − 1 − (1 − (1 + vi)−α)β

(e(1−(1+vi)−α)β − 1)2

)
∂2 log LFc,d

∂2α
= − l(d+1)

α2 − (β − 1)
(∑l

i=1
∑c

j=1
(1+uij)−α log2(1+uij)

(1−(1+uij)−α)2 +∑l
i=1

(1+vi)−α log2(1+vi)
(1−(1+vi)−α)2

)

+ β

(
l∑

i=1

c∑
j=1

(1 + uij)−α log2(1 + uij)(1 − (1 + uij)−α)β−2
(

(β(1 + uij)−α − 1)

+
e(1−(1+uij )−α)β

(
(β(1+uij)−α−1)(e(1−(1+uij )−α)β

−1)−β(1+uij)−α(1−(1+uij)−α)β

)
(e(1−(1+vi)−α)β −1)2

)

+
l∑

i=1
(1 + vi)−α log2(1 + vi)(1 − (1 + vi)−α)β−2

(
(β(1 + uij)−α − 1)

+
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(
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Abstract
A (3, 3, 9)-resolvable solution of a BIB design with parameters: v = 21, b = 35, r =

15, k = 9, λ = 6, and listed as T47 in the Table of Takeuchi (1962), is obtained. The
resolvable solution is obtained by decomposing the incidence matrix into incidence matrices
of smaller BIB designs.
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1. The solution

Let the incidence matrix N of a balanced incomplete block (BIB) design may be
decomposed into submatrices as N = [N1|N2| . . . |Nt] such that each row sum of Ni (1 ≤
i ≤ t) is αi. Then the design is (α1, α2, . . . , αt)-resolvable [see Kageyama (1976)]. If α1 =
α2 = · · · = αt = α then the design is α-resolvable.

The following solution of a BIB design with parameters: v = 21, b = 35, r = 15, k =
9, λ = 6 using the method of differences may be found in Takeuchi (1962):
[00, 10, 20, 40, 01, 11, 21, 41, 22]; [00, 60, 50, 30, 62, 42, 32, 22, 01]; [01, 61, 51, 31, 62, 42, 32, 22, 00];
[00, 20, 60, 11, 31, 41, 12, 22, 42]; [10, 30, 40, 01, 21, 61, 12, 22, 42] mod 7.

The incidence matrix N of the design may be decomposed into block submatrices as
follows:

N = (N1|N2|N3)= β + β3 + β4 I7 + β2 + β6 I7 + β + β2 + β4 I7 + β3 + β5 + β6 I7
I7 + β2 + β6 β + β3 + β4 I7 + β + β2 + β4 I7 I7 + β3 + β5 + β6

β + β2 + β4 β + β2 + β4 β2 β2 + β3 + β4 + β6 β2 + β3 + β4 + β6


where I7 is the identity matrix of order 7 and β = circ(0 1 0 . . . 0) is a permutation circulant
matrix of order 7 such that β7 = I7. Since each row sum of the block matrices N1, N2 and
N3 are 3, 3 and 9 respectively, the BIB design is (3, 3, 9)-resolvable. The resolvable solution
is given below in Table 1.
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Further repeating above solution of the BIB design three times, we obtain a 9-
resolvable solution of BIB design with parameters: v = 21, b = 105, r = 45, k = 9, λ = 18.
This solution may be considered new as this is not reported in the tables of Kageyama
(1973), Kageyama and Mohan (1983) and Subramani (1990).

Table 1: (3,3,9)-resolvable solution of the BIB design T47

Replication I Replication II
(4, 5, 7, 8, 9, 13, 18, 20, 21) (1, 2, 6, 11, 12, 14, 18, 20, 21)
(1, 5, 6, 9, 10, 14, 15, 19, 21) (2, 3, 7, 8, 12, 13, 15, 19, 21)
(2, 6, 7, 8, 10, 11, 15, 16, 20) (1, 3, 4, 9, 13, 14, 15, 16, 20)
(1, 3, 7, 9, 11, 12, 16, 17, 21) (2, 4, 5, 8, 10, 14, 16, 17, 21)
(1, 2, 4, 10, 12, 13, 15, 17, 18) (3, 5, 6, 8, 9, 11, 15, 17, 18)
(2, 3, 5, 11, 13, 14, 16, 18, 19) (4, 6, 7, 9, 10, 12, 16, 18, 19)
(3, 4, 6, 8, 12, 14, 17, 19, 20) (1, 5, 7, 10, 11, 13, 17, 19, 20)

Replication III
(1, 4, 6, 7, 8, 11, 13, 14, 20) (1, 8, 9, 10, 12, 16, 18, 19, 20) (1, 2, 3, 5, 8, 16, 18, 19, 20)
(1, 2, 5, 7, 8, 9, 12, 14, 21) (2, 9, 10, 11, 13, 17, 19, 20, 21) (2, 3, 4, 6, 9, 17, 19, 20, 21)
(1, 2, 3, 6, 8, 9, 10, 13, 15) (3, 10, 11, 12, 14, 15, 18, 20, 21) (3, 4, 5, 7, 10, 15, 18, 20, 21)
(2, 3, 4, 7, 9, 10, 11, 14, 16) (4, 8, 11, 12, 13, 15, 16, 19, 21) (1, 4, 5, 6, 11, 15, 16, 19, 21)
(1, 3, 4, 5, 8, 10, 11, 12, 17) (5, 9, 12, 13, 14, 15, 16, 17, 20) (2, 5, 6, 7, 12, 15, 16, 17, 20)
(2, 4, 5, 6, 9, 11, 12, 13, 18) (6, 8, 10, 13, 14, 16, 17, 18, 21) (1, 3, 6, 7, 13, 16, 17, 18, 21)
(3, 5, 6, 7, 10, 12, 13, 14, 19) (7, 8, 9, 11, 14, 15, 17, 18, 19) (1, 2, 4, 7, 14, 15, 17, 18, 19)
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Abstract
Data validation in Official System is usually taken as reporting at different levels,

identifying the inconsistencies, and taking remedial measures. The idea of present write-up
is to overhaul the concept of Validation and to increase its scope in a multi-pronged way to
increase its visibility and utility to the policy makers. This would be of great help to the
Official Reporting System and would revolutionize the whole approach to validation.

Key words: Official reporting system; Data validation; Improving data validation.

1. Introduction

Good quality data is a fundamental requirement for framing efficient policies. The
COVID-19 experience has taught the world the importance of timely availability of reliable
and relevant data for making informed decisions.

In India, data quality and reliability has long been the center of debate. Acknowl-
edging poor data quality, several steps are now being taken at state and central levels to
overcome the data quality issues. Policy framing and implementation is hugely dependent
on the data. Thus, it becomes extremely important that good quality data is produced to
have informed decisions on policy issues. Quality data includes factors such as accuracy,
consistency, and reliability which is often lacking in the National/ State level data. One way
to address this problem could be data triangulation and validation at different levels of data
production and compilation through robust statistical techniques.

Data validation in Official System is perceived in a very conservative way. Validation
is usually taken as reporting at different levels, identifying the inconsistencies, and taking
remedial measures. For instance, for immunization coverage in children, it is usually taken
as validation of reporting at different levels viz., session site/ village, PHC/UPHC, CHC and
district. Validation of routine immunization coverage also requires identifying errors which
take place in reporting at these levels during the roll up process.

The idea of present write-up is to overhaul the concept of validation and to increase
its scope in a multi-pronged way to increase its visibility and utility to the policy makers.
This would help the official reporting system and would virtually revolutionize the whole
approach to validation.
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2. The revised validation

Good quality data is a pre-requisite to draw sound and meaningful inference from any
research study involving data analysis. Poor quality data may emanate from (i) use of poor
methodology, (ii) lack of sound data scrutiny and (iii) poor reporting of collected/analysed
data at different stages of reporting in-built in the system. Data validation focuses on
identification of the causes of poor-quality data and taking/suggesting remedial measures
thereof.

2.1. Methodology

Choice of proper methodology and adequate sample size is crucial for any research
study. Use of poor methodology mostly includes choosing a poor study design and inadequate
sample size. Both these are widespread in not only in Indian context but are also prevalent
worldwide. The book by Nigam (2016) deals these issues in detail. The discussion which
follows derives heavily from this book.

Among matters of concern are choice of proper survey design including adequate
sample size, clarity and coverage of questionnaires, data cleaning/handling and choice of
analytical techniques for obtaining valid and efficient estimates as departure from these
result in wasting precious funds employed for research programs. It also often ends up with
invalid and misleading estimates, which may have strong policy implications.

2.2. Questionnaire

Besides a proper and efficient sampling design required for obtaining efficient and valid
estimates, the type and coverage of questionnaires is a crucial deciding factor in obtaining
quality data. Any ill-conceived questionnaire leads to substantive non-response, incorrect
and evasive responses. In many surveys, questionnaires are unduly lengthy having questions
not relevant to the study. On the other hand, sometimes, these are too short to provide a
satisfactory coverage. A lengthy questionnaire escalates the cost of the survey and makes
management and supervision work cumbersome and time consuming. It also creates prob-
lems in editing and cleaning of data and in a decrease in efficiency. A questionnaire with
insufficient coverage is likely to be less efficient because of the failure to collect some vital
information.

To refine the questionnaire, it is necessary to train interviewers, data editors/cleaners,
and through test data analysis. Adequate time should be allotted for field practice and the
training should be evaluated. There should be effective and quality monitoring during the
field work and this allows for making amends for the ambiguity and inconsistencies. Proper
and effective training and pre-testing allow both the project handlers and the interviewers
gain insight into the spirits underlying different questions. At data entry level also, there
should be data validation employing range check, valid value check as well as internal con-
sistency checks. The follow-up checks and corrective measures improve not only the quality
of data gathered but also making the resulting estimates much more relevant and consistent.
This aspect, however, is usually taken rather casually in many surveys conducted in our
country.
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2.3. Sample size and related issues

A close look into the research studies reveals that sample size is often arbitrarily
decided, without considering the extent and nature of the variability of the character being
studied and even when adequate sample size is taken, there is an attempt to present anal-
ysis by sub-groups in terms of related socio-economic, demographic, housing, or household
characteristics. This practice leads to decomposition of sample size according to these sub-
groups. While a smaller sample size leads to invalid estimates with unduly large standard
errors, a larger sample involves avoidable wasteful expenditure. In view of this, it is worth-
while to highlight some of the observations on these issues by Nigam (2006) and Nigam and
Singh (2011).

2.4. Poor reporting of collected / analyzed data

In most of the large-scale surveys reporting of indicators is usually done by sub-
groups like caste, religion, gender, age group, grades of nutritional status, grades of anemia
etc. In many situations, sample size for some of these sub-groups is grossly inadequate.
Examples of this can be found in the reporting of National Family Health Survey (NFHS),
NNMB, Reproductive Child Health (RCH), and District Level Household Surveys (DLHS)
and others. The sample size is usually ascertained for all the groups keeping in mind the
precision, complexity of the design and expected non-response. Any attempt to the reporting
by sub-groups makes such estimates highly imprecise. In view of this, it may be better to go
for interval estimates (confidence interval) instead of point estimates. The best alternative,
however, is to develop small area estimates for the sub-groups (Chapter 13 in Nigam 2016).
For examples of these types of dis-aggregated reporting one may refer to Nigam (2006) and
Nigam and Singh (2011). For example, in NFHS-2, nutritional status was reported only
for 77 children in Hill Region, for 57 children of ST and for 65 children of Self-employed
parents. The reporting has further categorization according to grades of nutritional status.
The prevalence of undernutrition ranged from 40-60 percent for below-2sd and 16-30 percent
for below-3sd in these groups. Any anaemia among children has been reported for 72 children
in Hills, 73 in Bundelkhand and for 33 children of ST, with further division according to
grades of anaemia (severe, mild etc.). The reported prevalence of any anaemia ranged 73-80
percent and 5-13 percent for severe anaemia. One can easily notice that sample sizes were
not adequate for any of these sub-group estimates

Poor reporting of data in different stages are also widely prevalent and can be con-
trolled through proper monitoring. Ways for controlling errors, bridging data gaps, data
reduction and improving the quality of data are being discussed now. These can be applied
at different stages, viz., at handling of data, sample selection and estimation. Every survey,
without exception, encounters the problem of missing data or data with inconsistencies. The
main reasons of missing data (i) non-collection of the responses of a sample element, (ii) dele-
tion of some responses as they fail to satisfy certain edit checks. Inconsistencies in data may
be attributed to various reasons, such as errors in tabulation, data entry or even in copying
from a secondary source. In all such events, it is a norm to treat it as missing data and
handle it accordingly. Whereas total non-response, i.e., when all of the responses on a unit
are not available, can be handled by some form of weighting adjustment techniques, item
non-responses are taken care of by imputation. In the sequel, we add another dimension to
data validation.
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Framework for data monitoring and quality assessment

Several data quality frameworks have been developed in the health sciences, most
of them related to administrative data, registries and electronic health records (Mariño et
al., 2022, Schmidt et al.,2021). Although they may differ in functionality, their fundamental
data quality parameters are similar. The four broad dimensions of such frameworks are -
Data Integrity, Completeness, Consistency, and Accuracy (Mariño et al., 2022, Schmidt et
al., 2021).

Data Integrity

Data integrity is the degree to which the data conforms to structural and technical
requirements. This dimension includes the domains of correct structural representation of
data, correct matching of records and elements across multiple datasets, and use of appro-
priate data value formats.

Completeness

This dimension evaluates the degree to which the required data values are present.
It is evaluated with respect to two domains - crude missingness and qualified missingness.
Crude missingness is the metrics of missing data values that ignore the underlying reasons
for missing data. In qualified missingness assessment, metrics are developed for underlying
reasons for missing data such as non-response rate, refusal rate, drop-out rate, etc.

Consistency

This data quality dimension encompasses the aspects of range and value violations
(compliance with admissible data values or value ranges), and contradictions (presence of
improbable combinations).

Accuracy

It is assessed in terms of three domains- unexpected distributions, unexpected as-
sociations, and disagreement of repeated measurements. Unexpected distribution entails
presence of outliers, unexpected location, shape, scale, among other distributional discrep-
ancies. Unexpected association may include unexpected direction or strength of association
between variables. Disagreement of repeated measurements is defined in terms of intra-class
reliability, inter-class reliability, or disagreement with gold standard.

Various software packages, especially on R platform, have been developed in recent
years to implement data quality monitoring on the four dimensions discussed above (Mariño
et al., 2022). These packages offer user-friendly platform to examine data properties in an
automated and efficient fashion. However, the performance of such packages depends largely
on the quality of the metadata file, which is required for creating the metrics for data quality
assessments. So, developing standard framework for metadata is another important aspect
for data quality assessment.

2.5. Some useful statistical techniques to address data quality

As stated earlier, use of poor methodology mostly includes choosing a poor study
design and inadequate sample size. We now describe some useful statistical techniques
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which may go a long way in strengthening the methodology.

Imputation

Almost every large survey suffers from missing values which may also include non-
response and/or outliers. Imputation technique consists of handling non-responses by replac-
ing each missing value with a real value. Several imputation procedures are now available
for assigning values for missing responses and these are deductive imputation, overall and
class-mean imputations, random imputation, hot-deck imputation, and imputation based
upon regression.

Principal components technique

Large scale surveys mostly have large data sets requiring reduction. Principal com-
ponents technique can be used to reduce data. This technique uses an orthogonal transfor-
mation to convert a set of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components. The number of principal
components is less than or equal to the number of original variables.

Randomized response technique

In many surveys, the intention is to seek information on sensitive characteristics to
which response is either false or evasive. It is, therefore, useful to employ the randomized
response technique in such cases. The technique ensures confidentiality to the respondent
and has become popular in recent years. Sensitive characteristics include unsafe sexual
behaviour, child abuse, drugs, etc. Detailed applications of this technique are discussed in
Nigam (2016).

Small area estimation

One of the areas of data gaps is related to micro-level planning, which requires es-
timates of different activities for ‘smaller’ areas having inadequate sample size. This can
be achieved by using small area estimation technique which is discussed in detail in Nigam
(2016).

Some other useful techniques

Two other techniques need special, though brief, mention. Re-sampling inference is a
technique which aims at finding the standard error of variance estimates of non-linear statis-
tics, such as ratios, regression coefficient, index numbers, etc. Some other applications are
the standard errors of statistics such as median (height or weight), inflation rate, wholesale
price index number and the like.

Another useful technique is Snowball Sampling. This can be used in situations where
large sample size is required. One such example is estimation of Maternal Mortality Ratio
etc.
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