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Abstract
This article obtains locally R-optimal designs for a logistic regression model with two

explanatory variables. The R-optimality criterion has been proposed in the literature as
an alternative to the most frequently used D-optimality criterion when the experimenter
wishes to minimize the volume of the confidence region for unknown parameters based on
Bonferroni t-intervals. The necessary and sufficient conditions of this optimality criterion
are confirmed through the equivalence theorem.

Key words: R-optimal design; Logistic regression model; D-optimality criterion; Bonferroni
t-intervals; Equivalence theorem.

AMS Subject Classifications: 62K05

1. Introduction

The Generalized Linear Models (GLMs) are mostly used in those experiments where
the responses are categorical type. These models are broadly applied in various types of
studies when the experimenter wishes : (i) to estimate individual treatment effects in a mul-
ticenter clinical trial (see Lee and Nelder, 2002), (ii) to investigate the pattern of distribution
of important tree species, and (iii) to identify the relationship between the risk of HIV (Hu-
man immunodeficiency virus) infection and the number of contacts with other partners and
explanatory variables (see Jewell and Shiboski, 1992). McCullagh and Nelder (1989) have
provided a detailed discussion on the analysis of data using GLMs and their application in
different interdisciplinary areas.

The basic objective of finding an optimal design based on a certain criterion is to
discuss statistical inference about the response of interest by selecting the control variable
appropriately. The values of the control variables are chosen to minimize the variability of the
estimators of the unknown parameters involved with the regression model. The pioneering
work on optimal design was laid out by Kiefer (1959) and Kiefer and Wolfowitz (1959). The
task of finding the optimal design for the GLM becomes quite challenging as the information
matrix depends upon the unknown parameters i.e., to find the best design to estimate the
unknown parameters and yet one has to know the parameters to obtain the best design.

Corresponding Author: Mahesh Kumar Panda
Email: mahesh2123ster@gmail.com
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Chernoff (1953) proposed an approach that targets obtaining a local optimal design for a
best guess value of the parameter.

For a logistic model with two variables, Abdelbasit and Plackett (1983) established
that a D-optimal k-point design is a 2-point design when k is even and a 3-point design
when k is odd. Minkin (1987) modified the result of the D-optimal design by relaxing the
various constraints imposed on the design space. Chaloner and Larntzin (1989) discussed
Bayesian D-optimal designs for the logistic regression model. Using a geometric approach,
Ford et al. (1992) obtained C-optimal and D-optimal designs for the discussed model. Sitter
and Wu (1993) obtained D-, A-, and F-optimal designs for the logistic model, while Dette
and Haines (1994) found E-optimal designs for the same model. Mathew and Sinha (2002)
derived a unified approach of D-, A-, and E- optimal designs for binary data under the logistic
model with two parameters. Woods et al. (2006), Dror and Steinberg (2006), and McGree
and Eccleston (2008) reported optimal designs for two variable binary logistic models with
interaction. These designs were constructed by using numerical methods. In this article,
we obtain locally R-optimal designs for a logistic regression model with two explanatory
variables. Dette (1997) proposed the R-optimality criterion in the literature as an alternative
to the most frequently used D-optimality criterion. He recommended that an experimenter
can prefer the R-optimality criterion in comparison to the D-optimality criterion when he/she
wishes to minimize the volume of the confidence region for unknown parameters based on
the Bonferroni t-intervals.

The rest of the article is organized as follows. Section 2 provides the preliminaries. In
Section 3, we obtain R-optimal designs for the logistic model with two variables. In Section
4, we discuss the robustness of the proposed optimal design through a simulation study.
Finally, the article is concluded with some discussion and conclusions in Section 5.

2. Preliminaries

Let us consider a binary response variable Y which follows a Bernoulli distribution
and takes two values i.e. it takes value 1 for a success/positive response and 0 for a fail-
ure/negative response. If the response variable Y is related to the explanatory variables x1
and x2 through the two-variable binary logistic model, then the probability of success, p,
can be expressed in terms of the logit

µ = logit(p) = ln
p

1 − p
= β0 + β1x1 + β2x2 (1)

where x1 and x2 are considered to be concentrations of the doses of two drugs with x1 ≥ 0,
and x2 ≥ 0. In addition, the probability of a positive response is expected to increase with
dose concentrations for both drugs, and thus β1 and β2 can be considered a strictly positive
value [see Haines et al. (2007), and Haines et al. (2018)]. Due to practical considerations,
the values of the parameter β0 may be chosen as negative values in different experiments.
Based on the scaled doses i.e. z1 = β1x1 and z2 = β2x2, the model Equations (1) can be
expressed as

logit(p) = β0 + z1 + z2 z1 ≥ 0 and z2 ≥ 0. (2)
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Consider an approximate design ξ that assigns weights wi on the distinct points zi = (z1i, z2i)
for i = 1, 2, . . . , r is denoted by

ξ =
{

(z11, z21) . . . (z1r, z2r)
w1 . . . wr

}
, where 0 < wi < 1 and

r∑

i=1
wi = 1.

The information matrix for the model Equation (2) based on the above design is given
by

M(ξ) =
r∑

i=1
wif(zi)f ′(zi) (3)

where

f(z)f ′(z) = k




1 z1 z2
z1 z2

1 z1z2
z2 z1z2 z2

2




with k = eµ

(1 + eµ)2 , f(z) = eµ/2

(1 + eµ)(1, z1, z2) and µ = β0 + z1 + z2.

Selection of initial designs: To obtain the R-optimal design for the model Equation (2)
we consider the support points of 3-point and 4-point D-optimal designs (see Haines, 2007)
and define them as follows:

3-point design : ξ =




(0, 0) (µ − β0, 0) (0, µ − β0)
1 − w

w

2
w

2



 (4)

4-point design : ξ1 =




(−µ − β0, 0) (0, −µ − β0) (µ − β0, 0) (0, µ − β0)
w w

1
2 − w

1
2 − w



 (5)

respectively. The support points of the design ξ1 are having complimentary µ-values. These
points are located on the boundary of the design space on lines of constant. Further, the
weights allocated to these points are based on the symmetric position of the support points.

R-optimal design: A design ξ∗ ∈ Ω with a non-singular matrix M (ξ∗) is called R-optimal
for the model equation (3) if it minimizes

Ψ(ξ) =
q∏

i=1
(M−1(ξ))ii =

q∏

i=1
e′

iM
−1(ξ)ei (6)

for all ξ ∈ Ω, where ei denotes the ith unit vector in Rq where q is the number of parameters
associated with the model Equation (2). The necessary and sufficient conditions for the
R-optimality can be verified using the following equivalence theorem. For further details,
one can refer to the article of Dette (1997).

Theorem 1: For model Equation (2) let

φ(z, ξ) = f(z)M−1(ξ)
( q∑

i=1

eie
′
i

e′
iM

−1(ξ)ei

)
M−1(ξ)f ′(z). (7)
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A design ξ∗ ∈ Ω is R-optimal if and only if

sup
z∈∆

φ(z, ξ∗) = q

with equality holds at the support points of ξ∗. Here ∆ is the experimental region of interest.

3. R-optimal designs

In this section, we obtain locally R-optimal designs which minimize the product of
the diagonal elements of the information matrix at best guesses of the unknown parameters
β0, β1, and β2.

3.1. Designs based on 3 points

Consider a 3-point design ξ of the form given by Equation (4) and assume that µ > β0
whenever β0 < 0 and µ < β0 whenever β0 > 0. Then we have the following theorem.

Theorem 2: The design ξ∗ that assigns a weight of 0.2324 to the point (µ − β0, 0), 0.5352
to the point (0, 0), and 0.2324 to the point (0, µ − β0) in ∆ is an R-optimal design where

∆ = {(z1, z2) : z1 ≥ 0, z2 ≥ 0, z1 + z2 ≤ 3.7422}.

Proof: The information matrix for the model Equation (2) at the three-point design ξ
defined in Equation (4) is given by

M (ξ) =




eµ

(1 + eµ)2
eµw(µ − β0)
2(1 + eµ)2

eµw(µ − β0)
2(1 + eµ)2

eµw(µ − β0)
2(1 + eµ)2

eµw(µ − β0)2

2(1 + eµ)2 0
eµw(µ − β0)
2(1 + eµ)2 0 eµw(µ − β0)2

2(1 + eµ)2




.

The inverse of the above information matrix is given by

M−1(ξ) =



a b b
b c d
b d c


 (8)

with

a = −2(1 + cosh(µ))
−1 + w

, c = 2(−2 + w)(1 + cosh(µ))
(β0 − µ)2(−1 + w)w ,

b = −2(1 + cosh(µ))
(β0 − µ)(−1 + w) , and d = −2(1 + cosh(µ))

(β0 − µ)2(−1 + w) .

Using Equation (8), we obtain the function

Ψ(ξ) = −8(−2 + w)2(1 + cosh(µ))3

(β0 − µ)4(−1 + w)3w2 . (9)
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Next, we wish to minimize Ψ(ξ) w.r.t. µ and w for that we obtain the partial derivatives of
Equation (9) w.r.t. µ and w and set them equal to 0. Then we get

d

dµ
Ψ(ξ) = −8(−2 + w)2(1 + cosh(µ))2(4 + 4cosh(µ) + 3(β0 − µ)sinh(µ))

(β0 − µ)5(−1 + w)3w2 = 0, (10)

d

dw
Ψ(ξ) =

64(−2 + w)(4 + w(−10 + 3w))cosh
(

µ

2

)6

(3 + µ)4(−1 + w)4w3 = 0. (11)

Here cosh(µ) and sinh(µ) are defined as the cosine and sine hyperbolic functions evaluated
at µ. Next, Equation (10) leads to the following cases:

(i) w = 2,

(ii) cosh(µ) = −1,

(iii) 4 + 4cosh(µ) + 3(β0 − µ)sinh(µ) = 0,

and Equation (11) leads to the following cases:

(iv) w = 2,

(v) cosh
(

µ

2

)
= 0,

and (vi) 4+w(-10+3w) = 0.

Out of these above-mentioned cases, the four cases i.e. (i), (ii), (iv), and (v) are the
absurd cases. Therefore, we need to consider cases (iii) and (vi) only. Case (iii) implies

4 + 4cosh(µ) + 3(β0 − µ)sinh(µ) = 0

⇒β0 − µ = −4
3sinh(µ) − 4coth(µ)

3

⇒β0 − µ = −4cosech(µ)
3 − 4coth(µ)

3
⇒β0 = µ − 4

3[cosech(µ) − coth(µ)], (12)

where the functions cosech(µ) and coth(µ) are the cosecant and cotangent hyperbolic func-
tions evaluated at µ. Further, considering the first four terms of the Taylor series expansion
of cosech(µ), and coth(µ) in Equation (12), we get the following

β0 = µ − 4
3

[
1
µ

− µ

6 + 7µ3

360 − 31µ5

15120 + . . .

]
− 4

3

[
1
µ

+ µ

3 − µ3

45 + 2µ5

45 + . . .

]

⇒β0 = 703µ5

11340 + µ3

270 + 7µ

9 − 8
3µ

. (13)
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Next considering case (vi), we get two values of w out of which one value is feasible i.e., the
optimal value of w denoted by

w∗ = 5 −
√

13
3 = 0.4648 . (14)

Here the optimal value µ should satisfy Equation (13). From the numerical solutions obtained
for Equation (13), we see that there is a unique solution exists for all values µ > β0. Let us
denote the solution by µ∗. As the solution can not be represented in an explicit form thus
we provide the optimal values µ∗ for some selected values of β0 in Table 1.

The necessary and sufficient condition of the locally R-optimal design i.e. sup
z∈∆

φ(z, ξ∗) =
q is confirmed by using the equivalence theorem which is as follows:

φ(z, ξ∗) =k
{

a + bz1 + bz2 − (β0 − µ)w(b + cz1 + dz2)
−2 + w

− (β0 − µ)w(b + dz1 + cz2)
−2 + w

+ z2

(
b + dz1 + cz2

− w(b + cz1 + dz2)
−2 + w

+ a + bz1 + bz2

β0 − µ

)
+z1

(
b + cz1 + dz2

+ a + bz1 + bz2

β0 − µ
− w(b + dz1 + cz2)

−2 + w

)}
. (15)

Next, we provide the values of φ(z, ξ∗) for some selected values of z1 and z2 in Table 2. We
verify equivalence theorem for locally R-optimal design ξ∗ by plotting a 3-dimensional plot of
φ(z, ξ∗) against z1 ≥ 0 and z2 ≥ 0 within the region ∆ (see Figure 1). This proves Theorem
2.

Table 1: Values of µ∗ for selected β0 for 3-point designs

β0 -3 -2.5 -2 -1.5 -1 -0.5 0
µ∗ 0.7422 0.8386 0.9543 1.0896 1.2392 1.3917 1.5355

Table 2: Values of φ(z, ξ∗) for different values of z1 and z2

z1 z2 φ(z, ξ∗)
0 0 3
0 3.742231 3

3.742231 0 3
3.5 0.5 2.88382
3 1 2.34827

2.5 1.5 2.02694
1.87112 1.87112 1.5

2 1 0.774831
0.5 2 0.663202
1.25 1.45 0.494252
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Figure 1: Plot of the φ(z, ξ∗) against z1 and z2

3.2. Designs based on 4 points

In this section, we consider a 4-point design ξ1 of the form given by Equation (5) and
assume that 0 ≤ µ ≤ −β0. Then we have the following theorem.

Theorem 3: For the model Equation (2), there exists no mass-symmetric design of the form
ξ1 based on the four support points given by Equation (5).

Proof: The information matrix for the model Equation (2) at the four-point design ξ1 is
given by

M(ξ1) =



M11 M12 M13
M21 M22 M23
M31 M32 M33




where

M11 = eµ

(1 + eµ)2 ,

M12 = M21 = M13 = M31 = eµ

(1 + eµ)2

{
µ

2 − β0

2 − 2µw
}

,

M22 = M33 = eµ

(1 + eµ)2

{
−2µ2w − 2wβ2

0 + 4wµβ0 + µ2

2 + β2
0

2 − µβ0

}
,

and M23 = M32 = 0.

The inverse of the above information matrix is

M−1(ξ1) =



M+

11 M+
12 M+

13
M+

21 M+
22 M+

23
M+

31 M+
32 M+

33


 (16)
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with

M+
11 = −((β0 − µ)2 + 8β0µw)(1 + cosh(µ))

4µ2w(−1 + 2w) ,

M+
12 = M+

21 = M+
13 = M+

31 = −(β0 + µ(−1 + 4w))(1 + cosh(µ))
4µ2w(−1 + 2w) ,

M+
22 = M+

33 = −e−µ(1 + eµ)2((β0 − µ)2 + 8µ(β0 − µ)w − 16µ2w2)
8µ2w(−1 + 2w)((β0 − µ)2 + 8β0µw) ,

and M+
23 = M+

32 = − (β0 + µ(−1 + 4w)2)(1 + cosh(µ))
4µ2w(−1 + 2w)((β0 − µ)2 + 8β0µw) .

Using Equation (6), we obtain the function

Ψ(ξ1) = e−3µ(1 + eµ)6((β0 − µ)2 + 8µ(β0 + µ)w − 16µ2w2)2

512µ2w2(−1 + 2w)3((β0 − µ)2 + 8β0µw) . (17)

Next, we wish to minimize Ψ(ξ1) w.r.t. µ and w for that we obtain the partial
derivatives of Equation (17) w.r.t. µ and w and set them equal to 0. Here we also replace the
functions sinh(µ/2) and cosh(µ/2) by the first three terms of their Taylor series expansion
respectively. Then, we get

d

dµ
Ψ(ξ1) = −κ1(µ, β0, w)

κ2(µ, β0, w) = 0 , (18)

d

dw
Ψ(ξ1) = −λ1(µ, β0, w)

λ2(µ, β0, w) = 0 (19)

where

κ1(µ, β0, w) =
(

e

−5µ

2 (1 + eµ)5((−β0 − µ)2 − 8µ(β0 + µ)w + 16µ2w2)
(

2((3β0 − 2µ)(β0 − µ)3 + 4(β0 − µ)2µ(11β0 + 4µ)w

+ 16µ2(9β2
0 + 9β0µ − 2µ2)w2 − 192β0µ

3w3)cosh(µ

2 )

+ 3µ((β0 − µ)2 + 8β0µw)(−(β0 − µ)2 − 8µ(β0 + µ)

w + 16µ2w2)sinh(µ

2 )
))

,

κ2(µ, β0, w) = 256µ7w3(−1 + 2w)3((β0 − µ)2 + 8β0µw)2,

λ1(µ, β0, w) =e−3µ(1 + eµ)6((−β0 − µ)2 + 8µ(β0 + µ)w − 16µ2w2)
(3β4

0(−1 + 4w) − 12β0µ
3(1 − 4w)2(−1 − 2w + 4w2)

+ 18β2
0µ2(−1 + 4w)(1 − 4w + 8w2) + 4β3

0µ(3
+ 22w(−1 + 2w) + µ4(−3 + 4w(1 + 4(3 − 4w)w))),
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and λ2(µ, β0, w) = 512µ6(−1 + 2w)4w4((β0 − µ)2 + 8β0µw)2.

Equation (17) leads to the following cases:

(a) e

−5µ

2 = 0,

(b) 1 + eµ = 0,

(c) −(β0 − µ)2 − 8µ(β0 + µ)w + 16µ2w2 = 0,

(d)
(

2((3β0 − 2µ)(β0 − µ)3 + 4(β0 − µ)2µ(11β0 + 4µ)w + 16µ2(9β2
0 + 9β0µ − 2µ2)w2 −

192β0µ
3w3)cosh(µ

2 )+3µ((β0−µ)2+8β0µw)(−(β0−µ)2−8µ(β0+µ)w+16µ2w2)sinh(µ

2 )
)

=
0,

and Equation (18) leads to the following cases:

(e) e−3µ = 0,

(f) (1 + eµ)6 = 0,

(g) (−β0 − µ)2 + 8µ(β0 + µ)w − 16µ2w2) = 0,

(h) (3β4
0(−1+4w)−12β0µ

3(1−4w)2(−1−2w +4w2)+18β2
0µ2(−1+4w)(−1−4w +8w2)+

4β3
0µ(3 + 22w(−1 + 2w) + µ4(−3 + 4w(1 + 4(3 − 4w)w))) = 0.

Out of the above-mentioned cases (a), (b), (e), and (f) are the absurd cases. Case (c) leads
to two possible values of µ i.e.

µ =
−β0 + 4β0w ± 4

√
−β2

0w + 2β2
0w2

16w2 − 8w − 1 . (20)

However, the values given in Equation (19) will be real provided w ≥ 1/2 which is again
meaningless. Further, by solving the pair of Equations corresponding to cases (c) and (g)
we get w = 1/2 which is not permissible. Next, we observe that the solutions of Equations
corresponding to cases (d) and (h) (for different values of β0 ) do not satisfy the restrictions
0 < w < 1/2, and 0 < µ < −β0. This indicates that there does not exist a four-point mass
symmetric R-optimal design of the form ξ1 for the model Equation (2).

4. Robustness and simulation study

In this section, we examine the robustness of the proposed optimal design through
a simulation study. First of all, we generate a sample of 50 observations of the unknown
parameter β0 from the U(−10, 10) distribution and obtain the corresponding value of µ using
Equation (13) by considering the assumptions about the parameter β0 and µ as discussed in
section 3.1. Next, for the pair of values of ( β0, µ) we find the supremum value of φ(z, ξ∗)
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over the set ∆ using Equation (2.7). The values of β0, µ and sup
z∈∆

φ(z, ξ∗) are shown in Table

3 (Appendix I). From Table 3, we observe that the value of sup
z∈∆

φ(z, ξ∗) is equal to 3 and

it exists at all the support points of optimal design ξ∗ as defined in Equation (4). This
shows that the necessary and sufficient condition of the locally R-optimal design i.e. the
equivalence theorem is satisfied for different values of β0. Thus, it can be concluded that the
proposed optimum design is robust or insensitive toward variation in parameter values.

5. Discussion and conclusions

In the literature on the construction of optimal designs, the widely used optimality
criterion is the D-optimality criterion. An experimenter decides to consider the D-optimality
criterion when he/she is interested in the confidence ellipsoid of the estimators of the un-
known parameters However, if the experimenter wishes to construct a rectangular confidence
region then he/she should prefer an R-optimal design instead of a D-optimal design.

This present article obtains locally R-optimal designs for the logistic regression model
in two variables subject to the constraint that the values of the variables are greater than or
equal to zero. It is observed that the constructed designs depend upon the two unknown pa-
rameters through a scaled transformation of the explanatory variables whereas the intercept
parameter β0 provides the basic structure of the design.

Haines et al. (2018) have obtained D-optimal designs for the two-variable binary
logistic regression model with interaction where the design points consist of an origin, two
axial points, and a ray point, which lies within the design space that accommodates inter-
action. In this article, it is assumed that equal weights are assigned to each of the design
points. An interesting research problem is to investigate locally R-optimal designs for the
same model. For this purpose, the design points proposed by Haines et al. (2018) can be
used. This shall be an interesting and challenging research problem as the weights assigned
to each design point in the case of locally R-optimal designs may not be the same. We look
forward to exploring this open problem in future research.
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Appendix-I

Table 3: Values β0, µ and sup
z∈∆

φ(z, ξ∗)

S.N. β0 µ sup
z∈∆

φ(z, ξ∗) S.N. β0 µ sup
z∈∆

φ(z, ξ∗)

1 -5.6013 0.448 3 26 6.5924 2.4696 3
2 -3.1882 0.7104 3 27 -8.9667 2.6341 3
3 -4.7036 0.5216 3 28 1.3853 1.854 3
4 -3.9974 0.5969 3 29 -5.1861 0.4795 3
5 -6.5366 0.3898 3 30 -1.4474 1.1048 3
6 -9.3569 0.2785 3 31 -1.7531 1.0188 3
7 8.5955 2.6108 3 32 -9.2929 0.2803 3
8 -9.9134 0.2635 3 33 -3.2952 0.6934 3
9 -4.1403 0.5801 3 34 -8.1109 0.319 3
10 -5.7407 0.4383 3 35 8.8737 2.6283 3
11 9.2823 2.6534 3 36 -0.41 1.4185 3
12 5.6955 2.3958 3 37 9.629 2.674 3
13 -4.7861 0.5139 3 38 9.036 2.6384 3
14 -0.4474 1.4074 3 39 7.3492 2.5263 3
15 7.1903 2.5148 3 40 -0.4009 1.4212 3
16 -2.9595 0.7493 3 41 -4.3566 0.5563 3
17 6.2333 2.441 3 42 -3.2532 0.7 3
18 -3.0336 0.7363 3 43 -8.1627 0.317 3
19 7.5542 2.5409 3 44 -0.1417 1.4961 3
20 -2.4755 0.8437 3 45 -0.0297 1.5273 3
21 1.822 1.9327 3 46 -1.8701 0.9876 3
22 6.2163 2.4396 3 47 -9.2231 0.2823 3
23 3.6757 2.1933 3 48 -7.3585 0.3494 3
24 1.4215 1.8608 3 49 -3.5446 0.6562 3
25 1.675 1.9071 3 50 -1.4147 1.1143 3
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Abstract
In this paper, point estimation of shape and scale parameters of length-biased log-

logistic distribution under adaptive progressive type II censoring is addressed using Bayesian
and non-Bayesian approaches. Maximum Likelihood estimators are proposed and evaluated
using Newton-Raphson numerical approximation method. Asymptotic confidence interval
and parametric bootstrap confidence intervals are also constructed. Parametric Bayes esti-
mators are proposed under three different loss functions using Markov Chain Monte Carlo it-
erative method. Credible intervals and Highest Posterior Density region are also constructed.
Simulation study for different sample sizes and different censoring schemes is carried out to
establish utility of the proposed decision-theoretic strategies. A real dataset has also been
analyzed to reinforce the simulated results.

Key words: Length-biased log-logistic distribution; Adaptive progressive type II censoring;
Bootstrap confidence intervals; Highest Posterior Density region; Markov Chain Monte Carlo.

AMS Subject Classifications: 62F15, 65C05

1. Introduction

The main purpose of any censoring plan is to reduce time duration while optimizing
the total experimental cost. A balanced censoring strategy might take into account the
length of the experiment, the number of units involved, and the effectiveness of statistical
inference drawn from the study’s outcomes. The basic censoring schemes are time and
failure censoring. Progressive censoring schemes have flexibility of removing additional live
(functioning and good) items at the observed actual failure times. Ng et. al (2009) proposed
a new and more flexible censoring scheme known as adaptive progressive type II censoring
(APT-IIC) scheme which is combination of the type I and progressive type II censoring
plans. APT-IIC ensures a desired number of failed observations in a tested sample within a
prescribed duration of the experiment.

Consider n test units in a life-test. Let m be the desired counts of failed units in the
observed sample. Let R = (R1, R2, . . . , Rm) be the pre-determined intermittent withdrawals

Corresponding Author: Pulkit Srivastava
Email: pulkit.stats@gmail.com



14 RANJITA PANDEY, PULKIT SRIVASTAVA AND SWETA SHUKLA [Vol. 23, No. 1

under progressive censoring scheme such that the experiment span is pre-fixed at time T .
Let k be the total number of observed failure times before the pre-determined time T i.e.
Xk:m:n ≤ T ≤ Xk+1:m:n; k = 0, 1, . . . , m where X0:m:n = 0 and Xm+1:m:n = ∞. If the total
experiment time exceeds the ideal test time T , then Rk+1 = Rk+2 = · · · = Rm−1 = 0 and
Rm = n−m−∑k

i=1 Ri. In this situation, no surviving units get chance to be removed except
at the time of mth failure. This condition helps to accelerate the experiment so that it ends
as soon as possible.

Figure 1: A visual of the Adaptive Progressive Type II censoring scheme

Inferential studies for different life-time models under APT-IIC scheme are under-
taken by various authors. Parameter estimation of exponential distribution under APT-IIC
has been considered by Ng et. al (2009). Burr type XII distribution was considered by
Amein (2016) for estimation of unknown parameters under APT-IIC. Sobhi and Soliman
(2016) considered classical and Bayes estimation of the exponentiated Weibull model. Sim-
ilarly, parameter estimation of exponential, generalized exponential, exponentiated expo-
nential, generalized inverted exponential distributions under APT-IIC have been considered
by Ng et. al (2009), El-Din et. al (2017), Ateya and Mohammed (2017) and Soliman et.
al (2020) respectively. Maximum product spacing and the maximum likelihood estimation
of parameters of generalized Rayleigh distribution and Weibull distribution was discussed
by Almetwally et. al (2019) and Almetwally et. al (2020) respectively. Some other dis-
tributions under APT-IIC are: Generalized Pareto distribution by Mahmoud et. al (2013),
Kumaraswamy distribution by Almalki et. al (2022), new Weibull-Pareto distribution by EL-
Sagheer et. al (2018), Kumaraswamy-exponential distribution by Mohan and Chako (2021),
Truncated normal distribution by Chen and Gui (2020), generalized Gompertz distribution
by Amein et. al (2020), extreme value distribution by Ye et. al (2014), exponentiated
power Lindley by Ahmad et. al (2021), exponentiated half-logistic distribution by Xiong
and Gui (2021), exponentiated Pareto distribution by Wang and Gui (2021), asymmetric
power hazard distribution by El-Morshedy et. al (2022).

The present paper focuses on a length biased model which is defined in section 2.
Maximum likelihood estimation (MLE) along with Asymptotic Confidence Interval (ACI)
is derived in section 3. Section 4 describes Bayes estimation under three loss functions
namely squared error loss function (SELF), general entropy loss function (GELF) and linear
exponential loss function (LINEX). In addition, the corresponding Bayesian credible intervals
(BCI) and highest probability density intervals (HPD) are also calculated. Markov Chain
Monte Carlo (MCMC) approximations are detailed in section 5. A real data set illustrates
the developed theory in section 6. Concluding remarks are given in section 7.
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2. The model

Weighted distributions (WD) were first proposed by Fisher (1934). WD emerge when
information from any stochastic process are produced using a predetermined weight func-
tion. Compared to the original distributions, WD are more adaptable and as a result, they
are helpful in several fields including ecology, biometry, environmental sciences, survivabil-
ity, and reliability analysis. When the weight function, say w(x), depends on the length of
the units of interest, i.e. w(x) = x, the resulting distribution is termed as length biased
distribution (LBD). Although LBD does not add any additional parameters to the model,
it does provide it more flexibility. There are LB versions of a number of distributions ac-
cessible in statistical literature. Patil and Rao (1978) introduced LB versions of many basic
distributions such as log-normal, gamma, Pareto, beta. Das and Roy (2011) discussed LB
weighted Weibull distribution. Some other works on LB versions of different distributions
are: LB weighted generalized Rayleigh distribution (Das and Roy, 2011), LB beta distri-
bution (Mir et.al, 2013), LB Weibull distribution (Pandya et. al, 2013), LB exponentiated
inverted Weibull (Seenoi et. al, 2014), LB weighted Lomax distribution (Ahmad et. al, 2016),
LB Inverse Rayleigh distribution (Pandey and Kumari, 2016), LB weighted Erlang distri-
bution (Reyad et. al, 2017), LB Sushila distribution (Rather and Subramanian, 2018), LB
weighted Lomax distributions (Karimi and Nasiri, 2018), LB Erlang–truncated exponential
distribution (Rather and Subramanian, 2019) and many more.

Recently Pandey et. al (2021) introduced LB Log Logistic distribution (LBLL(α, β))
as a lifetime model. The pdf of (LBLL(α, β)) is given as

f(x; α, β) =

(
β
α

) (
x
α

)β

{
1 +

(
x
α

)β
}2

sin
(

π
β

)

(
π
β

) for x, α, β > 0 (1)

The corresponding cdf can be obtained as (see Pandey et. al (2021))

F (x) =
� ∞

x

f(t; α, β)dt

F (x) =
sin

(
π
β

)

(
π
β

) 1
β

(
x

α

)1−β

log
(

1 +
(

x

α

)β
)

−
(

x
α

)

1 +
(

x
α

)β

−
(

1 − β

β

)

(

x

α

)
+

∞∑

u=1

(−1)u
(

x
α

)1+uβ

u (1 + uβ)


 for x, α, β > 0 (2)

3. Classical point and interval estimation

Under APT-IIC, n, m, R, T be fixed before the experiment begins. Lifetime distribu-
tion is assumed to follow pdf f(x; Θ)and corresponding cdf F (x; Θ), where Θ represents a
vector of parameters. The likelihood function under APT-IIC scheme (Ng et al., 2009) is
given as
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L(Θ; t) = CJ

(
m∏

i=1
f (ti; Θ)

)(
k∏

i=1
(1 − F (ti; Θ))Ri

)
(1 − F (tm; Θ))n−m−

∑k

i=1 Ri

0 < t1 < t2 < · · · < tm < ∞ (3)

where

CJ =
m∏

i=1


n − i + 1 −

max{i−1,k}∑

j=1
Rj




The likelihood function for LBLL(α, β) whose pdf and cdf are given by (1) and (2)
respectively, under APT-IIC is given as

L (β, α; t) = CJ

(
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−
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)
(4)

where
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The corresponding log likelihood function is written as

ln L = const +
m∑

i=1
ln {E1} +

J∑

i=i

Ri ln {E2} +
(

n − m −
k∑

i=1
Ri

)
ln {E3} (5)

Partially differentiating (5) with respect to (w.r.t.) α yields

∂ ln L

∂α
= ∂

∂α

{
m∑

i=1
ln {E1}

}
+ ∂

∂α

{
J∑

i=i

Ri ln {E2}
}

+
(

n − m −
k∑

i=1
Ri

)
∂

∂α
{ln {E3}} (6)

α̂, mle of α is the value for which ∂ ln L
∂α

= 0 and ∂2 ln L
∂α2

∣∣∣
α=α̂

< 0.
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Similarly, partial differentiation of (5) w.r.t. β yields

∂ ln L

∂β
= ∂

∂β

{
m∑

i=1
ln {E1}

}
+ ∂

∂β

{
J∑

i=i

Ri ln {E2}
}

+
(

n − m −
k∑

i=1
Ri

)
∂

∂β
{ln {E3}} (7)

β̂, mle of β, is the value for which ∂ ln L
∂β

= 0 and ∂2 ln L
∂β2

∣∣∣
β=β̂

< 0.

The solution of the system of nonlinear equations (6)-(7) of the first partial derivatives
of log-likelihood function w.r.t. parameters cannot be obtained in closed form . Therefore,
to find approximate MLEs, a numerical method like Newton-Raphson (N-R) method is used.

Let λ̂ = (α̂, β̂) be denoting the mle of λ = (α, β) and I(λ) is Fisher’s Information
matrix, i.e.

I (λ) = − 1
n


E

(
∂2logL

∂α2

)
E
(

∂2logL
∂α∂β

)

E
(

∂2logL
∂α∂β

)
E
(

∂2logL
∂β2

)

 (8)

Matrix elements for I(λ), given in (8) are defined under APT-IIC as under,

∂2 ln L

∂α2 = ∂2

∂α2

{
m∑

i=1
ln {E1}

}
+ ∂2

∂α2

{
J∑

i=i

Ri ln {E2}
}

+
(

n − m −
k∑

i=1
Ri

)
∂2

∂α2 {ln {E3}} (9)

∂2 ln L

∂β2 = ∂2

∂β2

{
m∑

i=1
ln {E1}

}
+ ∂2

∂β2

{
J∑

i=i

Ri ln {E2}
}

+
(

n − m −
k∑

i=1
Ri

)
∂2

∂β2 {ln {E3}} (10)

∂2 ln L

∂α∂β
= ∂2

∂α∂β

{
m∑

i=1
ln {E1}

}
+ ∂2

∂α∂β

{
J∑

i=i

Ri ln {E2}
}

+
(

n − m −
k∑

i=1
Ri

)
∂2

∂α∂β
{ln {E3}}

(11)
As it is evident from (9)-(11), the expectation of Hessian matrix is complicated due to
presence of mathematically intractable terms. Since the parameter vector λ is unknown,
hence using uniqueness property of mle, we estimate I−1(λ) by I−1(λ̂). This provides ACI
for the unknown parameters α and β given as

(
α̂ − z ξ

2

√
var (α̂), α̂ + z ξ

2

√
var (α̂)

)

(
β̂ − z ξ

2

√
var

(
β̂
)
, β̂ + z ξ

2

√
var

(
β̂
))

where var (α̂) and var
(
β̂
)

are the estimated variances of α̂ and β̂ given by the main di-
agonal elements of I−1(λ̂) and z ξ

2
represents the right tail probability for standard normal

distribution.

4. Bayesian estimation

Availability of prior information about concerned parameters, enables alternate Bayesian
inferential approach. In this paper, Bayes estimators (BEs) of the unknown parameters (α, β)
are proposed under SELF, GELF and LINEX loss function. In addition, the corresponding
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BCI and HPD interval are also calculated. Prior distributions for the unknown independent
parameters α and β are taken to be non-informative prior and gamma prior respectively.

p (α) = 1
α

; α > 0

p (β) = cd

Γd
βd−1 exp (−cβ) ; β, c, d > 0

where c and d are hyper parameters. Assuming the independence of the scale and shape
parameters, the joint prior distribution of α and β is written as

p (α, β) = cd

αΓd
βd−1 exp (−cβ) ; α, β, c, d > 0 (12)

Joint posterior distribution of α and β is

p (α, β|x) ∝
(

m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} (13)

where
E5 = βd−1

α
exp (−cβ)

4.1. Marginal posterior distributions

Marginal posterior distribution of unknown parameter α

p (α|x, β) ∝
� ∞

0

(
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} dβ (14)

Marginal posterior distribution of unknown parameter β

p (β|x, α) ∝
� ∞

0

(
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} dα (15)

4.2. Parametric Bayes estimators under different loss functions

The BE of an unknown parameter depends on the form of the loss function. We
obtain the expressions for BEs of unknown parameters under different loss functions. SELF,
a symmetric loss function, weighs underestimation (UE) and overestimation (OE) equally.
GELF (Calabria and Pulcini, 1996) and LINEX (Varian, 1975) are asymmetric in respect of
UE and OE being assigned different degrees of seriousness.

1. SELF
BE of the unknown parameter α, the posterior mean, is given as

α̃BS ∝ α

� (
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} dβdα (16)
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BE of unknown parameter β is given as

β̃BS ∝ β

� (
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} dαdβ (17)

2. GELF
BE of unknown parameter α is given as

(α̃BG)−q ∝
�

α−q

(
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} dβdα (18)

BE of unknown parameter β is given as

(β̃BG)−q ∝
�

β−q

(
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} dαdβ (19)

3. LINEX
BE of unknown parameter α is given as

α̃BLL ∝ 1
q

ln
�

e−qα

(
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} dβdα (20)

BE of unknown parameter β is given as

β̃BLL ∝ 1
q

ln
�

e−qβ

(
m∏

i=1
{E1}

)(
J∏

i=1
{E2}Ri

)(
{E3}n−m−

∑k

i=1 Ri

)
{E5} dαdβ (21)

5. Markov Chain Monte Carlo approximation

Markov Chain Monte Carlo (MCMC) technique approximates the complex expres-
sions of posterior distribution and BEs which are not available in closed form. We use MCMC
iteration such that the Gibbs sampler nests Metropolis-Hastings (M-H) algorithms (Metropo-
lis et. al, 1953; Hastings, 1970). Convergence of Markov chain simulation is achieved by
choosing a starting value which is nearer to the true value. Initial M simulated variates are
omitted to shake off the transient influence of arbitrary initial values. The desired posterior
sample is thus the residual set corresponding to position i, i = M + 1, . . . , N , for sufficiently
large N .
BEs of the unknown parameters under SELF are given by

α̃BSMC = 1
N − M

N∑

i=M+1
αi

β̃BSMC = 1
N − M

N∑

i=M+1
βi (22)
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Also, the approximate BEs of the unknown parameters under GELF are given by

α̃BGMC =

 1

N − M

N∑

i=M+1
αi

−q




− 1
q

β̃BGMC =

 1

N − M

N∑

i=M+1
βi

−q




− 1
q

(23)

where q > 0 represents OE
(
α̃BG1MC , β̃BG1MC

)
and q < 0 represents UE

(
α̃BG2MC , β̃BG2MC

)
.

The approximate BEs of the unknown parameters under LINEX are given by

α̃BLMC = −1
q

log

 1

N − M

N∑

i=M+1
e−qαi




β̃BLMC = −1
q

log

 1

N − M

N∑

i=M+1
e−qβi


 (24)

where q > 0 represents OE
(
α̃BL1MC , β̃BL1MC

)
and q < 0 represents UE

(
α̃BL2MC , β̃BL2MC

)
.

6. Simulation study

In this section, foremost data from LBLLD is generated via simulation. Next, APT-
IIC samples from the obtained LBLLD data is extracted by following procedure of Balakr-
ishnan and Sandhu (1995) and Ng et al. (2009). The algorithm described below resamples
according to APT-IIC from continuous lifetime distribution.

1. Set the values of n, m, Θ, T and R = (R1, R2, . . . , Rm), as desired by the sample situa-
tion.

2. Simulate m random variables from U (0, 1) as U1, U2, . . . , Um.

3. Set Wi = U
1/(i+Rm+Rm−1+···+Rm−i+1)
i for i = 1, 2, . . . , m.

4. Set Vi = 1 − WmWm−1 · · · Wm−i+1 for i = 1, 2, . . . , m. Then V1, V2, . . . , Vm is the m
progressive type II censored sample from U (0, 1).

5. Set Xi = F −1 (Vi; Θ) for i = 1, 2, . . . , m, where F −1 (.; Θ) is the quantile function of
the lifetime distribution. Thus X1, X2, . . . , Xm represent the required m progressive
type II censored sample from the specified distribution F (.).

6. Next, identify the value of k, where Xk:m:n < T < Xk+1:m:n and discard the sample
Xk+2:m:n, · · · , Xm:m:n.

7. Simulate the first m − k − 1 order statistics from a truncated distribution considered
as

f(x)
1−F (xk+1:m:n) with sample size

(
n −∑k

i=1 Ri − J − 1
)

as Xk+2:m:n, Xk+3:m:n · · · , Xm:m:n.
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Two random samples of sizes n = 30, 50 have been generated from LBLL (α, β)
by setting α = 1.5, β = 3.2. Three different preset values for T = 4.5, 5, 5.5 are taken.
MLEs are computed from these samples through numerical approximation N-R method in R
software. OpenBUGS is utilised for generating posterior samples using MCMC by fixing the
hyper parameters at b = 2, c = 4. 10000 samples with 2000 samples for burn-in period are
generated. We have taken q = 2 for OE and q = −2 for UE. Bayes estimates under MCMC
have been calculated using (22)-(24).

Table 1 represents the APT-IIC schemes which we have used in simulation. Estimated
values of scale parameter α and shape parameter β with the associated mean square error
(MSE) of MLEs and BEs under three loss functions for different combinations of (n, T ) are
presented in Tables (2)-(4) respectively. Following inferences based on these tables:

1. For unknown scale parameter α, Bayes estimates give values which are closer to true
values for all the three values of T . For some censoring schemes, MLEs also give better
estimates in terms of minimum MSEs. Among Bayes estimates, LINEX OE gives
values with higher precision for most of the censoring scheme.

2. Same pattern can be seen for the unknown shape parameter β also. Among Bayes
estimates, LINEX UE gives better values as they have minimum MSEs than others.

Tables (5)-(6) represent the LL, UL and AL of ACI and BCI, HPD1 and HPD2 of the param-
eters under study for the three selected values of T respectively. The following relationship
is obtained for both unknown parameters

HPD1AL < HPD2AL < BCIAL < ACIAL

This is true for all the three values of T . Here, HPD1 refers 89%HPD and HPD2 refers
95%HPD intervals. AL of all intervals are decreased as we increase the value of m for
different censoring schemes.

Table 1: Progressive type II censoring schemes used in simulation

n m CS R

30
10

CS[1] 2*10
CS[2] 0*3, 5*4, 0*3

20
CS[3] 0*5, 1*10, 0*5
CS[4] 0*8, 2*5, 0*7

50
25

CS[5] 1*25
CS[6] 0*10, 5*5, 0*10

35
CS[7] 0*20, 1*15
CS[8] 1*15, 0*20
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7. Real data illustration

A real dataset is taken from Teza (2015, ch 4). Data describes the mechanical proper-
ties such as initial rate of absorption, water absorption, dry density and compressive strength
of 50 units of clay bricks and fly ash bricks. This data set has also been analysed by Nagamani
et. al (2021) for estimating common scale parameter of two logistic populations.

In the present paper, we have taken the data on compressive strength of fly ash bricks
to illustrate the proposed method. The uncensored data are composed of 50 observations
(3.62, 4.74, 9.88, 5.93, 6.09, 6.94, 6.32, 5.30, 5.14, 4.55, 4.03, 7.36, 3.57, 3.98, 4.03, 4.74, 7.32,
3.23, 5.38, 7.18, 6.07, 3.62, 6.64, 5.58, 5.23, 3.95, 5.86, 5.58, 6.97, 5.05, 4.35, 4.55, 4.79, 4.03,
4.74, 7.58, 3.62, 6.01, 3.99, 6.04, 4.74, 7.21, 3.61, 5.69, 7.21, 6.40, 3.55, 8.70, 4.35, 7). Table
(7) indicates that LBLLD is suitable for the given data set based on negative log likelihood
and three information criteria.

Table 7: Fitting of data to three different distributions

Sr no.
Reliability

-LogL AIC BIC AICCmodel

1.
Logistic

91.350 186.701 190.525 186.956β=scale
α=location

2.
Log logistic

89.547 183.094 186.918 183.349β=shape
α=scale

3.
LBLL

89.493 182.986 186.81 183.241β=shape
α=scale

Further two APT-II censored samples for T = 3.99, 7.18 are extracted with n =
50, m = 30, R = (0∗10, 2∗10, 0∗10). The censored samples thus obtained are (3.23, 3.55, 3.57,
3.61, 3.62, 3.62, 3.62, 3.95, 3.98, 3.99, 4.03, 4.03, 4.03, 4.35, 4.35, 4.55, 4.55, 4.74, 4.74,
4.74, 4.74, 4.79, 5.05, 5.14, 5.23, 5.30, 5.38, 5.58, 5.58, 5.69) and (3.23, 3.55, 3.57, 3.61, 3.62,
3.62, 3.62, 3.95, 3.98, 3.99, 4.03, 4.35, 4.55, 4.74, 5.05, 5.05, 5.14, 5.23, 5.30, 5.30, 5.38, 5.58,
5.58, 5.58, 5.69, 5.93, 6.07, 6.40, 6.97, 7.18). MLEs and Bayes estimates of the unknown
parameters are given in Table (8) for the selected values of T . LL, UL, and AL of different
confidence and credible intervals for the unknown scale and shape parameters are given in
Table (9) for the selected values of T . Among Bayesian intervals, HPD1 interval has shortest
length.

ACI is shortest classical interval followed by Boot-p and Boot-t. The following rela-
tionship can be seen for scale parameter

HPD1AL < HPD2AL < BCIAL < ACIAL < Boot − pAL < Boot − tAL

AL of intervals are increased amomg classical intervals while it is decreased among Bayesian
intervals as we increase the value of T . Similarly, for shape parameter, AL is decreased for
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Table 8: MLEs and Bayes estimates under APT-IIC real data for both values of
T

(n,m) T MLE
Bayes Estimates

SELF GELF LINEX

(50,30)
3.99

α 4.2667 4.2484 4.2476 4.2486 4.2461 4.2506
β 10.4737 9.5466 9.5137 9.5574 9.3386 9.7536

7.18
α 4.502 4.4906 4.4899 4.4908 4.4886 4.4927
β 7.6081 7.3946 7.3837 7.3982 7.341 7.448

all intervals with increment in the value of T . For β, we get

HPD1AL < HPD2AL < BCIAL < Boot − tAL < Boot − pAL < ACIAL

This can be seen in intervals plots (Figure 2-3). MCMC trace plots are presented in Figure
4.

Table 9: Different intervals of unknown parameters under APT-IIC real data

T ACI BOOT-T BOOT-P BCI HPD1 HPD2

α

3.99

LL 3.999 3.945 4.007 4.158 4.171 4.163
UL 4.533 4.559 4.565 4.341 4.321 4.345
AL 0.534 0.614 0.558 0.183 0.15 0.182

7.18

LL 4.103 3.972 4.096 4.405 4.42 4.408
UL 4.901 4.978 5.008 4.58 4.561 4.581
AL 0.798 1.006 0.912 0.175 0.141 0.173

β

3.99

LL 7.489 8.25 9.04 8.65 8.806 8.64
UL 13.458 12.17 13.37 10.44 10.24 10.41
AL 5.968 3.92 4.33 1.79 1.434 1.77

7.18

LL 5.471 5.918 6.637 6.942 7.041 6.926
UL 9.744 8.742 9.984 7.849 7.791 7.826
AL 4.273 2.824 3.347 0.907 0.75 0.9
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Figure 2: Interval plot for T=3.99

Figure 3: Interval plot for T=7.18

Figure 4: MCMC trace plot for T=3.99 and T=7.18
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8. Conclusion

In this paper, we have considered the point and interval estimations of the parameters
of the LBLLD based on an APT-IIC scheme for Bayes and non-Bayes settings. This cen-
soring scheme allows us to choose the next censoring number taking into account both the
previous censoring numbers and previous failure times. The MLEs, the bootstrap confidence
intervals and the ACIs based on the observed Fisher information matrix have been discussed.
We assume the Jefferys and gamma priors for the unknown scale and shape parameters re-
spectively and provide the Bayes estimators under the assumptions of SELF, GELF and
LINEX loss functions. It is also found that when both parameters are unknown, the expres-
sions for Bayes estimates cannot be obtained in explicit form. The Gibbs sampling technique
is employed to generate MCMC samples. Credible intervals and HPD intervals have also
been constructed. A real life example is discussed to verify the proposed methodology. The
performance of different methods is compared via a Monte Carlo simulation.
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Abstract
This article finds locally R-optimal designs for the gamma regression model having

two parameters using the inverse link function. The R-optimality criterion has been proposed
in the literature as an alternative criterion to the well-known D-optimality criterion when
the target is to minimize the volume of the confidence region for unknown parameters based
on the Bonferroni t-intervals. The optimality of the proposed designs is confirmed using the
corresponding equivalence theorem.

Key words: Locally R-optimal design; Gamma regression model; Inverse link function; Bon-
ferroni t-intervals; Equivalence theorem.
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1. Introduction

The Generalized Linear Model (GLM), introduced by Nelder and Wedderburn (1972)
is a generalized version of the ordinary linear regression model. The GLM has extensive
applications in various disciplines of science such as clinical trials, engineering, reliability,
survival analysis, image analysis, bioinformatics, economics, insurance, agriculture, and in-
dustry. For more details on the applications of GLM, one can refer to the articles of Bailey
et al. (1960), Myers and Montgomery (1997), de Jong and Heller (2008), Fox (2015), and
Goldburd (2016).

The Gamma regression model is a particular form of GLM. This model is useful when
the responses are continuous, non-negative, and right-skewed type. There are many instances
in the literature where the gamma model with an appropriate link function has been used
to analyze the real data. The data analysis of car insurance claims (pg. 296, McCullagh and
Nelder, 1989) and clotting times of blood (pg. 300, McCullagh and Nelder, 1989) was carried
out by fitting a first-order Gamma model with the natural link function. Anderson et al.
(2010) used a first-order gamma model with a natural link function to analyze the reaction
time taken by the elders to recognize words on a computer monitor.
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In experimental design, the target for constructing an optimal design is to make the
predicted response closer to the mean response over a certain region of interest based on
a specific criterion of interest. For the seminal work on optimal designs, one can refer to
the work of Kiefer and Wolfowitz (1959), and Kiefer (1959). In the case of GLM, finding
the optimal designs becomes a very difficult task because the optimal design depends on
the unknown values of the model parameters. In this context, Chernoff (1953) proposed an
alternative way of finding optimal design by starting with an initial guess value of parameter
values that can lead to locally optimal designs.

Ford et al. (1992) obtained a locally D-optimal design for the Gamma regression
model that involves a single factor. Subsequently, Burridge and Sebastiani(1992) found the
locally D-optimal design for the Gamma model with two factors but without an intercept.
Burridge and Sebastiani (1994) obtained the same D-optimal design for the Gamma regres-
sion model which involves multiple factors. Aminenjad and Jafari (2017) found Bayesian
A- and D-optimal designs for the Gamma model with inverse link function by considering
various prior distributions such as Normal, Half-normal, Gamma, and Uniform distributions.
Gaffke et al. (2019) provided analytical solutions to derive locally D- and A-optimal designs
for the Gamma models that involve intercept terms. They also established that the derived
designs are essentially a complete class of designs. Idais and Schwabe (2021) found locally
D- and A-optimal designs for the Gamma models having linear predictors without intercept.
Idais (2021) obtained D-, A-, and Kiefer’s Φk -criteria optimality for vertex-type designs.

In experimental design, the D-optimality criterion is the most widely used optimal
design criterion. The geometrical interpretation of the D-optimality criterion is to minimize
the volume of the confidence ellipsoid region of the unknown parameters (see Silvey, 1980).
However, computation of the D-optimal design for a regression model becomes simple if
the number of parameters associated with the given model is small, let’s say 2 or 3. In
this perspective, an alternative design known as the R-optimal design was introduced by
Dette (1997). This design aims at minimizing the volume of the Bonferroni t-intervals.
Recently, many authors have obtained R-optimal designs for different types of regression
models e.g., second-order response surface models (Liu et al., 2016), multi-factor models with
heteroscedastic errors (He and Yue, 2017), multi-response regression models with multiple
factors (Liu et al., 2022), and models with mixture experiments (Panda, 2021; Panda and
Sahoo, 2024). To the best of our knowledge, the construction of R-optimal designs for GLM
has not been discussed yet in the literature except for the work of Panda and Biswal (2024).
In this context, the present article aims to construct locally R-optimal designs for the Gamma
Model with two parameters including the intercept parameter.

The rest of the article is organized as follows. Section 2 provides the model specifica-
tion as well as brief details on locally R-optimal designs. In Section 3, we obtain R-optimal
designs for the Gamma model with two parameters. Finally, the article is concluded with
some discussions and conclusions in Section 4.
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2. Model specification and locally R-optimal designs

Let the response variables Y1, Y2, . . . , Yn are assumed to be independent gamma-
distributed random variables i.e., the probability density function (p.d.f.) of each Yi

p(yi; ν) = 1
Γ(ν)yν−1

i e−yi , yi, ν > 0, i = 1, 2, . . . , n . (1)

Here ν is the shape parameter associated with the p.d.f as specified in equation (1). It is
assumed to be known and the same for all yi. However the expected value i.e. µi depends
on the values of xi the covariate of x. The canonical link for the Gamma distribution given
by Equation (1) is the inverse link function defined as

ηi = ν

µi

, where ηi = g′(xi)β, i = 1, 2, . . . , n (2)

is the linear predictor. In Equation (2), g = [g1, g2, . . . , gp]′ is a p-dimensional vector valued
function defined on a domain set Ξ ⊂ Rt, t ≥ 1. Here the component functions g1, g2, . . . , gp

are assumed to be linearly independent, and β ∈ Rp are assumed to be a p-dimensional
vector consisting of unknown parameters associated with the model Equation (2).

In this case, the variance function of the gamma distribution is V ar(Y ) = ν−1µ2

therefore the intensity function at a particular point x∈ Ξ (see Atkison and Woods, 2015)
can be defined as

u0(x, β) =

V ar(Y )

(
dη

dµ

)2



−1

= ν(g′(x)β)−2. (3)

As the gamma-distributed responses are continuous and non-negative and thus for a given
experimental region Ξ we assume throughout that the parameter vector β satisfies

g′(x)β > 0 for all x ∈ Ξ . (4)

For the model Equation (2), the Fisher information matrix at x and β can be defined
as

M(x, β) = u(x, β)g(x)g′(x) where u(x, β) = (g′(x)β)−2. (5)
For more details about the assumption made in Equation (4) and the information matrix
defined in Equation (5), one can refer to the articles of Gaffke et al. (2019) and Idais et al.
(2021).

For a given parameter value, let us define gβ as the local regression function then

gβ(x) = (g′(x)β)−1g(x) forall x ∈ Ξ . (6)

Using Equation (6), the Fisher information matrix in model Equation (5) can be rewritten
as

M(x, β) = g(x)g′(x). (7)



36 M.K. PANDA, T.K. BISWAL AND V.K. GUPTA [Vol. 23, No. 1

To obtain the R-optimal design for the model Equation (2), we consider the approximate
design ξ ∈ Ω (Ω the set of all approximate designs) of the form

ξ =
{

x1 . . . xs

w1 . . . ws

}
, wi(> 0) and

s∑

i=1
wi = 1 (8)

where x1, x2, . . . , xs ∈ Ξ are the ’s’ distinct points and wi is the weight associated with the
point xi for i = 1, 2, . . . , s. For the model Equation (2), the Fisher information matrix of a
design ξ at parameter vector β is defined as

M(ξ, β) =
s∑

i=1
wiM (xi, β). (9)

R-optimal design: A design ξ ∈ Ω with a non-singular information matrix M(ξ) is called
R-optimal for the model Equation (2) if it minimizes

ϕ(ξ) =
p∏

i=1
(M−1(ξ))ii =

p∏

i=1
e′

iM
−1(ξ)ei (10)

for all ξ ∈ Ω. Here ei denotes the ith unit vector in Rp, where p is the number of unknown
parameters associated with the model Equation (2). The necessary and sufficient conditions
for the R-optimality will be examined using the following equivalence theorem. For further
details, one can refer to the article of Dette (1997).

Theorem 1: For model Equation (2), let

φ(x, ξ) = g′(x)M−1(ξ)
( p∑

i=1

eie
′
i

eiM−1(ξ∗)e′
i

)
M−1(ξ)g(x). (11)

A design ξ∗ ∈ Ω is R-optimal if and only if

sup
x∈Ξ

φ(x, ξ∗) = p

with equality attained at the support points of ξ∗.

3. R-optimal designs

In this section, we obtain locally R-optimal designs for the model Equation (2) that
involves two unknown parameters including the intercept parameter. Thus the assumption
in Equation (4) becomes

g′(x)β = β0 + β1x > 0

for all x ∈ R. Here, we restrict our search to two-, three-, and four-support points design by
considering discrete values of β0 and β1 in the arbitrarily chosen intervals [0, 10] and [0, 100]
respectively.
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3.1. Design based on two support points

Let us consider a 2-point design ξ of the form

ξ =
{

a b
w 1 − w

}
, where 0 < w < 1. (12)

Theorem 2: The design ξ∗ that assigns a weight of w∗ to the point a∗ and 1 − w∗ to the
point b∗ in R [the numerical values of a∗, b∗ and w∗ are given in Table 1 (Appendix-I)] is an
R-optimal design.

Proof: Using Equation (9), the information matrix for the model Equation (2) at the two-
point design ξ will be

M(ξ) =




1 − w

(β0 + bβ1)2 + w

(β0 + aβ1)2
b(1 − w)

(β0 + bβ1)2 + aw

(β0 + aβ1)2

b(1 − w)
(β0 + bβ1)2 + aw

(β0 + aβ1)2
b2(1 − w)

(β0 + bβ1)2 + a2w

(β0 + aβ1)2




.

The inverse of the information matrix M(ξ) is given by

M−1(ξ) =
[
m11 m12
m21 m22

]
(13)

where

m11 = −b2(β0 + aβ1)2 + (b − a)β0((a + b)β0 + 2abβ1)w
(a − b)2(−1 + w)w ,

m12 = m21 = b(β0 + aβ1)2 + (b − a)(−β2
0 + abβ2

1)w
(a − b)2(−1 + w)w ,

and m22 = −(β0 + aβ1)2 + (a − b)β1(2β0 + (a + b)β1)w
(a − b)2(−1 + w)w .

Using Equation (10), we obtain

ϕ(ξ) =

[{
−b2(β0 + aβ1)2 + (b − a)β0((a + b)β0 + 2abβ1)w

}

×
{

−(β0 + aβ1)2 + (a − b)β1(2β0 + (a + b)β1)w
}]

(a − b)4(−1 + w)2w2 . (14)

Now, the problem is to minimize the function ϕ(ξ) w.r.t a, b and w for given values of β0 and β1.
This is done using the “fminsearch” function of Matlab software and getting the optimal values
a∗, b∗ and w∗ by discrete values of β0 and β1 in the arbitrarily chosen intervals [0, 10] and [0, 100]
respectively. The numerical values a∗, b∗ and w∗ are given in Table 1 (Appendix-I).
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Next, by using Equation (13) we derive the quadratic form as specified in Equation (11)
which is as follows:

φ(x, ξ) = 1
(β0 + β1x)2

{
m11 + m12x + (b(β0 + aβ1)2 + (b − a)(−β2

0 + abβ2
1)w)(m12 + m22x)

−(β0 + aβ1)2 + (a − b)β1(2β0 + (a + b)β1)w

+ x

(
m12 + m22x + (b(β0 + aβ1)2 + (b − a)(−β2

0 + abβ2
1)w)(m11 + m12x)

−b2(β0 + aβ1)2 + (b − a)β0((a + b)β0 + 2abβ1)w

)}
.

(15)

Replacing the numerical values of a∗, b∗ and w∗ in Equation (15) and using the “fminsearch”
function of Matlab software we find sup

x∈R
φ(x, ξ∗) = 2. Thus the necessary and sufficient condition

of the equivalence theorem is established. This proves Theorem 2.

3.2. Design based on three support points

Let us consider a 3-point design ξ of the form

ξ =
{

a b c
w/2 1 − w w/2

}
, where 0 < w < 1. (16)

Theorem 3: The design ξ∗ that assigns a weight of w∗/2 to the point a∗, 1 − w∗ to the
point b∗, and w∗/2 to the point c∗ in R [the numerical values of a∗, b∗, c∗ and w∗ are given
in Table 2 (Appendix-I)] is an R-optimal design.

Proof: Using Equation (9), the information matrix for the model Equation (2) at the three-
point design ξ will be

M(ξ) =




1 − w

(β0 + bβ1)2 + w

2(β0 + aβ1)2 + w

2(β0 + cβ1)2
b(1 − w)

(β0 + bβ1)2 + aw

2(β0 + aβ1)2 + cw

2(β0 + cβ1)2

b(1 − w)
(β0 + bβ1)2 + aw

2(β0 + aβ1)2 + cw

2(β0 + cβ1)2
b2(1 − w)

(β0 + bβ1)2 + a2w

2(β0 + aβ1)2 + c2w

2(β0 + cβ1)2




.

The inverse of the information matrix M (ξ) is given by

M−1(ξ) =
[
m∗

11 m∗
12

m∗
21 m∗

22

]
(17)

where

m∗
11 = α1

α2 + (α3 × α4)
,

m∗
12 = m∗

21 = α5

α2 + (α3 × α4)
,

and m∗
22 = 2α6

α2 + (α3 × α4)
,

with



2025] R-OPTIMAL DESIGNS FOR GAMMA REGRESSION MODEL 39

α1 = 2
(

− 2b2(1 − w)
(β0 + bβ1)2 + a2w

(β0 + aβ1)2 + c2w

(β0 + cβ1)2

)
,

α2 = −
(

− 2b(w − 1)
(β0 + bβ1)2 + aw

(β0 + aβ1)2 + cw

(β0 + cβ1)2

)2

,

α3 =
(

− 2(w − 1)
(β0 + bβ1)2 + w

(β0 + aβ1)2 + w

(β0 + cβ1)2

)
,

α4 =
(

− 2b2(w − 1)
(β0 + bβ1)2 + a2w

(β0 + aβ1)2 + c2w

(β0 + cβ1)2

)
,

α5 = 4
(

b(w − 1)
(β0 + bβ1)2 + 1

2

(
− a

(β0 + aβ1)2 − c

(β0 + cβ1)2

)
w

)
,

and α6 =
(

− 2(1 − w)
(β0 + bβ1)2 + w

(β0 + aβ1)2 + w

(β0 + cβ1)2

)
.

Using Equation (10), we obtain the function

ϕ(ξ) = 4(α3 × α4)
{α2 − (α3 × α4)}2 . (18)

Next, we need to minimize the function ϕ(ξ) w.r.t a, b, c and w for given values of β0 and
β1. This is achieved by using the “fminsearch” function of Matlab software and getting the
optimal values a∗, b∗, c∗ and w∗ by discrete values of β0 and β1 in the arbitrarily chosen
intervals [0, 10] and [0, 100] respectively. The numerical values a∗, b∗, c∗ and w∗ are given in
Table 2 (Appendix-I).

Next, by using Equation (17) we derive the quadratic form as specified in Equation
(11) which is as follows:

φ(x, ξ) = 1
(β0 + bβ1)2



m∗

11 + m∗
21x +

(
2(α7)(m∗

21 + m∗
22x)

(α6)

)

+ x

(
m∗

21 + m∗
22x +

(
2(α7)(m∗

11 + m∗
21x)

(α4)

))


(19)

with
α7 = b(w − 1)

(β0 + bβ1)2 + 1
2

(
− a

(β0 + aβ1)2 − c

(β0 + cβ1)2

)
w.

Replacing the numerical values of a∗, b∗, c∗ and w∗ in Equation (19) and using the “fmin-
search” function in Matlab software we find sup

x∈R
φ(x, ξ∗) = 2. Thus the necessary and

sufficient condition of the equivalence theorem is established. This proves Theorem 3.
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3.3. Design based on four support points

Let us consider a 4-point design ξ of the form

ξ =




a b c d

w
(1

2 − w
) (1

2 − w
)

w



 , where 0 < w < 1. (20)

Theorem 4: The design ξ∗ that assigns a weight of w∗ to the point a∗, (1/2) − w∗ to the
point b∗, (1/2) − w∗ to the point c∗ and w∗ to the point d∗ in R [the numerical values of a∗,
b∗, c∗, d∗ and w∗ are given in Table 3 (Appendix-I)] is an R-optimal design.

Proof: Using Equation (9), the information matrix for the model Equation (2) at the four-
point design ξ will be

M (ξ) =
[
λ1 λ2
λ2 λ3

]

where

λ1 =
1
2 − w

(β0 + bβ1)2 +
1
2 − w

(β0 + cβ1)2 + w

(β0 + aβ1)2 + w

(β0 + dβ1)2 ,

λ2 =
b
(1

2 − w
)

(β0 + bβ1)2 +
c
(1

2 − w
)

(β0 + cβ1)2 + aw

(β0 + aβ1)2 + dw

(β0 + dβ1)2 ,

and λ3 =
b2
(1

2 − w
)

(β0 + bβ1)2 +
c2
(1

2 − w
)

(β0 + cβ1)2 + a2w

(β0 + aβ1)2 + d2w

(β0 + dβ1)2 .

The inverse of the information matrix M (ξ) is given by

M−1(ξ) =
[
m+

11 m+
12

m+
21 m+

22

]
(21)

with

m+
11 = λ3

−(λ2)2 + (λ1 × λ3)
,

m+
12 = m+

21 = λ4

2{−(λ2)2 + (λ1 × λ3)}
,

and m+
22 = λ1

−(λ2)2 + (λ1 × λ3)
.

Using Equation (10), we obtain the function

ϕ(ξ) = λ1 × λ3

{(λ2)2 − (λ1 × λ3)}2 . (22)
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Now, the problem reduces to minimizing the function ϕ(ξ) w.r.t a, b, c, d and w for given
values of β0 and β1. This is achieved by using the “fminsearch” function of Matlab software
and getting the optimal values a∗, b∗, c∗, d∗ and w∗ by discrete values of β0 and β1 in the
arbitrarily chosen intervals [0, 10] and [0, 100] respectively. The numerical values a∗, b∗, c∗,
d∗ and w∗ are given in Table 3 (Appendix-I).

Next, by using Equation (21) we derive the quadratic form as specified in Equation
(11) which is as follows:

φ(x, ξ) = 1
(β0 + β1x)2

{
m+

11 + m+
12x + λ4(m+

12 + m+
22x)

2λ1

+ x
(
m+

12 + m+
22x + λ4(m+

11 + m+
12x)

2λ3

)} (23)

with λ4 = −2aw

(β0 + aβ1)2 + −2dw

(β0 + dβ1)2 + b(2w − 1)
(β0 + bβ1)2 + c(2w − 1)

(β0 + cβ1)2 .

Replacing the numerical values of a∗, b∗, c∗, d∗ and w∗ in Equation (23) and using the
“fminsearch” function of Matlab software we find sup

x∈R
φ(x, ξ∗) = 2. Thus the necessary and

sufficient condition of the equivalence theorem is established. This proves Theorem 4.

4. Discussion and conclusion

This article finds locally R-optimal designs for two parameters Gamma regression
model when the model is associated with inverse link function based on two-, three-, and
four-support point designs. The support points of the optimal designs and the weights
assigned to these points are calculated numerically using the “fminsearch” function of Matlab
software whereas the necessary and sufficient condition of R-optimality i.e. the equivalence
theorem is also established at the support points of the R-optimal design using “fminsearch”
function of Matlab software. A catalog of support points and the weight assigned to each
of the support points corresponding to R-optimal designs are listed in Table 1, Table 2, and
Table 3 (Appendix I). These Tables provide the solutions for only those values of β0 and β1
when the equivalence theorem is satisfied.

The present work considers three types of designs : (i) two-point designs (ii) three-
point designs where equal weights are assigned to one-pair of support points (iii) four-point
designs where equal weights are assigned to two-pair of support points. In all these cases,
we observe that the equivalence theorem does not hold for many discrete values of the
unknown parameters which indicates that the proposed designs are sensitive towards the
R-optimality criterion with the varying parameter choices. However, when we relax the
assumption of equal weights the optimal search criterion does not converge to any solution
as the problem becomes complicated with an increase in the number of unknown entities
(support points and weights). Therefore, more research work is required especially to propose
an alternative optimal search criterion that can converge to a finite solution that satisfies the
weight restriction as well. Nevertheless, the present work provides the necessary motivation
to find the solution of local R-optimal designs for GLM when the parameters take continuous
values.

For the two-support points design, we find that the support points lie in the third
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quadrant of the two-dimensional space. The values of the first coordinate and second coor-
dinate of the support points are approximately equal.

One can extend this idea to obtain R-optimal designs for the Gamma model with
more than two parameters.
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Appendix-I

Table 1: R-optimal design for Gamma regression model with two parameters
(Two support points)

β β0 = 1, β1 = 2 β0 = 1, β1 = 3 β0 = 1, β1 = 4 β0 = 1, β1 = 5
x
w

( −0.5000 −0.4999
0.1057 0.8943

) ( −0.3333 −0.3333
0.3042 0.6958

) ( −0.2500 −0.2499
0.5512 0.4488

) ( −0.2000 −0.1999
0.6098 0.3092

)

β β0 = 1, β1 = 6 β0 = 1, β1 = 7 β0 = 1, β1 = 8 β0 = 1, β1 = 9
x
w

( −0.1666 −0.1666
0.6084 0.3916

) ( −0.1428 −0.1428
0.6067 0.3933

) ( −0.1250 −0.1250
0.5672 0.4328

) ( −0.1111 −0.1111
0.5824 0.4176

)

β β0 = 1, β1 = 10 β0 = 1, β1 = 11 β0 = 1, β1 = 12 β0 = 1, β1 = 13
x
w

( −0.1000 −0.0999
0.6891 0.3109

) ( −0.0909 −0.0909
0.6094 0.3906

) ( −0.0833 −0.0833
0.6905 0.3095

) ( −0.0769 −0.0769
0.6137 0.3863

)

β β0 = 1, β1 = 14 β0 = 1, β1 = 15 β0 = 2, β1 = 4 β0 = 2, β1 = 5
x
w

( −0.0714 −0.0714
0.6344 0.3656

) ( −0.0666 −0.0666
0.6135 0.3865

) ( −0.5000 −0.4998
0.1058 0.8942

) ( −0.4000 −0.3999
0.2226 0.7774

)

β β0 = 2, β1 = 6 β0 = 2, β1 = 7 β0 = 2, β1 = 8 β0 = 2, β1 = 9
x
w

( −0.3333 −0.3333
0.3043 0.6957

) ( −0.2857 −0.2856
0.1965 0.8035

) ( −0.2500 −0.2499
0.5512 0.4488

) ( −0.2222 −0.2222
0.5871 0.4129

)

β β0 = 2, β1 = 10 β0 = 2, β1 = 11 β0 = 2, β1 = 12 β0 = 2, β1 = 13
x
w

( −0.2000 −0.1999
0.6098 0.3902

) ( −0.1818 −0.1818
0.6003 0.3997

) ( −0.1666 −0.1666
0.6148 0.3852

) ( −0.1538 −0.1538
0.6397 0.3603

)

β β0 = 2, β1 = 14 β0 = 2, β1 = 15 β0 = 3, β1 = 6 β0 = 3, β1 = 7
x
w

( −0.1428 −0.1428
0.6067 0.3933

) ( −0.1333 −0.1333
0.6100 0.3900

) ( −0.5000 −0.4997
0.1058 0.8942

) ( −0.4285 −0.4285
0.1702 0.8298

)

β β0 = 3, β1 = 8 β0 = 3, β1 = 9 β0 = 3, β1 = 10 β0 = 3, β1 = 11
x
w

( −0.3750 −0.3749
0.2920 0.7080

) ( −0.3333 −0.3333
0.3043 0.6957

) ( −0.3000 −0.2999
0.3204 0.6796

) ( −0.2727 −0.2727
0.6455 0.3545

)

β β0 = 3, β1 = 12 β0 = 3, β1 = 13 β0 = 3, β1 = 14 β0 = 3, β1 = 15
x
w

( −0.2500 −0.2499
0.5512 0.4488

) ( −0.2307 −0.2307
0.5830 0.4170

) ( −0.2142 −0.2142
0.6218 0.3782

) ( −0.2000 −0.1999
0.6098 0.3902

)

β β0 = 4, β1 = 7 β0 = 4, β1 = 8 β0 = 4, β1 = 10 β0 = 4, β1 = 11
x
w

( −0.5714 −0.5715
0.0837 0.9163

) ( −0.4999 −0.5000
0.1061 0.8939

) ( −0.4000 −0.3999
0.2226 0.7774

) ( −0.3636 −0.3636
0.2373 0.7627

)

β β0 = 4, β1 = 12 β0 = 4, β1 = 13 β0 = 4, β1 = 14 β0 = 4, β1 = 15
x
w

( −0.3333 −0.3333
0.3043 0.6957

) ( −0.3076 −0.3076
0.3441 0.6559

) ( −0.2857 −0.2856
0.1965 0.8035

) ( −0.2666 −0.2666
0.5384 0.4616

)
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Table 1: Continued

β β0 = 5, β1 = 10 β0 = 5, β1 = 11 β0 = 5, β1 = 12 β0 = 5, β1 = 13
x
w

( −0.5000 −0.4997
0.1058 0.8942

) ( −0.4545 −0.4544
0.0894 0.9106

) ( −0.4166 −0.4167
0.1951 0.8049

) ( −0.3846 −0.3846
0.3048 0.6952

)

β β0 = 5, β1 = 14 β0 = 5, β1 = 15 β0 = 5, β1 = 16 β0 = 5, β1 = 17
x
w

( −0.3571 −0.3571
0.3731 0.6269

) ( −0.3333 −0.3333
0.3043 0.6957

) ( −0.3125 −0.3124
0.3168 0.6832

) ( −0.2941 −0.2941
0.3197 0.6803

)

β β0 = 5, β1 = 18 β0 = 5, β1 = 19 β0 = 5, β1 = 20 β0 = 6, β1 = 11
x
w

( −0.2777 −0.2777
0.5890 0.4110

) ( −0.2631 −0.2631
0.6598 0.3402

) ( −0.2500 −0.2499
0.5512 0.4488

) ( −0.5454 −0.5454
0.0680 0.9320

)

β β0 = 6, β1 = 12 β0 = 6, β1 = 13 β0 = 6, β1 = 14 β0 = 6, β1 = 15
x
w

( −0.5000 −0.4997
0.1058 0.8942

) ( −0.4615 −0.4615
0.1378 0.8622

) ( −0.4285 −0.4285
0.1702 0.8298

) ( −0.3999 −0.4000
0.2226 0.7774

)

β β0 = 6, β1 = 16 β0 = 6, β1 = 17 β0 = 6, β1 = 18 β0 = 6, β1 = 19
x
w

( −0.3750 −0.3749
0.2920 0.7080

) ( −0.3529 −0.3528
0.2523 0.7477

) ( −0.3333 −0.3333
0.3043 0.6957

) ( −0.3158 −0.3157
0.3279 0.6721

)

β β0 = 6, β1 = 20 β0 = 7, β1 = 12 β0 = 7, β1 = 13 β0 = 7, β1 = 14
x
w

( −0.3000 −0.2999
0.3204 0.6796

) ( −0.5833 −0.5820
0.0341 0.9659

) ( −0.5384 −0.5384
0.0428 0.9572

) ( −0.5000 −0.4997
0.1058 0.8942

)

β β0 = 7, β1 = 16 β0 = 7, β1 = 17 β0 = 7, β1 = 18 β0 = 7, β1 = 19
x
w

( −0.4375 −0.4374
0.2406 0.7594

) ( −0.4117 −0.4117
0.2248 0.7752

) ( −0.3888 −0.3888
0.2329 0.7671

) ( −0.3684 −0.3684
0.2640 0.7360

)

β β0 = 7, β1 = 20 β0 = 8, β1 = 14 β0 = 8, β1 = 15 β0 = 8, β1 = 16
x
w

( −0.3499 −0.3500
0.3458 0.6542

) ( −0.5714 −0.5715
0.0837 0.9163

) ( −0.5333 −0.5332
0.0423 0.9577

) ( −0.4999 −0.5000
0.1061 0.8939

)

β β0 = 8, β1 = 19 β0 = 8, β1 = 20 β0 = 9, β1 = 16 β0 = 9, β1 = 17
x
w

( −0.4210 −0.4211
0.1934 0.8066

) ( −0.4000 −0.3999
0.2226 0.7774

) ( −0.5625 −0.5624
0.1161 0.8839

) ( −0.5294 −0.5294
0.0694 0.9306

)

β β0 = 9, β1 = 18 β0 = 9, β1 = 19 β0 = 9, β1 = 20 β0 = 10, β1 = 19
x
w

( −0.5000 −0.4997
0.1058 0.8942

) ( −0.4737 −0.4733
0.1565 0.8435

) ( −0.4497 −0.4525
0.8914 0.1086

) ( −0.5263 −0.5261
0.0598 0.9402

)

β β0 = 10, β1 = 20 - - -
x
w

( −0.5000 −0.4997
0.1058 0.8942

)
- - -
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Table 2: R-optimal design for Gamma regression model with two parameters
(Three support points)

β β0 = 1, β1 = 1 β0 = 1, β1 = 3 β0 = 1, β1 = 4
x
w

(−0.9998 −0.9791 −1.0001
0.4588 0.0824 0.4588

) (−0.2966 −0.3332 −0.3333
0.3704 0.2592 0.3704

) (2.3673 −0.2498 −0.2500
0.1827 0.3646 0.1827

)

β β0 = 1, β1 = 5 β0 = 1, β1 = 6 β0 = 1, β1 = 7
x
w

(−0.1997 −0.2000 −0.5475
0.4745 0.0510 0.4745

) (−0.1664 −0.1667 −3.0330
0.4474 0.1052 0.4474

) (−0.1427 −0.1428 −1.9328
0.4364 0.1272 0.4364

)

β β0 = 1, β1 = 14 β0 = 1, β1 = 15 β0 = 2, β1 = 1
x
w

(−0.9991 −0.9072 −1.0008
0.3528 0.2944 0.3528

) (−0.0666 −0.0666 −0.4346
0.3194 0.3403 0.3194

) (4.1382 −1.9996 −2.0001
0.2301 0.5398 0.2301

)

β β0 = 2, β1 = 2 β0 = 2, β1 = 3 β0 = 2, β1 = 6
x
w

(−0.9998 −0.9791 −1.0001
0.4588 0.0824 0.4588

) (−0.3689 −0.6666 −0.6667
0.2737 0.4526 0.2737

) (−0.3027 −0.3333 −0.3333
0.3641 0.2718 0.3641

)

β β0 = 2, β1 = 7 β0 = 2, β1 = 8 β0 = 2, β1 = 9
x
w

(1.2836 −0.2857 −0.2857
0.2417 0.5166 0.2417

) (2.3673 −0.2498 −0.2500
0.2827 0.4346 0.2827

) (2.4172 −0.2221 −0.2222
0.1870 0.6260 0.1870

)

β β0 = 2, β1 = 10 β0 = 2, β1 = 12 β0 = 2, β1 = 14
x
w

(−0.1999 −0.2000 −2.2390
0.4746 0.0508 0.4746

) (−0.1666 −0.1666 −2.1437
0.4169 0.1662 0.4169

) (−0.1428 −0.1428 −1.9329
0.4364 0.1272 0.4364

)

β β0 = 3, β1 = 1 β0 = 3, β1 = 2 β0 = 3, β1 = 3
x
w

(−0.9973 −2.9995 −3.0002
0.2611 0.4778 0.2611

) (−1.4997 −0.3850 −1.5002
0.1797 0.6406 0.1797

) (−0.9991 −0.9073 −1.0008
0.3528 0.2944 0.3528

)

β β0 = 3, β1 = 4 β0 = 3, β1 = 5 β0 = 3, β1 = 8
x
w

(−0.7501 −0.4096 −0.7498
0.4127 0.1746 0.4127

) (−0.6063 −0.5995 −0.6004
0.3365 0.3270 0.3365

) (3.8301 −0.3707 −0.3753
0.0732 0.8536 0.0732

)

β β0 = 3, β1 = 9 β0 = 3, β1 = 11 β0 = 3, β1 = 12
x
w

(−0.2966 −0.3332 −0.3334
0.3704 0.2592 0.3704

) (1.4888 −0.2727 −0.2727
0.2294 0.5412 0.2294

) (2.3673 −0.2499 −0.2500
0.1827 0.6346 0.1827

)

β β0 = 3, β1 = 13 β0 = 3, β1 = 14 β0 = 3, β1 = 15
x
w

(2.0636 −0.2306 −0.2308
0.2044 0.5912 0.2044

) (2.4503 −0.2142 −0.2143
0.1891 0.6218 0.1891

) (−0.1999 −0.2000 −2.239
0.4746 0.0508 0.4746

)

β β0 = 4, β1 = 1 β0 = 4, β1 = 2 β0 = 4, β1 = 3
x
w

(−3.1435 −4.0012 −3.9995
0.2141 0.5718 0.2141

) (13.4070 −1.9995 −2.0001
0.2284 0.5432 0.2284

) (−1.3334 −0.2232 −1.3332
0.2226 0.5480 0.2226

)

β β0 = 4, β1 = 4 β0 = 4, β1 = 5 β0 = 4, β1 = 6
x
w

(−0.9986 −0.9514 −1.0013
0.3523 0.2954 0.3523

) (−0.7998 −0.1396 −0.8001
0.3622 0.2756 0.3622

) (−0.3687 −0.6669 −0.6664
0.2770 0.4460 0.2770

)
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Table 2: Continued

β β0 = 4, β1 = 10 β0 = 4, β1 = 11 β0 = 4, β1 = 12
x
w

(1.4528 −0.3996 −0.4002
0.2719 0.4562 0.2719

) (1.1967 −0.3632 −0.3639
0.3046 0.3908 0.3046

) (−0.2966 −0.3328 −0.3339
0.3704 0.2592 0.3704

)

β β0 = 4, β1 = 13 β0 = 4, β1 = 14 β0 = 4, β1 = 15
x
w

(1.2290 −0.3076 −0.3077
0.2352 0.5296 0.2352

) (1.2836 −0.2857 −0.2857
0.2917 0.5166 0.2917

) (1.1672 −0.2662 −0.2668
0.2263 0.5474 0.2263

)

β β0 = 5, β1 = 1 β0 = 5, β1 = 2 β0 = 5, β1 = 3
x
w

(−4.9990 8.9742 −5.0010
0.4527 0.0946 0.4527

) (4.3431 −2.5042 −2.4998
0.0265 0.9470 0.0265

) (−1.6668 0.4464 −1.6664
0.2989 0.4022 0.2989

)

β β0 = 5, β1 = 4 β0 = 5, β1 = 5 β0 = 5, β1 = 6
x
w

(−1.2500 −1.2498 −2.2318
0.1785 0.6430 0.1785

) (−0.9985 −0.9465 −1.0001
0.3517 0.2966 0.3517

) (−0.7045 −0.8334 −0.8332
0.3373 0.3254 0.3373

)

β β0 = 5, β1 = 7 β0 = 5, β1 = 8 β0 = 5, β1 = 13
x
w

(−0.7141 0.3424 −0.7141
0.4088 0.1824 0.4088

) (0.3565 −0.6072 −0.6256
0.0349 0.9301 0.0349

) (1.3649 −0.3770 −0.3848
0.0288 0.9423 0.02888

)

β β0 = 5, β1 = 14 β0 = 5, β1 = 15 β0 = 6, β1 = 1
x
w

(1.3238 −0.3570 −0.3571
0.2666 0.4668 0.2666

) (−0.3030 −0.3332 −0.3334
0.3660 0.3680 0.3660

) (−5.9967 8.2075 −6.0032
0.4825 0.0350 0.4825

)

β β0 = 6, β1 = 2 β0 = 6, β1 = 3 β0 = 6, β1 = 4
x
w

(−0.9973 −2.9996 −3.0001
0.2611 0.4778 0.2611

) (4.1383 −1.9994 −2.0002
0.2289 0.5422 0.2289

) (−1.4997 −0.3850 −1.5002
0.1796 0.6408 0.1796

)

β β0 = 6, β1 = 6 β0 = 6, β1 = 7 β0 = 6, β1 = 8
x
w

(−0.9994 −0.9073 −1.0005
0.3528 0.2944 0.3528

) (−0.8572 −0.8570 −1.7236
0.3553 0.2894 0.3553

) (−0.7501 0.4096 −0.7498
0.4127 0.1746 0.4127

)

β β0 = 6, β1 = 9 β0 = 6, β1 = 10 β0 = 6, β1 = 13
x
w

(−0.3687 −0.6664 −0.6668
0.2770 0.4460 0.2770

) (0.6068 −0.5995 −0.6004
0.3365 0.3270 0.3365

) (1.9172 −0.4613 −0.4615
0.1120 0.7760 0.1120

)

β β0 = 6, β1 = 15 β0 = 7, β1 = 1 β0 = 7, β1 = 2
x
w

(1.4524 −0.3994 −0.4003
0.2719 0.4562 0.2719

) (−6.9988 0.7763 −7.0011
0.4372 0.1256 0.4372

) (0.9603 −3.5000 −3.5000
0.3192 0.3616 0.3192

)

β β0 = 7, β1 = 3 β0 = 7, β1 = 4 β0 = 7, β1 = 5
x
w

(4.2596 −2.3290 −2.3333
0.0538 0.8924 0.0538

) (−0.2754 −1.6012 −1.7518
0.0119 0.9762 0.0119

) (−1.3999 1.2023 −1.4000
0.4997 0.0006 0.4997

)

β β0 = 7, β1 = 6 β0 = 7, β1 = 7 β0 = 7, β1 = 8
x
w

(−0.2672 −1.1666 −1.1666
0.1937 0.6126 0.1937

) (−0.9993 −0.9072 −1.0006
0.3528 0.2944 0.3528

) (−0.8048 −0.8752 −1.3642
0.2562 0.4848 0.2562

)
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Table 2: Continued

β β0 = 7, β1 = 9 β0 = 7, β1 = 10 β0 = 7, β1 = 11
x
w

(−0.7778 −0.1762 −0.7776
0.3684 0.2632 0.3684

) (−0.6997 0.1970 −0.7002
0.3791 0.2418 0.3791

) (1.0681 −0.6361 −0.6364
0.1999 0.6002 0.1999

)

β β0 = 7, β1 = 13 β0 = 7, β1 = 15 β0 = 8, β1 = 1
x
w

(1.8182 −0.2227 −0.5385
0.0001 0.9998 0.0001

) (−0.4666 −0.3031 −0.4666
0.3535 0.2930 0.3535

) (−7.9959 4.9336 −8.0040
0.2500 0.5000 0.2500

)

β β0 = 8, β1 = 2 β0 = 8, β1 = 3 β0 = 8, β1 = 4
x
w

(−3.1435 −3.9975 −4.0009
0.2142 0.5716 0.2142

) (−2.6585 −1.2272 −2.6747
0.1341 0.7318 0.1341

) (4.1382 −2.0003 −1.9998
0.2289 0.5422 0.2289

)

β β0 = 8, β1 = 5 β0 = 8, β1 = 6 β0 = 8, β1 = 8
x
w

(−1.5998 −1.0041 −1.6001
0.2402 0.5196 0.2402

) (−1.3334 −0.2232 −1.3332
0.2260 0.5480 0.2260

) (−0.9983 −0.9380 −1.0016
0.3460 0.3080 0.3460

)

β β0 = 8, β1 = 9 β0 = 8, β1 = 10 β0 = 8, β1 = 11
x
w

(−0.8892 −0.8883 −1.7513
0.2902 0.4196 0.2902

) (−0.7998 0.1396 −0.8001
0.3621 0.2758 0.3621

) (−0.7271 0.1861 −0.7274
0.3672 0.2256 0.3672

)

β β0 = 8, β1 = 12 β0 = 8, β1 = 13 β0 = 9, β1 = 1
x
w

(−0.3687 −0.6669 −0.6664
0.2770 0.4460 0.2770

) (1.3602 −0.6118 −0.6158
0.1059 0.7882 0.1059

) (−9.0008 3.9228 −8.9991
0.4933 0.0135 0.4933

)

β β0 = 9, β1 = 2 β0 = 9, β1 = 3 β0 = 9, β1 = 4
x
w

(−0.6459 −4.4982 −4.5003
0.1327 0.7346 0.1327

) (−0.9973 −2.9958 −3.0022
0.2617 0.4766 0.2617

) (4.6884 −2.2488 −2.2501
0.1033 0.7934 0.1033

)

β β0 = 9, β1 = 5 β0 = 9, β1 = 6 β0 = 9, β1 = 7
x
w

(−0.5318 −1.7996 −1.8001
0.2556 0.4888 0.2556

) (−1.4998 −1.4731 −1.5001
0.1908 0.6184 0.1908

) (−0.8256 −1.2855 −1.2858
0.2492 0.5016 0.2492

)

β β0 = 9, β1 = 8 β0 = 9, β1 = 9 β0 = 9, β1 = 10
x
w

(−0.9108 −1.1170 −1.1263
0.1460 0.7080 0.1460

) (−0.9988 −0.9072 −1.0011
0.3528 0.2944 0.3528

) (−0.9000 −0.8999 −1.1354
0.2253 0.5494 0.2253

)

β β0 = 9, β1 = 11 β0 = 9, β1 = 12 β0 = 9, β1 = 13
x
w

(−0.8180 1.3889 −0.8183
0.3722 0.2552 0.3722

) (−0.7501 0.4096 −0.7498
0.4127 0.1746 0.4127

) (−0.6116 −0.6921 −0.6924
0.3537 0.2926 0.3537

)

β β0 = 9, β1 = 15 β0 = 10, β1 = 1 β0 = 10, β1 = 2
x
w

(0.6063 −0.5999 −0.6000
0.3364 0.3272 0.3364

) (−9.9992 −0.8220 −10.0002
0.2986 0.4028 0.2986

) (−4.9990 8.9742 −5.0009
0.4528 0.0944 0.4528

)

β β0 = 10, β1 = 3 β0 = 10, β1 = 4 β0 = 10, β1 = 5
x
w

(−3.3219 −4.5466 −3.3447
0.4872 0.0256 0.4872

) (3.8099 −2.4494 −2.5000
0.0001 0.9998 0.0001

) (4.1382 −1.9993 −2.0002
0.2296 0.5408 0.2296

)
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Table 2: Continued

β β0 = 10, β1 = 6 β0 = 10, β1 = 7 β0 = 10, β1 = 8
x
w

(−1.6668 −0.4464 −1.6665
0.2989 0.4022 0.2989

) (−1.1727 −1.4280 −1.4296
0.3997 0.2006 0.3997

) (−1.2500 −1.2498 −2.2318
0.1785 0.6430 0.1785

)

β β0 = 10, β1 = 9 β0 = 10, β1 = 10 β0 = 10, β1 = 11
x
w

(−0.6269 −1.1046 −1.1122
0.1294 0.7412 0.1294

) (−0.9985 −0.9561 −1.0013
0.3678 0.2644 0.3678

) (−0.4497 −0.9093 −0.9080
0.2630 0.4740 0.2630

)

β β0 = 10, β1 = 12 β0 = 10, β1 = 13 β0 = 10, β1 = 14
x
w

(−0.7045 −0.8334 −0.8332
0.3373 0.3254 0.3373

) (−0.7690 0.2041 −0.7693
0.3732 0.2536 0.3732

) (−0.7141 0.3424 −0.7144
0.4088 0.1824 0.4088

)

β β0 = 10, β1 = 15 β0 = 10, β1 = 16 β0 = 10, β1 = 17
x
w

(−0.3687 −0.6665 −0.6667
0.2759 0.4482 0.2759

) (−0.9998 −0.9791 −1.0001
0.4588 0.0824 0.4588

) (−0.9998 −0.9791 −1.0001
0.4588 0.0824 0.4588

)
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Table 3: R-optimal design for Gamma regression model with two parameters
(Four support points)

β β0 = 1, β1 = 8 β0 = 1, β1 = 10
x
w

(−0.1251 1.4191 −0.1249 0.4328
0.1328 0.3672 0.3672 0.1328

) (−0.1000 0.6989 −0.0999 0.4254
0.3494 0.1506 0.1506 0.3494

)

β β0 = 1, β1 = 11 β0 = 2, β1 = 3
x
w

(0.1024 1.2526 −0.0909 −0.0909
0.2028 0.2972 0.2972 0.2028

) (−0.6668 1.5448 −0.6663 1.0896
0.1767 0.3233 0.3233 0.1767

)

β β0 = 2, β1 = 9 β0 = 2, β1 = 15
x
w

(0.3407 1.3105 −0.2221 −0.2222
0.2319 0.2681 0.2681 0.2319

) (−0.1333 0.9882 −0.1333 0.0713
0.1449 0.3551 0.3551 0.1449

)

β β0 = 2, β1 = 16 β0 = 2, β1 = 17
x
w

(−0.1250 1.4191 −0.1249 0.4328
0.1327 0.3673 0.3673 0.1327

) (−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

)

β β0 = 2, β1 = 20 β0 = 3, β1 = 18
x
w

(−0.1000 0.6989 −0.0999 0.4254
0.3494 0.1506 0.1506 0.3494

) (−0.1450 0.7336 −0.1576 −0.1669
0.0159 0.4841 0.4841 0.0159

)

β β0 = 3, β1 = 26 β0 = 3, β1 = 30
x
w

(−0.1154 0.8000 −0.1153 0.3216
0.2307 0.2693 0.2693 0.2307

) (−0.0999 0.6989 −0.1000 0.4254
0.3495 0.1505 0.1505 0.3495

)

β β0 = 3, β1 = 32 β0 = 4, β1 = 6
x
w

(−0.0937 1.0108 −0.0937 0.6547
0.4206 0.0794 0.0794 0.4206

) (−0.6668 1.5449 −0.6663 1.0897
0.1767 0.3233 0.3233 0.1767

)

β β0 = 4, β1 = 15 β0 = 4, β1 = 20
x
w

(−0.2664 0.8092 −0.2668 0.4288
0.2419 0.2581 0.2581 0.2419

) (0.0882 0.5674 −0.1999 −0.2001
0.0008 0.4992 0.4992 0.0008

)

β β0 = 4, β1 = 22 β0 = 4, β1 = 30
x
w

(0.1844 0.6942 −0.1817 −0.1818
0.1322 0.3678 0.3678 0.1322

) (−0.1333 0.9608 −0.1333 0.4805
0.1575 0.3425 0.3425 0.1575

)

β β0 = 4, β1 = 31 β0 = 4, β1 = 32
x
w

(−0.1283 1.4199 −0.1317 0.5303
0.1067 0.3933 0.3933 0.1067

) (−0.1250 1.4191 −0.1249 0.4328
0.1327 0.3673 0.3673 0.1327

)

β β0 = 4, β1 = 33 β0 = 4, β1 = 34
x
w

(−0.1212 1.5383 −0.1211 0.4779
0.1514 0.3486 0.3486 0.1514

) (−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

)

β β0 = 4, β1 = 35 β0 = 5, β1 = 19
x
w

(−0.1143 0.8657 −0.1142 0.4394
0.3047 0.1953 0.1953 0.3047

) (−0.2630 1.0310 −0.2632 0.4691
0.2334 0.2666 0.2666 0.2334

)

β β0 = 5, β1 = 26 β0 = 5, β1 = 27
x
w

(0.2964 0.6382 −0.1922 −0.1923
0.1173 0.3827 0.3827 0.1173

) (0.1441 0.6884 −0.1848 −0.1851
0.0072 0.4928 0.4928 0.0072

)
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Table 3: Continued

β β0 = 5, β1 = 28 β0 = 5, β1 = 29
x
w

(0.0525 0.5365 −0.1770 −0.1785
0.0011 0.4988 0.4988 0.0011

) (0.2664 0.5590 −0.1723 0.1724
0.0871 0.4129 0.4129 0.0871

)

β β0 = 5, β1 = 30 β0 = 5, β1 = 31
x
w

(0.1447 0.7737 −0.1664 −0.1666
0.0450 0.4550 0.4550 0.0450

) (−0.1612 0.7699 −0.1613 0.1804
0.0968 0.4032 0.4032 0.0968

)

β β0 = 5, β1 = 34 β0 = 5, β1 = 38
x
w

(−0.1471 0.7057 −0.1469 0.1660
0.1272 0.3728 0.3728 0.1272

) (−0.1315 0.5356 −0.1126 −0.0003
0.0002 0.4997 0.4997 0.0002

)

β β0 = 5, β1 = 39 β0 = 5, β1 = 40
x
w

(−0.1282 1.6957 −0.1282 −0.4058
0.0359 0.4641 0.4641 0.0359

) (−0.1250 1.4191 −0.1249 −0.4328
0.1327 0.3670 0.3670 0.1327

)

β β0 = 5, β1 = 41 β0 = 5, β1 = 42
x
w

(−0.1219 1.5634 −0.1218 0.4439
0.1339 0.3661 0.3661 0.1339

) (−0.1190 1.5748 −0.1190 0.4092
0.0836 0.4164 0.4164 0.0836

)

β β0 = 5, β1 = 43 β0 = 5, β1 = 44
x
w

(−0.1162 1.0502 −0.1162 0.4671
0.2928 0.2072 0.2072 0.2928

) (−0.1136 0.9680 −0.1136 0.3829
0.2390 0.2610 0.2610 0.2390

)

β β0 = 6, β1 = 9 β0 = 6, β1 = 23
x
w

(−0.6668 1.5449 −0.6663 1.0897
0.1767 0.3233 0.3233 0.1767

) (−0.2608 0.9196 −0.2608 0.3851
0.2032 0.2968 0.2968 0.2032

)

β β0 = 6, β1 = 27 β0 = 6, β1 = 30
x
w

(0.2864 1.4903 −0.2222 −0.2221
0.3334 0.1666 0.1666 0.3334

) (−0.0270 0.3240 −0.1986 −0.2000
0.0007 0.4992 0.4992 0.0007

)

β β0 = 6, β1 = 37 β0 = 6, β1 = 45
x
w

(−0.1622 0.6520 −0.1619 −0.2367
0.1578 0.3422 0.3422 0.1578

) (−0.1333 1.0400 −0.1332 0.0001
0.1556 0.3444 0.3444 0.1556

)

β β0 = 6, β1 = 48 β0 = 6, β1 = 51
x
w

(−0.1249 1.4193 −0.1250 0.4328
0.1327 0.3673 0.3673 0.1327

) (−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

)

β β0 = 6, β1 = 60 β0 = 7, β1 = 39
x
w

(−0.0999 0.6989 −0.1000 0.4254
0.3495 0.1505 0.1505 0.3495

) (−0.0421 0.3061 −0.1764 −0.1794
0.0002 0.4997 0.4997 0.0002

)

β β0 = 7, β1 = 40 β0 = 7, β1 = 50
x
w

(0.3548 0.6450 −0.1749 −0.1750
0.1389 0.3611 0.3611 0.1389

) (−0.1400 0.9105 −0.1399 0.1282
0.0461 0.4539 0.4539 0.0461

)

β β0 = 7, β1 = 51 β0 = 7, β1 = 52
x
w

(−0.1376 0.9959 −0.1267 0.1245
0.0174 0.4826 0.4826 0.0174

) (−0.1346 1.2422 −0.1345 0.2680
0.0185 0.4815 0.4815 0.0185

)



52 M.K. PANDA, T.K. BISWAL AND V.K. GUPTA [Vol. 23, No. 1

Table 3: Continued

β β0 = 7, β1 = 56 β0 = 7, β1 = 70
x
w

(−0.1250 1.4203 −0.1249 0.4340
0.1310 0.3690 0.3690 0.1310

) (−0.1000 0.6989 −0.0999 0.4254
0.3493 0.1506 0.1506 0.3493

)

β β0 = 8, β1 = 12 β0 = 8, β1 = 30
x
w

(−0.6668 1.5449 −0.6663 1.0897
0.1767 0.3233 0.3233 0.1767

) (−0.2664 0.8092 −0.2668 0.4228
0.2419 0.2581 0.2581 0.2419

)

β β0 = 8, β1 = 36 β0 = 8, β1 = 40
x
w

(0.3996 1.4467 −0.2221 −0.2221
0.3056 0.1944 0.1944 0.3056

) (0.0882 0.5674 −0.1993 −0.2000
0.0007 0.4992 0.4992 0.0007

)

β β0 = 8, β1 = 44 β0 = 8, β1 = 60
x
w

(−0.0286 0.2663 −0.1811 0.1818
0.0003 0.4996 0.4996 0.0003

) (−0.1333 1.0420 −0.1332 0.1441
0.1554 0.3446 0.3446 0.1554

)

β β0 = 8, β1 = 63 β0 = 8, β1 = 64
x
w

(−0.1269 1.1873 −0.1275 0.3266
0.0005 0.4994 0.4994 0.0005

) (−0.1250 1.4191 −0.1249 0.4328
0.1327 0.3673 0.3673 0.1327

)

β β0 = 8, β1 = 65 β0 = 8, β1 = 66
x
w

(−0.1232 1.4500 −0.1221 0.3714
0.0731 0.4269 0.4269 0.0731

) (−0.1212 1.5383 −0.1211 0.4779
0.1514 0.3486 0.3486 0.1514

)

β β0 = 8, β1 = 68 β0 = 8, β1 = 70
x
w

(−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

) (−0.1143 0.8657 −0.1142 0.4394
0.3047 0.1953 0.1953 0.3047

)

β β0 = 8, β1 = 80 β0 = 8, β1 = 88
x
w

(−0.1000 0.6989 −0.0999 0.4254
0.3494 0.1506 0.1506 0.3494

) (−0.1043 0.2520 −0.0908 −0.0909
0.1951 0.3049 0.3049 0.1951

)

β β0 = 9, β1 = 54 β0 = 9, β1 = 72
x
w

(0.1447 0.7737 −0.1663 −0.1666
0.0450 0.4550 0.4550 0.0450

) (−0.1250 1.4191 −0.1249 0.4328
0.1327 0.3673 0.3673 0.1327

)

β β0 = 9, β1 = 78 β0 = 9, β1 = 90
x
w

(−0.1153 0.8000 −0.1153 0.3216
0.2359 0.2641 0.2641 0.2359

) (−0.1000 0.6989 −0.0999 0.4254
0.3493 0.1507 0.1507 0.3493

)

β β0 = 9, β1 = 96 β0 = 10, β1 = 15
x
w

(−0.0939 1.0108 −0.0937 0.6547
0.4199 0.0801 0.0801 0.4199

) (−0.6666 1.3241 −0.6666 0.9085
0.1786 0.3214 0.3214 0.1786

)

β β0 = 10, β1 = 38 β0 = 10, β1 = 52
x
w

(−0.2630 1.0310 −0.2632 0.4691
0.2334 0.2666 0.2666 0.2334

) (0.1965 0.6549 −0.1922 −0.1923
0.1199 0.3801 0.3801 0.1199

)

β β0 = 10, β1 = 58 β0 = 10, β1 = 68
x
w

(0.2664 0.5590 −0.1724 −0.1724
0.0871 0.4129 0.4129 0.0871

) (−0.1471 0.7057 −0.1468 −0.1660
0.3494 0.1506 0.1506 0.3494

)

β β0 = 10, β1 = 75 β0 = 10, β1 = 78
x
w

(−0.1333 0.9059 −0.1332 −0.0098
0.1466 0.3534 0.3534 0.1466

) (−0.1282 1.6985 −0.1280 0.4065
0.0290 0.4710 0.4710 0.0290

)
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Table 3: Continued

β β0 = 10, β1 = 81 β0 = 10, β1 = 82
x
w

(−0.1234 1.7453 −0.1233 −0.5493
0.1206 0.3794 0.3794 0.1206

) (−0.1219 1.5634 −0.1219 0.4439
0.1339 0.3661 0.3661 0.1339

)

β β0 = 10, β1 = 85 β0 = 10, β1 = 86
x
w

(−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

) (−0.1162 0.8101 −0.1162 0.3439
0.2934 0.2066 0.2066 0.2934

)

β β0 = 10, β1 = 88 β0 = 10, β1 = 92
x
w

(−0.1136 0.9680 −0.1136 0.3829
0.2346 0.2654 0.2654 0.2346

) (−0.1087 0.5971 −0.1086 0.4081
0.3679 0.1321 0.1321 0.3679

)

β β0 = 10, β1 = 93 β0 = 10, β1 = 96
x
w

(−0.1074 0.6330 −0.1075 0.4220
0.3676 0.1324 0.1324 0.3676

) (−0.1041 0.7818 −0.1041 0.4055
0.3092 0.1908 0.1908 0.3092

)

β β0 = 10, β1 = 98 β0 = 10, β1 = 100
x
w

(−0.1020 0.5326 −0.1020 0.4335
0.4111 0.0889 0.0889 0.4111

) (−1.0000 0.6989 −0.0999 0.4254
0.3487 0.1513 0.1513 0.3487

)
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Abstract
In this paper, we develop a discrete version of the type I half-logistic family of dis-

tributions. Several members of this family such as, discrete type I half-logistic version of
uniform, Lomax, exponential, Fréchet and Weibull distributions are derived. Statistical
properties of one of the members of this family, namely, the discrete type I half-logistic
Weibull distribution, is studied in detail. The parameters of this distribution are estimated
using the maximum likelihood method and a simulation study is conducted to evaluate the
consistency of the method. Three data applications are illustrated to show the flexibility for
fitting the proposed models to real-life data sets.

Key words: Data modeling; Discrete distributions; Hazard rate function; Order statistics;
Weibull distribution.

AMS Subject Classifications: 60E05, 62E10.

1. Introduction

The logistic function is one of the oldest growth functions in the literature and is
used to describe both population and organic growth. Various theoretical, methodological
and applied issues relating to the logistic model are discussed in Balakrishnan (1991). Often
in scientific enquiry we may come across observations which are discrete in nature. In a
reliability study or life testing of equipment, it is difficult to quantify the length of life of the
equipment on a continuous scale. In survival analysis, we may record the number of days of
survival for lung cancer patients since therapy, or the times from remission to relapse are also
usually recorded in number of days. But in some analysis, often the interest lies not only in
counts but in changes in counts from a given origin, in such situation the variable of interest
can take either zero, positive or negative value. The conventional discrete distributions such
as, geometric, Poisson, binomial and negative binomial have wide but limited applicability
in reliability, failure time modeling, etc. Thus, there is interest in developing new discrete
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family of distributions based on the well known continuous distributions. Among these, the
discrete Weibull distribution of Nakagawa and Osaki (1975) is the most popular one.

Recently, discretization of the continuous distributions has attracted the researchers’
attention and several forms of discrete lifetime distributions are being established in the
literature. Some of the recent works on discretization of continuous distributions are the
discrete Laplace distribution by Inusah and Kozubowski (2006), the discrete half-normal
distribution by Kemp (2008), the discrete Burr and discrete Pareto distributions by Krishna
and Pundir (2009), the discrete generalized exponential distribution by Gomez-Deniz (2010)
and the discrete gamma distribution by Chakraborty and Chakravarty (2012).

Other notable works in this direction are the discrete additive Weibull distribution by
Bebbington et al. (2012), the discrete inverse Weibull distribution by Jazi et al. (2010), the
discrete generalized exponential distribution by Nekoukhou et al. (2012), discrete reduced
modified Weibull distribution by Almalki and Nadarajah (2014), the discrete Lindley dis-
tribution by Bakouch et al. (2014), the discrete Logistic distribution by Chakraborty and
Chakravarty (2016), the discrete log-logistic distribution by Para and Jan (2016), the dis-
crete Weibull geometric distribution by Jayakumar and Babu (2018), the truncated discrete
Mittag-Leffler distribution by Jayakumar and Sankaran (2018), discrete additive Weibull
geometric distribution by Jayakumar and Babu (2019), the discrete Pareto type(IV) model
by Ghosh (2020), among others. There are several methods available in the literature to
discretize a continuous random variable, for more details, see Chakraborty (2015). This
paper discusses the formation of distribution that are more appropriate to modeling discrete
failure data in varying failure rate shape.

Let Y is discretized as Y = ⌊X⌋, the largest integer less than or equal to X. Using
the survival function SX(y), the discrete version of the random variable X can be derived
by

P (Y = y) = P (X ≥ y) − P (X ≥ y + 1) = SX(y) − SX(y + 1); y = 0, 1, 2, ... . (1)

The cumulative distribution function (cdf) of Y is given by,

F (y) = P (Y ≤ y) = P (Y < y) + P (Y = y)
= 1 − SX(y) + P (Y = y)
= 1 − SX(y + 1) = P (X ≤ y + 1).

Now, for evaluating the values of the cdf when the value of y can be integer or fractional the
following general formula can be used

F (y) = P (X ≤ ⌊y⌋ + 1),

where ⌊y⌋ denotes the floor of y, i.e., the largest integer less or equal to y. In this paper we
take y as ⌊y⌋.

The discretization of a continuous distribution given in (1) retains the similar func-
tional form of the survival function, so that many reliability characteristics remains un-
changed. This motivated to use this technique of generating discretized version of continuous
distribution. The half-logistic probability models are obtained as the models of the absolute
value of the standard logistic models.
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Recently Chipepa et al. (2022) introduced a generalized class of distributions named
as exponentiated half-logistic generalized - G power series distribution by combining the ex-
ponentiated half-logistic generalized class of distributions and power series distribution. The
hazard rate of this distribution exhibits increasing, decreasing, bathtub, bathtub followed
by upside down bathtub, J and inverse-J shapes. One member of this family called type
I half-logistic-G (TIHL-G) family of distributions was already studied by Cordeiro et al.
(2016). This family is defined by

F (x; λ, Θ) =
� − log[1−G(x;Θ)]

0

2λe−λt

(1 + e−λt)2 dt = 1 − [1 − G(x; Θ)]λ
1 + [1 − G(x; Θ)]λ , (2)

where G(x; Θ) is the baseline cdf with parameter vector Θ and λ > 0 is an additional shape
parameter. When λ = 1, this family becomes half-logistic-G (HL-G) family of distributions.
The probability density function (pdf) of (2) is given by

f(x; λ, Θ) = 2λg(x; Θ)[1 − G(x; Θ)]λ−1
[
1 + [1 − G(x; Θ)]λ

]2 , (3)

where g(x; Θ) is the baseline pdf. Also, the survival function and hazard rate function (hrf)
are respectively given by

S(x; λ, Θ) = 2[1 − G(x; Θ)]λ
1 + [1 − G(x; Θ)]λ , (4)

and
h(x; λ, Θ) = λg(x; Θ)[

1 − G(x; Θ)
][

1 + [1 − G(x; Θ)]λ
] . (5)

Different choices of G(x; Θ) in (2) leads to special models of this family of distributions.
Some of the models are type I half-logistic normal, type I half-logistic gamma and type I
half-logistic Fréchet discussed in Cordeiro et al. (2016). The objective of this paper is to
introduce a discrete version of this family and study their mathematical properties.

The paper is organized as follows. In Section 2, we introduce a discrete type I half-
logistic family of distributions. Some members of this family are introduced in Section 3.
Section 4 discusses the construction of the type I half-logistic Weibull distribution and in
Section 5, the maximum likelihood estimation of unknown parameters are discussed and
a simulation study to asses the performance of the MLEs of the model parameters is also
presented. Applications of this new discrete distribution for modeling real data sets are
discussed in Section 6, and conclusions and future works are presented in Section 7.

2. Discretization of type I half-logistic family of distributions

Let X be a continuous random variable belonging to TIHL-G family of distributions
with cdf given in (2). Let Y be the discrete analogue of X derived using the survival function
(4) and by using the expression (1) as follows :

P (Y = y) =
2
[
Ḡλ(y; Θ) − Ḡλ(y + 1; Θ)

]

[
1 + Ḡλ(y; Θ)

][
1 + Ḡλ(y + 1; Θ)

] (6)
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where Y = ⌊X⌋, the largest integer less than or equal to X and Ḡ(y; Θ) = 1 − G(y; Θ). The
corresponding cdf is given by

F (y) = 1 − Ḡλ(y + 1; Θ)
1 + Ḡλ(y + 1; Θ)

, (7)

survival function is
S(y) = 1 − P (Y ≤ y) = 2Ḡλ(y + 1; Θ)

1 + Ḡλ(y + 1; Θ)
, (8)

and hazard rate function is

h(y) = P (Y = y)
P (Y ≥ y) = Ḡλ(y; Θ) − Ḡλ(y + 1; Θ)

Ḡλ(y + 1; Θ)
[
1 + Ḡλ(y; Θ)

] . (9)

The reverse hazard rate is

h∗(y) = P (Y = y)
P (Y ≤ y) =

2
[
Ḡλ(y; Θ) − Ḡλ(y + 1; Θ)

]

[
1 + Ḡλ(y; Θ)

][
1 + Ḡλ(y + 1; Θ)

] . (10)

The second rate of failure is given by

h∗∗(y) = log

[
S(y)

S(y + 1)

]
= log

[
Ḡλ(y + 1; Θ)
Ḡλ(y + 2; Θ)

]
+ log

[
1 + Ḡλ(y + 2; Θ)
1 + Ḡλ(y + 1; Θ)

]
. (11)

2.1. Quantile function

The quantile function of the discrete type I half-logistic G family of distributions, say
Q(u), defined by F (Q(u)) = u, where u ∈ (0, 1) is given by

Q(u) =


G−1

[
1 −

(
1 − u

1 + u

) 1
λ
]

− 1



, (12)

where ⌈.⌉ denotes the ceiling value.

In particular, the median =
⌈
G−1

[
1 −

(
1
3

) 1
λ

]
− 1

⌉
.

2.2. Probability generating function

The probability generating function (pgf) of discrete TIHL-G family of distributions
is given by

PY (s) = E(sY ) = 1 + 2(s − 1)
∞∑

y=1

sy−1Ḡλ(y + 1; Θ)
1 + Ḡλ(y + 1; Θ)

.

Then mean and variance are respectively,

E(Y ) =
∞∑

y=1

2Ḡλ(y + 1; Θ)
1 + Ḡλ(y + 1; Θ)

,
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and
V (Y ) =

∞∑

y=1

(2y − 1)Ḡλ(y + 1; Θ)
1 + Ḡλ(y + 1; Θ)

−
[ ∞∑

y=1

2Ḡλ(y + 1; Θ)
1 + Ḡλ(y + 1; Θ)

]2

.

Also, the recurrence relation for generating probabilities, is

PY (y + 1; Θ, λ) =

[
Ḡλ(y + 1; Θ) − Ḡλ(y + 2; Θ)

][
1 + Ḡλ(y; Θ)

]

[
Ḡλ(y; Θ) − Ḡλ(y + 1; Θ)

][
1 + Ḡλ(y + 2; Θ)

]PY (y; Θ, λ).

Different choices of G(y; Θ) in (6) will give new family of discrete probability distributions.
In the next section, we discuss some discrete probability models obtained from this family.

3. Some members of Discrete Type I Half Logistic- General (DTIHL-G)
family

3.1. Discrete type I half-logistic uniform distribution

Let X ∼ U(0, α) with cdf G(x; α) = x
α
, 0 < x < α. Then the pmf, cdf and survival

function of the discrete type I half-logistic uniform distribution are respectively,

P (Y = y) =
2αλ

[
(α − y)λ − (α − (y + 1))λ

]

[
αλ + (α − y)λ

][
αλ + (α − (y + 1))λ

] ; y = 0, 1, ..., α − 1,

F (y; α, λ) =
αλ −

[
α − (y + 1)

]λ

αλ +
[
α − (y + 1)

]λ ,

and

S(y; α, λ) =
2
[
αλ − (y + 1)

]λ

αλ +
[
αλ − (y + 1)

]λ .

3.2. Discrete type I half-logistic Lomax distribution

Let X follow the Lomax distribution with shape parameter α > 0 and scale parameter
β > 0 with cdf G(x; α, β) = 1 − (1 + βx)−α. Then the pmf, cdf and survival function of the
discrete type I half-logistic Lomax distribution are given by

P (Y = y) =
2
[
(1 + βy)−αλ − (1 + β(y + 1))−αλ

]

[
1 + (1 + βy)−αλ

][
1 + (1 + β(y + 1))−αλ

] ; y = 0, 1, ... ,

F (y; α, λ) = 1 − (1 + βy)−αλ

1 + (1 + βy)−αλ
,

and
S(y; α, λ) = 2(1 + β(y + 1))−αλ

1 + (1 + β(y + 1))−αλ
.

When λ = 1, this distribution becomes discrete half-logistic Lomax distribution.
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3.3. Discrete type I half-logistic exponential distribution

Let X follow the exponential distribution with parameter α > 0 with cdf G(x; α) =
1 − e−αx. By taking q = e−α, 0 < q < 1, we get the pmf, cdf and survival function of the
discrete type I half-logistic exponential distribution are respectively,

P (Y = y) =
2
[
qλy − qλ(y+1)

]

[
1 + qλy

][
qλ(y+1)

] ; y = 0, 1, ... ,

F (y; α, λ) = 1 − qλy

1 + qλy
,

and
S(y; α, λ) = 2qλ(y+1)

1 + qλ(y+1) .

3.4. Discrete type I half-logistic Fréchet distribution

Let X follow the Fréchet distribution with scale parameter α > 0 and shape parameter
β > 0 with cdf G(x; α, β) = e−(α/x)β

. By taking q = e−αβ
, 0 < q < 1, we get the pmf, cdf and

survival function of the discrete type I half-logistic Fréchet distribution as, respectively

P (Y = y) =
2
[
(1 − qy−β )λ − (1 − q(y+1)−β )λ

]

[
1 + (1 − qy−β )λ

][
1 + (1 − q(y+1)−β )λ

] ; y = 0, 1, ... ,

F (y; q, β, λ) = 1 − (1 − q(y+1)−β )λ

1 + (1 − q(y+1)−β )λ
,

and
S(y; q, β, λ) = 2(1 − q(y+1)−β )λ

1 + (1 − q(y+1)−β )λ
.

In a similar way, by considering different choices of G(y; Θ) in (6), we can develop several
discrete probability distributions. In the next section we study in detail the discrete type I
half-logistic Weibull distribution.

4. Discrete type I half-logistic Weibull distribution

Let X follow the Weibull distribution with parameters α > 0 and β > 0 with cdf and
survival function are respectively G(x; α, β) = 1 − e−αxβ and Ḡ(x; α, β) = e−αxβ

. By taking
q = e−α, 0 < q < 1 and using (6), the pmf of the new distribution is given by

P (Y = y) = 2(qλyβ − qλ(y+1)β )
(1 + qλyβ )(1 + qλ(y+1)β ) . (13)

We call this distribution the discrete type I half-logistic Weibull (DTIHLW) distribution
with parameters q, λ and β and is denoted by DTIHLW(q, λ, β).
When β = 1, the pmf becomes,

P (Y = y) = 2qλy(1 − qλ)
(1 + qλy)(1 + qλ(y+1)) ,
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which is the discrete type I half-logistic exponential distribution.

5. Structural properties of DTIHLW(q, λ, β)

Figure 1 shows the shape of pmf of DTIHLW(q, λ, β) distribution for various selection
of the parameter values.

Figure 1: Shapes of the pmf of DTIHLW(q, λ, β) for various parameter values.

Theorem 1: The pmf of DTIHLW(q, λ, β) distribution is log-concave for β ≤ 1.

Proof: From Kus et al. (2019), a distribution with pmf p(y) is log-concave if
[p(y + 1)]2 > p(y)p(y + 2), (14)

for all y ≥ 0.
Under q ∈ (0, 1), λ > 0 and β ≤ 1 we have

[qλ(y+1)β − qλ(y+2)β ]2
(1 + qλ(y+1)β )(1 + qλ(y+2)β ) − [qλyβ − qλ(y+1)β ][qλ(y+2)β − qλ(y+3)β ]

(1 + qλyβ )(1 + qλ(y+3)β ) > 0,
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for all y ≥ 0. Thus (14) is satisfied by the pmf (13).

5.1. Cumulative distribution function, survival and hazard rate functions of
DTIHLW distribution

The cdf of DTIHLW(q, λ, β) distribution is obtained as

F (y; q, λ, β) = P (Y ≤ y) = 1 − P (Y ≥ y + 1) = 1 − qλ(y+1)β

1 + qλ(y+1)β , (15)

where y = 0, 1, 2, ...; 0 < q < 1, λ > 0 and β > 0.
In particular,

F (0) = 1 − qλ

1 + qλ
,

and the proportion of positive values,

1 − F (0) = 2qλ

1 + qλ
.

Also,

P (a < Y ≤ b) = 1 − qλ(b+1)β

1 + qλ(b+1)β − 1 − qλ(a+1)β

1 + qλ(a+1)β .

The survival function of DTIHLW(q, λ, β) is given by

S(y; q, λ, β) = P (Y > y) = 1 − P (Y ≤ y) = 2qλ(y+1)β

1 + qλ(y+1)β . (16)

The hazard rate function is given by,

h(y; q, λ, β) = P (Y = y)
P (Y ≥ y) = 1 − qλ[(y+1)β−yβ ]

1 + qλ(y+1)β , (17)

provided P (Y ≥ y) > 0. Here note that,

lim
y→0

h(y; q, λ, β) = 1 − qλ

1 + qλ
.

Also, when λ > 0 and β > 1,
lim

y→∞ h(y; q, λ, β) = 1,

when λ > 0 and β < 1,
lim

y→∞ h(y; q, λ, β) = 0,

and when λ > 0 and β = 1,
lim

y→∞ h(y; q, λ, β) = 1 − qλ.

Figure 2 shows the shape of the hrf of DTIHLW(q, λ, β) for various choices of parameter
values. The cumulative hazard function, H(y; q, λ, β), is given by
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Figure 2: Shapes of the hrf of DTIHLW(q, λ, β) for various parameter values.

H(y; q, λ, β) =
y∑

t=0
h(t) =

y∑

t=0

1 − qλ[(t+1)β−tβ ]

1 + qλ(t+1)β . (18)

The mean residual life (MRL) function (see Jayakumar and Babu (2018)) is given by

L(y) = E[(Y − y)/Y ≥ y] =
∑

j≥y

j∏

i=y

(
1 − h(i)

)
=
∑

j≥y

j∏

i=y

1 + q−λyβ

1 + q−λ(y+1)β ; y = 0, 1, 2, .... . (19)

Another expression for MRL by Roy and Gupta (1999) is given by

µ(y) = E[(Y −y)/Y > y] = 1+L(y+1) = 1+
∑

j≥y+1

j∏

i=y+1

1 + q−λyβ

1 + q−λ(y+1)β ; y = 0, 1, 2, .... . (20)

When y = 0, then the MRL function is equal to the mean of the lifetime distribution, that
is, L(0) = µ. Thus, we have,

µ(0) = µ

1 − p(0) = µ(1 + qλ)
2qλ

. (21)
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Also, the reverse hazard rate function is given by

h∗(y) = P (Y = y/Y ≤ y) = 2(qλyβ − qλ(y+1)β )
(1 + qλyβ )(1 − qλ(y+1)β ) . (22)

The following Figure 3 shows the change of reverse hrf for given parameter values. The

Figure 3: Reverse hrf of DTIHLW(q, λ, β) for various parameter values.

second rate of failure is given by

h∗∗(y) = log
{

S(y)
S(y + 1)

}
= log

{
qλ[(y+1)β−(y+2)β ]

(
1 + qλ(y+2)β

)

1 + qλ(y+2)β

}
. (23)

5.2. Quantiles

The point yu is known as the uth quantile of a discrete random variable Y , if it satisfies
P (Y ≤ yu) ≥ u and P (Y ≥ yu) ≥ 1 − u, see Rohatgi and Saleh (2001). Then we have the
following theorem.
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Theorem 2: The uth quantile ϕ(u) of DTIHLW(q, λ, β) is given by,

ϕ(u) = ⌈yu⌉ =
⌈[

ln

(
1 − u

1 + u

)/
λ ln(q)

] 1
β

− 1
⌉
, (24)

where ⌈yu⌉ denotes the smallest integer greater than or equal to yu.

Proof: Here first we assume that, P (Y ≤ yu) ≥ u.
That is,

1 − qλ(yu+1)β

1 + qλ(yu+1)β ≥ u

⇒ 1 − qλ(yu+1)β ≥ u(1 + qλ(yu+1)β )

⇒
[

ln
(

1−u
1+u

)

λ ln(q)

] 1
β

≤ yu + 1

⇒ yu ≥
[

ln
(

1−u
1+u

)

λ ln(q)

] 1
β

− 1, (25)

since ln(q) < 0.
Similarly, P (Y ≥ yu) ≥ 1 − u gives,

yu ≤
[

ln
(

1−u
1+u

)

λ ln(q)

] 1
β

. (26)

From (25) and (26) we get,

[
ln
(

1−u
1+u

)

λ ln(q)

] 1
β

− 1 < yu ≤
[

ln
(

1−u
1+u

)

λ ln(q)

] 1
β

Hence, ϕ(u) is an integer given by,

ϕ(u) = ⌈yu⌉ =
⌈[

ln

(
1 − u

1 + u

)/
λ ln(q)

] 1
β

− 1
⌉
,

This completes the proof.

Let U be a random number drawn from a uniform distribution on (0, 1), then a random
number Y following DTIHLW(q, λ, β) distribution is obtained by using the expression (24).
In particular, the median is given by,

ϕ

(
1
2

)
= ⌈y 1

2
⌉ =

⌈[
−1.099
λ ln(q)

] 1
β

− 1
⌉
.
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5.3. Probability generating function of DTIHLW(q, λ, β)

The pgf of DTIHLW(q, λ, β) distribution is

PY (s) = 1 + 2(s − 1)
∞∑

y=1

sy−1qλ(y+1)β

1 + qλ(y+1)β . (27)

Then the mean is

E(Y ) =
∞∑

y=1

2qλ(y+1)β

1 + qλ(y+1)β , (28)

and the variance is

V (Y ) =
∞∑

y=1

2(2y − 1)qλ(y+1)β

1 + qλ(y+1)β −
[ ∞∑

y=1

2qλ(y+1)β

1 + qλ(y+1)β

]2

. (29)

5.4. Moments

The rth moment about origin of DTIHLW(q, λ, β) is given by

µr′ = E(Y r) = 2
∞∑

y=0

yr(qλyβ − qλ(y+1)β )
(1 + qλyβ )(1 + qλ(y+1)β ) . (30)

For given values of the parameters, (30) can be numerically computed using R-programming.
Table 1 shows the raw and central moments, skewness, and kurtosis for the given values of
q, λ and β.

5.5. Order statistics

Let Y1, Y2, ..., Yn be n random samples taken from DTIHLW(q, λ, β) and let Y(1),Y(2),...,
Y(n) denote the corresponding order statistics. Then the cdf for the kth order statistic, say
Z = Y(k), is given by

FZ(z) =
n∑

j=k

(
n

j

)
F j(z)[1 − F (z)]n−j. (31)

Using the binomial expansion for [1 − F (z)]n−j, we get

FZ(z) =
n∑

j=k

n−j∑

i=0

(
n

j

)(
n − j

i

)
(−1)i[F (z)]i+j

=
n∑

j=k

n−j∑

i=0

(
n

j

)(
n − j

i

)
(−1)i

[
1 − qλ(z+1)β

1 + qλ(z+1)β

]i+j

. (32)
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Table 1: Moments, skewness and kurtosis for q = 0.5, λ = 1.0 and various choices
of β.

Parameter Raw moments Central moments Skewness Kurtosis

β = 0.5
µ′

1 = 6.42
µ′

2 = 190.36
µ′

3 = 12507.7
µ′

4 = 1482469

µ2 = 149.2
µ3 = 9370.9

µ4 = 1203285
5.14 54.09

β = 1.0
µ′

1 = 1.53
µ′

2 = 5.15
µ′

3 = 23.98
µ′

4 = 143.84

µ2 = 2.81
µ3 = 7.50
µ4 = 53.02

1.59 6.69

β = 1.5
µ′

1 = 0.98
µ′

2 = 1.74
µ′

3 = 3.75
µ′

4 = 9.56

µ2 = 0.78
µ3 = 0.53
µ4 = 2.11

0.76 3.44

β = 2
µ′

1 = 0.79
µ′

2 = 1.04
µ′

3 = 1.57
µ′

4 = 2.69

µ2 = 0.42
µ3 = 0.09
µ4 = 0.47

0.32 2.69

β = 2.5
µ′

1 = 0.71
µ′

2 = 0.78
µ′

3 = 0.94
µ′

4 = 1.25

µ2 = 0.29
µ3 = −0.02
µ4 = 0.19

-0.107 2.42

β = 3
µ′

1 = 0.67
µ′

2 = 0.69
µ′

3 = 0.72
µ′

4 = 0.78

µ2 = 0.24
µ3 = −0.06
µ4 = 0.10

-0.54 1.82

The pmf of the kth order statistics is obtained as

fZ(z) = FZ(z) − FZ(z − 1)

=
n∑

j=k

n−j∑

i=0

(
n

j

)(
n − j

i

)
(−1)i

([
1 − qλ(z+1)β

1 + qλ(z+1)β

]i+j

−
[

1 − qλzβ

1 + qλzβ

]i+j)

=
n∑

j=k

n−j∑

i=0

(
n

j

)(
n − j

i

)
(−1)i

[
(1 − qλ(z+1)β )(1 + qλzβ )

]i+j −
[
(1 + qλ(z+1)β )(1 − qλzβ )

]i+j

[
(1 + qλ(z+1)β )(1 + qλzβ )

]i+j . (33)

5.6. Infinite divisibility

From Steutel and van Harn (2004), we have the following result.
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Lemma 1: If py = P (Y = y), y ∈ Z+, is infinitely divisible, then we have py ≤ e−1 = 0.3679,
for all y ∈ N.

From the above Lemma, using (13), we have arrived the condition that DTIHLW
distribution is infinitely divisible for a given q, λ and β if it satisfies

qλyβ ≤ qλ(y+1)β + 1
2e

(1 + qλyβ )(1 + qλ(y+1)β ).

But we can show that py > 0.3679 for some values of y ∈ N, λ, β and q. We take λ =
1.5, β = 2 and q = 0.5, then we have p1 = 0.4920 > 0.3679. This shows that the DTIHLW
distribution is not infinitely divisible.

5.7. Stress-strength parameter

The stress-strength parameter R is a measure of component reliability. Let the ran-
dom variable Y be the strength of a component which is subjected to a random stress Z.
The estimation of R when Y and Z are independently and identically distributed (iid) has
been discussed in the literature by many authors. For a detailed study, one can see Kotz
et al. (2003). In discrete case, the stress-strength model is defined as,

R = P (Y > Z) =
∞∑

y=0
pY (y) FZ(y), (34)

where, pY (y) and FZ(y) are the pmf and cdf of the independent discrete random variables Y
and Z, respectively. The stress-strength models are useful in various fields such as medicine,
engineering, and psychology. Let Y ∼ DTIHLW (θ1) and Z ∼ DTIHLW (θ2), where θ1 =
(q1, λ1, β1)T and θ2 = (q2, λ2, β2)T . Then, using (13) and (15), we have,

R =
∞∑

y=0

2
[
qλ1yβ1

1 − q
λ1(y+1)yβ1
1

][
1 − q

λ2(y+1)β2
2

]

[
1 + qλ1yβ1

1

][
1 + q

λ1(y+1)β1
1

][
1 + q

λ2(y+1)β2
2

] . (35)

The stress strength reliability parameter for different parameter values are numerically com-
puted and presented in Table 2. We see that the value of stress-strength parameter is
decreasing when β1 increases and increasing when β2 increases.

5.8. Likelihood function of DTIHLW distribution

Consider a random sample (y1, y2, ..., yn) of size n, from the DTIHLW(q, λ, β). Then,
the likelihood function is given by,

L = 2n∏n
i=1(qλyβ

i − qλ(yi+1)β )
∏n

i=1(1 + qλyβ
i )∏n

i=1(1 + qλ(yi+1)β )
. (36)

The log-likelihood function is,

ln(L) = n ln(2) +
n∑

i=1
ln(qλyβ

i − qλ(yi+1)β )

−
n∑

i=1
ln(1 + qλyβ

i ) −
n∑

i=1
ln(1 + qλ(yi+1)β ). (37)
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Table 2: Value of stress-strength parameter (R) for various choices of parameters.

q1 = 0.5, q2 = 0.5
λ1 = 0.5, λ2 = 0.5

β1 →
β2 ↓ 0.5 1.0 1.5 2.0
0.5
1.0
1.5
2.0

0.5236
0.7374
0.7989
0.8257

0.3268
0.5576
0.7091
0.7799

0.2742
0.4348
0.6062
0.7213

0.2528
0.3744
0.5253
0.6592

λ1 = 0.5, λ2 = 1.5
β1 →
β2 ↓ 0.5 1.0 1.5 2.0
0.5
1.0
1.5
2.0

0.8333
0.8889
0.9029
0.9082

0.7337
0.8569
0.8928
0.9054

0.6743
0.8193
0.8796
0.9016

0.6424
0.7860
0.8645
0.8971

λ1 = 1, λ2 = 0.5
β1 →
β2 ↓ 0.5 1.0 1.5 2.0
0.5
1.0
1.5
2.0

0.3477
0.5363
0.6242
0.6679

0.2549
0.3837
0.5129
0.6013

0.2325
0.3224
0.4342
0.5392

0.2236
0.2969
0.3916
0.4946

The likelihood equations are the following

∂ln(L)
∂q

=
n∑

i=1

yβ
i qλyβ

i −1 − (yi + 1)βqλ(yi+1)β−1

qλyβ
i − qλ(yi+1)β

−
n∑

i=1

yβ
i qλyβ

i −1

1 + qλyβ
i

−
n∑

i=1

(yi + 1)βqλ(yi+1)β−1

1 + qλ(y1+1)β = 0, (38)

∂ln(L)
∂λ

=
n∑

i=1

yβ
i qλyβ

i − (yi + 1)βqλ(yi+1)β

qλyβ
i − qλ(yi+1)β

−
n∑

i=1

yβ
i qλyβ

i

1 + qλyβ
i

−
n∑

i=1

(yi + 1)βqλ(yi+1)β

1 + qλ(yi+1)β = 0, (39)

and

∂ln(L)
∂β

=
n∑

i=1

ln(yi)yβ
i qλyβ

i − ln(yi + 1)(yi + 1)βqλ(yi+1)β

qλyβ
i − qλ(yi+1)β

−
n∑

i=1

ln(yi)yβ
i qλyβ

i

1 + qλyβ
i

−
n∑

i=1

ln(yi + 1)(yi + 1)βqλ(yi+1)β

1 + qλ(yi+1)β = 0. (40)

These equations do not have explicit solutions and their solutions must be obtained numer-
ically by using statistical software like nlm or optim package in R programming.
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We compute the maximized unrestricted and restricted log-likelihood ratio (LR) test
statistic for testing on some DTIHLW submodels. The LR test statistic can be used to check
whether DTIHLW distribution for a given data set is statistically superior to the submodels.
For example, H0 : β = 1 versus H1 : β ̸= 1 is equivalent to compare the DTIHLW distribution
and DTIHLE distribution. Here the LR test statistic reduces to ω = 2[l(q̂, λ̂, β̂)− l(q̂′, λ̂′, 1)],
where (q̂, λ̂, β̂) and (q̂′, λ̂′) are the MLEs under H1 and H0, respectively. The test statistic
ω is asymptotically (as n → ∞) distributed as χ2

(k), where k is the length of the parameter
vector of interest. The LR test rejects H0 if ω > χ2

(k,α) where χ2
(k,α) denotes the upper

(1 − α)100% quantile of the χ2
(k) distribution.

5.9. Simulation study

This section demonstrates the performance of the MLEs of the model parameters of
DTIHLW distribution using Monte Carlo simulation for various sample sizes and for selected
parameter values. The algorithm for the simulation study are as follows:
Step 1. Input the value of replication (N);
Step 2. Specify the sample size n and the values of the parameters q, λ and β;
Step 3. Generate ui from U(0, 1), i = 1, 2, ..., n;
Step 4. Obtain the random observations from the DTIHLW distribution using (24);
Step 5. Compute the MLEs of the three parameters;
Step 6. Repeat steps 3 to 5, N times;
Step 7. Compute the parameter estimate, standard error of estimate, average bias, mean
square error (MSE) and coverage probability (CP) for each parameter.
Here the expected value of the estimator is

E(θ̂) = 1
N

∑N
i=1 θ̂i, E(SE(θ̂)) =

√√√√ 1
N

∑N
i=1

(
− ∂2 log(L)

∂θ2
i

)
,

Average Bias = 1
N

∑N
i=1(θ̂i − θ), MSE(θ̂) = 1

N

∑N
i=1(θ̂i − θ)2 and

CP = Probability of θi ∈
(

θ̂i ± 1.96
√

−∂2 log(L)
∂θ2

i

)
.

We take random samples of size n=50, 100, 200 and 500 respectively. The MLEs of the
parameter vector θ = (q, λ, β)T are determined by maximizing the log-likelihood function
given in (37) by using the optim package in R programming based on each generated samples.
This simulation is repeated 1000 times and the average estimate and its standard error,
average bias, MSE and CP are computed and presented in Table 3. From Table 3, it can be
seen that, as sample size increases the estimates of bias and MSE are decreases. Also note
that the CP values are quite closer to the 95% nominal level.

6. Applications

In order to check the use of DTIHLW distribution for real life data modeling, we
consider three data sets. The first data set is continuous measurement of flood peaks (in
m3/s) of the Wheaton River near Carcross in Yukon Territory, Canada for the years 1958-
1984. This data was analyzed by Choulakian and Stephens (2001). The data are as follows:
1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 13.0 12.0 9.3 1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7
37.6 0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6 9.0 1.7 7.0 20.1 0.4 14.1 9.9 10.4 10.7
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Table 3: The MLE, standard error, average bias, MSE and CP for given param-
eters.

Parameter(θ) Samples(n) E(θ̂)(E(SE(θ̂))) Average bias MSE CP

q = 0.5
50
100
200
500

0.368(0.223)
0.412(0.192)
0.432(0.115)
0.486(0.102)

-0.121
-0.108
-0.097
-0.066

0.115
0.101
0.093
0.088

87.5
88.1
90.2
92.8

λ = 1.5
50
100
200
500

1.733(0.196)
1.692(0.188)
1.544(0.094)
1.539(0.023)

0.228
0.119
0.105
0.099

0.114
0.091
0.077
0.061

91.6
91.9
92.7
94.1

β = 0.9
50
100
200
500

0.633(0.251)
0.701(0.190)
0.876(0.022)
0.899(0.013)

-0.129
-0.116
-0.064
-0.027

0.025
0.021
0.009
0.003

92.8
93.5
94.2
94.9

q = 0.8
50
100
200
500

0.759(0.142)
0.773(0.136)
0.792(0.084)
0.803(0.048)

-0.183
-0.086
-0.043
0.008

0.226
0.149
0.063
0.041

91.2
93.4
93.8
94.7

λ = 1.0
50
100
200
500

0.836(0.362)
0.881(0.143)
0.934(0.081)
0.962(0.016)

-0.161
-0.133
-0.096
-0.077

0.447
0.219
0.124
0.019

90.7
91.3
93.3
93.9

β = 1.5
50
100
200
500

1.543(0.116)
1.514(0.108)
1.503(0.099)
1.501(0.086)

0.039
0.026
0.021
0.018

0.118
0.103
0.081
0.011

94.1
94.4
95.2
95.8

30.0 3.6 5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0 1.5 2.5 27.4 1.0 27.1 20.2 16.8
5.3 9.7 27.5 2.5 27.0 1.9 2.8. Since the data set is continuous, here first we discretize the
data by considering the floor value (y) and fitted the new distribution for the y values.

The second data set is the daily ozone level measurements (in ppm x 1000) taken
from Nadarajah (2008) and are as follows: 7 115 79 31 9 8 45 61 23 28 19 23 35 59 21 23 32
48 22 44 28 4 7 65 24 13 18 11 27 44 21 73 12 1 10 110 23 28 36 30 85 89 20 80 41 6 97 122
32 135 34 21 82 73 16 14 23 52 168 24 18 39 20 45 13 14 71 108 9 18 11 29 16 21 46 16 37
63 44 13 12 59 84 7 20 64 118 36 37 50 76 23 13 39 85 14 49 9 96 30 32 16 78 14 64 78 91 18
40 35 47 20 77 66 97 11.

The third data set is from Eliwa et al. (2021) which represents the daily new deaths
due to COVID-19 in China from 23 January to 28 March, 2019. The data are: 8 16 15 24
26 26 38 43 46 45 57 64 65 73 73 86 89 97 108 97 146 121 143 142 105 98 136 114 118 109 97
150 71 52 29 44 47 35 42 31 38 31 30 28 27 22 17 22 11 7 13 10 14 13 11 8 3 7 6 9 7 4 6 5 3 5.

We fit DTIHLW(q, λ, β) distribution for the three data sets. The fit of the data
sets are compared with six competitive models, respectively, type I half-logistic exponential
(DTIHLE) distribution, a sub model of the proposed distribution, discrete Weibull geometric



72 M. GIRISH BABU AND K. JAYAKUMAR [Vol. 23, No. 1

Figure 4: The TTT plots of the three data sets.

(DWG) distribution of Jayakumar and Babu (2018), exponentiated discrete Weibull (EDW)
distribution of Nekoukhou and Bidram (2015), discrete modified Weibull (DMW) distribu-
tion of Nooghabi et al. (2011), discrete logistic (DLOG) distribution of Chakraborty and
Chakravarty (2016), discrete Weibull (DW) distribution of Nakagawa and Osaki (1975).

Descriptive statistics of the three data sets are shown in Table 4. The Total Time on
Test (TTT) plot of the three data sets are shown in Figure 4.

Table 4: Descriptive statistics for the three data sets

Data Samples(n) Mean SD Min. Max. Skewness Kurtosis
First set 72 12.204 12.297 0.1 64.0 1.304 3.189
Second set 116 42.129 32.988 1 168 1.242 1.290
Third set 66 49.742 43.873 3 150 0.837 2.450

The values of the log-likelihood function (− log L), the statistics Kolmogorov-Smirnov
(K-S), Akaike Information Criterion (AIC), Akaike Information Criterion with correction(CAIC)
and Bayesian Information Criterion(BIC) are calculated for the seven distributions in order
to verify which distribution fits better to these data. The better distribution corresponds to
smaller K−S, − log L, AIC, CAIC, BIC values and high p value. Here, AIC=−2 log L+2k,
CAIC=−2 log L + ( 2kn

n−k−1) and BIC=−2 log L + k log n where, L is the likelihood function
evaluated at the maximum likelihood estimates, k is the number of parameters and n is the
sample size.

The values in Table 5 shows that the DTIHLW distribution leads to a better fit
compared to the other six models. Figure 5, shows the fitted pdf and cdf with the empirical
distribution of the first data set. The LR test statistic to test the hypothesis H0 : β = 1
versus H0 : β ̸= 1 for the first data set is ω = 7.264 > 3.841 with p value 0.0070. So we
reject the null hypothesis.
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Table 5: Parameter estimates and goodness of fit for the first data set

Model ML estimates -log L AIC CAIC BIC K-S p-value

DTIHLW
q̂ = 0.758
λ̂ = 0.794
β̂ = 0.765

251.99 509.97 510.32 516.80 0.109 0.351

EDW
q̂ = 0.866
λ̂ = 0.831
β̂ = 1.089

252.24 510.48 510.83 517.31 0.125 0.208

DWG
q̂ = 0.123
λ̂ = 0.900
β̂ = 0.912

252.25 510.49 510.85 517.33 0.136 0.140

DMW
q̂ = 0.917
λ̂ = 0.870
β̂ = 1.016

253.53 513.06 513.41 519.89 0.137 0.133

DTIHLE q̂ = 0.121
λ̂ = 0.051 255.62 515.24 515.42 519.79 0.187 0.013

DW q̂ = 0.779
β̂ = 0.630 257.52 519.04 519.21 523.59 0.159 0.051

DLOG q̂ = 0.664
λ̂ = 9.382 280.19 564.37 564.55 568.93 0.279 2.7x10−5

Table 6: Parameter estimates and goodness of fit for the second data set

Model ML estimates -log L AIC CAIC BIC K-S p-value

DTIHLW
q̂ = 0.954
λ̂ = 0.428
β̂ = 1.133

545.24 1096.49 1096.70 1104.75 0.079 0.464

EDW
q̂ = 0.939
λ̂ = 0.878
β̂ = 1.666

548.47 1102.93 1103.15 1111.19 0.148 0.013

DWG
q̂ = 0.162
λ̂ = 0.966
β̂ = 0.879

560.95 1127.91 1128.12 1136.17 0.207 9.3x10−5

DMW
q̂ = 0.978
λ̂ = 0.828
β̂ = 1.010

551.36 1108.71 1108.93 1116.98 0.104 0.159

DTIHLE q̂ = 0.101
λ̂ = 0.014 548.59 1101.18 1101.28 1106.68 0.105 0.153

DW q̂ = 0.989
β̂ = 1.158 547.65 1099.31 1099.41 1104.81 0.100 0.193

DLOG q̂ = 0.946
λ̂ = 38.115 567.74 1139.48 1139.59 1144.99 0.134 0.032
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Figure 5: Fitted pdf and cdf plots for the first data set

The values in Table 6 indicates that the DTIHLW distribution leads to a better fit
compared to the other six models. Figure 6, shows the fitted pdf and cdf with the empirical
distribution of the second data set. The LR test statistic to test the hypothesis H0 : β = 1
versus H0 : β ̸= 1 for the second data set is ω = 6.7 > 3.841 with p value 0.0096. So we
reject the null hypothesis. The values in Table 7 indicates that the DTIHLW distribution
leads to a better fit compared to the other six models. Figure 7, shows the fitted pdf and
cdf with the empirical distribution of the second data set. The LR test statistic to test the
hypothesis H0 : β = 1 versus H0 : β ̸= 1 for the third data set is ω = 42.3 > 3.841 with p
value 8.02x10−11. So we reject the null hypothesis.

7. Conclusion and future works

The discrete version of the Type I half logistic distributions was introduced. Several
members of this family such as discrete type I half-logistic uniform, discrete type I half-
logistic Lomax, discrete type I half-logistic exponential, discrete type I half-logistic Fréchet
and discrete type I half-logistic Weibull distributions were specified. Some properties of the
discrete type I half-logistic Weibull distribution were studied. The three parameters of the
new distribution were estimated using maximum likelihood method and a simulation study
was conducted to check the performance of the method. Three real data applications shows
that this model is suitable for modeling discrete data. Since the likelihood equations of the
present distribution are highly non-linear equations and it is difficult to study the existence
and uniqueness of the MLE’s of parameters, so we propose further studies in this direction
as future work.
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Figure 6: Fitted pdf and cdf plots for the second data set.

Figure 7: Fitted pdf and cdf plots for the third data set.
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Table 7: Parameter estimates and goodness of fit for the third data set.

Model ML estimates -log L AIC CAIC BIC K-S p-value

DTIHLW
q̂ = 0.798
λ̂ = 0.169
β̂ = 0.922

324.82 655.64 656.02 662.21 0.091 0.644

EDW
q̂ = 0.899
λ̂ = 0.702
β̂ = 1.716

325.96 657.92 658.31 664.49 0.114 0.357

DWG
q̂ = 0.645
λ̂ = 0.412
β̂ = 0.739

1137.19 2280.37 2280.76 2286.94 0.568 2.2x10−16

DMW
q̂ = 0.877
λ̂ = 0.437
β̂ = 1.001

352.59 711.18 711.57 717.74 0.256 3.5x10−4

DTIHLE q̂ = 0.305
λ̂ = 0.042 345.95 695.89 696.08 700.27 0.255 3.6x10−4

DW q̂ = 0.784
β̂ = 0.531 357.11 718.22 718.41 722.59 0.391 3.5x10−9

DLOG q̂ = 0.971
λ̂ = 4.885 366.55 737.10 737.29 741.41 0.494 2.2x10−14
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Abstract
In the current competitive scenario, customer satisfaction is a key aspect for any

organization. This paper deals with the concept of customer reneging in the system. Due
to improper quality of service, customers get dissatisfied, which represents queuing with
feedback. Unsatisfied customers, after taking partial service, again put efforts into getting
service in case of feedback. A single server Markovian feedback bulk queuing model M b/M/1
(where b is the fixed batch size) is considered with the reneging of customers and their reten-
tion. The steady-state solution and various system performance measures are established.
Sensitivity analysis of parameters is also performed and the effect on the size of the system
is compared with the variation in the probability of retention, which shows that the higher
the retention of customers, the larger the queue size in the system. MATLAB software is
used to show the results graphically. Some particular cases for the proposed model are also
examined.

Key words: Customer retention; Feedback; Bulk queuing model; Steady state solution; Per-
formance measure.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Nowadays, in this competitive era, businesses and organizations can flourish only if
customers are satisfied. The quality of the product as well as quick service by the servers are
the demands of every customer. Inefficiency in fulfilling these demands leads to customer
dissatisfaction, which results in monetary losses for businesses. Thus, customer satisfaction
is the measure of success for any business and reflects the degree to which the organization
is able to meet the customer’s expectations. The customer enters the system for service, but
due to poor quality of service, leaves the system before completion of the service. This process
is termed reneging, and the customers who leave the system are called reneged customers.
Customer retention is the biggest challenge for organizations, as customer impatience is the
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major cause of this problem. Thus, by incorporating various strategies, an unsatisfied cus-
tomer is convinced to remain in the system, which is termed retained customers. Customer
impatience is categorized into three types:

• Balking is when a customer decides not to join the queue after seeing its size.

• Reneging is when a customer joins the queue for service but leaves the queue after
waiting for a long time.

• Jockeying is when a customer switches between the parallel queues because they think
that by doing so, they might get quick service.

Haight (1957) and Haight (1959) studied the concept of customer impatience and
reneging in queuing theory. The concept of reneging and balking was also studied by An-
cker and Gafarian (1963) in the M/M/1/N queuing system and obtained its steady-state
solution. Abou-El-Ata and Hariri (1992) studied a multiple-channel truncated queue with
balking and reneging and established the steady-state solution and various system perfor-
mance measures of the proposed queuing model. Choudhury and Medhi (2011) analyzed the
Markovian multi-server queuing model with balking and reneging, in which explicit closed
forms were presented. Two abandonment scenarios with impatient customers in a single
server Markovian queue were studied by Kapodistria (2011) In the first scenario, an existing
customer becomes impatient and performs synchronized abandonments, and the customer
is excluded from taking service in the second scenario. This work is then extended by him
to a multi-server Markovian queue under the second abandonment scenario as well.

Kumar and Sharma (2012a) and Kumar and Sharma (2012b) developed an M/M/1/N
queuing model with the reneging of customers and their retention and obtained the steady-
state solution and various performance measures of the proposed model. They extended this
work and developed an M/M/1/N queuing model using the concept of balking and retention
of reneged customers. So, balking is another added concept that they used in their research.
VijayaLaxmi and Jyothsna (2013) studied the optimization of reneging and balking queues
with vacation interruption under N-policy.

Kumar and Sharma (2013) incorporated the notion of balking and reneging of cus-
tomers with their retention in the M/M/1 feedback queuing model and developed a steady-
state solution. VijayaLaxmi and Kassahun (2018) studied a multi-server Markovian queue
with working vacations, reneging of customers, and discouraged arrivals and obtained the
steady state and steady probabilities of the system. Kumar and Sharma (2021) discussed
a Markovian queuing system with multiple heterogeneous servers, reneging, and retention
of reneging customers. They performed transient analysis using a probability-generating
function and important performance measures, including the average retention rate. Also,
the steady-state solution of the model is obtained. Rimmy and Indra (2022) described
the effect of balking and reneging on a two-dimensional state queuing model with multiple
servers. They derived the time-dependent probabilities by using Laplace transformations
and obtained some measurable outcomes of the system.

In our study, the work of Kumar and Sharma (2013) is extended. They investigated
the single server infinite capacity Markovian feedback M/M/I queueing model with reten-
tion of reneged customers and balking. In their analysis, they considered a single-server
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feedback queueing model where one server serves all of the customers who arrive under the
presumption that the retention of reneged customers and balking. In this paper web have
extended this work to a single server Markovian feedback Mb/M/1 bulk queueing model.
The limitations of a single server M/M/1 model are overcome by taking the bulk queueing
model into consideration, because many organizations frequently encounter the arrival of
customers in batches in real-world settings. In that situation, our study will assist in quickly
and successfully resolving their issues. The overhead associated with processing individual
requests is reduced in our work by handling requests in batches, which results in greater re-
source utilization.We also obtained the steady-state solution of the proposed model. Further,
several system performance measures and particular cases of the proposed queuing models
are obtained.

The issue of batch arrivals is not addressed in the extensive literature that has been
published since 2013, which focuses primarily on a single server queueing model with finite
and infinite capacity and some assumption-based research on jockeying, reneging, and balking
or on their combinations.

In our study, we took into account a single server Markovian feedback bulk queuing
model where customers arrive in predetermined fixed batch size. The bulk queueing model
outperforms the preceding single server M/M/1 queueing model by allowing numerous re-
quests to come simultaneously as a batch rather than one at a time. This is accomplished
by establishing a fixed batch size. Therefore, in real-world situations, this bulk queueing
strategy will boost customer retention, which raises the total number of customers using the
system. So, our study plays a pivotal role in the field of queueing theory.

2. Model description

In the study, we consider the single-server Markovian feedback bulk queuing model
Mb/M/1 (where b is the fixed batch size of the arrival of the customer) with reneging of the
customer. Customers join the system in a Poisson manner with the arrival rate λ and get the
service exponentially with the service rate. Due to the concept of reneging, customers join the
queue for service and leave the queue after waiting because the queue is too long. Feedback
customers are those unsatisfied customers who re-join the system for another regular service
after the completion of the previous service.

Let the parameter ξ of reneging time be exponentially distributed. It is found that
by incorporating some strategies and schemes, a reneged customer can be convinced to be
retained in the system for the service. Let q be the probability with which reneged customers
are retained in the system, the probability of non-retention of customers be p(= 1 − q)), n
be the number of units in the system, Pn(t) be the transient state probability of having
n customers in the system at time t, and Pn be the steady state probability of having n
customers in the system.

The differential-difference equations of the bulk queuing model M b/M/1 given by
Medhi (2001) are:

dP0(t)
dt

= −λP0(t) + µP1(t) (1)
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dPn(t)
dt

= − [(λ + µ)Pn(t)] + µPn+1(t) , n < b , n = 1, 2, · · · , b − 1 (2)

dPn(t)
dt

= − [(λ + µq + (n − 1)ξp) Pn(t)] + (µq + nξp)Pn+1(t) + λPn−b(t), n ≥ b (3)

Equations (1) and (2) were considered from Medhi (2001) and we expanded them to
generate equation (3) under the assumptions that the queueing model is a bulk queueing
model with a fixed batch size b and reneging and number of customers n are greater than or
equal to the batch size b.

In steady state, limt→∞ Pn(t) = Pn and hence dPn(t)
dt

= 0 as t → ∞ and thus equations
(1), (2) and (3) gives the difference equations of the model

0 = −λP0 + µP1 (4)
0 = − [(λ + µ)Pn] + µPn+1 , n < b , n = 1, 2, · · · , b − 1 (5)

0 = − [(λ + µq + (n − 1)ξp) Pn] + (µq + nξp)Pn+1 + λPn−b, n ≥ b (6)

Using equation (4), we get

P1 = λP0

µ
(7)

For n = 1, equation (5) yields,(λ + µ)P1 = µP2 i.e; P2 = (λ+µ)
µ

P1

i.e; P2 = λ(λ + µ)
µ2 P0

For n = 2, equation (5) yields, P3 = λ(λ+µ)2

µ3 P0

On solving iteratively, we get

Pn = λ(λ + µ)n−1

µn
P0 , 1 ≤ n ≤ b (8)

For n > b, put n = b in equation (6)

[(λ + µq + (b − 1)ξp) Pb] = (µq + bξp)Pb+1 + λP0

Pb+1 = [(λ + µq + (b − 1)ξp) Pb] − λP0

(µq + bξp)

Put the value of Pb for n = b from equation (8), we get
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Pb+1 = λ[(λ + µq + (b − 1)ξp)(λ + µ)b−1 − µb]
µb(µq + bξp) P0

Similarly for n > b, the steady state probabilities Pn; n > b + 1 are obtained as

Pn =
n∏

k=b+1

λ[{λ + µq + (b − 1)ξp}(λ + µ)b−1 − µb]
µb(µq + kbξp) P0 (9)

For finding the value of P0 , normalization condition ∑∞
n=0 Pn = 1 is used and the

values of Pn; n ≥ 1
[
1 + ∑b

n=1
λ(λ+µ)n−1

µn + ∑∞
n=b+1

∏n
k=b+1

λ{(λ+µq+(b−1)ξp)(λ+µ)b−1−µb}
µb(µq+kbξp) P0

]
= 1

where
P0 = 1

1 + ∑b
n=1

λ(λ+µ)n−1

µn + ∑∞
n=b+1

∏n
k=b+1

λ{(λ+µq+(b−1)ξp)(λ+µ)b−1−µb}
µb(µq+kbξp)

(10)

The steady state probabilities exist if
[
1 + ∑b

n=1
λ(λ+µ)n−1

µn + ∑∞
n=b+1

∏n
k=b+1

λ{(λ+µq+(b−1)ξp)(λ+µ)b−1−µb}
µb(µq+kbξp)

]
< ∞

3. System performance measures

Now, we derive some common performance measures from the proposed single-server
Mb/M/1feedback bulk queuing model, which are useful for investigating the behavior of the
system.

3.1. The expected number of customers waiting in the system(Ls)

Ls =
∞∑

n=0
nPn

=



b∑

n=1

nλ(λ + µ)n−1

µn
+

∞∑

n=b+1
n(

∞∏

k=b+1

λ{(λ + µq + (b − 1)ξp)(λ + µ)b−1 − µb}
µb(µq + kbξp) )


 P0

(11)

3.2. The expected number of customers waiting in the queue(Lq)

Lq = Ls − λ

µ

=



b∑

n=1

nλ(λ + µ)n−1

µn
+

∞∑

n=b+1
n(

∞∏

k=b+1

λ{(λ + µq + (b − 1)ξp)(λ + µ)b−1 − µb}
µb(µq + kbξp) )


 P0 − λ

µ

(12)
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3.3. The expected waiting time of the customer in the system(Ws)

Ws = Ls

λb

= 1
λb




b∑

n=1

nλ(λ + µ)n−1

µn
+

∞∑

n=b+1
n(

∞∏

k=b+1

λ{(λ + µq + (b − 1)ξp)(λ + µ)b−1 − µb}
µb(µq + kbξp) )


 P0

(13)

3.4. The expected waiting time of the customer in the queue(Wq)

Wq = Ws − 1
µ

=



b∑

n=1

nλ(λ + µ)n−1

µn
+

∞∑

n=b+1
n(

∞∏

k=b+1

λ{(λ + µq + (b − 1)ξp)(λ + µ)b−1 − µb}
µb(µq + kbξp) )x


 P0 − 1

µ

(14)

4. Sensitivity analysis

Sensitivity analysis evaluates the responsiveness of a model to the changes in various
controllable parameters. In this section, we evaluate the sensitivity of the proposed model
for different values of various parameters.

For a fixed value of n and for different values of λ, µ, ξ, q, we calculate the variations
in the expected number of customers waiting in the system(Ls) by using equation (11) and
discuss their effects graphically.

Case I. Effect on the size of the system with the variation in arrival rate

For n = 4, λ = 2.0, 2.1, 2.2, 2.3, 2.4, µ = 3, ξ = 0.1, q = 0.6, p=0.4, b=3, we substitute
these values in (11), we have

Table 1: Effect on the size of the
system with the variation in Arrival rate

S.No. λ P0 Ls

1. 2.0 0.115 2.85
2. 2.1 0.103 2.92
3. 2.2 0.093 2.97
4. 2.3 0.084 3.03
5. 2.4 0.076 3.08

Figure 1
X- Axis : Average arrival rate,
Y-Axis: Expected system size

From Table 1 and Figure 1 above, we observe that the size of the system is directly
proportional to the arrival rate, i.e. more the arrival of customers, larger the size of the
system and vice-versa.
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Case II. Effect on the size of the system with the variation in service rate

For n = 4, λ = 2, µ = 2.0, 2.1, 2.2, 2.3, 2.4, ξ = 0.1, q = 0.6, p = 0.4, b = 3, we
substitute these values in (11), we have

Table 2: Effect on the size of the system with
the variation in service rate

S.No. µ P0 Ls

1. 2.0 0.046 3.24
2. 2.1 0.052 3.21
3. 2.2 0.058 3.15
4. 2.3 0.064 3.11
5. 2.4 0.071 3.09

Figure 2
X- Axis : Average service,

Y-Axis: Expected system size

From Table 2 and Figure 2 above, we observe that as the average service rate increases,
the size of the system decreases.

Case III. Effect on the size of the system with the variation in average reneging
rate

For n = 4, λ = 2, µ = 3, ξ = 0.01, 0.02, 0.03, 0.04, 0.05, q = 0.6, p = 0.4, b = 3 we
substitute these values in (11), we have

Table 3 : Effect on the size of the system
with the variation in average reneging rate

S.No. ξ P0 Ls

1. 0.01 0.102 2.98
2. 0.02 0.104 2.97
3. 0.03 0.105 2.94
4. 0.04 0.107 2.94
5. 0.05 0.108 2.91

Figure 3
X- Axis : Average reneging rate,
Y-Axis: Expected system size

From Table 3 and Figure 3 above, we observe that as the average reneging rate
increases, the size of the system decreases.

Case IV. Effect on the size of the system with the variation in retention proba-
bility

For n = 4, λ = 2, µ = 3, ξ = 0.1, q=0.1, 0.2, 0.3, 0.4, 0.5, b = 3 we substitute these
values in (11), we have
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Table 4 : Effect on the size of the system
with the variation in retention probability

S.No. q p(=1-q) P0 Ls

1. 0.1 0.9 0.120 2.63
2. 0.2 0.8 0.122 2.76
3. 0.3 0.7 0.120 2.80
4. 0.4 0.6 0.118 2.82
5. 0.5 0.5 0.116 2.83

Figure 4
X- Axis : Probability of retention,

Y-Axis: Expected system size

From Table 4 and Figure 4 above, it is observed that the higher the retention of
customers from reneging, the larger the size of the system.

5. Particular cases of the model

In this section, some particular cases of the proposed model are derived.

5.1. When retention probability of reneged customers is zero

If retention of reneged customers is zero, then q = 1 − p = 0. In this case, proposed

model becomes Mb/M/1 feedback bulk queuing model with reneging and we get

Pn = λ(λ + µ)n−1

µn
P0 , 1 ≤ n ≤ b (15)

Pn =
n∏

k=b+1

λ[(λ + (b − 1)ξp)(λ + µ)b−1 − µb]
µb(kbξp) P0, n > b (16)

where P0 = 1
1+

∑b

n=1
λ(λ+µ)n−1

µn +
∑∞

n=b+1
∏n

k=b+1
λ{(λ+(b−1)ξp)(λ+µ)b−1−µb}

µb(kbξp)

.

5.2. When no reneging in the system

If there is no reneging in the system, then ξ = 0. In this case proposed model reduces
to simple Mb/M/1 queue model and we get

Pn = λ(λ + µ)n−1

µn
P0 , 1 ≤ n ≤ b

Pn =
n∏

k=b+1

λ[(λ + µq)(λ + µ)b−1 − µb]
µb(µq) P0, n > b (17)

where P0 = 1
1+

∑b

n=1
λ(λ+µ)n−1

µn +
∑∞

n=b+1
∏n

k=b+1
λ{(λ+µq)(λ+µ)b−1−µb}

µb(µ q)

.
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5.3. When the system is of finite capacity

If system capacity is finite, say N , then proposed model reduces to Mb/M/1/N feed-
back queuing model with retention of reneged customers and

Pn = λ(λ + µ)n−1

µn
P0 , 1 ≤ n ≤ b

Pn =
n∏

k=b+1

λ[(λ + µq + (b − 1)ξp)(λ + µ)b−1 − µb]
µb(µq + kbξp) P0, b + 1 ≤ n ≤ N (18)

where P0 = 1
1+

∑b

n=1
λ(λ+µ)n−1

µn +
∑N

n=b+1
∏n

k=b+1
λ{(λ+µq+(b−1)ξp)(λ+µ)b−1−µb}

µb(µq+kbξp)

6. Conclusion

In this paper, a single-server M b/M/1 feedback bulk queuing model with reneged
customers and their retention is discussed. The steady-state solution and various system
performance measures are also derived for the proposed model. The sensitivity analysis of
the proposed model is performed, and the effect of variation in the retention probability on
the size of the system is discussed. From the results obtained, we concluded that the higher
the retention of customers, the larger the size of the system. Thus, the study suggests any
organization employ more strategies to retain customers for maximum profit.However, under
some unusual circumstances, like epidemics or catastrophic events, this conclusion may not
be true since customer retention will decrease due to impatience if the arrival of customers
in batches is exponentially increasing and rises to be extremely large. Numerical results
are analyzed by graphical representation using MATLAB software. Further, some particular
cases of the proposed model are also discussed, and for different cases, we obtained some
more queuing models with feedback. These extensions of models and their comparisons can
be explored in future work.
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Abstract
In this research, we study and introduce a new family of continuous distributions

known as the T-Marshall-Olkin X family. We present some special models and investigate
the asymptotic distributions of order statistics of the family half-logistic-Marshall-Olkin
X family, which is explored in depth as a specific instance. The half-logistic-Marshall-
Olkin Lomax distribution is one unique model in this family that is explored in depth.
We list a few of the new distribution’s mathematical properties. We use the maximum
likelihood method to estimate the model’s parameters. The bias and mean square error
of the maximum likelihood estimators are examined in a simulation study that is given.
Testing the importance of a distribution parameter is done using the likelihood ratio test
with a simulation study. The potentiality and flexibility of the new family are illustrated by
using two practical data sets.

Key words: T-X family; Marshall-Olkin; Moments; Maximum likelihood estimation; Likeli-
hood ratio test; Applications.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

The statistical literature is rich with different kinds univariate distributions and is
still growing rapidly. The classical distributions have various limitations in modelling real-
life data. This persuades the statistical researcher to develop methods for generating new
classes of distributions starting with a base line distribution.

Marshall and Olkin (1997) proposed a flexible family of distributions by introducing a
new shape parameter to the existing family of distributions called the Marshall-Olkin family
of distributions. The cumulative density function (CDF) of the Marshall-Olkin (MO) family
is given respectively, by G(x) = F (x)

c+(1−c)F (x) , c > 0, x ∈ R, where F (x) is the baseline CDF.
This approach produces a stable distribution with broad field behaviour in probability density
function (PDF) and hazard rate function (HRF) compared to the baseline distribution. It
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provides a flexible framework for modelling a variety of circumstances and is useful in areas
such as reliability, finance, simulation studies, health research, and engineering. Some MO
families of distributions are MO-extended Lomax by Ghitany et al. (2007), MO-extended
Lindley by Ghitany et al. (2012), MO-Fréchet by Krishna et al. (2013), MO-exponential
Weibull by Pogány et al. (2015), MO-generalized exponential by Ristić and Kundu (2015),
MO-Ikum by Tomy and Gillariose (2018), MO modified Lindley by Gillariose et al. (2020),
MO Gumbel-Lomax by Nwezza and Ugwuowo (2020) MO-Lindley-Log-logistic by Moakofi
et al. (2021), MO alpha power inverse exponential by Basheer (2022), MO Inverse log-logistic
by Aako et al. (2022), MO Extended Gumbel Type-II by Willayat et al. (2022), MO extended
unit-Gompertz by Opone et al. (2022), MO Exponentiated Dagum by Sherwani et al. (2023),
MO Extended Generalized Exponential by Innocent et al. (2023), MO Pranav by Alsultan
(2023), MO Exponentiated Fréchet by Niyoyunguruza et al. (2023), MO Chris-Jerry by
Obulezi et al. (2023), MO Pareto type-I by Aldahlan et al. (2023), MO Cosine Topp-Leon
by Osi et al. (2024a), MO Bilal by İrhad et al. (2024).

Alzaatreh et al. (2013) introduced a powerful method to generate new families of
distributions called the transformed-transformer method, and the family is called the T-X
family of distributions. This approach extends the beta-G by Eugene et al. (2002) and
Kumaraswamy-G by Cordeiro and de Castro (2011) families by using any continuous dis-
tribution for a random variable T on [a, b]. The CDF of the T-X family of distributions is

given by R(x) =
W [G(x)]�

a
j(t)dt, where j(t) is the PDF of a random variable T , T ∈ [a, b] for

−∞ < a < b < ∞ and W [G(x)] is a function of the baseline CDF of a random variable X
and satisfies three conditions, namely

• W [G(x)] ∈ [a, b].

• W [G(x)] is differentiable and monotonically non decreasing.

• W [G(x)] → a as x → −∞ and W [G(x)] → b as x → ∞.

Numerous research papers on the T-X family have been published in the literature. The
Weibull-Pareto distribution by Alzaatreh et al. (2013), Kumaraswamy-Geometric Distri-
bution by Akinsete et al. (2014), McDonald quasi Lindley distribution by Merovci et al.
(2015), Kumaraswamy -Weibull geometric distribution by Rasekhi et al. (2018), generalized
odd inverted exponential generated family of distributions by Chesneau and Djibrila (2019),
Weibull Burr X-G family of distribution by Ishaq et al. (2019), weighted odd Weibull gen-
erated family of distributions by Mi et al. (2021), exponentiated odd Chen-G family of
distributions by Eliwa et al. (2021), generalized odd linear exponential family of distribu-
tions by Jamal et al. (2022), Rayleigh-Exponentiated Odd Generalized-Pareto distribution
by Yahaya and Doguwa (2022), MO odd power generalized Weibull distribution by Chipepa
et al. (2022), New Generalized Logarithmic-X family of distributions by Shah et al. (2023),
New Generalized Odd Fréchet-Exponentiated-G family of distribution by Sadiq et al. (2023),
new generalized exponentiated Fréchet–Weibull distribution by Klakattawi et al. (2023), MO
Topp-Leone Half-Logistic-G family of distributions by Sengweni et al. (2023), exponentiated
Cosine Topp-Leone Generalized family of distributions by Osi et al. (2024b) and others are
a few examples. A review paper by Tomy et al. (2019) provides a detailed account of the
T-X family of distributions.
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Nowadays, there is a trend toward combining various families of distributions to in-
crease the flexibility and properties of new distributions. Some of them are the beta MO fam-
ily by Alizadeh et al. (2015a), Kumaraswamy MO family by Alizadeh et al. (2015b), general-
ized MO Kumaraswamy-G family by Handique and Chakraborty (2015a), MO-Kumaraswamy-
G family by Handique and Chakraborty (2015b), T-transmuted X family by Moolath and
Jayakumar (2017), MO Zubair-G family by Nasiru and Abubakari (2022), MO Weibull–Burr
XII family by Alsadat et al. (2023), type II exponentiated half logistic-MO-G family by
Oluyede and Gabanakgosi (2023), new generalized exponentiated Fréchet–Weibull family by
Klakattawi et al. (2023), new Topp-Leone Kumaraswamy MO generated family by Atchadé
et al. (2024). The new idea is based on both the MO and T-X families of distributions,
combining the MO and T-X families of distributions. The motivations for introducing this
new family of distributions are:

1. To generate a new family of distributions that have the properties contained in the
MO and T-X families of distributions.

2. The new family of distributions is more adaptable to real-life data than models with
same number of parameters and baseline distribution.

3. The desirable characteristics and adaptability provided by this new family of distribu-
tions, particularly in terms of the forms of the density and hazard rate functions, have
inspired us to create this model, as it proves beneficial for real-life data analysis.

In this chapter, we propose a new extension of the T-X family by considering MO as
baseline distribution called the T-Marshall-Olkin X family of distributions. The proposed
distribution is well-suited to both biomedical and survival datasets. This study demonstrates
that the novel extension of the Lomax distribution provides a better match to the datasets
than other well-known distributions (see Section 8). The chapter unfolds as follows: In
Section 2, we introduce a new family of distributions called “T-Marshall-Olkin X family”
and study its properties. In Section 3, some members of T-Marshall-Olkin X family are
identified. The mathematical properties of one of the member of T-Marshall-Olkin X family
called, half logistic-Marshall-Olkin X family of distributions are studied in Section 4. In
Section 5, we study the half logistic-Marshall-Olkin Lomax distribution and its properties.
The maximum likelihood estimator of the unknown parameters with simulation study are
discussed in Section 6. The analysis of two real data sets has been presented and illustrat-
ing the modelling potential of half logistic-Marshall-Olkin Lomax distribution in Section 8.
Finally, the conclusion of the paper appears in Section 9.

2. T-Marshall-Olkin X family of distributions

The CDF of a T-X family of distributions is defined as

R(x) =
W [G(x)]�

a

j(t)dt. (1)
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Let [W (G(x)] = − log(1 − G(x)) and the random variable T be defined on (0, ∞). Then the
CDF becomes

R(x) =
− log(1−G(x))�

0

j(t)dt. (2)

As a special case, we assume G(x) is a MO family of distributions.

Then

W (G(x)] = − log
{

1 − F (x)
c + (1 − c)F (x)

}
= − log

{
c(1 − F (x))

c + (1 − c)F (x)

}
.

From Equation (2), the CDF of the new family is

R(x) =

− log
{

c(1−F (x))
c+(1−c)F (x)

}

�

0

j(t)dt = J
{

− ln{ c(1 − F (x))
c + (1 − c)F (x)}

}
. (3)

When considering X as a continuous random variable, the probability density function (PDF)
can be generated as follows:

r(x) = d

dx
J
{

− log { c(1 − F (x))
c + (1 − c)F (x)}

}

= j
{

− log { c(1 − F (x))
c + (1 − c)F (x)}

}
f(x)

(1 − F (x))(c + (1 − c)F (x)) ; x ∈ R. (4)

The corresponding HRF can be found using the formula

hr(x) =
j
{

− log { c(1−F (x))
c+(1−c)F (x)}

}
f(x)

[1 − F (x)][c + (1 − c)F (x)][1 − J{ − log { c(1−F (x))
c+(1−c)F (x)}}]

. (5)

The shapes of the PDF and HRF can be enumerated analytically. The critical points of the
density function are the roots of the equation:

∂ log[r(x)]
∂x

=
j′
{

− log { c(1−F (x))
c+(1−c)F (x)}

}

j
{

− log { c[1−F (x)]
c+(1−c)F (x)}

} f(x)
[1 − F (x)][c + (1 − c)F (x)] + f ′(x)

f(x)

+ f(x)
1 − F (x) − (1 − c)f(x)

c + (1 − c)F (x) = 0. (6)

Equation (6) may have more than one root. If the root of Equation (6) is x = x0,
then it corresponds to a local maximum if ∂2 log[r(x)]

∂x2 < 0, a local minimum if ∂2 log[r(x)]
∂x2 > 0,

and a point of inflection if ∂2 log[r(x)]
∂x2 = 0
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Similarly, the critical points of hr(x) are the roots of the equation

∂ log[hr(x)]
∂x

=
j′
{

− log { c(1−F (x))
c+(1−c)F (x)}

}

j
{

− log { c[1−F (x)]
c+(1−c)F (x)}

} f(x)
[1 − F (x)][c + (1 − c)F (x)]

f ′(x)
f(x) + f(x)

1 − F (x)

− (1 − c)f(x)
c + (1 − c)F (x) +

j
{

− log { c[1−F (x)]
c+(1−c)F (x)}

}

1 − J
{

− log { c[1−F (x)]
c+(1−c)F (x)}

} f(x)
[1 − F (x)][c + (1 − c)F (x)]

= 0. (7)

Equation (7) may have more than one root. If the root of Equation (7) is x = x0, then it
corresponds to a local maximum if ∂2 log[hr(x)]

∂x2 < 0, a local minimum if ∂2 log[hr(x)]
∂x2 > 0, and a

point of inflection if ∂2 log[hr(x)]
∂x2 = 0.

Some remarks on the T-Marshall-Olkin X family of distributions:

1. The T-Marshall-Olkin X family of distributions CDF and PDF, which are given in
equations Equation (3) and Equation (4), can be as

R(x) = J

{
− log

{
1 − F (x)

c+(1−c)F (x)

}}
= J(Hg(x)) and r(x) = hg(x)j(Hg(x)) where

h(x) and H(x) are HRF and cumulative HRF of the random variable X with CDF{
F (x)

c+(1−c)F (x)

}
, ie, the Marshall-Olkin distribution. Hence, the T-Marshall-Olkin X

family of distributions can be considered as a family of distributions arising from a
weighted hazard function.

2. The random variable T which follows the PDF j(t) and the random variable X fol-
lowing PDF r(x) are related in the following way: X = F −1

{
c(1−e−T )

1−(1−c)(1−e−T )

}
. This

inverse function provides an easy way to simulate the random variable from T-Marshall-
Olkin X family of distribution by initially simulating the random variable T and sub-
sequently figuring out X = F −1

{
c(1−e−T )

1−(1−c)(1−e−T )

}
, which has the CDF R(x). Thus,

E(X) = E

{
F −1

{
c(1−e−T )

1−(1−c)(1−e−T )

}}
.

The quantile function, Qr(u), 0 < u < 1, for the T-Marshall-Olkin X family of distri-
bution likely to be obtained by

Qr(u) = F −1
{

c(1 − e−J−1(u))
1 − (1 − c)(1 − e−J−1(u))

}
.

3. If X is a discrete random variable with probability mass function (PMF) f(x). Then
the PMF of the T-Marshall-Olkin X family of discrete distributions can be exhibited as

r(x) = R(x)−R(x−1) = J
{

−log { c(1 − F (x))
c + (1 − c)F (x)}

}
−J

{
−log { c(1 − F (x − 1))

c + (1 − c)F (x − 1)}
}

.

In this article, the situation in which X is a continuous random variable will be covered.
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4. when c = 1, the T-Marshall-Olkin X family of distributions reduces to the T-X family
of distributions.

3. Some members of T-Marshall-Olkin X family of distributions

Several families of distributions can be derived from the T-Marshall-Olkin X family
for different choices of j(t). For various T distributions, Table 1 lists a few members of the
T-Marshall-Olkin X family.

Some characteristics of the T-Marshall-Olkin X family for various T distributions will
be dealt in the remaining areas of this section.

3.1. Exponential-Marshall-Olkin X family of distributions

In the instance when the random variable T follows the exponential distribution with
parameter λ then j(t) = λe−λt; t > 0, λ > 0. Based on the Equation (4), the PDF of the
exponential-Marshall-Olkin X family is.

r(x) = λ
{

c(1 − F (x))
c + (1 − c)F (x)

}λ f(x)
(1 − F (x))(c + (1 − c)F (x)) ; c, λ > 0. (8)

The CDF of the exponential distribution is J(t) = 1 − e−λx and from Equation (3) the CDF
of the exponential-Marshall-Olkin X family is

R(x) = 1 −
{

c(1 − F (x))
c + (1 − c)F (x)

}λ

. (9)

The corresponding HRF is illustrated as

hr(x) = λf(x)
(1 − F (x))(c + (1 − c)F (x)) = λhf (x)

c + (1 − c)F (x) = λhg(x), (10)

where hf (x) and hg(x) are the HRF of the distribution with PDF f(x) and g(x).
Thus

lim
x→−∞

hr(x) = lim
x→−∞

λhf (x)
c

= lim
x→−∞

λhg(x)

lim
x→∞ hr(x) = lim

x→∞ λhf (x) = lim
x→∞ λhg(x).

It follows from Equation (10) that

λhf (x)
c

≤ hr(x) ≤ λhf (x) (−∞ < x < ∞, λ ≤ c)

λhf (x) ≤ hr(x) ≤ λhf (x)
c

(−∞ < x < ∞, λ ≥ c).

Again, Equation (10) shows that hr(x)
hf (x) is increasing in x forc ≥ 1 and dereasing for 0 < c ≤ 1.

Some unique instances of exponential-Marshall-Olkin X family are illustrated below

1. When c = 1, the exponential-Marshall-Olkin X family reduces to exponential-X family
of distribution.
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2. When λ = 1, the exponential-Marshall-Olkin X family reduces to Marshall-Olkin X
family of distribution.

3. When λ =c = 1, the exponential-Marshall-Olkin X family reduces to a distribution
with PDF f(x).

3.2. Half-logistic-Marshall-Olkin X family of distributions

In the instance when the random variable T follows the half-logistic distribution with
parameter λ then j(t) = 2λe−λt

(1+e−λt)2 ; t > 0, λ > 0. Based on the Equation (4), the PDF of the
half-logistic-Marshall-Olkin X (HLMO-X) family is

r(x) =
2λ{ c(1−F (x))

c+(1−c)F (x)}
λ

{
1 + { c(1−F (x))

c+(1−c)F (x)}
λ
}2

f(x)
(1 − F (x))(c + (1 − c)F (x)) ; c, λ > 0. (11)

When c = 1, the HLMO-X family reduces to half-logistic-X family of distributions.
The CDF of the half-logistic distribution is J(t) = 1−e−λt

1+e−λt and hence from Equation (3) the
CDF of the HLMO-X family is

R(x) =
1 −

{
c(1−F (x))

c+(1−c)F (x)

}λ

1 +
{

c(1−F (x))
c+(1−c)F (x)

}λ . (12)

The corresponding HRF is given by

hr(x) = λ{
1 + { c(1−F (x))

c+(1−c)F (x)}
λ
} hf (x)

(c + (1 − c)F (x))

= λhg(x){
1 + { c(1−F (x))

c+(1−c)F (x)}
λ
} , (13)

where hf (x) and hg(x)are the HRF of a distribution with PDF f(x) and g(x).
Thus

lim
x→−∞

hr(x) = lim
x→−∞

λhf (x)
2c

= lim
x→−∞

λhg(x)
2

lim
x→∞ hr(x) = lim

x→∞ λhf (x) = lim
x→∞ λhg(x).

It follows from Equation (13) that

λhf (x)
2c

≤ hr(x) ≤ λhf (x) (−∞ < x < ∞, λ ≤ 2c)

λhf (x) ≤ hr(x) ≤ λhf (x)
2c

(−∞ < x < ∞, λ ≥ 2c).
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Again, Equation (13) shows that hr(x)
hf (x) is increasing in x for c ≤ 1 and decreasing for 0 < c ≥

1.

The quantile function, Qr(u), 0 < u < 1, is given by

Qr(u) = F −1
{ c

[
1 − [1−u

1+u
]1/λ

]

1 − [1 − c]
[
1 − [1−u

1+u
]1/λ

]
}

. (14)

To generate a random variable from HLMO-X first generate a U ∼ U(0, 1) then use

X = F −1
{ c

[
1 − [1−u

1+u
]1/λ

]

1 − [1 − c]
[
1 − [1−u

1+u
]1/λ

]
}

.

Another approach to simulate the HLMO-X random variable is to simulate the half-Logistic
random variable T and then calculate X = F −1

{
c(1−e−T )

1−(1−c)(1−e−T )

}

The pth quantile for HLMO-X family can be obtained as

Qr(p) = F −1
{ c

[
1 − [1−p

1+p
]1/λ

]

1 − [1 − c]
[
1 − [1−p

1+p
]1/λ

]
}

.

4. Properties of HLMO-X family of distributions

This section is devoted to some important properties of HLMO-X family of distribu-
tions.

4.1. Some valuable expansions

Here we provide linear representations for the CDF and PDF of the HLMO-X family
of distributions. If c ∈ (0, 1), by applying the generalized binomial expansion in Equation
(12), we are getting the following result.

R(x) = −1 + 2
{ ∞∑

j=0

∞∑

k=0

k∑

l=0
(−1)j+k+lcλj[1 − c]k

(
−λj

k

)(
λj + k

l

)
(F (x))l

}
.

By swapping the indices k and l in the sum symbol,

R(x) = −1 + 2
{ ∞∑

j=0

∞∑

l=0

∞∑

k=l

(−1)j+k+lcλj[1 − c]k
(

−λj

k

)(
λj + k

l

)
(F (x))l

}
.

and then

R(x) =
∞∑

l=0
bl[F (x)]l, (15)
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where al = 2∑∞
j=0

∑∞
k=l(−1)j+k+lcλj[1 − c]k

(
−λj

k

)(
λj+k

l

)
, b0 = −1 + a0and, for l ≥ 1, bl = al.

That is, the PDF of X can be expressed as a mixture of exponentiated-F (“exp-F” for short)
densities

r(x) =
∞∑

l=0
bl+1hl+1(x), (16)

where hl+1(x) = (l + 1)[F (x)]l(f(x)) represents the PDF of exp-F distribution with (l + 1)
as the power parameter. Therefore, using Equation (16), several mathematical properties of
the new distribution are able to be readily derived from those of the exp-F distribution. For
instance, the ordinary and incomplete moments as well as the moment generating function
of X can be derived from those quantities of the exp-F distribution.

4.2. Moments, generating functions and mean deviation

Let Yl+1(l > 0) be a random variable with power parameter l + 1 and PDF hl+1. The
nth raw moment of X, that is nth raw moment of HLMO-X family of distribution follows
from Equation (16) as

µ́n = E(Xn) =
∞∑

l=0
bl+1E(Y n

l+1). (17)

Another formula for µ́n follows from (17) as

µ́n = E(Xn) =
∞∑

l=0
(l + 1)bl+1wn,l, (18)

where wn,l =
� 1

0 QF (u)nuldu, QF (u) is the quantile function with CDF F (x).

The mth central moment of X by using µ́n in Equation (18) is given by

µm = E(X − µ́1)m =
m∑

n=0

(
m

n

)
(−µ́1)m−nµ́n. (19)

The nth incomplete moment of X is described by mn(y) =
� y

−∞ xnr(x) . So mn(y)
follows as

mn(y) =
∞∑

l=0
(l + 1)bl+1

� F (y)

o

QF (u)nuldu, (20)

For most F distributions, the integral can be calculated at least numerically.

For the moment generating function (MGF) M(t) of X, we propose two formulas.
The first formula comes from Equation (16) as

M(t) =
∞∑

l=0
bl+1Ml+1(t), (21)
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where Ml+1(t) represented as the MGF of exp-F distribution with power parameter (l + 1).
The second formula comes from Equation (21) as

M(t) =
∞∑

l=0
(l + 1)bl+1τ(t, l), (22)

Where τ(t, l) =
� 1

0 exp[tQF (u)]uldu.

The mean deviation about the mean(δ1 = E(|X − µ́1|) and about the median (δ2 =
E(|X − M |)of X are given by

δ1 = 2µ́1R(µ́1) − 2m1(µ́1) (23)

and

δ2 = µ́1 − 2m1(M), (24)

where M = Qr(0.5) is the median of X ,µ́1 = E(X), R(µ́1) is simply calculated from
Equation (12) and m1(y) is the first incomplete moment given by Equation (20) with n = 1
that is,

m1(y) =
∞∑

l=0
(l + 1)bl+1ρ(y, l), (25)

where ρ(y, l) =
� F (y)

o
QF (u)uldu can be computed numerically. Other formulae for m1(y) is

m1(y) =
∞∑

l=0
bl+1jl+1(y), (26)

where jl+1(y) =
� y

−∞ xhl+1(x)dx is the key quantity needed to compute the first incomplete
moment of the exp-F distribution. The equations Equation (25) and Equation (26) may be
applied to construct Bonferroni and Lorenz curves that are useful in reliability, economics,
insurance, demography, and medicine. For a given probability π the Bonferroni and Lorenz
curves is defined by B(π) = m1(q)/(πµ́1) and L(π) = m1(q)/µ́1 respectively, where q = Q(π)
is the quantile function of X at π.

4.3. Order statistics

Assume that X1, X2..., Xn is a random sample drawn from HLMO-X family of distri-
bution and X1:n, X2:n, ..., Xn:n is the corresponding order statistic. Then the PDF fi:n(x) of
the ith order statistic, let’s say Xi:n, is provided by

fi:n(x) = n!
(i − 1)! (n − i)!r(x)Ri−1(x)[1 − R(x)]n−i

= n!
(i − 1)! (n − i)!

n−i∑

j=0
(−1)j

(
n − i

j

)
r(x)[R(x)]i+j−1. (27)

using Equation (16) and Equation (17) we can get
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fi:n(x) = n!
(i − 1)!

n−i∑

j=0

(−1)j

(n − i − j)! j!

[ ∞∑

k=0
bk+1(k + 1)[F (x)]kf(x)

][ ∞∑

l=0
bl[F (x)]l

]i+j−1
.

Then we use power series expansion raised to a positive integer by Gradshteyn and Ryzhik
(2014)

fi:n(x) =
∞∑

k,l=0
mk,lhk+l+1(x). (28)

where hk+l+1 represents the exp-F density function with k+l+1 as its parameter,
mk,l = n!(k+1)bk+1

(i−1)!(k+l+1)
∑n−i

j=0
(−1)jrj+i−1,l

(n−i−j)!j! , bl is defined in Equation (16), the quantities rj+i−1,l are
obtained recursively from rj+i−1,0 = bj+i−1

0 and (for l ≥ 1) rj+i−1,l = (lb0)−1∑l
m=1[m(i +

j)− l]bmrj+i−1,l−m. Equation (28) allows us to obtain the ordinary and incomplete moments,
generating function and mean deviations of Xi:n.

4.4. Asymptotic distributions of sample extremes

A CDF R is said to belong to the domain of maximal (minimal) attraction of a non
degenerate CDF H(H⋆), denoted by R ∈ Dmax(H)(R ∈ Dmin(H⋆)), if there exist normalizing
constants an and bn > 0 (a⋆

n and b⋆
n > 0) such that Rn:n(an + bnx) = P (Xn:n ≤ an + bnx) →

H(x)(R1:n(a⋆
n + b⋆

nx) = P (X1:n ≤ a⋆
n + b⋆

nx) → H(x)) for all continuity points of H(H⋆),
where H⋆(x) = 1 − H(−x).
As it is widely known, see (Arnold et al. (2008), p. 210, 213), that H belongs to any of the
following types:

(i) H1(x, α) = e−x−α

, x > 0, α > 0.

(ii) H2(x, α) = e−(−x)α

, x < 0, α > 0.

(iii) H3(x, α) = e−e−x

, −∞ < x < ∞.

Lemma 1: (See Arnold et al. (2008), p. 218)
(i) F ∈ Dmax(H) if and only if nF (an + bnx) → − log H(x)
(ii) F ∈ Dmin(H⋆) if and only if nF (a⋆

n + b⋆
nx) → − log[1 − H⋆(x)].

Theorem 1: For any CDF F , we have
(i) R ∈ Dmax(H) if and only if G ∈ Dmax(H)
(ii) R ∈ Dmax(H) if and only if F ∈ Dmax(H).
More specifically, we have
(1) G ∈ Dmax(H1(x; α)) if and only if R ∈ Dmax(H1((2)−1/αλx; αλ))
Also F ∈ Dmax(H1(x; α)) if and only if R ∈ Dmax(H1(2cλ)−1/αλx; αλ))
(2) G ∈ Dmax(H2(x; α)) if and only if R ∈ Dmax(H2((2)1/αλx; αλ))
Also F ∈ Dmax(H2(x; α)) if and only if R ∈ Dmax(H2(2cλ)1/αλx; αλ))
(3) G ∈ Dmax(H3(x)) if and only if R ∈ Dmax(H3(xλ − log 2))
Also F ∈ Dmax(H3(x)) if and only if R ∈ Dmax(H3(xλ − log 2cλ)
If an and bn > 0 are the appropriate normalizing constants for the weak convergence of the
upper extremes according to G(or F) in the three cases mentioned above, then aφ(n;λ) and
bφ(n;λ) > 0 are the appropriate normalizing constants for the weak convergence of the upper
extremes according to R, where φ(n; b) = [n1/b] and [µ] indicates the integer part of µ.
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Proof. If G ∈ Dmax(H), with appropriate normalizing constants an and bn > 0, then
by applying (i) of Lemma 1, as n → ∞,

φ(n; λ)(1 − G(aφ(n;λ) + bφ(n;λ)x)) → − log H(x),

which implies n(1 − G(aφ(n;λ) + bφ(n;λ)x))λ → [− log H(x)]λ. Instead, we have 1 − G(an +
bnx) → 0, for all values of x for which − log H(x) is finite. This implies that (1 − G(aφ(n;λ) +
bφ(n;λ)x) → 0, for all values of x for which − log H(x) is finite. Thus,

n[1 − R(aφ(n;λ) + bφ(n;λ)x); λ] = n
{ 2[Ḡ(aφ(n;λ) + bφ(n;λ)x)]λ

1 + [Ḡ(aφ(n;λ) + bφ(n;λ)x)]λ
}

∼ 2n[Ḡ(aφ(n;λ) + bφ(n;λ)x)]λ → 2[− log H(x)]λ.

and also noting that
2(− log H1(x; α))λ = − log(H1((2)−1/αλx; αλ));
2(− log H2(x; α))λ = − log(H2((2)1/αλx; αλ));
2(− log H3(x))λ = − log(H3(xλ − log 2)).
Moving on to the converse claim, let us assume that for a given λ > 0 we have R ∈ Dmax(H),
with ân and b̂n > 0 are the normalizing constants based on R. From (i) of Lemma 1, we
then have

n[1 − R(ân + b̂nx); λ] → − log H(x),
as n → ∞, which implies 1 − R(ân + b̂nx; λ) → 0, that is, G(ân + b̂nx → 1), as n → ∞, for
all values of x for which − log H(x) is finite. Thus,

n[1 − R(ân + b̂nx); λ] = n
{ 2[Ḡ(ân + b̂nx)]λ

1 + Ḡ(ân + b̂nx)λ

}
∼ 2n[Ḡ(ân + b̂nx)]λ.

From this we get, 2n[Ḡ(ân + b̂nx)]λ → − log H(x) or equivalently, φ(n; λ)(1−G(ân + b̂nx)) →
[− log H(x)]1/λ

2 . Since the last convergence holds for all subsequence of n and specifically holds
for the subsequence ń = φ(n; 1/λ) = [nλ], where φ(ń; λ) = [[nλ]1/λ] ∼ n, we get n(1 −
G(ãn + b̃nx)) → [− log H(x)]1/λ

2 , where ãn = â[nλ] and b̃n = b̂[nλ]. Thus, we get the expected
result (notice that the theorem’s converse portion holds true for the normalizing constants ãn

and b̃n, that is R(ân + b̂nx) ∈ Dmax(H). Implies G(ãn + b̃nx) = G(â[nλ] + b̂[nλ]x) ∈ Dmax(H)),
Hence, the given theorem is proved for the part (i) scenario. The proof of theorem for the
part (ii) scenario follows by similar manner by using Lemma 1, Part (i).This completes the
proof.

5. Half-logistic-Marshal-Olkin Lomax distribution

Let X be a random variable following the Lomax (L) distribution with parameters α
and θ then f(x) = α

θ
[1 + x

θ
]−(α+1); x > 0, α, θ > 0. The PDF of half-logistic-Marshall-Olkin

Lomax (HLMOL) distribution using Equation (11) is defined as

r(x) = 2λαcλ

θ

[(1 + x
θ
)α + c − 1]λ−1[1 + x

θ
]α−1

[
[(1 + x

θ
)α + c − 1]λ + cλ

]2 ; x > 0, c, λ, α, θ > 0, (29)
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Figure 1: PDF of HLMOL for various values of α, θ, λ and c

where c, λ, α and θ are location, location scale, scale, and shape parameters, respectively.
Hereafter, a random variable X with a PDF in Equation (29) will be denoted by X ∼
HLMOL(c, λ, α, θ). The CDF of the Lomax distribution is F(x) = 1 − [1 + x

θ
]−α and hence

from Equation (12) the CDF of the HLMOL distribution is

R(x) =
[(1 + x

θ
)α + c − 1]λ − cλ

[(1 + x
θ
)α + c − 1]λ + cλ

. (30)

In the form of graphical representations, Figure 1 displays a few plots of r(x) for selected
values of the parameter c, λ, α and θ. These plots demonstrate that the PDF has good shape
flexibility. It can be reversed J-shape, left-skewed, right-skewed, or symmetric.

Some unique cases of HLMOL distribution:

1. When c = 1, the HLMOL distribution reduces to half-logistic Lomax by Anwar and
Zahoor (2018) distribution.

2. When λ = 1, the HLMOL distribution reduces to Marshall-Olkin half-logistic Lomax
distribution.

3. When λ = 1 and c=0.5, the HLMOL distribution reduces to Lomax distribution.

In lifetime analysis, the HRF is a useful function. Therefore, the HRF of X ∼
HLMOL(c, λ, α, θ) is given by

hr(x) =
λα
θ

[(1 + x
θ
)α + c − 1]λ−1[1 + x

θ
]α−1

[
[(1 + x

θ
)α + c − 1]λ + cλ

] . (31)

Figure 2 displays the graphs of hr(x) for selected values of the parameters α, θ, λ and c. It
can be upside down bathtub and decreasing.
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Figure 2: HRF of HLMOL for various values of α, θ, λ and c

By using Equation (14) the quantile function, Qr(u), 0 < u < 1, is given by

Qr(u) = θ
{[ [1−u

1+u
]1/λ

1 − [1 − c][1 − [1−u
1+u

]1/λ]

]−1/α

− 1
}

.

To generate a random variable from HLMOL, first generate a U ∼ U(0, 1) then use

X = θ
{[ [1−u

1+u
]1/λ

1 − [1 − c][1 − [1−u
1+u

]1/λ]

]−1/α

− 1
}

.

Another approach to simulate the HLMOL random variable is by simulating the half-logistic
random variable T and then calculate

X = θ
{[ [e−T ]1/λ

1 − [1 − c][1 − [e−T ]1/λ]

]−1/α

− 1
}

.

The pth quantile for HLMOL distribution can be obtained as

Qr(p) = θ
{[ [1−p

1+p
]1/λ

1 − [1 − c][1 − [1−p
1+p

]1/λ]

]−1/α

− 1
}

.

If p =1/2, that is median of HLMOL is given by

M = θ
{[ [1

3 ]1/λ

1 − [1 − c][1 − [1
3 ]1/λ]

]−1/α

− 1
}

.

5.1. Linear representation

By using Equations (16) and (17) the linear representation of CDF and PDF of
HLMOL distribution is given by

R(x) =
∞∑

l=0
bl[1 − [1 + x

θ
]−α]l, (32)
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Where al = 2∑∞
j=0

∑∞
k=l(−1)j+k+lcλj[1 − c]k

(
−λj

k

)(
λj+k

l

)
, b0 = −1 + a0and, for l ≥ 1 ,bl = al

r(x) =
∞∑

l=0

l∑

j=0
(l + 1)bl+1(−1)j

(
l

j

)
α

θ
[1 + x

θ
]−(α+αj+1)

=
∞∑

l=0

l∑

j=0
(l + 1)bl+1(−1)j

(
l

j

)
α

α + αj
L(x; α + αj, θ), (33)

Where L(x; α + αj, θ) denoted the Lomax PDF with parameter θ and α + αj. So the
PDF of HLMOL is simply an infinite linear combination of Lomax distribution. Thus, some
mathematical properties of the new distribution can be obtained straightly from those Lomax
distribution properties based on Equation (33).

5.2. Moments and generating functions

The nth raw moment of X is obtained from Equation (20)

µ́n = E(Xn) =
∞∑

l=0

n∑

i=0
(l + 1)bl+1θ

n(−1)i

(
n

i

)
β(l + 1, 1 + i − n

α
), n < α.

If n=1, That is the mean of HLMOL distribution is given by

µ́1 = E(X) =
∞∑

l=0
(l + 1)bl+1θ[β(l + 1, 1 − 1/α) − β(l + 1, 1)], α > 1.

If n=2

µ́2 = E(X2)

=
∞∑

l=0
(l + 1)bl+1θ

2[β(l + 1, 1 − 2/α) − 2β(l + 1, 1 − 1/α) + β(l + 1, 1)], α > 2.

The mth central moment of X by using µ́n in Equation (19) is given by

µm = E(X − µ́1)m =
m∑

n=0

(
m

n

)
(−µ́1)m−nµ́n.

If m=2, That is the variance of HLMOL distribution is given by

µ2 =
∞∑

l=0
(l + 1)bl+1θ

2[β(l + 1, 1 − 2/α) − 2β(l + 1, 1 − 1/α) + β(l + 1, 1)]

−
[ ∞∑

l=0
(l + 1)bl+1θ[β(l + 1, 1 − 1/α) − β(l + 1, 1)]

]2
, α > 2.

Then, the moment measure of skewness S = µ2
3

µ3
2

and moment measure of kurtosis K = µ4
µ2

2
can be calculated from the second, third and fourth central moments.
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The nth incomplete moment of X is defined by using Equation (20) is given by

mn(y) =
∞∑

l=0

n∑

i=0
(l + 1)bl+1θ

n(−1)i

(
n

i

)
βF (y)(l + 1, 1 + i − n

α
), n < α.

By using Equation (22) the MGF of X is given by

M(t) =
∞∑

l=0
(l + 1)bl+1

� 1

0

∞∑

n=0

(tθ)n

n! [(1 − u)−1/α − 1]nuldu

=
∞∑

n=0

tn

n! µ́n,

where µ́n is the nth raw moment of the HLMOL distribution. The Bonferroni and the Lorenz
curve are given by

B(π) =
∑∞

l=0(l + 1)bl+1[βF (q)(l + 1, 1 − 1/α) − βF (q)(l + 1, 1)]
π
∑∞

l=0(l + 1)bl+1[β(l + 1, 1 − 1/α) − β(l + 1, 1)] , α > 1.

L(π)) =
∑∞

l=0(l + 1)bl+1[βF (q)(l + 1, 1 − 1/α) − βF (q)(l + 1, 1)]
∑∞

l=0(l + 1)bl+1[β(l + 1, 1 − 1/α) − β(l + 1, 1)] , α > 1, (34)

where q = Q(π) is the quantile function of X at π.

Table 2 gives the mean, variance, third raw moment, skewness and kurtosis of HLMOL
distribution for different choices of parameter values. For fixed λ and c, the mean and
variance of the HLMOL distribution are increasing functions of θ and α. Also the distribution
of the HLMOL distribution tends to be skewed more to the right as θ and α decreases. For
fixed λ, θ and α, the HLMOL distribution can be platykurtic, mesokurtic and leptokurtic
as c increases. Also the distribution of the HLMOL distribution tends to be skewed more to
the left as c increases. That is, the HLMOL is positively and negatively skewed, platykurtic,
mesokurtic and leptokurtic distribution.

5.3. Order statistics

Assume that X1, X2..., Xn is a random sample drawn from HLMOL distribution and
X1:n, X2:n, ..., Xn:n is the corresponding order statistic. Then the PDF fi:n(x) of the ith order
statistic, let’s say Xi:n, is provided by

fi:n(x) =
∞∑

k,l=0

k+l∑

j=0
mk,l(−1)j(k + l + 1)

(
k + l

j

)
α

α + αj
L(x; α + αj, θ), (35)

where mk,l = n!(k+1)bk+1
(i−1)!(k+l+1)

∑n−i
j=0

(−1)jrj+i−1,l

(n−i−j)!j! , the quantities rj+i−1,l are obtained recursively
from rj+i−1,0 = bj+i−1

0 and (for l ≥ 1) rj+i−1,l = (lb0)−1∑l
m=1[m(i + j) − l]bmrj+i−1,l−m and

L(x; α + αj, θ) denoted the Lomax PDF with parameter θ and α + αj. So the PDF of ith

order statistic of HLMOL distribution is simply an infinite linear combination of Lomax
distribution.
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Table 2: µ́1, µ2, µ3, S and K for various choices of parameters

Parameter µ́1 µ2 µ3 S K
λ = 0.95
c=0.25 0.1218 0.0343 0.03572 31.6755 107.1577
θ=0.7
α=5.2

λ = 0.95
c=0.25 0.1319 0.0370 0.0342 23.0538 61.2956
θ=0.9
α=6

λ = 0.95
c=0.25 0.3904 0.2398 0.3475 8.7539 17.3673
θ=10
α=20
λ =3
c=20 2.3191 1.1223 0.1005 0.0071 2.7521
θ=50
α=50
λ =3

c=74.4263 3.5554 1.5711 -0.5373 0.0744 3
θ=50
α=50
λ =3
c=80 3.6277 1.5920 -0.5798 0.0833 3.0237
θ=50
α=50

λ = 0.6
c=0.2 0.1686 0.0757 0.1411 45.8365 433.6134
θ=0.7
α=7

λ = 10
c=1.1 0.1706 0.0257 0.0091 4.8254 12.1528
θ=1.1
α=1.1

λ = 4.9
c=1 0.3709 0.1731 0.2933 16.5825 62.3333
θ=1
α=1
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5.4. Asymptotic distributions of sample extremes

Consider the asymptotic distributions of first order statistic X1:n and nth order statis-
tic Xn:n. We using the asymptotic results for X1:n and Xn:n by Arnold et al. (2008) and
Theorem 1, we can find the limiting distribution of extreme order statistic.

For HLMOL distribution R−1(O) = 0 which is finite and by using L‘Hospital’s

lim
ϵ→0+

R[R−1(0) + ϵx]
R[R−1(0) + ϵ] = lim

ϵ→0+
x

r[ϵx]
r[x] = x.

Therefore the asymptotic distribution X1:n is of Weibull type with α = 1, that is
R ∈ Dmin(H⋆

2 (x; 1)) = 1 − e−x, x > 0. Here the normalizing constants based on R are given

by a⋆
n = R−1(O) = 0, b⋆

n = R−1(1/n) − R−1(O) = θ
{[ [ n−1

n+1 ]1/λ

1−[1−c][1−[ n−1
n+1 ]1/λ]

]−1/α

− 1
}

.

For Lomax distribution F −1(1) = ∞, by using L‘Hospital’s

lim
t→∞

1 − F (tx)
1 − F (t) = lim

t→∞
x

f(tx)
f(t) = x−α.

Therefore the asymptotic distribution of Xn:n based on F is Fréchet type. From Theorem 1
the asymptotic distribution of Xn:n based on R is Fréchet type, that is R ∈ Dmax(H1(x; α)) =
e−x−α

, x > 0, α > 0. Here the normalizing constants based on R are given by an = 0,

bn = R−1(1 − 1/n) = θ
{[ [ 1

2n−1 ]1/λ

1−[1−c][1−[ 1
2n−1 ]1/λ]

]−1/α

− 1
}

.

6. Estimation of parameters by maximum likelihood method

Here, we discuss maximum likelihood estimation of HLMO-X family of distribution
along with a simulation study of HLMOL. Let x1, ..., xn be a sample from X ∼ HLMO-
X(λ, c, ξ). Let Θ = (λ, c, ξ)T be the parameter vector and ξ corresponds to the parameter
vector of the baseline distribution F , F (x) = F (xi; ξ), f(x) = f(xi; ξ). The total log-
likelihood function for Θ is given by

ℓn = ℓn(Θ|x1, ..., xn) = n log(2λ) + λ
n∑

i=1
log

{
c[1 − F (xi; ξ)]

c + (1 − c)F (xi; ξ)

}
+

n∑

i=1
log[f(xi; ξ)]

−
n∑

i=1
log[1 − F (xi; ξ)] − 2

n∑

i=1
log

{
1 +

[
c[1 − F (xi; ξ)]

c + (1 − c)F (xi; ξ)

]λ}

−
n∑

i=1
log[c + (1 − c)F (xi; ξ)].

The score function Un(Θ) = (∂ℓn

∂λ
, ∂ℓn

∂c
, ∂ℓn

∂ξ
)T has components given by

∂ℓn

∂λ
= n

λ
− 2

n∑

i=1
log

{
c[1 − F (xi; ξ)]

c + (1 − c)F (xi; ξ)

} [c[1 − F (xi; ξ)]]λ

[c + (1 − c)F (xi; ξ)]λ + [c[1 − F (xi; ξ)]]λ

+
n∑

i=1
log

{
c[1 − F (xi; ξ)]

c + (1 − c)F (xi; ξ)

}
,
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∂ℓn

∂c
= λ

n∑

i=1

F (xi; ξ)
c[c + (1 − c)F (xi; ξ)] − [1 − F (xi; ξ)]

[c + (1 − c)F (xi; ξ)]

− 2λ
n∑

i=1

c(λ−1)[1 − F (xi; ξ)]λF (xi; ξ)
[c + (1 − c)F (xi; ξ)]{[c + (1 − c)F (xi; ξ)]λ + [c[1 − F (xi; ξ)]]λ}

,

∂ℓn

∂ξ
= −λ

n∑

i=1

F (ξ)(xi; ξ)
[1 − F (xi; ξ)][c + (1 − c)F (xi; ξ)] +

n∑

i=1

f (ξ)(xi; ξ)
f(xi; ξ)

− (1 − c)
n∑

i=1

F (ξ)(xi; ξ)
c + (1 − c)F (xi; ξ) +

n∑

i=1

F (ξ)(xi; ξ)
1 − F (xi; ξ)

− 2c
n∑

i=1

[1 − F (xi; ξ)]λ−1F (ξ)(xi; ξ)
[c + (1 − c)F (xi; ξ)]{[c + (1 − c)F (xi; ξ)]λ + [c[1 − F (xi; ξ)]]λ}

,

where f (ξ)(xi; ξ) = ∂f(xi;ξ)
∂ξ

and F (ξ)(xi; ξ) = ∂F (xi;ξ)
∂ξ

. The maximum likelihood estimates
(MLEs) of Θ, say Θ̂ = (λ̂, ĉ, ξ̂), are the simultaneous solutions of the following equations:
∂ℓn

∂λ
= 0, ∂ℓn

∂c
= 0 and ∂ℓn

∂ξ
= 0. These equations cannot be solved analytically and statistical

software can be used to solve them numerically.

6.1. Simulation study

Here we perform a simulation study evaluating the performance of the MLEs pre-
sented above for the HLMOL distribution for selected values of the parameters θ, α, λ and
c. The simulation experiment was repeated 1000 times each with sample sizes 50, 100, 150,
200 and parameter combinations are

1. λ=1.5, α=4 fixed c=1 and θ=1.

2. α=0.5, θ=0.6 fixed λ=1 and c=0.5.

3. θ= 0.2, c=0.5 fixed λ=1 and α=1.

4. λ=1, θ= 1 fixed c=1 and α=1.

5. λ=0.5, c= 0.2, θ=0.4 and fixed α=1.

6. λ= 0.75, α=0.15, c=0.1, θ= 0.05.

Table 3 presents the average estimates (AEs), average bias (Bias) and mean square
error (MSE) values of parameters for different sample sizes. It can be noted that as sample
size increases, the Bias decay towards zero and MSE decreases. That is, the estimators
are asymptotically unbiased and consistent. Therefore the maximum likelihood estimation
method works quite well to estimate the parameters of the HLMOL distribution.
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Table 3: AEs, Bias and MSE of parameters based on 1000 simulations of the
HLMOL distribution

n Parameter AEs Bias MSE

I

50 λ 1.1136 -0.3864 5.6075
α 3.8552 -0.1448 0.7885

100 λ 1.3263 -0.1736 4.0699
α 3.9348 -0.0652 0.5723

150 λ 1.4484 -0.0516 1.8639
α 3.9805 -0.0195 0.2621

200 λ 1.5022 0.0022 0.0059
α 4.0006 0.0006 0.0008

II

50 α 0.5389 0.0388 0.0182
θ 0.7409 0.1409 0.0205

100 α 0.5196 0.0196 0.0069
θ 0.6635 0.0635 0.0131

150 α 0.5113 0.0113 0.0043
θ 0.6367 0.0367 0.0120

200 α 0.5080 0.0079 0.0033
θ 0.6256 0.0256 0.0117

III

50 c 0.5013 0.0013 0.0002
θ 0.2051 0.0051 0.0019

100 c 0.5002 0.0002 0.0001
θ 0.2017 0.0017 0.0010

150 c 0.5001 6.5753e-05 0.0001
θ 0.2016 0.0016 0.0007

200 c 0.4999 -1.2853e-05 1.2186e-05
θ 0.2001 5.4980e-05 7.6654e-05

IV

50 λ 1.1002 0.1002 0.1468
θ 1.2458 0.2458 0.8529

100 λ 1.0464 0.0464 0.0350
θ 1.1082 0.1082 0.1621

150 λ 1.0325 0.0325 0.0224
θ 1.0732 0.0732 0.1109

200 λ 1.0233 0.0233 0.0149
θ 1.0489 0.0489 0.0635

Continued on the next page
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Table 3:(Continued)

n Parameter AEs Bias MSE

V

50 λ 0.5263 0.0263 0.0105
c 0.2272 0.0272 0.0096
θ 0.4128 0.0128 0.0023

100 λ 0.5132 0.0132 0.0043
c 0.2136 0.0136 0.0040
θ 0.4067 0.0067 0.0010

150 λ 0.5085 0.0085 0.0028
c 0.2076 0.0076 0.0024
θ 0.4035 0.0035 0.0006

200 λ 0.5032 0.0032 0.0020
c 0.2049 0.0049 0.0017
θ 0.4022 0.0022 0.0004

VI

50 λ 0.4659 -0.2840 0.8821
α 0.1225 -0.0274 0.0375
c 0.0669 -0.0331 0.0938
θ 0.2106 0.1606 1.5323

100 λ 0.8875 0.1375 0.5642
α 0.1976 0.04764 0.0187
c 0.0882 -0.0118 0.0074
θ 0.1965 0.1465 0.2604

150 λ 0.8732 0.1232 0.4111
α 0.1873 0.0373 0.0147
c 0.0885 -0.0114 0.0061
θ 0.1566 0.1066 0.0987

200 λ 0.8688 0.1188 0.2939
α 0.1763 0.0263 0.0119
c 0.0901 -0.0099 0.0048
θ 0.1357 0.0857 0.0739

7. Test to compare HLMOL with Lomax and Half-logistic-Lomax
distributions

Since Lomax (L), half-logistic-Lomax (HLL) by Anwar and Zahoor (2018) and HLMOL
distributions are nested models, To distinguish between them, the likelihood ratio (LR) test
is employed. For the nested models, the LR statistic is

LR = −2
{

likelihood under the null hypothesis

likelihood under the alternative hypothesis

}
.

This statistic is asymptotically (as n → ∞) distributed as chi-square distribution with m
degrees of freedom (df ), where m is the number of additional parameters .

When c is equal to 1, the HLMOL distribution becomes the HLL distribution. So, in
order to compare the HLMOL with the HLL distribution, we test the null hypothesis that
H0 : c = 1 against H1 : c ̸= 1, and the corresponding LR statistic asymptotically (as n →
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∞) distributed as chi-square distribution with 1 df. To investigate how well the test statis-
tic performed for the above hypothesis , we conducted a simulation study.The simulation
experiment was performed 1000 times, with sample sizes of 100, 250, and 500 with different
parameter combinations. From the HLMOL distribution, a random sample is created, and
the test is then run with a 5% level of significance . Calculating the proportion of times
the null hypothesis H0 is rejected requires running the simulation 1000 times for each set of
parameter combinations. In order to estimate the test’s power, we look at the proportion of
times that H0 is rejected. Table 4 provides the proportions for the 5% level of significance.

The findings in Table 4 show that, for fixed c, θ and α the power of the tests increases
as a function of λ. Additionally, given a fixed value of θ, α and λ the tests’ power is a
diminishing function of c. In general, as sample sizes grow, power grows as well

Table 4: The proportion of times (out of 1000) that the H0 is rejected at 5% level
of significance.

Parameter value n=100 n=250 n=500
c θ α λ

0.15 0.979 0.989 0.993
0.9 1.25 0.984 0.991 0.999

0.05 2 0.987 0.993 0.999
0.15 0.969 0.971 0.999

1.25 1.25 0.972 0.993 1
2 0.986 0.988 1

0.1 0.15 0.96 0.976 0.998
0.9 1.25 0.971 0.991 1

0.5 2 0.987 0.993 1
0.15 0.973 0.981 0.986

1.25 1.25 0.984 0.985 1
2 0.989 0.994 1

0.15 0.848 0.886 0.904
0.9 1.25 0.924 0.935 0.946

0.05 2 0.902 0.945 0.985
0.15 0.907 0.952 0.954

1.25 1.25 0.924 0.956 0.983
2 0.972 0.980 0.983

0.25 0.15 0.893 0.899 0.95
0.9 1.25 0.9 0.912 0.954

0.5 2 0.911 0.921 0.962
0.15 0.87 0.901 0.915

1.25 1.25 0.907 0.927 0.939
2 0.916 0.949 0.966

Similarly, When λ is equal to 1 and c=0.5, the HLMOL distribution becomes the L
distribution. So, in order to compare the HLMOL with the L distribution, we test the null
hypothesis that
H0 : λ = 1, c = 0.5 against H1 : λ ̸= 1, c ̸= 0.5, and the corresponding LR statistic
asymptotically (as n → ∞) distributed as chi-square distribution with 2 DF. To investigate
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how well the test statistic performed for the above hypothesis, we conducted a simulation
study. The simulation experiment was performed 1000 times, with sample sizes of 100, 250,
and 500 with different combination of parameters. From the HLMOL distribution, a random
sample is created, and the test is then run with a 5% level of significance . Calculating the
proportion of times the null hypothesis H0 is rejected requires running the simulation 1000
times for each set of combination of parameters. In order to estimate the test’s power, we
look at the proportion of times that H0 is rejected. Table 5 provides the proportions for the
5% level of significance.

Table 5: The proportion of times (out of 1000) that the H0 is rejected at 5% level
of significance.

Parameter value n=100 n=250 n=500
c θ α λ

0.1 0.2 0.986 0.998 1
0.15 1 0.987 0.999 1

0.05 2 0.991 1 1
0.2 0.998 0.999 1

1.5 1 0.972 0.973 0.986
2 0.975 0.982 0.994

0.1 0.2 0.989 0.998 1
0.15 1 0.993 0.999 1

0.5 2 0.998 1 1
0.2 0.996 0.997 1

1.5 1 0.997 0.997 1
2 0.997 1 1

0.2 0.961 0.986 0.993
0.15 1 0.982 0.988 0.994

0.05 2 0.982 0.985 0.997
0.2 0.997 0.999 1

1.5 1 0.914 0.95 0.998
2 0.95 0.981 1

0.25 0.2 0.97 0.984 0.99
0.15 1 0.979 0.985 0.991

0.5 2 0.98 0.985 0.991
0.2 0.987 0.992 0.999

1.5 1 0.988 0.994 1
2 0.993 0.994 1

The results in Table 5 demonstrate that, for fixed c, θ and α, the power of the tests
generally increases as a function of λ. Additionally, the power of the tests is a decreasing
function of c for a certain value of λ, θ and α. In general, power increases as sample size
increase.
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8. Applications

Under this head, we exhibit the importance of the proposed family. We fit the HLMOL
distribution to two data sets and compare this distribution with four other models, namely:
Kumaraswamy-generalized Lomax (Kw-GL) distribution by Shams (2013), Weibull Lomax
(WL) distribution by Tahir et al. (2015), HLL and L distribution. The MLEs of the param-
eters of the models are calculated and goodness-of-fit statistics for the models are compared.
The measures including the Akaike information criterion (AIC), Bayesian information cri-
terion (BIC) and Kolmogorov-Smirnov (K-S) statistic with p-value (p-V). Additionally, we
employ the LR test to compare the HLMOL distribution with the L and HLL distributions.

8.1. The secondary reactor pumps data set

This data represents the time period between secondary reactor pump failures. The
data was originally discussed in Suprawhardana and Prayoto (1999). and was previously
used by Bebbington et al. (2007). Following are the time between failures for 23 secondary
reactor pumps.
{2.160, 0.150, 4.082, 0.746, 0.358, 0.199, 0.402, 0.101, 0.605, 0.954, 1.359, 0.273, 0.491, 3.465,
0.070, 6.560, 1.060, 0.062, 4.992, 0.614, 5.320, 0.347, 1.921}

The necessary numerical summaries for the five fits using the secondary reactor pumps
data set includes the estimated log-likelihood function (ℓ̂), AIC, BIC and K-S with p-V are
provided in Tables 6 and 7. Additionally, Table 8 provides two LR statistics based on data
set from secondary reactor pumps along with (p-V).

Table 6: Estimated values, log-likelihood, AIC and BIC for the secondary reactor
pumps data set

Distribution Estimates −ln(L) AIC BIC
HLMOL λ̂ = 0.5250

α̂ = 8442.2096 31.862 67.7242 69.9952
ĉ = 0.1662

θ̂ = 9025.7431
Kw-GL â = 0.8085

b̂ = 185.7834 32.51709 73.03418 77.57616
λ̂ = 297.5083
α̂ = 0.3337

WL â = 7.2122
b̂ = 0.8163 32.51238 73.02476 77.56674

β̂ = 12.6936
α̂ = 0.8239

HLL λ̂= 0.6797
α̂ = 2.3802 32.64682 71.29364 74.70013
θ̂ = 0.7796

L α̂ = 2.2425
θ̂= 2.1699 32.4952 68.9903 71.2613
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Table 7: K-S with p-V for the secondary reactor pumps data set

Distributions K-S p-V
HLMOL 0.0954 0.9718
Kw-GL 0.1186 0.8654

WL 0.1176 0.8717
HLL 0.096283 0.9695

L 0.099734 0.9589

Table 8: The values of LR statistic for different hypothesis and data sets

Models Hypothesis Secondary reactor pumps data set
LR df p-V

HLMOL vs. L H0 : λ= 1,c=0.5 vs. 7.2334 2 0.0269
H1 : H0 is false

HLMOL vs. HLL H0 : c=1 vs. 14.6222 1 < 0.001
H1 : H0 is false

Figure 3 display the total time test (TTT) plot for the secondary reactor pumps
data set, and Figure 4 display the graphs of estimated PDF and CDF of the considered
distributions for secondary reactor pumps data set.
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Figure 3: TTT-plot for the secondary reactor pumps data set

8.2. Bladder cancer patients data set

The data set was given by Almheidat et al. (2015). It is corresponding to remission
times (months) of a random sample of 128 bladder cancer patients. The data are as given
below
{0.080, 0.200, 0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 1.190, 1.260, 1.350, 1.400,1.460, 1.760,
2.020, 2.020, 2.070, 2.090, 2.230, 2.260, 2.460, 2.540, 2.620, 2.640, 2.690, 2.690, 2.750,
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Figure 4: Estimated PDF and CDF for the HLMOL, Kw-GL, WL, HLL and L
distributions for secondary reactor pumps data set

2.830, 2.870, 3.020, 3.250, 3.310, 3.360, 3.360, 3.480, 3.520, 3.570, 3.640, 3.700, 3.820, 3.880,
4.180, 4.230, 4.260, 4.330, 4.340, 4.400, 4.500, 4.510, 4.870, 4.980, 5.060, 5.090, 5.170, 5.320,
5.320, 5.340, 5.410, 5.410, 5.490,5.620, 5.710, 5.850, 6.250, 6.540, 6.760, 6.930, 6.940, 6.970,
7.090, 7.260, 7.280, 7.320, 7.390, 7.590, 7.620, 7.630, 7.660, 7.870, 7.930, 8.260, 8.370, 8.530,
8.650,8.660, 9.020, 9.220, 9.470, 9.740, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98,
12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12,
17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 3.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66,
43.01, 46.12, 79.05}

The necessary numerical summaries for the five fits using the bladder cancer patients
data set includes ℓ̂, AIC, BIC and K-S with p-V are provided in Tables 9 and 10. Additionally,
Table 11 provides two LR statistics based on data set bladder cancer patients along with
p-V.

Figure 5 display the TTT-plot for the bladder cancer patients data set, and Figure 6
displays the graphs of estimated PDF and CDF of the considered distributions for bladder
cancer patients data sets.

In Tables 6, 7, 9 and 10, the MLEs of the parameters for the fitted distributions
along with -log-likelihood, AIC, BIC, K-S with p-V values are given for two distinct data
sets. The HLMOL distribution proves to be a superior model than the Kw-GL, WLo, HLL,
and L models because it has the lowest values of AIC, BIC, K-S, and the highest p-V of
the K-S statistic. Tables 8 and 11 also show the LR statistic values and p-V. In light of
these results, we reject the null hypothesis for the aforementioned data sets and come to the
conclusion that the HLMOL distribution offers a much more accurate depiction than the L
and HLL distributions.

Figures 3 and 5 indicates decreasing HRF for he secondary reactor pumps data set
and upside-down bathtub shaped HRF for the bladder cancer patients data set. Therefore,
the HLMOL distribution can fit these data sets.

Figures 4 and 6 present a diagrammatic comparison of the closeness of the fitted
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Figure 5: TTT-plot for the bladder cancer patients data set
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Figure 6: Estimated PDF and CDF for the HLMOL, Kw-GL, WL, HLL and L
distributions for bladder cancer patients data sets



118 MEENU JOSE AND LISHAMOL TOMY [Vol. 23, No. 1

Table 9: Estimated values, log-likelihood, AIC and BIC bladder cancer patients
data set

Distribution Estimates −ln(L) AIC BIC
HLMOL λ̂ = 0.3401

α̂ = 8.6402 406.579 821.158 832.5661
ĉ = 4.0693
θ̂ = 8.7546

Kw-GL â = 1.5493
b̂ = 10.3464 407.3357 822.6713 834.0794
λ̂ = 11.5419
α̂ = 0.4372

WL â = 16.3314
b̂ = 1.5541 407.611 823.222 834.6301
β̂ = 5.3873
α̂ = 0.1607

HLL λ̂= 0.5540
α̂ = 0.4941 409.4457 824.8915 833.4476
θ̂ = 26.6014

L α̂ = 13.0380
θ̂=110.7043 411.5897 827.1794 832.8835

Table 10: K-S with p-V for the secondary reactor pumps data set

Distributions K-S p-V
HLMOL 0.0286 0.9999
Kw-GL 0.0404, 0.985

WL 0.0449 0.9587
HLL 0.0808 0.3738

L 0.1006 0.1498

densities with the observed histogram and CDFs with the empirical CDFs of the data sets.
These diagrams demonstrate that the proposed distribution renders a closer fit the above
two data sets.

9. Conclusion

In this article, the T-X method was utilized to introduce the T-Marshall Olkin X
family of distribution, a novel family of distributions. HLMO-X and one of its members,
HLMOL, are investigated in depth as a particular case. The quantile function, moments,
incomplete moments, moment generating function, Lorenz curve, Bonferroni curve, skew-
ness, kurtosis, order statistics, and asymptotic distributions of order statistics are some of
the structural characteristics are investigated. The maximum likelihood approach, together
with simulation analysis, is the technique utilized to estimate the model parameters. The
distribution fit between HLL and HLMOL and also between L and HLMOL is tested using
the LR test with simulation research. The outcome demonstrates that the HLMOL dis-
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Table 11: The values of LR statistic for different hypothesis and data sets

Models Hypothesis Bladder cancer patients data set
LR df p-V

HLMOL vs. L H0 : λ= 1,c=0.5 vs. 709.4762 2 < 0.001
H1 : H0 is false

HLMOL vs. HLL H0 : c=1 vs. 24.6404 1 < 0.001
H1 : H0 is false

tribution is superior to the other two. When compared to the Kw-GL, WL, GL, and EL
distributions, fitting to two real-world data produce good results in favour of the suggested
distribution. As a result, the proposed distribution can be viewed as making a worthwhile
contribution to the existing knowledge. Future research will include more generalizations
that can be made for both continuous and discrete cases. One such generalization is the
exponential-Marshall-Olkin X family of distributions. For evaluating the accuracy of the
new models, different inferential investigations will be taken into consideration.
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Abstract
In the present paper, we are considering competing risks with multistate and inter-

mediate state models. For competing risks analysis, we are considering prostate cancer data
for multistate model and simulated data for intermediate state model. We can see from
the prostate cancer data, that in the presence of competing risks 1-Kaplan Meier has more
cumulative incidence as compared to the Aalen-Johnson estimator. Hence in comparison to
Aalen-Johnson, Kaplan-Meier overestimates the cumulative incidence for multistate model.
We have generated competing risks data for the intermediate states model via simulation
using the case of HIV/AIDS. The simulated data on competing risks in the presence of in-
termediate states contain 4 transient states and 3 absorbing states. For simulation purpose
we have used Weibull, Binomial and Uniform distributions. Simulated data on HIV/AIDS
explain the behavior of competing risks model with intermediate states.

Key words: Competing risks; Intermediate state; Kaplan-Meier; Aalen-Johnson estimator;
Simulation.

1. Introduction

Competing risk models are survival statistical models that take a wide variety of
failure causes into account. Competing risk models analyze the time until some first event
occurs at that time. Standard survival analysis often simply takes into account the amount
of time until a first occurrence. Individuals in the study are followed from a common initial
point until the occurrence of the first event, and such occurrences preclude the observation
of the rest of the events and are called competing risks Llopis-Cardona et al. (2021). The
estimation of competing risk data is more prominent in everyday life. The competing risks
generalize survival function from a single combined endpoint to multiple first event types.

Many authors have worked on the multistate and intermediate state models in com-
peting risk settings. Chiang (1968) modeled competing risks with multistate and interme-
diate states and also illness death models. Andersen et al. (2002) considered competing
risk models as a special case of the multistate model. They have used the Fine and Gray
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model to estimate the parameters of the covariates. Putter et al. (2007) modeled multistate
with intermediate states for a breast cancer dataset. Schmoor et al. (2013) developed a
model of competing risk with multistate models and intermediate state models with MGUS
(monoclonal gammopathy of undetermined significance) data inbuilt in R software. Ander-
sen and Keiding (2012) considered competing risks, multistate, and illness death models to
illustrate the transition hazard. Schmoor et al. (2013) considered multistate models for the
hematopoietic stem cell transplantation (HSCT) dataset with different scenarios. Jepsen
et al. (2015) considered multistate models for disease progression, and the other authors
contributed towards the multistate models (Meira-Machado et al., 2009; Gasperoni et al.,
2017; Manevski et al., 2022). For the analysis purpose, they have used real data from the
patients with cirrhosis disease. Moreno-Betancur et al. (2017) considered a multistate model
for studying disease-related mortality.

In our present paper, we are considering competing risks in the multistate model and
the intermediate state model. Initially, every individual is in state 0 (that is, initial state
or alive) at time of origin. An individual stays in the state until the occurrence of the first
event. Generally, there is one event of interest modeled by the transition into state 1, and
all other first event types are considered competing events. Figure 1 and 2 show the transfer
diagram of the multistate and intermediate models respectively.

Figure 1: Competing Risks with multistate model.

Figure 1 is the competing risks with multistate model with 8 states and are given by,
0→ Alive, 1→ Cancer, 2→ cardio vascular disease (CVD), 3→ Cerebrovascular accident, 4→
Pulmonary embolus, 5→ Other cancers, 6→ Respiratory disease, 7→Unknown cause. Here
state 0 is transient where as J= 1, 2, 3, 4, 5, 6 and 7 are absorbing states.

Figure 2 is transition diagram of the competing risks with intermediate states model
and the states are given by, 0→ Human immunodeficiency virus (HIV) Infected, 1→ Acute
HIV Infection, 2→ Chronic HIV Infection, 3→ Acquired immune deficiency syndrome (AIDS),
4→ Death due to Acute HIV Infection, 5→ Death due to Chronic HIV Infection, 6→ Death
due to AIDS. Here states 0, 1, 2 and 3 are transient where as 4, 5 and 6 are absorbing states.
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Figure 2: Competing risks with intermediate states.

A multistate model is used to model a process where subjects transition takes place
from one state to the next. In the Figure, we can say each box is a state and each arrow
is a possible transition. In Figure 1, we can see that there is one transient state and seven
absorbing states, and reverse transitions are not allowed. In Figure 2, there are four transient
states and three absorbing states.

2. Methodology

For our study, we first consider the secondary dataset on prostate cancer available
in Andrews and Herzberg (2012) for modeling competing risks with multistate, as shown
in Figure 1. Next, we have generated competing risk data via simulation for a competing
risk model with intermediate states (Beyersmann et al., 2011), as shown in Figure 2. For
simulation, we assume that the failure time follows the Weibull distribution.

The process is Markovian in nature because present state depends upon immediate
previous state but not older. In the competing risks process, Xt , t ≥ 0 denotes the state.

Every individual starts in the initial state 0 at time origin 0

p (X0 = 0) = 1

An individual stays in state 0 (i, e, Xt = 0) as long as neither competing event happened.

Generally everyone will leave the initial state at some point in time

p (T ∈ (0, ∞)) = 1
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where T→ survival time or failure time.

Let T0j be the time from the start point 0 to event j, j = 1, 2, . . . , J . Consider
T = min(T01, T02, .., T0j) the time to the occurrence of the first event.

Observation of the competing risks process {Xt, t ≥ 0} will in general be subject to right
censoring (Geskus, 2015). Let C be the right censoring time, the observed data is given as
(min(T, C), 1(T ≤ C).XT ). The status indicator 1(T ≤ C).XT ∈ {1, 2, . . . , 7} equal 0 if
observation was censored.

Let the hazard function be

λ(t) = limh→0
1
h
P (t ≤ T < t + h/T ≥ t) = f(t)

S(t)

where f(t) be density function and S(t) be survival function,

and the survival function in terms of hazard function can be expressed as,

S(t) = e−
� t

0 λ(u)du

Now the cause specific hazard function be given by,

λj(t)= lim
h→0

1
h
p(t ≤ T < t + h, J = j /T ≥ t)

λ(t) = ∑J
j=1 λj(t)

and the cumulative cause specific hazard function be given by

Λ(t) =
� t

0 λ(u)du

Λj(t) = ∑K
k=1

Number of individuals observed to fail due to cause j at tk

Number of individuals at risk just prior to tk

Now Xt, t ≥ 0 denote the state at time t (Beyersmann et al., 2011). The hazard function
given by,

λ0j(t)= lim
h→0

1
h

p(t ≤ T < t + h, J = j /T ≥ t) j = 1, 2, . . . , J (1)

which means an individual is in state 0 at time t and in small interval h it reaches to state j.

From Figure 2 we can see the intermediate transition and the hazard function are given by,

λ0k = limh→0
p(t≤T0k<t+h/T0k>t)

h
, k = 1, 2, 3

λ14 = limh→0
p(t−t01≤T14<t−t01+h/T14>t−t01)

h

λ25 = limh→0
p(t−t02≤T25<t−t02+h/T25>t−t02)

h

λ36 = limh→0
p(t−t03≤T36<t−t03+h/T36>t−t03)

h

In many real problems (e.g., those associated with relapse of cancer diseases) the
behavior of T14 often depends on the characteristic of transition 0 to 1.

Now the overall hazard is given by,
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λ(t) = ∑J
j=1 λ0j(t)

and cumulative hazard function given by,

Λ0j =
� t

0
λ0j(u)du (2)

and cause specific Nelson-Aalen estimator of the cumulative hazard is given by,

Λ0j(t) =
K∑

k=1

Number of individuals observed type j event at tk

Number of individuals at risk just prior to tk

, j = 1, 2, .., J (3)

Now for Intermediate multistate models (Geskus, 2015), the transition probability function
is given by,

pij(t) = p(X(t + dt) = j/X(t) = i), i, j = 0, 1, 2, . . . J, i ̸= j

and cumulative hazard function given by,

Λij(t) =
K∑

k=1

Number of individuals observed i → j transition at tk

Number of individuals at risk in state i just prior to tk

, i, j = 0, 1, 2, . . . J, i ̸= j

(4)

Chapman-Kolmogorov equation is used to find out the transition probabilities from
state i to state j over m steps, which is denoted by P m

ij . It is given by the probability of a
chain moving from state i to state j in exactly m steps, where m ≥ 2 is given by,

P m
ij = p(Xm+n = j/Xn = i) (5)

P m
ij gives the probability that from state i at nth trail and the state j is reached at (m + n)th

trial in m steps.

In our model, from Figure 2 we can see that initially an individual in state 0 will
reaches to state j, j = 4, 5, 6 in two steps that is first it reaches to state i, i = 1, 2, 3 then
they move towards state j respectively, that is we can say two step transition.

2.1. The empirical transition matrix

Let Nij(t) be the number of observed direct transitions from state i to state j up
to time t. Yi(t) be the number of individuals under observation in state i just before time
t (Geskus, 2015). The Non-diagonal entries of the matrix of cumulative transition hazards
Λ(t) may be estimated by the Nelson-Aalen estimator.

Λ̂ij(t) =
� t

0

Nij(t)
Yi(t)

(6)

The transition probabilities are conditional probabilities pij(s, t) defines as, the probability
of being at state j at time t given that the individual was in state i at s and is given by,
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pij(s, t) = p(X(t) = j/X(s) = i) , s ≤ t, i, j = 0, 1, 2, . . . J

Or
p̂(s, t) =

∏

(s,t]

(
I + dΛ̂(u)

)
(7)

As Λ̂(u) is a matrix of step functions with a finite number of jumps on (s, t], the product
integral can be written as a finite matrix product.

p̂(s, t) =
∏

s<tk<t

(
I + dΛ̂ (tk)

)
(8)

where the product is taken over all observed transition times in (s, t]. Note that the non-
diagonal elements (i, j), i ̸= j of I + dΛ̂ (tk) are the number of observed direct i → j
transitions, divided by the number of individuals under observation in state i just prior to
tk. The diagonal entries of I + dΛ̂ (tk)are such that each row equal to 1.

That is initially it is in state i at time s and reaches to state j at time t. That is next state
is depends on current state not the previous states.

The survival function of the waiting time T in the initial state 0 is,

p(T > t) = exp
(
−
� t

0 λ0(u)du
)

Cumulative incidence function (CIF) for cause j at t describes the probability of failing from
cause j before time t and is given by

F0j(t) = p (T ≤ t, XT = j) =
� t

0
p(T > u−) λ0j(u)du (9)

where p(T > u−) is survival function just before u.

This probability is not proper distribution function because F0j(t) does not go to 1 when t
goes to ∞.

Now Aalen–Johnson (AJ) estimator for cumulative incidence function (Beyersmann et al.,
2011) is given by,

F̂ AJ
k (t) =

∑

t(i)≤t

F
P L (

t(i)−
)

λ̂k(t(i)) (10)

where F
P L

(
t(i)−

)
is the Kaplan-Meier estimate of the overall cumulative incidence that

combine all event types. The overall survival function S(t) within the competing risk scenario
is the transition probability that assesses the performance of the process in the initial state
at time t, S(t) = p00(0, t) and the CIF for cause j, F0j(t) in the competing risk framework
are the transition probabilities poj(t).
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3. Results and discussions

The analysis is carried out using the observed prostate cancer data for multistate
model and the simulated data for intermediate state model.

3.1. Prostate cancer dataset

We have considered the analysis of competing risks with a multistate model using
prostate cancer data. The data consists of 7 causes of failure, as shown in Figure 1, with 489
patients, and contains right censored observations. The data contains one transient state and
seven absorbing states. The summary of the data is given in Table 1. Out of 489 patients,
126 take the transition from state 0 to state 1, which is 25.7% of the patients failure due to
cancer with an average failure time of 26.4 months, and 91 take the transition from state 0
to state 2, which is 18.6% of the patients failure due to CVD with an average failure time of
24 months, and so on. And 150 patients who remain in the initial state are called censored;
that is, 30.6% of the patients are censored. And we can see that the estimated probability
of an individual being in the initial state is 0.2473704, and the transition probability from
state 0 to state 1 is 0.2820819, and to state 2 is 0.1895011, and so on. Figure 3 explains
the cumulative incidence curve given by Aalen-Johnson (red line) and the 1-Kaplan Meier
curve (black line) for the prostate cancer data. We can see that in the presence of competing
risks, 1-Kaplan Meier has more cumulative incidence as compared to the Aalen-Johnson
estimator, which implies Kaplan-Meier overestimates cumulative incidence in the presence
of competing risks (Talawar and Rangoli, 2023). Figure 4 explains the cumulative hazards
given by Nelson-Aalen, and it can be seen that transitions from states 0 to 1 (cancer) and 0
to 2 (CVD) have a high cumulative hazard as compared to all transitions.

3.2. Simulation study

We generate competing risks data for the intermediate state model via simulation.
The pattern of the competing risks in the presence of intermediate states is shown in Figure
2, which contains four transient states and three absorbing states. Table 2 contains the
transition of subjects from one state to another. For simulation purposes, we have used the
Weibull distribution with scale parameter 2 and shape parameter 0.5 (Sathian et al., 2018;
Okpala and Okoli, 2021).

Algorithm for generating competing risks data with intermediate states.

i. Generate event time T with some specified distribution (like exponential, Weibull).

ii. Run the binomial test for assigning the cause i,e generating failure cause j,

j = 1, 2, 3, . . . , J .

iii. Generate censored observation C. In this we have used uniform distribution to generate
censored observations.

iv. Now considering min (T, C), and assigning cause if we get T else it will be considered
as censored.
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v. Repeat the above steps for each intermediate states.

Using this algorithm and R-programming, we have simulated 1000 observations. The
simulated sample data is presented in Table 2.

• Initially, the patient ID-1 moves from state 0 to state 1 at a time of 1.5 years, and the
same patient will remain in state 1 only; that is, the patient becomes censored due to
some reason.

• The patient ID-4 initially moves from state 0 to state 1 in 3 years, and the same patient
moves from state 1 to state 4 at time 1.2 years. Therefore, patient ID-4 dies in 4.2
years after acquiring an HIV infection.

• Similarly, considering that patient ID-649 initially moves from state 0 to state 3 in 9.5
years of time and the same patient moves from state 3 to state 6 in 0.3 years, Therefore,
patient ID-649 has a total failure time of 9.8 years after acquiring an HIV infection.

Table 3 explains simulated data for the number of patients who move from one state
to another. Here we can see 340 patients move from state 0 to state 1 with an average time
of 0.96 years, 271 patients move from state 0 to state 2 with an average time of 1.08 years,
and 120 patients move from state 0 to 3 with an average time of 1.01 years. Out of 340
patients in state 1, 250 move to state 4 with an average failure time of 1.17 years; out of
271 patients in state 2, 208 move to state 5 with an average failure time of 1.17 years; and
out of 120 patients in state 3, 81 move to state 6 with an average failure time of 1.42 years.
Hence, an HIV-infected patient dies due to acute HIV infection, chronic HIV infection, and
AIDS, with an average failure time of 2.13, 2.25, and 2.43, respectively. Table 4 explains
the transition probability matrix, such that the probability of patients being in the initial
state only is 0.09207136, the estimated transition probability for states 0 to 1 is 0.06163742,
state 2 is 0.02921785, and state 3 is 0.03700813. And from state 0 to state 4 in two-step
transitions, the probability is 0.3472133, and the probability of patients being in state 1 only
is 0.05215, and so on.

From Figure 5, we can see the cumulative hazards of the intermediate states given
by Nelson-Aalen. The plots in the first row are transitions from initial state 0, and the
second row plots show intermediate transition states. The cumulative transition hazard for
0 → 1, 0 → 2, 0 → 3 were less as compared to the transition from 1 → 4, 2 → 5, 3 → 6
respectively. From this, we can see that the risk of dying from acute HIV infection, chronic
HIV infection, and AIDS is higher. Hence, we can say that intermediate states play an
important role in understanding failures from different causes. And also from Figure 5, we
can see that after 8 years of time, the hazard becomes constant. Figure 6 gives the cumulative
incidence for intermediate states. In this Figure, we can see that cumulative incidence is low
for transitions from 0 to 3 and 3 to 6 compared to all other transitions. Figure 7 explains
about the transition probability curve, initially the patient moves 0 → 1, 0 → 2, 0 → 3
and then these patients after reaching state 1, 2, 3 they move towards 4, 5, 6 respectively.
From Figure 7, we can see that the first three plots initially have an increasing incidence,
but soon after reaching approximately 1 year of time they become decreasing because when
patients reaches states 1, 2, and 3, they again take a transition towards states 4, 5, and 6,
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respectively. The states 1, 2, and 3 are transient states, and they do not reach a high value.
But once the patients reach states 4, 5, and 6, the incidence increases because these states
are absorbing states.

Table 1: Number of transitions from initial states for prostate cancer data

states 0 1 2 3 4 5 6 7
Causes Healthy Cancer CVD Cerebrovascular

accident
Pulmonary
embolus

Other
cancer

Respiratory
disease

Unknown
cause

From 0 to 150 126 91 31 12 24 16 39
Transition
Probability

0.24737 0.28208 0.18950 0.065040 0.02455 0.069655 0.03604 0.08575

Average Fail-
ure Time in
Months

26.4 24 31.3 14.3 25.8 27.6 30.2

Table 2: Simulated sample data.

Id from To Time

1 HIV infected Acute HIV Infection 1.561531

1 Acute HIV Infection Death due to Acute HIV Infection 1.442998

2 HIV infected Acute HIV Infection 0.732673

2 Acute HIV Infection Death due to Acute HIV Infection 0.054669

3 HIV infected Chronic HIV Infection 0.183823

3 Chronic HIV Infection Death due to Chronic HIV Infection 0.198274

17 HIV infected AIDS 1.15567

17 AIDS Death due to AIDS 0.541392

177 HIV infected Chronic HIV Infection 6.824169

177 Chronic HIV Infection Death due to Chronic HIV Infection 0.819118

207 HIV infected Acute HIV Infection 0.221875

207 Acute HIV Infection Death due to Acute HIV Infection 6.772362

300 HIV infected Acute HIV Infection 0.015122

300 Acute HIV Infection Censored 8.730437

606 HIV infected Chronic HIV Infection 7.602475

606 ChronicHIV Infection Censored 8.308631

649 HIV infected AIDS 9.468228

649 AIDS Death due to AIDS 0.297785
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Table 3: Number of transition from different states for simulated data

states 0 1 2 3 4 5 6

0 269 340 (0.96)* 271 (1.08)* 120 (1.01)* 0 0 0

1 0 90 0 0 250 (1.17)* 0 0

2 0 0 63 0 0 208 (1.17)* 0

3 0 0 0 39 0 0 81 (1.42)*

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

* values in parenthesis give the average failure time in years

Table 4: Transition probability matrix with time (0, 9.7) years for simulated
data.




0 1 2 3 4 5 6
0 0.09207136 0.06163742 0.02921785 0.03700813 0.3472133 0.3038753 0.1289767
1 0 0.05215555 0 0 0.9478445 0 0
2 0 0 0.01311025 0 0 0.9868898 0
3 0 0 0 0.04103397 0 0 0.958966
4 0 0 0 0 1 0 0
5 0 0 0 0 0 1 0
6 0 0 0 0 0 0 1
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Figure 3: Cumulative incidence curve with 1-KM curve for all transition states
for prostate cancer dataset.
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Figure 4: Cumulative hazard curve for all transition states for prostate cancer
dataset.
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Figure 5: Nelson-Aalen cumulative hazard curve for simulated data.

Figure 6: Aalen-Johnson cumulative incidence curve for simulated data.



136 A. M. RANGOLI, A. S. TALAWAR AND R. P. AGADI [Vol. 23, No. 1

Figure 7: Transition probability curve for simulated data.

4. Conclusion

From the study we see behavior of the competing risks model for multistate and
intermediate states and we conclude that, it is better to use intermediate states to clearly
understand the reason of failure. The two sets of data such as prostate cancer data and
simulated data respectively provide an information to model the competing risks with multi-
state and intermediate state models. In the competing risks model with intermediate states,
we have seen the two step transition occurrence and transition probability curve initially in-
creases and then decreases due to transient states and also we conclude that in the presence
of competing risks with multistate model, the Kaplan-Meier overestimates the cumulative
incidence.
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Abstract
Mathematical and statistical models serve as valuable tools for the analysis and sim-

ulation of infectious disease transmission. This study explores the dynamics of Covid-19
through the utilization of a deterministic epidemic model denoted as SEIIaIqHR, incorpo-
rating interventions. The investigation focuses on essential aspects such as the positivity,
boundedness, existence of various equilibria based on the basic reproduction number (R0),
and asymptotic behavior of solutions around these equilibria in the deterministic model.
Recognizing the significance of environmental noise and the involvement of random fac-
tors in real-world disease propagation systems, we also develop a stochastic version of the
SEIIaIqHR model to account for the impact of noise. We establish the necessary conditions
for the existence and uniqueness of solutions for the system and discuss the ergodic station-
ary distribution as well as the conditions for system extinction. To validate our analytical
findings, we conduct numerical studies. Our results indicate that the rate of intervention
and the fraction of the population in quarantine actively influence disease control efforts.

Key words: Stochastic model; Disease intervention; Extinction; Stationary distribution; Sieve
bootstrap test.

AMS Subject Classifications: 37H30, 37A50, 60G17, 34A34, 37N25

1. Introduction

Infectious diseases are the leading cause of deaths in the low-income countries (W.H.O.,
2020). As of 2019, all communicable diseases together accounted for 36% of all deaths world-
wide (W.H.O., 2020). Some example of communicable diseases are SARS, MERS-CoV,
COVID-19, Dengue, Malaria, etc. Severe acute respiratory syndrome (SARS) is a viral res-
piratory disease caused by a SARS-associated coronavirus. Burden of SARS outbreak in 2003
in Asian countries is around USD $60 billion (Ding and Zhang, 2022). Middle East Respira-
tory Syndrome (MERS) is viral respiratory illness and it was first occurred in 2012 in Saudi
Arabia. Approximately 35% of MERS cases reported to WHO have died (W.H.O., 2022).
Recent outbreak of COVID-19 infection causes around 7 million deaths worldwide (W.H.O.,
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2023b). Dengue is a viral infection caused by the bite of infected mosquitoes. Around half of
the world population are at risk of dengue infection with 100–400 million infections occurring
each year (Bhatt et al., 2013). Along with the dengue, as of 2021, around half of the world
population at risk of Malaria with around 247 million cases and approximately 0.61 million
deaths currently occurring each year (W.H.O., 2023a).

In epidemiology, compartmental SIR type models can provide an overall understand-
ing of the dynamics of infectious diseases. Information like spread dynamics, incidence peak
timing, transmission severity, effect of disease control strategies etc. can be obtained by
studying mathematical models (Cai et al., 2017; Ding and Zhang, 2022; Tang et al., 2020; Li
et al., 2020). Classical epidemiological models of communicable diseases are mainly deter-
ministic compartmental systems (Choisy et al., 2007; Wearing et al., 2005). However, disease
incidence growth in general random in nature since uncertainty in contact rates (Cai et al.,
2013; Allen, 2017). Furthermore, disease incidence also depend on population demographic
rates which in-general follows Markovian process therefore, it is related to environmental
noise (Cai et al., 2013; Allen, 2017). Thus, stochastic differential equation (SDE) based
models can provide more realistic information on disease spread at initial stage of infec-
tion (Allen, 2008, 2017; Cai et al., 2013; Mao, 2007; Oksendal, 2013).

Recently, there are few works on infectious diseases can be found in literature based
on stochastic differential equations (Cai et al., 2013; Lahrouz and Omari, 2013; Ding and
Zhang, 2022; Cai et al., 2017; Rao et al., 2012; Din et al., 2021; Sun et al., 2022; Din et al.,
2020; Tuckwell and Williams, 2007). Randomness in these models are incorporated either
by adding random noise in the state equations or by considering environmental fluctuations
in some model parameters (Allen, 2008, 2017). Cai et al. (2013) found that random fluctua-
tions can suppress the disease outbreak that leads some insight on disease control strategies.
Lahrouz and Omari (2013) considered a SIRS epidemic model with general incidence rate
in a population of varying size. They analytically determined the sufficient conditions for
the extinction and the existence of a unique stationary distribution. Ding and Zhang (2022)
developed a stochastic SIRS epidemic model with information intervention. Author’s de-
termined that the average in time of the second moment of the solutions of the stochastic
system is bounded for a relatively small noise. Furthermore, they found that information
interaction response rate have a vital role in reducing disease incidence, and as the intensity
of the response increases, the number of infected population decreases, which is beneficial
for disease control (Ding and Zhang, 2022). Cai et al. (2017) considered a stochastic version
of SIRS epidemic model with ratio-dependent incidence rate. Author’s mathematically de-
rived some results on permanence and extinction of the proposed stochastic epidemic model.
Rao et al. (2012) determined stability of an epidemic model with diffusion and stochastic
perturbation. Din et al. (2021) use a stochastic Markovian dynamics approach to describe
the spreading of dengue and the threshold of the disease. Some mathematical properties of
the stochastic epidemic model are determined.

In this paper, we first develop a deterministic SEIIaIqHR epidemic model with fre-
quency dependent incidence rate based on the assumption that a susceptible individual may
get infection either by contacting a symptomatic or an asymptomatic or an exposed indi-
vidual. This deterministic model also considered the transmission variability among differ-
ent transmission rates from symptomatic, asymptomatic and exposed individuals. Further-
more, model also considered the awareness effect (for example spreading awareness program
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through media, proper hand sanitization, social distancing, wearing mask, etc), and infection
(exposed population) quarantine effect. Main objective of this work is to study the effect
of stochastic perturbations in the developed deterministic SEIIaIqHR epidemic model. In
particular, we focused on answering the following questions:

• A detailed study of the SEIIaIqHR epidemic model and its stochastic version. Then
comparison between their dynamics based on various factors.

• How the effect of intervention and quarantine effect influenced the dynamics of a disease
in presence of environmental fluctuations.

The rest of the paper is presented as follows: In section 2, detailed SEIIaIqHR model
is formulated. In section 3, some basic properties (example: positivity of solution, global
stability of the disease-free equilibrium, local stability of the endemic equilibrium, etc) of
the deterministic SEIIaIqHR model are studied. Detailed formulation of the stochastic
SEIIaIqHR model is shown in section 4. We also discussed Euler Maruyama scheme to de-
termine the numerical solution of the stochastic differential equation. Next, we analytically
studied the existence and uniqueness of the solution for the SDE model in section 5. More-
over, long term disease extinction, ergodicity of the solution is studied analytically through
various mathematical as well statistical concept. In section 6, we numerically studied the
deterministic system to support its analytical findings. We further studied the stochastic
system and generated various sample paths, average density paths, histograms of densities,
stochastic extinction scenario, etc. We have replicated the system very large times to adress
the role of quarantine population in the trend of infection. Finally, we discuss and conclude
our study.

2. The mathematical model

We start with a deterministic compartmental SIR-type model where population is
subdivided into seven mutually exclusive sub-classes namely susceptible (S), exposed (E),
symptomatic (I), asymptomatic (Ia), quarantined (Iq), hospitalized (H) and recovered (R),
respectively. We considered frequency dependent force of infection with the assumption that
susceptible can get infection in contact with the symptomatic (I), asymptomatic (Ia), and
exposed (E) cases, respectively. However, we also assumed that the probability of infection
form the exposed and asymptomatic cases are lesser compared to the symptomatic cases
with transmission modification parameters η1(0 ≤ η1 ≤ 1), and η2(0 ≤ η2 ≤ 1), respectively.
Furthermore, we also considered the effect of some intervention that reduce the transmission
rate β by a factor (1−k), where 0 ≤ k ≤ 1. In epidemiological point of view, this intervention
represents some awareness effect among the susceptible population that reduce the contact
with the infected populations (exposed, symptomatic and asymptomatic). The intervention
strategies includes the preventive measures such as lock-down, spreading awareness program
through media, proper hand sanitization, social distancing, wearing mask, etc. which results
in slowing down the disease transmission process.

We assume variable human population with recruitment rate Π. The susceptible
compartment reduced due to new infection and natural deaths at rate µd. Exposed popula-
tion increased due to new infection coming from the susceptible compartment and reduced
due to natural deaths at a rate µd. After the incubation period 1

σ
, a fractions ρ1 and ρ2 of

the exposed population become symptomatic and asymptomatic infected and the remaining
fraction (1 − ρ1 − ρ2) of the exposed population become quarantined. Symptomatic infected
compartment (I) is increased due to inflow of infected population coming from the exposed
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class (E) and reduced due to natural death at a rate µd and a fraction α become hospital-
ized. Asymptomatic infected compartment (Ia) increased due to inflow of a fraction ρ2 of
the exposed population after completion of the incubation period 1

σ
. This compartment is

decreased due to natural recovery and death at rates γa and µd, respectively. Quarantined
compartment (Iq) increased due to those exposed individuals who are quarantined and this
compartment is reduced due to hospitalization of symptomatic cases, natural death and re-
covery at rates αq, γq and µd, respectively. Hospitalized compartment (H) is increased by
the patient coming from the symptomatic class and quarantined compartments at rates α,
and αq, respectively. This compartment is decreased due to recovery, disease related death,
and natural death at rates γ, δ, and µd, respectively. Recovered compartment increased due
to inflow of individuals coming from asymptomatic, quarantined, and hospitalized compart-
ments, respectively. This population is reduced by natural death at a rate µd. Based on all
the assumptions our deterministic the epidemic model that represents the rate of change of
different disease classes are provided below:

dS

dt
= Π − (1 − k)βS

N
(I + η1Ia + η2E) − µdS,

dE

dt
= (1 − k)βS

N
(I + η1Ia + η2E) − σE − µdE,

dI

dt
= ρ1σE − αI − µdI,

dIa

dt
= ρ2σE − γaIa − µdIa,

dIq

dt
= (1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq,

dH

dt
= αI + αqIq − (γ + δ)H − µdH,

dR

dt
= γaIa + γqIq + γH − µdR,

(1)

The schematic diagram and the description of the parameters used in the model (1)
is presented in Fig. 1 and Table 1 respectively.

Figure 1: A Flow diagram of the model (1).
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Table 1: Description of various parameters used in the model (1).

Parameter Definitions Value Reference
Π Recruitment rate 10 Din et al. (2021)
µd Death rate 0.2 Din et al. (2020)
η1 Modification parameter 0.1002 Senapati et al. (2021)
η2 Modification parameter (0.1,0.4) Assumed
k Strength of intervention (0, 0.6544) Senapati et al. (2021)
β Rate of disease transmission 1.7399 Senapati et al. (2021)
σ Rate of transition from E to I 0.1923 Li et al. (2020)
ρ1 Fraction of the E move to I 0.3362 Senapati et al. (2021)
ρ2 Fraction of the E move to Ia 0.4204 Senapati et al. (2021)
α Rate of transition from I to H 0.2174 Li et al. (2020)
αq Rate of transition from Iq to H 0.1429 Senapati et al. (2021)
γa Recovery rate of Ia 0.13978 Tang et al. (2020)
γq Recovery rate of Iq 0.11624 Tang et al. (2020)
γ Recovery rate of H 0.0701 Senapati et al. (2021)
δ Rate of disease induced death 0.0175 Senapati et al. (2021)

3. Analysis

3.1. Model positivity

Theorem 1: The solution to the system (1) remains positive for all time t (≥ 0) given a
non-negative initial condition.

Proof: From (1) we can write
dS

dt

∣∣∣∣
S=0

= Π ≥ 0, dE

dt

∣∣∣∣
E=0

= (1 − k)
N

βS(I + η1Ia) ≥ 0, dI

dt

∣∣∣∣
I=0

= ρ1σE ≥ 0, dIa

dt

∣∣∣∣
Ia=0

=
ρ2σE ≥ 0,

dIq

dt

∣∣∣∣
Iq=0

= (1 − ρ1 − ρ2)σE ≥ 0, dH

dt

∣∣∣∣
H=0

= αI + αqIq ≥ 0, dR

dt

∣∣∣∣
R=0

= γaIa + γqIq + γH ≥ 0.

Consequently, the system (1) is positive at all times when positive initial conditions are
given.

3.2. Boundness

Theorem 2: The system (1) is bounded in the feasible region {(S, E, I, Ia, Iq, H, R) ∈ R7
+ :

N(t) ≤ Π
µd

; S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t) ≥ 0, at any time t ≥ 0}.

Proof: We begin by considering the total population density N(t) and utilize the model (1)
in the following manner:

N(t) = S(t) + E(t) + I(t) + Ia(t) + Iq(t) + H(t) + R(t),

dN

dt
= Π − µdN,
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By using Gronwall’s inequality,

N(t) = N(0)e−Πt + Π
µd

, t ≥ 0,

⇒ lim
n→∞ SupN(t) ≤ Π

µd
.

(2)

So we can say that the system (1) is bounded in the region {(S, E, I, Ia, Iq, H, R) ∈ R7
+ :

N(t) ≤ Π
µd

; S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t) ≥ 0, at any time t ≥ 0}.

3.3. Local stability of disease-free equilibrium (DFE)

The DFE of the model (1) is given by E0( Π
µd

, 0, 0, 0, 0, 0, 0).
The local stability of E0 in the system (1) can be established using the next generation
operator method. Following the notation in Driessche and Watmough (2002), we denote the
matrices F and V for the new infection and transition terms, respectively, as follows:

F =




η2(1 − k)β (1 − k)β (1 − k)βη1 0
0 0 0 0
0 0 0 0
0 0 0 0


,

V =




(σ + µd) 0 0 0
−ρ1σ (α + µd) 0 0
−ρ2σ 0 (γa + µd) 0

−(1 − ρ1 − ρ2)σ 0 0 (αq + γq + µd)




Therefore, the basic reproduction number, denoted by R0 (Hethcote, 2000) and cal-
culated as ρ(FV −1) where ρ represents the spectral radius, can be expressed as R0 =
η2(1−k)β
(σ+µd) + ρ1σ(1−k)β

(σ+µd)(α+µd) + (1−k)βη1ρ2σ
(σ+µd)(γa+µd) .

By utilizing Theorem 2 from Driessche and Watmough (2002), we can establish the
following result.

Lemma 1: The DFE, E0 of the model (1) is locally-asymptotically stable (LAS) if R0 < 1,
and unstable if R0 > 1.

3.4. Global stability of DFE

In order to demonstrate the global stability of E0 in the model (1), we can rewrite
the system as follows:

dX

dt
= T (X, I ′) (3)

dI ′

dt
= G(X, I ′), G(X, 0) = 0,

where X = (S, H, R) ∈ R3
+ represents the components denoting the number of unin-

fected individuals, and I ′ = (E, I, Ia, Iq) ∈ R4
+ represents the components denoting the num-

ber of infected individuals, including latent, infectious, and other categories. E0 = (X∗, 0)
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represents the disease-free equilibrium of the system eqrefEQ:eqn 2.3. For the system (1),
the expressions for T (X, I ′) and G(X, I ′) are in the Annexure.

From the expression of G(X, I ′), it is evident that G(X, 0) = 0.

To demonstrate the global stability of ε0 = (X∗, 0), the following two conditions must
be satisfied:

(H1) For dX

dt
= T (X, 0), X∗ is globally asymptotically stable.

(H2) G(X, I ′) = AI − Ĝ(X, I), Ĝ(X, I) ≥ 0 for (X, I ′) ∈ Ω,

Here, A = DI′G(X∗, 0) represents an M-matrix, where the off-diagonal elements are
non-negative. Additionally, Ω denotes the region in which the model (1) holds biological
significance.

Now, we can express the system defined in (H1) as follows:

dS

dt
= Π − µdS, (4)

dR

dt
= −µdR.

By solving this system of equations analytically, we obtain the following solution: S(t) =
Π
µd

+ e−µdt(S(0) − Π
µd

), R(t) = e−µdtR(0). As t → ∞, S(t) = Π
µd

, R(t) → 0. Hence, X∗ is

globally asymptotically stable for dX

dt
= T (X, 0).

Therefore, we can conclude that (H1) holds for the system (1). Now, the matrices A

and Ĝ(X, I) for the system (1) are in the Annexure.

It is evident that A is an M-matrix, and since S(t) ≤ N(t) holds in Ω, we can conclude
that Ĝ(X, I) ≥ 0 for (X, I) ∈ Ω. Based on the findings presented in Castillo-Chavez et al.
(2002), the following result can be stated:

Theorem 3: The DFE of the model (1) is globally asymptotically stable in Ω whenever
R0 < 1.

3.5. Existence of endemic equilibria

In this section, we establish the existence of the endemic equilibrium for the model
(1). Let us denote k1 = σ +µd, k2 = α+µd, k3 = γa +µd, k4 = αq +γq +µd, k5 = γ +δ +µd.
Let E∗(S∗, E∗, I∗, I∗

a , I∗
q , H∗, R∗) represents any arbitrary endemic equilibrium point (EEP)

of the model (1). Further, define λ∗ = (1−k)βI∗

N∗ + (1−k)βη1I∗
a

N∗ + (1−k)βη2E∗

N∗ .
So we have E∗ in terms of λ∗ by solving the equations in (1) at steady-state (see Annexure).

By substituting the E∗ expressions into λ∗, we can observe that the non-zero equilib-
rium of the model (1) satisfies the following linear equation in terms of λ∗: a0λ

∗ + a1 = 0,
where, a0 = k2k3k4k5µd +k3k4k5µdρ1σ+k2k4k5µdρ2σ+k2k3k5µd(1−ρ1 −ρ2)σ+k3k4µdαρ1σ+
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k2k3µdαq(1−ρ1−ρ2)σ+k2k4k5γaρ2σ+k2k3k5γa(1−ρ1−ρ2)σ+k3k4γαρ1σ+k2k3αq(1−ρ1−ρ2)σ
a1 = k1k2k3k4k5µd(1−R0). Since a0 > 0, k1 > 0, k2 > 0, k3 > 0, k4 > 0, k5 > 0 and µd > 0,
it becomes evident that the model (1) possesses a unique endemic equilibrium point (EEP)
when R0 > 1. On the other hand, when R0 < 1, there is no positive endemic equilibrium
point in the model. Based on the analysis, we can conclude that there is no existence of
equilibrium other than the disease-free equilibrium (DFE) when R0 < 1. Additionally, it can
be demonstrated that the DFE E0 of the model (1) is globally asymptotically stable (GAS)
when R0 < 1.

From the above discussion we have concluded that,

Theorem 4: The model (1) possesses a unique endemic (positive) equilibrium, denoted as
E∗, whenever the basic reproduction number R0 > 1. However, for R0 ≤ 1, the model does
not have any endemic equilibrium.

3.6. Local stability of endemic equilibrium point (EEP)

The EEP of the model (1) is given by E∗(S∗, E∗, I∗, I∗
a , I∗

q , H∗, R∗) where the expres-
sions are computed analytically in the Annexure.

3.7. Local stability

Theorem 5: The endemic equilibrium E∗ exhibits local asymptotic stability if all the roots
of the characteristic equation possess negative real parts.

Proof: The Jacobian matrix of the system at E∗ is as follows:

JE∗ =




−P11 −P12 −P13 −P14 P15 P16 P17
P21 P22 P23 P24 −P25 −P26 −P27
0 P32 −P33 0 0 0 0
0 P42 0 −P44 0 0 0
0 P52 0 0 −P55 0 0
0 0 P63 0 P65 −P66 0
0 0 0 P74 P75 P76 −P77




,

where, P11 = β(1−k)(N−S∗)
N2 (I∗ + η1I

∗
a + η2E

∗) + µd, P12 = (1−k)βS∗

N2 (η2N − I∗ − η1I
∗
a −

η2E
∗), P13 = (1−k)βS∗

N2 (N − I∗ − η1Ia − η2E), P14 = (1−k)βS∗

N2 (η1N − I∗ − η1I
∗
a − η2E

∗),
P15 = P16 = P17 = (1−k)βS∗

N2 (I∗ + η1I
∗
a + η2E

∗) P21 = β(1−k)(N−S∗)
N2 (I∗ + η1I

∗
a + η2E

∗),
P22 = (1−k)βS∗

N2 (η2N − I∗ − η1I
∗
a − η2E

∗) − σ − µd, P23 = (1−k)βS∗

N2 (N − I∗ − η1Ia − η2E),
P24 = (1−k)βS∗

N2 (η1N − I∗ − η1I
∗
a − η2E

∗), P25 = P26 = P27 = (1−k)βS∗

N2 (I∗ + η1I
∗
a + η2E

∗),
P32 = ρ1σ, P33 = (α + µd), P42 = ρ2σ, P44 = (γa + µd), P52 = ρ3σ, P55 = (αq + γq + µd),
P63 = α, P65 = αq, P66 = (γ + δ + µd), P74 = γa, P75 = γq, P76 = γ, P77 = µd.

Here the stability of E∗ is determined by the presence of negative real roots in the
characteristic equation of JE∗ .

Now, the corresponding characteristic equation is a polynomial of degree 7, and an-
alytical computation becomes challenging. Therefore, we will validate Theorem 5 by per-
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forming numerical computations.

4. Stochastic model

The role of environmental change in shaping epidemic development has been widely
recognized (Oksendal, 2006). The unpredictable nature of human contact introduces inher-
ent randomness into the growth and spread of epidemics, leading to ongoing disruptions
in population dynamics (Beddington and May, 1977; Chen et al., 2023). In the study of
epidemic dynamics, the utilization of SDE models is often necessary due to their ability to
provide a more suitable framework in various scenarios. These models effectively capture the
stochastic nature of population fluctuations and account for the dynamical changes resulting
from subtle parameter variations. In a recent investigation, Hussain et al. (2023) explored a
stochastic version of the MERS-CoV epidemic model, focusing on the ergodic stationary dis-
tribution and criteria for disease extinction. Concurrently, Shi and Jiang (2023) introduced
a stochastic compartmental model for COVID-19, integrating an Ornstein-Uhlenbeck (OU)
process into the contact rate. Their analysis included the criteria for stationary distribution
and the derivation of the probability density function near quasi-equilibrium. Additionally,
the impact of the OU process on the stochastic model’s dynamic behavior was examined.
Tan et al. (2023) delved into a stochastic SIS epidemic model enriched by media coverage.
Through the consideration of two threshold quantities, they investigated the stochastic dy-
namics, illustrating scenarios where disease eradication is certain or persistent with a distinct
stationary distribution. Their study also inferred insights based on the intensity of random
disturbances. Furthermore, Ullah et al. (2023) explored a stochastic epidemic model in-
corporating vaccination programs. Extinction and persistence conditions were scrutinized,
supported by graphical representations to validate analytical findings.

Many real-world stochastic epidemic models are formulated based on their determinis-
tic counterparts, with the deterministic version serving as a foundation for their development
(Jiang et al., 2010; Mao et al., 2002; Li et al., 2020; Thomas and Shelemyahu, 1989). Under
the assumption that the coefficients of model (1) are influenced by random noise, which can
be accurately represented by Brownian motion, the resulting model (1) can be transformed
into a SDE in the following manner:

dS =
[
Π − µdS − (1 − k)

N
βS(I + η1Ia + η2E)

]
dt + θ1S dB1,

dE =
[(1 − k)

N
βS(I + η1Ia + η2E) − σE − µdE

]
dt + θ2E dB2,

dI =
[
ρ1σE − αI − µdI

]
dt + θ3I dB3,

dIa =
[
ρ2σE − γaIa − µdIa

]
dt + θ4Ia dB4,

dIq =
[
(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

]
dt + θ5Iq dB5,

(5)
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dH =
[
αI + αqIq − (γ + δ)H − µdH

]
dt + θ6H dB6,

dR =
[
γaIa + γqIq + γH − µdR

]
dt + θ7R dB7,

In the model (5), all parameters and state variables are assumed to be non-negative
real numbers. The influence of noise is taken into account through the functions Bi(t), i =
1(1)7, which represent standard Brownian motions, and θi(> 0), i = 1(1)7, which represent
the corresponding intensities of the white noise. Additionally, the Brownian motion satisfies
the fundamental axiom B1(0) = B2(0) = B3(0) = B4(0) = B5(0) = B6(0) = B7(0).

Let’s define the vector G for the system (5) as G = [S, E, I, Ia, Iq, H, R]T . The transi-
tion probability is specified in Table 2. The expectation Ex[∆G] and variance Ex[∆G∆GT ]
are defined as follows.

So the Expectation is Ex[∆G] = ∑22
i=1 Pi(∆G)i =




Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)

(1 − k)
N

βS(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH

γaIa + γqIq + γH − µdR




∆t.

Also the variance is given below:

Ex[∆G∆GT ] = ∑22
i=1 Pi[(∆G)i][(∆G)i]T =




M11 M12 0 0 0 0 0
M21 M22 M23 M24 M25 0 0

0 M32 M33 0 0 M36 0
0 M42 0 M44 0 0 M47
0 M52 0 0 M55 M56 M57
0 0 M63 0 M65 M66 M67
0 0 0 M74 M75 M76 M77




∆t,

Here,
M11 = P1 + P2 + P3 + P4 + P5 = Π + µdS + (1−k)

N
βSη2E + (1−k)

N
βSI + (1−k)

N
βSη1Ia;

M12 = M21 = −P3 = −( (1−k)
N

βSη2E);
M22 = P3 + P4 + P5 + P6 + P7 = (1−k)

N
βSη2E + (1−k)

N
βSI + (1−k)

N
βSη1Ia + σE + µdE;

M23 = M32 = P8 = ρ1σE;
M24 = M42 = P11 = ρ2σE;
M25 = M52 = P14 = (1 − ρ1 − ρ2)σE;
M33 = P8 + P9 + P10 = ρ1σE + αI + µdI;
M36 = M63 = −P9 = −αI;
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M44 = P11 + P12 + P13 = ρ2σE + γaIa + µdIa;
M47 = M74 = −P12 = −γaIa;
M55 = P14 + P15 + P16 + P17 = (1 − ρ1 − ρ2)σE + αqIq + γqIq + µdIq;
M56 = M65 = −P15 = −αqIq;
M57 = M75 = −P16 = −γqIq;
M66 = P9 + P15 + P19 + P20 + P21 = αI + αqIq + γH + δH + µdH;
M67 = M76 = −P19 = −γH;
M77 = P12 + P16 + P19 + P22 = γaIa + γqIq + γH + µdR;

Now we define,

Drift = C(G, t) = Ex[∆G]
∆t

=




Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)

(1 − k)
N

βS(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH

γaIa + γqIq + γH − µdR




.

Also the diffusion is defined as

Diffusion = D(G, t) =
√

Ex[∆G∆GT ]
∆t

=

√√√√√√√√√√√√√√




M11 M12 0 0 0 0 0
M21 M22 M23 M24 M25 0 0

0 M32 M33 0 0 M36 0
0 M42 0 M44 0 0 M47
0 M52 0 0 M55 M56 M57
0 0 M63 0 M65 M66 M67
0 0 0 M74 M75 M76 M77




.

By incorporating the drift and diffusion equations, the SDE for the system can be expressed
as follows:

dG(t) = C(G, t) dt + D(G, t) dB(t)

i.e.,

d




S
E
I
Ia

Iq

H
R




=




Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)

(1 − k)
N

βS(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH

γaIa + γqIq + γH − µdR




dt +

√√√√√√√√√




M11 M12 0 0 0 0 0
M21 M22 M23 M24 M25 0 0

0 M32 M33 0 0 M36 0
0 M42 0 M44 0 0 M47
0 M52 0 0 M55 M56 M57
0 0 M63 0 M65 M66 M67
0 0 0 M74 M75 M76 M77



dB(t).
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Table 2: Possible changes in the process of the model

Transition Probability

(∆G)1 = [1 0 0 0 0 0 0]T P1 = Π ∆t

(∆G)2 = [−1 0 0 0 0 0 0]T P2 = µdS ∆t

(∆G)3 = [−1 1 0 0 0 0 0]T P3 = (1 − k)
N

βSη2E ∆t

(∆G)4 = [−1 0 1 0 0 0 0]T P4 = (1 − k)
N

βSI ∆t

(∆G)5 = [−1 0 0 1 0 0 0]T P5 = (1 − k)
N

βSη1Ia ∆t

(∆G)6 = [0 − 1 0 0 0 0 0]T P6 = σE ∆t

(∆G)7 = [0 − 1 0 0 0 0 0]T P7 = µdE ∆t

(∆G)8 = [0 1 1 0 0 0 0]T P8 = ρ1σE ∆t

(∆G)9 = [0 0 − 1 0 0 0 0]T P9 = αI ∆t

(∆G)10 = [0 0 − 1 0 0 0 0]T P10 = µdI ∆t

(∆G)11 = [0 1 0 1 0 0 0]T P11 = ρ2σE ∆t

(∆G)12 = [0 0 0 1 0 0 0]T P12 = γaIa ∆t

(∆G)13 = [0 0 0 − 1 0 0 0]T P13 = µdIa ∆t

(∆G)14 = [0 0 0 − 1 0 0 0]T P14 = (1 − ρ1 − ρ2)σE ∆t

(∆G)15 = [0 0 0 0 − 1 0 0]T P15 = αqIq ∆t

(∆G)16 = [0 0 0 0 − 1 0 0]T P16 = γqIq ∆t

(∆G)17 = [0 0 0 0 − 1 0 0]T P17 = µdIq ∆t

(∆G)18 = [0 0 1 0 0 0 0]T P18 = αI ∆t

(∆G)19 = [0 0 0 0 0 − 1 0]T P19 = γH∆t

(∆G)20 = [0 0 0 0 0 − 1 0]T P20 = δH∆t

(∆G)21 = [0 0 0 0 0 − 1 0]T P21 = µdH∆t

(∆G)22 = [0 0 0 0 0 0 − 1]T P22 = µdR∆t
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4.1. Euler Maruyama scheme

In this section, we employ the Euler-Maruyama scheme to obtain the numerical solu-
tion of the stochastic differential equation. The model parameters used in the computations
are listed in Table 1. The following computational procedure is followed:

dGn(t) = C(Gn, t) dt + D(Gn, t)dB(t)




Sn+1

En+1

In+1

In+1
a

In+1
q

Hn+1

Rn+1




=




Sn

En

In

In
a

In
q

Hn

Rn




+




Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)

(1 − k)
N

βS(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH

γaIa + γqIq + γH − µdR




dt

+

√√√√√√√√√√√√√√√




M11 M12 0 0 0 0 0
M21 M22 M23 M24 M25 0 0

0 M32 M33 0 0 M36 0
0 M42 0 M44 0 0 M47
0 M52 0 0 M55 M56 M57
0 0 M63 0 M65 M66 M67
0 0 0 M74 M75 M76 M77




δBn

5. Parametric perturbation of the model

Let (Ω, F , {Ft}t≥0, P) be a complete probability space equipped with the filtration
{Ft}t≥0. The filtration is assumed to be increasing and right-continuous, and F0 contains
all P-null sets. Throughout the paper, we denote a ∧ b as the minimum of a and b, a ∨ b as
the maximum of a and b, and ⟨y(t)⟩ as the time average of y(t) defined as 1

t

� t

0 y(s) ds.

5.1. Existence and uniqueness of the global solutions

In order to investigate the dynamic characteristics of the system described by equation
(5), the initial step involves verifying the presence of a unique positive solution for this
system. This section aims to provide a comprehensive explanation regarding the existence
of a unique positive solution to the SDE model represented by equation (5).

Theorem 6: For any initial value (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) ∈ R7
+, there is a
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positive solution (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) of the stochastic model (5) for t ≥ 0
and the solution will maintain in R7

+ with probability one.

Proof: The constants involved in the equations are locally Lipschitz continuous for the given
initial population sizes (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) ∈ R7+ when t ∈ [0, τe],
where τe is the explosion time (Yanan and Daqing, 2014; Ji and Jiang, 2014). To establish
the global nature of the solution, it is necessary to prove that τe = ∞ almost surely (a.s.). We
select k0 ≥ 0 to be sufficiently large such that S(0), E(0), I(0), Ia(0), Iq(0), H(0), and R(0)
all fall within the interval [ 1

k0
, k0]. For each integer k ≥ k0, we define the stopping time τk =

inf{t ∈ [0, τe] : min(S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) ≤ 1
k

or, max(S(t), E(t), I(t), Ia(t),
Iq(t), H(t), R(t)) ≥ k}.

We define inf(ϕ) = ∞ for the empty set ϕ according to the given notation. By
definition, as k approaches infinity, τk increases. We set τ∞ as the limit of τk as k tends to
infinity, with 0 ≤ τ∞ ≤ τe almost surely (a.s.). By proving that τ∞ = ∞ almost surely, we can
demonstrate that τe = ∞, and it follows that (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) ∈ R7

+
a.s. for all t ≥ 0.

Now, we define a C2 function V : R7
+ → R+ such that

V = V (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) = S(t) − 1 − log S(t) + E(t) − 1 − log E(t)
+I(t) − 1 − log I(t) + Ia(t) − 1 − log Ia(t) + Iq(t) − 1 − log Iq(t) + H(t) − 1 − log H(t) + R(t) −
1 − log R(t).

Here the function V is non negative as y −1− log y ≥ 0, ∀ y ≥ 0. For arbitrary values
of k ≥ k0 and T ≥ 0, applying the Itô formula to equation (5) yields the following result.

dV (S, E, I, Ia, Iq, H, R) = (1− 1
S

)dS +θ1(S −1)dB1(t)+(1− 1
E

)dE +θ2(E −1)dB2(t)+
(1 − 1

I
)dI + θ3(I − 1)dB3(t) + (1 − 1

Ia
)dIa + θ4(Ia − 1)dB4(t) + (1 − 1

Iq
)dIq + θ5(Iq − 1)dB5(t) +

(1 − 1
H

)dH + θ6(H − 1)dB6(t) + (1 − 1
R

)dR + θ7(R − 1)dB7(t)

= LV (S, E, I, Ia, Iq, H, R)dt + θ1(S − 1)dB1(t) + θ2(E − 1)dB2(t) + θ3(I − 1)dB3(t) +
θ4(Ia − 1)dB4(t) + θ5(Iq − 1)dB5(t) + θ6(H − 1)dB6(t) + θ7(R − 1)dB7(t).

In equation (5), LH : R7
+ → R+ is defined by the following equation

LV (S, E, I, Ia, Iq, H, R) = (1− 1
S

)[Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)]+ θ2
1
2 +(1−

1
E

)
[(1 − k)

N
βS(I+ η1Ia + η2E) − σE − µdE

]
+ θ2

2
2 + (1 − 1

I
)(ρ1σE − αI − µdI) + θ2

3
2 + (1 −

1
Ia

)(ρ2σE − γaIa − µdIa) + θ2
4
2 + (1 − 1

Iq

)((1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq) + θ2
5
2 + (1 −

1
H

)(αI + αqIq − (γ + δ)H − µdH) + θ2
6
2 + (1 − 1

R
)(γaIa + γqIq + γH − µdR) + θ2

7
2

≤ Π(1 − 1
S

) + 7µd + βI
N

+ η1β
Ia

N
+ η2β

E
N

− kβ I
N

− kη1β
Ia

N
− kη2β

E
N

+ σ + α + γa +

ρ1σ
E
Iq

+ ρ2σ
E
Iq

− αq − γq − α I
H

− αq
Iq

H
+ γ + δ − γa

Ia

R
− γq

Iq

R
− γ H

R
+

7∑
i=1

θ2
i

2

≤ Π + 7µd + σ + α + γa + γ + δ − αq − γq +
7∑

i=1

θ2
i

2 = K (say)
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Here, K is a positive constant that is independent of the variables S, E, I, Ia, Iq, H,
R, and the time t. Therefore, dV (S, E, I, Ia, Iq, H, R) ≤ Kdt + θ1(S − 1)dB1(t) + θ2(E −
1)dB2(t) + θ3(I − 1)dB3(t) + θ4(Ia − 1)dB4(t) + θ5(Iq − 1)dB5(t) + θ7(R − 1)dB7(t)

Integration both sides of above equation from 0 to τk ∧ T

E[V (S(τk ∧ T ), E(τk ∧ T ), I(τk ∧ T ), Ia(τk ∧ T ), Iq(τk ∧ T ), H(τk ∧ T ), R(τk ∧ T ))] ≤
V (S(0), E(0), I(0), Ia(0),

Iq(0), H(0), R(0))+K(τk ∧T )+E[
τk∧T�

0
θ1(S −1)dB1(t)+θ2(E −1)dB2(t)+θ3(I −1)dB3(t)+

θ4(Ia −1)dB4(t)+θ5(Iq −1)dB5(t)+θ7(R−1)dB7(t)] ≤ V (S(0), E(0), I(0), Ia(0), Iq(0), H(0),
R(0)) + KT

Setting Ωk = τk ≤ T for k ≥ k1 and by P (τ∞ ≤ T ) > ϵ, P (Ωk) ≥ ϵ.
It is worth noting that for every w ∈ Ωk, there exists at least one combination of S(τk, w),
E(τk, w), I(τk, w), Ia(τk, w), Iq(τk, w), H(τk, w),R(τk, w) that is equal to either k or 1

k
and

hence V (S(τk), E(τk), I(τk), Ia(τk), Iq(τk), H(τk),
R(τk)) is not less than (k − 1 − log k) or ( 1

k
− 1 + log k).

Consequently, V (S(τk), E(τk), I(τk), Ia(τk), Iq(τk), H(τk), R(τk)) ≥ E[(k − 1 − log k) ∧ ( 1
k

−
1 + log k)].
Thus, it follows from P (τ∞ ≤ T ) > ϵ and equation (5) that
V (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) + KT ≥ E[1Ω(w)V (S(τk), E(τk), I(τk), Ia(τk),
Iq(τk), H(τk), R(τk))] ≥ ϵ[(k − 1 − log k) ∧ ( 1

k
− 1 + log k)]

Here, 1Ω(w) denotes the indicator function of Ω. By letting k → ∞, we arrive at the con-
tradiction ∞ > V (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) + KT = ∞. This implies that
τ∞ = ∞ a.s., thereby completing the proof.

5.2. Extinction of the disease

Next, we will investigate the dynamic behavior of the epidemic model to determine
the conditions for long-term disease elimination. We aim to derive the conditions under
which the disease will become extinct within the community. This leads us to the following
lemma.

Lemma 2 (Strong Law of Large Number, (Lahrouz and Omari, 2013; Din et al., 2020)):
Let M = {M}t≥0 be continuous and real-valued local martingale, which vanish as t → 0,
then lim

t→∞
⟨M, M⟩t = ∞, a.s., ⇒ lim

t→∞
Mt

⟨M,M⟩t
= 0, a.s. and also, lim

t→∞
sup ⟨M,M⟩t

t
< 0 a.s.,

⇒ lim
t→∞

Mt

t
= 0, a.s.

Theorem 7: Let (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) represent the solution of system
(5) for any initial value (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) ∈ R7

+. If R0
E < 1, then

the solution (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) of system (5) satisfies lim
t→∞

sup ln E(t)
t

≤
(σ + µd + θ2

2
2 )(R0

E − 1) < 0 a.s., where R0
E = (1−k)β(1+η1+η2)

(σ+µd+
θ2

2
2 )

. So for R0
E < 1 the disease will

be eradicated in the long term.
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Proof: Applying the Itô formula to the second equation of model (5), we obtain
d ln E(t) = dE(t)

E(t) = [ (1−k)
N

β S
E

(I + η1Ia + η2E) − σ − µd − θ2
2
2 ]dt + θ2dB2(t)

≤ [(1 − k)β + (1 − k)βη1 + (1 − k)βη2 − σ − µd − θ2
2
2 ]dt + θ2dB2(t)

≤ [(1 − k)β(1 + η1 + η2) − (σ + µd) − θ2
2
2 ]dt + θ2dB2(t)

Integrating the above formula from 0 to t on both sides, we obtain
ln E(t) − ln E(0) ≤

� t

0 [(1 − k)β(1 + η1 + η2) − (σ + µd) − θ2
2
2 ]ds +

� t

0 θ2dB2(t).

According to the strong law of large numbers (Lahrouz and Omari, 2013; Khasminskii,
2011), we have, lim sup

t→∞
θ2
t

� t

0 dB2(t) = 0, a.s.

So, lim
t→∞

sup ln E(t)
t

≤ 1
t

� t

0 [(1 − k)β(1 + η1 + η2) − (σ + µd) − θ2
2
2 ]ds

≤

(1 − k)β(1 + η1 + η2) − (σ + µd) − θ2

2
2




≤ (σ + µd + θ2
2
2 )


 (1−k)β(1+η1+η2)

(σ+µd+
θ2

2
2 )

− 1



If we choose R0
E = (1−k)β(1+η1+η2)

(σ+µd+
θ2

2
2 )

, it implies lim
t→∞

sup ln E(t)
t

≤ (σ + µd + θ2
2
2 )[R0

E − 1] < 0

if R0
E < 1.

Therefore, the above result indicates that

lim
t→∞

E(t) = 0 a.s.,

which implies that the disease will be eradicated. This completes the proof.

5.3. Ergodic stationary distribution

When a disease spreads rapidly within a population, understanding its long-term dy-
namics becomes a significant concern for health officials. In order to study and address this
issue mathematically, stability analysis tools are commonly utilized. Deterministic models,
under certain conditions, can show the existence of an endemic equilibrium and its global
asymptotic stability. However, in the context of stochastic systems, the presence of an en-
demic equilibrium is not guaranteed, posing challenges in predicting the persistence of the
disease within the population (Din et al., 2020). In our study, inspired by the work of
Khasminskii (2011), we aim to investigate the existence of an ergodic stationary distribu-
tion for system (5). This analysis provides insights into the long-term persistence of the
disease. The deterministic version of the system (5) can be easily obtained by setting θi = 0
for i = 1 to 7, resulting in a straightforward conversion. However, it is important to note
that the original stochastic model and its deterministic counterpart exhibit significant dif-
ferences. Moreover, empirical evidence suggests the absence of an endemic disease state in
the stochastic system, challenging the applicability of traditional linear stability analysis to
assess the disease’s sustained presence. Consequently, our research focuses on investigating
the stationary distribution of the proposed system (5), specifically exploring the existence
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of ergodic stationary components.

Let’s consider the assumption that X(t) is a regular time-homogeneous Markov pro-
cess in Rn

+. Mathematically, it can be represented as dX(t) = b(X)dt+∑k
r=1 σrdBr(t), where

b(X) represents the drift term.
The diffusion matrix is defined as A(X) = [aij(x)], aij(x) = ∑k

r=1 σi
r(x)σr

j (x) a.s.

Lemma 3: (Din et al., 2020) The Markov process X(t) has a unique stationary distribution
m(·) if there exists a bounded domain U ⊆ Rd with a regular boundary such that the closure
U ∈ Rd satisfies the following properties:

1. In the open domain U and some of its neighbors, the smallest eigenvalue of the diffusion
matrix A(t) is set far from zero.

2. If x ∈ RdU, the mean time τ at which a path issuing from x reaches the set U is finite,
and supx∈kEτx < ∞ for every compact subset. Moreover, if f(.) is a function integrable
with respect to the measure π, then P

[
lim

T →∞
1
T

� T

0 f(Xx(t))dt =
�

Rd f(x)πdx
]

= 1.

For future reference, let us define another threshold value R∗
0 =

[
µd(1−k)βρ1σ(

µd+
θ2

1
2

)(
σ+µd+

θ2
2
2

)(
α+µd+

θ2
3
2

)
]
.

Theorem 8: If R∗
0 > 1, then a solution (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)), of system

(5) is ergodic. Moreover, ∃ a unique stationary distribution π(.).

Proof: First, we will demonstrate that the second condition of Lemma 3 is satisfied. To
accomplish this, we will construct a non-negative C2 function V : R7

+ → R+ such that it
satisfies the following properties:
V = N(t) − c1 ln S(t) − c2 ln E(t) − c3 ln I(t), with ci ≥ 0, i = 1(1)3. Applying Itô′s formula
(Mao, 1997), we obtain

LV = (Π−µdN−δH)−c1

[Π
S

− µd − (1 − k)
N

β(I + η1Ia + η2E) − θ2
1
2

]
−c2

[(1 − k)
N

β
S

E
(I + η1Ia

+η2E) − σ − µd − θ2
2
2

]
− c3

[
ρ1σ

E

I
− α − µd − θ2

3
2

]

= Π−µdN −δH −c1
Π
S

+c1µd +c1(1−k)β I
N

+c1(1−k)βη1
Ia

N
+c1(1−k)βη2

E
N

+c1
θ2

1
2 −

c2(1−k)β SI
NE

−c2(1−k)βη1
SIa

NE
−c2(1−k)βη2

SE
NE

+c2(σ+µd)+c2
θ2

2
2 −c3ρ1σ

E
I

+c3(α+µd)+c3
θ2

3
2

≤ −
[
µdN + c1

Π
S

+ c2(1 − k)β SI
NE

+ c3ρ1σ
E
I

]
+ Π + c1(µd + θ2

1
2 ) + c2(σ + µd + θ2

2
2 ) +

c3(α + µd + θ2
3
2 ) + c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]

= −4
[
µdNc1

Π
S

c2(1−k)β SI
NE

c3ρ1σ
E
I

] 1
4
+Π+c1(µd+ θ2

1
2 )+c2(σ+µd+ θ2

2
2 )+c3(α+µd+ θ2

3
2 )+

c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]

= −4
[
µd(1−k)βρ1σΠc1c2c3

] 1
4

+Π+ c1(µd + θ2
1
2 )+ c2(σ +µd + θ2

2
2 )+ c3(α +µd + θ2

3
2 )+

c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]
.
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Now we assume that, Π = c1(µd + θ2
1
2 ) = c2(σ + µd + θ2

2
2 ) = c3(α + µd + θ2

3
2 ) where,

c1 = Π(
µd+

θ2
1
2

) , c2 = Π(
σ+µd+

θ2
2
2

) and c3 = Π(
α+µd+

θ2
3
2

) .

So, LV ≤ −4
[

µd(1−k)βρ1σΠ4(
µd+

θ2
1
2

)(
σ+µd+

θ2
2
2

)(
α+µd+

θ2
3
2

)
] 1

4
+ 4Π + c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+

(1 − k)βη2
E
N

]
≤ −4Π

[
(R∗

0) 1
4 − 1

]
+ c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]

where, R∗
0 =

[
µd(1−k)βρ1σ(

µd+
θ2

1
2

)(
σ+µd+

θ2
2
2

)(
α+µd+

θ2
3
2

)
]
.

We define another function of the form:

V = c4
[
N(t)−c1 ln S(t)−c2 ln E(t)−c3 ln I(t)

]
− ln S(t)− ln E(t)− ln I(t)− ln Ia(t)−

ln Iq(t)− ln H(t)− ln R(t)+N(t), where, c4 > 0 represents a constant that will be determined
later.
Therefore, V = c4V − ln S(t) − ln E(t) − ln I(t) − ln Ia(t) − ln Iq(t) − ln H(t) − ln R(t) + N(t).

According to Lemma 3 and the continuity of V (S, E, I, Ia, Iq, H, R), we can conclude
that V (S, E, I, Ia, Iq, H, R) has a unique minimum value around (S0, E0, I0, Ia0 , Iq0 , H0, R0)
in the interior of R7

+. Now we define a non-negative C2 function V : R7
+ → R+ as V =

V (S, E, I, Ia, Iq, H, R) − V (S0, E0, I0, Ia0 , Iq0 , H0, R0).

Applying Itô′s formula to V , we obtain
LV = c4LV −L ln S(t)−L ln E(t)−L ln I(t)−L ln Ia(t)−L ln H(t)−L ln R(t)+LN(t)

≤ c4

{
− 4Π

[
(R∗

0) 1
4 − 1

]
+ c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]}
−

[Π
S

− µd

−(1 − k)
N

β(I + η1Ia + η2E) − θ2
1
2

]
−

[(1 − k)
N

β
S

E
(I + η1Ia + η2E) − σ − µd − θ2

2
2

]
−

[
ρ1σ

E

I
− α − µd − θ2

3
2

]
−

[
ρ2σ

E

Ia

− γa − µd − θ2
4
2

]
−

[
α

I

H
+ αq

Iq

H
− γ − δ − µd − θ2

6
2

]
−

[
γa

Ia

R
+ γq

Iq

R
+ γ

H

R
− µd − θ2

7
2

]
+ Π − µdN − δH

≤ −c4c5+c1c4(1−k)β I
N

+c1c4(1−k)βη1
Ia

N
+c1c4(1−k)βη2

E
N

− Π
S

+µd+(1−k)β I
N

+(1−
k)βη1

Ia

N
+(1−k)βη2

E
N

+ θ2
1
2 −(1−k)β SI

NE
−(1−k)βη1

SIa

NE
−(1−k)βη2

S
N

+σ+µd+ θ2
2
2 −ρ1σ

E
I

+α+
µd+ θ2

3
2 −ρ2σ

E
Ia

+γa+µd+ θ2
4
2 −α I

H
−αq

Iq

H
+γ+δ+µd+ θ2

6
2 −γa

Ia

R
−γq

Iq

R
−γ H

R
+µd+ θ2

7
2 +Π−µdN−δH

where, c5 = Π
[(

R∗
0

) 1
4 − 1

]
> 0.

So, LV ≤ −c4c5+(c1c4+1)(1−k)β(1+η1+η2)− Π
S

−(1−k)β SI
NE

−(1−k)βη1
SIa

NE
+6µd+

σ+α+γa+γ+δ−ρ1σ
E
I

−ρ2σ
E
Ia

−α I
H

−αq
Iq

H
−γa

Ia

R
−γq

Iq

R
−γ H

R
+Π−µdN−δH+ θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 .

We define a set as follow:

D =
{
ϵ1 ≤ S ≤ 1

ϵ2
, ϵ1 ≤ E ≤ 1

ϵ2
, ϵ1 ≤ I ≤ 1

ϵ2
, ϵ1 ≤ Ia ≤ 1

ϵ2
, ϵ1 ≤ Iq ≤ 1

ϵ2
, ϵ1 ≤ H ≤ 1

ϵ2
,

ϵ1 ≤ R ≤ 1
ϵ2

}
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where ϵi > 0, i = 1, 2 are constants, which are very small and will be determined later. We
can divide R7

+ \ D into the following sixteen domains:

D1 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, 0 < S < ϵ1},

D2 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, 0 < E < ϵ2, S > ϵ1};

D3 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, E > ϵ1, I < ϵ2},

D4 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, E > ϵ1, Ia < ϵ2},

D5 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, I > ϵ1, 0 < H < ϵ2},

D6 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Iq > ϵ1, 0 < H < ϵ2},

D7 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Ia > ϵ1, 0 < R < ϵ2},

D8 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Iq > ϵ1, 0 < R < ϵ2},

D9 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, H > ϵ1, 0 < R < ϵ2},

D10 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, S > 1

ϵ2
},

D11 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, E > 1

ϵ2
},

D12 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, I > 1

ϵ2
},

D13 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Ia > 1

ϵ2
},

D14 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Iq > 1

ϵ2
},

D15 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, H > 1

ϵ2
},

D16 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, R > 1

ϵ2
}.

For all the above cases, it can be observed that there exists a positive constant c > 0
such that

LV (S, E, I, Ia, Iq, H, R) < −c, ∀ (S, E, I, Ia, Iq, H, R) ∈ R7
+ \ D. (see Annexure for

detail)
Let (S, E, I, Ia, Iq, H, R) = x ∈ R7

+ \ D, the time τx at which a trajectory starting
from x reaches to the set D, τn = inf{t : |(X(t)| = n} and τn(t) = min{τx, t, τn}.

By integrating LV from 0 to τn(t) and using expectations, as well as applying
Dynkin’s formula, we have reached the conclusion that

EV (S(τn(t)), E(τn(t)), I(τn(t)), Ia(τn(t)), Iq(τn(t)), H(τn(t)), R(τn(t))) − V (x)
= E

� τn(t)
0 LV (S(u), E(u), I(u), Ia(u), Iq(u), H(u), R(u))du

≤ E
� τn(t)

0 −cdu = −cEτn(t). By utilizing the fact that the function V (x) is non-
negative, we can deduce that Eτn(t) ≤ V (x)

c
.

Thus, P (τe = ∞) = 1, which implies that the model (5) is regular. Applying the
well-known Fatou’s lemma, we obtain Eτn(t) ≤ V (x)

c
< ∞.

Obviously, supx∈KEτx < ∞ where K ⊂ R7
+. So the second condition of Lemma 3 is
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satisfied. Moreover, the diffusion matrix for system (5) takes the form

B =




θ2
1S2 0 0 0 0 0 0
0 θ2

2E2 0 0 0 0 0
0 0 θ2

3I2 0 0 0 0
0 0 0 θ2

4I2
a 0 0 0

0 0 0 0 θ2
5I2

q 0 0
0 0 0 0 0 θ2

6H2 0
0 0 0 0 0 0 θ2

7R2




M = min(S,E,I,Ia,Iq ,H,R)∈D{θ2
1S2, θ2

2E2, θ2
3I2, θ2

4I2
a , θ2

5I2
q , θ2

6H2, θ2
7R2}, we can obtain

∑7
i,j=1 aij(S, E, I, Ia, Iq, H, R)ξiξj = θ2

1S2ξ2
1 + θ2

2E2ξ2
2 + θ2

3I2ξ2
3 + θ2

4I2
aξ2

4 + θ2
5I2

q ξ2
5 +

θ2
6H2ξ2

6 + θ2
7R2ξ2

7 > M |ξ2|
where ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7) ∈ R7

+. Thus, the first condition of Lemma 3 is satisfied. It
follows from Lemma 3 that the proposed stochastic model is ergodic with a unique stationary
distribution.

6. Numerical simulations

In this section, we perform numerical simulations using R programming to support
our analytical findings. We have taken most of the parameter values from Table 1 and
demonstrated the system dynamics for both R0 greater and less than 1. For the parameter
k = 0 i.e. under no intervention, it is observed that R0 = 1.68(> 1) which implies the
disease persist in the deterministic system (1). Similarly, for the parameter k = 0.6544 i.e.
with intervention effect, it is observed that R0 = 0.5805(< 1) which implies the disease will
die out from the deterministic system (1).

First, we have plotted the relationship F = βS(I+η1Ia+η2E)
N

with respect to a) S, I,
b) S, H and c) I, H respectively in Figure 2(a),(b) and (c). It is observed that curve (a)
exhibits a quadratic shape, curve (b) follows a sigmoidal pattern, and curve (c) shows a
linear relationship. Figure 2(a) illustrates the significant dependence of F on the infection I.
The three-dimensional representation reveals that for a fixed I, the shape remains relatively
stable concerning S. However, altering I while keeping S constant leads to a rapid increase
or decrease in the shape of F , consequently resulting in a swift change in disease propagation
within the system. Moving to Figure 2(b), an initial rapid increase in F is observed due to
sudden changes in S, albeit with less intensity compared to the previous scenario. However,
gradual increments in S result in a slower evolution of F , leading to an initial rapid dis-
ease propagation that gradually diminishes as the susceptible population increases. Finally,
Figure 2(c) depicts a gradual yet consistent rise in disease propagation as the infection rate
increases within the system. This indicates that the different compartments have varying and
complex impacts on the spread of new infections. For the above-mentioned parameter values
together with η2 = 0.2, we have drawn a time series diagram to visualize these two scenarios
in Figure 3(a), and (b) for two different values of control parameters k = 0 and k = 0.6544
respectively. Here it is clear that all the compartments go towards a stable equilibrium.
So in Figure 3(a), the susceptible population S (green) goes to stable equilibrium density
approximately 29.67, the exposed E (purple), infected I (red), asymptomatic Ia (black),
quarantine Iq (pink), hospitalised H (yellow) and recovery population R (light blue) goes
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to stable equilibrium density approximately (10.36, 1.6, 2.47, 1.06, 1.74, 2.95) respectively. It
also supports Theorem 5, as R0 > 1. Similarly, in Figure 3(b), the susceptible population S
(green) goes to stable equilibrium density at 50, rest of the compartment dies out as time
goes. It also supports Theorem 3, as R0 < 1 and the DFE is E0(50, 0, 0, 0, 0, 0, 0).

Next, we have simulated the stochastic version of the model (5) through the Euler
Maruyama method. To simulate the path of S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t)
for the model (5), we fixed the initial values (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) =
(40, 30, 10, 30, 12, 15, 8) throughout the stochastic simulation unless it stated in the figure
caption. The parameter values are taken from Table 1 with k = 0 and intensity parameters
θ1 = 0.3, θ5 = 0.2, θ7 = 0.1. In Figure 4(a), we consider the other intensity parameters
θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2 and generated the stochastic densities for S(t) (green),
E(t) (purple), I(t) (red), Ia(t) (blue), Iq(t) (black), H(t) (cyan) and R(t) (violet). We further
generated the stochastic densities corresponding to θ2 = 0.4, θ3 = 0.4, θ4 = 0.3, θ6 = 0.4 in
Figure 4(b) and θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4 in Figure 4(c). In a similar way, we have
also simulated the scenario in the presence of and high (k = 0.6544) and moderate interven-
tions (k = 0.4). For high intervention we have generated the stochastic densities correspond-
ing to θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2 in Figure 5(a); θ2 = 0.4, θ3 = 0.4, θ4 = 0.3, θ6 = 0.4
in Figure 5(b) and θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4 in Figure 5(c). Similarly, for low
intervention we have generated the stochastic densities in Figure 6(a)-(c). We observed that
all the Figures 4(a)-(c), Figures 5(a)-(c) and Figures 6(a)-(c) are stochastically bounded and
have positive, unique solution converges in probability (Theorem 6). Figures 7(a)-(f) repre-
sents four different sample path and their average path of S(t), E(t), I(t), Ia(t), Iq(t), H(t)
and R(t) respectively for the stochastic model (5). The parameters are taken from Figure
4 with σ1 = 0.3, σ2 = 0.2, σ3 = 0.1, σ4 = 0.3, σ5 = 0.2, σ6 = 0.2, σ7 = 0.1 i.e. without the
presence of intervention. In Figure 7(a) (i.e. stochastic densities with respect to S), we
observed that the one sample path have decreasing flow, others and the average density path
(black) shows stable trend. Similarly, in Figure 7(b) (i.e., stochastic densities with respect to
E) and Figure 7(c) (i.e., stochastic densities with respect to I), we observed that almost all
the sample path shows a stable type of path, as does the average path (black). Figure 7(d)
(i.e., stochastic densities with respect to Ia) and Figure 7(e) (i.e., stochastic densities with
respect to Iq) shows mixed types of sample path with a larger variation and the average path
(black) also reveals a stable type scenario. Various stochastic densities with respect to H
and its average path also shows a stable scenario (not shown here). Although, in Figure 7(f)
(i.e. stochastic densities with respect to R), we observed that the one sample path goes to
extinction, others and the average density path (black) shows stochastic oscillating, implies
the complex dynamical behavior of the system. Here it reveals there is no extinction scenario
on the average run (see Figure 7(a) -(f)), although some downward trend in sample paths is
observed in S(t), I(t), Iq(t) and R(t). Next, we generate the figures of average sample path
in the presence of intervention (i.e. k = 0.6544). Following the ideas of Figure 7, we have
generated Figure 8 when R0 < 1. In Figure 8(a)-(b), we observed stable scenario in the
sample paths as well as average path. However, a downward trend is observed in the average
path (see Figure 8(c)-(f)) and in certain extent the result shows a similar behavior like the
deterministic system in long run.

To get more detail on the distribution of the densities of various compartments, we
have drawn histograms (see Figure 9(a-f)) of the densities at the time point 150 for 5000
runs of the system (5). The parameters are taken from Fig. 4. Here, we have observed that
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some sample path shows extinction due to stochastic fluctuation in the Ia, Iq, R population.
The average densities lies in the approximate range (30, 100), (20, 60), (15, 26), (20, 60),
(10, 32) and (10, 28) for S, E, I, Ia, Iq and R respectively. Similarly, various histograms of
the densities (see Figure 10(a)-(f)) at the time point 150 shows Ia, I1, R compartments have
the chance to extinct in the present scenario, although it is possible to have more probability
of extinction for a large time point instead of 150 as we have already observed a sharp
downtrend in the various compartments in the average run. Histograms were also calculated
at time point 100 to provide enhanced understanding of the temporal dynamics (not shown
here). An extinction scenario may occur for Ia at a frequency lower than that of Iq, H,
and R. The S compartment exhibits a distribution with a long right tail. Furthermore, the
distributions of E, I, and Ia are leptokurtic, while that of Iq is positively skewed. Moreover,
we have studied the stochastic extinction of the exposed compartment (see Theorem 7) and
plot R0

E with respect to the parameters k and θ2. Other parameters are taken from Table 1
with η2 = 0.1. We have drawn two heat map diagrams by varying disease transmission rate
(β). In Fig. 11(a), we consider a low value of β = 0.74 and observed that moderate value
of control (k) leads to R0

E < 1. Consequently its easy to control the disease in a long time.
Similarly, Fig. 11(b), we consider a moderate value of β = 1.74 and observed that large value
of control (k) needed to make R0

E < 1. Consequently its no so easy to control the disease
in a long time as more area has R0

E value greater than one. Two different sample path are
drawn (see Fig. 12(a),(b)) for the parameter set same as Fig. 11(a) with k = 0.6544 and
θ1 = 0.3, θ2 = 0.7, θ3 = 0.4, θ4 = 0.6, θ5 = 0.2, θ6 = 0.4, θ7 = 0.1. We have computed the
value of R0

E (< 1) and observed that both sample path leads to extinction.

6.1. Role of quarantine proportion to the trend of infection

Here we have numerically studied the impact of the fraction of quarantine population
ρ3 = 1−ρ1 −ρ2 to the model (5) in terms of disease propagation. We defined a new infection
term Idis = I + Ia + Iq and studied its long term behaviour with respect to the parameter ρ3.
We simulate the model (5) for two different values at ρ3 = 0.25, ρ3 = 0.5 and find the time
series of I, Ia, Iq. We repeat the process for 5000 times and compute the average values i.e.
Iav, Iav

a , Iav
q . After that we compute Idis = Iav + Iav

a + Iav
q to observe the flow of infection

in the system. The quantity Idis is simulated for ρ3 = 0.25, 0.25 and plotted in Fig. 13(a).
The time series plot Idis(t) for a lower value of ρ = 0.25 is presented in green colour and
for a relatively higher value of ρ = 0.5 is presented in red colour. Now following Noguchi
et al. (2011) we have performed robust sieve bootstrap approaches for linear trend detection
for the generated Idis(t) data. As we found the p-value is very small (< 0.01) in both the
case, we tried to fit linear regression models to check the slope of the trend line. The slope
of green line is 0.002578 whereas for the red line its 0.003069. So comparing the slope we
can say that in long term on average the disease for stochastic system with high value of ρ3
leads to rapid fall of disease compare to the low one. In this context, it is to be noted that
the first difference of Idis(t) i.e. D(Idis(t)) is stationary (see Fig. 13(b)) in both the case due
to Augmented Dickey-Fuller (ADF) test with p-value less than 0.01. Although Idis(t) is not
stationary for both the case due to ADF test with p-values 0.8812 and 0.3716 respectively.
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7. Discussion and conclusion

The World Health Organization (W.H.O., 2020) states that infectious diseases are the
main reason for death in nations with low incomes. Furthermore, according to a recent report,
36% of all deaths worldwide in 2019 were attributable to communicable diseases (W.H.O.,
2020). COVID-19 is a rapidly spreading infectious disease that could pose a worldwide
threat. Mathematical and statistical models are useful tools for forecasting the pattern, du-
ration, effects of different interventions, and other aspects of disease outbreaks. The present
study aimed to develop an intervention-based, deterministic SEIIaIqHR epidemic model to
study the dynamics of the most recent COVID-19 outbreak. Moreover, the model includes
the intervention parameter k, which takes into consideration factors like vaccinations, social
distancing policies, lockdowns, and other intervention tactics. Symptomatic, asymptomatic,
and exposed compartments contribute to the spread of new infections. The disease circu-
lates among the symptomatic, asymptomatic, and quarantine populations in proportions
represented by the variables ρ1, ρ2, and (1 − ρ1 − ρ2), respectively. We explored the positive
invariance and boundedness of every forward solution of the model. Furthermore, using
the basic reproduction number (R0), we explore the local and global stability of the unique
disease-free equilibrium of the model. In addition, we also studied the existence and local
stability of the endemic equilibrium of the model. The deterministic model offers a general
understanding of the spread of disease, but it ignores uncertain variables like immigration,
human behavior, the effects of the climate, and other random factors. Therefore, we de-
veloped a stochastic version of the SEIIaIqHR model with a frequency-dependent force of
infection and intervention to study the dynamics of the disease transmission in the context
of changing environmental and population factors. Moreover, we calculated the transition
probabilities to investigate the drift and diffusion components of the SDE while developing
the stochastic SEIIaIqHR model. We then discussed some fundamental properties of the
model, including the existence of a unique positive global solution with probability one,
which shows that the problem is well-behaved. We also analytically found that the criteria
R0

E < 1 leads to disease extinction in the long term. Additionally, we found the ergodic
stationary distribution and the extinction conditions of the disease by constructing an ap-
propriate Lyapunov function and using the It̂o formula. Finally, we validated the theoretical
findings by generating several numerical solutions to the models. Furthermore, we numeri-
cally determined the relationship between the disease transfer function F and various disease
compartments of the model (5). Our findings suggest the possibility of three different types
of scenarios, e.g., linear, sigmoidal, and quadratic. Furthermore, for two different scenarios,
R0 < 1 (stability of the DFE) and R0 > 1 (stability of the EE), we generated time-series
diagrams of densities by varying the control parameter k. In addition, to visualize differ-
ent sample paths, we simulated the SDE model by varying the intervention strength and
intensity parameters. The results of our study indicate that the disease does not extinct in
the majority of cases. However, the average density of the sample path in the presence of
intervention shows a decline in average for the disease compartments compare to without
intervention scenario. We have drawn multiple histograms and compared those in two dis-
tinct scenarios to see how the densities of various compartments are distributed at a given
time. In order to observe the extension scenario, we additionally display the R0

E heat map
in the (k, θ2) plane. To calculate R0

E, two distinct values of disease transmission—low and
high—are used. It is noted that the values roughly fall between (0, 2.5) and (0, 5.5), respec-
tively. Lastly, our numerical analysis has demonstrated the positive impact of quarantine
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proportions on the infection trend.

In conclusion, The study has mainly two aspects: (1) To study the deterministic
aspects of the model and observe the disease propagation and impact of intervention. (2) To
formulate the stochastic version of the model and observe the impact of noise, intervention
and quarantine proportion in the disease propagation, extinction and ergodic stationary
distribution. Here we found that as the intensity of intervention increases, the number
of infected patients decreases. This means that intervention plays important roles in the
outbreak of sudden infectious diseases. For example, media reports can be used to provide
the public with information about the current situation of the epidemic and the effective
prevention and control measures proposed by experts. Outbreaks of infectious diseases have
led to a dramatic increase in interventions like media, self protection, containment zone, etc.,
which in turn can help raise awareness and change their behaviors for better implementation
of mitigation measures. People will adopt relatively conservative behaviors to reduce the
possibility of infection, and individual behavior can effectively delay the peak period of
infectious disease outbreaks and reduce the severity of infectious disease outbreaks. However,
a part of this study only focuses on the qualitative analysis of the stochastic models. The
estimation of some key parameters and studying the distribution of intervention scenario
will be an interesting study for the future work.
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ANNEXURE

Expression of T (X, I ′), G(X, I ′), A and Ĝ(X, I) used in section 3.4.

T (X, I ′) =



Π − (1 − k)βS

N
(I + η1Ia + η2E) − µdS

γaIa + γqIq + γH − µdR


 ,

G(X, I ′) =




(1 − k)βS
N

(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH




.

A =




−(µd + σ) + (1 − k)βη2 (1 − k)β (1 − k)βη1 0 0

ρ1σ −(α + µd) 0 0 0

ρ2σ 0 −(γa + µd) 0 0

(1 − ρ1 − ρ2)σ 0 0 −(αq + γq + µd) 0

0 α 0 αq −(γ + δ + µd)




,

Ĝ(X, I) =




(1 − k)βη2E(1 − S
N ) + (1 − k)βI(1 − S

N ) + (1 − k)βη1Ia(1 − S
N )

0

0

0

0




.
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Calculations used in section 3.5.

S∗ = Π
λ∗ + µd

, E∗ = λ∗S∗

k1
, I∗ = ρ1σλ∗S∗

k1k2
, I∗

a = ρ2σλ∗S∗

k1k3
, I∗

q = (1 − ρ1 − ρ2)σλ∗S∗

k1k4
, H∗ =

αρ1σλ∗S∗

k1k2k5
+ αq(1 − ρ1 − ρ2)σλ∗S∗

k1k4k5
, R∗ = γaρ2σλ∗S∗

µdk1k3
+ γq(1 − ρ1 − ρ2)σλ∗S∗

µdk1k4
+ γαρ1σλ∗S∗

µdk1k2k5
+

γαq(1 − ρ1 − ρ2)σλ∗S∗

µdk1k4k5
.

Calculations used in section 3.6. From the model (1), we have

I∗ = ρ1σE∗

α + µd
, I∗

a = ρ2σE∗

γa + µd
, I∗

q = (1 − ρ1 − ρ2)σE∗

(αq + γq + µd) , H∗ = 1
γ + δ + µd

( αρ1σ

α + µd
+ αqρ2σ

γa + µd

)
E∗,

R∗ =
[ γaρ2σ

µd(γa + µd) + γqσ(1 − ρ1 − ρ2)
µd(αq + γq + µd) + γ

µd(γ + δ + µd)
( αρ1σ

α + µd
+ αqρ2σ

γa + µd

)]
E∗.

I∗ = ρ1σE∗
α+µd

, I∗
a = ρ2σE∗

γa+µd
, I∗

q = (1−ρ1−ρ2)σE∗

(αq+γq+µd) , H∗ = (
αρ1σ

α+µd
+ αqρ2σ

γa+µd
γ+δ+µd

)E∗,

R∗ =
γaρ2σ

γa+µd
+ γqσ(1−ρ1−ρ2)

(αq+γq+µd) +γ(
αρ1σ
α+µd

+ αqρ2σ
γa+µd

γ+δ+µd
)

µd
E∗

N = S + E + I + Ia + Iq + H + R

N = S + E(1 + ρ1σ
α+µd

+ ρ2σ
γa+µd

+ (1−ρ1−ρ2)σ
(αq+γq+µd) +

αρ1σ

α+µd
+ αqρ2σ

γa+µd
γ+δ+µd

+
γaρ2σ

γa+µd
+ γqσ(1−ρ1−ρ2)

(αq+γq+µd) +γ(
αρ1σ
α+µd

+ αqρ2σ
γa+µd

γ+δ+µd
)

µd
)

N = S + m1E,

where, m1 = (1 + ρ1σ
α+µd

+ ρ2σ
γa+µd

+ (1−ρ1−ρ2)σ
(αq+γq+µd) +

αρ1σ

α+µd
+ αqρ2σ

γa+µd
γ+δ+µd

+
γaρ2σ

γa+µd
+ γqσ(1−ρ1−ρ2)

(αq+γq+µd) +γ(
αρ1σ
α+µd

+ αqρ2σ
γa+µd

γ+δ+µd
)

µd
)

⇒ (1−k)βS
S+m1E (I + η1Ia + η2E) = E(σ + µd)

⇒ (1−k)βS
S+m1E ( ρ1σ

α+µd
+ η1

ρ2σ
γa+µd

+ η2) = (σ + µd)
⇒ (1 − k)βS( ρ1σ

α+µd
+ η1

ρ2σ
γa+µd

+ η2) = (S + m1E)(σ + µd)
⇒ S[(1 − k)β( ρ1σ

α+µd
+ η1

ρ2σ
γa+µd

+ η2) − (σ + µd)] = m1(σ + µd)E
⇒ S∗ = m1(σ+µd)

[(1−k)β( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)−(σ+µd)]E

∗

Now, N = ( m1(σ+µd)
[(1−k)β( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)−(σ+µd)] + m1)E

⇒ N = m2E; where, m2 = ( m1(σ+µd)
[(1−k)β( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)−(σ+µd)] + m1)

Again, Π = S[µd + (1−k)β
m2

( ρ1σ
α+µd

+ η1
ρ2σ

γa+µd
+ η2)]

⇒ E∗ = Π
[µd+ (1−k)β

m2
( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)]

[(1−k)β( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)−(σ+µd)]

m1(σ+µd)

Proof of LV < 0 for (S, E, I, Ia, Iq, H, R) ∈ Di, i = 1(1)16 used in Theorem 8.

Case I: (S, E, I, Ia, Iq, H, R) ∈ D1

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − Π

S
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≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − Π

ϵ1

Let ϵ1 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α +
γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − Π
ϵ1

< 0.
In such case, we have LV < 0.

Case II: (S, E, I, Ia, Iq, H, R) ∈ D2

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −

(1 − k)β S
E − (1 − k)βη1

S
E

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −

(1 − k)β ϵ1
ϵ2

− (1 − k)βη1
ϵ1
ϵ2

Let ϵ1 > ϵ2
2, very small, such that (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ +

δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − (1 − k)β ϵ1

ϵ2
− (1 − k)βη1

ϵ1
ϵ2

< 0.
In such case, we have LV < 0.

Case III: (S, E, I, Ia, Iq, H, R) ∈ D3

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −ρ1σ E

I

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ +δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −ρ1σ ϵ1

ϵ2

Let ϵ1 > ϵ2
2, very small, such that (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ +

δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − ρ1σ ϵ1

ϵ2
< 0.

In such case, we have LV < 0.

Case IV: (S, E, I, Ia, Iq, H, R) ∈ D4

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ +δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −ρ2σ E

Ia

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ +δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −ρ2σ ϵ1

ϵ2

Let ϵ1 = ϵ2
2, chooseϵ1 > 0 small enough such that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd +

σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − ρ2σ ϵ1

ϵ2
< 0.

For this case, we get LV < 0.

Case V: (S, E, I, Ia, Iq, H, R) ∈ D5

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −α I

H

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −α ϵ1

ϵ2
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Let ϵ1 = ϵ2
2 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α +

γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − α ϵ1

ϵ2
< 0. Here we get LV < 0.

Case VI: (S, E, I, Ia, Iq, H, R) ∈ D6

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −αq

Iq

H

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −αq

ϵ1
ϵ2

Let ϵ1 = ϵ2
2 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α +

γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − αq

ϵ1
ϵ2

< 0.
Therefore, we have LV < 0.

Case VII: (S, E, I, Ia, Iq, H, R) ∈ D7

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γa

Ia
R

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γa

ϵ1
ϵ2

Let ϵ1 = ϵ2
2, chooseϵ1 > 0 small enough such that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd +

σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − γa

ϵ1
ϵ2

< 0.
In such case, we have LV < 0.

Case VIII: (S, E, I, Ia, Iq, H, R) ∈ D8

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γq

Iq

R

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γq

ϵ1
ϵ2

Let ϵ1 > ϵ2
2, very small, such that (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ +

δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − γq

ϵ1
ϵ2

< 0.
In such case, we have LV < 0.

Case IX: (S, E, I, Ia, Iq, H, R) ∈ D9

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ + δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γ H

R

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ + δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γ ϵ1

ϵ2

Let ϵ1 = ϵ2
2, choose ϵ1 > 0 small enough such that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd +

σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − γ ϵ1

ϵ2
< 0.

For this case, we have LV < 0.
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Case X: (S, E, I, Ia, Iq, H, R) ∈ D10

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Let ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α +
γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.

Case XI: (S, E, I, Ia, Iq, H, R) ∈ D11

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.

Case XII: (S, E, I, Ia, Iq, H, R) ∈ D12

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.

Case XIII: (S, E, I, Ia, Iq, H, R) ∈ D13

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.

Case XIV: (S, E, I, Ia, Iq, H, R) ∈ D14

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2
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≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
Here we get LV < 0.

Case XV: (S, E, I, Ia, Iq, H, R) ∈ D15

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4+1)(1−k)β(1+η1+η2)+6µd+σ+α+γa+γ+δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN −δH

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ+δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2
− δ

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

− δ
ϵ2

< 0.
In such case, we have LV < 0.

Case XVI: (S, E, I, Ia, Iq, H, R) ∈ D16

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.
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Figure 2: The relationship between F = βS(I+η1Ia+η2E)
N

and (a) S, I [upper left
panel] (b) S, H [upper right panel] and (c) I, H [lower panel]. Figure (a) depicts
a quadratic shape, while Figure (b) illustrates a sigmoidal form, and Figure (c)
exhibits a linear shape. The other parameters are η2 = 0.4 and the same from
Table 1.

Figure 3: The time series plot of the model (1) for (a) k = 0 and (b) k = 0.6544.
The other parameters are same as in Table 1 with η2 = 0.2.

Figure 4: The path S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the
stochastic model (5) with initial values (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) =
(40, 30, 10, 30, 12, 15, 8). The parameters are taken from Table 1, θ1 = 0.3, θ5 =
0.2, θ7 = 0.1, k = 0 with a) θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2; b) θ2 = 0.4, θ3 = 0.4, θ4 =
0.3, θ6 = 0.4 and c) θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4.
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Figure 5: The path S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the
stochastic model (5) with initial values (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) =
(40, 30, 10, 15, 12, 18, 8). The parameters are taken from Table 1, θ1 = 0.3, θ5 =
0.2, θ7 = 0.1 and k = 0.6544 with a)θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2; b)
θ2 = 0.4, θ3 = 0.4, θ4 = 0.3, θ6 = 0.4 and c) θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4.

Figure 6: The path S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the
stochastic model (5) with initial values (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) =
(40, 30, 10, 15, 12, 18, 8). The parameters are taken from Table 1, θ1 = 0.3, θ5 =
0.2, θ7 = 0.1 and k = 0.4 with a)θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2; b) θ2 = 0.4, θ3 =
0.4, θ4 = 0.3, θ6 = 0.4 and c) θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4.

Figure 7: The four different sample paths and their average path of
S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the stochastic model (5). The pa-
rameters are taken from Fig. 4 with θ1 = 0.3, θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ5 = 0.2, θ6 =
0.2, θ7 = 0.1 and k = 0.
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Figure 8: The four different sample paths and their average path of
S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the stochastic model (5). The pa-
rameters are taken from Fig. 5 with θ1 = 0.3, θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ5 = 0.2, θ6 =
0.2, θ7 = 0.1 and k = 0.6544.

Figure 9: Histogram of the densities at the time point 150 of the system (5).
The parameters are taken from Fig. 4 with θ1 = 0.3, θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ5 =
0.2, θ6 = 0.2, θ7 = 0.1.
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Figure 10: Histogram of the densities at the time point 150 of the system (5).
The parameters are taken from Fig. 5 with θ1 = 0.3, θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ5 =
0.2, θ6 = 0.2, θ7 = 0.1.



2025] EXTINCTION AND STATIONARY DISTRIBUTION 175

Figure 11: Heat map diagram of R0
E with respect to k and θ2 for the system

(5). The parameters are taken from Table 1 with η2 = 0.1. The left figure
corresponding to β = 0.74 and right figure corresponding to β = 1.74 respectively.

Figure 12: Two different sample paths are drawn for the parameter set same as
Fig. 11(a) with k = 0.6544.

Figure 13: a) Average paths for Idis are drawn for two different values of pa-
rameter ρ3, the other parameters are same as Fig. 8. b) The difference plot
corresponding to a).
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Abstract
This paper deals with the classical problem of determining the minimum sample size

(n) required in clinical studies for estimating the population prevalence p’ of a characteristic.
The popularly used formula for n requires prior knowledge on p’ which may not be known
as a crisp value. It can be estimated from a pilot study or specified as a range of values
reflecting some uncertainty. In the first part we characterise n as a random variable whose
values depend on the uncertainty in the anticipated p’ modelled by a Beta distribution and
thereby determine the expected sample size and its variance. In the second part of this paper
we also propose a novel method to improve the formula by considering a triplet where a,b
and c denote the minimum, most likely and maximum values of p’, derive a new formula and
show that it is more consistent than the classical method. We demonstrate the utility of the
formula with illustrations and compare them with alternative ways of presenting the inputs.

Key words: Sample size; Triangular distribution; Triplet estimates; PERT.

AMS Subject Classifications: 0000

1. Introduction

Sample size determination is a basic requirement in the design and analysis of clinical
studies including community trails. If enough subjects are not included in the study, the
real effect or situation prevailing in the target group cannot be estimated correctly. A large
sample needs more resources to achieve the desired precision than a small sample. Further,
non-sampling errors erupt while executing a large study. Statistical methods offer a scientific
approach to determine the minimum sample size such that sample-related risks of incorrect
decisions are minimized. We discuss some interesting issues on sample size determination
with clinical objectives as background, but the arguments apply to other areas too. We can
broadly divide clinical studies into two viz.,

a) Descriptive studies in which the chief objective is to describe a population by estimating
the characteristics from sample data and

Corresponding Author: R.Vishnu Vardhan
Email: vrstatsguru@gmail.com
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b) Comparative studies in which comparison of outcomes among two or more groups (like
mean or percentage) is the main objective.

There are two broad ways of summarizing any data depending on whether the outcome
is a count or a measurement. In case of dichotomous categorical data, the proportion of the
outcome of interest is the summary measure, denoted by p’ which is called prevalence when
observed over a period of time. If the events are observed in new cases, p’ is called incidence
or occurrence rate. An estimate of p’ is p = k

n
where k subjects out of n are found to have the

outcome of interest and n denotes the sample size. The true proportion in the population
is however unknown unless the entire population is studied. The behaviour of p is modelled
by Binomial distribution.

On the other hand, when the outcome in the sample is a measured characteristic like
blood glucose level, it is summarized as the arithmetic mean (m) (or median in some cases)
of the sample values along with standard deviation(s) of the values. The behaviour of m,
over different samples of the population is modelled by normal distribution.

In both situations, a 100(1 − α)% Confidence Interval (CI) can be provided around
the sample estimate such that the true mean/proportion falls in this interval with desired
confidence usually 95%. According to the Central Limit Theorem in statistics, the sampling
distribution of both p or m tend to be normal when n is large. Hence the 95% CI for p or
m are constructed making use of the standardized normal variable (Z).

1.1. Sample size for p based on margin of error

We briefly outline the method of determining the sample size with desired margin of
error (d) when the objective is to estimate (a) the proportion of dichotomous outcomes or
(b) the mean of a characteristic. This method is known as precision-based method because
smaller margin of error leads to higher precision.

Let p be the estimate of p’obtained from a random sample of size n drawn from the
population. Then the 100(1 − α)% CI for the population prevalence is given by



p - Z1−α/2

√
p (1 − p)

n
, p + Z1−α/2

√
p (1 − p)

n



 (1)

The quantity d = (Z1−α/2

√
p (1−p)

n
)denotes the margin of error and (Z1−α/2)is the inverse of

the cumulative standard normal distribution corresponding to the chosen α(like 0.05).

The objective is to determine n such that p is contained in (1). Since the precision
of the estimate increases when d is small, one way of estimating n is to keep d ≤ d0 where
d0 is the desired upper limit, like 5%. Solving for n in d leads to n ≥ z2

1−α/2p(1−p)
d2

0
. Hence for

a fixed choice of d, the expression for the minimum sample size will be

n =
z2

1−α/2p(1 − p)
d2 (2)

Formula (2) is known as Cochran’s formula (Cochran, 1977) applicable for large populations.
When the population size is finite, like the number of employees of a company, then n’= n

1+ n
N
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gives the sample size corrected for finite population size. The chief input for implementing
(2) is p.

1.2. Sensitivity of n to changes in p

The formula in (2) requires p as input which is known only when a pilot study is
carried out. When pilot study is not possible, we can get p from previous research reports
or by a personal guess. For instance, if p is known as 0.9 it means that there is 90% chance
that the desired condition occurs. Then for α = 0.05 we get (Z1−α/2) = 1.96 and with
d = 0.05 we get n = 385. This value quickly drops to 96 if d is taken as 0.10, keeping
other parameters unchanged. Approximating (Z1−α/2) by 2, the constant appearing in (2)
is approximately 1600. When p = 0.5 we get n = 400 while the actual value with 1.96 is
385. Hence the reliability of n depends on the precision with which p known. 1 shows the
pattern of n against p which is concave reaching a maximum of 385 at p = 0.50. We see

Figure 1: Sensitivity of n against p for different values of d

that n changes rapidly with d but symmetric around p = 0.5. The decrease in n for values
of p away from 0.5 may be called the gain due to information. In section-2 we develop
a methodology to formulate the distribution of n viewing p as a random variable using
beta distribution. We also study the empirical distribution of n under the chosen model by
estimating its parameters, instead of using a single p value. In section 3 we develop a new
method of determining n when the input value of p is not precisely known but expressed as
an interval, along with a middle value, which we call a triplet. The new estimate is proposed
as a weighted average of the expected sample size at each of the three elements of the triplet.
We call this triplet estimation and study the properties this new estimate.
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2. A model for the probability distribution of n

The formula given in (2) can be stated as n = kp(1 − p) where k = z2
1−α/2

d2 is constant
for pre-determined values of α and d. We wish to identify a probability distribution for n
by viewing p as a continuous random variable (Y) in [(0, 1) so that n = kY (1 − Y ) and the
type-1 beta distribution is natural choice for the distribution of Y specified by the density
function

f(y) = 1
β(u, v) yu−1(1 − y)v−1for 0<y<1, u, v>0 (3)

The parameters (u, v) are related to E(Y) and V(Y) and given as

u = E(Y )
{

E(Y ) (1 − E(Y ))
V (Y ) − 1

}
and v = {1 − E(Y )}

{
E(Y ) (1 − E(Y ))

V (Y ) − 1
}

(4)

In fact p is the anticipated point-mass on the Bernoulli distribution which varies with the
discretion of the researcher. When p is specified a fixed value there exists a single unique
value of n from (3). Instead, we assume a probability distribution in the domain (0,1) with
peak density at p so that we can account for the uncertainty in p and thereby determine
the theoretical mean and variance of Y. The triangular distribution (0, p, 1) is one choice
for distribution of Y which help to obtain adhoc estimates of E(Y) and V(Y), while the
beta-PERT distribution on (a,b,c) where a = 0, b = p and c = 1 is another. We use the
Triangular distribution only to summarize the Bernoulli p since the truncation limits for the
distribution of Y are not known at this stage. For the triangular distribution we have

E(Y ) = {1 + p}
3 ) and V (Y ) = ({p2 − p + 1}

18 (5)

Thus we have transformed the single anticipated p into a probability distribution and cap-
tured its mean and variance as summary. As a result, for each value of p we can uniquely
identify a β(u,v) distribution and estimate the parameters using (3).

Remark: If we use PERT (0,p,1) distribution instead of triangular distribution to estimate
E(Y) and V(Y) we get u = 1+4p and v = 1+4(1-p) but (u+v) = 6 which is irrespective of u
and v, which is a constraint on the parameters, not defined for the beta distribution. Hence
we use triangular distribution to supply primary inputs to estimate u and v. Consider the
following proposition.

Proposition-1: With Y ∼ Beta(u,v) the empirical distribution of n is proportional to that
of Y by a constant k.

The empirical distribution of n can be obtained by simulating random deviates from
β(u, v). Table (1) gives summary of the empirical distribution of n for selected values of
p, taking 95% confidence level and d = 0.05. This gives k = 1536.584 and the value of n
rounded to the upper integer.

We observe the following from Table (1):

(a) The values of variance of n are much larger than the corresponding mean, due the fact
the mean and variance of Y(1-Y) are multiplied by k and k2 respectively.
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Table 1: Empirical distribution of n with 1000 simulations.

p n at p E(Y) V(Y) (u,v) E(n) V(n) Empirical Empirical
Mean of n variance of n

0.25 288 0.4166 0.0451 (1.826, 2.557) 373 4810.81 304 7548.13
0.35 350 0.4500 0.0429 (2.145, 2.621) 380 4349.40 314 5820.16
0.5 384 0.5000 0.0416 (2.500, 2.500) 384 4098.56 323 4991.42
0.65 350 0.5500 0.0429 (2.621, 2.145) 380 4348.08 312 6198.41
0.75 288 0.5833 0.0451 (2.557, 1.826) 373 4810.81 306 7059.36

Figure 2: E(n) and V(n) as a function of p.

(b) The expected n and its variance are both symmetric around p = 0.5 and the empirical
values also exhibit a similar pattern. When compared to the true n obtainable from
(2) using the single value of p, the values of E(n) are higher and this can be because
the former does not account for the impreciseness in p but E(n) takes into account a
background triangular model to determine the mean.

(c) The empirical distribution has a shape that is similar to a beta distribution.

Figure (2) shows the pattern of E(n) and V(n) against values of p. The variance of n de-
creases symmetrically as p increases and reaches a minimum at p = 0.5 while E(n) moves
in the opposite direction and reaches a maximum at the same p. In the following discus-
sion we propose a method of summarizing the distribution of Y(1-Y) the moments of beta
distribution. The empirical distribution of Y(1-Y) is shown in Figure-3.

Proposition-2: If we write T = Y(1-Y) with Y∼ Beta(u,v) then the mean and variance of
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Figure 3: Empirical distribution of Y and Y(1−Y) for p = 0.25

T can be obtained as E(T) = E(Y){1-E(Y)} and V(T) = V(Y){1-V(Y)} which reduce to

E(T ) = uv

(u + v)2 and V (T ) = (uv)2

(u + v)4(1 + u + v)2 (6)

Further the expected sample size is

E(n) = k
uv

(u + v)2 and V (n) = k2 (uv)2

(u + v)4(1 + u + v)2 (7)

Proof: The results follow by replacing Y and (1-Y) with their expected values and noting
that E(Y ) = u

(u+v) and E(1 − Y ) = v
(u+v) . Similarly V(T) follows by noting that V (Y ) =

uv
(u+v)2(1+u+v) and V(1-Y) is the same as V(Y). Finally E(n) = kE(T ) and V (n) = k2V (T )
which lead to (6) and (7). Hence the proof. With this background, we develop a new estimate
of n as (i) a weighted mean of the n values obtainable at the triplet values under the beta
distribution model and (ii) using PERT summary as a single input in (2).

3. The triplet estimate to handle imprecise estimates

When a single precise value of p is not available it is customary to specify the same
as a triplet (p1, p2, p3) where p2 is the most likely value and (p1, p3) are the lower and
upper values of p such that p1 < p2 < p3. This approach is used in project management
studies to describe the activity durations and latter summarized into mean and SD using
beta distribution. Malcolm et al. (1959) and Clark (1962) used this approach to summarise
the activity durations in project management and to estimate the time to completion the
project. Books on Operations Research widely discuss this method (Taha, 2013).
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Applying this logic to (p1, p2, p3) we obtain p0 = (p1+4p2+p3)/6 as the mean preva-
lence. If we use this p0 in (2) we get a single value of n denoted by n0. Our new approach
is to evaluate n at each of the three values of the triplet and summarize them as a weighted
average to get a new crisp value.

We now use the method of triplet inputs to determine the sample size for estimating
the population prevalence. Here is another proposition.

We now use the method of triplet inputs to determine the sample size for estimating
the population prevalence. Here is another proposition.

Proposition-3: Let ni be the sample size when the anticipated prevalence is pi for i = 1,2,3.
Then E(ni) = k uivi

(ui+vi)2 and V(ni) = k2 (uivi)2

(ui+vi)4(1+ui+vi)2 where (ui, vi) denote the parameters
of the underlying beta distribution for i = 1,2,3 and k is the constant by design. Then the
new estimate of n will be

ncap =
3∑

i=1
wiE(ni ) (8)

where w i ≥ 0 and w1+w2+w3 = 1. We call this the triplet estimate of n and V (ncap ) =∑3
i=1 w2

i V (ni ). It also true that V (ncap ) ≤ V (ni ) for i = 1,2,3.

One way of assigning weights is to take w2 = 0.5 and w1 = w3 = 0.25 so that E (n2)
receives more weight than the other two because p2 is more likely valid than the other two
values of the triplet. Another set of weights is {1/6. 4/6, 1/6} corresponding to {w1, w2,
w3} which are the weights used in PERT calculations.

Vardhan and Sarma (2010) have used the triplet method in the context of ROC curve
analysis. Sarada et al. (2018); Vedururu et al. (2019) used this method in the context of
measuring the process capability index in quality control.Venkatesu et al. (2019) have applied
this method to redesign a control chart. In all these applications, it was found that the new
estimator has lower SE than the classical point estimator.

Instead of pre-defined fixed weights, an objective way is to define weights which reflect
the uncertainty in the specification of p (in terms of a triplet). We propose the following
weights.

Proposition-4: The weight wi for E(ni) will be the ordinate of the β(u,v) distribution at
pi for i = 1,2,3 and normalized to make the sum equal to unity.

This method allots weight as a function of pi and hence accounts for the anticipated
uncertainty in specifying p. We cannot determine the weights with PERT distribution, since
the density of vanishes at p2 and p3 (truncation limits) and hence ncap cannot be evaluated.
Hence the full beta distribution without truncation will be used. Here is an illustration.

Illustration-3

Let us take p1 = 0.25, p2 = 0.35, p3 = 0.5. From the intermediate results from Table-1
we see that the vector of means as (373, 380, 384) and the corresponding variance vector is
(4810.76, 4348.74, 4099.11). The vector of weights from beta distribution with corresponding
(ui, v i) becomes w = (1.5492, 1.6330, 1.6976). Dividing each weight by the sum of weights
and applying (8) gives ncap = 380 and V(ncap) = 1467.96 which smaller than the minimum
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of the three variances.

Table (2) shows some experimental results comparing ncap with the n obtainable when
we use only a single value p2 as the input in (2).

Table 2: Triplet estimate of n with arbitrary window around the middle.

p2 Triplet (p1, p2, p3) n2 (at p2) V(n2) ncap V (ncap)
0.25 (0.15, 0.25, 0.35) 373 4810.76 370 1682.01
0.35 (0.25, 0.35, 0. 50) 380 4348.74 380 1467.95
0.50 (0.30, 0.50, 0.65) 384 4099.11 381 1441.74
0.65 (0.45, 0.65, 0.75) 380 4348.74 380 1471.39
0.75 (0. 50, 0.70, 0.75) 377 4548.01 379 1489.95

Suppose we take fixed weights instead of deriving from beta density. We consider two
types of fixed weights and compare the resulting ncap and its variance.

Table 3: Triplet estimate of n under different schemes of weights.

Triplet (p1, p2, p3) w = {1/6, 4/6, 1/6} w = {1/3, 1/3, 1/3}
ncap V(ncap) ncap V(ncap)

(0.15, 0.25, 0.35) 373 2413.01 372 1634.11
(0.25, 0.35, 0. 50) 380 2180.27 379 1473.18
(0.30, 0.50, 0.65) 383 2068.96 381 1443.98
(0.45, 0.65, 0.75) 380 2181.03 379 1476.22
(0. 50, 0.70, 0.75) 378 2268.83 378 1495.32

4. Stepwise procedure

The following is a stepwise procedure to handle the calculations.

1. Obtain the anticipated prevalence as a triplet(p1,p2,p3) margin of error as d and level
of significance as α For each i = 1,2,3 calculate the following.

2. Transform each pi into as a point on triangular (0,1) distribution

3. Evaluate the trial values of mean and variance as µ1i and σ1i
2 respectively.

4. Identify a Beta distribution on (0,1) and estimate is parameters (ui, v i) Using µ1i and

σ1i
2 calculate E(ni) = k

uivi

(µi + νi)2 and V (ni) = k2 (uivi)2

(ui + vi)4 (1 + ui + vi)2 .

5. Find wi = yi∑3
i=1 yi

where yi denotes the ordinate of the Beta distribution corresponding
to pi

6. Evaluate ncap = ∑3
i=1 wiE(ni ) is the new triplet estimate of n and V (ncap ) =∑3

i=1 w2
i V (ni )
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5. Alternative way of summarising the triplet

The approach used to derive ncap may be called evaluate and summarize method
because we evaluate E(n) at each component of the triplet and then summarized them as a
weighted average. The variance of ncap was also obtained with this logic.

Alternatively, we may summarise the triplet and then evaluate as a single value from
which we can obtain E(n) and V(n) In this method we use p0 = (p1+4p2+p3)/6 basing on
the PERT weights.

Again with given p0 we again identify a triangular distribution with p0 at the peak
and obtain

E(Y ) = {1 + p0}
3 and V (Y ) = {p2

0 − p0 + 1}
18 (9)

With these values we can identify a beta distribution with parameters say (u0, v0) and
evaluate

E (T0) = u0v0

(u0 + v0)2 andV (T0) = (u0v0)2

(u0 + v0)4 (1 + u0 + v0)2 (10)

where T 0 denotes the quantity Y(1-Y) under this method. If we call this resulting n as n0
we get E(n0) = k E (T0) and V(n0) = k2 V (T0). Here is an illustration.

Illustration-4

Let us consider the triplet (0.25, 0.35, 0.50). We get p0 = 0.675, E(Y ) = 0.5583, V (Y ) =
0.0433, u0 = 2.6164, v0 = 2.0697. Using the k value from normal distribution with (1-α) =
0.95 and 5%margin of error (d), we get E(n0) = 379 and V(n0) = 4440.71. With different
triplets used in Illustration-3 we get the expected sample size and variance under this method
of ‘summarize and evaluate’ are shown in Table (4).

Table 4: Estimated sample size with a pre-summarized triplet.

Triplet (p1, p2, p3) n0 V(n0)
(0.15, 0.25, 0.35) 373 4810.76
(0.25, 0.35, 0. 50) 381 4321.43
(0.30, 0.50, 0.65) 384 4099.87
(0.45, 0.65, 0.75) 381 4295.74
(0. 50, 0.70, 0.75) 379 4440.71

We observe that sample size exhibits higher variance by this method when compared
with the method of evaluating three n values and summarizing them with beta density as
weights.

6. Conclusion

The problem of finding the minimum sample size to estimate a proportion is better
explained with a statistical model instead of simply evaluating the available formula with a
single anticipated value of the population proportion (p′). The triangular distribution plays
a key role in transforming the single p into random variable so that its mean and variance
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can be used to determine the parameters of the beta distribution, which has better shape
and properties than the triangular distribution. The uncertainty about p’ can be handled
by a beta distribution leading to a statistically summarised estimate of n. It also helps
in estimating the variance of n while the classical formula gives only single value. With
this logic we have proposed a new estimate of n basing on a triplet of input values for p
and summarised them as a weighted average. It is shown that the new estimate (ncap) has
smaller variance than the variance obtainable at each of the three p values. We have used
the weights from the density of beta distribution at the triplet values, so that they reflect
the baseline uncertainty in the inputs and normalized them. It is also established that this
method is more objective than using other methods of fixed weights, in terms of variance
of n. We conclude with the observation that sample size formula greatly depends on the
accuracy of the inputs given and the often found attitude among users, to adjust the inputs
until a comfortable number is reached should be avoided.
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Abstract
Experiments that account for sequential order of components are order-of-addition

(OofA) experiments and a full design of such experiments requires m! runs for any m compo-
nents. Current literature focuses on the construction of fractional designs that are optimal
and efficient under the models available to date. This paper provides a systematic con-
struction method of order-of-addition orthogonal arrays (OofA-OA) which were proved as
optimal fractional OofA designs. The number of independent, synergistic and antagonistic
pairs possible for any m components is also determined. An important balance property of
OofA-OA is also explained.

Key words: Order-of-addition; Orthogonal array; Pair-wise order model; Optimality.

1. Introduction

The sequence by which ingredients or components are added into a system may have
some definite effect on the response or final output. Experiments that deal with such sequen-
tial order of adding components are termed as order-of-addition (OofA) experiments. In early
research, designs for cross over experiments constructed by Williams (1949) in which each
experimental unit will be given a set of m treatments in a sequential order, were extensively
used for OofA experiments. Order-of-addition experiments have been applied in agriculture
(Wagner, 1995), food science (Jourdain et al., 2009), cell biology (Black et al., 2001), medical
biology (Ding et al., 2015) and many other fields in order to explore the optimal order of
components added into the system. These experiments have shown that qualitative and/or
quantitative outcome may vary depending on the sequence in which ingredients were added.
The foremost reference to an OofA experiment; “the lady tasting tea” wherein only two
ingredients, tea and milk, for which the taste of final product was determined by the order
in which the ingredients were added (Fisher, 1971). Karim et al. (2000) performed an OofA
experiment to study the effect of cocoa flavonoids on the vasodilatory capacity of rabbits.
Also in engineering, Wilson (2018) proposed an approach to compute the expected utility
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when the number of tasks to perform is too large and the sequencing of these tasks has some
importance on the expected utility.

An OofA experiment involving m components yield m! orders among which an optimal
order has to be screened out using appropriate designs. We hereby call the ingredients or
materials in an OofA experiment as components. Each order can be viewed as a permutation
of m components, m ≥ 2. A full design with all the m! orders may not be possible to
accommodate while designing the experiment when m is too large. For example, m = 9
gives 362,880 orders which is impossible to be contained in a single experiment. This makes
us to choose a fraction or subset of the full design so that it may be accommodated in an
experiment. Randomly choosing the orders from all the possible orders is relatively inefficient
(Zhao et al., 2020). There are many models developed so far for the experimentation of OofA
problems. See Peng et al. (2019), Mee (2020) and Yang et al. (2021) for the models and
related optimality proofs therein. An early model, pair-wise ordering (PWO) of effects
proposed by Van Nostrand (1995) assumes that sequential order of components affects the
response through pair-wise order effects or pseudo factor effects. The readers are referred to
Lin and Peng (2019), Voelkel and Gallagher (2019), Tsai (2022), Zhao et al. (2020), Winker
et al. (2020) and Chen et al. (2020) for the construction of PWO designs which satisfy
efficiency, optimality and relatively smaller run size criterion.

Many designs were constructed for the OofA experiments under the PWO model.
Among them, an optimal fractional design, order-of-addition-orthogonal array (OofA-OA)
was introduced by Voelkel (2019). The concept behind orthogonal arrays (OA) were used to
generate OofA-OA as there is a need to keep the balance while framing a design for OofA
experiments. Zhao et al. (2021) proposed a systematic construction method for OofA-OAs
which is regarded as superior among all the fractional PWO designs. Furthermore, Zhao et
al. (2022) investigated the existence of OofA-OA with strength 3 and stated that OofA-OAs
with strength 3 excel more in terms of balance properties than OofA-OAs with strength 2.
In this paper, we propose a systematic method of constructing OofA-OA for any value of m
from an existing OofA-OA with m − 1 components.

2. Preliminaries

Even though many models including component-position model by Yang et al. (2021)
have been developed for OofA experimentation, PWO model is the most promising and
acceptable model as it is simple and easy to understand. We consider PWO model for the
current research. Let us suppose that there are m components which results in m! orders,
each of which is a permutation of these m components and it is denoted by a = (a1, ..., am)T .
Let us write OAf to denote the full OofA design with m! rows and m columns. If we denote
yk as the response due to kth order,

yk = β0 +
m−1∑

i=1

m∑

j=i+1
βijzij + ϵk (1)

where β0 denotes the overall mean, βij is the PWO effects of ith and jth component, ϵk

represents the error term with mean zero and constant variance. To better understand the
PWO factors zij(a) defined by Van Nostrand (1995), we suppose that m = 3 components
and an order 1 → 3 → 2, means 1st component followed by 3rd and 2nd components are
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added in succession, denoted as a = (1, 3, 2). Then, the PWO factors zij become z12 =
1, z13 = 1, z23 = −1. For denoting the PWO factors zij, two components are taken at a time
from m components such that 1 ≤ i < j ≤ m, yielding

(
m
2

)
PWO factors. As there are

m(m − 1)/2 PWO factors and one general mean effect term in the model (1), p =
(

m
2

)
+ 1

parameters have to be estimated from the model. Model (1) can be expressed in matrix form
as

y = Xβ + ϵ (2)

A fractional OofA design d with run size n is said to be ϕ-optimal if its moment
matrix M = 1

n
X′X (where X denotes the model matrix) is equal to the moment matrix of

the full design. Interestingly, Peng et al. (2019) proved the optimality of full OofA design
in terms of several popular optimality criteria. Additionally, Zhao et al. (2021) established
that any ϕ-optimal fractional OofA design is certainly an OofA-OA.

We denote Pf as the full PWO design and Pd as the fractional PWO design where d
denotes the fractional OofA design with run size n. Any pair of PWO factors (zij, zkl) can
be called as

Synergistic pair : if i = k or j = l
Antagonistic pair : if i = l or j = k
Independent pair : if i ̸= k, l or j ̸= k, l (no common component).

In a full PWO design, the frequencies of all t-tuples in any t column subarray for
these different pairs are as follows. We denote n++ as the number of times (+, +) happens
in a pair of PWO factors (zij, zkl). Similarly, n+−, n−−, n−+ are also defined. For

Synergistic pair: n++ = m!/3, n+− = m!/6, n−+ = m!/6, n−− = m!/3
Antagonistic pair: n++ = m!/6, n+− = m!/3, n−+ = m!/3, n−− = m!/6
Independent pair: n++ = m!/4, n+− = m!/4, n−+ = m!/4, n−− = m!/4

If the ratios among the frequencies of all t-tuples in any t column subarray of Pf equal to
the ratios among the frequencies of all t-tuples in any t column subarray of Pd, then d is said
to be the OofA-OA(N, m, t).

3. Construction of OofA-OA from an existing OofA-OA

In this section, a method of construction of OofA-OA with m + 1 components from
an OofA-OA with m components is described. As we know, the run size for an OofA-OA
is a multiple of 12, the resulting design obtained will have a run size 12h(m + 1) where
1 ≤ h ≤ (m!/12) − 1. We denote the existing design d as OofA-OA(12h, m, 2) and the
resultant design d′ as OofA-OA(12h(m + 1), m + 1, 2).

Theorem 1: If there exists an OofA-OA for m components, an OofA-OA for m + 1 compo-
nents can be obtained from it by placing the (m + 1)th component in every possible position
of each run of the existing OofA-OA.
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Table 1: An OofA-OA(12,5,2)

1 5 3 2 4
1 5 4 2 3
2 1 4 3 5
2 3 4 1 5
2 5 1 3 4
2 5 4 3 1
3 1 4 2 5
3 5 1 2 4
3 5 4 2 1
4 1 3 2 5
4 5 1 2 3
4 5 3 2 1

Proof: Adding (m+1)th component in m+1 positions of each run of the existing OofA-OA
results in m + 1 runs per existing run in the new design. Since we add (m + 1)th component
in every possible position of every run of the existing design, the ratio of frequencies among
n++, n+−, n−−, n−+ in any two columns of the new design d′ will be,

n++

n−−
= 1

for any synergistic, antagonistic and independent pairs. Similarly, the ratio of

n++

n+−
= n++

n−+
= n−−

n+−
= n−−

n−+
=





2, for any synergistic pair
1/2, for any antagonistic pair
1, for any independent pair

These ratios are equal to that of full design Pf and hence are OofA-OA. This completes the
proof.

Example 1: Consider an OofA-OA(12,5,2) from which an OofA-OA for 6 components may
be constructed. Table 1 displays the design of OofA-OA(12,5,2) and Table 2 shows the
OofA-OA(72,6,2). Here h = 1 and the resulting design has run size 72. Here, the component
6 is added in every 6 positions of the OofA-OA(12,5,2) to generate OofA-OA(72,6,2).

As we know, an OofA design with m components has
(

m
2

)
PWO factors and these

PWO factors in an OofA-OA can be classified as synergistic pairs, antagonistic pairs and
independent pairs. Theorem 2 states the number of synergistic, antagonistic and independent
pairs possible for an OofA-OA with m components.

Theorem 2: An OofA-OA with m components have
((m

2 )
2

)
− 3

(
m
3

)
independent pairs,

(
m
3

)

antagonistic pairs and 2
(

m
3

)
synergistic pairs.

Proof: For an m component OofA design, there are
(

m
2

)
PWO factors under the PWO

model. Total number of possible pairs of PWO factors are
((m

2 )
2

)
which include all the inde-

pendent, synergistic and antagonistic pairs. Now, we determine the number of antagonistic
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Table 2: An OofA-OA(72,6,2)

6 1 5 3 2 4 6 2 1 4 3 5 6 2 5 1 3 4 6 3 1 4 2 5
1 6 5 3 2 4 2 6 1 4 3 5 2 6 5 1 3 4 3 6 1 4 2 5
1 5 6 3 2 4 2 1 6 4 3 5 2 5 6 1 3 4 3 1 6 4 2 5
1 5 3 6 2 4 2 1 4 6 3 5 2 5 1 6 3 4 3 1 4 6 2 5
1 5 3 2 6 4 2 1 4 3 6 5 2 5 1 3 6 4 3 1 4 2 6 5
1 5 3 2 4 6 2 1 4 3 5 6 2 5 1 3 4 6 3 1 4 2 5 6
6 1 5 4 2 3 6 2 3 4 1 5 6 2 5 4 3 1 6 3 5 1 2 4
1 6 5 4 2 3 2 6 3 4 1 5 2 6 5 4 3 1 3 6 5 1 2 4
1 5 6 4 2 3 2 3 6 4 1 5 2 5 6 4 3 1 3 5 6 1 2 4
1 5 4 6 2 3 2 3 4 6 1 5 2 5 4 6 3 1 3 5 1 6 2 4
1 5 4 2 6 3 2 3 4 1 6 5 2 5 4 3 6 1 3 5 1 2 6 4
1 5 4 2 3 6 2 3 4 1 5 6 2 5 4 3 1 6 3 5 1 2 4 6
6 3 5 4 2 1 6 4 1 3 2 5 6 4 5 1 2 3 6 4 5 3 2 1
3 6 5 4 2 1 4 6 1 3 2 5 4 6 5 1 2 3 4 6 5 3 2 1
3 5 6 4 2 1 4 1 6 3 2 5 4 5 6 1 2 3 4 5 6 3 2 1
3 5 4 6 2 1 4 1 3 6 2 5 4 5 1 6 2 3 4 5 3 6 2 1
3 5 4 2 6 1 4 1 3 2 6 5 4 5 1 2 6 3 4 5 3 2 6 1
3 5 4 2 1 6 4 1 3 2 5 6 4 5 1 2 3 6 4 5 3 2 1 6

pairs. Let (zij zkl) be an antagonistic pair for which i = l or j = k is possible. We generally
write (zij zkl) such that i < j and k < l. Thus, only three distinct components are needed for
forming an antagonistic pair. Now, 3 distinct components can be taken from m components
in

(
m
3

)
ways. Hence, number antagonistic pairs is

(
m
3

)
. For synergistic pair, (zij zkl) , there

are two options: (i) i = k. If so there are only three components, i.e. i, j, l. (ii) j = l. If so
there are only three components, i.e. i, j, k. For both these options,

(
m
3

)
pairs are possible.

So, 2
(

m
3

)
synergistic pairs are possible for m component OofA-OA. Therefore, number of

independent pairs is
((m

2 )
2

)
− 3

(
m
3

)
. This completes the proof.

4. Some results on OofA-OA

An OofA-OA of run size N have the following property as specified in Theorem 3.

Theorem 3: If a fractional OofA design with run size N is an OofA-OA(N, m, 2), then,
n++ = n−− = N/3, n+− = n−+ = N/6 for any synergistic pair
n++ = n−− = N/6, n+− = n−+ = N/3 for any antagonistic pair and
n++ = n−− = N/4, n+− = n−+ = N/4 for any independent pair.

Proof: As there are four two-tuples (++, −−, +−, −+) in an OofA-OA of strength 2, for
any independent pairs of PWO factors, the frequencies of these two-tuples will be same to
satisfy the equality of ratio of frequencies of these two-tuples in an OofA-OA with respect
to the full OofA design. Effortlessly, we can write, n++ = n−− = n+− = n−+ = N/4 for any
independent pair. Obviously, the minimum run size required for an OofA-OA of strength 2
is 12. An OofA-OA(N, m, 2) will always be a multiple of 12 which means N is a multiple of
12. To satisfy the ratio mentioned in the proof of Theorem 1, again we need, n++ = n−− =
N/3, n+− = n−+ = N/6 for any synergistic pair and n++ = n−− = N/6, n+− = n−+ = N/3
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for any antagonistic pair. This confirms Theorem 3.

Theorem 4: For any OofA-OA (N, m, 2), consider any two synergistic pairs (zim zjm) con-
taining the mth component, the corresponding zij has the following symbols with frequency
as given below

Two-tuples (zim zjm) zij Frequency
++ + N/6
++ − N/6
+− + N/6
−+ − N/6
−− + N/6
−− − N/6

Proof: For an OofA-OA(N, m, 2), for any synergistic pair, n++ = n−− = N/3, n+− = n−+ =
N/6 according to Theorem 3. We can see that n++ and n−− for the two-tuples (zim zjm) is
n++ = n−− = 2N

6 = N/3. Now, if zim is +1 and zjm is −1, zij will be +1 and vice versa.
For example, if 1 → 5, z15 = +1 ; 5 → 2, z25 = −1 , then, z12 = +1. This completes the
proof.

Example 2: Consider an OofA-OA (12,5,2) given in Voelkel (2019). The array is given in
transpose form.




1 1 2 2 2 2 3 3 3 4 4 4
5 5 1 3 5 5 1 5 5 1 5 5
3 4 4 4 1 4 4 1 4 3 1 3
2 2 3 1 3 3 2 2 2 2 2 2
4 3 5 5 4 1 5 4 1 5 3 1




′

.

The corresponding PWO matrix is given as

P =




z12 z13 z14 z15 z23 z24 z25 z34 z35 z45
+ + + + − + − + − −
+ + + + + − − − − −
− + + + + + + − + +
− − − + + + + + + +
− + + − + + + + − −
− − − − + + + − − −
+ − + + − − + + + +
+ − + − − + − + + −
− − − − − − − + + −
+ + − + − − + − + +
+ + − − + − − − − +
− − − − − − − − − +




The columns of P matrix are labelled as z12, z13, z14, z15, z23, z24, z25, z34, z35 and z45 in
the respective order. Consider the synergistic pair (z25, z35) and the frequencies of z23 along
with the symbol, it is clear that some balance properties are followed as in Table 3.
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Table 3: The frequencies of two-tuples of an OofA-OA(12,5,2)

Two-tuples (z25, z35) z23 Frequency
++ + 2
++ − 2
+− + 2
−+ − 2
−− + 2
−− − 2

It is very interesting to see that this property exists for any OofA-OA. According to
Zhao et al. (2021), when an OofA-OA is projected onto any s(≥ 4) components, all the s!
orders occur equal number of times. Even though, the OofA-OA given in example 2 does
not obey order balance property as specified in Zhao et al. (2021), balancing of frequency
of two-tuples given in Theorem 2 is satisfied. In other words, this property can be utilized
to check if a given fractional OofA design is OofA-OA even if it does not satisfy the order
balance property.

5. Concluding remarks

Being PWO model as the most promising and acceptable model for OofA problems,
the fractional designs under this model which are optimal with regard to any popular op-
timality criteria has been of considerable interest to the researchers. The OofA-OA is such
a fractional design under this model that satisfies D-, A-, M.S.- and χ2- optimality criteria.
In this scenario, we propose a systematic method of constructing OofA-OA having m + 1
components from an existing OofA-OA with m components. As the resulting design is OofA-
OA, it retains efficiency, optimality and balance property. The proposed method is easy to
understand and lacks complexity for the construction. However, the run size of the proposed
OofA-OA is a fixed number and is not flexible. Hence, we advise future research on system-
atic construction of OofA-OA with flexible run sizes for which OofA-OA exists. We further
introduce a balance property which is applicable to any OofA-OA even if it does not obey
the order balance property.
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Abstract
Agricultural commodity prices frequently exhibit inherent noise and volatility, at-

tributable to market dynamics. This paper undertakes a comprehensive analysis of price
volatility concerning key oil seed crops (Safflower, Mustard, Groundnut) and pulses (Lentil,
Chickpea, Green gram) across two markets for each commodity in the Indian agricultural
sector. The present study aims to improve the accuracy of price forecasting by utilizing
the Bivariate Auto Regressive Integrated Moving Average (ARIMA)-Generalized Auto Re-
gressive Conditional Heteroskedasticity (GARCH) type-Copula model. Monthly agricultural
commodity price datasets for key oil seed crops and pulse crops spanning January 2010 to
December 2022 have been used to evaluate the predictive performance of this model. Com-
parative evaluations are carried out against conventional time series models, namely Multi-
variate GARCH (MGARCH)-Dynamic Conditional Correlation (DCC) model and the Uni-
variate ARIMA-GARCH model. Empirical findings demonstrate that the Bivariate ARIMA-
GARCH type-Copula model outperformed the conventional time series models considered
in forecasting performance. This superiority is evidenced by evaluation metrics, including
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Per-
centage Error (MAPE). Moreover, this study utilized the Diebold–Mariano test to highlight
the predictive accuracy of the Bivariate ARIMA-GARCH type-Copula model for the dataset
under consideration, surpassing conventional time series models. The integration of Cop-
ulas with the ARIMA-GARCH type model shows promise for enhancing price forecasting
accuracy, offering valuable insights for researchers and policymakers navigating the dynamic
agricultural market landscape in India.
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1. Introduction

Agriculture is a crucial component of the Indian economy, supporting over 47% of the
population’s livelihood. As stated in the 2022-23 Indian Economic Survey, the agricultural
sector has demonstrated consistent growth, averaging an annual rate of 4.6% over the past
six years. Agricultural commodities price data are often characterized by inherent noise and
volatility due to the nature of the market. This is largely due to the rapid response of these
prices to changes in supply and demand conditions, as well as the impact of weather-related
factors on farm production. Moreover, asymmetric phenomena can also arise in price series,
where prices tend to behave differently during economic downturns as opposed to periods
of growth. It is common for agricultural price series to exhibit periods of stability, followed
by periods of high volatility. These fluctuations are a common feature of the agricultural
commodity market. Monitoring volatility in agricultural commodity prices can have a signif-
icant impact on a nation’s overall economic performance. As such, agricultural commodity
price forecasts are essential in enabling decision-makers to formulate economic policies and
strategies that are in line with anticipated changes (Bhardwaj et al. (2014)).

One of the predominant statistical methodologies employed in forecasting price series
is the Auto Regressive Integrated Moving Average (ARIMA) model as established by Box
and Jenkins (1970). Nevertheless, the inherent assumptions of linearity and homoscedastic
error variance within the ARIMA framework might not adequately accommodate the fore-
casting challenges posed by volatile agricultural commodity prices. In recognition of this lim-
itation, Engle (1982) introduced the Auto Regressive Conditional Heteroscedastic (ARCH)
model, subsequently refined by Bollerslev (1986) into the Generalized ARCH (GARCH)
model. Volatility within agricultural commodity price series often exhibit both symmetric
and asymmetric patterns. Although the GARCH model effectively captures the magnitude
of shocks, it may not fully capture the directional characteristics of these shocks. Conse-
quently, alternative asymmetric GARCH-type models have been devised, such as the Ex-
ponential GARCH (EGARCH) model proposed by Nelson (1991), the GJR-GARCH model
introduced by Glosten et al. (1993), and the Asymmetric Power ARCH (APARCH) model
presented by Ding et al. (1993). Various studies have endeavored to apply both ARIMA
and GARCH models in forecasting agricultural commodity prices. Examples of such inves-
tigations include those conducted by Paul et al. (2009), Bhardwaj et al. (2014) and Dinku
(2021). Moreover, the integration of ARIMA and GARCH methodologies, known as ARIMA-
GARCH models, has emerged as a viable approach for forecasting agricultural commodity
prices. This fusion has been demonstrated in research conducted by (Mitra and Paul (2017)
and Merabet et al. (2021)).

The dynamics of agricultural price volatilities exhibit interdependency across com-
modities and markets, prompting an increased scholarly emphasis on quantifying the inter-
dependence within agricultural price series data. However, conventional Time Series (TS)
models, such as ARIMA and GARCH models, often neglect the pivotal aspect of interde-
pendency among different series. To address this deficiency, the Vector Auto Regressive
(VAR) model was introduced, enabling the exploration of linear interrelationships among
multiple TS. VAR model’s efficacy in capturing the volatile nature of TS data is limited. In
response, the Multivariate GARCH (MGARCH) model emerged as a potential solution to
this challenge.
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A variety of MGARCH models have been developed over time. Engle and Kroner
(1995) introduced the BEKK (Baba, Engle, Kraft, and Kroner) model, which represents a
multivariate extension of the GARCH model and offers substantial flexibility in modeling.
Bollerslev (1990) proposed the Constant Conditional Correlation (CCC) model, providing a
relatively flexible approach that combines univariate GARCH models while assuming con-
stant correlation among series over time. Additionally, Engle (2002) introduced the Dynamic
Conditional Correlation (DCC) model, a novel class of Multivariate GARCH (MGARCH)
model that combines the flexibility of univariate GARCH models with a parsimonious para-
metric framework for modeling correlations. Several studies have demonstrated the superi-
ority of MGARCH models compared to univariate GARCH models in forecasting agricul-
tural commodity prices (Wang and Wu (2012); Aziz and Iqbal (2016)). The application of
MGARCH models for modeling the degree of interactions among various volatile agricul-
tural commodities and markets is widely documented in the literature (Musunuru (2014);
Sanjuán-López and Dawson (2017)).

MGARCH models often rely on assumptions of Multivariate Normal (MVN) distribu-
tion or Multivariate t (MV-t) distributions for the innovations. MVN distributions assume
that each variable follows a univariate normal distribution, which may not hold true in many
real world situations where variables exhibit non-normal distributions or complex relation-
ships. Additionally, the Pearson correlation coefficient used in MVN distribution assumes
linearity in the relationships between variables, limiting its ability to capture non-linear re-
lationships that are often present. This limitation extends to MV-t distributions as well. To
address these shortcomings, Copula-GARCH models have been introduced, where GARCH
model combined with Copula model. The Copula is employed to capture dependency be-
tween related TS by focusing on their joint distribution and offering flexibility in modeling
complex nonlinear dependencies. Sklar (1959)’s theorem is central to the theory of Copulas
which states that “any multivariate distribution function can be represented as a composi-
tion of its univariate marginal distributions and a Copula”, where the Copula captures all
the dependencies in the joint distribution. In other words, Copula-based modelling provides
the capacity to isolate the dependence structure from marginal distributions of the related
TS. Various applications of Copula-GARCH model for portfolio risk estimation on financial
TS data can be found in Weiß (2013); Lu et al. (2014); Karmakar (2017).

Previous studies utilized the ARIMA-GARCH copula model, initially fitting individ-
ual TS data and then employing residuals to model Copulas for joint distributions. These
copula models used to analyze correlations among different TS, exploring various statistical
measures such as skewness, kurtosis, and fat-tails (Li et al. (2020); Shahriari et al. (2023)).
However, an evident research gap exists as copula models have not been utilized for forecast-
ing future data points. Understanding the price dynamics is crucial, especially in agriculture.
The present study pioneers using the Bivariate Copula-GARCH type model for forecasting
agricultural prices. After fitting individual TS data to the ARIMA-GARCH type model,
residuals are used to fit copula models for joint distributions. Future data points are fore-
casted by simulating observations from the estimated bivariate distribution function. This
advanced modeling technique enhances forecasting accuracy for the data under consideration.

The rest of the manuscript is organized as follows: Section 2 presents a description of
the models utilized, Section 3 discusses empirical findings, and Section 4 offers concluding
remarks.
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2. Material and methods

2.1. ARIMA model

The Box Jenkins ARIMA model, represented in Eq. (1), stands as the predominant
technique for forecasting TS data:

ϕp(B)(1 − B)dyt = c + θq(B)εt (1)

where,
ϕp(B) = 1 − ϕ1B − ϕ2B

2 − · · · − ϕpBp

θq(B) = 1 − θ1B − θ2B
2 − · · · − θqB

q

Here, yt represents the value of current time; c is the constant term; B denotes
backward shift operator; εt represents the error term; ϕ1, ϕ2, . . . , ϕp denote Auto-Regressive
(AR) coefficients of order p; θ1, θ2, . . . , θq represent Moving Average (MA) coefficients of
order q; d is the order of differencing.

2.2. ARCH and GARCH models

ARIMA models are limited in their ability to capture the volatility inherent in TS
data and cannot adequately describe changes in conditional variances observed in real-world
datasets. To address the inadequacies of ARIMA model, Engle (1982) proposed Auto Re-
gressive Conditional Heteroscedastic (ARCH) model represented in Eq. (2). The ARCH
model for the series {εt} is characterized by defining the conditional distribution of εt given
the information available up to time t − 1, denoted as Ψt−1. The ARCH model for the series
εt can be expressed as:

εt|Ψt−1 ∼ N(0, ht) and εt =
√

htνt

where ht is conditional variance, νt is identically and independently distributed (iid)
innovations with zero mean and unit variance. The conditional variance ht is defined as

ht = α0 +
q∑

i=1
αiε

2
t−i (2)

The conditions of α0 > 0, αi ≥ 0∀i and ∑q
i=1 αi < 1 are necessary and sufficient

to guarantee non-negativity and a finite conditional variance for ht. Here, αi denotes the
coefficients indicating the impact of past shocks on the current volatility.

In response to certain shortcomings of the ARCH model, such as the rapid decay of
the unconditional autocorrelation function of squared residuals, non-parsimony etc., Boller-
slev (1986) introduced the Generalized ARCH (GARCH) model. The variance equation of
GARCH model is represented in Eq. 3 as:
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ht = α0 +
q∑

i=1
αiε

2
t−i +

p∑

j=1
βjht−j (3)

where α0 > 0, αi ≥ 0∀i, βj ≥ 0∀j. Here, βj denotes the coefficients indicating the impact
of past volatilities on the current volatility. While the GARCH model excels at capturing
overall volatility in TS, it falls short when it comes to asymmetric impacts of positive and
negative events. To address this limitation, various asymmetric GARCH-type of models
have evolved namely EGARCH, GJR-GARCH and APARCH model stated subsequently.

2.3. Asymmetric GARCH-type models

2.3.1. EGARCH model

EGARCH model addresses asymmetric volatility without parameter constraints. It
models the conditional variance, ht, as an asymmetric function of lagged disturbances, de-
fined by Eq. (4).

ln(ht) = α0 +
p∑

j=1
βj ln(ht−j) +

q∑

i=1

(
αi

∣∣∣∣∣
εt−i√
ht−i

∣∣∣∣∣+ λi
εt−i√
ht−i

)
(4)

where λi represents the asymmetric parameter, capturing asymmetric effects due to external
shocks.

2.3.2. GJR-GARCH model

GJR-GARCH model considers the impact of ε2
t−1 on the conditional variance, de-

pending on the sign of εt−1. They introduced an indicator variable to capture this sign
dependence. The GJR-GARCH model is represented in Eq. (5).

ht = α0 +
p∑

j=1
βjht−j +

q∑

i=1
αiε

2
t−i + γε2

t−1It−1 (5)

where γ (−1 < γ < 1) denote the asymmetric parameter, and It−1 is the indicator variable,
such that

It−1 =
{

1 if εt−1 < 0
0 if εt−1 ≥ 0

2.3.3. APARCH model

The APARCH model incorporates asymmetric power into the conditional variance,
specified as represented in Eq. (6).
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h
δ/2
t = α0 +

p∑

j=1
βjh

δ/2
t−j +

q∑

i=1
αi (|εt−i| − γεt−i)δ (6)

where γ (−1 < γ < 1) denotes the asymmetric parameter, and δ(> 0) denotes the power
term parameter. An application of different asymmetric GARCH type models can be found
in Rakshit et al. (2021).

2.4. ARIMA-GARCH type models

ARIMA-GARCH type models integrate ARIMA for capturing linear dynamics and
various GARCH models (e.g., GARCH, EGARCH, GJR-GARCH, and APARCH) to address
volatility clustering. The ARIMA component accounts for linear behaviour in the first stage,
thereby leaving nonlinear components in residuals. Paul et al. (2014) developed formulae for
out-of-sample forecast using ARIMA-GARCH model. Paul (2015) applied ARIMA-GARCH
model for forecasting volatility in agricultural crop yield.

The presence of serial autocorrelation in residuals from the ARIMA model is typically
assessed using the Ljung-Box test, a statistical test proposed by Ljung and Box (1978).
Meanwhile, the existence of heteroscedasticity in these residuals is evaluated through the
ARCH Lagrange Multiplier (LM) test, introduced by Engle (1982). If serial correlation and
heteroscedasticity are detected in the residuals based on the results of the Ljung-Box test
and ARCH-LM tests, respectively, the residuals are then subjected to a GARCH model.
GARCH is employed to model these residual patterns comprehensively, thereby capturing
both mean and volatility dynamics effectively. This approach ensures a thorough analysis of
both linear and nonlinear components in the data, enhancing the overall modelling accuracy
and robustness. The schematic representation of ARIMA-GARCH type model is illustrated
in Figure 1.

Figure 1: ARIMA-GARCH type model

2.5. Copula

Copulas have been introduced by applied mathematician, Sklar (1959). Copula comes
from the Latin word “copulature” which means “to join together”. Copulas are handled by
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utilizing Probability Integral Transformation (PIT) and Inverse Probability Integral Trans-
formation (Inverse PIT) which are described subsequently.

PIT: Suppose that a random variable X has a continuous distribution for which the
Cumulative Distribution Function (CDF) is FX . Then the random variable U defined by
PIT as U = FX(X) has a standard uniform distribution.

Inverse PIT: Given a continuous standard uniform variable U and an invertible CDF
G−1

X , the random variable X defined by Inverse PIT X = G−1
X (U) has distribution function

GX .

Accordingly, the formal definition of Copula is as follows: Let X = (X1, X2, . . . , Xd)
be a vector of random variables with their marginal CDFs F1, F2, . . . , Fd as continuous func-
tions. By applying the PIT to each component, obtain the U vector containing U1, U2, . . . , Ud

random variables; here each variable will follow standard uniform distribution as

U = (U1, U2, . . . , Ud) = [F1(X1), F2(X2), . . . , Fd(Xd)]

Then, Copula C is a joint cumulative distribution function of d random variables
given by

C(U1, U2, . . . , Ud) = H[G−1
1 (U1), G−1

2 (U2), . . . , G−1
d (Ud)]

To overcome the limitation of Pearson correlation coefficient, Copula modeling utilizes
Spearman’s rank correlation coefficient, a nonparametric measure of correlation. It avoids
distributional assumptions and linear relationships. Nonparametric correlation measures
allow flexible analysis, accommodating non-linear patterns and non-normal data.

2.5.1. Bivariate gaussian copula

Let Φxy be the distribution function of a standardised bivariate normal CDF and Φ−1

be the inverse of standard normal CDF, and ρ is the Spearman rank correlation coefficient
(i.e. dependence parameter) between the components. Then the bivariate Gaussian Copula
CDF is expressed as shown in Eq. (7).

Cρ(u1, u2) = Φxy[Φ−1(u1), Φ−1(u2); ρ] (7)

Let s = Φ−1(u1) and t = Φ−1(u2), then the Gaussian Copula density is given by Eq.
(8).

cρ(u1, u2) = 1√
1 − ρ2 exp

{
−(ρ2s2 + ρ2t2 − 2ρst)

2(1 − ρ2)

}
(8)

2.5.2. Bivariate Student-t copula

When the interest focuses on modelling data which exhibits heavy-tailed behaviour,
the Student-t Copula may be used instead of the Gaussian Copula.

Let txy be the distribution function of a standardised bivariate Student-t CDF and
t−1 be the inverse of standard Student’s t CDF with η degrees of freedom and ρ dependence
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parameter is the Spearman rank correlation coefficient between the components, then the
bivariate Student-t Copula CDF is expressed as shown in Eq. (9).

Cρη(u1, u2) = txy[t−1
η (u1), t−1

η (u2); ρ] (9)

Let s = t−1
η (u1) and r = t−1

η (u2), then the Student-t Copula density is given by Eq.
(10) as follows:

cηρ(u1, u2) =
Γ
(

η+2
2

)
Γ
(

η
2

)

√
1 − ρ2Γ2

(
η+1

2

)
{(

1 + s2

η

)(
1 + r2

η

)}(η+1)/2 (
1 + s2 + r2 − 2ρsr

η(1 − ρ2)

)−(η+2)/2

(10)

2.6. Bivariate ARIMA-GARCH type-Copula model

2.6.1. ARIMA-GARCH type model selection

ARIMA-GARCH type models, viz., ARIMA-GARCH, ARIMA-EGARCH, ARIMA-
GJR-GARCH and ARIMA-APARCH, are fitted to the two TS data independently. The
optimal ARIMA-GARCH type model is selected based on minimum value of Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC) for the two TS. From the
optimal ARIMA-GARCH type model, mean and volatility forecasts are obtained for both
TS. While these models capture temporal dependency within the individual TS, a Copula
model is employed to capture dependency between two TS.

2.6.2. Copula modeling

The residuals of the fitted ARIMA-GARCH type models for the two TS are employed
for Copula modeling. The Spearman rank correlation coefficient ρ is utilized to assess the
relationship between the residuals of the two TS. If the residuals of the two fitted TS are not
significantly correlated, then the forecasts from the optimal ARIMA-GARCH type models
for each TS are considered the final predictions. However, if the residuals are significantly
correlated, Copula modeling is employed. In Copula modeling, the residuals of both TS are
transformed using the PIT. The transformed values and estimated dependence parameter ρ
of copula are then utilized to fit both Gaussian Copula and Student-t Copula functions. The
optimal Copula function is selected based on the AIC and BIC criteria. The schematic repre-
sentation of the methodology of Bivariate ARIMA-GARCH type-Copula model is illustrated
in Figure 2.

2.6.3. One day ahead forecast through simulation

The optimal Copula function used to obtain the bivariate distribution (joint distribu-
tion) of residuals from an ARIMA-GARCH-type model is applied to two TS. By simulating
a large number of observations from the estimated bivariate distribution function through
random sampling, multiple potential future scenarios are generated. These scenarios incorpo-
rate uncertainty, variability, and the complex relationships between the residuals of the two
TS, helping capture the range of possible future outcomes more comprehensively. The step
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Figure 2: Flow chart of Bivariate ARIMA-GARCH type-Copula

by step algorithm to obtain one day ahead forecast through simulation can be summarized
as follows:

1. Simulate n pairs of random samples (û1,i, û2,i) from the estimated Optimal Copula
function. Here û1,i and û2,i denote the simulated values for the residuals of the optimal
ARIMA-GARCH type models of the first and second TS, respectively, where 1 ≤ i ≤ n.

2. To ensure that the simulated values of residuals are in their respective original scales,
inverse PIT is applied to obtain transformed values (v̂1,i, v̂2,i).

3. Multiply v̂1,i by the respective predicted one-day ahead volatility
√

h1,t from the optimal
GARCH type model for the first TS, and multiply v̂2,i by the respective predicted one-
day ahead volatility

√
h2,t from the optimal GARCH type model for the second TS.
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ε̂1,i = v̂1,i

√
h1,t and ε̂2,i = v̂2,i

√
h2,t

4. Obtain (µ̂1,i, µ̂2,i) by adding the mean forecast from the ARIMA model for the first
and second TS to the ε̂1,i and ε̂2,i respectively.

µ̂1,i = µ̂1,t + ε̂1,i and µ̂2,i = µ̂2,t + ε̂2,i

5. Take average to obtain one day ahead forecasts (k̂1,t, k̂2,t) of both TS

k̂1,t = 1
n

n∑

i=1
µ̂1,i and k̂2,t = 1

n

n∑

i=1
µ̂2,i

k̂1,t and k̂2,t are considered as one day ahead forecasts from Bivariate ARIMA-GARCH
type-Copula model for first and second TS, respectively.

3. Data and empirical findings

3.1. Data description

In this study, we collected monthly agricultural commodity price data for three oilseed
crops and three pulse crops from two primary markets for each commodity. The data was
obtained from the AGMARKNET portal of the Ministry of Agriculture and Farmers Welfare,
Government of India (https://agmarknet.gov.in/), covering the period from January 2010
to December 2022. The selection of major markets was based on their significant arrival
quantities. The chosen markets are detailed below:

Oilseeds:

• Safflower: Latur (Maharashtra) and Kalaburagi (Karnataka)

• Mustard: Sri Ganganagar (Rajasthan) and Satna (Madhya Pradesh)

• Groundnut: Gondal (Gujarat) and Bikaner (Rajasthan)

Pulses:

• Lentil: Banda (Uttar Pradesh) and Narsinghpur (Madhya Pradesh)

• Chickpea: Hinganghat (Maharashtra) and Dewas (Madhya Pradesh)

• Green gram: Bhagat Ki Kothi (Rajasthan) and Kalaburagi (Karnataka)

Each agricultural commodity price dataset contained 156 observations, the series
was divided into training and testing sets. The training set consisted of 144 months of
observations, which were used for model building. The last 12 months of observations were
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Table 1: Descriptive statistics of monthly agricultural commodity price data

Commodity Markets Mean S.D. C.V (%) Skew Kurt Minimum Maximum
Safflower Latur 3301.18 844.03 25.57 0.81 0.08 1985.71 5755.00

Kalaburagi 3236.95 940.20 29.05 0.71 -0.12 1795.95 5944.72
Mustard Sri Ganganagar 3922.62 1268.29 32.33 1.16 0.72 2153.15 7679.16

Satna 3690.72 1246.44 33.77 1.18 0.72 1900.00 7397.23
Groundnut Gondal 4518.99 1065.89 23.59 0.28 -0.90 2796.08 6933.18

Bikaner 4055.43 951.53 23.46 0.49 -0.41 2456.59 6540.67
Lentil Banda 4328.20 1220.39 28.20 0.45 -0.76 2279.00 7277.69

Narsinghpur 4255.75 1183.62 27.81 0.45 -0.93 2466.35 7022.16
Chickpea Hinganghat 3627.42 1090.69 30.07 0.89 1.81 1835.11 7629.75

Dewas 3859.89 1260.67 32.66 1.13 2.84 1835.09 8871.43
Green gram Bhagat Ki Kothi 5413.40 1267.25 23.41 -0.18 -0.75 2025.00 8270.67

Kalaburagi 5254.95 1125.54 21.42 -0.21 -0.68 2612.50 8132.74
S.D.: Standard Deviation, C.V.: Coefficient of Variation, Skew: Skewness, Kurt: Kurtosis

kept for validating the model. The Table 1 presents key statistics for various commodities
across different markets.

Green gram in Bhagat Ki Kothi market stands out with the highest mean price, while
safflower in Kalaburagi market records the lowest. Mustard in Satna market exhibits the
highest coefficient of variation (C.V.), indicating considerable price variability, while green
gram in Kalaburagi shows the lowest. Dewas for Chickpea reports the highest maximum
price, and safflower in Kalaburagi reflects the lowest minimum. Positively skewed distribu-
tions are observed in most of the agricultural commodity markets except the green gram
market in Bhagat Ki Kothi and Kalaburagi, which display negative skewness. Leptokurtic
distributions are evident in Mustard in Sri Ganganagar, Satna, Chickpea in Hinganghat
and Dewas, while Safflower in Latur exhibit approximately mesokurtic distributions. The
remaining commodities markets demonstrate platykurtic distributions.

3.2. Test for normality

To evaluate normality of agricultural commodity price data, most widely used statis-
tical tests, viz., Jarque-Bera test (Jarque and Bera (1987)) and Shapiro-Wilk test (Shapiro
and Wilk (1965)) were employed. The results of these normality tests are presented in Table
2, indicating that the majority of agricultural commodity markets show significant deviations
from normality at 1% level as evidenced by low p-values (<0.01), the Green gram prices in
the Bhagat Ki Kothi and Kalaburagi markets are significant at the 5% level with p-value
below 0.05 from the Jarque-Bera test and Shapiro-Wilk tests. Hence all the agricultural
commodity markets price data considered were non-normal.

3.3. Test for stationarity

The stationarity of data is a crucial property of TS analysis. A series is considered
stationary if it maintains a constant mean and variance over time. To assess stationarity,
several statistical tests namely the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller
(1979)), the Phillips-Perron (PP) test (Phillips and Perron (1988)) and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al. (1992)) were employed. The null
hypothesis for the ADF and PP tests states that the series is non-stationary, while for the
KPSS test, it suggests that the series is stationary. Table 3 presents stationarity test results
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Table 2: Normality test results of agricultural commodity price data of different
markets

Commodity Markets Jarque-Bera test Shapiro-Wilk test
Statistic p-value Statistic p-value

Safflower Latur 17.322 0.0002 0.936 < 0.0001
Kalaburagi 13.489 0.0012 0.944 < 0.0001

Mustard Sri Ganganagar 39.849 < 0.0001 0.871 < 0.0001
Satna 40.732 < 0.0001 0.861 < 0.0001

Groundnut Gondal 17.056 0.0029 0.966 0.0008
Bikaner 17.397 0.0025 0.967 0.0009

Lentil Banda 8.978 0.0113 0.957 0.0002
Narsinghpur 10.663 0.0048 0.944 < 0.0001

Chickpea Hinganghat 44.062 < 0.0001 0.932 < 0.0001
Dewas 89.206 < 0.0001 0.915 < 0.0001

Green gram Bhagat Ki Kothi 8.185 0.0124 0.978 0.0154
Kalaburagi 8.948 0.0138 0.978 0.0168

for agricultural commodity price data across various markets. All agricultural commodity
markets price series are deemed non-stationary, as indicated by the p-values.

Table 3: Stationarity test results of agricultural commodity price data of different
markets

Commodity Markets ADF test PP test KPSS test
Statistic p-value Statistic p-value Statistic p-value

Safflower Latur -2.042 0.559 -4.202 0.874 1.788 < 0.01
Kalaburagi -2.012 0.572 -8.827 0.608 2.251 < 0.01

Mustard Sri Ganganagar -2.283 0.458 -8.068 0.652 2.179 < 0.01
Satna -2.357 0.427 -6.532 0.741 2.163 < 0.01

Groundnut Gondal -2.224 0.483 -17.24 0.125 1.566 < 0.01
Bikaner -2.232 0.479 -9.945 0.495 1.941 < 0.01

Lentil Banda -1.820 0.651 -9.350 0.578 1.586 < 0.01
Narsinghpur -1.789 0.663 -8.301 0.638 1.474 < 0.01

Chickpea Hinganghat -3.109 0.114 -16.948 0.142 1.201 < 0.01
Dewas -2.731 0.272 -14.232 0.298 1.111 < 0.01

Green gram Bhagat Ki Kothi -1.967 0.596 -16.988 0.195 0.985 < 0.01
Kalaburagi -2.918 0.193 -12.751 0.383 0.868 < 0.01

3.4. Residual analysis

Suitable ARIMA model is selected based on minimum AIC and BIC criteria and also
observing the significance of autocorrelation and partial autocorrelation functions. Subse-
quently, the residuals from the ARIMA model undergo diagnostics measures.

3.4.1. Ljung-Box test for serial autocorrelation

The Ljung-Box test is utilized to assess the presence of serial autocorrelation in resid-
uals from the ARIMA model. The null hypothesis suggests that the residuals exhibit no



2025] HYBRID ARIMA-GARCH TYPE-COPULA APPROACH FOR FORECASTING 209

autocorrelation for a fixed number of lags. A rejection of this hypothesis indicates the pres-
ence of serial autocorrelation. Table 4 presents Ljung-Box test results, revealing significant
autocorrelation in agricultural commodity price data from all specified markets.

3.4.2. ARCH lagrange multiplier (LM) test for heteroscedasticity

The ARCH LM test is employed to evaluate the existence of heteroscedasticity in
residuals. It examines whether the variance of the residuals is constant over time or not.
The null hypothesis states that the residuals are homoscedastic, while a rejection of null
hypothesis suggests the presence of heteroscedasticity. In addition Table 4 presents ARCH-
LM test results, indicating heteroscedasticity in agricultural commodity price data across all
specified markets.

Table 4: Ljung-Box and ARCH-LM test statistic results of agricultural commod-
ity price data of different markets

Commodity Markets Ljung-Box ARCH-LM
Safflower Latur 10.23 44.19

Kalaburagi 14.51 37.82
Mustard Sri Ganganagar 6.88 58.44

Satna 6.95 78.67
Groundnut Gondal 7.81 28.57

Bikaner 12.91 41.36
Lentil Banda 10.45 27.47

Narsinghpur 10.94 46.33
Chickpea Hinganghat 22.14 40.34

Dewas 12.16 62.04
Green gram Bhagat Ki Kothi 7.28 23.98

Kalaburagi 14.76 20.36
Note: The test statistics provided in the table lead to p-values of less than 0.01 for all cases.

3.4.3. Broock-Dechert-Scheinkman (BDS) test for nonlinearity

The nonparametric Broock-Dechert-Scheinkman (BDS) test (Broock et al. (1996))
is utilized to test the nonlinearity of the residual series. This test assesses whether the
residuals exhibit nonlinear dependence. The null hypothesis assumes that the residuals
are independently and identically distributed (iid). A rejection of this hypothesis indicates
nonlinearity in the residuals. The results of the BDS test, presented in Table 5, indicate
the possible presence of nonlinear patterns in the residuals of the ARIMA model at 1%
significance level in all the agricultural markets price series.

It is evident that autocorrelation, heteroscedasticity, and nonlinearity is detected
in the residuals based on the results of the aforementioned tests, hence residuals are then
subjected to a GARCH type models such as standard GARCH, EGARCH, GJR-GARCH,
and APARCH. Through rigorous evaluation, the optimal ARIMA-GARCH model is selected
based on criteria such as the AIC and the BIC, as outlined in Table 6. Subsequently, the
estimated parameters of the best-fitted model are detailed in Table 7.
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Table 5: BDS test results of agricultural commodity price data of different mar-
kets

Commodity Markets Dimension (m)
0.5σ 1.0σ 1.5σ 2.0σ

Safflower Latur 10.73 8.40 7.50 5.48
Kalaburagi 7.21 7.05 4.14 1.11

Safflower Latur 16.45 10.01 8.34 6.58
Kalaburagi 13.13 11.22 7.34 2.47

Mustard Sri Ganganagar 5.18 7.14 7.46 5.18
Satna 8.16 9.42 9.32 6.95

Mustard Sri Ganganagar 9.25 10.86 10.57 7.89
Satna 9.03 11.31 11.77 9.31

Groundnut Gondal 10.56 5.81 3.95 2.54
Bikaner 10.96 9.81 5.85 4.69

Groundnut Gondal 21.56 11.31 8.45 6.83
Bikaner 17.26 13.04 7.95 7.24

Lentil Banda 9.94 7.43 5.70 3.59
Narsinghpur 4.62 4.09 3.21 2.09

Lentil Banda 13.45 9.84 7.60 5.14
Narsinghpur 11.01 8.82 7.02 4.27

Chickpea Hinganghat 20.41 10.74 7.21 6.58
Dewas 14.29 9.36 7.43 6.70

Chickpea Hinganghat 25.08 12.06 8.28 7.94
Dewas 23.37 13.91 10.15 8.94

Green gram Bhagat Ki Kothi 21.21 14.81 10.87 7.55
Kalaburagi 5.71 5.38 5.21 5.64

Green gram Bhagat Ki Kothi 28.27 18.66 12.74 8.44
Kalaburagi 11.21 9.69 7.81 6.84

Note: The test statistics provided in the table lead to p-values less than 0.01 for all cases.

The correlation between the residuals of ARIMA-GARCH type models for two mar-
kets of the same agricultural commodity is examined through Spearman’s rank correlation,
and the results are shown in Table 8, indicating a significant correlation between the residu-
als of ARIMA-GARCH type models for two markets of all agricultural commodities at the
one percent level. Subsequently, the residuals of the two markets were transformed via the
PIT. The transformed values are then utilized to fit both Gaussian Copula and Student-t
Copula models, and their AIC and BIC values are presented in Table 9. The results indicate
that in all cases, the Student-t Copula model is the optimal Copula, with the lowest AIC and
BIC values. This suggests that the Student-t Copula model provides a better goodness-of-fit
compared to the Gaussian Copula.

After fitting the Student-t Copula model to the residuals of the optimal ARIMA-
GARCH models for the two considered markets, proceed to simulate n = 1000 pairs of
random samples from the estimated Student-t Copula function. Next, obtain one-day-ahead
forecasts from the Bivariate ARIMA-GARCH-Copula model using algorithm 2.6.3. Repeat
this one-day-ahead forecast procedure for each day in the test dataset, employing algorithm
2.6.3.
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Table 6: Optimal ARIMA-GARCH type model for different commodity markets

Commodity Markets Optimal ARIMA-GARCH type model AIC BIC
Safflower Latur ARIMA (2,1,1) - GARCH (1,1) 12.107 12.211

Kalaburagi ARIMA (2,1,0) - APARCH (1,0) 13.121 13.268
Mustard Sri Ganganagar ARIMA (1,1,0) - GARCH (1,1) 13.797 13.902

Satna ARIMA (2,1,1) - APARCH (1,0) 13.103 13.270
Groundnut Gondal ARIMA (2,1,0) - APARCH (1,0) 13.231 13.398

Bikaner ARIMA (1,1,0) - APARCH (1,0) 14.461 14.628
Lentil Banda ARIMA (2,1,1) - APARCH (1,1) 14.165 14.290

Narsinghpur ARIMA (2,1,0) - APARCH (1,1) 14.139 14.293
Chickpea Hinganghat ARIMA (2,1,0) - GARCH (1,1) 14.539 14.664

Dewas ARIMA (2,1,0) - GARCH (1,1) 14.838 14.922
Green gram Bhagat Ki Kothi ARIMA (2,1,1) - APARCH (1,1) 15.088 15.213

Kalaburagi ARIMA (2,1,1) - APARCH (1,1) 14.779 14.904

Table 7: Parameter estimates of ARIMA-GARCH type models

Commodity Markets ϕ1 ϕ2 θ1 α1 β1 γ δ

Safflower Latur 0.364 0.638 0.747 0.686 0.206 - -
(<0.001) (<0.001) (<0.001) (<0.001) (0.009) - -

Kalaburagi 1.207 -0.239 - 0.418 - 0.178 3.218
(<0.001) (0.003) - (<0.001) - (<0.001) (<0.001)

Mustard Sri Ganganagar 0.913 - - 0.362 0.589 - -
(<0.001) - - (<0.001) (<0.001) - -

Satna 1.327 -0.438 0.104 0.633 - 0.057 3.499
(<0.001) (<0.001) (0.031) (<0.001) - (<0.001) (<0.001)

Groundnut Gondal 1.284 -0.406 - 0.503 - 0.242 3.072
(<0.001) (<0.001) - (<0.001) - (<0.001) (<0.001)

Bikaner 0.887 - - 0.087 - 0.952 3.500
(<0.001) - - (<0.001) - (<0.001) (<0.001)

Lentil Banda 0.885 -0.148 0.510 0.099 0.567 0.480 3.127
(<0.001) (0.018) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Narsinghpur 0.978 -0.189 - 0.049 0.493 0.898 3.358
(<0.001) (0.014) - (<0.001) (<0.001) (<0.001) (<0.001)

Chickpea Hinganghat 1.198 -0.294 - 0.384 0.581 - -
(<0.001) (0.003) - (<0.001) (<0.001) - -

Dewas 0.758 0.249 0.911 0.272 0.702 - -
(<0.001) (0.002) (<0.001) (<0.001) (<0.001) - -

Green gram Bhagat Ki Kothi 0.433 0.570 0.674 0.340 0.058 0.254 3.445
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Kalaburagi 1.054 -0.548 -0.523 0.395 0.108 0.104 3.268
(<0.001) (<0.001) (0.046) (<0.001) (<0.001) (<0.001) (<0.001)

Note: The values in the parenthesis indicates the p-value

In evaluating the forecasting performance of the ARIMA-GARCH type-Copula, a
comparative analysis is conducted against established traditional methodologies. Specifically,
the efficacy of the ARIMA-GARCH-Copula model is compared with that of the Univariate
ARIMA-GARCH type and MGARCH-DCC models. The assessment of accuracy utilizes key
evaluation metrics, namely Root Mean Square Error (RMSE) (Eq.11), Mean Absolute Error
(MAE) (Eq.12), and Mean Absolute Percentage Error (MAPE) (Eq.13), applied to the test
dataset.



212 MANJUNATHA ET AL. [Vol. 23, No. 1

Table 8: Correlation analysis of ARIMA-GARCH type models

Commodity Markets Spearman’s Rank Correlation Coefficient
Safflower Latur and Kalaburagi 0.644
Mustard Sri Ganganagar and Satna 0.554
Groundnut Gondal and Bikaner 0.469
Lentil Banda and Narsinghpur 0.674
Chickpea Hinganghat and Dewas 0.577
Green gram Bhagat Ki Kothi and Kalaburagi 0.527

Note: p-values of correlation coefficient are less than 0.01 for all cases.

Table 9: Comparison of Copula models

Commodity Markets Gaussian Copula Student-t Copula
AIC BIC AIC BIC

Safflower Latur and Kalaburagi -352.43 -346.33 -354.36 -351.31
Mustard Sri Ganganagar and Satna -476.47 -473.42 -481.54 -475.44
Groundnut Gondal and Bikaner -272.15 -269.10 -278.62 -272.52
Lentil Banda and Narsinghpur -444.05 -441.00 -495.60 -489.50
Chickpea Hinganghat and Dewas -351.78 -348.73 -393.26 -387.16
Green gram Bhagat Ki Kothi and Kalaburagi -224.19 -221.14 -250.90 -244.80

RMSE =
√√√√ 1

m

m∑

t=1
(yt − ŷt)2 (11)

MAE = 1
m

m∑

t=1
|yt − ŷt| (12)

MAPE = 1
m

m∑

t=1

∣∣∣∣∣
yi − ŷi

yi

∣∣∣∣∣× 100 (13)

where yi and ŷi represent the actual and predicted values, respectively, and m is the number
of observations in test dataset.

Table 10 provides a comparison of model forecasting performance considering RMSE,
MAE and MAPE. The findings consistently reveal that the Bivariate ARIMA-GARCH type-
Copula model outperforms both the MGARCH-DCC model and the Univariate ARIMA-
GARCH type model across all agricultural commodity market price series. This superiority
is underscored by the model’s ability to achieve the lowest RMSE, MAE and MAPE values.

In addition to traditional accuracy metrics, the Diebold-Mariano (DM) test proposed
by Diebold and Mariano (2002) is used to compare the forecasting performance of two com-
peting models. The fundamental premise of the DM test lies in its null hypothesis, which
posits that both forecasting models exhibit the same level of accuracy. By comparing the
forecast errors of the Bivariate ARIMA-GARCH type–Copula model and benchmark models
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Table 10: Comparison of forecasting performance of different models
Commodity Markets BAGC model MGARCH-DCC model UAGC model

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)
Safflower Latur 147.43 102.34 1.96 208.72 159.94 3.07 415.67 354.97 6.78

Kalaburagi 367.02 293.90 5.49 422.53 343.90 6.54 453.45 392.31 7.58
Mustard Sri Ganganagar 279.00 212.94 3.36 474.58 418.43 7.43 1065.31 978.72 15.55

Satna 257.06 195.56 3.19 355.44 310.18 4.98 447.56 358.06 6.01
Groundnut Gondal 329.16 224.28 3.58 522.77 510.90 7.94 933.32 766.58 11.82

Bikaner 462.97 368.28 6.72 642.34 479.93 8.93 1078.72 982.64 16.43
Lentil Banda 179.07 147.05 2.29 331.77 281.12 4.46 538.12 431.15 6.53

Narsinghpur 260.87 227.61 3.68 527.40 490.60 8.01 751.30 655.51 10.59
Chickpea Hinganghat 221.58 167.26 3.95 300.89 263.71 6.29 608.56 463.61 10.94

Dewas 206.01 167.42 3.76 422.29 345.91 8.01 589.72 475.63 10.26
Green gram Bhagat Ki Kothi 283.54 239.46 3.86 388.31 352.34 5.51 761.36 632.49 9.89

Kalaburagi 234.50 202.74 3.27 502.84 378.53 5.87 848.16 704.32 11.35
Note: BAGCM:Bivariate ARIMA-GARCH type -Copula model; MGARCH-DCC: Multivariate GARCH

DCC model; UAGCM: Univariate ARIMA-GARCH type-Copula

Table 11: Diebold-Mariano test for pairwise comparison of Copula based model
with benchmark models

Commodity Markets Benchmark Models
MGARCH-DCC model Univariate ARIMA-GARCH type model

Safflower Latur -3.3075 (0.0052) -8.5562 (<0.0001)
Kalaburagi -2.2874 (0.0385) -7.2749 (<0.0001)

Mustard Sri Ganganagar -4.7645 (0.0003) -6.5871 (<0.0001)
Satna -4.7203 (0.0004) -8.467 (<0.0001)

Groundnut Gondal -4.862 (0.0003) -10.504 (<0.0001)
Bikaner -5.5891 (<0.0001) -11.713 (<0.0001)

Lentil Banda -3.1998 (0.0064) -4.9542 (0.0002)
Narsinghpur -3.8288 (0.0018) -6.0619 (<0.0001)

Chickpea Hinganghat -3.6141 (0.0028) -8.5482 (<0.0001)
Dewas -2.1141 (0.0428) -12.388 (<0.0001)

Green gram Bhagat Ki Kothi -3.6864 (0.0025) -5.8317 (<0.0001)
Kalaburagi -2.1669 (0.0479) -4.7079 (0.0004)

(MGARCH-DCC model and Univariate ARIMA-GARCH type model), the DM test evalu-
ates whether there exists a statistically significant difference in their predictive capabilities.
Table 11 presents the statistic values and their corresponding p-values (in parentheses) of the
DM test, comparing the predictive accuracy of the Bivariate ARIMA-GARCH type–Copula
model with benchmark models on the test datasets. The results suggest that the forecasting
performance of the Bivariate ARIMA-GARCH type–Copula model significantly outperforms
both the MGARCH-DCC model and the Univariate ARIMA-GARCH type model.

4. Conclusions

This study focused on analyzing the price volatility of oilseed crops viz., safflower,
mustard, and groundnut, as well as pulses viz., lentil, chickpea, and green gram across two
markets for each commodity. By employing the Bivariate ARIMA-GARCH type-Copula
model, the accuracy of price forecasting in the agricultural sector was studied. This study
highlights the importance of incorporating Copulas into advanced modeling techniques to
capture the complex interdependencies and joint distributions of agricultural commodity
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prices. The research findings demonstrate that the Bivariate ARIMA-GARCH type-Copula
model surpassed both the MGARCH-DCC model and the Univariate ARIMA-GARCH type
model in terms of forecasting performance. The evaluation metrics viz., RMSE, MAPE, and
MAE, consistently indicated the superior predictive ability of the Bivariate ARIMA-GARCH
type-Copula model across all agricultural commodity market price series. Furthermore, the
Diebold-Mariano (DM) test results provided additional validation of the Bivariate ARIMA-
GARCH type-Copula model’s outperformance compared to the alternative models. This
signifies the robustness and reliability of Bivariate ARIMA-GARCH type-Copula model in
capturing the joint distribution of commodity prices and improving forecasting accuracy.
In the dynamic realm of agriculture, understanding price dynamics and volatility drivers is
paramount. Combining Copulas with the ARIMA-GARCH model holds promise for better
price predictions. By using advanced modeling, researchers and policymakers can improve
forecasting accuracy. This study underscores the importance of continuous monitoring and
analysis of agricultural commodity prices to mitigate risks and optimize market strategies in
the ever-evolving landscape of the Indian economy.
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Abstract
Amid the global crisis of climate change, urgent action is imperative. In this study,

we develop two types of decarbonized indices, which render a dynamic hedging approach
for passive investors. Focusing on long-term returns with minimal active trading and risk
exposure, we create the decarbonized indices for NIFTY-50, a benchmark index for the In-
dian market. Proposed methodology relies on suitable optimization techniques to choose
the portfolio weights that minimize the tracking error while significantly reducing carbon
footprints. These indices are shown to perform better than existing benchmarks, especially
during major climate events. They are likely to offer investors a buffer to adapt to climate
policies and carbon pricing. Since these indices align with the net-zero objective and fos-
ter climate-resilient advancements, they also offer actionable pathways to address climate
challenges while maintaining financial objectives.

Key words: Climate change; Decarbonized index; Market index; NIFTY-50; Tracking error.

1. Introduction

Climate change, a significant challenge in recent times, not only impacts health,
environment and the ecosystem, but also poses a large aggregate risk to the financial systems.
This necessitates the development of analytical tools that can offer enhanced indexation of
financial markets by considering Environmental, Social and Governance (ESG) factors. Such
techniques are critical to solve the inefficiency of fundamental financial markets, especially
in developing countries like India.

In this paper, we present methods to create two decarbonized indices from established
benchmarks, and demonstrate their efficacy for the Indian economy. Specifically, we show
that the resulting index significantly lowers total carbon impact, acting as a hedge against
climate risks. Our method relies on tracking error (TE), a metric representing the variation
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of the difference in composition between a portfolio and its benchmark index. The relation-
ship of TE to ESG has remained largely unexplored. The mimicking portfolio approach of
Lamont (2001) is theoretically appealing but challenging to implement. In a more relevant
study, Andersson et al. (2016) introduced decarbornized indices from the benchmark by
minimizing TE subject to suitable constraints based on carbon footprints of the constituent
companies. Mezali and Beasley (2013) earlier used quantile regression with a mixed-integer
linear programming formulation. Li et al. (2022) constructed a robust model that maximizes
ESG score, while minimizing the risk and maximizing the return simultaneously.

It is further important to note that the existing sustainability-themed indices in the
Indian stock market, namely S&P BSE GREENEX, BSE Carbonex, and NIFTY100 En-
hanced ESG Index (Patel and Kumari, 2020; C and Nishad, 2021) prioritize tracking the
performance of companies based on their carbon emissions, ESG score and efforts to mit-
igate climate risk, without focusing on the parent index’s performance. They use market
capitalization for weighting, without any effort to replicate the performance of the dropped
stocks. To circumvent this, we develop an optimized index by minimizing tracking error. It
is more effective in capturing lost contributions from dropped stocks by compensating from
other highly correlated stocks that remain in the portfolio.

We describe this methodology in Section 2. The application of the methods on Indian
market is illustrated in Section 3. By utilizing real-time data for in-sample and out-of-sample
calculations, we show how the index attempts to bridge the divide between theory and
practice. The paper ends with a succinct summary and scopes of future work in Section 4.

2. Methodology

Throughout this article, we work with the Indian stock market index NIFTY-50, that
tracks 50 largest Indian companies listed in the National Stock Exchange. To explain the
method, let these N = 50 stocks be sorted by their carbon footprints in decreasing order.
For the ith stock, ri, mi, qi denote the return, market capitalization and carbon footprint,
respectively. Bold-faced letters r, m, q denote the corresponding vectors for all stocks. Fol-
lowing extant literature, the portfolio return of the benchmark is indicated by Rb = (wb)T r,
where wb = (wb

i )1≤i≤N is the vector of portfolio weights taken to be proportional to the
market capitalization,

wb
i = mi∑N

i=1 mi

. (1)

Let wd be the vector of weights for the proposed decarbonized index, Rd being the
corresponding return. Our objective is to minimize the tracking error and find (sd indicates
standard deviation)

wd = arg min
w=(wi)1≤i≤N

(TE) = arg min
w=(wi)1≤i≤N

[
sd
(

N∑

i=1
(wi − wb

i )ri

)]
. (2)

To avoid computing the large dispersion matrix of returns in (2), we use the Fama
and French (2012) factor model. It allows us to decompose the return into weighted sum of
common factor returns and specific returns. If rit and rft denote the return of the ith stock
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and the risk-free rate at time t, then the model is

rit − rft = βi0 + βi1SMBt + βi1HMLt + βi3WMLt + βi4MFt + eit, (3)

where eit is the error, βij denotes the factor loading; SMB, HML, WML and MF indicate
the size effect (small-minus-big), value effect (high-minus-low), momentum factor (winners-
minus-losers), and market factor. Let Fj denote these factors, with dispersion matrix Ω.
Also, let β be the matrix of loadings and ∆ be the diagonal matrix of specific risk variances.
Then, the dispersion of the excess returns is βΩβT + ∆. Consequently, the volatility of any
portfolio with returns r and weights w is

√
wT (βΩβT + ∆)w. This, in (2), implies

wd = arg min
w=(wi)1≤i≤N

√
(w − wb)T (βΩβT + ∆) (w − wb). (4)

To strike a balance between reducing carbon footprints and preserving diversity in
the composition, we employ two distinct methodologies to construct decarbonized indices
(DCI). Each methodology has its own advantages and disadvantages, as we explicate below.

In the first approach, we exclude k worst performers in carbon intensity, and the
remaining stocks are re-weighted to minimize TE. Here, the DCI is constructed using weights
wd

i , obtained by solving (4) subject to the constraints
N∑

i=1
wd

i = 1, with

wd
i = 0, for i = 1, 2, . . . , k, and 0 ≤ wd

i ≤ 1, for i = k + 1, . . . , N.

(5)

We solve this minimization problem using the Trust-Region Constrained Algorithm
(TRCA), which is useful to deal with the following problem:

minimize f(x), subject to clb ≤ c(x) ≤ cub, xlb ≤ x ≤ xub. (6)

It can take multiple linear and non-linear constraints as inputs (Conn et al., 2000).
The objective function is approximated by a quadratic model restricted to the trust-region
centered at the initial guess or the current point. The algorithm works by iteratively im-
proving the initial guess (Kimiaei, 2022). We omit technicalities of the algorithm, and refer
to Byrd et al. (1987) for further details.

Our second methodology includes all stocks without specifically targeting those with
high carbon footprints. In this case, the minimization problem (4) is solved by setting a
threshold C for the total footprint of the index. This approach ensures a largely unchanged
composition, maintaining its diversity, yet reducing the footprint. Mathematically, we find
the weights in (4) considering

N∑

i=1
wd

i = 1, with

N∑

i=1
qiw

d
i ≤ C and 0 ≤ wd

i ≤ 1, for i = 1, . . . , N.

(7)
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For implementation, we again rely on TCRA discussed before. Hereafter, this index
is denoted as DCI 2 while the first index is coded as DCI 1.

A brief comparison of the ideology behind the construction of the indices is critical
here. A potential drawback of the first approach is that it may lead to a less diverse index
composition. Lower diversity leads to higher volatility and risk. On the positive side, pos-
sibility of inclusion in the index can serve as an incentive for the high-emission companies
to proactively reduce their emissions. Contrastingly, the overall carbon footprint reduction
with the second approach is significant but limited when compared to the first approach.

3. Application

We consider NIFTY-50 data for 5 years, 2017-18 until 2022-23. To quantify the carbon
footprint of the stocks, we consider greenhouse-gas intensity per sale and total carbon-dioxide
emissions (abbreviated as GHG and CO2 hereafter) as proxies. Then, four decarbonized in-
dices are created from each benchmark, using the two methods and the two proxies. We
rely on Bloomberg and Yahoo!Finance for obtaining these data. The factors data for (3)
are obtained from IIM-A Data Library (Agarwalla et al., 2013). Comprehensive information
about stocks used for our calculations are detailed in Table 1.

Table 1: Number of stocks included (St.Incl), omitted (St.Omit) and corre-
sponding omission percentage of market capitalization (MktCap.Omit) in the
construction of DCI.

GHG CO2
Period St.Incl St.Omit MktCap.Omit St.Incl St.Omit MktCap.Omit
2017-18 30 20 35.3% 32 18 33.7%
2018-19 33 17 28.5% 35 15 26.9%
2019-20 34 16 25.3% 36 14 23.7%
2020-21 35 15 23.6% 38 12 21.1%
2021-22 35 15 23.6% 38 12 21.0%

Our analysis broadly consists of three parts – determining optimal values of k and
C for calculating the two DCI, generating optimal portfolio weights using a window of
one year for five years (in-sample calculations), calculating the monthly performance of
DCI and comparing their performances with the benchmark (out-of-sample calculations).
It is useful to present a brief summary of our main findings first. As expected, DCI 2
maintains the composition yet provides a lower carbon footprint than benchmark index,
whereas DCI 1 renders an even lower carbon footprint because of excluding several stocks. In-
sample calculations illustrate that the second index offers a very low active risk as compared
to the benchmark. On the other hand, out-of-sample results demonstrate that both indices
outperform the benchmark during major climate events throughout the five years.

Delving deeper into our analysis, recall that the optimal values of k and C in our
methods (refer to (5) and (7)) are determined through an assessment of TE using 5 years
of data. Here, a series of optimizations are executed for a range of k (5%-50% of N) and C
(50%-95%). In GHG, optimum k is 6 and C is 80%, whereas the numbers are 5 and 70% for
CO2. These values are employed in the subsequent steps.
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Next, in Figure 1, we compare the carbon footprints of the decarbonized indices with
the considered benchmark in each case. A substantial reduction in the carbon footprint of the
index is evident, achieving more than 50% reduction in method-1. This methodology can
be expanded to consider sector compositions and optimize while maintaining fixed sector
representations. With method-2, reductions of around 20-30% were achieved in different
cases, which should be perceived as a significant accomplishment without alterations to
sector representations.

CO2 GHG
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Figure 1: Comparison of carbon footprints of the considered benchmark index
and the decarbonized indices

Turn attention to in-sample estimation of TE for the four DCIs constructed using
a moving window of one-year and optimal values of k and C. We provide a summary in
Table 2. Please refer to the supplement for additional figures and discussions on this. The
risk on the benchmark portfolio is measured by sd(Rb), whereas the TE of DCI relative to
the benchmark can be calculated by sd(Rd −Rb)/sd(Rb). These in-sample estimations reveal
significant carbon footprint reductions in both methods, with low TE in most cases. Inter-
estingly, DCI 1 for CO2 exhibits high TE due to the exclusion of valuable stocks. DCI 2,
meanwhile, demonstrate low TE everywhere because it avoids dropping valuable stocks.

Table 2: Risk on the Benchmark portfolio (BM) and tracking error of the de-
carbonized indices relative to the benchmark index in each Method.

GHG CO2
Period BM TE(DCI 1) TE(DCI 2) BM TE(DCI 1) TE(DCI 2)

(in 10−3) (in 10−3)
2017-18 27.25 2.72 1.13 26.14 2.54 3.07
2018-19 53.62 1.40 6.31 51.55 1.28 1.37
2019-20 159.7 0.52 1.49 153.8 4.09 0.74
2020-21 159.8 0.79 2.96 150.4 9.0 0.45
2021-22 176.9 1.07 9.22 166.3 6.36 0.52

Our last point of discussion is the out-of-sample performance, where monthly returns
are computed for 2018-19 to 2022-23 using weights generated from in-sample calculations
conducted in the previous year. A comparison is made between the monthly performance
of the decarbonized indices, the actual benchmark, and the considered benchmark. We
observe that the constructed indices track the considered benchmark very closely and on the
average outperform the benchmark index. We then explore whether during climate events,
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the decarbonized indices exhibit superior performance compared to their parent benchmark
indices. To investigate this effect, we identify and highlight significant climate events from
the past few years in the out-of-sample results of our indices. Figure 2 illustrate these
findings. We observe that both indices outperform the benchmark in terms of out-of-sample
returns in at least seven of the twelve such events. Particularly, DCI 1 of GHG outperforms
the benchmark in 75% of the events.
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Figure 2: Out-of-sample performance of difference indices during important cli-
mate events across five years. BM stands for considered benchmark, DCI is
proposed decarbonized index following the two methods. CCC stands for cli-
mate change conference.

4. Conclusion

With the World Resources Institute (Friedrich et al., 2020) identifying China, USA
and India as top GHG emitters, there arises a compelling need for decarbonized indices in
India. We devised two novel optimization methods for creating practical decarbonized indices
which complement existing green indices and foster investment awareness. These indices
offer real-world utility, granting investors time to acclimate to economic shifts and financial
uncertainties. Leveraging real-time data, they mitigate risks tied to climate policy execution.
For long-term passive investors, these indices hold promise over clean energy options. They
exhibit comparable returns to benchmark indices, gaining an edge once carbon pricing and
stringent emissions policies take effect, potentially outperforming benchmarks.

Measurement of company-wise GHG emissions is crucial for constructing the indices.
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We faced the challenge of missing data due to poor reporting. This in turn impacted bench-
mark composition, potentially excluding stocks sensitive to climate change and policies.
Regression results showed limited explanatory power of common factors for stock returns.
In future, we plan to extend the current method to deal with missingness. We also be-
lieve that consideration of sector compositions with suitable data can enhance future results.
Moreover, we have laid the theoretical framework for integrating ideas like Value-at-Risk
in optimization. These quantities might capture the extreme movements in prices during
climate events in a better fashion.
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Abstract
This article examines how Data Science (DS), Artificial Intelligence (AI), and Big

Data Analytics (BDA) are used in the Indian digital government to produce official statis-
tics. Official statistics play a crucial role in shaping policy decisions, and scientific advances
have made it possible to extract insights and patterns from vast amounts of data. The
article examines the current state of official statistics in India and explores how the digital
government is applying DS, AI, and BDA to upgrade statistical analysis. The article also
discusses the challenges of executing these advanced technologies, including data quality and
privacy concerns. Furthermore, the review highlights some recent developments and schemes
for the benefit of DS, AI, and BDA in Indian official statistics, including the application of
Machine Learning (ML) and predictive modeling. The article concludes with recommenda-
tions for future research and policy in this area, highlighting the need for equality between
technological innovation and ethical considerations to ensure the precise and responsible use
of official statistics in the Indian digital government.

Key words: Official statistics; Data Science; Artificial Intelligence; Big Data Analytics.
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1. Introduction

Indian policy started to take shape from the days of colonial rule, with official statis-
tics playing a key role. The British government started to collect and publish data on
the Indian economy during the mid-nineteenth century. Data was collected on agriculture,
demography, and trade from official records. The government continued to formulate and
monitor economic and social policies based on official statistics after independence. The
Central Statistical Office (CSO), established in 1951, became the nodal agency for collect-
ing, compiling, and disseminating official statistics. (https://unstats.un.org/unsd/ws
d/docs/India_wsd_history.pdf). Rao (2010) argues that India’s rapid economic growth
and ambitious development agenda make official statistics even more important.
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1.1. Background and significance of official statistics in India

India, which has a population of 1.42 billion, heavily depends on official statis-
tics for policy-making decisions.(https://worldpopulationreview.com/countries,
https://www.statista.com/statistics/263766/total-population-of-india/).
Developing economic policies and programs in India is driven by official statistics. The In-
dian constitution mandates that the central government collect and publish official statistics
associated with the country’s economy, society, and population.

Official statistics are significant to Indian government officials and policymakers, and
numerous steps have done to grow their availability and accuracy. The National Statistical
System (NSS) gathers information on several socioeconomic factors via sample surveys. The
NSS contains various organizations such as the CSO, the National Sample Survey Office
(NSSO), and the Registrar General and Census Commissioner of India (RGCCI) (https:
//mospi.gov.in/142-present-indian-statistical-system-organisation).

The government uses official statistics for some functions, including planning, analyz-
ing, and monitoring policies and programs. For instance, official statistics used to assess the
progress of the Sustainable Development Goals (SDGs) and various flagship schemes of the
government such as Sashakt Bharat - Sabal Bharat (Empowered and Resilient India), Swachh
Bharat - Swasth Bharat (Clean and Healthy India), Samagra Bharat - Saksham Bharat (In-
clusive and Entrepreneurial India), Satat Bharat – Sanatan Bharat (Sustainable India) and
Sampanna Bharat- Samriddh Bharat (Prosperous and Vibrant India) (https://sustaina
bledevelopment.un.org/content/documents/26162Main_Messages_India.pdf). Non-
governmental organizations, academics, and researchers are also using official statistics to
study the economic facets.

The National Policy on Official Statistics (NPOS) (https://mospi.gov.in/sites
/default/files/announcements/draft_policy_17may18.pdf) outlines the draft policy
by the Government of India’s Ministry of Statistics and Programme Implementation (MO-
SPI). It covers fundamental principles of official statistics, objectives, government policy
initiatives, and mechanisms for regulating core statistics. This policy underlines the profes-
sional independence, confidentiality of data, and maintaining statistical standards to provide
relevant and accurate empirical data to inform economic and social policies. It further ad-
dresses the decentralization of the statistical system in India and the involvement of various
government bodies, including the MOSPI, Directorates of Economics & Statistics, and the
National Statistical Commission. It also prioritizes ensuring quality, promoting data sharing,
developing capacity, and cooperating internationally in official statistics. The revised draft
(https://mospi.gov.in/sites/default/files/announcements/Draft_National_Po
licy_on_Official_Statistics.pdf) brings into perspective the transformative power of
data and statistics in achieving sustainable development and inclusive growth. The initia-
tives embraced to reform and empower the institutional framework of the official statistical
system in India are discussed, such as involving better coordination, international data stan-
dards adoption, SDG monitoring via the National Indicator Framework, and the Collection
of Statistics Act amendment. It also indicates India’s election to the United Nations Statis-
tical Commission (UNSC) for 2024-2027 highlights its responsibility for maintaining global
statistical efficiency and integrity.

Official data are significant, but gathering and analyzing them in India is fraught with
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difficulties. The absence of timely and reliable data, especially in socio-economic indicators
such as poverty and employment, represents a significant issue. The inconsistent definition
and assessment of numerous indicators throughout the nation’s states and regions is another
problem. India’s development planning and policymaking process both heavily rely on official
statistics. The Indian government has taken measures to improve official statistics, but some
issues still need to be resolved for reliable and timely data dissemination.

1.2. Overview of the role of digital government in official statistics

In recent years, the importance of using digital technologies and data analytics in
official statistics has increased, and India is no exception. Digital government initiatives can
enhance official statistics through better collection, analysis, and dissemination, leading to
higher-quality, more timely, and comprehensive data.

The government of India has launched several initiatives to improve the availability
and accessibility of official statistics using digital technologies. For example, the MOSPI
launched the National Data Sharing and Accessibility Policy (NDSAP) (https://dst.
gov.in/national-data-sharing-and-accessibility-policy-0) and the National
Data and Analytics Platform (NDAP) (https://ndap.niti.gov.in/) to facilitate data
sharing between different government departments and to improve the availability of official
statistics.

NDSAPs main objective is to promote data sharing and reuse by defining standards
for sharing and guidelines for data management. National governments have made their
data available in public open formats for researchers, policymakers, and the general public.

NDAP is a web-based platform that opens up official statistics and datasets collected
by different departments in the government. The platform aims to promote data-driven
decision-making by making it easier for users to access and analyze official statistics. The
most notable definiteness omitted from the platform is the appliance of data visualization
and analysis.

Additionally, the Indian government has launched several other initiatives to improve
the collection and analysis of official statistics through digital government. Mobile apps and
cloud computing are examples of digital technologies used to improve data collection and
analysis. The government is also exploring the application of data analytics and ML to
automate data analysis and improve the accuracy and timeliness of official statistics.

Digital technology can transform the process of collecting, processing, and publishing
official data, making it more accurate and accessible for policymakers. Utilizing digital
technologies requires carefully evaluating data quality, privacy, and security concerns.

A particular focus will be placed on data science, AI, and BDA in India’s official
statistics as part of this review. The objectives of this review are to:

• Explore the historical and contemporary significance of official statistics in India.

• Identify the current challenges facing official statistics in India.

• Evaluate the potential of digital government in addressing these challenges.
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• Analyze the implications of digital government for the reliability and quality of official
statistics in India.

• Provide recommendations for future research and policy development in this area.

2. Overview of official statistics in India

Government agencies in India collect official statistics to inform policy and decision-
making. The National Statistics Office (NSO) is responsible for providing official statistics
covering population, economy, social welfare, natural resources, environment, and manage-
ment. The data security, quality, privacy, accessibility, and coverage of data remain chal-
lenges despite progress. India’s government is using digital technologies like NDAP and
NDSAP to improve official statistics.

2.1. Brief history of official statistics in India

Official statistics in India have a long and intriguing history dating back to the colonial
era. The CSO, founded in 1861 by the British colonial government, was the country of India’s
first official statistics office. The main objective of this agency was to provide statistical
information for the British government’s economic and administrative policies in India (Rao,
2010; Ghosh et al., 1999)

After India gained independence in 1947, the Central Statistical Organization was
renamed the Central Statistical Office and became part of the Ministry of Planning. The
CSO’s role has evolved to include gathering, compiling, and disseminating official statistics.

According to Sarma (1958), the government of India has taken pivotal measures to
streamline the statistical system as part of its development of a system for official statistics.
It supports economic aspects in planning implemented during the First Five Year Plan
(1951-1956). In the consecutive five-year plan (1956-1961), National Sample Survey Offices
(NSSOs) introduced the system to conduct surveys on different topics.

In 2005, the discussion of setting up the National Statistical Commission (NSC) was
to provide guidance and direction to the statistical system in India (https://mospi.gov.
in/national-statistical-commission-0). NSC was formed in 2006 to provide quality
and integrity in statistics to the society. Rao (2013) discusses the NSC and its functions.
It outlines the historical background of statistical data collection in the country and the
role of the NSC in coordinating statistical activities. NSC is responsible for identifying
core national statistics, formulating national policies related to the statistical system, and
improving public confidence in official statistics. It has a pivotal role in shaping the official
statistical system and meeting the statistical requirements of the nation.

The Indian government has prioritized the use of data analytics and digital technology
in official statistics during the last few years. The government has started some programs,
such as the NDSAP and NDAP, which were covered in the preceding section, to increase the
availability and accessibility of official data. In general, the statistical system of India has
gradually developed with an increasing focus on data for planning and policymaking. The
government’s focus on digital technology and data analytics expects change in future official
statistics.
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2.2. Current status and challenges of official statistics in India

The official statistics system in India has come a long way since its establishment.
Despite efforts to improve the statistical system, several challenges remain.

The lack of readily available and high-quality data is one of the significant challenges
facing official statistics in India. While India has made main progress in data collection
and dissemination, there are still gaps in the data availability, particularly for specific social
and economic indicators. It can also be problematic to determine the quality of the data
collected; some data sources are not updated regularly or do not accurately capture the
whole scope of the indicator being measured.

Another challenge is the better coordination and harmonization between different
agencies involved in data collection and dissemination. Multiple agencies collect and pub-
lish data in India, and there is a lack of coordination between them, which can lead to
inconsistencies and discrepancies in the data reported.

The dissemination of official statistics is also a challenge in India. Despite recent
advances, official statistics are not always easily accessible to the general public, limiting
their use and impact. Moreover, the statistical system must be more transparent to build
trust in its accuracy and reliability.

The COVID-19 pandemic has highlighted some of these challenges, with the need for
timely and accurate data becoming even more critical. The authors Hantrais et al. (2021)
in the period of pandemic has highlighted the need for better investment in the statistical
system to ensure its resilience and effectiveness in times of crisis.

To address these challenges, the Indian government has taken several steps to improve
the statistical system, initiatives like the NDSAP and the NDAP aimed at increasing the
availability and accessibility of official statistics. The government has also established a new
NSC to provide guidance and direction to the statistical system and enhance the quality of
official statistics.

Overall, while there have been significant improvements in the official statistics system
in India, there is still a long way to go to ensure that official statistics are of high quality,
accessible to all, and able to inform policy and decision-making effectively. For more details,
refer to (https://www.thehinducentre.com/publications/policy-watch/credible-d
ata-for-public-good-constraints-challenges-and-the-way-ahead/article659710
93.ece).

2.3. Role of digital government in addressing these challenges

Official statistics in India face many challenges that the digital government can help
address. The use of digital technologies and platforms can help improve data collection, qual-
ity, and dissemination, as well as increase transparency and accountability in the statistical
system (Rana et al., 2020; Chatterjee, 2020; Vijai, 2019).

One way in which digital government can improve official statistics is through the
use of technology in data collection. Surveys conducted on mobile devices and online ques-
tionnaires can help increase the efficiency and accuracy of data collection, specifically in
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hard-to-reach places. To reduce data entry errors and improve data collection efficiency, the
Indian government has launched the NSSO mobile application. The use of digital technology
can also help in real-time data collection, thereby ensuring the availability of timely data.

Another way in which digital government can improve official statistics is through
the use of advanced analytics techniques such as BDA and ML. Using these techniques can
uncover data insights missed by traditional statistics. India’s NDAP integrates and analyzes
administrative and survey data using BDA and AI.

Digital platforms, online portals, dashboards, and mobile applications can improve
the accessibility and user-friendliness of official statistics. India’s NDSAP promotes open
data sharing and easy access to official statistics.

Furthermore, the digital government can play a role in increasing transparency and
accountability in the statistical system. The use of digital platforms can help in the mon-
itoring and reporting of statistical data and make it easier for stakeholders to identify any
issues. Integrity and authenticity of official statistics can be ensured through blockchain,
building trust.

To sum up, the digital government can improve official statistics in India. By uti-
lizing digital technologies and platforms, the statistical system can become more efficient,
accurate, and accessible, leading to better quality and impact of official statistics on policy
and decision-making.

3. Digital government and official statistics in India

In India, the concept of digital government aims to use technology to enhance the
effectiveness and efficiency of public services, including gathering and distributing official
statistics. A digital government may transform official statistics collection, processing, and
analysis with the help of big data and AI. Initiatives such as the NDAP and the NDSAP
are examples of how the government of India is using digital technologies to improve the
quality and accessibility of official statistics. Data security, privacy concerns, and the need to
maintain data quality remain crucial factors for digital governance in India’s official statistics
(Alvarenga et al., 2020; Tripathi and Dungarwal, 2020).

3.1. Role of data science in official statistics in India

Data science is playing an increasingly important role in official statistics in India. A
large and complex dataset is analyzed using statistical and computational methods, including
machine learning and predictive modeling. In India, the NSO is using data science to improve
the accuracy and timeliness of official statistics. For more information, see Ashofteh and
Bravo (2021).

NSO is developing a BDA platform to analyze various datasets, including agriculture
(Sinha and Dhanalakshmi, 2022; Guntukula, 2020), health (Subrahmanya et al. (2022)),
energy, and environment, etc. The platform aims to use advanced data science techniques
to analyze large datasets to provide insights and inform policy decisions.

The use of data science in official statistics in India has the potential to enhance the
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accuracy and efficiency of data collection and analysis. Data quality and privacy remain
challenges, including the need for skilled professionals. The NSO has established guidelines
and protocols for data privacy and confidentiality while also providing training programs to
develop skills in data science.

3.2. Use of AI in official statistics in India

AI is also playing an increasingly important role in official statistics in India. AI
involves the process and analysis of the data using computational models and algorithms,
and it may automate several steps in data collecting and analysis (Chatterjee et al., 2022;
Vijai and Wisetsri, 2021).

In India, the NSO has been researching the use of AI in official statistics to upgrade the
efficiency and accuracy of data collection and processing. For example, using ML algorithms
to analyze satellite photos; for instance, may be used to estimate agricultural yields using
AI. Ilyas et al. (2023).

The use of AI in official statistics in India has the potential to improve the accuracy
and efficiency of data collection and analysis. The development and implementation of AI
solutions still face many challenges, including data quality and privacy concerns Sharma et al.
(2022). According to Ashofteh and Bravo (2021), the NSO has started training programs to
advance expertise in AI and ML and has set rules and processes to guarantee data quality
and privacy.

The National Institution for Transforming India (NITI) Ayog provides a report ht
tps://www.niti.gov.in/sites/default/files/2021-08/Part2-Responsible-AI-1
2082021.pdf focusing on the accelerated adoption of AI technology in India. AI plays a
significant role in the national strategy, emphasizing the diversity, digital divide, scale, and
lack of awareness in the Nation as factors that can amplify the risks associated with AI. In
February 2021, an approach paper titled ”Principles of Responsible AI” is scheduled, draw-
ing on consultations and the Indian Constitution. AI can improve healthcare, agriculture,
education, and entertainment, especially during the COVID-19 epidemic. It highlights how
essential it is to use technology sensibly, reflecting the Prime Minister’s remarks at the Davos
Summit. It also discusses the necessity for a multidisciplinary approach to solve issues and
foster confidence in AI systems, as well as the operationalization of responsible AI principles
and the roles of the public, corporate, and research sectors.

3.3. Use of BDA in official statistics in India

The use of BDA in official statistics has become increasingly important in India
Dubey et al. (2019a). BDA is a method for studying huge, complicated information to
uncover insights and patterns that might help policymaking. In India, the NSO has been
exploring the application of BDA to improve the accuracy and timeliness of data collection
and analysis. The NSO has initiated a project to develop a comprehensive BDA platform for
the research of various datasets, including those related to agriculture (Tantalaki et al., 2019;
Misra et al., 2020), health (Chinnaswamy et al., 2019; Li et al., 2021), and the environment
Dubey et al. (2019b, 2020). Nonetheless, issues like the lack of qualified personnel and the
necessity to guarantee the privacy and quality of data continue to exist.
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Despite facing challenges, BDA in official statistics has displayed promising outcomes
in India. The BDA program has been used in India to evaluate and monitor various govern-
ment programs, such as the Pradhan Mantri Jan Dhan Yojana (PMJDY) financial inclusion
program (https://pib.gov.in/Pressreleaseshare.aspx?PRID=1649091) and the
PMFBY crop insurance program (https://transformingindia.mygov.in/scheme/pr
adhan-mantri-fasal-bima-yojana/). Using BDA, the government accurately identified
scheme beneficiaries and improved resource targeting. BDA is used to assess the effectiveness
of environmental policies and programs, such as the Swachh Bharat Abhiyan (Clean India
Mission) campaign (https://www.pmindia.gov.in/en/major_initiatives/swachh-b
harat-abhiyan/). Consequently, BDA can facilitate data-driven policy decisions by the
government by transforming Indian official statistics.

The goal of good governance in democratic countries is to ensure the provision of
public services through effective participation to ensure accountability, responsiveness, and
transparency. Meeting SDGs is one way of accomplishing this. Converged governance efforts
at the grassroots level are required to achieve sustained development, which generates con-
tinuous baseline data. The amalgam of structured and unstructured data through BDA and
emerging information and communication technologies (ICTs) can revolutionize governance
processes and support data-backed decision-making Malhotra et al. (2018).

In addition, BDA can also help identify trends and patterns in official statistics that
might otherwise go unnoticed. Analyzing social, economic, and environmental issues can be
improved by combining data from social media, geospatial, and survey sources. BDA can be
used for disease tracking and predicting crop yields based on weather patterns. As a result,
the government can take proactive measures to address and prevent potential problems. For
example, Mamatha et al. (2023) used BDA to track the spread of diseases, while Jaber et al.
(2022) predicted crop yields using BDA. Policymakers can also use BDA insights to monitor
and evaluate the effectiveness of government policies and programs, providing valuable data-
driven feedback.

3.4. Exploring integrated data systems (IDS)

IDS are indispensable tools in National Statistics, ensuring data quality and efficient
data collection for digital surveys. These systems aim to maximize information accessibility
while minimizing user effort. The integration of data from various sources is a key aspect of
the transformation of national statistics systems in the digital age Gokhberg et al. (2020).
This integration should be supported by well-defined data governance frameworks Križman
and Tissot (2022) and should consider the specific features of the digital economy Kasianova
et al. (2021).

The integration process can be challenging, as emphasized by Sakshaug and Steorts
(2023). Their discussion on merging surveys and administrative data underscores the com-
plexities involved, including ethical considerations and computational burdens. Obtaining
consent for data linkage and improving accuracy through computational techniques emerge
as critical focal points.

Another innovative approach, as explored by Haim et al. (2023) involves a user-
centered paradigm for data collection, where participants contribute digital trace data for
academic research. This novel method combines survey data with donated data to unlock



2025] COMPREHENSIVE REVIEW OF DS, AI AND BDA IN INDIAN OFFICIAL STATISTICS 233

deeper insights. Challenges such as methodological and ethical considerations are addressed
alongside software solutions aimed at enhancing usability and reducing drop-outs.

The necessity for data and statistics in monitoring SDGs is addressed by Abbas et al.
(2023). The authors highlight challenges in data dissemination and suggest AI as a poten-
tial solution. Furthermore, it proposes capacity development projects and a comprehensive
indicator utilizing AI for processing data and producing official statistics.

The digital era brings challenges and opportunities, as discussed by Hassani and
MacFeely (2023) Their comprehensive framework for digital data governance emphasizes the
evolving landscape due to emerging technologies, underlining the importance of ethics and
trustworthiness. Vavilova and Ketova (2023) developed an analytical system for regional
socio-economic processes using official data and dynamic models to forecast and examine
time, territory, and age-related indicators.

Daraio et al. (2022) proposes a completeness-aware integration approach to enhance
data quality. Gootzen et al. (2023) introduces a quality framework for combining survey,
administrative, and big data, showcasing its application in case studies involving mobility
and virus detection data.

These studies elucidate the significance of IDS in shaping the future of National
Statistics, offering valuable insights and innovative solutions to meet the challenges of the
digital age.

3.5. Benefits and challenges of digital government in official statistics

Digital government has brought about many benefits in official statistics. Data sci-
ence, AI, and BDA extract insights and patterns from vast data. As a result, statistical
analysis is now more accurate and effective, which helps policymakers make better choices.
But, there are also some difficulties with the help of the digital government in official statis-
tics.

One of the benefits of digital government in official statistics is improved data quality.
The utilization of digital systems guarantees the standardization and consistency of data col-
lection, processing, and storage. As a result, data collection and analysis are more accurate,
and statistical outputs are more reliable. Furthermore, digital systems enable real-time data
collection, allowing for the latest statistical information essential in today’s rapidly changing
world.

Another benefit of digital government in official statistics is increased efficiency. Uti-
lizing cutting-edge tools like ML and BDA speeds up data processing and analysis, requiring
less time and effort than traditional statistical methods. Consequently, this enables policy-
makers to make more timely and informed decisions, leading to improved governance.

However, ensuring data privacy and security is one of the biggest challenges in adopt-
ing digital government in official statistics. Digital data storage requires data protection
regulations and privacy laws to prevent breaches and misuse.

In today’s society, a digital divide is growing between those with and without access
to technology. India’s digital government use in official statistics may leave behind marginal-
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ized communities due to the significant digital divide, leading to unequal representation in
statistical outputs. The need to overcome the digital divide and ensure that all communities
have access to technology is evident from this. It is imperative to close the digital divide
and ensure all communities have access to digital technology in light of these findings.

In conclusion, the benefits of digital government in official statistics are numerous,
including improved data quality and increased efficiency. However, the approval of digital
government also comes with several challenges, including data privacy and security and the
digital divide. Balancing advanced technologies with ethical considerations is crucial for
accessible digital government benefits in official statistics.

4. Case studies

4.1. Case study 1: Digital India and official statistics

Through the Digital India program, India aims to become a knowledge economy
and a society empowered by digital technology. Improvements in official statistics will be
a key focus of this initiative since they shape decisions regarding policy. This case study
examines the implementation of digital India in official statistics and identifies its benefits
and challenges.

4.1.1. Literature review

A knowledge-based economy is the objective of the Digital India initiative. Enhanc-
ing digital literacy and infrastructure and promoting digital services are essential to the
program’s success. Furthermore, digital technology will be essential to raising the standard
of official data.

The use of technology in official statistics has been a topic of interest in the literature
for several years. The study by Saxena (2018) explores the impact of demographic variables
on the perception of corruption in e-government services in India. Hierarchical regression
analysis shows that only gender influences the perception of corruption, with men perceiving
a decrease and women perceiving an increase post-launch of the Digital India initiative. The
study fills a gap in the literature by highlighting the importance of considering demographic
variables in understanding citizens’ perceptions of corruption in developing countries. Its
small sample size and narrow focus on demographic variables limit the study.

The article by Rao (2019) examines the processes of identity creation in digital India
through the use of Aadhaar. It challenges the distinction between identification and identity
and shows how Aadhaar procedures create or deny conditions for belonging. It involves
stitching together a digital signature, documentary proof of identity, and personal recognition
to become a rights-bearing individual. Aadhaar adds a new layer of procedures on top of
older methods of recognition, insisting on unique individual recognition while also recognizing
a specific status.

Aadhaar is India’s biometric program, which captures iris scans, fingerprints, facial
photos, and demographic data from over 90% of the population. Nair (2021) argues that
Aadhaar prompts a re-evaluation and contestation of individualism in postcolonial India be-
cause it dataficates the body. Additionally, it suggests that the program facilitates belonging
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in the emerging technocratic imagination of a digital India.

The authors Gautam et al. (2022) conducted a study to examine the impact of finan-
cial technology on digital literacy in India, using the poverty score as a moderating variable.
They found that Kisan Credit Cards (KCCs) had a positive association with literacy rate,
while ATMs had a negative one. However, both KCCs and ATMs had a beneficial effect
on literacy when interacting with poverty scores. The study’s findings have implications for
policymakers to understand the situation at the ground level while forming new policies for
society’s betterment. The authors suggest that ordinary people should take advantage of
financial technology and get motivated toward digital literacy. The study by Gautam and
Kanoujiya (2022) examined the impact of regional rural banks on digital literacy and rural
development in India, using data from 29 Indian states and two union territories over three
fiscal years. The study concluded that regional rural banks support digital literacy and rural
development, and it advised banks and the government to concentrate on these issues to
advance financial inclusion and rural development.

The article by Al Dahdah and Mishra (2022) examines India’s transition to digital
healthcare via the Rashtriya Swasthya Bima Yojana (RSBY) program and its use of smart
cards. The authors discuss the politics of digitized public-private welfare policy and question
the value of a program that aims to deliver affordable, high-quality healthcare to the pri-
vate health market. The authors analyze digital access to healthcare in RSBY, questioning
the role of digital technologies in transforming healthcare access in India. The study by
Kameswaran et al. (2023) examines the challenges faced by people with visual impairments
in India when accessing digital banking technology. The authors argue that there is a gap
in research on the challenges faced by people with disabilities in obtaining accessible tech-
nology in the first place. Through qualitative research, the authors find that participants
faced social and technical difficulties and engaged in advocacy work to secure and maintain
access to digital banking. They expand on the view of advocacy as a form of access work
performed by people with visual impairments.

The Department of Science and Technology (DST) has launched several pioneering
initiatives in the realms of Data Science, Big Data, and the Internet of Things (IoT). These
programs underscore the potential of data science in official statistics while also highlighting
pertinent challenges (https://dst.gov.in/data-science-research-initiative, https:
//dst.gov.in/big-data-initiative-1, https://dst.gov.in/internet-things-i
ot-research-initiative). To enhance innovation policy delivery and monitoring in
their respective sectors, DST also introduced the Automotive Sectoral System of Innovation
(IASSI) and the Indian ICT Sectoral System of Innovation (IICTSSI) in 2023. (https:
//dst.gov.in/sites/default/files/Indian%20Automotive%20Sectorial%20System%
20of%20Innovation%20%28IASSI%29%20Report_0.pdf, https://dst.gov.in/sites/d
efault/files/Indian%20ICT%20Sectorial%20System%20of%20Innovation%20%28IISS
I%29%20Report_0.pdf). Despite encountering challenges, both initiatives offer evidence-
based development priorities and policy options, emphasizing the importance of effective
management and connectivity for driving innovation and economic value.
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4.1.2. Case study analysis

• Overview of official statistics in India:
The MOSPI is in charge of the nation of Indian official statistics system. The system
is responsible for gathering, putting together, and disseminating official statistics on
different socio-economic indicators. The system consists of organizations, including
NSSO, CSO, and RGCCI.

• Background on digital India program:
Using technology to empower Indian society and economy, Digital India is a government
initiative. Digital infrastructure, digital literacy, and digital services are intended to
be created through the program. https://pib.gov.in/PressReleaseIframePage.
aspx?PRID=1885962). Through this program, citizens can access government services
and information digitally. It focuses on infrastructure, governance, and services.
The program includes initiatives such as the creation of digital infrastructure, such as
the National Optical Fibre Network (NOFN) (https://ddd.gov.in/scheme/bharat
-net/); the origination of digital literacy programs, the development of e-governance
platforms and the promotion of digital financial services. Through this program, the
government aims to empower citizens by providing them with digital tools and services
that enhance their participation in the country’s economic, social and political spheres.

• Evaluation of the implementation of digital India in official statistics:
The implementation of digital India in official statistics has been ongoing since the
launch of the initiative in 2015 (https://csc.gov.in/digitalIndia). Some key
initiatives undertaken by the Ministry of Electronics and Information Technology (Me-
itY) under the Digital India program are Aadhaar, DigiLocker, Open Government Data
Platform, etc. (https://pib.gov.in/PressReleaseIframePage.aspx?PRID=188596
2). The initiative has focused on several areas; including the following:

– Digitization of data collection: The initiative has aimed to digitize data collection
processes to improve the accuracy and timeliness of official statistics.

– Development of digital platforms: The initiative has aimed to develop digital
platforms for the dissemination of official statistics, such as the MOSPI website
and mobile applications.

– Use of data analytics: The initiative has aimed to leverage the power of data
analytics to extract insights and patterns from official statistics.

Overall, the implementation of digital India in official statistics has led to several
benefits; including the following:

• Improved accuracy and timeliness of official statistics: Digitalization has facilitated
the speedy publication of official statistics and the reduction of errors.

• Increased accessibility of official statistics: The development of digital platforms has
made official statistics more accessible to the general public, researchers, and policy-
makers.
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• Increased efficiency of official statistics: The use of data analytics has improved the
efficiency of official statistics analysis, allowing policymakers to make more informed
decisions based on them.

However, the implementation of digital India in official statistics has also faced several
challenges, including the following:

• Quality of data: The quality of data collected through digital platforms may be affected
by problems such as incomplete or inaccurate data or bias in the sampling process.

• Privacy concerns: The digitization of data collection processes raises concerns about
the privacy and confidentiality of individual data.

• Infrastructure challenges: The implementation of digital India in official statistics re-
quires significant investment in digital infrastructure, which may be a challenge for
some regions.

India’s government uses advanced tools for data cleaning, standardization, and val-
idation to improve data quality. For instance, the MOSPI has established the National
Data Quality Forum (NDQF) to improve data quality across government agencies (https:
//ndqf.in/). The NDQF has implemented data quality scorecards and audits to ensure the
accuracy and reliability of data. By spotting mistakes and abnormalities in data sets, the
application of ML algorithms for predictive modeling has also improved the quality of data
(Ngiam and Khor, 2019; Gruson et al., 2019; Sharma et al., 2020).

The MOSPI unveiled the digital India Mobile Van (https://pib.gov.in/Press
ReleaseIframePage.aspx?PRID=1895957). Mobile Vans are unique initiatives under
the program that provide digital literacy and allow remote and inaccessible areas in the
country to access digital services. The vans are equipped with computers and other digital
accessories, such as printers and scanners, which are used to provide several digital services.
It includes digital services for connecting to the Internet, imparting digital literacy, and
rendering government services electronically, such as enabling individuals to use the Internet
for registering their birth and death certificates, etc. In addition to reaching out to women,
seniors, and people with disabilities with limited access to digital infrastructure, the initiative
ensures that digital services reach out to the most vulnerable communities. This initiative
offsets the digital divide and ensures that marginalized groups access digital services from
their residences, making it more inclusive and empowering citizens in different parts of the
country. It has a significant contribution to ensuring the success of the Digital India program
since all citizens have access to digital services irrespective of their geographical location or
economic status.

On the other hand, the implementation of digital technologies in official statistics
comes with various challenges, like data privacy and security issues. To solve this, the
government of India has undertaken several measures. Firstly, the Data Protection Bills
have been set (https://www.meity.gov.in/writereaddata/files/The%20Digital%20P
ersonal%20Data%20Protection%20Bill%2C%202022.pdf). This bill primarily regulates
how people’s data can be collected, stored, and processed in India. Secondly, the National
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Cyber Security Coordinator (NCSC) has been set to coordinate and oversight cybersecurity
activities in government (https://pib.gov.in/PressReleaseIframePage.aspx?PRID=15
56474).

In conclusion, the execution of digital technologies in official statistics through ini-
tiatives such as Digital India has significantly improved the efficiency and effectiveness of
government decision-making. It is still necessary to address quality issues and privacy con-
cerns to ensure the correct and responsible use of official statistics. The Indian government
has taken various measures to address these challenges, and continued efforts in this direction
will be crucial for the success of digital government and official statistics in India.

4.2. Case study 2: Use of data science and BDA in the Indian census

The Indian census is one of the world’s major administrative tasks, with over 1.39
billion people residing in India (https://statisticstimes.com/demographics/count
ry/india-population.php). To make informed decisions, particularly in the healthcare,
education, and infrastructure sectors, policymakers and government officials need the census.
The application of data science and BDA has become more and more necessary for the
analysis of the massive volumes of data collected during the census. This case study will
explore the use of data science and BDA in the Indian census, focusing on their benefits and
challenges.

4.2.1. Background

India has a census system that gathers socioeconomic and demographic data from
each home every ten years. Businesses, researchers, and policymakers benefit from the
census’s valuable data. The introduction of digital technology has made the census more
accurate and efficient than it was under the paper-based system. Under the British Raj,
India conducted its first census in 1872. (https://censusindia.gov.in/nada/index.php/
catalog/40444/download/44078/DROP_IN_ARTICLE-05.pdf). The Office of the Registrar
General and Census Commissioner of India (ORGI), which is in charge of compiling and
disseminating census data, conducts the census. (https://censusindia.gov.in/census.
website/node/378).

4.2.2. Use of data science

With the tools it has provided for data collection, processing, analysis, and dissemi-
nation, data science has been crucial in the census. The census of India has been using data
science and machine learning algorithms to improve the accuracy and efficiency of its oper-
ations. An example is the use of ML algorithms to improve the quality of data collection.
The census uses Paper Data Capture Operation (PDC), which includes an automated data
collection system that uses optical character recognition (OCR) to read the data collected
from paper forms (https://www2.census.gov/programs-surveys/decennial/2020/prog
ram-management/planning-docs/PDC_detailed_operational_plan.pdf). Additionally,
the system alerts any data error such as missing or inaccurate entries for inspection by using
ML methods. The gathered information becomes more accurate and trustworthy as a result.
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4.2.3. Use of BDA

The article by Chatfield et al. (2018) focuses on the state of big data and BDA use
in the National census context of four countries: Australia, Ireland, Mexico, and the U.S.A.
The study found that the census agencies in these countries are at varying stages in digitally
transforming their census process, products, and services through assimilating and using
big data and BDA. However, the cross-case analysis of government websites and documents
revealed emerging challenges in creating public value in the national census context, including
BDA capability development, cross-agency data access & integration, and data security,
privacy, and trust. Based on the insights gained, the article proposes a research model to
explore the possible links among these challenges, BDA use, and public value creation.

The study by Marathe et al. (2020) presents a data science pipeline that integrates
techniques such as ML, Statistics, Data Visualization, and Geographic Information System
(GIS) for open big data in sustainable development. Using this pipeline, the Pune Municipal
Corporation applied the geo-enabled tree census dataset to its tree census data. The study
focuses on the visualization of big data, ward-wise analysis, and identification of marginalized
species that require urgent attention from the authorities. A new biodiversity index is
introduced in this study to address the limitations of existing indices when applied to cities
in the Indian subcontinent. Overall, this study highlights the potential of data science
techniques in analyzing big data and providing insights into sustainable development.

There are no studies utilizing BDA for the Indian census currently. BDA can be used
in the Indian census to analyze large volumes of data and extract insights and patterns. By
collaborating with technology companies, such as IBM and Microsoft, ORGI can develop
BDA tools for the census. In addition to helping identify population characteristics like
age, gender, education, and occupation, these tools will help analyze census data. As a
result, policymakers and planners can gain a better understanding of demographic trends
and patterns.

4.2.4. Challenges

Despite the advantages of data science and BDA in the Indian census, some issues still
need to be resolved. One of the main challenges is data privacy and security. The census col-
lects sensitive personal information, and there is a risk of this data being misused/breached.
The ORGI has enforced strict protocols for regulating data handling and storage.

A significant number of Indians still lack access to digital technology due to the digital
divide. Census data for these populations may be inaccurate or underrepresented as a result.
Using offline methods and training field enumerators to collect data using non-digital means
has been one of the strategies used by the ORGI to reach out to these populations.

4.2.5. Conclusion

Data science and BDA can improve data quality, accuracy, and efficiency in the
Indian census. However, several challenges are addressed, including data privacy and security
and the digital divide. To overcome these obstacles and guarantee that the census data is
accurate, dependable, and secure, the ORGI should develop strategies and protocols. It is
essential to balance technological innovation and ethical considerations when using census
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data to ensure the responsible use of advanced technologies.

4.3. Case study 3: Artificial intelligence and official statistics in India

The National Sample Survey (NSS) data is used as an example in this case study
to examine the application of AI in Indian government statistics. AI has the power to
completely change the methods used to gather, handle, and evaluate official statistics. The
study offers insights into the application of AI in the NSS data and looks at the advantages
and difficulties of utilizing it in official statistics.

4.3.1. Background

Official data have always been gathered and published by the Indian government,
going back to the colonial era. On the other hand, there is increasing interest in investigating
the application of AI in official statistics due to the quick evolution of technology. AI can
make data collection and analysis more quick, accurate, and efficient. This case study
especially looks at the NSS data as an example of how AI is being used in official statistics
in India. With a broad scope of social and economic variables covered, the NSS is the biggest
household survey carried out in India. The NSS is India’s largest household survey, covering
socioeconomic indicators used by policymakers, researchers, and companies to understand
its socioeconomic situation. Interviews and self-completed questionnaires are used for data
collection. Traditional data collection and analysis are time-consuming.

AI is increasingly used in official statistics in India to improve data analysis, predic-
tion, and decision-making. The study by Chawla et al. (2022) examines the role of AI and
Information Management (IM) in India’s energy transition, which has been strained due to
rapid urbanization and modernization. Despite India’s status as the global IT heart and
having above-average research output in AI, it has not fully leveraged its benefits in the en-
ergy sector. The study analyzes proposed strategies, current policies, and available literature
to highlight the challenges and barriers to developing and using AI and IM in India’s energy
sector. The study suggests that policymakers in India must take adaptive and swift actions
toward developing comprehensive AI and IM policies to extract maximum benefits from the
ongoing transition of the energy sector.

The article by Chatterjee et al. (2022) explores the public value generated by AI-
enabled services from the perspective of Indian citizens. An analysis of 315 interviews is
conducted using the Partial Least Square-Structural Equation Modeling (PLS-SEM) tech-
nique based on IT assimilation theory and public value theory. The study finds that the
assimilation of AI-enabled services positively impacts citizens’ satisfaction and generates
public value. It also identifies risk factors that may influence the uptake of such services.
The paper contributes to understanding the benefits and challenges of AI-enabled services
in the public sector. For instance, the government has started several initiatives that use AI
and ML algorithms to improve the timeliness and accuracy of official statistics. One such
example is the use of chatbots for data collection and analysis. India introduces a WhatsApp
chatbot to spread knowledge about the coronavirus and request social media platforms to
stop the spread of false information. (https://techcrunch.com/2020/03/21/india-whats
app-mygov-corona-helpdesk-bot/) The chatbot responds immediately to user inquiries,
speeding up response times and increasing data accuracy.
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Another example is the application of predictive modeling to estimate population
growth and migration patterns. The study by Devi et al. (2022) analyzes the Land Use and
Land Cover (LULC) change rate of Cochin, an urbanized coastal city in India. A contrast
of the observed and simulated LULCs of 2020 validated the model’s simulation. The model
demonstrated acceptable LULC dynamics, with an overall accuracy of 87.5%. The future
scenarios of LULC, projected till 2100, show an increase in built-up lands and a shrinkage of
natural land covers, such as forests and water bodies. The urban growth indicator confirms
the extreme transformation of the area in terms of urbanization. The study suggests estab-
lishing appropriate urban planning and management policies for sustainable environmental
conservation.

In addition to the census, the government has also launched several AI-based ini-
tiatives to improve the collection and analysis of data in various sectors, including health,
agriculture, and education. For instance, the National Health Stack (NHS) is a government
initiative that aims to digitize health records and use AI to analyze the data to improve
healthcare services. (https://abdm.gov.in:8081/uploads/NHS_Strategy_and_Approach
_1_89e2dd8f87.pdf).

However, some challenges are involved. The study by Sharma et al. (2022) explores
the interrelationships and challenges of implementing AI in India’s Public Manufacturing
Sector (PMS). AI integration with PMSs is challenging due to low data quality, inadequate
understanding of cognitive technologies, privacy concerns, and the high cost of implementing
cognitive projects. The study proposes a model for decision-makers and managers to develop
intelligent AI-enabled systems for manufacturing organizations in emerging economies. The
study highlights the need to address these challenges to enhance the scope of AI implemen-
tation in the PMS sector.

4.3.2. Methodology

This case study employs a qualitative research methodology, focusing on the study
of secondary data sources. Based on literature, official reports, and interviews with field
experts, the study examines the use of AI in NSS data. The analysis is guided by the
following research questions:

• What are the benefits of using AI in official statistics, specifically in the NSS data?

• What are the challenges associated with implementing AI in official statistics?

• How has AI been implemented in the NSS data, and what are the implications of this
implementation?

4.3.3. Findings

According to the study, AI has the potential to greatly increase the timeliness, accu-
racy, and efficiency of data gathering and processing in official statistics. AI can automate
complex tasks like data imputation, validation, and cleaning. It can enhance data quality
and lower mistake rates. Large data sets may be rapidly analyzed by AI, which enables
researchers to identify patterns and insights that would be difficult to discover manually.
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Moreover, AI can assist in lowering the expenses related to data collection and processing
by replacing human labor.

Even with these benefits, there are still difficulties in integrating AI into official data.
The quality of the data is one of the main obstacles. Unless AI algorithms are trained on
accurate or neutral data, they will provide biased or inaccurate results. Data security and
privacy are other issues since AI needs access to a lot of personal information. In low-resource
environments, it might be difficult to find qualified workers to develop, deploy, and maintain
AI systems.

In the case of the NSS data, AI has been implemented in several ways, such as us-
ing Natural Language Processing (NLP) techniques to extract data from open-ended survey
questions and using ML algorithms to impute missing data. However, there are still chal-
lenges associated with the implementation of AI in the NSS data, such as the need for more
training data to improve the accuracy of the algorithms.

4.3.4. Conclusion

In conclusion, the use of AI in official statistics has the potential to completely trans-
form India’s data collection, processing, and analysis methods. Incorporating AI into the
statistics system is a positive step for the government. Addressing AI’s issues and worries
is essential, especially those about data security and privacy. AI has the potential to be a
helpful tool in official statistics and advance national development with the correct policies
and approaches.

5. Future directions and concluding remarks

There are several potentials for the future of official statistics in India as the benefits
of data science, AI, and BDA continue to develop. When these cutting-edge technologies
are combined, data gathering, processing, and distribution may become more accurate and
efficient. Predictive modeling and ML may also help anticipate future trends and patterns,
which can give policymakers and decision-makers important information. There are advan-
tages and drawbacks, such as concerns about data privacy and quality, the digital divide,
and ethics.

Digital government has a critical role in shaping the future of official statistics in
India. It is possible to improve the accuracy, efficiency, and accessibility of official statistics
by using advanced technologies. The digital government may also help different government
departments and stakeholders engaged in official statistics collaborate and coordinate. It can
also ensure that the benefits of official statistics are shared equitably among all sections of
society, including marginalized communities. However, the digital government must also en-
sure that the ethical considerations associated with the advantages of advanced technologies
are addressed and that the benefits of official statistics are shared equitably.

Collaboration among policymakers, researchers, and practitioners is essential for max-
imizing the benefits and minimizing the challenges of advanced technologies. Some recom-
mendations for each group include:

• Policymakers: Policymakers must prioritize investment in technology and infrastruc-
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ture to support the implementation of advanced technologies in official statistics. Ad-
ditionally, these technologies must address ethical considerations, data quality, and
privacy concerns. Furthermore, they must prioritize capacity building and training to
ensure that government officials have the necessary skills and knowledge to implement
these technologies effectively.

• Researchers: Researchers need to investigate the possible advantages and challenges
associated with the implementation of advanced technologies in official statistics. In
addition, they must develop and share best practices for the responsible use of these
technologies. Furthermore, they must collaborate with government agencies to ensure
that research findings are translated into policy and practice.

• Practitioners: Practitioners involved in official statistics must prioritize the develop-
ment of data quality and management frameworks to ensure that data is accurate,
reliable, and timely. The benefits of official statistics must also be shared equitably
across society, including marginalized groups. Furthermore, they must engage in on-
going professional development to ensure they have the necessary skills and knowledge
to implement advanced technologies effectively.

To sum up, the use of advanced technologies, such as data science, AI, and BDA,
has the potential to transform the field of official statistics in India. Cooperation between
researchers, policymakers, and practitioners will maximize benefits while minimizing obsta-
cles. Digital governments must address the ethical issues associated with these technologies
and ensure that all sections of society can share the benefits of official statistics.

In conclusion, this review article explored the use of data science, AI, and BDA in
official statistics in India’s digital government. This study found that the implementation of
digital government programs has greatly enhanced the gathering, processing, and distribution
of official statistics in India. While AI has aided in the development of predictive modeling
and pattern recognition, data science and BDA have made it possible to collect and analyze
data more thoroughly and accurately. However, there are several difficulties with using
these technologies in official statistics, such as bias, privacy, and data quality concerns. To
guarantee that the use of cutting-edge technology in official statistics is morally acceptable,
responsible, and accurate, policymakers and practitioners need to address these issues.

The implications of this study are significant for both practice and policy. It empha-
sizes the importance of implementing cutting-edge technologies in official statistics to improve
data quality and facilitate data analysis. Also, it emphasizes the importance of thoroughly
considering ethical and privacy concerns before introducing new technologies. Digital gov-
ernment can promote the application of cutting-edge technology in official statistics, and
government support is essential for advancing pertinent infrastructure and expertise. While
using these technologies, policymakers should ensure that official statistics remain accurate
and unbiased.

The future of official statistics in India depends on the development of digital gov-
ernment and the use of advanced technologies, such as data science, AI, and BDA. Future
research in this area should explore the ethical and privacy concerns surrounding the ben-
efit of these technologies in official statistics. Additionally, research can explore how these
technologies can improve the quality and accuracy of official statistics in India’s rural and
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regional regions. Furthermore, research should examine how advanced technologies can facil-
itate the accessibility and dissemination of official statistics to decision-makers, researchers,
and the general public.
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Abstract
This paper focuses on predicting the movement of State Bank of India (SBI) stock

prices using the Markov model, a challenging task in financial markets. It comprises two
main sections: Firstly, it formulates probability distributions for various states using Markov
model parameters, deriving Pearson’s coefficients like average, variance, skewness, and kur-
tosis. Secondly, real-time SBI data is gathered and divided into five datasets representing
each business day. Numerical calculations are performed using R software, computing pa-
rameters such as transition probability matrix (TPM) and initial probability vector (IPV)
for each dataset. Expected returns and closing price predictions are determined, validated
through the Chi-square test for goodness of fit, and assessed for robustness using Akaike in-
formation criterion (AIC) and Bayesian information criterion (BIC). The model is designed
to facilitate optimal investment strategies and could benefit from user-friendly digital inter-
faces for traders. It explores indicators such as timing for buying/selling, probability of price
movements, expected gains/losses, and estimated closing prices to enhance understanding of
SBI’s market behaviour in the Indian context.

Key words: Markov model; Share price; Probability distribution; Transition probability;
Initial probability.
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1. Introduction

Mathematical and stochastic modeling are pivotal tools in unraveling the intricacies
of the stock market and projecting its future trends. This paper is dedicated to crafting
a three-state Markov probability distribution model to analyse stocks and anticipate their
forthcoming price fluctuations.

Certainly, at the core of every nation’s economic structure lies an indispensable link
with its stock market. This intricate connection serves as the lifeblood of the country’s
financial stability, embodying a sophisticated network where a diverse spectrum of individ-
uals and entities converge. Participants engage in a multifaceted interplay of buying and
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selling an extensive array of financial instruments within this bustling marketplace. This
dynamic interaction propels economic activities and nurtures an environment teeming with
opportunities for trading and investment.

Amidst this whirlwind of financial transactions, traders emerge as the linchpin, fueled
by the relentless pursuit of optimal outcomes. Their endeavours are marked by a meticulous
analysis of market trends, a process that involves an exhaustive examination of historical
data, intricate technical analyses, and a keen understanding of global economic influences.
Armed with this knowledge, traders navigate the intricate pathways of the market, making
calculated and strategic decisions.

Crucially, these traders are not guided by mere intuition but rather by a commitment
to informed decision-making. They implement sophisticated risk management strategies,
diligently assessing potential risks and rewards. Their objective is crystal clear: to optimise
profits and minimise losses. Every move within this dynamic financial landscape is a result
of careful consideration, a balance between seizing opportunities and mitigating risks.

In the grand tapestry of the stock market, the significance of this strategic decision-
making cannot be overstated. It not only influences individual financial destinies but also
ripples through the larger economic fabric of the nation. The stock market becomes a
barometer, reflecting the collective confidence and sentiment of investors, thereby shaping
the economic trajectory of the entire country.

In essence, the stock market embodies more than just financial transactions; it sym-
bolizes the aspirations, strategies, and challenges of a nation’s economic journey. Armed
with their expertise and insights, traders play a pivotal role in shaping this intricate land-
scape, where every decision made resonates far beyond individual portfolios, weaving into
the intricate tapestry of a nation’s economic prosperity.

A Markov regime ARCH model used to investigate and analyse the volatility within
market behaviour (Cai (1994)). There is sufficient evidence on the usage of Wiener–Hopf
results for solving the option pricing problems with the Markov processes (Jobert and Rogers
(2006)). When applied to forecast data from the stock market, the HMM with fuzzy model
innovation produced results that were more accurate than those from forecasting models
like ARIMA, ANN, etc. (Hassan (2009)). A flexible Mixed HMM approach that considers
temporal and spatial variability. This method is adaptable because it can handle the dis-
tinctive features of financial time series data, such as asymmetry, kurtosis, and unobserved
heterogeneity (Dias et al. (2010)). HMM and support vector machines were used to predict
the movement of the stock price (Rao and Hong (2010)). The stock price dynamics were
examined through a semi-Markov return model (D’Amico and Petroni (2012)). A finite state
Markov chain model was used to evaluate share price movements in the share market (Choji
et al. (2013)). The utilization of a Markov-switching using GARCH approach has provided
a method for predicting the volatility in the Tehran Stock Exchange-TSE (Abounoori et al.
(2016)). The Nigerian Stock Exchange market has utilized the Markov chain model for
analysing its behaviour (Adesokan et al. (2017)). The Markov chain model was used to fore-
cast the stock price movement of the Taiwanese company High Tech Computer (Huang et al.
(2017)). The Markov chain is used in forecasting the behaviour of the Nepal Stock Exchange
Index (Bhusal (2017)). The Markov chain model is used to predict the stock market trend
in the context of the Indian stock market (Padi et al. (2022)). The HMM was utilised to
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properly comprehend the financial factors in the stock market, and the results were more
helpful for portfolio managers in making the best choices (Dar et al. (2022)). The impact of
international trade on the share prices of the Industrial Bank of Korea was assessed through
the utilization of stochastic prediction modelling (Dar et al. (2023)).

Numerous studies have predominantly concentrated on classical methodologies for
either developing new models or applying existing Markov models to forecast market be-
haviour. However, there exists a dearth of research on deriving probability distributions
for sequences of states and estimating parameters through predictive modeling, specifically
tailored to Markov processes. Delving into the probability distributions of transitional states
can furnish more precise information inputs. The parametric estimation within the Markov
model and its extension into probability distributions have been largely overlooked by prob-
ability researchers.

In response to this research gap, our study underscores the importance of Markov
modeling in formulating probability distributions by constructing the Markov model based
on parameters such as TPM and IPV. We have mathematically derived explicit relationships
for various statistical measures using these formulated probability distributions. Focusing
on three states - Rise State, Stable State, and Fall State - of SBI shares, our General Markov
model entails two key parameters: TPM, governing transitions among states, and IPV,
describing the likelihood of each state’s initial occurrence. Our primary objective is to es-
tablish probability distributions separately for Rise State, Stable State, and Fall State across
all segregated data sets for different business days. We have derived explicit mathematical
relationships for diverse statistical measures and Pearson’s coefficients. Sensitivity analysis
has been conducted by determining Markov model parameters, obtaining probability distri-
butions, and analysing statistical measures to gain a comprehensive understanding of SBI
share price behaviour. Additionally, our model encompasses an additional study where ex-
pected returns and closing prices of SBI are computed using the formulas outlined in Section
2.7.

2. Stochastic model

The Markov model is a type of mathematical model that focuses on predicting the
next event based on the event that happened just before it, without considering events from
a long time ago. This means, it doesn’t have a memory of past events beyond the most
recent one. The schematic diagram for the model is placed below.
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Figure 1: Schematic Diagram of Three-State Markov Model

In this study, the main aim is to figure out the likelihood of different states happening.
These states are divided into three categories: Rise State, Stable State, and Fall State. The
Markov model consists of two key parameters namely TPM and IPV.

2.1. Transition probability matrix (TPM)

A Transition Probability Matrix (TPM) is often called a Stochastic Matrix. It is
defined as

P =
( Yn

Yn−1 Pjk

)
∀j, k = 1, 2, 3

P{Yn = k/Y0 = 1, Y1 = 2, ..., Yn−1 = j} = P [Yn = k/Yn−1 = j] = Pjk be the transition
probability from jth state to kth state. Every TPM must satisfy the following conditions
like,

• The matrix must possess equal numbers of rows and columns; i.e., TPM is a squared
matrix.

• Each element within the matrix must represent a probability; i.e., Pjk ≥ 0 .

• The sum of each row must be equivalent to one; i.e.,
3∑

k=1
Pjk = 1, ∀j, k = 1, 2, 3.

It earns the label “Doubly Stochastic Matrix” when the sums of both its each row
and each column are equal to one.



2025] THREE-STATE MARKOV PROBABILITY DISTRIBUTIONS 253

2.2. Initial probability vector (IPV)

The initial probability vector determines the chance of happening in a particular
state. It is denoted by π.

π = (π1, π2, π3)

2.3. Notations and terminology

πk : Initial probability for the kth state, πk ≥ 0; for all k=1,2,3;
3∑

k=1
πk = 1; πk = nk

n
;

n =
3∑

k=1
nk, i.e., Total number of observations considered for the study in the specific

business day

pjk: The transition probability between states j and k represents the likelihood of moving
from state j to state k in a given system or process.
i.e., P{Yn = k/Yn−1 = j} ≥ 0; 0 ≤ pjk ≤ 1 and

3∑
k=1

pjk = 1∀j = 1, 2, 3.

j : Origin state

k : Destination state

yt: Share price of the SBI on tth day

∆yt: yt − yt−1 ; The difference between the current day (t) share price and previous day
(t-1) share price in SBI

dyt: Derivative of the share price’s return at time ‘t’; dyt = ∆yt

yt−1

R : Rise State occurs in SBI; R =
(

dyt ≥ µ + 3σ√
n

)

S : Stable State occurs in SBI; S =
(

µ − 3σ√
n

< dyt < µ + 3σ√
n

)

F : Fall State occurs in SBI; F =
(

dyt ≤ µ − 3σ√
n

)

µ: Mean of dyt

σ: standard deviation of dyt

n : Total number of observations in the business day

m : Number of estimated values for testing the goodness of fit

Oi: Observed share value on ith day; i=1,2, . . . , n

Ei: Estimated share value on ith day; i=1,2, . . . , n

v : Number of parameters in the study of specific business day
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Y (ω1): Number of times Rise State occurs, [Y (ω1) = y] = 0, 1

Y (ω2): Number of times Stable State occurs, [Y (ω2) = y] = 0, 1

Y (ω3): Number of times Fall State occurs, [Y (ω3) = y] = 0, 1

2.4. Probability distribution and some statistical measures for Rise State

2.4.1. The probability distribution for Rise State

Let us consider a random variable denoted by Y (ω1) = y which represents the hap-
pening of the Rise State. This variable can assume values 0 and 1, where ‘0’ signifies its
absence of the Rise State and ‘1’ signifies its presence of the Rise State.

P [Y (ω1) = y] =





3∑
k=1

3∑
j=2

πkpkj ; for y = 0
3∑

k=1
πkpk1 ; for y = 1

0 ; otherwise(y ≥ 2)

(1)

2.4.2. Statistical measures for Rise State

The Average Occurrence of Rise State

µR =
3∑

k=1
πkpk1 (2)

The Variance of a Rise State

σ2
R = µ2

R

( 3∑

k=1

3∑

j=2
πkpkj

)
+ (1 − µR)2

( 3∑

k=1
πkpk1

)
(3)

The Third Central Moment for Rise State

µ3R = −µ3
R

( 3∑

k=1

3∑

j=2
πkpkj

)
+ (1 − µR)3

( 3∑

k=1
πkpk1

)
(4)

The Coefficient of skewness for Rise State

β1R =
[

− µ3
R

( 3∑

k=1

3∑

j=2
πkpkj

)
+ (1 − µR)3

( 3∑

k=1
πkpk1

)]2
×

[
µ2

R

( 3∑

k=1

3∑

j=2
πkpkj

)
+ (1 − µR)2

( 3∑

k=1
πkpk1

)]−3
(5)

Coefficient of Kurtosis for Rise State

β2R =
[
µ4

R

( 3∑

k=1

3∑

j=2
πkpkj

)
+(1−µR)4

( 3∑

k=1
πkpk1

)][
µ2

R

( 3∑

k=1

3∑

j=2
πkpkj

)
+(1−µR)2

( 3∑

k=1
πkpk1

)]−2

(6)
The Coefficient of Variation for Rise State

C.VR =
[
µ2

R

( 3∑

k=1

3∑

j=2
πkpkj

)
+ (1 − µR)2

( 3∑

k=1
πkpk1

)]1/2[ 3∑

k=1
πkpk1

]−1
% (7)
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2.4.3. Moment generating function for Rise State

MY R(t) =
( 3∑

k=1

3∑

j=2
πkpkj

)
+ et

( 3∑

k=1
πkpk1

)
(8)

2.4.4. Characteristic function for Rise State

ϕY R(t) =
( 3∑

k=1

3∑

j=2
πkpkj

)
+ eit

( 3∑

k=1
πkpk1

)
(9)

2.4.5. Probability generating function for Rise State

PSR(t) =
( 3∑

k=1

3∑

j=2
πkpkj

)
+ S

( 3∑

k=1
πkpk1

)
(10)

2.5. Probability distribution and some statistical measures for Stable State

2.5.1. The probability distribution for Stable State

Let us consider a random variable denoted by Y (ω2) = y which represents the hap-
pening of the Stable State. This variable can assume values 0 and 1, where ‘0’ signifies its
absence of the Stable State and ‘1’ signifies its presence of the Stable State.

P [Y (ω2) = y] =





3∑
k=1

3∑
j=1,j ̸=2

πkpkj ; for y = 0
3∑

k=1
πkpk2 ; for y = 1

0 ; otherwise(y ≥ 2)

(11)

2.5.2. Statistical measures for Stable State

The Average Occurrence of Stable State

µS =
3∑

k=1
πkpk2 (12)

The Variance of a Stable State

σ2
S = µ2

S

( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)
+ (1 − µS)2

( 3∑

k=1
πkpk2

)
(13)

The Third Central Moment for Stable State

µS3 = −µ3
S

( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)
+ (1 − µS)3

( 3∑

k=1
πkpk2

)
(14)
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The Coefficient of Skewness for Stable State

β1S =
[

− µ3
S

( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)
+ (1 − µS)3

( 3∑

k=1
πkpk2

)]2[
µ2

S

( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)

(1 − µS)2
( 3∑

k=1
πkpk2

)]−3
(15)

Coefficient of Kurtosis for Stable State

β2S =
[
µ4

S

( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)
+ (1 − µS)4

( 3∑

k=1
πkpk2

)][
µ2

S

( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)

(1 − µS)2
( 3∑

k=1
πkpk2

)]−2
(16)

Coefficient of variation for Stable State

C.VS =
[
µ2

S

( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)
+ (1 − µS)2

( 3∑

k=1
πkpk2

)]1/2( 3∑

k=1
πkpk2

)−1
% (17)

2.5.3. Moment generating function for Stable State

MY S(t) =
( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)
+ et

( 3∑

k=1
πkpk2

)
(18)

2.5.4. Characteristic function for Stable State

ϕY S(t) =
( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)
+ eit

( 3∑

k=1
πkpk2

)
(19)

2.5.5. Probability generating function for Stable State

PSS(t) =
( 3∑

k=1

3∑

j=1,j ̸=2
πkpkj

)
+ S

( 3∑

k=1
πkpk2

)
(20)

2.6. Probability distribution and some statistical measures for Fall State

2.6.1. The Probability distribution for Fall State

Let us consider a random variable denoted by Y (ω3) = y which represents the hap-
pening of the Fall State. This variable can assume values 0 and 1, where ‘0’ signifies its
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absence of the Fall State and ‘1’ signifies its presence of the Fall State.

P [Y (ω3) = y] =





3∑
k=1

2∑
j=1

πkpkj ; for y = 0
3∑

k=1
πkpk3 ; for y = 1

0 ; otherwise(y ≥ 2)

(21)

2.6.2. Statistical measures for Fall State

The Average Occurrence of Fall State

µF =
3∑

k=1
πkpk3 (22)

The Variance of a Fall State

σ2
F = µ2

F

( 3∑

k=1

2∑

j=1
πkpkj

)
+ (1 − µF )2

( 3∑

k=1
πkpk3

)
(23)

The Third Central Moment for Fall State

µ3
F = −µ3

F

( 3∑

k=1

2∑

j=1
πkpkj

)
+ (1 − µF )3

( 3∑

k=1
πkpk3

)
(24)

The Coefficient of Skewness for Fall State

β1F =
[

− µ3
F

( 3∑

k=1

2∑

j=1
πkpkj

)
+ (1 − µF )3

( 3∑

k=1
πkpk3

)]2
×

[
µ2

F

( 3∑

k=1

2∑

j=1
πkpkj

)
+ (1 − µF )2

( 3∑

k=1
πkpk3

)]−3
(25)

Coefficient of Kurtosis for Fall State

β2F =
[
µ4

F

( 3∑

k=1

2∑

j=1
πkpkj

)
+(1−µF )4

( 3∑

k=1
πkpk3

)][
µ2

F

( 3∑

k=1

2∑

j=1
πkpkj

)
+(1−µF )2

( 3∑

k=1
πkpk3

)]−2

(26)
The Coefficient of Variation for Fall State

C.VF =
[
µ2

F

( 3∑

k=1

2∑

j=1
πkpkj

)
+ (1 − µF )2

( 3∑

k=1
πkpk3

)]1/2( 3∑

k=1
πkpk3

)−1
% (27)

2.6.3. Moment generating function for Fall State

MY F (t) =
( 3∑

k=1

2∑

j=1
πkpkj

)
+ et

( 3∑

k=1
πkpk3

)
(28)
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2.6.4. Characteristic function for Fall State

ϕY F (t) =
( 3∑

k=1

2∑

j=1
πkpkj

)
+ eit

( 3∑

k=1
πkpk3

)
(29)

2.6.5. Probability generating function for Fall State

PSF (t) =
( 3∑

k=1

2∑

j=1
πkpkj

)
+ S

( 3∑

k=1
πkpk3

)
(30)

2.7. Predictions of returns on income

2.7.1. Expected returns on SBI shares

The explicit mathematical relation for computing expected share returns

[E.S.R]3×1 = [pjk]n3×3[M.S]3×1; ∀ n = 1, 2, ... (31)

E.S.R =Expected share price returns
P n = Limiting Probability Matrix (Computed using TPM)
M.S =Mean state

2.7.2. Prediction of closing prices of SBIs shares

The explicit mathematical relation for predicted Closing prices of SBI shares

P.S.P = (YRt × µR) + (YSt × µS) + (YF t × µF ) (32)

where,

YRt = Expected closing price of the SBIs share on the current day for the Rise State
YSt= Expected closing price of the SBIs share on the current day for the Stable State
YF t= Expected closing price of the SBIs share on the current day for the Fall State
µR= Average chance for occurrence of the Rise State
µS = Average chance for occurrence of the Stable State
µF = Average occurrence for occurrence of the Fall State

2.8. Validation of the model

2.8.1. Testing for model’s goodness of fit

The Chi-Square test statistic, denoted as χ2 , is utilized to assess the goodness of
fit between observed and expected categorical data. In the context of comparing observed
(original) and expected (predicted) share prices, the formula for χ2 is:

χ2 =
m∑

i=1

[Oi − Ei]2
Ei

∼ χ2
m−1 (33)
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2.8.2. Computation of AIC and BIC

The formulas for calculating AIC (Akaike Information Criterion) and BIC (Bayesian
Information Criterion) are as follows:

AIC = −2 loglikelihood + 2v (34)

BIC = −2 loglikelihood + v 2logn (35)

3. Data description for the developed model

Figure 2 provides a clear depiction of the data and methodology employed in the cur-
rent study. It delineates the detailed procedures utilized to assess the results with precision
and thoroughness.

Figure 2: Three-State Markov model data description & methodology flow chart

3.1. Data source and organization of the data

The detailed description of Figure 2; in order to utilise the Markov model that was
developed, real-time data on the closing prices of SBI (State Bank of India) stocks was
considered. This real-time data, crucial for evaluating the model’s effectiveness, consisted
of 251 observations collected over a period spanning from 2nd May 2022 to 5th May 2023.
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These observations were meticulously sourced from the renowned financial platform, Yahoo
Finance, accessible via the internet link (https://in.finance.yahoo.com).

The dataset, which served as the foundation for this analysis, was specifically focused
on the closing prices of SBI stocks. Closing prices, in the context of stock market analysis,
represent the final prices at which a stock trades during a regular trading session. These
prices are often used to assess the overall performance of a particular stock.

This dataset, constituting 251 data points, is of paramount importance for evaluating
the Markov model’s predictive capabilities in real-world scenarios. It forms the basis upon
which the model’s predictions and effectiveness in forecasting SBI stock prices are tested
and validated. The historical closing prices, meticulously organized and structured, were
compiled into a comprehensive sample data template, as detailed in Table 1. This template
serves as the primary reference for the subsequent analysis and assessment of the Markov
model’s accuracy and reliability in predicting the closing prices of SBI stocks during the
specified period.

Table 1: SBI’s sample data matrix

S.No. Date Closing Price
1 02-05-2022 491
2 04-05-2022 479.649994
3 05-05-2022 480
... ... ...

249 03-05-2023 570.5
250 04-05-2023 580
251 05-05-2023 576.5

3.2. Data formulation

In light of the observed influence of market seasonality on closing prices concerning
specific weekdays, the 251 collected observations were categorized based on business days
(Monday, Tuesday, Wednesday, Thursday, and Friday). The Sample data matrix of Mondays
data placed in Table 2. Remaining business days also done like Mondays data.

Table 2: SBI’s Monday data matrix

S.No. Date Closing Price Returns State Transition
1 02-05-2022 491 - - -
2 09-05-2022 475.899994 -0.03075 F -
3 16-05-2022 455 -0.04392 F FF
... ... ... ... ... ...

49 10-04-2023 526.299988 -0.00085 S RS
50 17-04-2023 544 0.033631 R SR
51 24-04-2023 554.599976 0.019485 R RR

To delve deeper into this segmentation and its impact, individual sensitivity studies
were undertaken for each business day. Prior to these studies, the data from all five datasets
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were pooled together, facilitating comprehensive analysis. Within each dataset, a meticulous
classification was performed, focusing on the transient state of returns. This systematic
approach allowed for a detailed exploration of how market dynamics and price fluctuations
varied across different weekdays, shedding light on the intricate relationship between market
behaviour and specific business days.

3.3. Data disclosure

The states are determined according to the values of dYt and are categorized into three
distinct types: Rise(State-1) when the condition dYt ≥ µ + 3σ√

n
is met, Stable (State-2) when

the condition µ − 3σ√
n

< dYt < µ + 3σ√
n

is satisfied, and Fall (State-3) when the condition
dYt ≤ µ − 3σ√

n
holds true. In these definitions, µ represents the mean, σ represents the

standard deviation of dYt, and n signifies the number of observations within the segregated
dataset.

Classification of states for Monday, Tuesday, Wednesday, Thursday, and Friday are
placed in the Figures 3, 4, 5, 6, and 7 respectively.

Figure 3: Classification of states in Monday data

Figure 4: Classification of states in Tuesday data
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Figure 5: Classification of states in Wednessday data

Figure 6: Classification of states in Thursday data

Figure 7: Classification of states in Friday data

Markov model is a composition of TPM, and IPV, which are computed with real-time
data through R programming. Separate probability distributions, and statistical character-
istics like average, variance, third central moments, skewness, kurtosis etc. are obtained
for all segregated data sets. However, we have considered the averages for computing the
predicted closing prices. The expected returns for SBI of all data sets are calculated by a
formula as in section 2.7.1. We have obtained the predicted values (about 10 observations) of
expected returns using the notion of sections 2.7.1 and 2.7.2. The developed Markov model
is validated with the Chi-Square test for all data sets individually. AIC and BIC are also
computed for each data set separately for the model’s goodness of fit.
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4. Results and discussion

The below parameters are placed in sections 4.1 and 4.2 which are computed by the
above methodology.

4.1. Transition probability matrix (TPM) for SBI share closing prices

The explored TPM for Monday, Tuesday, Wednesday, Thursday, and Friday sets are
as follows.

4.1.1. Transition behaviour of the market from monday to friday

The explored TPMs from Monday to Friday data placed in below Table 3.

Table 3: Transition Probabilities for all Business Days in a Week

Day Transition Probabilities
RR RS RF SR SS SF FR FS FF

Monday 0.4706 0.2353 0.2941 0.4286 0.3571 0.2143 0.2222 0.2778 0.5
Tuesday 0.625 0.1875 0.1875 0.3125 0.375 0.3125 0.1429 0.5 0.3571

Wednesday 0.4445 0.2222 0.3333 0.3529 0.3529 0.2941 0.3077 0.5385 0.1538
Thursday 0.45 0.3 0.25 0.1538 0.3077 0.5385 0.625 0.1875 0.1875

Friday 0.4 0.4 0.2 0.1667 0.5 0.3333 0.375 0.25 0.375

The graphical representation of the above table is placed in Figure 8. It gives a clear
interpretation of the transition behaviour of all business days in a week.

Figure 8: Transition probabilities for all business days in a week
From the above Table 3 and Figure 8 transition probabilities on Monday data set, it is

observed that Fall State in the current day given that Fall State in the previous day is having
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the highest likelihood (50%); similarly Rise State in the current day given that Rise State
in the previous day is having second highest likelihood (47.06%); Rise State in the current
day given that Stable State in the previous day is having third highest likelihood (42.86%);
and Fall State in the current day given that Stable State in the previous day having least
likelihood (21.43%).

Based on the transition probabilities gleaned from Table 3 and Figure 8 of the Tuesday
data set, it is observed that Rise State in the current day given that Rise State in the previous
day is having the highest likelihood (62.5%); similarly Stable State in the current day given
that Fall State in the previous day is having second highest likelihood (50%); Stable State in
the current day given that Stable State in the previous day is having third highest likelihood
(37.5%); and Rise State in the current day given that Fall State in the previous day having
least likelihood (14.29%).

In analysing the transition probabilities extracted from Table 3 and Figure 8 of the
Wednesday data set, it is observed that Stable State on the current day given that Fall State
in the previous day is having the highest likelihood (53.85%); similarly Rise State in the
current day given that Rise State in the previous day is having second highest likelihood
(44.45%); Stable State in the current day given that Stable State in the previous day and
Rise State in the current day and Stable State in the previous day both are having third
highest likelihood (35.29%); and Fall State in the current day given that Fall State in the
previous day having least likelihood (15.38%).

Examining the transition probabilities sourced from Table 3 and Figure 8 of the
Thursday data set, it is observed that Rise State in the current day given that Fall State in
the previous day is having the highest likelihood (62.5%); similarly, Fall State in the current
day given that Stable State in the previous day is having the second highest likelihood
(53.85%); Rise State in the current day given that Rise State in the previous day is having
third highest likelihood (45%); and Rise State in the current day given that Stable State in
the previous day having least likelihood (15.38%).

From the above Table 3 and Figure 8 transition probabilities of Friday data set, it is
observed that Stable State in the current day given that Stable State in the previous day is
having the highest likelihood (50%); similarly Rise State in the current day given that Rise
State previous day and Stable State in the current day and Rise State in the previous day are
having second highest likelihood (40%); Fall State in the current day given that Fall State
in the previous day and Rise State in the current day and Fall State in the previous day are
having third highest likelihood (37.5%); and Fall State in the current day given that Rise
State in the previous day having least likelihood (20%).

These findings highlight distinct patterns in SBI’s share prices throughout the week,
indicating varying transient behaviours. This information can be invaluable for portfolio
managers, enabling them to assess how SBI’s share prices transition between Rise, Stable,
and Fall states each day. These indicators provide crucial insights, allowing managers to
strategize effectively, capitalize on profit opportunities, and implement corrective measures
to mitigate losses.
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4.2. Initial probability vector (IPV) for SBI share prices

After a thorough process of the real-time data, the IPVs of the Rise, Stable, and Fall
states are obtained.

4.2.1. Indicators of Rise, Stable, and Fall States on Monday to Friday

The indicators on the chances of Rise, Stable, and Fall states the data under study
are as below.

Table 4: Initial Probabilities for all Business Days in a Week

Day Initial Probabilities
Rise Stable Fall

Monday 0.36 0.28 0.36
Tuesday 0.3617 0.3404 0.2979

Wednesday 0.3673 0.3673 0.2654
Thursday 0.42 0.26 0.32

Friday 0.30 0.38 0.32

The graphical representation of the above Table 4 is placed in Figure 9.

Figure 9: Initial probabilities for all business days in a week

From the above Table 4 and Figure 9, it is observed that on Monday, the likelihood
of both Rise State and Fall State is equal at 36%. From Tuesday to Thursday, Rise State
consistently has a higher likelihood than the other states, with Thursday having the highest
probability at 42%, followed by Wednesday at 36.73%. Conversely, on Friday, the likelihood
of the Rise State drops to its lowest at 30% compared to the other states. This suggests a
strategy for short-term traders: consider selling shares during the middle of the week when
the probability of a price increase is notably higher.
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4.3. Probability distributions for Rise, Stable, and Fall states

The probability distributions for Rise, Stable, and Fall states of all business days in
a week (Monday, Tuesday, Wednesday, Thursday, and Friday) are as in Table 5.

Table 5: Probability distributions of all states

Day Chance of happening of the state
Rise Stable Fall

Monday 0.3694 0.2847 0.3459
Tuesday 0.375 0.3444 0.2806

Wednesday 0.3745 0.3541 0.2713
Thursday 0.429 0.266 0.305

Friday 0.3033 0.39 0.3067

Figure 10 illustrates the occurrence of Rise, Stable, and Fall states graphically. It
provides a visual representation of the frequency of each state over the observed period.

Figure 10: Chance of happening of Rise, Stable, and Fall states
According to the data presented in Table 5 and Figure 10, there is a noticeable trend

in the occurrence of Rise and Fall states across different days of the week. Specifically, the
likelihood of the Rise State is highest on Thursdays, closely followed by Tuesdays. Similarly,
Fridays exhibit the highest probability of the Rise State, with Wednesdays following closely
behind. In contrast, the Fall State is more likely to occur on Mondays, with Fridays showing
the next highest probability.

This information suggests certain patterns or tendencies in market behaviour through-
out the week. Traders may find it useful to be aware of these tendencies when making
decisions about trading strategies, timing of trades, and risk management. For instance, un-
derstanding that Thursdays often have a higher chance of experiencing the Rise State could
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influence traders to adjust their positions accordingly or anticipate potential market move-
ments. Similarly, knowledge of increased Fall State occurrences on Mondays might prompt
traders to exercise caution or implement specific risk mitigation measures at the beginning of
the trading week. Overall, awareness of these patterns can help traders make more informed
decisions and navigate market dynamics more effectively.

Statistical measures/characteristics are useful in understanding the behaviour of the
probability distributions.

4.4. Discussion on statistical measures

In order to have a better understanding of the model behaviour and the probability
distributions, the statistical measures are computed and placed in Table 6.

Table 6: Statistical measures for Rise, Stable and Fall states

State Statistical Measure Monday Tuesday Wednesday Thursday Friday

Rise State

Average 0.3694 0.375 0.3745 0.429 0.3033
Variance 0.2329 0.2344 0.2343 0.245 0.2113

3rd central moment 0.0608 0.0586 0.0588 0.0348 0.0831
Beta -1 0.2928 0.2667 0.2687 0.0823 0.7321
Beta -2 1.2928 1.2667 1.2687 1.0823 1.7321

C.V. 130.652 129.099 129.223 115.369 150.953

Stable State

Average 0.2847 0.3444 0.3541 0.266 0.39
Variance 0.2036 0.2258 0.2287 0.1952 0.2379

3rd central moment 0.0877 0.0703 0.0667 0.0914 0.0523
Beta -1 0.9104 0.4288 0.3721 1.1218 0.2034
Beta -2 1.9104 1.4288 1.3721 2.1218 1.2035

C.V. 158.505 137.966 135.045 166.114 125.064

Fall State

Average 0.3459 0.2806 0.2713 0.305 0.3067
Variance 0.2262 0.2019 0.1977 0.212 0.2126

3rd central moment 0.0697 0.0886 0.0904 0.0827 0.0822
Beta -1 0.4199 0.954 1.0582 0.7175 0.7032
Beta -2 1.4199 1.954 2.0582 1.7175 1.7032

C.V. 137.519 160.124 163.885 150.953 150.361

4.4.1. Discussion on the results

The results presented in Table 6 indicates that the Rise State is more frequently
observed from Monday to Thursday compared to the Stable and Fall states. Specifically,
there is a higher probability of the Rise State occurring during these days. Furthermore,
Thursday stands out as the day with the highest likelihood for the Rise State in comparison
to other business days.

Conversely, the Stable State exhibits a higher probability of occurrence on Fridays,
suggesting a distinct pattern at the end of the week. This observation implies that different
states (Rise, Stable, and Fall) exhibit varying likelihoods on different days, providing valuable
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insights into the underlying patterns of the data. The below Figure 11 shows the graphical
representation of this content.

Figure 11: Averages of Rise, Stable, and Fall states in different days in a week

The analysis of the provided Table 6 reveals interesting patterns in the variability
(variance) of different states (Rise, Stable, and Fall) across the weekdays. In the Rise State,
similar variances are observed from Monday to Thursday, indicating consistent behaviour
during these days. However, on Friday, there is a notable decrease in variance, suggesting a
more stable trend compared to the preceding days.

In the Stable State, the highest variance is observed on Friday, signifying fluctuations,
and unpredictability in the stock market towards the end of the week. Conversely, Thursday
stands out with the least variance in this state, indicating a more stable and predictable
market behaviour on that day.

For the Fall State, high variance is noted on Monday, suggesting significant fluctu-
ations at the beginning of the week. In contrast, Wednesday exhibits the least variance in
this state, indicating a relatively calmer and more predictable market environment.

Interestingly, the data emphasizes that Thursday is characterized by the least variance
across all states (Rise, Stable, and Fall). This suggests that Thursdays tend to have a
more stable market behaviour, making them potentially favourable for certain investment
strategies.

These observations provide valuable insights for investors, indicating specific days of
the week when the stock market is either more stable or prone to fluctuations. Investors could
potentially use this information to inform their trading decisions, adapting their strategies
based on the observed patterns of variance in different market states across weekdays.
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The positive skewness indicated by the non-negative third central moment across
all states (Rise, Stable, and Fall) implies that in the stock market, there are more frequent
occurrences of small or moderate gains. These modest gains are a common feature, suggesting
relative stability in stock prices. However, the presence of occasional significant upward shifts
in stock prices, although infrequent, contributes to the overall positive skewness.

For investors, this pattern highlights the regularity of stable or moderately positive
market movements, punctuated by occasional notable upticks. Recognizing these infrequent
but substantial positive shifts is vital for investors seeking opportunities for significant profits.
However, it also underscores the need for prudent risk management, as these occasional
large movements can result in substantial losses if not carefully navigated. Understanding
this skewed distribution is essential for making informed investment decisions in the stock
market.

The kurtosis values being less than three for all states (Rise, Stable, and Fall) on
every business day indicate a platykurtic distribution in the stock market.

The observation of the lowest coefficient of variation in the Rise State on Thursday
(115.369) implies that this particular day showcases a remarkable consistency and stability
in stock market performance, graphically it is presented in Figure 12.

Figure 12: Coefficient of variation for Rise, Stable, and Fall states in different
days in a week

Hence, Figure 12 may advise to short-term traders that Thursday might be an op-
portune day to consider selling stocks to maximise returns. The lower coefficient of variation
indicates reduced volatility and fluctuations, indicating a more predictable market environ-
ment. This stability can provide short-term traders with confidence in making strategic
decisions, potentially leading to optimal returns on their investments. Understanding these
patterns in the coefficient of variation aids traders in identifying favourable moments for
executing trades and capitalizing on market stability.
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4.5. Expected (predicted) returns for SBI’s shares

The expected returns computed for all days in a week are separately computed using
the formula mentioned in Section 2.7.1.

4.5.1. Expected returns for SBIs all business days data of all states

The given below are the expected SBI share price returns in 10 business days due to
Rise, Stable, and Fall states.

Table 7: Expected returns for Rise, Stable, and Fall states

State Day Monday Tuesday Wednesday Thursday Friday
Rise t=1 0.009207387 0.015662265 0.003799441 0.008274521 0.013172060

t=2 0.004862423 0.009527704 0.004649036 0.003889552 0.005524245
Stable t=1 0.010790754 0.002533674 0.002325153 0.013513428 0.001853549

t=2 0.006335824 0.004617461 0.004317823 0.006204354 0.002929969
Fall t=1 -0.006832183 -0.003926799 0.007331084 0.016880182 0.004984202

t=2 0.001627426 0.002101875 0.003548923 0.005802842 0.006345211

Analysing the resulted Table 7, it is observed there is expected returns of Fall State
on Monday and Tuesday are negative, it may indicate to the traders there is a risk factor
involved in share market, so these results may advise to the short-term traders to adopt risk
tolerance and portfolio strategy to overcome the loss on investment.

4.5.2. Estimated (Predicted) closing prices of SBI shares

The SBI’s closing prices are predicted using the linearity formula which is placed in
Section 2.7.2 The predicted share prices are

Table 8: Predicted closing prices

Week Monday Tuesday Wednesday Thursday Friday
First 556.8796 578.5471 572.9164 582.9601 579.2679

Second 559.2062 570.899 575.3413 585.924 582.0315

Figure 13 depicts the observed and predicted closing prices of SBI shares. These
forecasts are valuable for short-term traders, enabling them to discern patterns in SBI share
prices and make informed decisions for trading in the upcoming week.

4.6. Validation of the model

4.6.1. Chi-square test

The Markov model developed was assessed using the Chi-Square test for goodness of
fit, considering both expected and observed values over two weeks (business days only). The
test’s null hypothesis (H0) posits that the developed model fits the data well, meaning there
is no significant difference between the observed and expected closing prices of SBI shares.
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Figure 13: Predicted Closing Prices of First and Second Week

The calculated probability value (p-value) for SBI is 0.9719 with 9 degrees of freedom.
The result indicates that the stated hypothesis is not rejected, confirming that the developed
model aligns with the data.

4.6.2. AIC and BIC

Additionally, the model’s robustness was evaluated using the Akaike information
criterion (AIC) and Bayesian information criterion (BIC).

The AIC and BIC were calculated using the formulae mentioned in the Section 2.8.2.
For Monday, Tuesday, Wednesday, Thursday, and Friday, the AIC values are 70.80734,
57.5237, 63.0746, 69.68, and 64.1920, while the corresponding BIC values are 91.6174,
75.8102, 81.7867, 90.49, and 83.1102. These findings indicate that the AIC and BIC val-
ues are lowest for Tuesday data, followed by Wednesday’s data. Consequently, the results
obtained from the developed model affirm that the upward trend in share value is notably
more consistent during the middle of the week.
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Abstract
Queueing theory is basically a mathematical descriptive theory, as compared to op-

timisation theory, which focuses on maximising or minimising an objective function under
restrictions. It attempts to define, visualise, and anticipate queues in order to obtain a bet-
ter understanding of them and to provide solutions. In this paper, we obtain steady state
solution for a two-node tandem queueing model with feedback. Because of its expanding
usefulness in - simulating manufacturing facilities, computer/communication networks, pro-
duction and assembly lines, hospitals, transportation systems, banks, and so on - queueing
networks with feedback are now an area of major study and application interest. Various
performance measures along with cost and profit analysis for the system have been presented
in the paper.

Key words: Tandem queues; Feedback; Steady-state; Matrix geometric technique; Cost anal-
ysis.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

Tandem queues are gaining popularity in recent years because to their broad prac-
ticality in simulating and analysing real-world problems such as communication networks,
hospital administration, maintenance and repair facilities, and many others. In a tandem
queueing system, service facilities are linked in series, and the customer passes through all
of the service stations before exiting the system. The earliest work on sequence of queues
in series was credited to Taylor and Jackson (1954). They obtained steady-state solution
for aircraft availability subtjected to maintenance rates and spare engines supply. Burke
(1956) proved that the distribution of the output of a queue with Poisson arrivals, expo-
nential service times and infinite capacity was also Poisson with same mean value as the
arrival rate, thus each queue could be treated independently. This theorem forms the ba-
sis for queues in series. Some other notable contributions are due to Reich (1957), Reich
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(1963), Niu (1977), Morse (1958), Hillier and Boling (1972). Song and Ali (2009) presented
a discrete-time tandem queue model and determined mean and variance of the queue length
in closed form expression. Yarmand and Down (2013) proposed an algorithm for assigning
servers to stations for a tandem queue with no buffer to maximize throughput. He and Chao
(2014) applied matrix-analytic method to solve a queue model with K-servers in series and
no waiting space in between. They showed with the help of numerical results that allocat-
ing servers to different stations in decreasing order of their service speeds didn’t optimize
the whole system. Van Do (2015) obtained a closed-form solution for two-stage markovian
tandem queue with heterogeneous servers and showed that Eigen values could be found ex-
plicitly. Tandem queue has been analysed by several researchers using different techniques
such as product form solution, Runge-Kutta’s method and many more. But not much ap-
pears to have been done using analytical approach. Present study considers Tandem queue
with feedback, which has been solved using Matrix-Geometric Approach.

Queues with feedback typically reflect scenarios in which a customer returns to the
server having received the service (due to incomplete or unsatisfactory service). Such queues
with feedback are prominent in the health care, telecommunications, and manufacturing in-
dustries where the likelihood of rework is significant. Finch (1959) introduced the concept
of feedback in cyclic queues. Takacs (1963) analysed a single server queue with feedback.
van der Mei et al. (2002) evaluated response time in a two-node queueing network with feed-
back. Tang and Zhao (2008) analysed GI/G/1 at each node for two-node tandem model with
feedback using matrix analytic method. Chowdhury and Indra (2020) presented prediction
for two-node tandem queue with feedback having state and time dependent service rates
using probability generating function

In dealing with Queueing Systems with complicated topologies, the Matrix Geomet-
ric Approach outperforms the conventional Probability Generating Function Approach. Raj
and Chandrasekar (2016) used the matrix geometric approach to evaluate a queueing sys-
tem with device failure, standby server, and phase type service and repair. Indra and Rajan
(2017) considered a Markovian queue with two heterogeneous and intermittently available
servers subject to catastrophes and obtained the solutions using matrix geometric approach.
Shoukry et al. (2018) compared the M/M/1 model with and without breakdown using a ma-
trix geometric approach. Chaudhry et al. (2018) used a matrix geometric approach to obtain
solutions to finite and infinite discrete queues which involved heavy-tailed distributions for
service times.

The remaining work is structured as: - firstly we present the model description and
assumptions, followed by its governing equations, solutions and performance measures. We
also present cost and profit analysis for the model.

2. Model assumptions and descriptions

We have considered two-node tandem queue with feedback. Customers arrive at first
node to receive services by server 1. If server 1 is idle, it provides service immediately,
otherwise customers join the queue. On service completion at first node, the customer
joins the second queue or proceeds to avail service at second node if server 2 is idle. The
inter-arrival times and service times are independent and follow exponential distribution
with parameters λ, µ1 at first node and µ2 at second node respectively. If the customer



2025] AN ECONOMIC ANALYSIS Of TWO-NODE TANDEM QUEUE WITH FEEDBACK 275

is satisfied with the service when it is completed, it exits the system with probability ‘q’
(disperse probability). If it finds the service unsatisfactory or wants the service again, it
re-joins the queue with probability ‘p’ (feedback probability).

3. Solution of the model

The infinitesimal generator matrix Q of the system is given by:

Q =




B00 B01 0 0 0 0 .. ..
B10 A1 A2 0 0 0 .. ..
0 A0 A1 A2 0 0 .. ..
0 0 A0 A1 A2 0 .. ..

: : . . . . . . . . . . . . : ..
: : : : : .. : ..
: : : : : .. : ..




where,

B00 =




−λ 0 0 0 0 .. .. .. .. ..
qµ1 −(qµ2 + λ) 0 0 0 .. .. .. .. ..
0 qµ2 −(qµ2 + λ) 0 0 .. .. .. .. ..
0 0 qµ2 −(qµ2 + λ) 0 .. .. .. .. ..

: : : : . . . . . . . . . . . . : ..

: : : : . . . . . . . . . . . . : ..
0 0 0 0 0 .. qµ2 −(qµ2 + λ) 0 ..
: : : : : .. : : : ..




B01 =




λ 0 0 0 0 .. .. .. .. ..
0 λ 0 0 0 .. .. .. .. ..
0 0 λ 0 0 .. .. .. .. ..
0 0 0 λ 0 .. .. .. .. ..

: : : . . . . . . ..
. . . . . . : ..

: : : . . . . . . ..
. . . . . . : ..

0 0 0 0 0 .. 0 λ 0 ..
: : : : : .. : : : ..




B10 =




0 µ1 0 0 0 .. .. .. .. ..
0 0 µ1 0 0 .. .. .. .. ..
0 0 0 µ1 0 .. .. .. .. ..
0 0 0 0 µ1 .. .. .. .. ..

: : : . . . . . . ..
. . . . . . : ..

: : : . . . . . . ..
. . . . . . : ..

0 0 0 0 0 .. 0 0 0 ..
: : : : : .. : : : ..






276 ANKITA ROY CHOWDHURY AND INDRA [Vol. 23, No. 1

A0 =




0 µ1 0 0 0 .. .. .. .. ..
0 0 µ1 0 0 .. .. .. .. ..
0 0 0 µ1 0 .. .. .. .. ..
0 0 0 0 µ1 .. .. .. .. ..

: : : . . . . . . ..
. . . . . . : ..

: : : . . . . . . ..
. . . . . . : ..

0 0 0 0 0 .. 0 0 0 ..
: : : : : .. : : : ..




A1 =




−(λ + µ1) 0 0 .. .. .. .. ..
qµ2 −(qµ2 + µ1 + λ) 0 .. .. .. .. ..

0 qµ2
. . . .. .. .. .. ..

0 0 . . . . . . .. .. .. ..

: : : . . . . . . . . . : ..

: : : . . . . . . . . . : ..
0 0 0 .. qµ2 −(qµ2 + µ1 + λ) 0 ..
: : : .. : : : ..




A2 =




λ 0 0 0 .. .. .. .. ..
0 λ 0 0 .. .. .. .. ..
0 0 λ 0 .. .. .. .. ..
0 0 0 λ .. .. .. .. ..

: : : . . . ..
. . . . . . : ..

: : : . . . ..
. . . . . . : ..

0 0 0 0 .. 0 0 λ ..
: : : : .. : : : ..




The state of this queueing network can be described by the vector [n1,n2 ], where n1 indicates
the number of customers at the first node and n2 indicates the number of customers at the
second node. We have n1 = 0, 1, 2, 3... and n2 = 0, 1, 2, 3...
We define πi,j = P{n1=i, n2=j}= limt→∞ P{n1(t)=i, n2 (t)=j} where (i,j) represents the
state space. The steady-state probability vector π is given by,

π = (π0, π1, π2, ... ... ... ... ..., πn, πn+1, ... ... ...) (1)

where πk=[π(k, 0),π(k, 1), π(k, 2),... ...],k=0,1,2,3 ...
The Ergodicity condition is checked for the given model by

πAA2e < πAA0e (2)

where πA is the solution for πAA=0 and A = A0 + A1 + A2.
The steady-state probabilities πk are related geometrically to each other as πk=π1 Rk−1,
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∀ k ≥ 2. Here, R is called the rate matrix and is the minimal non-negative solution of
equation,

A2 + RA1 + R2A0 = 0 (3)

The steady-state probabilities are obtained by solving the following equations:

πQ = 0 (4)

πe = 1 (5)
where ’e’ is a column vector with each component equal to one.
The normalizing equation is given by:

θ = π0e + π1(I − R)−1e (6)

First of all the given process is checked for ergodicity condition. If the condition holds,
then we proceed to obtain the rate matrix using equation (3). π0 and π1 are obtained using
equations (4) and (5). Finally, the normalizing constant θ is computed to normalize π0 and
π1.

4. Performance measures

We calculate some performance measures using the steady-state probabilities, ob-
tained by employing equation (4) & equation (5), for the system as follows:
i) “Mean number of customers in the system (MNS)”

MNS =
∞∑

n=1
nπn (7)

ii) “Mean number of customers in the queue (MNQ)”

MNQ =
∞∑

n=1
(n − 1)πn (8)

iii) “Probability that the two servers are busy (PB)”

PB = (1 − π0) (9)

iv) “Probability that the two servers are idle (PI)”

PI = π0 (10)

v) “Mean waiting time in the system (MWS)”

MWS = MNS

λ
(11)

vi) “Mean waiting time in the queue (MWQ)”

MW Q =
MNQ

λ
(12)
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5. Cost and profit model

Let C1 be the cost associated with a customer present in the queue, C2 be the cost
when server is busy, and C3 be the cost when server is idle. So, we have the expected cost
function as,

Total Expected Cost (TEC) = C1 ∗ MNQ + C2 ∗ PB + C3 ∗ PI (13)

Similarly, for an expected profit function, we have

Total Expected Profit (TEP) = ρ ∗ MNS − TEC (14)

where ρ is the revenue and ρ * MNS is the total revenue (TR).

6. Sensitivity analysis

We have performed sensitivity analysis by changing the values of the parameters, in
order to arrive at a decision. For calculation, let C1=10, C2=15, C3=5 and ρ =150. The
performance measurements are determined in conjunction with the overall estimated cost
and profit. By altering the values of the parameters under consideration, several cost and
profit graphs have been plotted.

Figure 1: Effect of arrival rate on “to-
tal expected cost and total expected
profit” for fixed values of (µ1 = 5,
µ2 = 9, q=0.8)

Figure 2: Effect of service rate (First
Node) on “total expected cost and to-
tal expected profit” for fixed values of
(λ = 1, µ2 = 9, q=0.8)

7. Discussion

The model analyses two-node tandem queue with feedback using Matrix Geometric
Approach. Using system size probabilities, some performance measures of the system have
been derived. Based on these performance measures, we have developed expected cost and
profit functions. Further, we have performed sensitivity analysis to obtain numerical results
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Figure 3: Effect of service rate (Sec-
ond Node) on “total expected cost
and total expected profit” for fixed
values of (λ = 1, µ1 = 5, q=0.8)

Figure 4: Effect of disperse probabil-
ity on “total expected cost and to-
tal expected profit” for fixed values of
(λ = 1, µ1 = 5, µ2 = 9)

for various performance measures, total expected cost and total expected profit for the
parameters considered in the model. There is a slight increment in the total expected cost
but on the other hand there is a handsome increment in the total expected profit as arrival
rate increases. Further, total expected cost decreases as service rate (first node) increases.
Also, total expected profit decreases slightly as service rate (first node) increases due to the
cost associated with probability of server being idle. In addition to, total expected cost and
total expected profit decreases slightly as service rate (second node) increases. The total
expected cost and total expected profit decreases as disperse probability increases i.e. if
customer decides not take a feedback.

Future considerations
Many real life congestion problems which have special structural properties can be easily
solved using matrix-geometric technique even if the dimensions are of higher order. The
work can be further extended for markovian and non-markovian queueing networks by con-
sidering different parameters along with their transient solutions.
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Abstract
Bayesian estimation, a non-classical method of estimation has emerged as one of the

most accepted method in statistical inference. In this paper, the Bayesian estimators of
the parameters of Inverted Kumaraswamy distribution under two priors, namely Gamma
and Uniform have been obtained considering three different cases: (i) when α is known and
β is unknown, (ii) when α is unknown and β is known, and (iii) when α and β both are
unknown. The symmetric and asymmetric loss functions viz., Linear exponential (LINEX),
Squared error (SE) and Entropy loss (EL) functions have been used for the Bayesian esti-
mation. Lindley’s approximation (L-approximation) has been used to obtain approximate
Bayes estimators. Their performance was compared using simulated risks. An intensive sim-
ulation study is carried out with the help of Matlab and R software to examine the behavior
of estimators based on their relative mean square errors.

Key words: Bayesian estimation; Inverted Kumaraswamy distribution; Lindley’s approxima-
tion; Relative mean square error; Symmetric and asymmetric loss function.

AMS Subject Classifications: 62F15

1. Introduction

In recent literature, several novel distributions have been proposed for describing
various real life situations in many applied sciences. Kumaraswamy (1980) obtained a dis-
tribution, which is derived from beta distribution after fixing some parameters in beta dis-
tribution. But it has a closed-form cumulative distribution function which is invertible and
for which the moments do exist. If X follows Kum(α,β), then the Cumulative Distribution
Function CDF is given by

F (x) = (1 − (1 − x)α)β; 0 < x < 1, α, β > 0

The distribution is appropriate to natural phenomena whose outcomes are bounded from
both sides, such as the individuals’ heights, test scores, temperatures and hydrological daily
data of rain fall.

Corresponding Author: Ableen Kaur
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Abd Al-Fattah et al. (2017) derived the Inverted Kumaraswamy (IKum) distribution
from Kumaraswamy (Kum) distribution using the transformation T = 1

X
− 1 so if X follows

Kum(α,β) where α and β are shape parameters, then the T has a IKum distribution with
CDF

F (t) = (1 − (1 + t)−α)β; t > 0, α, β > 0 (1)

and probability density function (pdf)

f(t) = αβ(1 + t)−(α+1)(1 − (1 + t)−α)β−1; t > 0, α, β > 0 (2)

Also the Reliability and Hazard rate functions are given by

R(t) = P (T > t) = 1 − F (t) = 1 − (1 − (1 + t)−α)β (3)

H(t) = f(t)
R(t) = αβ(1 + t)−(α+1)(1 − (1 + t)−α)β−1

1 − (1 − (1 + t)−α)β
(4)

Abd Al-Fattah et al. (2017) found IKum distribution to be a right skewed distri-
bution, which according to Moustafa and Mahmoud (2018), will affect long term reliability
predictions, producing optimistic predictions of rare events occurring in the right tail of the
distribution compared with other distributions. Also the IKum distribution provides good
fit to several data in literature.

The inverse distributions, also known as inverted or reciprocal distributions, have
been widely applied to a wide variety of scenarios in this context. Lately, many researchers
have considered and studied the properties of inverted distributions. For example, Tiao and
Cuttman (1965) obtained Inverted Dirichlet distribution and its application to a problem in
bayesian inference. Prakash (2012) studied the inverted exponential model and Flaih et al.
(2012) presented exponentiated inverted Weibull distribution. Iqbal et al. (2017) developed
a general form of IKum distribution. Fan and Gui (2022) studied the statistical inference of
inverted exponentiated Rayleigh distribution based on joint progressively type-II censored
data. Aldahlan et al. (2022) estimated the parameters of the Beta Inverted Exponential
Distribution under Type-II Censored Samples. Sana et al. (2023) considered the problem of
estimation of unknown parameters based on lower record values for Inverted Kumaraswamy
distribution using Lindley’s approximation.

To our best knowledge no such Bayesian analysis for Inverted Kumaraswamy distri-
bution under these combinations of priors and loss functions has been done.

The paper is carried out as follows: In Section 2 the likelihood function is obtained,
followed by the derivation of posterior distribution of the unknown parameter in all three
cases under the considered priors in Section 3. In Section 4 different loss functions are used to
compute the estimates of the parameters. Section 5 depicts the simulation study conducted
for performance evaluation along with the results in tabular form. The study is concluded
in Section 6, followed by references used for literature review.
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2. Likelihood function for the inverted Kumaraswamy distribution

LetX1, X2, ..., Xn be a random sample of size n taken from the Inverted Kumaraswamy
distribution. Then the likelihood function for the given sample observations is

L(x;α, β) = αnβn
n∏

i=1
(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

L(x;α, β) = αnβn
n∏

i=1

(1 + xi)−(α+1)

(1 − (1 + xi)−α)e
β
∑n

i=1 ln(1−(1+xi)−α) (5)

3. Priors and posterior distributions for the unknown parameters of
inverted Kumaraswamy distrubution

In Bayesian estimation selection of appropriate prior for the parameters is a cru-
cial step. In this paper, we consider one informative and one non-informative prior. The
corresponding posterior distributions were derived for each case.

3.1. CASE I: When β is unknown and α is known

3.1.1. Posterior distribution under gamma prior

π1(β|a, b) = e−bββa−1ba

Γ(a) ; β, a, b > 0 (6)

Using the likelihood function (5) and the prior (6), the posterior distribution for the param-
eter β becomes

π1(β|x) = L(x;α, β) ∗ π1(β|a, b)� ∞
0 L(x;α, β) ∗ π1(β|a, b)dβ

=
αnβn∏n

i=1
(1+xi)−(α+1)

((1−(1+xi)−α)e
β
∑n

i=1 ln(1−(1+xi)−α) e−bββa−1ba

Γ(a)� ∞
0 αnβn

∏n
i=1

(1+xi)−(α+1)

((1−(1+xi)−α)e
β
∑n

i=1 ln(1−(1+xi)−α) e−bββa−1ba

Γ(a) dβ

π1(β|x) = β(n+a)−1 exp (−βR)Rn+a

Γ(n+ a) , (7)

where R(x, α) = b−∑n
i=1 ln (1 − (1 + xi)−α)

3.1.2. Posterior distribution under uniform prior

π2(β|k) = k; β, k > 0 (8)
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Using the likelihood function (5) and the prior (8), the posterior distribution for the param-
eter β becomes

π2(β|x) = L(x;α,β)∗π2(β|k)� ∞
0 L(x;α,β)∗π2(β|k)dβ

=
αnβn

∏n

i=1
(1+xi)−(α+1)

((1−(1+xi)−α) e
β
∑n

i=1 ln(1−(1+xi)−α)k

� ∞
0 αnβn

∏n

i=1
(1+xi)−(α+1)

((1−(1+xi)−α) e
β
∑n

i=1 ln(1−(1+xi)−α)
kdβ

π2(β|x) = βn exp (−βT )T n+1

Γ(n+ 1) , (9)

where T (x, α) = −∑n
i=1 ln (1 − (1 + xi)−α)

3.2. CASE II: When β is known and α is unknown

3.2.1. Posterior distribution under gamma prior

π1(α|a, b) = e−bββa−1ba

Γ(a) ;α, a, b > 0 (10)

Using the likelihood function (5) and the prior (10), the posterior distribution for the pa-
rameter β becomes

π1(α|x) = L(x;α, β) ∗ π1(α|a)� ∞
0 L(x;α, β) ∗ π1(α|a)dα

=
αnβn∏n

i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1 e−bββa−1ba

Γ(a)� ∞
0 αnβn

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1 e−bββa−1ba

Γ(a) dα

= αn+a−1e−bα∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

� ∞
0 αn+a−1e−bα

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

= K−1
1 αn+a−1e−bα

n∏

i=1
(1 + xi)−(α+1)

(
1 − (1 + xi)−α

)β−1

where,

K1 =
� ∞

0
αn+a−1e−bα

n∏

i=1
(1 + xi)−(α+1)

(
1 − (1 + xi)−α

)β−1
dα (11)

3.2.2. Posterior distribution under uniform prior

π2(α|a) = k; k > 0 (12)
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π2(α|x) = L(x;α, β) ∗ π2(α|a)� ∞
0 L(x;α, β) ∗ π2(α|a)dα

= αnβn∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

k� ∞
0 αnβn

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1kdα

= αn∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

� ∞
0 αn

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

= K−1
2 αn

n∏

i=1
(1 + xi)−(α+1)

(
1 − (1 + xi)−α

)β−1

where,
K2 =

� ∞

0
αn

n∏

i=1
(1 + xi)−(α+1)

(
1 − (1 + xi)−α

)β−1
dα (13)

3.3. CASE III: When α and β both are unknown

3.3.1. Posterior distribution under gamma prior

Suppose the parameters are independent and follow Gamma distribution,

π(α|a1, b1) ∝ αa1−1e−b1α;α > 0, a1, b1 > 0
π(β|a2, b2) ∝ βa2−1e−b2β; β > 0, a2, b2 > 0

where, a1&b1 and a2&b2, are non-negative hyperparameters and are known. The joint prior
distribution for α and β is given by

π11(α, β|a1, b1, a2, b2) ∝ αa1−1βa2−1e−b1α1−b2β

The joint posterior density function of parameters α and β is obtained as

π11(α, β|x) = L(x;α, β) ∗ π11(α, β|a1, b1, a2, b2)� ∞
0
� ∞

0 L(x;α, β) ∗ π11(α, β|a1, b1, a2, b2)dαdβ

the above equation cannot be obtained in closed form so in order to find the Bayes estimator
of the parameters we have used Lindley approximation method. The joint posterior density
function can be written as

π11(α, β|x) ∝ αn+a1−1βn+a2−1
n∏

i=1
(1 + xi)−(α+1)

(
1 − (1 + xi)−α

)β−1
e−b1α1−b2β (14)

3.3.2. Posterior distribution under uniform prior

Suppose the parameters are independent and follow Uniform distribution,

π(α|k1) = k1;α > 0, k1 > 0
π(β|k2) = k2; β > 0, k2 > 0
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The joint prior distribution for α and β is given by

π12(α, β|k1, k2) = k1k2

The joint posterior density function of parameters α and β is obtained as

π12(α, β|x) = L(x;α, β) ∗ π12(α, β|k1, k2)� ∞
0
� ∞

0 L(x;α, β) ∗ π12(α, β|k1, k2)dαdβ

the above equation cannot be obtained in closed form so in order to find the Bayes estimator
of the parameters we have used Lindley approximation method. The joint posterior density
function can be written as

π11(α, β|x) ∝ αnβn
n∏

i=1
(1 + xi)−(α+1)

(
1 − (1 + xi)−α

)β−1
(15)

4. Bayesian estimation under different loss functions

This section presents the Bayes estimates of the unknown parameter obtained under
three loss functions viz., Linear exponential, Squared error and Entropy loss functions.

4.1. Case I: When β is unknown and α is known

4.1.1. Bayesian estimation by using gamma prior under different loss functions

• Bayes estimator under LINEX loss function

The LINEX loss function is given by

L(β̂, β) = exp(q1(β̂ − β)) − h(β̂ − β) − 1; q1, h ̸= 0 (16)

By using LINEX loss function as given in (16), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0
exp(q1(β̂ − β) − h(β̂ − β) − 1).π1(β|x)dβ

=
� ∞

0

[
exp (q1β̂). exp (−q1β) − hβ̂ + hβ − 1

]
.
β(n+a)−1 exp (−βR)Rn+a

Γ(n+ a) dβ

= exp(q1β̂) Rn+a

[R + q1]n+a
+ h

R
(n+ a) − (hβ̂ + 1)

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

exp (q1β̂) = h

q1

(
R + q1

R

)n+a

Taking log on both sides, we obtain the Bayes estimator as

β̂LINEX = 1
q1

[
ln
(
h

q1

)
+ (n+ a) ln

(
R + q1

R

)]
(17)
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• Bayes estimator under squared error loss function

The squared error loss function is given by

L(β̂, β) = (β̂ − β)2 (18)

By using Squared error loss function as given in (18), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0

[
(β̂ − β)2

]
.π1(β|x)dβ

=
� ∞

0

[
(β̂ − β)2

]
.
β(n+a)−1 exp (−βR)Rn+a

Γ(n+ a) dβ

= β̂2 + (n+ a+ 1)(n+ a)
R2 − 2β̂ (n+ a)

R

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

=⇒ 2β̂ − 2(n+ a)
R

= 0

=⇒ β̂SELF = (n+ a)
R

(19)

• Bayes estimator under entropy loss function

The entropy loss function is given by

L(β̂, β) = b[∆ − ln(∆) − 1]; b > 0 (20)

Assuming b = 1,∆ = β̂
β
, we have

L(β̂, β) =



 β̂
β


− ln


 β̂
β


− 1


 (21)

By using Entropy loss function as given in (21), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0




 β̂
β


− ln


 β̂
β


− 1


 .π1(β|x)dβ

=
� ∞

0




 β̂
β


− ln


 β̂
β


− 1


 .
β(n+a)−1 exp (−βR)Rn+a

Γ(n+ a) dβ

= β̂.
R

n+ a− 1 − ln(β̂) + ψ(n+ a)
Γn+ a

− 1

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

=⇒ R

n+ a− 1 − 1
β̂

= 0

=⇒ β̂ELF = n+ a− 1
R

(22)
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4.1.2. Bayesian estimation by using uniform prior under various loss functions

• Bayes estimator under LINEX loss function

The LINEX loss function is given by

L(β̂, β) = exp(q1(β̂ − β)) − h(β̂ − β) − 1, q1, h ̸= 0 (23)

By using LINEX loss function as given in (23), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0
exp(q1(β̂ − β) − h(β̂ − β) − 1).π2(β|x)dβ

=
� ∞

0

[
exp (q1β̂). exp (−q1β) − hβ̂ + hβ − 1

]
.
βn exp (−βT )n+1

Γ(n+ 1) dβ

= exp(q1β̂)[
(

T

(T + q1)

)
]n+1 − h

(n+ 2)
T

− (hβ̂ + 1)

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

exp (q1β̂) = h

q1

(
T + q1

T

)n+1

Taking log on both sides, we obtain the Bayes estimator as

β̂LINEX = 1
q1

[
ln

(
h

q1

)
+ (n+ 1)log

(
T + q1

T

)]
(24)

• Bayes estimator under squared error loss function

The squared error loss function is given by

L(β̂, β) = (β̂ − β)2 (25)

By using Squared error loss function as given in (25), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0

[
(β̂ − β)2

]
.π2(β|x)dβ

=
� ∞

0

[
(β̂ − β)2

]
.
βn exp (−βT )n+1

Γ(n+ 1) dβ

= β̂2 + (n+ 2)(n+ 1)
T 2 − 2β̂ (n+ 1)

T

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

=⇒ 2β̂ − 2(n+ 1)
T

= 0
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=⇒ β̂SELF = (n+ 1)
T

(26)

• Bayes estimator under entropy loss function

The entropy loss function is given by

L(β̂, β) = b[∆ − ln(∆) − 1]; b > 0 (27)

Assuming b = 1,∆ = α̂
α
, we have

L(β̂, β) =
[(
α̂

α

)
− ln

(
α̂

α

)
− 1

]
(28)

By using Entropy loss function as given in (28), the risk function is given by

R(β̂, β) = E[L(β̂, β)] =
� ∞

0




 β̂
β


− ln


 β̂
β


− 1


 .π2(β|x)dβ

=
� ∞

0




 β̂
β


− ln


 β̂
β


− 1


 .
βn exp (−βT )n+1

Γ(n+ 1) dβ

= β̂.
T

n
− ln(β̂) + ψ(n+ 1)

Γn+ 1 − 1

Now solving ∂R(β̂,β)
∂β̂

= 0, we get

=⇒ T

n
− 1
β̂

= 0

=⇒ β̂ELF = n

T
(29)

4.2. Case II: When β is known and α is unknown

4.2.1. Bayesian estimation by using gamma prior under different loss functions

• Bayes estimator under LINEX loss function

The bayes estimator of α under LINEX loss function is given by

α̂LINEX = −1
h

lnE[e−hα|x] (30)

where,

E[e−hα|x] =
� ∞

0 αn+a−1e−α(b+h)∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

dα� ∞
0 αn+a−1e−bα

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα
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• Bayes estimator under squared error loss function

The bayes estimator of α under SELF is given by

α̂SELF = E[α|x] (31)

where,

E[α|x] =
� ∞

0 αn+ae−bα∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

dα� ∞
0 αn+a−1e−bα

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

• Bayes estimator under Entropy loss function

The bayes estimator of α under ELF is given by

α̂ELF = (E[α−1|x])−1 (32)

where,

E[α−1|x] =
� ∞

0 αn+a−1e−bα+α−1 ∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1

dα� ∞
0 αn+a−1e−bα

∏n
i=1 (1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

4.2.2. Bayesian estimation by using Uniform prior under different loss functions

• Bayes estimator under LINEX loss function

The bayes estimator of α under LINEX loss function is given by

α̂LINEX = −1
h

lnE[e−hα|x] (33)

where,

E[e−hα|x] =
� ∞

0 αne−hα∏n
i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1aα� ∞

0 αn
∏n

i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

• Bayes estimator under squared error loss function

The bayes estimator of α under SELF is given by

α̂SELF = E[α|x] (34)

where,

E[α|x] =
� ∞

0 αn+1∏n
i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1aα� ∞

0 αn
∏n

i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα

• Bayes estimator under entropy loss function

The bayes estimator of α under ELF is given by

α̂ELF = (E[α−1|x])−1 (35)

where,

E[α−1|x] =
� ∞

0 αn−1∏n
i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1aα� ∞

0 αn
∏n

i=1(1 + xi)−(α+1)(1 − (1 + xi)−α)β−1dα
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4.3. Case III: When α and β both are unknown

In previous section, we obtained the mathematical expression for the Bayes estimates
of the parameters. We notice that these estimators are in the form of ratio of two integrals.
Thus, Lindley’s approximation method is a good alternative to solve such types of problems
see Lindley (1980). Therefore, we briefly discuss about this approximation technique and
apply it to evaluate the Bayesian estimates by considering the function I(x), defined as
follows;

I(x) = E[α, β|x] =
�
u(α, β)eL(α,β)+G(α,β)d(α, β)�

eL(α,β)+G(α,β)d(α, β) (36)

where,

u(α, β) is the function of α and β only; L(α, β) is the log likelihood function; G(α, β)
is the log of joint prior density.

According to Lindley (1980), if ML estimates of the parameters are available and n
is sufficiently large then the above ratio of the integral can be approximated as:

I(x) = u(α̂, β̂) + 1
2 [(ûββ + 2ûβ p̂β)σ̂ββ + (ûαβ + 2ûαp̂β)σ̂αβ + (ûβα + 2ûβ p̂α)σ̂βα + (ûαα +

2ûαp̂α)σ̂αα]+ 1
2 [(ûβσ̂ββ + ûασ̂βα)(L̂βββσ̂ββ + L̂βαβσ̂βα + L̂αββσ̂αβ + L̂ααβσ̂αα)+(ûβσ̂αβ + ûασ̂αα)

× (L̂αββσ̂ββ + L̂βαασ̂βα + L̂αβασ̂αβ + L̂ααασ̂αα)]

where, α̂ and β̂ are the MLE of α and β respectively. The expressions for the MLE of the
parameters of Inverted Kumaraswamy distribution have been derived by Al-Fattah et. al.
(2017) and Sana et.al. (2023)

ûα = ∂u(α̂, β̂)
∂α̂

, ûβ = ∂u(α̂, β̂)
∂β̂

, ûαβ = ∂2u(α̂, β̂)
∂α̂∂β̂

, ûβα = ∂2u(α̂, β̂)
∂β̂∂α̂

,

ûαα = ∂2u(α̂, β̂)
∂α̂2 , ûββ = ∂2u(α̂, β̂)

∂β̂2
, p̂α = ∂G(α̂, β̂)

∂α̂
, p̂β = ∂G(α̂, β̂)

∂β̂
,

L̂αα = ∂2L(α̂, β̂)
∂α̂2 , L̂ββ = ∂2L(α̂, β̂)

∂β̂2
, L̂ααα = ∂3L(α̂, β̂)

∂α̂3 , L̂ααβ = ∂3L(α̂, β̂)
∂α̂∂α̂∂β̂

,

L̂ββα = ∂3L(α̂, β̂)
∂β̂∂β̂∂α̂

, L̂βαβ = ∂3L(α̂, β̂)
∂β̂∂α̂∂β̂

, L̂αββ = ∂3L(α̂, β̂)
∂α̂∂β̂∂β̂

, L̂βαα = ∂3L(α̂, β̂)
∂β̂∂α̂∂α̂

4.3.1. Bayesian estimation by using gamma prior under different loss functions

• Bayes estimator under squared error loss function

After substitution, the equation (14) reduces like Lindleys integral, therefore, for the
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Bayes estimates of the parameter α under squared error loss function are,

u(α, β) = α

L(α, β) = n lnα + n ln β − (α + 1)
∑

ln(1 + xi) + (β − 1)
∑

ln(1 − (1 + xi)−α)
G(α, β) = (a1 − 1) lnα + (a2 − 1) ln β − b1α− b2β

It may be verified that,

uα = 1, uαα = uαβ = uβα = uββ = 0

pα = a1 − 1
α

− b1, pβ = a2 − 1
β

− b2

Lα = n

α
−
∑

ln(1 + xi) + (β − 1)
∑ (1 + xi)−α

1 − (1 + xi)−α
ln(1 + xi)

Lαα = −n
α2 − (β − 1)

∑ (1 + xi)−α(ln(1 + xi))2

[1 − (1 + xi)−α]2

Lααα = 2n
α3 − (β − 1)

∑
(
(1 + xi)3α − (1 + xi)−α

)

[1 − (1 + xi)−α]4 (ln(1 + xi))3

Lαβ =
∑ (1 + xi)−α ln(1 + xi)

[1 − (1 + xi)−α] = Lβα

Lααβ = −
∑ (1 + xi)−α(ln(1 + xi))2

[1 − (1 + xi)−α]2 = Lβαα = Lαβα

Lβ = n

β
+
∑

ln(1 − (1 + xi)−α)

Lββ = −n
β2

Lβββ = 2n
β3

Lββα = Lβαβ = Lαββ = 0

If α and β are orthogonal then σij = 0 for i ̸= j and σij = − 1
Lij

for i = j.

After evaluation of all U-terms, L-terms, and p-terms at the point (α̂, β̂) and using
the above expression, the approximate Bayes estimator of α under SELF is,

α̂L
SELF = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (37)

and similarly the Bayes estimate fir β under SELF is, uβ = 1, uαα = uαβ = uβα = uββ = 0
and remaining L-terms and p-terms will be same as above. Thus we have

β̂L
SELF = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (38)
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• Bayes estimator under LINEX loss function

The approximate Bayes estimator of α under LINEX is evaluated by taking u(α, β) =
e−hα, h > 0, uα = −he−hα, uαα = h2e−hα, uαβ = uβα = uββ = 0 and remaining L-terms and
p-terms will be same as above. Thus we have

α̂L
LINEX = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (39)

and similarly the Bayes estimate fir β under LINEX is evaluated by taking u(α, β) =
e−hβ, h > 0, uβ = −he−hβ, uββ = h2e−hβ, uαβ = uβα = uαα = 0 and remaining L-terms
and p-terms will be same as above. Thus we have

β̂L
LINEX = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (40)

• Bayes estimator under entropy loss function

The approximate Bayes estimator of α under ELF is evaluated by taking u(α, β) =
eα−1 , uα = − eα−1

α2 , uαα = eα−1

α3

[
1
α

+ 2
]
, uαβ = uβα = uββ = 0 and remaining L-terms and

p-terms will be same as above. Thus we have

α̂L
ELF = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (41)

and similarly the Bayes estimate for β under LINEX is evaluated by taking u(α, β) = eβ−1 ,
uβ = − eβ−1

β2 , uββ = eβ−1

β3

[
1
β

+ 2
]
, uαβ = uβα = uαα = 0 and remaining L-terms and p-terms

will be same as above. Thus we have

β̂L
ELF = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (42)

4.3.2. Bayesian estimation by using uniform prior under different loss functions

• Bayes estimator under squared error loss function

After substitution, the equation (15) reduces like Lindleys integral, therefore, for the
Bayes estimates of the parameter α under squared error loss function are,

u(α, β) = α

L(α, β) = n lnα + n ln β − (α + 1)
∑

ln(1 + xi) + (β − 1)
∑

ln(1 − (1 + xi)−α)
G(α, β) = ln k1 + ln k2
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It may be verified that,

uα = 1, uαα = uαβ = uβα = uββ = 0
pα = pβ = 0

Lα = n

α
−
∑

ln(1 + xi) + (β − 1)
∑ (1 + xi)−α

1 − (1 + xi)−α
ln(1 + xi)

Lαα = −n
α2 − (β − 1)

∑ (1 + xi)−α(ln(1 + xi))2

[1 − (1 + xi)−α]2

Lααα = 2n
α3 − (β − 1)

∑
(
(1 + xi)3α − (1 + xi)−α

)

[1 − (1 + xi)−α]4 (ln(1 + xi))3

Lαβ =
∑ (1 + xi)−α ln(1 + xi)

[1 − (1 + xi)−α] = Lβα

Lααβ = −
∑ (1 + xi)−α(ln(1 + xi))2

[1 − (1 + xi)−α]2 = Lβαα = Lαβα

Lβ = n

β
+
∑

ln(1 − (1 + xi)−α)

Lββ = −n
β2

Lβββ = 2n
β3

Lββα = Lβαβ = Lαββ = 0

If α and β are orthogonal then σij = 0 for i ̸= j and σij = − 1
Lij

for i = j.

After evaluation of all U-terms, L-terms, and p-terms at the point (α̂, β̂) and using
the above expression, the approximate Bayes estimator of α under SELF is,

α̂L
SELF = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (43)

and similarly the Bayes estimate for β under SELF is, uβ = 1, uαα = uαβ = uβα = uββ = 0
and remaining L-terms and p-terms will be same as above. Thus we have

β̂L
SELF = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (44)

• Bayes estimator under LINEX loss function

The approximate Bayes estimator of α under LINEX is evaluated by taking u(α, β) =
e−hα, h > 0, uα = −he−hα, uαα = h2e−hα, uαβ = uβα = uββ = 0 and remaining L-terms and
p-terms will be same as above. Thus we have

α̂L
LINEX = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (45)

and similarly the Bayes estimate fir β under LINEX is evaluated by taking u(α, β) =
e−hβ, h > 0, uβ = −he−hβ, uββ = h2e−hβ, uαβ = uβα = uαα = 0 and remaining L-terms
and p-terms will be same as above. Thus we have

β̂L
LINEX = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂

2
ββL̂βββ) (46)
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• Bayes estimator under entropy loss function

The approximate Bayes estimator of α under ELF is evaluated by taking u(α, β) =
eα−1 , uα = − eα−1

α2 , uαα = eα−1

α3

[
1
α

+ 2
]
, uαβ = uβα = uββ = 0 and remaining L-terms and

p-terms will be same as above. Thus we have

α̂L
ELF = α̂ + ûαp̂ασ̂αα + 0.5(ûασ̂αασ̂ββL̂αββ + ûασ̂

2
ααL̂αββ) (47)

and similarly the Bayes estimate for β under LINEX is evaluated by taking u(α, β) = eβ−1 ,
uβ = − eβ−1

β2 , uββ = eβ−1

β3

[
1
β

+ 2
]
, uαβ = uβα = uαα = 0 and remaining L-terms and p-terms

will be same as above. Thus we have
β̂L

ELF = β̂ + ûβ p̂βσ̂ββ + 0.5(ûβσ̂αασ̂ββL̂ααβ + ûβσ̂
2
ββL̂βββ) (48)

5. Simulation study

Next, a simulation study was conducted to investigate the performance of Bayes es-
timators of the unknown parameter for case I, i,e, when α is known and β is unknown
under two priors discussed in this paper. The study was executed for different sample sizes
specifically for n= 20,50,70,100,150,200. The observations were generated from Inverted
Kumaraswamy distribution using the quantile function. For the expression of quantile func-
tion refer Al-Fattah et al. (2017). The Bayes estimates were obtained using LINEX, SELF
and Entropy loss function. For Gamma prior the values of hyperparameters considered are
(a=0.01, b=0.01). In our study 6000 samples were generated. The Bayes estimates were
compared in terms of relative mean square errors.

6. Conclusion

In this paper, we estimated the unknown parameter of IKum distribution considering
three different cases: (i)when α is known and β is unknown, (ii)when α is unknown and β is
known, and (iii)when α and β both are unknown, using two prior distributions under three
different loss functions, though simulations were carried out for caseI only. Relative MSE
were also derived using the following formula:

MSE =
∑N

i=1(Estimator − Truevalue)2

N

RelativeMSE = MSE

Truevalue

where N = 6000.

Concluding Remarks

∗ From Table 1, the Relative MSE of estimator under Entropy loss function is min-
imum for α = 0.4, β = 0.8 and the Relative MSE of estimator under Squared error loss
funtion is minimum for α = 0.5, β = 1.

∗ From Table 2 also, estimator under Entropy loss function stands most efficient for
α = 0.4, β = 0.8, whereas for α = 0.5, β = 1, estimator under Squared error loss function
holds minimum relative error.
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∗ From the graphs it is observed that Relative MSE decreases as sample size increases.

As a future research work, this paper can be extended in many ways. The simulation
results for the other two cases(when α is unknown and β is known, and when α and β
both are unknown) can also be computed and the obtained results can be represented in the
form of graphs. The obtained estimators can also be applied to real life data for illustrative
purposes. Additionally, the estimation of entropy in this setup may also be considered.
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ANNEXURE
Table 1: Bayes estimate and Relative mean square error under Gamma prior
when hyperparameters (a,b)=(0.01,0.01)

Case I: α known, β unknown

n α = 0.4,β = 0.8 α = 0.5,β = 1
LINEX SELF ELF LINEX SELF ELF

20 Estimate 0.83308 0.84414 0.80328 1.03981 1.0529 0.99961
RelMSE 0.04870 0.05210 0.04490 0.05910 0.06280 0.05390

50 Estimate 0.81030 0.81922 0.80116 1.01620 1.02001 1.00010
RelMSE 0.01730 0.01750 0.01660 0.02080 0.02140 0.02060

70 Estimate 0.80934 0.81081 0.80090 1.0109 1.0125 0.99918
RelMSE 0.01230 0.01260 0.01210 0.01510 0.01470 0.01460

100 Estimate 0.80651 0.80865 0.80010 1.0205 0.99102 1.00040
RelMSE 0.00824 0.00855 0.00802 0.01100 0.01010 0.01020

150 Estimate 0.80458 0.80526 0.79951 1.0141 0.99454 1.00070
RelMSE 0.00538 0.00550 0.00528 0.00715 0.00665 0.00696

200 Estimate 0.80325 0.80363 0.80090 1.0081 0.99723 0.99930
RelMSE 0.00414 0.00417 0.00400 0.00530 0.00498 0.00506

Table 2: Bayes estimate and Relative mean square error under Uniform prior

Case I: α known, β unknown

n α = 0.4,β = 0.8 α = 0.5,β = 1
LINEX SELF ELF LINEX SELF ELF

20 Estimate 0.87870 0.88261 0.84432 1.1579 1.00160 1.0559
RelMSE 0.06090 0.06200 0.05420 0.10100 0.05380 0.06670

50 Estimate 0.83057 0.82968 0.81540 1.0619 0.99932 1.0178
RelMSE 0.01880 0.01900 0.01780 0.02740 0.02050 0.02200

70 Estimate 0.82186 0.82366 0.81270 1.0430 0.99687 1.0147
RelMSE 0.01300 0.01340 0.01250 0.01780 0.01500 0.01570

100 Estimate 0.81395 0.81584 0.80961 1.0315 1.00010 1.0089
RelMSE 0.00858 0.00860 0.00811 0.00907 0.01190 0.01020

150 Estimate 0.80922 0.81043 0.80556 1.0205 1.00060 1.0073
RelMSE 0.00570 0.00555 0.00544 0.00738 0.00668 0.00690

200 Estimate 0.80754 0.80732 0.80328 1.0154 0.99883 1.0057
RelMSE 0.00418 0.00435 0.00416 0.00541 0.00484 0.00519
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Figure 1: Relative Mean Square Error of β under Gamma prior

Figure 2: Relative Mean Square Error of β under Uniform prior





Statistics and Applications {ISSN 2454-7395 (online)}
Volume 23, No. 1, 2025 (New Series), pp 303–320
https://www.ssca.org.in/journal

Determining Optimal Threshold and Some Inferential
Procedures for a Skewed ROC Model in the Binary

Classification Framework

Sandhya Singh1, Saebugari Balaswamy1 and R.Vishnu Vardhan2
1Department of Statistics

Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
2Department of Statistics, Pondicherry University, Puducherry

Received: 31 May 2024; Revised: 20 June 2024; Accepted: 25 June 2024

Abstract
ROC curve is a useful tool in the assessment of the performance of a diagnostic test

over the range of possible values of a predictor variable and the sensitivity, specificity, optimal
threshold and Area under the curve (AUC) are its intrinsic measures to know the accuracy
of the diagnostic test. The area under the curve is a measure of accuracy which provides
the extent of correct classification of the test and also it is a measure of discrimination to
compare the performance of two or more diagnostic tests. Further, the optimal threshold is
a cut-off, which discriminates the populations into one of the two groups with a maximum of
accurate accuracy. The Youden’s Index method is the usual approach to identify the optimal
threshold. The alternate approaches to compute the optimal threshold have been provided
in this paper when the data is of skewed nature in the ROC context. For this purpose, ROC
model is considered to show how the discriminatory ability of a test changes on changing
the location and scale parameters by using a generalized half normal distribution. Further,
the simulation studies are conducted to study the proposed methodology and also compared
with the existing ROC models using both simulations and real datasets.

Key words: ROC Curve; Sensitivity; Specificity; AUC; Index of union; Concordance of
probability.

AMS Subject Classifications: 62P10.

1. Introduction

The ROC curve was first developed by radar engineers during World War II for truly
detecting enemy objects in battle fields starting in 1941 which led to its name “Receiver
Operating Characteristic” (ROC) curve. Now-a-days, this technique is being extensively
used in diverse areas of research such as banking, Finance, Engineering, Machine learning
and Medical Sciences, etc. ROC curve was introduced in medicine for analysis of radiographic
images (Lusted, 1971). This is an important tool applied in classification problems mostly
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associated with evaluating the performance of the diagnostic test(s) by means of the accuracy
or sensitivity measures, also to provide accuracy of the classifier/diagnostic test and helps
in determining the optimal cut-off of a diagnostic test or classifier. To define ROC curve,
there is a need of two intrinsic measures, such as, Sensitivity (True Positive Rate, TPR),
which is the probability of a positive test result conditioned on the individual truly being
positive and Specificity (True Negative Rate, TNR), which is the probability of a negative
test result conditioned on the individual truly being negative. Graphically, the ROC curve
can be achieved by using 1-TNR on x-axis and TPR on y-axis, resulting a smooth curve. This
smooth curve is embedded with various threshold points; we tend to choose such threshold
that attains minimum distance from the chance line. Though this approach is heuristic,
there are other established indices that helps in determining the optimal threshold, one
such index is the Youden’s Index. The portion under the ROC curve is termed as the area
under the curve (AUC), theoretically lies between 0 and 1. In a practical point of view, it is
interpreted as that higher value of AUC indicates that the performance of marker/diagnostic
test is better. Further, a test’s AUC should not lie below or close to 0.5, this result in random
classification and test is not considered for classification. Even though this technique’s role
is to classify the subjects into one of the predefined groups, it also allows allocating the new
subjects into one of those groups with a proper status label. Further, much theoretical work
has been done in the ROC context using different distributional assumptions and the formal
statistical definition of ROC curve in terms of cumulative distribution function (CDF) is

ROC = 1 − G
(
F −1(1 − t)

)
, 0 < t < 1

Here, F and G are the CDFs of two independent populations and the ROC model so generated
is referred to as bi-distributional ROC model. The test score derived from a marker or
diagnostic test do have some pattern and follows a particular distribution, then the ROC
curve be developed based on that particular distribution, by which one can gets the proper
fit of the data, and appropriate results with interpretation. In ROC literature, many models
have been proposed based upon bi-distributional assumption such as Bi-lognormal (Dorfman
and Alf, 1968, 1969), Bi-normal (Egan, 1975), Bi-gamma (Hussain, 2012), Bi-beta (Zou et
al., 1997), Bi-exponential (Tang and Balakrishnan, 2011), Hybrid ROC models (Balaswamy
et al., 2015) and many more. In the recent past, estimation of area under the ROC, for
non-normal data (Balaswamy and Vardhan, 2022), Bi-Generalised Exponential ROC curve
(Balaswamy and Vardhan, 2023), area under the ROC Curve in the framework of gamma
mixtures (Arunima and Vishnu Vardhan, 2022), area under the multi-class ROC statistics
and applications for non-normal data (Arunima and Vishnu Vardhan, 2023) are few to cite
in the ROC framework.

This paper focuses on different procedure to obtain an optimal threshold other than
the method of Youden’s index. This provides the better and easiest way of calculating the
optimal threshold. In order to demonstrate this methodology, a new ROC model is considered
based upon a skewed distribution. To illustrate this skewed nature, let us consider a practical
illustration. In assessing the subject’s life status (alive or dead), a marker by name Acute
Physiology and Chronic Health Evaluation (APACHE II) will be used. Mostly, the APACHE
II score do not satisfy the normality assumption and possesses a skewed pattern. In such
case, the conventional bi-normal ROC model may not suitable to assess the performance
and threshold of APACHE II. So, there is a need to find a suitable statistical distribution
that can meet the requirements of ROC model. Another marker that has similar kind of
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non-normality is the Simplified Acute Physiology Score (SAPS III). Hence, there is a need to
look into the influence of measures of location, scale and shape to model a newer version of
ROC. The present work addresses the above practical situations using the data of APACHE
II and SAPS III. Along with these, simulations are also carried out to demonstrate the
worst, moderate and better classification scenarios from the proposed ROC model. It is
understood that these two datasets follow Generalized Half Normal distribution and for
comparison purpose, two other distributions namely, the Normal and the Half-Normal are
also considered.

2. Methodology

Let (x1, x2) ∈ S be the test scores which are observed in healthy(0) and diseased
(1) populations respectively. It is assumed that ‘0’ and ‘1’ population follow Generalized
Half Normal Distribution with α > 0, σ > 0 as shape and scale parameters, respectively.
The probability density function and cumulative distribution function of Generalized Half
Normal Distribution are given as follows:

g(x, α, σ) =
√

2
π

(
α

x

)(
x

σ

)α

exp

(
−1

2

(
x

σ

)2α
)

; x ≥ 0

G(x, α, σ) = 1 − 2Φ
[
−
(

x

σ

)α]

where Φ(·) is the c.d.f. of the standard normal distribution. As the ROC curve is a trade-off
between False Positive Rate (FPR) and True Positive Rate (TPR). Therefore, the FPR is
derived by using probabilistic definition as follows

FPR = x(t) = P (S > t|0) = 2
[
1 − Φ

(
t

σ0

)α0]
(1)

on further simplification, the expression for t can be obtained as

t = σ0

[
Φ−1

(
1 − x(t)

2

)] 1
α0

(2)

where Φ−1(·) is the inverse cumulative standard normal distribution function. Similarly,
TPR expression is derived by using its probabilistic definition as follows

TPR = y(t) = P (S > t|1) = 2
[
1 − Φ

(
t

σ1

)α1]
(3)

substituting (2) in (3),

y(t) = 2

1 − Φ



(

σ0

σ1

)α1
[
Φ−1

(
1 − x(t)

2

)]α1
α0






Let, Φ−1
(
1 − x(t)

2

)
= Zx and on further simplification,

y(t) = 2
[
1 − Φ

((
σ0

σ1

)α1

[Zx]
α1
α0

)]
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Let, β = σ0
σ1

and α = α1
α0

. Then

y(t) = 2
[
1 − Φ

(
βα1 [Zx]

α1
α0

)]
(4)

on further simplification, the expression for ROC curve is

y(t) = 1 − erf

(
βα1 [Zx]α√

2

)
(5)

The expression in (5) can be referred to as Generalized Half Normal ROC curve. In ROC
methodology AUC measures the entire two dimensional area underneath the ROC curve.

AUC =
� 1

0
y(t)dt

AUC =
� 1

0
1 − erf




βα1
[
Φ−1

(
1 − x(t)

2

)]α
√

2


 dx(t) (6)

The above expression has no closed form solution; therefore it needs to be evaluated nu-
merically. The numerical evaluations have been carried out using Simpson’s method in the
results section. Let α = 1, i.e.α1 = α0 = 1 in equation (5) and on further simplification,

AUC = 2 − 2
[
Φ
((

σ0

σ1

) [
Φ−1

(
1 − x(t)

2

)])]
(7)

The equation (7) is known as ROC curve for Half Normal Distribution (HN ROC curve) and
the AUC for the HN ROC is given by

AUC = 1 − 2
π

(
σ0

σ1

)
(8)

3. Optimal threshold

The optimal threshold is very important in classification to obtain the good accuracy
and to minimize the misclassification rate. Therefore, the four different methods to determine
the optimal threshold that are in this paper are as follows.

Youden’s index (J): This Index is a single statistic that captures the performance
of a dichotomous diagnostic test. J is a function of sensitivity and specificity, such that

J(c) = {Sensitivity(c) + Specificity(c) − 1}

Over all cut point c; “optimal t” denotes the cut-point corresponding to J. When the value
of J is maximum, optimal t is the optimum cut point value.

The closest to (0,1) criterion (ER): In this criteria, the optimal cut point is
defined as the point closest to the point (0, 1) on the ROC curve.

ER(c) =
√

(1 − TPR(c))2 + (FPR(c))2
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Mathematically, the point CER minimising the ER(c) function is called the optimal cut point
value.

Concordance probability method (CZ): The concordance probability method
defines the optimal cut point as the point maximizing the product of sensitivity and speci-
ficity.

CZ(c) = TPR(c) × TNR(c)
The product gets value between 0 and 1. The concordance probability of dichotomized
measure at cut point c can be expressed as the area of a rectangle associated with the ROC
curve. Cut point ĉz maximizing CZ(c) actually maximizes the area of the rectangle.

Index of union (IU): The optimal cut point should be chosen as the point which
classifies most of individuals correctly and thus least of them incorrectly. From this point of
view, Ilker (2017) proposed the index of union (IU) method to obtain the optimal threshold.
This method provides an “optimal” cut point which has maximum sensitivity and specificity
values at the same time. In order to find the highest sensitivity and specificity values at
the same time, the AUC value is taken as the starting value of them. The above criteria
correspond to the following equation,

IU(c) = (|TPR(c) − AUC| + |TNR(c) − AUC|)
The cut-point optimal t which minimizes the IU(C) function and the |TPR(c) − TNR(c)|
difference will be “optimal” cut point value.

Among these four methods of optimal threshold identification, choosing a one optimal
threshold with good accuracy is a question. In order to answer this, Ilker (2017) compared
these four methods with the mathematical optimal threshold (equating both density curves
of healthy/ normal and diseased/abnormal populations and solve for the threshold). But
this is not possible in all the cases of distributions, just like the case of proposed GHN ROC
curve, here the closed form solution for the threshold is not possible. Therefore, keeping this
in mind, we have used TPR value and their corresponding specificity values are considered
to be higher. Wherever, these values are higher, that particular threshold will be of good
choice with greater accuracy. Further, these four methods are tested at various sample
sizes and different classification scenarios. In the next subsection, the inferential aspects of
proposed ROC curve are discussed. For which, the variance of AUC is estimated through
bootstrapping method as follows.

3.1. Bootstrap estimate of AUC

Since there is no closed form for AUC, its variance can be obtained using bootstrap
technique. Let ‘B’ be the number of bootstraps obtained from the data with the sample
sizes n0 and n1 respectively from normal and abnormal populations. Then the bootstrapped
AUC estimate and its variance are given as

ÂUCB = 1
B

B∑

b=1
AUCb (9)

V ar
(
ÂUCB

)
= 1

B − 1

B∑

b=1

(
AUCb − ÂUC

)2
(10)
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3.2. Confidence intervals for AUC

Let ÂUC denote the sample AUC value. For large samples, the distribution of AUC is
approximately normal. Hence, a 100(1−α)% confidence interval for AUC may be computed
using the standard normal distribution as follows

ÂUCB ± Zα
2

√
V ar

(
ÂUCB

)
(11)

where Zα
2

is the α
2 standard normal percentile.

3.3. Test statistic

A test with AUC0 = 0.5 is considered useless as it classifies only 50% of individuals
correctly. For this test, the ROC curve coincides with the chance line and TPR = FPR.
Hence, the null and alternative hypothesis are defined as H0 : AUC = AUC0andH1 : AUC >
AUC0. Then the test statistic is defined as

Z = ÂUCB − AUC0√
V ar

(
ÂUCB

) (12)

The next subsection deals with the construction of confidence intervals for the proposed
ROC Curve to explain the variability of the curve at each and every threshold value.

3.4. Confidence intervals for FPR and TPR

The 100(1 − α)% confidence intervals for FPR and TPR, which in turn help in pro-
ducing the confidence interval for GHN ROC curve. Therefore, the 100(1 − α)% confidence
intervals for FPR and TPR are as follows,

F̂PR ± Zα
2

√
V ar(F̂PR); T̂PR ± Zα

2

√
V ar(T̂PR)

where variance of false positive rate and true positive rate are estimated through Delta
method. The expression for V ar(F̂PR and V ar(T̂PR are

V ar(F̂PR) =
(

∂FPR

∂σ0

)2

V ar(σ̂0) +
(

∂FPR

∂α0

)2

V ar(α̂0) (13a)

V ar(T̂PR) =
(

∂TPR

∂σ1

)2

V ar(σ̂1) +
(

∂TPR

∂α1

)2

V ar(α̂1) (13b)
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Further, the partial differentiations of FPR and TPR with respect to their parameters are
as follows,

∂FPR

∂σ0
= ∂

∂σ0

{
2
[
1 − Φ

[(
t

σ0

)α0]]}

∂FPR

∂σ0
= 2α0t

α0

σα0+1
0

ϕ
(

t

σ0

)α0

∂FPR

∂α0
= ∂

∂α0

{
2
[
1 − Φ

[(
t

σ0

)α0]]}

∂FPR

∂α0
= −2ϕ

(
t

σ0

)α0 ( t

σ0

)α0

log
(

t

σ0

)

∂TPR

∂σ1
= ∂

∂σ1

{
2
[
1 − Φ

[(
t

σ1

)α1]]}

∂TPR

∂σ1
= 2α1t

α1

σα1+1
1

ϕ
(

t

σ1

)α1

∂TPR

∂α1
= ∂

∂α1

{
2
[
1 − Φ

[(
t

σ1

)α1]]}

∂TPR

∂α1
= −2ϕ

(
t

σ1

)α1 ( t

σ1

)α1

log
(

t

σ1

)

Now, by substituting the above expressions in equations (13a) and (13b), we obtain the
variances of FPR and TPR as,

V ar
(
F̂PR

)
=
[

2α0t
α0

σα0+1
0

ϕ
(

t

σ0

)α0
]2

V ar(σ̂0)

+
[
−2ϕ

(
t

σ0

)α0 ( t

σ0

)α0

log
(

t

σ0

)]2
V ar(α̂0) (14a)

V ar
(
T̂PR

)
=
[

2α1t
α1

σα1+1
1

ϕ
(

t

σ1

)α1
]2

V ar(σ̂1)

+
[
−2ϕ

(
t

σ1

)α1 ( t

σ1

)α1

log
(

t

σ1

)]2
V ar(α̂1) (14b)

The variances of the parameters can be estimated through their asymptotic distributions,
but in the present context the maximum likelihood estimators of the Generalized Half Nor-
mal distribution do not have closed form expressions. Therefore, the maximum likelihood
parameters of these distributions can be obtained by direct maximization of log-likelihood
function using the Newton-Raphson method in R. The asymptotic variances of the parame-
ters are estimated using the Bootstrap method. Hence, the bootstrapped estimates of σ0&α0
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and their variance are

σ̂0 = 1
B

B∑

b=1
σ0b

V ar (σ̂0) = 1
B − 1

B∑

b=1
(σ0b − σ̂0)2

α̂0 = 1
B

B∑

b=1
α0b

V ar (α̂0) = 1
B − 1

B∑

b=1
(α0b − α̂0)2

In a similar manner, we can obtain the bootstrap estimate of σ1&α1 as follows,

σ̂1 = 1
B

B∑

b=1
σ1b

V ar (σ̂1) = 1
B − 1

B∑

b=1
(σ1b − σ̂1)2

α̂1 = 1
B

B∑

b=1
α1b

V ar (α̂1) = 1
B − 1

B∑

b=1
(α1b − α̂1)2

Now, using the above variances for the parameters of Generalized Half Normal distribution
along with equations (14a) and (14b), the confidence intervals for FPR and TPR are ob-
tained. By using these confidence intervals, the confidence interval lines can be plotted along
with the GHN ROC curve to show the variability of the proposed ROC Curve at each and
every point on the ROC space.

In the next section, the results are carried out using simulation studies and real
datasets to explain the proposed methodology and the confidence intervals are also evaluated
for the summary measure AUC and the proposed ROC Curve.

4. Results and discussions

Different simulation studies have been carried out to study the behaviour of the
proposed ROC curve and also compared with the existing ROC models in literature. In
this results and discussions sections, there are different subsections which will explain the
necessity and importance of the proposed ROC curve in detail. The results reported in the
tables are given in the appendix.

4.1. Comparison of ROC Curves - simulated datasets

In this section different situations (Better, Moderate and Worst cases) of simulation
studies in classification are considered and the results are given in Table 1, which consists of
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optimal threshold, AUC, J and One sample KS test for testing the reliability of the simulated
data (from GHN distribution) with GHN, Half Normal and Normal distributions. The GHN
ROC model is compared with the existing ROC models like HN ROC and Binormal ROC
model in all the three different situations of classification.
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(b) Moderate case of Classification
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Figure 1: Comparison of ROC curves for different cases of classification using
simulated datasets

Table 1 shows the differences and the importance of proposed GHN ROC model as
compared to the existing ROC models with different simulation studies. The first case is
better case of classification and the accuracy measure AUC is found to be 90% for the GHN
ROC Curve when the data of both populations follows a generalized half normal distribution
(KS test statistic values are given in the table). Whereas, when the shape parameter is
suppressed, the proposed ROC model reduces to the half normal ROC model and this case
has an accuracy of 74% and the data follows half normal distribution. The interesting
fact observed is that even though the data of healthy (D = 0.5631, p − value < 2.2e−16) and
diseased (D = 0.8461, p−value < 2.2e−16) populations do not follow the normal distribution,
the accuracy is found to be 92%. This means that the Binormal ROC model is over estimating
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the accuracy when the data does not satisfy the distributional properties. This is the reason
that one must check for the distributional assumptions when you have the data in hand first
(This type of situation can be seen in the next section with APACHE II score). Further,
the corresponding ROC Curves are drawn in Figure 1a with better accuracy of classification
where the curves are nearer to the top right corner of the ROC plot.

The moderate case of classification is considered (Table 1) and the GHN ROC curve
(78% of accuracy) is clearly superior than the other two models half normal (72%) and
Binormal ROC models (68%). Here also, the distributional properties are verified with
the help of KS test statistic and found that when the data follows generalized half normal
distribution, the accuracy is higher than the other two models when the data do not follow
normality. Similar kind of phenomenon can be seen in Figure 1b, where the curves explain
the moderate case of classification.

Finally, the worst case of classification is also considered where the parameters have
the higher values in healthy population than the diseased population and the results are
placed in Table 1 and Figure 1c. In this experiment also, it is found that the proposed
ROC model is better than the Binormal ROC model when the data deviates from normality
(Healthy : D = 0.7160, p−value < 2.2e−16 & Diseased : D = 0.6176, p−value < 2.2e−16).

Further, the optimal threshold, Youden’s index,false positive rate and true positive
rate at the corresponding optimal threshold are also computed and depicted in the Table
1. The optimal threshold is the value or score which divides the data into one of the two
possible cases with a good amount of accuracy with lesser misclassification rate. These are
computed for all the cases of classification along with the FPR and TPR at that particular
optimal threshold.

4.2. Comparison of ROC Curves - real dataset

In this section, two real datasets are used to illustrate the proposed methodology
and comparison is made with the existing ROC models and the results are as follows. The
APACHE II (Acute Physiology and chronic Health Evaluation II) and SAPS III (Simplified
Acute Physiology Score) datasets are considered to explain the proposed methodology and
its significance over other ROC models like Binormal and HNROC models. The Tables 2 &
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Figure 2: Comparison of ROC curves - APACHE II dataset
3 consists of optimal threshold, FPR, TPR, J and AUC along with the KS test statistics and
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their significance values. The real data set is about the ICU scoring system namely APACHE
II (Balaswamy and Vardhan, 2015) which is used to predict the status of the patient i.e.
dead or alive. This is commonly used score which is derived from 11 physiological variables,
the Glasgow coma (scores) and the patient’s age and chronic health status. A total of
111 patients of which 66(59.46%) are alive and 45(40.54%) dead are present in this study.
Further, the GHN ROC curve is plotted and the computations are done with respect to the
proposed ROC model and compared with the existing ROC models like Binormal and HN
ROC curves. When this data of both alive (D = 0.11785, p-value = 0.3185) and dead (D =
0.089239, p-value = 0.8661) populations follows Generalized Half Normal distribution, the
accuracy of the test is 68.3% with the optimal threshold of 26, which classifies the data as
abnormal as abnormal about 65% (TPR). Further, it is noticed that the accuracy is lesser in
other models like Binormal (67.2%) and HN ROC curve (58.9%) than the GHN ROC model,
which means the proposed GHN ROC model is performing better than the existing ROC
models when the data follows generalized half normal distribution other than the normal and
half normal distributions. Finally, the ROC curves are plotted to show the discrimination
ability of the proposed ROC curve with the existing ROC models and is depicted in the Figure
2. The real data set is about the ICU scoring system SAPS III (Balaswamy and Vardhan,
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Figure 3: Comparison of ROC curves - SAPS III dataset

2022) III and issued to predict the life status of a subject who is admitted to ICU. The data
consists of a total of 111 respondents of which 66(59.46%) are alive and 45(40.54%) dead.
In above Table 3, comparison of three ROC curve have been done, when the data follows
GHN distribution for both the populations (normal population : D = 0.11431, p − value =
0.3544 & abnormal population : D = 0.13555, p − value = 0.38) and it is also seen that the
data do not follow the normal distribution (normal population : D = 0.99997, p − value <
2.2e−16 & abnormal population : D = 0.97778, p − value < 2.2e−16). Using the proposed
methodology we have used this scoring variable to predict the mortality of patients in ICU.
From the obtained result, it is observed that discriminatory ability of generalized half normal
distribution (63.07%), and Binormal distribution (63.03%) is almost same i.e. 63% whereas
when data follow half normal distribution discriminatory ability of the diagnostic test is less
i.e. 56%. The interesting fact observed is that even though the data doesn’t follow the
normal distribution, the Binormal ROC curve is providing the similar accuracy with the
proposed GHN ROC curve, this means that the Binormal ROC curve is over estimating the
accuracy with the optimal threshold of 30, which provides only of 58.5% of true positive
rates whereas the GHN ROC curve provides the optimal threshold of 26 with the higher
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true positive rates of 63.6%, i.e., the GHN ROC curve is more accurately classifying the
data than the existing models when the data follows that particular generalized half normal
distribution.

Figure 3, depicts the three ROC models for SAPS III dataset and the GHN ROC
curve is slightly higher than the Binormal Roc curve and better than the HN ROC curve
with the accuracy of 63%.

4.3. Optimal thresholds and confidence intervals for the ROC curve

In this section, the optimal thresholds are estimated by using different methods and
are explained for the ease of medical practitioner. Further, the confidence intervals are
also constructed for the proposed GHN ROC curve along with the Z test statistic for the
area under the curve (AUC). Here, the effect of sample size on the proposed ROC curve is
also be discussed. Three different classification situations (better, moderate and worst) are
considered over different sample sizes. The entire simulations and the results are carried
out using R programming and a bootstrap methodology is also used for the proposed ROC
methodology. The results are as follows. Table4 (Better case) consists of optimal thresholds;
FPR and TPR at that particular optimal threshold along with the confidence intervals of
AUC and its Z statistic for testing the hypothesis. These optimal thresholds are evaluated
using four different methods (J, ER, CZ and IU) and the results are also evaluated at various
sample sizes. From these four methods of obtaining an optimal threshold at each and every
sample size, the Youden’s index method and IU methods are almost same with respect
to the better classification scenario with AUC of more than 90%. The optimal threshold
can be considered either from method J or IU, since their corresponding true positive rate
(sensitivity) is higher than compared to the other methods, which means misclassification
rate can be reduced using these methods with higher accuracy. Further, the Z statistic is
found to be higher (Z > 1.96), i.e., the curves obtained at this combination are significant
enough to explain the accuracy of a test.

The confidence intervals are constructed for the considered combination of parameters
(Better case) at various sample sizes and are depicted in Figure 4. The optimal threshold
identified by method J and IU are also highlighted in the diagram with its corresponding
FPR and TPR. Here, one can see the effect of sample sizes clearly, i.e., as the sample size
increase, the confidence intervals become closer to each other. Therefore, the accurate results
may be obtained with the higher sample sizes.

The moderate case of classification scenario is also considered with σ0 = 1.5, σ1 =
2.4, α0 = 0.9andα1 = 2.5 and the results with respect to the optimal threshold and AUC
with its confidence intervals are also reported (Table 5). In this situation also, the optimal
threshold can be identified by the methods of J and IU, since their sensitivity is higher than
the other methods at each and every sample size. The AUC is observed to be more than
70% and the Z value is found be rejected (Z > 1.96), this means that the ROC curves are
good enough to explain the extent of correct classification with the corresponding optimal
thresholds. Further, it is to note that the optimal threshold can be obtained from method
J or IU in both the cases of better and moderate case of classification scenarios. The
confidence intervals are constructed for the considered moderate case at various sample sizes
and are depicted in Figure 5. The optimal threshold identified by method J and IU are
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Figure 4: Confidence intervals for GHN ROC curve with its optimal threshold
- better case

also highlighted in the diagram with its corresponding FPR and TPR. Here, as the sample
size increase, the confidence intervals become closer to each other.Finally, the worst case
classification scenario is considered (Table 6) to obtain the optimal threshold and thereby
its accuracy. Though this scenario is of not at all useful in reality; the results are carried
out to check the methods of obtaining optimal thresholds at various sample sizes. The very
interesting factor observed here is that the ER method is found to be better with moderate
amount of TPR and reasonably FPR as compared to the other methods. Even though,
the sensitivity of method J is higher, but the corresponding FPR is also higher, where it
should be minimum. Further, the accuracy is below 50% with the hypothesis is found to
be insignificant stating that the curve obtained at this combination is not useful for future
classification.

The confidence intervals are constructed for the considered worst case at various
sample sizes and are depicted in Figure 6. The optimal threshold identified by method ER
is highlighted in the diagram with its corresponding FPR and TPR.
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Figure 5: Confidence intervals for GHN ROC curve with its optimal threshold
- moderate case

5. Conclusion

The Receiver Operating Characteristic (ROC) curves are useful in detecting the op-
timal threshold of medical diagnostic test with good extent of correct classification and
accuracy. Therefore, on working with real datasets, the knowledge on distributional based
ROC curves will be quite useful. Keeping this in mind, the ROC curve for generalized half
normal distribution is proposed and the properties are verified. Further, extensive simulation
studies are done with respect to the proposed ROC model and this model is also compared
with the existing ROC models like Binormal and HN ROC models to show the proposed ROC
model is better with skewed data of generalized half normal distribution. The real datasets
(APACHE II and SAPS III) are used to demonstrate the behaviour of the proposed ROC
curve in the results section. The accuracy measure for the proposed method using SAPS III
dataset is higher (63%) than the AUC of SAPS III dataset (56%) proposed by Dashina and
Vishnu Vardhan (2023) and that ROC model has incorrect mathematical expressions, which
misleads the results. Therefore, this model is more useful than any other when the data is
of generalized half normal distribution.

As, the optimal threshold identification is most important in classification, therefore
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Figure 6: Confidence intervals for GHN ROC curve with its optimal threshold
- worst case

four different methods are used to identify the optimal threshold with better accuracy. The
interesting results observed is that the methods J and IU are found to be similar though their
mathematical formulae are different at various sample sizes (Better and Moderate cases of
classification scenario). But, the ER method is found to be good in case of worst classification
situation, though this case is not at all considerable. Further, the proposed GHN ROC curve
is found to be better with respect to the existing ROC curves when the data is of skewed in
nature and follow the generalized half normal distribution.Further, the confidence intervals
are also constructed for the ROC curve at various sample sizes and the AUC is also tested
with the chance line 50%. Also, it is suggested that among the four methods of optimal
threshold, one can consider J or IU methods with equal importance. In order to obtain the
best optimal threshold, the usual method of equating densities is always not possible as in
this case (no closed form solution). Therefore, we have suggested considering the sensitivity
value and their corresponding specificity values to be higher. Wherever, these values are
higher, that particular threshold will be of good choice with greater accuracy.
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Appendix

Table 1: Comparison of ROC curves for different cases of classification using
simulated datasets

Experiment ROC Curve σ0 σ1 α0 α1 µ0 µ1 Optimal Threshold FPR TPR J AUC KS Test (Healthy) KS Test (Diseased)

Better Case
GHN ROC Curve 1.4463 3.5406 1.4888 2.5065 - - 2.0457 0.0938 0.8004 0.7066 0.9053 D = 0.0364, p=0.5183 D = 0.0302, p=0.7517
HNROC Curve 1.4848 3.7447 - - - - 2.2148 0.1339 0.5524 0.4186 0.7481 D = 0.0403, p=0.3887 D = 0.0465, p=0.2287

Binormal ROC Curve 0.6242 1.0603 - - 1.1661 2.9710 2.0183 0.0861 0.8155 0.7295 0.9288 D = 0.5631, p < 2.2e−16 D = 0.8461, p < 2.2e−16

Moderate Case
GHN ROC Curve 0.7587 1.8173 0.4911 1.5118 - - 0.6257 0.3630 0.8419 0.4789 0.7816 D = 0.0356, p=0.5485 D = 0.0215, p=0.9745
HNROC Curve 0.7931 1.8117 - - - - 1.1346 0.1531 0.5300 0.3769 0.7283 D = 0.0245, p=0.9234 D = 0.0260, p=0.8854

Binormal ROC Curve 1.1596 0.7860 - - 0.7691 1.4589 0.7693 0.4999 0.8099 0.3099 0.6888 D = 0.5, p < 2.2e−16 D = 0.5836, p < 2.2e−16

Worst Case
GHN ROC Curve 1.9976 1.4890 2.4662 2.0943 - - 3.2434 0.0010 0.0000 -0.0010 0.2864 D = 0.0225, p=0.9607 D = 0.0326, p=0.6619
HNROC Curve 1.9358 1.4847 - - - - 6.4408 0.0010 0.0000 -0.0009 0.4162 D = 0.0364,p=0.5187 D = 0.0369, p=0.501

Binormal ROC Curve 0.5952 0.5047 - - 1.6822 1.2250 3.2434 0.0044 0.0000 -0.0043 0.2790 D = 0.7160, p < 2.2e−16 D = 0.6176, p < 2.2e−16

Table 2: Results of ROC curves for the APACHE II dataset
ROC Curve σ0 σ1 α0 α1 µ0 µ1 Optimal Threshold FPR TPR J AUC KS Test (Healthy) KS Test (Diseased)

GHN ROC Curve 29.411 42.9109 1.0555 1.5772 - - 26 0.3799 0.6500 0.2700 0.6836 D = 0.11785, p = 0.3185 D = 0.089239, p = 0.8661
HNROC Curve 28.8184 38.4924 - - - - 33 0.2521 0.3912 0.1391 0.5896 D = 0.13462, p = 0.1827 D = 0.20792, p = 0.0408

Binormal ROC Curve 17.0215 17.6888 - - 23.3486 34.2889 28 0.3923 0.6389 0.2465 0.6720 D = 0.98485, p < 2.2e−16 D = 1, p < 2.2e−16

Table 3: Results of ROC curves for the SAPS III dataset
ROC Curve σ0 σ1 α0 α1 µ0 µ1 Optimal Threshold FPR TPR J AUC KS Test (Healthy) KS Test (Diseased)

GHN ROC Curve 32.6943 41.9543 1.1832 1.5636 - - 26.0000 0.4457 0.6360 0.1903 0.6307 D = 0.11431, p = 0.3544 D = 0.13555, p = 0.38
HNROC Curve 30.9450 38.0462 - - - - 34.0000 0.2719 0.3715 0.0996 0.5646 D = 0.10829, p = 0.4213 D = 0.2031, p = 0.04883

Binormal ROC Curve 17.6210 17.6201 - - 25.5303 33.8222 30.0000 0.3999 0.5859 0.1860 0.6303 D = 0.99997, p < 2.2e−16 D = 0.97778, p < 2.2e−16

Table 4: Intrinsic measures of GHN ROC curve using the methods of optimal
threshold at different sample sizes - better case (σ0 = 0.5, σ1 = 1.8, α0 = 0.5 and α1 =
2.5)
Method Sample Size Status Optimal Threshold FPR TPR Value of method AUC (LCL, UCL) Z Statistic for AUC

J 25 1 0.9182 0.1414 0.9481 0.8067 0.9443
19.397ER 25 1 0.9828 0.1286 0.9343 0.1444

CZ 25 0 0.9493 0.1351 0.9418 0.8145 (0.8994, 0.9892)IU 25 1 0.9182 0.1414 0.9481 0.0919
J 50 0 0.7885 0.1463 0.8990 0.7528 0.9339

24.2761ER 50 1 0.8231 0.1365 0.8879 0.1766
CZ 50 0 0.7885 0.1463 0.8990 0.7675 (0.8989, 0.9690)IU 50 0 0.7885 0.1463 0.8990 0.1182
J 100 1 0.7911 0.1640 0.8988 0.7348 0.9249

30.8472ER 100 0 0.8641 0.1428 0.8744 0.1902
CZ 100 0 0.8180 0.1559 0.8902 0.7514 (0.8979, 0.9519)IU 100 1 0.7911 0.1640 0.8988 0.1238
J 500 1 0.7808 0.2196 0.9122 0.6926 0.900

37.7962ER 500 1 0.8920 0.1899 0.8763 0.2266
CZ 500 0 0.8185 0.2090 0.9009 0.7126 (0.8793, 0.9208)IU 500 0 0.8185 0.2090 0.9009 0.1100
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Table 5: Intrinsic measures of GHN ROC curve using the methods of opti-
mal threshold at different sample sizes - moderate case (σ0 = 1.5, σ1 = 2.4, α0 =
0.9 and α1 = 2.5)
Method Sample Size Status Optimal Threshold FPR TPR Value of method AUC (LCL, UCL) Z Statistic for AUC

J 25 1 0.8663 0.4521 0.8067 0.3547 0.7153
2.948ER 25 1 1.1190 0.3592 0.7003 0.4678

CZ 25 0 0.9501 0.4192 0.7733 0.4491 (0.5721, 0.8585)IU 25 1 1.1190 0.3592 0.7003 0.0818
J 50 0 1.3075 0.4000 0.8266 0.4267 0.7539

4.4455ER 50 1 1.5305 0.3263 0.7418 0.4161
CZ 50 1 1.4413 0.3546 0.7779 0.5021 (0.6419, 0.8659)IU 50 1 1.5305 0.3263 0.7418 0.0951
J 100 1 1.2725 0.3614 0.8359 0.4745 0.7766

7.2527ER 100 1 1.4658 0.3064 0.7695 0.3834
CZ 100 1 1.3689 0.3331 0.8043 0.5364 (0.7019, 0.8514)IU 100 1 1.4658 0.3064 0.7695 0.0956
J 500 1 1.3112 0.3975 0.8157 0.4182 0.7497

14.3671ER 500 0 1.5022 0.3380 0.7470 0.4222
CZ 500 1 1.4373 0.3575 0.7716 0.4958 (0.7156, 0.7837)IU 500 1 1.4968 0.3396 0.7491 0.0900

Table 6: Intrinsic measures of GHN ROC curve using the methods of optimal
threshold at different sample sizes - worst case (σ0 = 2, σ1 = 1.5, α0 = 2.3 and α1 = 3)
Method Sample Size Status Optimal Threshold FPR TPR Value of method AUC (LCL, UCL) Z Statistic for AUC

J 25 0 2.5139 0.0348 0.0000 -0.0347 0.2693
-3.8058ER 25 0 1.2409 0.8241 0.5999 0.9161

CZ 25 1 1.4317 0.7258 0.4258 0.1168 (0.1505, 0.3881)IU 25 0 1.5985 0.6182 0.2719 0.1162
J 50 1 0.4999 0.9500 0.9646 0.0146 0.2997

-3.7384ER 50 1 1.1321 0.7349 0.6224 0.8263
CZ 50 0 1.1972 0.7040 0.5615 0.1662 (0.2246, 0.4140)IU 50 0 1.4125 0.5931 0.3449 0.0856
J 100 1 0.5197 0.9601 0.9688 0.0087 0.3126

-4.7832ER 100 1 1.1877 0.7459 0.6142 0.8397
CZ 100 1 1.2497 0.7161 0.5551 0.1576 (0.2358, 0.3894)IU 100 0 1.4805 0.5938 0.3190 0.0872
J 500 1 0.3895 0.9786 0.9836 0.0050 0.3081

-11.498ER 500 1 1.1557 0.7647 0.6210 0.8535
CZ 500 1 1.2344 0.7291 0.5488 0.1487 (0.2753, 0.3408)IU 500 0 1.4827 0.6032 0.3056 0.0912



Statistics and Applications {ISSN 2454-7395 (online)}
Volume 23, No. 1, 2025 (New Series), pp 321–334
https://www.ssca.org.in/journal

Nonparametric Estimation of Extropy-Related Measures
with Length-Biased Data

R. Dhanya Nair1 and E. I. Abdul Sathar2
1Department of Statistics, University College, Thiruvananthapuram - 695034, India

2Department of Statistics, University of Kerala, Thiruvananthapuram - 695581, India

Received: 09 May 2024; Revised: 20 June 2024; Accepted: 30 June 2024

Abstract
Nonparametric estimators for extropy-related measures using length-biased data are

proposed in this paper. The proposed estimators exhibit desirable properties, including con-
sistency and asymptotic normality, which have been established. Furthermore, the precision
of these estimators is assessed through the utilization of both simulated and real data sets,
thereby validating their effectiveness in practical scenarios.
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1. Introduction

Length-biased sampling is a widely used technique for collecting lifetime data, pri-
marily due to its cost-effectiveness and convenience. Unlike random sampling, length-biased
sampling selects observations from the population of interest with probability proportional
to their length. This approach finds significant applications in survival analysis, particularly
when the onset time of diseases is unknown. In such scenarios, individuals who survive
longer are more likely to be included in the sample, resulting in length-biased survival data.
The phenomenon of length-bias was first noticed by Wicksell (1925) while investigating cell
samples under a microscope. In his research, he noticed that only the cells that were larger
than a particular size were visible in the microscope, leading to the study of a length-biased
sample of cells. However, there are many other applications of length-biased data that make
it crucial to understand the properties of this type of data. For instance, length-biased
data arise in the study of diverse phenomena, such as ageing, epidemiology, and genetics.
Therefore, exploring various aspects of length-biased data is essential for researchers and
practitioners in fields such as medical research, public health, and social sciences.

Consider a random variable X with a probability density function (pdf), distribution
function, and survival function denoted by f , F , and F̄ , respectively. Suppose a sample of
size n is drawn from this population using a length-biased sampling technique, where the
probability of including an observation in the sample is proportional to its size, volume,
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length, or survival time. In other words, observations that are larger, longer, or have a
longer survival time have a higher probability of being sampled. The resulting sample is
length-biased, and the observed sample can be regarded as drawn from a distribution with
pdf g given by

g(y) = y f(y)
µ

, y ≥ 0 and µ is the mean of the population. (1)

One crucial problem is the nonparametric estimation of functionals of the distribution func-
tion F or pdf f based on a length-biased sample Yi, 1 ≤ i ≤ n. This paper aims to propose
nonparametric estimators for extropy-related measures of a population, using a length-biased
sample drawn from it. Furthermore, the properties of these estimators are thoroughly in-
vestigated. The proposed estimators are useful in various fields, such as information theory,
economics, and statistical physics, where the analysis of length-biased data is required. The
study of these estimators’ properties can aid in better understanding and utilizing length-
biased data in practical applications.

Shannon’s entropy, introduced by Shannon (1948), is one of the most widely used
measures for assessing the uncertainty associated with a random variable. For a discrete
random variable X taking values {x1, x2, x3, ..., xN} with probability mass function (pmf)
p = (p1, p2, p3, ..., pN) , such that N > 1 is finite, Shannon’s entropy is defined as

H(X) = −
N∑

i=1
pi log pi. (2)

Because equation (2) can be rewritten as H(p) = E(−log p), the discrete entropy
H(p) can be thought of as quantifying the average information content of X. That is, the
entropy of a probability distribution is just the expected value of the information in the dis-
tribution. The entropy measure has far-reaching applications in many areas such as financial
analysis, data compression, statistics and information theory. Lad et al. (2012) observed
that the entropy measure on its own do not provide complete summary of the information
in a distribution. This observation was substantiated in the context of its application in
the logarithmic scoring rule, widely considered to be an eminent proper scoring rule used
extensively for assessing and comparing sequential forecast distributions. The expected log-
arithmic score of a pmf p is in fact −H(X), called negentropy. Lad pointed out that the
logarithmic scoring function provides an incomplete assessment as it is a function only of
the actual observation value of a quantity, ignoring other possible but unobserved values.
To address this issue, a complementary scoring rule needs to be monitored concomitantly
with the log score and this led to the expanded version of the logarithmic score, termed as
the total log score. As a pair, the two complementary scores constitute the total logarithmic
score and both components of the total log score are relevant to the assessment of forecasting
distribution. Moreover, the expectation of the total log score equals the negentropy plus the
negextropy of the distribution, where negextropy is the negative of a measure of a probability
distribution suggested to be called as the extropy of the distribution by Lad et al. (2015)
and is defined as follows.

For a discrete random variable X, the complementary dual of entropy, called extropy
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is defined as
J(X) = −

N∑

i=1
(1 − pi) log (1 − pi).

The complementary of H and J arises from the fact that

J(p) = (N − 1) [H(q) − log(N − 1)] .

That is, the extropy of a pmf p = (p1, p2, p3, ..., pN) equals a location and scale
transform of the entropy of another pmf q =

(
1−p1
N−1 , 1−p2

N−1 , 1−p3
N−1 , ..., 1−pN

N−1

)
. The duality of

entropy/extropy is a formal mathematical property of the pair of functions. For more details,
one may refer Lad et al. (2015) and Lad et al. (2018).

As in entropy, extropy is interpreted as a measure of the amount of uncertainty
represented by the distribution for X. Both entropy and extropy share many properties.
They are invariant with respect to permutations of their mass functions and with respect
to monotonic transformations. Moreover, the maximum extropy distribution is the uniform
distribution and extropy satisfies Shannon’s first and second axioms. As to differences in
the two measures, the scale of the maximum entropy measure is unbounded as N increases
while the scale of the maximum extropy is bounded by 1. It is evident that when N = 2,
the entropy and extropy are identical. However, when N > 2, the measure bifurcates
to yield distinct paired measurements (H(X), J(X)). As companions, these two measures
relate as do the positive and negative images of a photographic film and they contribute
together to characterizing the information in a distribution in much the same way. When
the entropy is calculated for any assemblage such as the heat distribution for a galaxy of
stars, a companion calculation of the extropy would allow us to complete our understanding
of the variation inherent in its empirical distribution. An axiomatic characterization and
several intriguing properties of this new measure was considered by Lad et al. (2015) and
the results provided links to other notable information functions whose relation to entropy
have not been recognized.

In the continuous context, a natural analog of discrete Shannon entropy for a proba-
bility density function f is called differential entropy and is defined as

H(X) = −
∞�

0

f(x) log f(x) dx.

The definition of differential entropy appears to be a natural extension of the Shannon
entropy for discrete variables, defined in equation (2), to continuous variables. However,
Shannon’s differential entropy measure for a continuous density is actually derived from the
limit of a linear translation of the discrete entropy measure. In order to define extropy for a
continuous density, Lad et al. (2015) used the same procedure as the one followed by Shannon
in defining differential entropy. Lad et al. (2015) noted that when the range of possibilities
for X increases (as a result of larger N), the extropy measure −

N∑
i=1

(1 − pi) log (1 − pi) can

be closely approximated by 1 − 1
2

N∑
i=1

p2
i , which led to the definition of differential extropy.
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Extropy of a non-negative absolutely continuous random variable X with pdf f(x) is defined
as

J(X) = −1
2

∞�

0

f 2(x) dx = −1
2E(f(X)). (3)

Here E denotes the expected value operator.

Differential entropy and extropy are obtained as the limit of a linear transformation
of their corresponding discrete measures. The dual complementarity of extropy with entropy
for continuous densities is derived in the context of relative entropy, also known as Kullback-
Leibler divergence.

Through various illustrations Lad et al. (2012) showed that the extropies of the distri-
butions do appear to provide interpretable complementary understandings of the character
of distributions, already well-known to be summarised in a different dimension by their en-
tropies.The total log score for densities is also better identified with the bivariate measure
(negentropy, negextropy). Extropy can also be used to compare the uncertainties of two
random variables. If the extropy of X is less than that of another random variable Y , that
is, J(X) ≤ J(Y ), then X is said to have more uncertainty than Y . By simultaneously
considering entropy and extropy measures, researchers and practitioners can gain a more
comprehensive understanding of the information and uncertainty within a given distribu-
tion. This broader perspective enables better-informed decision-making and more efficient
utilization of statistical models in a range of applications. For further studies on extropy,
one may also refer Noughabi and Jarrahiferiz (2019), Tahmasebi and Toomaj (2020), Buono
et al. (2023) and Sathar and Nair (2024).

Additionally, to capture the uncertainty of a random variable which has already
survived for some time, Qiu and Jia (2018) suggested the measure residual extropy. The
residual extropy, denoted as J(X; t), is defined as

J(X; t) = − 1
2 (1 − F (t))2

� ∞

t

f 2(x)dx (4)

Furthermore, Krishnan et al. (2020) introduced a measure called past extropy, which
computes the uncertainty associated with the past lifetime of a component that failed before
a specific time. Past extropy of a random life time X is of course the extropy of the random
variable [X|X ≤ t] and is given by

J̄(X; t) = − 1
2 F (t)2

� t

0
f 2(x)dx. (5)

For a non-negative rv X having a survival function F̄ , an alternative measure of
extropy based on the survival function of a rv called survival extropy (SE) has been proposed
by Sathar and Nair (2021) which is defined as

Js(X) = −1
2

� ∞

0
F̄ 2(x) dx.
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The survival extropy of the random variable [X − t|X ≥ t] called dynamic survival
extropy (DSE), was also considered by Sathar and Nair (2021) and is defined as

Js(X; t) = −1
2

� ∞

t

F̄ 2(x)
F̄ 2(t)

dx = −1
2

� ∞

t

(1 − F (x))2

(1 − F (t))2 dx. (6)

It is worth noting that the SE and DSE have a close relationship with well-known
economic measures such as the Gini index and statistical quantities including L-moments.
These connections have been extensively studied by Nair and Sathar (2022) and Nair and
Sathar (2023). These insights further contribute to the interpretation and application of
the SE and DSE measures, offering valuable connections to economic analysis and statistical
modeling.

These alternative measures of extropy, namely residual extropy, past extropy, and
survival extropy, complement Shannon’s entropy and offer additional perspectives on the
uncertainty and information content of a random variable. These measures find applica-
tions in various fields, including reliability analysis, survival modeling, risk assessment, eco-
nomics, finance, and actuarial science, where the analysis of time-dependent uncertainty is
of paramount importance. By utilizing these measures, researchers and practitioners can
gain deeper insights into the temporal aspects and survival behavior of random variables in
practical scenarios. In this study, we introduce nonparametric estimators for extropy related
measures of the population based on a length-biased data drawn from it. Length-biased sam-
pling has proven to be valuable in various fields, and in Section 2, we present our proposed
estimator for dynamic survival extropy (DSE). We also examine the asymptotic properties
of the proposed estimator to ensure its reliability. Furthermore, in Section 3, we discuss
the nonparametric estimation of residual and past extropy, and analyze their asymptotic
properties. Finally, in Section 4, a simulated study and real-data analysis have been carried
out to illustrate the precision of the estimators. By employing these empirical investigations,
we showcase the accuracy and effectiveness of the estimators in practical settings. This em-
pirical validation adds credibility to the proposed methodology and confirms its utility in
real-world scenarios.

2. Nonparametric estimation of DSE using length-biased sample

This section proposes a nonparametric estimator for the DSE of a random variable
X using a length-biased sample of size n drawn from X. Due to the use of a probability
proportional to size (PPS) sampling scheme, the observed sample Y1, Y2, Y3, ..., Yn cannot
be treated as independent and identically distributed (iid) samples from X. Consequently,
existing estimators of extropy measures based on a random sample from the population
cannot be applied. Instead, a different estimator suitable for length-biased data needs to
be considered. To this end, it is worth noting that the observed length-biased sample can
be regarded as iid observations from the distribution of a random variable Y with a pdf
g(y) given by equation (1). Building upon this insight, Cox (1969) proposed an empirical
estimator for the distribution function F (x) in the length-biased setup. The estimator is
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given by

Fn(x) =

n∑
i=1

Y −1
i I(Yi ≤ x)

n∑
i=1

Y −1
i

, (7)

where I(.) is the indicator random variable of the event specified in parentheses. It has
been demonstrated by Chaubey et al. (2010) that as n → ∞, the empirical estimator Fn(x)
converges almost surely to the true distribution function F (x), as shown in equation (8).
Furthermore, the estimator converges in distribution to a normal distribution, as expressed
in equation (9).

sup
x∈R+

|Fn(x) − F (x)| a.s→ 0, as n → ∞. (8)

and √
n (Fn(x) − F (x)) D→ N(0, δ2(x)), (9)

where δ2(x) = µ {
� x

0 t−1f(t)dt − 2F (x)
� x

0 t−1f(t)dt + F 2(x)
� ∞

0 t−1f(t)dt}.

Also, as n → ∞,

E(Fn(x)) = F (x) and V ar(Fn(x)) = δ2(x)
n

. (10)

Therefore, we can obtain a nonparametric estimator of DSE of X by substituting the
estimator given in equation (7) into equation (6). The resulting estimator for DSE is given
by

Ĵs(X; t) = −1
2

� ∞

t

(1 − Fn(x))2

(1 − Fn(t))2 dx. (11)

Now let’s examine the asymptotic properties of the proposed estimator. For simpli-
fying the notation, we define the following terms:

an(t) =
� ∞

t

F̄ 2
n(x) dx, mn(t) = F̄ 2

n(t), a(t) =
� ∞

t

F̄ 2(x) dx and m(t) = F̄ 2(t).

Thus, the estimator Ĵs(X; t) can be expressed as

Ĵs(X; t) = − 1
2

an(t)
mn(t) , while the true DSE Js(X; t) is given by Js(X; t) = − 1

2
a(t)
m(t) .

Result 1:
lim

n→∞ |Ĵs(X; t) − Js(X; t)| = 0 a.s.

Moreover, mean square error (MSE) of Ĵs(X; t) tends to 0 as n → ∞.

Proof: Using Taylor series expansion,

F̄ 2
n(t) = F̄ 2(t) +

(
F̄n(t) − F̄ (t)

)
2F̄ (t) + o

(
F̄n(t) − F̄ (t)

)2
.
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It follows that

mn(t) − m(t) =
(
F̄n(t) − F̄ (t)

)
2F̄ (t) + o

(
F̄n(t) − F̄ (t)

)2
.

Similarly, we obtain

an(t) − a(t) ≃ 2
� ∞

t

F̄ (x)
(
F̄n(x) − F̄ (x)

)
dx.

Now,
an(t)
mn(t) − a(t)

m(t) ≃ m(t) [an(t) − a(t)] − a(t) [mn(t) − m(t)]
m2(t) .

Hence,
Ĵs(X; t) − Js(X; t)

≃ − 1
m(t)

� ∞

t

F̄ (x)
(
F̄n(x) − F̄ (x)

)
dx + a(t)

m2(t)
(
F̄n(t) − F̄ (t)

)
F̄ (t). (12)

By using the almost sure convergence of Fn(x) given in equation (8), we obtain

lim
n→∞ |Ĵs(X; t) − Js(X; t)| = 0 a.s.

Additionally, from equations (12) and (10), it can be easily seen that the bias and
variance of Ĵs(X; t) tends to 0 as n → ∞. Hence, as n → ∞, MSE of Ĵs(X; t) → 0.

Next, we discuss the asymptotic normality of our estimator.

Result 2: Ĵs(X; t) − Js(X; t) is asymptotically normal with mean 0 and variance

1
n F̄ 4(t)

[� ∞

t

F̄ 2(x) δ2(x)dx + a2(t)δ2(t)
F̄ 2(t)

]
.

Proof: Using equation (10), as n → ∞,

E(F̄n(x) − F̄ (x)) = 0 and V ar(F̄n(x)) = δ2(x)
n

.

Hence, from equation (12), we obtain the following.

As n → ∞, E(Ĵs(X; t) − Js(X; t)) = 0 and

V ar(Ĵs(X; t) − Js(X; t)) = 1
n F̄ 4(t)

[� ∞
t

F̄ 2(x) δ2(x)dx + a2(t)δ2(t)
F̄ 2(t)

]
.
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Again, using equation (9), we have,
√

n (F̄n(x) − F̄ (x)) D→ N(0, δ2(x))

Hence from equation (12), it follows that Ĵs(X; t) − Js(X; t) is asymptotically normal. This
completes the proof.

In a similar manner, a nonparametric estimator for dynamic failure extropy (DFE)
proposed by Nair and Sathar (2020) can be obtained.
The DFE of X is defined as

Jf (X; t) = −1
2

� t

0

F 2(x)
F 2(t) dx.

By plugging in the estimator given by equation (7) into the above equation, we can
obtain the nonparametric estimator of DFE under length-biased setup, which is as follows.

Ĵf (X; t) = −1
2

� t

0

F 2
n(x)

F 2
n(t) dx. (13)

Consistency and asymptotic normality of this estimator can be proved by proceeding
in a similar manner as in Result 1 and 2.

3. Nonparametric estimation of residual and past extropies for
length-biased sample

In this section, we focus on the nonparametric estimation of residual and past ex-
tropies defined by equations (4) and (5), respectively. To obtain the estimators of residual
and past extropies using length-biased data, we utilize equation (7) and the kernel density
estimator proposed by Jones (1991). By smoothing the estimator given in equation (7),
Jones (1991) derived a new kernel density estimator given by

f̂(x) =

n∑
i=1

1
Yi h

k
(

x−Yi

h

)

n∑
i=1

Yi
−1

, (14)

where k is the kernel function and h = hn is the band-width. The bias, variance and
asymptotic properties of this estimator was obtained by Guillamon et al. (1998) as follows.

Bias(f̂(x)) = 1
2 h2 µ2(k) f ′′(x) +o(h2) and V ar(f̂(x)) = 1

n h
µ x−1 f(x) Ck +o

( 1
nh

)
, (15)

where µ2(k) =
� ∞

−∞ u2k(u) du, Ck =
� ∞

−∞ k2(u) du and f ′′(x) is the 2nd derivative of f with
respect to x.
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Also, √
n h (f̂(x) − f(x)) D→ N(0, µ x−1 f(x) Ck). (16)

Now, we propose a nonparametric estimator of residual extropy under length-biased set up.

Definition 1: A nonparametric kernel estimator for J(X; t) shall be defined as

Ĵ(X; t) = −1
2



� ∞

t
f̂ 2(x)dx

(1 − Fn(t))2


 . (17)

In order to simplify the notations, define

pn(t) =
� ∞

t

f̂ 2(x)dx, p(t) =
� ∞

t

f 2(x)dx,

so that equation (17) can be written as Ĵ(X; t) = −1
2

[
pn(t)
mn(t)

]
.

By using Taylor’s series expansion, we get

pn(t) − p(t) = 2
∞�

t

f(x)
(
f̂(x) − f(x)

)
dx + o

(
f̂ (x) − f(x)

)2
.

Proceeding in a similar manner as in Section 2, we obtain

Ĵ(X; t) − J(X; t)

≃ − 1
m(t)

∞�
t

f(x)
(
f̂(x) − f(x)

)
dx + p(t)

m2(t)
(
F̄n(t) − F̄ (t)

)
F̄ (t).

The asymptotic normality of Ĵ(X; t) can now be easily obtained on using equations
(16) and (9). Furthermore, using equation (15), we observe that the MSE of Ĵ(X; t) tends
to 0 as n → ∞, and thus the estimator Ĵ(X; t) is strongly consistent.
Similarly, a consistent and asymptotically normal nonparametric estimator for J̄(X; t) under
length-biased set up shall be defined as

ˆ̄J(X; t) = − 1
2 F 2

n(t)

� t

0
f̂ 2(x)dx.

4. Data analysis

To demonstrate the accuracy of the presented nonparametric estimators, we first
apply the proposed methods to the simulated data sets. We generate length-biased samples
from beta distribution of first kind with parameters α = 2 and γ = 4. The bias and MSE
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of the suggested estimators of DSE and DFE given by equations (11) and (13) respectively,
are computed for certain values of t, and the results obtained are presented in Tables 1
and 2. It can be observed from the tables that the bias and MSE are negligible. This
indicates that the estimators perform well in accurately capturing the extropy measures.
Figures 1 and 2 display plots of the actual and estimated values of DSE and DFE of the
population for simulated data. Both graphs clearly show that the estimated values closely
align with the actual values. Notably, even with a sample size of n = 30, the estimated values
for DFE are very close to the actual values, highlighting the effectiveness of the proposed
estimators. Furthermore, we computed the theoretical and estimated values of residual and
past extropies using the Gaussian kernel function. These values, along with the bias and
MSE, are presented in Tables 3 and 4. The results from these tables indicate that the
estimators of residual and past extropies also perform well, further validating the reliability
of the proposed nonparametric estimators. Overall, the results obtained from the simulations
demonstrate the precision and accuracy of the nonparametric estimators proposed in this
study.

Table 1: Bias and MSE of the estimator of DSE for simulated data

n = 50 n = 100
t Bias MSE Bias MSE

0.4 0.00147 0.00009 -0.00180 0.00004
0.5 -0.00269 0.00007 0.00029 0.00002
0.6 0.00009 0.00005 -0.00363 0.00003
0.7 -0.00961 0.00031 -0.00626 0.00018

Table 2: Bias and MSE of the estimator of DFE for simulated data

n = 50 n = 100
t Bias MSE Bias MSE

0.4 -0.00501 0.00038 -0.00029 0.00004
0.5 0.00239 0.00021 -0.00113 0.00005
0.6 0.00388 0.00011 -0.00173 0.00011
0.7 0.00044 0.00047 -0.00379 0.00014

Table 3: Theoretical and estimated values of residual extropy together with its
bias and MSE for simulated data

n = 50 n = 100
t Theory Estimate Bias MSE Estimate Bias MSE

0.4 -1.62017 -1.71256 -0.09239 0.08763 -1.69013 -0.06996 0.01232
0.5 -2.02822 -2.11318 -0.08496 0.09544 -2.16395 -0.13573 0.00642
0.6 -2.62262 -2.72248 -0.09986 0.05238 -2.68369 -0.06107 0.01003
0.7 -3.59451 -3.65942 -0.06491 0.03416 -3.63571 -0.04120 0.00237

Next, we consider the empirical estimator of DSE and DFE, which were proposed by
Sathar and Nair (2021) and Nair and Sathar (2020), respectively. These empirical estimators
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Js (X,t)

estimate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.10

-0.08

-0.06

-0.04

-0.02

t

Figure 1: Plots of actual and esti-
mated values of DSE using a simu-
lated sample of size n = 100
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Figure 2: Plots of actual and esti-
mated values of DFE using a simu-
lated sample of size n = 30

Table 4: Theoretical and estimated values of past extropy together with its bias
and MSE for simulated data

n = 50 n = 100
t Theory Estimate Bias MSE Estimate Bias MSE

0.4 -1.38686 -1.35128 0.03558 0.00483 -1.38890 -0.00204 0.00311
0.5 -1.09420 -1.15662 -0.06242 0.00468 -1.10053 -0.00633 0.00265
0.6 -0.92836 -0.98423 -0.05587 0.00957 -0.94362 -0.01526 0.00403
0.7 -0.84123 -0.88562 -0.04439 0.00348 -0.84563 -0.00439 0.00114

are based on an iid sample from the population. The empirical dynamic survival extropy
and dynamic failure extropy estimators are respectively as follows.

Js( ˆ̄Fn; t) = −1
2

∞�
t




ˆ̄Fn(x)
ˆ̄Fn(t)




2

dx (18)

and

Jf (F̂n; t) = −1
2

t�

0

[
F̂n(x)
F̂n(t)

]2

dx, (19)

where ˆ̄Fn(x) = 1
n

n∑
i=1

I(Xi > x), F̂n(x) = 1
n

n∑
i=1

I(Xi ≤ x), with I being the indicator function.

To investigate the performance of the empirical estimators defined by equations (18)
and (19) when applied to a length-biased sample, we compare the actual values of DSE
and DFE of the population with the estimated values obtained using these estimators. The
results are displayed in Figures 3 and 4. Analyzing Figures 1 to 4, we observe that the de-
viation between actual and estimated values is more when the empirical estimators are used
instead of the proposed estimators. This suggests that the estimators defined by equations
(18) and (19) are suitable when an iid sample is available from the population whereas for the
length-biased sample, the estimators defined by equations (11) and (13) should be employed.
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In summary, the comparison of the estimators highlights the importance of choosing the ap-
propriate estimator based on the characteristics of the sample. The proposed nonparametric
estimators are specifically tailored for length-biased data and demonstrate superior accuracy
in estimating extropy measures when applied to length-biased samples, as evidenced by the
smaller deviations between the actual and estimated values.
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Figure 3: Plots of actual and esti-
mated values of DSE using the empir-
ical estimator for a simulated sample
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Figure 4: Plots of actual and esti-
mated values of DFE using the empir-
ical estimator for a simulated sample

To further assess the performance of the proposed estimators defined by equations
(11) and (13), we apply them to a real-world scenario using a data that was previously
investigated by Helu et al. (2020). The data set consists of 70 failure times of aircraft wind-
shields, from which a sample of size 50 is drawn with probability proportional to size. The
best-fitted distribution to the original data set is the Gamma distribution with parameters
α = 7.75 and β = 0.285. We plot the theoretical and estimated values of DSE and DFE for
the real data in Figures 5 and 6, respectively. Upon analysis of the plots, we observe that the
estimated values are remarkably close to the actual values. This indicates that the proposed
estimators perform well in real-world circumstances. The accuracy of the estimators in esti-
mating the extropy measures for the length-biased sample demonstrates their reliability and
applicability in practical scenarios.
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Figure 5: Plots of actual and esti-
mated values of DSE for real data
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Figure 6: Plots of actual and esti-
mated values of DFE for real data



2025] NONPARAMETRIC ESTIMATION OF EXTROPY MEASURES 333

5. Conclusions

This work proposes nonparametric estimators for extropy-related measures under
length-biased sampling. The consistency and asymptotic normality of the proposed esti-
mators are established, demonstrating their reliability in estimating these measures. The
performance of the estimators is evaluated using both simulated and real data sets. The
simulation results provide strong evidence of the accuracy and precision of the proposed
estimators. The negligible bias and mean squared error observed in the estimators confirm
their ability to closely approximate the true values of the extropy-related measures. Further-
more, the analysis of a real data set reinforces the practical utility of the proposed estimators.
By evaluating the extropy-related measures using the real data, it is evident that the esti-
mators perform well in real-life scenarios. This highlights the applicability of the estimators
in various domains, such as reliability analysis, survival analysis, and engineering, where
accurate estimation of extropy-related measures is crucial for making informed decisions and
understanding complex systems.

In summary, this work contributes valuable nonparametric estimators for extropy-
related measures under length-biased sampling. The established properties of consistency
and asymptotic normality, coupled with the demonstrated accuracy in both simulated and
real data settings, make these estimators highly reliable tools for researchers and practition-
ers. The availability of such estimators facilitates the estimation of extropy-related measures,
enabling deeper insights into the dynamics of failure and survival processes in diverse fields
of study.
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Abstract
The COVID-19 pandemic has exhibited unprecedented and adverse effects on global

health and living patterns. To understand and predict the spread of any disease, the
Susceptible-Infectious-Recovered (SIR) model has been extensively used. However, the SIR
model is failing to accurately predict the dynamics of complex systems. Therefore, this re-
search proposes the development of a modified fractional order derivative for modelling the
COVID-19 epidemic. The total population is divided into four classes with exclusive consid-
eration of quarantined individuals. Attributes such as positivity, boundedness of solution,
and stability of a model at disease-free equilibrium are thoroughly studied. The obtained
results are utilized to predict the progression of COVID-19 through modelling.

Key words: Mathematical Model; Epidemic model; COVID-19 virus; Fractional calculus;
Stability.

AMS Subject Classifications: 26A33, 34A30, 92-10, 00A71, 34D20.

1. Introduction

Predicting the projection of COVID-19 till remains a challenge that demands the
integration of epidemiological models, statistical analyses, and real-time data streams. The
COVID-19 pandemic has wrought profound and multifaceted effects on the world, touch-
ing nearly every aspect of human life. Economically, it has triggered widespread disrup-
tions, leading to job losses, business closures, and supply chain bottlenecks, exacerbating
inequalities and pushing millions into poverty. Socially, it has imposed isolation, disrupted
education, and strained healthcare systems to their limits, with far-reaching implications for
mental health and well-being. Therefore modelling of spread of COVID-19 is much necessary
to predict the spread disease. There are various modelling approaches to forecast the spread
of disease such as SIR, statistical, machine learning.

Mathematical modeling of epidemics was first introduced by W.O. Kermack and A.G
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McKendrick in year 1927 Kermack and McKendrick (1927). Since then many Mathemati-
cians, Life sciences scientist and Medical professionals have used such type of model for
studying the dynamics of various infectious diseases. By developing the model helps in pre-
dicting the infections. In Silva and Torres (2014) authors have developed a mathematical
model on TB-HIV syndemic and treatment, in this model they divided total population
into ten partitions and discussed about the positivity, boundedness of the solution and also
discussed the stability. In Diethelm (2013); Solanke and Pachpatte (2019, 2021) the mathe-
matical models on TB, dengue and Swine flu diseases have been studied.

COVID-19 virus is the one of family members of coronavirus, which are RNA viruses
can be mild to lethal. It is harmful because of the risk factor, as some strains can kill up
to 30 percent of affected people. As of June 22, 2021, there have been 180101870 confirmed
cases and 3902501 deaths worldwide. Fever, dry cough, dyspnea, diarrhoea, sore throat and
other symptoms are prevalent. It can infect cats, dogs, camels, and horses, among other
animals web (a,b). The first incidence of COVID-19 was discovered in China in 2019. The
first case of COVID-19 in India was detected by a person travelling from China to Kerala in
the last week of January 2020.

Recently many researchers all over the world have started developing the Models for
studying the behaviour of COVID-19. In Brandenburg (2020); Vega (2020) authors have
developed a SIR model on COVID-19 for piecewise quadratic growth and discussed about
the lockdowns due to increased infections of COVID-19 disease. Also in Shaikh et al. (2020)
authors have discussed a mathematical model on COVID-19 formed by using fractional order
derivative and also discussed the stability using the Laplace transform method. The SEIR
model on COVID-19 disease have developed and studied local stability and global stability
by some researchers Ssematimba et al. (2021); Tiwari et al. (2020); Wang et al. (2020). Some
authors have developed the model by including class of quarantine or isolated population
Krishna (2020); Mnganga and Zachariah (2020); Peter et al. (2021); Tanga et al. (2020), in
Lina et al. (2020) different classes are provided for cumulative cases and deaths occurred due
to COVID-19. The environmental changes such as population, air changes due to COVID-19
disease and effect of lockdown occurred due to COVID-19 Kerimray et al. (2020); Xu et al.
(2020). In Makade et al. (2020), they have discussed about the most influential parameter
for the spread of COVID-19 disease. Spread of COVID-19 active infection cases in three
countries India, Italy and United States Of America(USA) have studied Pachpatte et al.
(2021). Some logistic models, dynamic models and on spatial density are also developed on
COVID-19 Abusam et al. (2020); Adekunle et al. (2020); Alzahrani et al. (2021); Al-Khani
et al. (2020); Vaz and Torres (2021); Zaitri et al. (2021).

Simple mathematical model to investigate the transmission and regulation of the
novel coronavirus disease (COVID-19) from human to human has been done in Ahmed et al.
(2021). The researchers used mathematical epidemiology principles to model, how people
are exposed to and infected with the disease, as well as their possible future recovery. Both
the ordinary differential equation (ODE) and the fractional differential equation were used
in the mathematical study. It is critical for health practitioners and the rest of the world
to understand and predict infected individuals in order to plan for citizens’ health concerns
and to control the spread rate with limited supply. The simulation’s data is based on the
spread of disease in Nigeria.
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Riyapan et al. (2021) have proposed and examined nonlinear mathematical model in
terms of understanding the dynamics of the COVID-19 epidemic in Thailand. The formu-
lated model’s equilibrium point was determined. The basic reproduction number pertaining
to the model was also calculated using the next generation matrix approach. Haq et al.
(2023) have created a vaccination model by including the vaccine class and other factors
that are crucial for immunizing those who are susceptible.

Motivated by the above work, a mathematical model for COVID-19 disease containing
fractional order derivative and the properties about their solution are studied.

2. Mathematical model

2.1. Preliminaries

Now, in this section, some basic terminology that will come in useful during our
discussions.

Definition 1: Podlubny (1999); Zhou (2014). The fractional calculus in classical form is
given by the Riemann–Liouville integral which can be defined as

aD
−τ
t (u(t)) =a I

τ
t (u(t)) = 1

Γ(τ)

� t

a

(t− ς)τ−1u(ς)dς, (1)

where t > a.

Definition 2: Shaikh et al. (2020); Podlubny (1999); Zhou (2014). The Caputo fractional
derivative operator of order τ where τ ≥ 0 and n ∈ N ∪ {0} can be given as

Dτ
t (u(t)) = 1

Γ(n− τ)

� t

0
(t− ς)n−τ−1 d

n

dtn
u(ς)dς, (2)

where n− 1 ≤ τ < n.

2.2. Mathematical model

In this section present a model with class of quarantined individuals. Suppose that
the entire population is organised into four classes, each of which is mutually exclusive,
meaning that no individual may be assigned to more than one. Divided the population in
four classes as three partitions are not sufficient to study the asymptomatic individuals and
for this fifth partition is not required. Use N(t) for total population is function of time t.
Define four classes as
Cs(t)- Class of individuals Susceptible at time t,
CQ(t)-Class of individuals Quarantined time t,
CA(t)- Class of individuals asymptomatic (infected individuals not having symptoms) and
not quarantined at time t,
CR(t)- Class of individuals recovered at time t with or without medical treatment.

Total population N(t) is given by
N(t) = Cs(t) + CA(t) + CQ(t) + CR(t).

We denote Λ is the birth rate, µ is the natural death rate, µ1 is the death rate of
asymptomatic people due to COVID-19, similarly µ2 is the death rate of quarantine people
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due to COVID-19. Some deaths are occurred in recovered class due to post COVID-19
diseases at the rate of µ3. In this consider that very less number of asymptotic individuals
recover without treatment means most of them have to pass through the quarantine class.
Here β2 denotes effective contact rate with infected people, which comprises 2 parameters as
ϕ is the rate at which the people get infected but not having symptoms (not quarantined) and
ϕ1 is the rate at which people are infected and having symptoms and they are quarantined.
The asymptomatic peoples recovers at the rate of δ1 without any treatment and they are
quarantined at the rate γ when they becomes symptomatic and tested positive. Quarantined
people recovers at the rate of δ and recovered people will become susceptible at the rate ψ
after some time due loss of immunity.

Above system can be represented in model format as follows:

dCS(t)
dt

= Λ + ψCR(t) − (ϕ+ ϕ1 + µ)CS(t), (3)

dCA(t)
dt

= ϕCS(t) − (γ + δ1 + µ+ µ1)CA(t), (4)

dCQ(t)
dt

= ϕ1CS(t) + γCA(t) − (δ + µ+ µ2)CQ(t), (5)

dCR(t)
dt

= δCQ(t) + δ1CA(t) − (ψ + µ+ µ3)CR(t), (6)



2025] MATHEMATICAL MODEL FOR SPREAD OF COVID-19 VIRUS 339

with initial conditions

CS(0) ≥ 0, CA(0) ≥ 0, CQ(0) ≥ 0, CR(0) ≥ 0. (7)

Construct a mathematical model using fractional derivative.

The above system can written using Caputo fractional derivative operator as follows

Dτ
t (CS(t)) = Λ + ψCR(t) − (ϕ+ ϕ1 + µ)CS(t), (8)

Dτ
t (CA(t)) = ϕCS(t) − (γ + δ1 + µ+ µ1)CA(t), (9)

Dτ
t (CQ(t)) = ϕ1CS(t) + γCA(t) − (δ + µ+ µ2)CQ(t), (10)

Dτ
t (CR(t)) = δCQ(t) + δ1CA(t) − (ψ + µ+ µ3)CR(t), (11)

with the initial conditions

CS(t) ≥ 0, CA(t) ≥ 0, CQ(t) ≥ 0, CR(t) ≥ 0. (12)

2.3. Properties of model

Now in this section we study the positivity and boundedness properties of the solution
of the system. Let {(CS, CA, CQ, CR) ∈ R4

+} be any solution of system 8 - 11 with initial
conditions 12. Now, let us assume the region ω = {(CS, CA, CQ, CR) ∈ R4

+ : 0 ≤ N(t) ≤ Λ
µ
}.

Now we prove positivity of system 8 - 11 with initial conditions 12 in our next theorem.

Theorem 1: Let {(CS, CA, CQ, CR) ∈ R4
+} be any solution of system 8 - 11 with initial

conditions 12. Consider

ω =
{

(CS, CA, CQ, CR) ∈ R4
+ : 0 ≤ N(t) ≤ Λ

µ

}
, (13)

then CS(0) ≥ 0, CA(0) ≥ 0, CQ(0) ≥ 0, CR(0) ≥ 0.

Proof: We will prove our result by contradiction, suppose on contrary that for some point
t̃ > 0, the CA(t) = 0, i.e. CA(t̃) = 0 and CS(t) ≥ 0, CQ(t) ≥ 0, CR(t) ≥ 0 (given).

Then from equation 9 we have

Dτ
t (CA(t)) > 0, (14)

which is not true.

Thus, CA(t) ≥ 0 for all t > 0.

Similarly, one can prove that, CS(t) ≥ 0, CQ(t) ≥ 0, CR(t) ≥ 0 for all time t > 0.

Now proof of a boundedness of system 8 - 11 with initial conditions 12 is in next
theorem.
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Theorem 2: If N(t) is the total population given by

N(t) = CS(t) + CA(t) + CQ(t) + CR(t),

then
Dτ

t (N(t)) ≤ Λ − µN(t), (15)
where, Λ- birth rate, µ- death rate.

Proof: Since,
N(t) = CS(t) + CA(t) + CQ(t) + CR(t),

from the equations of system 8 - 11, we have

Dτ
t (N(t)) =Dτ

t (CS(t)) +Dτ
t (CA(t)) +Dτ

t (CQ(t)) +Dτ
t (CR(t)),

=Λ + ψCR(t) − (ϕ+ ϕ1 + µ)CS(t) + ϕCS(t) − (γ + δ1 + µ+ µ1)CA(t)
+ ϕ1CS(t) + γCA(t) − (δ + µ+ µ2)CQ(t) + δCQ(t) + δ1CA(t)
− (ψ + µ+ µ3)CR(t),

=Λ + ψCR(t) − ϕCS(t) − ϕ1CS(t) − µCS(t)) + ϕCS(t) − γCA(t)
− δ1CA(t) − µCA(t) − µ1CA(t) + ϕ1CS(t) + γCA(t) − δCQ(t)
− µCQ(t) − µ2CQ(t) + δCQ(t) + δ1CA(t) − ψCR(t) − µCR(t)
− µ3CR(t),

=Λ − µCS(t)) − µCA(t) − µ1CA(t) − µCQ(t) − µ2CQ(t) − µCR(t)
− µ3CR(t).

Since N(t) = CS(t) + CA(t) + CQ(t) + CR(t),

Dτ
t (N(t)) = Λ − µN(t) − µ1CA(t) − µ2CQ(t) − µ3CR(t) ≤ Λ − µN(t).

Therefore, conclude that N(t) is bounded for all t > 0 and every solution of system 8 - 11
with initial conditions 12 is bounded.

3. Stability analysis

In this section stability of the system 8 - 11 with initial conditions 12 is studied. Now
give some basic definitions of stability analysis given in Remsing (2006).

Definition 3: Remsing (2006) An equilibrium state x = 0 is said to be stable, if for any
positive scalar ϵ there exists a positive scalar δ such that ||x(t0)|| < δ implies ||x(t)|| < ϵ for
all t ≥ t0.

Definition 4: Remsing (2006) An equilibrium state x = 0 is said to be asymptotically
stable, if it is stable and if in addition x(t) → 0 as t → ∞.

The system 8 - 11 with initial conditions 12 is said to have disease free equilibrium
(No disease) if

Σo = (CS0, CA0, CQ0, CR0) =
(

Λ
µ+ ϕ+ ϕ1

, 0, 0, 0
)
. (16)
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The Endemic Equilibrium is given by

Σ∗ = (CS∗, CA∗, CQ∗, CR∗), (17)

with CA∗ > 0, CQ∗ > 0, CR∗ > 0 for R0 > 1, where R0 is the basic reproduction number for
the system 8 - 11 with initial conditions 12.

The basic reproduction number is the average number of new infections due to a single
individual when in contact with susceptible population.Silva and Torres (2014). Now in our
next theorem gives the result on the stability of the system 8 - 11 with initial conditions 12.

Theorem 3: The disease free equilibrium Σ0 is locally asymptotically stable if R0 < 1.

Proof: The disease-free equilibrium Σ0 is locally asymptotically stable for R0 < 1, if all the
eigenvalues of the Jacobian Matrix of the system of equations 8 - 11 here denoted by MT (Σ0)
computed at the disease free equilibrium Σ0, given by 16 have negative real parts Remsing
(2006); Benerjee (2014).

The Jacobian Matrix of the system of equations 8 - 11 at disease-free equilibrium is
given by

J0 =




−ϕ− ϕ1 − µ 0 0 0
ϕ −γ − δ1 − µ− µ1 0 0
ϕ1 γ −δ − µ− µ2 0
0 δ1 δ −ψ − µ− µ3


 .

The eigenvalues of this matrix are the roots of the equation |J0 − λI| = 0, consider

|J0 − λI|

=




−ϕ− ϕ1 − µ− λ 0 0 0
ϕ −γ − δ1 − µ− µ1 − λ 0 0
ϕ1 γ −δ − µ− µ2 − λ 0
0 δ1 δ −ψ − µ− µ3 − λ


 ,

= (−ϕ− ϕ1 − µ− λ)




−γ − δ1 − µ− µ1 − λ 0 0
γ −δ − µ− µ2 − λ 0
δ1 δ −ψ − µ− µ3 − λ


 ,

= (−ϕ− ϕ1 − µ− λ)
{

(γ − δ1 − µ− µ1,−λ)
[
(−δ − µ− µ2 − λ)(−ψ − µ− µ3 − λ)

]}
,

= −(λ+ ϕ+ ϕ1 + µ)
{

− (λ+ γ + δ1 + µ+ µ1)
[
(λ+ δ + µ+ µ2)(λ+ ψ + µ+ µ3)

]}
,
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= (λ+ ϕ+ ϕ1 + µ)
{

(λ+ γ + δ1 + µ+ µ1)
[
(λ+ δ + µ+ µ2)(λ+ ψ + µ+ µ3)

]}
.

Let

ϕ+ ϕ1 + µ = a,

γ + δ1 + µ+ µ1 = b,

δ + µ+ µ2 = c,

ψ + µ+ µ3 = d.

Therefore
|J0 − λI| = (λ+ a)

{
(λ+ b)

[
(λ+ c)(λ+ d)

]}
,

⇒ (λ+ a)(λ+ b)(λ+ c)(λ+ d) = 0,
⇒ λ = −a, λ = −b, λ = −c, λ = −d.

Since all the parameters are greater than or equal to 0, a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0.
Thus, all the eigenvalues of this Jacobian Matrix are negative.

The system of equations 8 - 11 with initial conditions 12 is stable. Thus a mathemati-
cal model 8 - 11 with initial conditions 12 is asymptotically stable at disease free equilibrium
for R0 < 1.

4. Results and discussions

In this section verification of results with data of COVID-19 of India to this system
has been done. The plot shows the curves for the Asymptomatic, Quarantine, Recovered
population for COVID-19 disease in India. Here the parameters are as below, which are
obtained from real data, MATLAB software is used for the numerical solution of the model.

Table 1: Parameters

Parameter Value Parameter Value
Λ 0.0000563447 µ 0.0000194123
ϕ 0.000000125927 ϕ1 0.00000029383
ψ 0.9999805877 µ1 0.0118594279
δ1 0.9881165471 γ 0.000046128
δ 0.8813863087 µ2 0.118594279
µ3 0 N 1380004385

CA(0) 1 CQ(0) 1
CR(0) 0 . .

For prediction of the spread of infection, the important parameters are β2(effective
contact rate with infected people), ϕ(the rate at which people got infected and not having
any symptoms), ϕ1(the rate at which people got infected and and having symptoms). For
control of spread of infection the value of these parameter should be minimum.
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Figure 1: Graph for asymptomatic population

Figure 2: Graph for quarantined population

5. Conclusion

This research studied the mathematical model for the spread of COVID-19 disease
using fractional derivatives successfully. The results regarding positivity, boundedness of
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Figure 3: Graph for recovered population

the solution, and stability at equilibrium were obtained and analysed. The mathematical
model’s results demonstrate better performance compared to the conventional SIR model.
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Abstract
In the analysis of complex data sets, selecting an appropriate distribution is crucial for

real-life applications. Common probability distributions often fail to provide adequate results
when dealing with imprecise, uncertain, or vague data. To address these complexities and
achieve more accurate results, a neutrosophic probability distribution called the neutrosophic
Marshall-Olkin extended Burr-XII distribution has been developed. This study aims to
introduce a lifetime distribution capable of handling indeterminate data. Various properties
of the proposed distribution are discussed. The maximum likelihood method, in terms of
neutrosophic parameters, is utilized to estimate these parameters. A simulation study is
conducted to validate the estimated neutrosophic parameters. Finally, two real-life data sets
are analyzed to demonstrate the potential of the NMOE Burr-XII distribution, highlighting
its superior efficiency and adaptability compared to classical distributions when dealing with
indeterminate survival time data.

Key words: Neutrosophic statistics; Simulations; Burr-XII; Marshall-Olkin.
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1. Introduction

The Burr-XII distribution is significant in lifetime and survival data analysis. Shao
et al. (2004) investigated models for the extended three-parameter Burr type XII distribution
and applied it to model severe events, such as flood frequency. Rodriguez (1977) examined
the adaptability of the Burr type XII distribution, which has been widely used in various
scientific fields, including actuarial science, forestry, ecotoxicology, dependability, and sur-
vival analysis. Marshall and Olkin (1997) introduced a parameter to create a new family
of distributions that are more flexible and cover a broader range of behaviors than previous
distributions, known as extended distributions. Al-Saiari et al. (2014) further extended this
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by adding one parameter to the Marshall-Olkin Extended (MOE) Burr-XII distribution,
resulting in the Marshall Olkin extended Burr-XII distribution.

Neutrosophic statistics, initially introduced in 1995 and further developed by Smaran-
dache (2014) explored the nature, origin, and application of neutralities. Neutrosophic logic
is a special form of fuzzy logic. The neutrosophic statistics is more efficient than the classical
statistics and interval-statistics see Smarandache (2022). While classical statistics rely on
definite data, neutrosophic statistics handle partial, imprecise, ambiguous, or indeterminate
data. The two fields coincide when indeterminacy is zero Chen et al. (2017). Neutrosophic
statistics provide more accurate results by differentiating between those who partially and
fully belong to a dataset. When all data and inference techniques are determined, both
classical and neutrosophic statistics occur simultaneously. Neutrosophic statistics (NS) offer
several advantages over interval statistics. In probability distributions, NS employs thick
functions, formed by the intersections of curves, which may or may not be depicted as in-
tervals Smarandache (2014). The neutrosophic probability distribution (NPD) for an event
(x) comprises three curves: NPD(x) = [T (x), I(x), F (x)], where T (x) represents the prob-
ability of event E occurring, I(x) denotes the indeterminate probability of E occurring or
not, and F (x) signifies the probability of E not occurring. These functions T(x),I(x), and
F(x) can take on classical or neutrosophic (unclear, approximate, thick) forms depending
on the specific application, and their sum ranges from 0 to 3 Smarandache (2013). Many
researchers have developed neutrosophic probability distributions. For example, Fawzi et al.
(2019) introduced the neutrosophic Weibull distribution and its related family, including
the neutrosophic Weibull, Neutrosophic Rayleigh, neutrosophic inverse Weibull, and neu-
trosophic three- and six-parameter Weibull, as well as the Neutrosophic beta distribution.
Rao (2023) developed the neutrosophic Log-logistic distribution, while Khan et al. (2021b)
introduced the neutrosophic Gamma Distribution. Duan et al. (2021) presented the neutro-
sophic exponential distribution, and Khan et al. (2021a) proposed the Neutrosophic Beta
distribution. Albassam et al. (2023) explored some basic properties of the neutrosophic
Weibull Distribution with applications to wind speed in uncertain environments. Nayana
et al. (2022) proposed the DUS Neutrosophic Weibull Distribution, and Eassa et al. (2023)
introduced the neutrosophic generalized Pareto Distribution, modeling it on public debt in
Egypt. Khan et al. (2021c) developed the Neutrosophic Rayleigh model for indeterminate
data and also created V charts, neutrosophic run length, and Neutrosophic power curves for
the proposed model. Sherwani et al. (2021) introduced new entropy measures for the Weibull
Distribution under neutrosophic data, and Granados et al. (2022) applied both continuous
and discrete probability distributions to Neutrosophic data. According to Granados et al.
(2022), fuzzy logic is a special case of Neutrosophic logic, which generalizes fuzzy logic.

The article is structured as follows: Section 2 outlines the development of the novel
Neutrosophic Marshall extended Burr-XII distribution, including graphical representation.
Sections 3 and 4 discuss various properties of the proposed density. Section 5 focuses on the
estimation of unknown parameters and simulation studies. Section 6 presents applications
of the proposed model. Section 7 provides a discussion on these applications, and Section 8
offers concluding remarks.
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2. Development of neutrosophic Marshall Olkin extended Burr-XII
distribution

In this section, we will introduce the neutrosophic Marshall Olkin Extended Burr-XII
distribution.

2.1. Marshall Olkin extended Burr-XII model

Burr type distributions are extensively used in life data and survival analysis. Adding
more parameters to the Burr-XII distribution enhances its flexibility and appeal. Conse-
quently, this study selects the Marshall-Olkin extended Burr-XII model for the development
of a Neutrosophic model. The cumulative distribution function (CDF) and the probability
density function (PDF) of the Marshall-Olkin Extended Burr-XII (MOE Burr-XII) distri-
bution are as follows.

F (x; α, β, γ) =
1 −

(
1 + xβ

)−γ

1 − (1 − α) (1 + xβ)−γ , x, α, β, γ > 0 (1)

and

f (x; α, β, γ) =
αβγxβ−1

(
1 + xβ

)−γ−1

[
1 − (1 − α) (1 + xβ)−γ

]2 , x, α, β, γ > 0 (2)

2.2. Neutrosophic random variable

Rao et al. (2023) discussed the extension of classical statistics called neutrosophic
statistics. In classical statistics, we work with specific or predefined values. In contrast,
neutrosophic statistics involves selecting values or data from a population within an unpre-
dictable environment. For instance, when recording the temperature of a place, we might
not be able to capture a precise value, such as 35°C. Instead, the value could have an uncer-
tainty range, like 35°C to 38°C. The information in this context can be confusing, inaccurate,
doubtful, partial, or even unknown.

Assuming the neutrosophic random variable XN = XL + INXL, where IN ∈ [IL, IU ]
wherever INXL is the indeterminate and IN ∈ [IL, IU ] is the indeterminacy. It is importance
to notice that the neutrosophic random variable is the extension of the classical random
variable specifically when IL = 0 the neutrosophic random variable converts into classical
random variable. According to his, the properties of the expectation of the neutrosophic
random variable XN = XL + INXL = (1 + IN)XL is defined as:

Aslam and Albassam (2024) explored the mean properties of the neutrosophic random
variable XN = XL + XLIN , defined as:

1. E (XN) = E (XL + XLIN) = (1 + IN) E (XL) = (1 + IN) µ

2. E (XN + t) = E [(XL + XLIN) + t] = (1 + IN) µ + t here t is a constant.

3. E (sXN + t) = E [s (XL + XLIN) + t] = s (1 + IN) µ + t here s and t are constant.

4. E (XN + YN) = (1 + IN) µX + (1 + IN) µY
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Now, the variance properties of the neutrosophic random variables are as follows:

1. V (XN) = V (XL + XLIN) = (1 + IN)2 V (XL) = (1 + IN)2 σ2

2. V (tXN) = t2V (XL + XLIN) = t2 (1 + IN)2 σ2

3. V (XN + YN) = (1 + IN)2 σ2
X + (1 + IN)2 σ2

Y + 2INCov (XN , YN)

4. V (sXN + tYN) = s2 (1 + IN)2 σ2
X + t2 (1 + IN)2 σ2

Y + 2stINCov (XN , YN)

5. If we have two independent variables, XN and YN :
V (XN + YN) = (1 + IN)2 σ2

X + (1 + IN)2 σ2
Y

Let suppose the random variable X arose from the Marshall Olkin extended Burr-
XII distribution with the CDF and PDF given in equations 1 and 2, we consider that the
neutrosophic statistical number N , and IN ∈ [IL, IU ] is an interval of indeterminacy. If
the neutrosophic variable XN = XL + INXL, generates the neutrosophic values of data.
According to this, the neutrosophic variable is defined as: XN = XL + INXL = (1 + IN)XL

here indeterminate and determined parts are described by XL and INXL respectively.

If the random variable in terms of neutrosophic statistic XN ∈ (1+IN)XL follows the
Marshall Olkin Extended Burr-XII (NMOE Burr-XII) then by using the equations 1 and 2,
the PDF and CDF of the neutrosophic Marshall Olkin Extended Burr-XII (NMO Burr-XII)
distribution are developed as given below.

fN (xN ; α, β, γ) =
αβγ (1 + IN) [(1 + IN) xL]β−1

[
1 + {(1 + IN) xL}β

]−γ−1

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

]2 , xN , α, β, γ > 0

(3)
Similarly, the CDF of the NMOE Burr-XII distribution is,

FN(xN ; α, β, γ) =
� x

0
fN (xN ; α, β, γ) dx

FN(xN ; α, β, γ) =

[
1 −

[
1 + {(1 + IN) xL}β

]−γ
]

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

] (4)

Special cases of NMOE Burr-XII distribution.

1. For α = 1, the NMOE Burr-XII becomes Neutrosophic Burr-XII distribution.

2. For β = 1, NMOE Burr-XII becomes the Neutrosophic Marshal Olkin Extended Lomax
distribution.

To prove that equation 3 is density and equation 4 is CDF, the following theorems
are given.
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Figure 1: Density plots for the NMOE burr-XII distribution for different values
of IN , and parameters
Theorem 1: Consider XN ∈ (1 + IN)XL here indeterminate and determined parts are
described by XL and INXL respectively; suppose XN follows the function given in equation
3 is a valid density function.

Proof: The random variable X follows the NMOE Burr-XII distribution in equation 3 then
� ∞

0

αβγ [(1 + IN) xL]β−1
[
1 + {(1 + IN) xL}β

]−γ−1

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

]2 (1 + IN) dx = 1
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Let
[
1 + {(1 + IN) xL}β

]−γ
= u, and after some simplifications we get the

α

� 1

0

1
[1 − (1 − α)u]2

du = 1

Again transform [1 − (1 − α)u] = z, and simplifying it we get,

α

1 − α

� 1

α

1
z2 dz = 1

The above integral is equal to one. Hence it is proved that equation 3 is a valid density
function.

Theorem 2: Let the random variable XN ∈ (1+IN)XL here indeterminate and determined
parts are described by XL and INXL follows the NMOE Burr-XII distribution then the CDF
given in equation 4 is a valid distribution function.

Proof: consider the random variable XN ∈ (1 + IN)XL follows the CDF given in equation
4 then, it is proved that:

F (0) = 0
F (∞) = ∞

Hence the equation 4 is a valid distribution function. The graphical representation of the
NMOE Burr-XII distribution is displayed below for different values of the parameters and
varying IN , Here, β & γ are the shape parameters, while α is the scale parameter. Figure 1
illustrates that the density is clearly unimodal.

3. Neutrosophic reliability measures

In this section, we develop several properties related to lifetime analysis, including
survival analysis and the hazard function. The survival function is defined as the probability
that an event or observation in survival data occurs after a specified time point. The survival
function for the NMOE Burr-XII distribution is given as follows.

SN (xN ; α, β, γ) =
α

[
1 + {(1 + IN) xL}β

]−γ

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

] (5)

The hazard rate function is a fundamental concept in survival analysis, which exam-
ines time-to-event data. The hazard rate function (HRF) for the NMOE Burr-XII distribu-
tion is derived as follows.

hN (xN ; α, β, γ) = βγ (1 + IN) {(1 + IN) xL}β−1
[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

]
[1 + {(1 + IN) xL}β]

(6)

Figure 2 presents the HRF shapes with various values of parameters and with different
IN . HRF of the NMOE Burr-XII distribution exhibits monotone increasing trend.
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The cumulative hazard rate function for the NMOE Burr-XII distribution is

H (xN , α, β, γ) = −ln




α
[
1 + {(1 + IN) xL}β

]−γ

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

]




The reversed hazard rate function for the NMOE Burr-XII distribution is

r (xN , α, β, γ) =
αβγ (1 + IN) [(1 + IN) xL]β−1

[
1 + {(1 + IN) xL}β

]−γ−1

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

] [
1 − [1 + {(1 + IN) xL}β]−γ

]

In the context of neutrosophic reliability measures, censoring can be accommodated
by incorporating neutrosophic sets to handle the uncertainty and indeterminacy associated
with censored data. This approach allows for a more flexible representation of reliability
metrics, where traditional binary logic (failure or survival) is extended to include degrees of
membership, indeterminacy, and non-membership, thus providing a nuanced way to account
for incomplete information due to censoring.

4. Some statistical properties of neutrosophic Marshall Olkin extended
Burr-XII distribution

This section explores various statistical properties of the NMOE Burr-XII distribu-
tion, including the mean, variance, quantile function, skewness, and kurtosis.
The mean of the neutrosophic MOE Burr-XII distribution is derived as

µN = E [(1 + IN) XL] = (1 + IN) E (XL) (7)

Where,

E (XL) = E (X) =
� ∞

0
x

αβγxβ−1
(
1 + xβ

)−γ−1

[
1 − (1 − α) (1 + xβ)−γ

]2 dx

The above expression does not have a closed form, so we can determine its numerical
values by substituting the parameter values.

Similarly, the variance of the neutrosophic MOE Burr-XII distribution is obtained as

σ2 = V ar [(1 + IN) XL] = (1 + IN)2 V ar (XL) (8)

The variance also does not have a closed form. Therefore, we can determine its
numerical values by substituting the parameter values.

Another important statistical property of the NMOE Burr-XII distribution is the
quantile function, which is crucial for the Monte Carlo simulation approach. This function
is also useful for generating random numbers from the probability distribution model. The
quantile function of the NMOE Burr-XII distribution is derived as follows.

QN(p) = F −1
N (Xp)
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Figure 2: HRF plots for the NMOE Burr-XII distribution for different values of
IN , and parameters



2025] NEUTROSOPHIC MARSHALL OLKIN EXTENDED BURR-XII DISTRIBUTION 355

QN(p) =

[(
1−p

1−p(1−α)

)− 1
γ − 1

] 1
β

(1 + IN) (9)

The median, first quartile, third quartile and Inter quartile range (IQR) for proposed
distribution are calculated as Median = QN(0.5), First quartile = QN(0.25), Third quartile=
QN(0.75) and IQR = QN(0.75) − QN(0.25).

Neutrosophic Measure of Skewness and Kurtosis based on the Quantile function for
NMOE Burr-XII distribution are given as follows,

SKN = QN(6/8) − 2QN(4/8) + QN(2/8)
QN(6/8) − QN(2/8) (10)

and
KN = QN(7/8) − QN(5/8) + QN(3/8) − QN(1/8)

QN(6/8) − QN(2/8) (11)

5. Parameter estimation

In this section, we discuss the estimation of unknown parameters for the NMOE
Burr-XII distribution using the method of maximum likelihood estimator (MLE).

Maximum likelihood estimation method

Given the observed data, this method is used to find the parametric values of the
proposed distribution. Suppose that (1 + IN)XN1, (1 + IN)XN2, . . . ., (1 + IN)XNn, be a
neutrosophic random samples of NMOE Burr-XII distribution then log-likelihood function
is derived as:

The loglikelihood function is:

l (α, β, γ) = log(α) + log(β) + log(γ) + log(1 + IN) + (β − 1)
n∑

i=1
log(1 + IN)xi

−(γ + 1)log
n∑

i=1

[
1 + {(1 + IN)x}β

]
− 2log

n∑

i=1

[
1 − (1 − α)

[
1 + {(1 + IN) xL}β

]−γ
] (12)

To find the values of parameters, obtain the derivative of the above expression with respect
to α, β and γ.

∂l

∂α
= 1

α
−

[
1 + {(1 + IN)x}β

]−γ

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

] (13)

∂l

∂β
= 1

β
+ log{(1 + IN)x} − (γ + 1){(1 + IN)x}βlog{(1 + IN)x}

[1 + {(1 + IN)x}β]

−
2γlog{(1 + IN)x + 1}

[
−

[
−(α − 1){(1 + IN)x + 1}β

]−γ
]

1 − (1 − α) [1 + {(1 + IN)x}β]−γ

(14)

∂l

∂γ
= 1

γ
− log{1 + {(1 + IN)x}β} −

2
[
1 + {(1 + IN)x}β

]−γ
log

[
1 + {(1 + IN)x}β

]

1 − (1 − α) [1 + {(1 + IN)x}β]−γ (15)
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5.1. Simulation study

In this section, we conduct a Monte Carlo simulation study to evaluate the perfor-
mance of the estimated parameters for the NMOE Burr-XII distribution. We assess the
performance of the neutrosophic Maximum Likelihood estimator using the neutrosophic av-
erage biased (ABN) and the neutrosophic root mean square error (RMSE).

ABN = 1
N

N∑

i=1

(
θ̂Ni

− θN

)

and

RMSEN = 1
N

N∑

i=1

(
θ̂Ni

− θN

)2

In R software, a Monte Carlo simulation with varying sample sizes and fixed values
of the Neutrosophic parameters α = [0.01, 0.2], β = [2.0, 2.7] and γ = [1.2, 1.8] is conducted.
The NMOE Burr-XII is used to build an imprecise dataset with α = [0.01, 0.2], β = [2.0, 2.7]
and γ = [1.2, 1.8], and simulation is replicated N = 10000 times with sample sizes of n =
50, 100, 300, 500, respectively. The performance of the neutrosophic Maximum Likelihood
estimators is then computed and shown in Tables 1, 2, 3 and 4. In the tables from 1-4,
it is observed as the sample size increases the MSE, MRE and bias is decreasing for all
parameters. Moreover, comparing estimated results when the IN has been calculated from
respective parameters i.e. INparameters with when IN = 0. Then the MSE, Bias and MRE for
INα given in table 1, INβ

given in table 2, and INγ given in table 3, are less as compared to
when IN = 0, given in table 4.
Table 1: Parameter’s bias, average bias, mean square error (MSE), and mean
relative error (MRE) for αN = [0.01, 0.09], βN = [0.5, 1.5], γN = [0.05, 1.5] and INα =
0.89 calculated from αN

Sizes MLE Estimates αN = [0.01, 0.09] βN = [0.5, 1.5] γN = [0.05, 1.5]

50
Bias [0.1641, 1.2994] [0.4957, 1.4747] [0.2716, 2.5005]
Average Bias [0.1566, 1.2434] [0.0487,0.1905] [0.2339, 1.4319]
MSE [20.8938, 196.1348] [0.0038, 0.0635] [0.2364, 5.1005]
MRE [15.6634, 17.8155] [0.0974, 0.1270] [4.6771, 0.9546]

100
Bias [0.0358, 0.5668] [0.4973, 1.4839] [0.1589, 2.0133]
Average Bias [0.0285, 0.5085] [0.0339, 0.1324] [0.1218, 0.9201]
MSE [0.0036, 89.8824] [0.0018, 0.0301] [0.0517, 1.9413]
MRE [2.8496, 5.6503] [0.0678, 0.0882] [2.4361, 0.6134]

300
Bias [0.0170, 0.1080] [0.4996,1.4960] [0.0824, 1.6468]
Average Bias [0.0098, 0.0427] [0.0189, 0.0731] [0.0459, 0.4588]
MSE [0.0003, 0.0040] [0.0006, 0.0085] [0.0055, 0.3739]
MRE [0.9829, 0.4742] [0.0379, 0.0487] [0.9182, 0.3058]

500
Bias [0.0137, 0.1006] [0.4998, 1.4971] [0.0672, 1.5890]
Average Bias [0.0064, 0.0313] [0.0149, 0.0559] [0.0302, 0.3473]
MSE [0.0001, 0.0019] [0.0004, 0.0050] [0.0021, 0.2086]
MRE [0.6396, 0.3487] [0.0297, 0.0373] [0.6055, 0.2315]
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Table 2: Parameter’s bias, average bias, mean square error (MSE), and mean
relative error (MRE) for αN = [0.01, 0.09], βN = [0.5, 1.5], γN = [0.05, 1.5] and INβ

=
0.67 calculated from βN

Sizes MLE Estimates αN = [0.01, 0.09] βN = [0.5, 1.5] γN = [0.05, 1.5]

50
Bias [0.1553, 1.4602] [0.4958, 1.4721] [0.2834, 2.5290]
Average Bias [0.1477, 1.4042] [0.0501, 0.1899] [0.2453, 1.4662]
MSE [30.9636, 232.3428] [0.0041, 0.0641] [0.2568, 5.3880]
MRE [14.7735, 15.6019] [0.1001, 0.1266] [4.9058, 0.9774]

100
Bias [0.0350, 0.3235] [0.4979, 1.4878] [0.1562, 1.9594]
Average Bias [0.0278, 0.2666] [0.0342, 0.1303] [0.1196, 0.8842]
MSE [0.0033, 30.7377] [0.0019, 0.0280] [0.0483, 1.7041]
MRE [2.7784, 2.9620] [0.0683, 0.0868] [2.3922, 0.5895]

300
Bias [0.0167, 0.1083] [0.4999, 1.4970] [0.0809, 1.6536]
Average Bias [0.0095, 0.0429] [0.0192, 0.0725] [0.0448, 0.4618]
MSE [0.0003, 0.0041] [0.0006, 0.0085] [0.0054, 0.3837]
MRE [0.9519, 0.4764] [0.0383, 0.0484] [0.8950, 0.3079]

500
Bias [0.0139, 0.1009] [0.4997, 1.4974] [0.0682, 1.5950]
Average Bias [0.0066, 0.0316] [0.0147, 0.0562] [0.0314, 0.3505]
MSE [0.0001, 0.0019] [0.0003, 0.0051] [0.0023, 0.2099]
MRE [0.6631, 0.3513] [0.0293, 0.0375] [0.6272, 0.2336]

Table 3: Parameter’s bias, average bias, mean square error (MSE), and mean
relative error (MRE) for αN = [0.01, 0.09], βN = [0.5, 1.5], γN = [0.05, 1.5] and INγ =
0.97 calculated from γN

Sizes MLE Estimates αN = [0.01, 0.09] βN = [0.5, 1.5] γN = [0.05, 1.5]

50
Bias [0.1257, 1.4512] [0.4954, 1.4742] [0.2921, 2.5106]
Average Bias [0.1183, 1.3951] [0.0507, 0.1901] [0.2544, 1.4363]
MSE [6.8381, 231.8247] [0.0041, 0.0638] [0.2779, 5.1529]
MRE [11.8248, 15.5015] [0.1014, 0.1267] [5.0875, 0.9576]

100
Bias [0.0349, 0.4358] [0.4978, 1.4863] [0.1563, 1.9758]
Average Bias [0.0276, 0.3778] [0.0343, 0.1311] [0.1194, 0.8831]
MSE [0.0031, 60.1300] [0.0019, 0.0288] [0.0485, 1.7537]
MRE [2.7619, 4.1978] [0.0687, 0.0874] [2.3882, 0.5888]

300
Bias [0.0170, 0.1085] [0.4994, 1.4952] [0.0821, 1.6575]
Average Bias [0.0098, 0.0430] [0.0187, 0.0728] [0.0459, 0.4647]
MSE [0.0003, 0.0040] [0.0006, 0.0085] [0.0055, 0.3847]
MRE [0.9831, 0.4776] [0.0374, 0.0485] [0.9187, 0.3098]

500
Bias [0.0138, 0.0996] [0.4999, 1.4989] [0.0678, 1.5792]
Average Bias [0.0065, 0.0313] [0.0148, 0.0563] [0.0307, 0.3494]
MSE [0.0001, 0.0019] [0.0003, 0.0050] [0.0022, 0.2066]
MRE [0.6473, 0.3478] [0.0295, 0.0375] [0.6144, 0.2329]
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Table 4: Parameter’s bias, average bias, mean square error (MSE), and mean
relative rrror (MRE) for αN = [0.01], βN = [0.5], γN = [0.05] and IN = 0

Sizes MLE Estimates αN = [0.01] βN = [0.5] γN = [0.05]

50
Bias 0.1923 0.4954 0.2899
Average Bias 0.1849 0.0503 0.2523
MSE 27.206 0.0041 0.2861
MRE 18.4847 0.1007 5.0461

100
Bias 0.0348 0.4978 0.1552
Average Bias 0.0275 0.0344 0.1186
MSE 0.0031 0.0019 0.0469
MRE 2.7534 0.0687 2.3711

300
Bias 0.0171 0.4994 0.0828
Average Bias 0.0099 0.0189 0.0465
MSE 0.0003 0.0006 0.0056
MRE 0.9923 0.0377 0.9292

500
Bias 0.0140 0.4998 0.0688
Average Bias 0.0067 0.0147 0.0319
MSE 0.0001 0.0003 0.0023
MRE 0.6712 0.0295 0.6376

6. Applications

In this section, we apply the NMOE Burr-XII model to two real-world datasets char-
acterized by uncertain or complex values. We aim to gauge the suitability of the NMOE
Burr-XII model for such data. Various model selection methods are employed to assess the
performance of the proposed distribution and compare it with other competing distribu-
tions to determine the best model. Two datasets are used in this study, that are Remission
time dataset and Covid-19 dataset. The understudy datasets are presented in interval form,
meaning they exhibit uncertainty in the upper bounds of their data values, rather than pro-
viding single, fixed values. This inherent uncertainty may result in insufficient information.
To address this issue, the upper bounds in each dataset are calculated using the indetermi-
nacy component IN , thereby converting them into neutrosophic statistics. The values of IN

can be changed to 2%, 5%, or 10% based on the desired degree of assurance or uncertainty.
By immediately identifying and incorporating uncertainties into each dataset, this technique
enables a more nuanced analysis and improves the comprehensiveness and utility of the
data in medical research and decision-making across different investigations. In applications
IN = 0.05 is used to find the upper values of the datasets. A balance between being cautious
and accommodating of data uncertainties is achieved by setting IN = 0.05. It allows for
considerable flexibility while maintaining a respectable degree of analytical precision.

Remission time dataset

The first data consists of a collection of 128 cancer patients’ remission durations
measured in months. After getting therapy, each value indicates how long a patient stayed
in remission. When it comes to cancer therapy, remission is the time when the disease’s
symptoms and indicators are either minimal or nonexistent. This data has been taken from
bladder cancer study reported by Lee and Wang (2003). The understudy data (remission
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time) is available in neutrosophic form. We took the lower limit of the data from the source
and estimated the upper limit by applying an indeterminacy factor of IN = 0.05. This
same indeterminacy factor was then used to calculate the descriptive statistics shown in 7,
estimate the values of neutrosophic parameters also in Table 8, and model the proposed
density in Table 10 for the remission time data. [Note: this factor can be taken any other
value.].

Table 5: Remission time Dataset

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2
2.23 3.52 4.98 6.97 9.02 13.29 0.4 2.26 3.57
5.06 7.09 9.22 13.8 25.74 0.5 2.46 3.64 5.09

[7.26, 8.2] 9.47 14.24 25.82 0.51 2.54 3.7 5.17 7.28
9.74 14.76 [5.3,7.1] 0.81 2.62 3.82 5.32 7.32 10.06

[12, 14.77] 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26
0.9 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05
2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
4.26 5.41 7.63 [15, 17.2] 46.12 1.26 2.83 4.33 5.49
7.66 11.25 17.14 [75.02, 81] 1.35 2.87 5.62 7.87 11.64
17.36 1.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46
4.4 5.85 8.26 11.98 19.13 1.76 3.25 4.5 6.25
8.37 12.02 [1.5, 3.2] 3.31 4.51 6.54 [7.5, 8.2] 12.03 20.28
2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65
12.63 22.69 — — — — — — —

Covid-19 dataset

The data research by Almongy et al. (2021) describes the duration of relief in hours for
30 patients who received analgesic medication, likely as a part of a treatment for managing
COVID-19-related symptoms. The data displays a range of response times, which suggests
that patients in the research group had varying responses to the medicine. The relief time
data is available from the source in neutrosophic form. We considered the lower limit of the
data and calculated the upper limit by using an indeterminacy value of IN = 0.05. This
same indeterminacy value is later used to determine the descriptive statistics in Table 7,
estimate the neutrosophic parameters in Table 9, and model the proposed density in Table
11 for the relief time data.

Table 6: Covid-19 Dataset

(14.918, 15.6639) (10.056, 11.1888) (12.274, 12.88770) (10.289, 10.80345)
(10.832, 11.3736) (7.099, 7.4539) ( 5.928, 6.22440) (13.211, 13.87155)
(7.968, 8.36640) (7.584, 7.96320) (5.555, 5.83275) (6.027, 6.32835)
(4.097, 4.30185) (3.611, 3.79155) ( 4.960, 5.20800) (7.498, 7.87290)
(6.940, 7.28700) (5.307, 5.57235) (5.048, 5.30040) (2.857, 2.99985)
(2.254, 2.36670) (5.431, 5.70255) (4.462, 4.68510) (3.883, 4.07715)
(3.461, 3.63405) (3.647, 3.82935) (1.974, 2.07270) (1.273, 1.33665)
(1.416, 1.48680) (4.235, 4.44675) — —
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Table 7: Descriptive statistics for both data sets from proposed density

Descriptives Remission time data COVID-19
Mean [0.9010, 0.8945] [0.8162, 0.8205]
Variance [0.0009, 0.0007] [1.1e-05, 2.587e-06]
Median [0.9004, 0.8941] [0.8169, 0.8212]
First Quartile [0.8821, 0.8785] [0.8141, 0.8189]
Third Quartile [0.9191, 0.9100] [0.8193, 0.8230]
Skewness [0.4324, 0.7092] [-13.4441, -121.5781]
Kurtosis [0.7801, 0.5726] [177.7792, 941.5738]

Table 8: ML estimates and standard errors remission time dataset

NMOE Burr-XII
α [63.6772, 58.4272] [59.2463, 47.0918]
β [59.2463, 47.0918] [0.955, 0.9926]
γ [0.955, 0.9926] [0.3767, 0.3711]

N-Burr-III θ [1.033, 1.0232] [0.0601, 0.0591]
λ [0.0601, 0.0591] [4.3325, 4.5161]

Burr-XII θ [2.3454, 2.3303] [0.355, 0.3518]
λ [0.355, 0.3518] [0.2351, 0.235]

Table 9: ML estimates and standard errors for the COVID-19 (relief time) data

NMOE Burr-XII
α [97.7882, 118.707] [81.9116, 102.2903]
β [81.9116, 102.2903] [25.5239, 23.8676]
γ [25.5239, 23.8676] [30.2665, 86.2472]

N-Burr-III θ [1.6581, 1.6477] [0.1983, 0.1974]
λ [0.1983, 0.1974] [10.657, 11.3512]

Burr-XII θ [21.4342, 15.715] [32.6983, 23.3943]
λ [32.6983, 23.3943] [0.0283, 0.0375]

From Table 7, the following results information is obtained.

• The average remission time (in months) for bladder cancer patients is between the
interval by mean is [0.9010, 0.8945] and by median is [0.9004, 0.8941] with spread
[0.0009, 0.0007]. From the skewness and kurtosis, it is seen that the remission time
data is slightly positively skewed, and platykurtic. From the first quartile it is seen
that 25% of the patients have less remission time by this interval [0.8821, 0.8785] and
from third quartile it is seen that 75% of the patients have less remission time by this
interval [0.9191, 0.9100].

• The average relief times for bladder cancer patients is between the interval by mean
is [0.8162, 0.8205] and by median is [0.8169, 0.8212] with spread [1.1e-05, 2.587e-06].
From the skewness and kurtosis, it is seen that the relief times data is extremely
negatively skewed, and leptokurtic. From the first quartile it is seen that 25% of the
patients have relief times by this interval [0.8141, 0.8189] and from third quartile it is
seen that 75% of the patients have less relief times by this interval [0.8193, 0.8230].
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Model Selection Criteria with estimates for the remission time dataset is shown in
table 8 and 10. Model Selection Criteria with estimates for the COVID-19 (relief time) data
is shown in tables 9 and 11. The estimated values of the parameters in tables 8 and 9 are in
interval form because the parameters are neutrosophic due the uncertainty in the data sets.

7. Comparative study

This section presents a comparative study of the proposed model using two real-life
datasets. The comparison is conducted with the neutrosophic Burr-II and classical Burr-XII
models.

In Tables 10 and 11, the proposed neutrosophic density NMOE-Burr-XII is modeled
and compared for both datasets, with the indeterminacy component IN set at 0.05. This
value represents the uncertainty in the datasets. When IN equals 0, the density is in its
classical form, such as NMOE Burr-XII and N-Burr-III, with the test statistic criterion
being the lower bound only. However, when IN is 0.05 or any other value, the densities
become neutrosophic, and the test statistic criterion is presented in interval form due to the
neutrosophic nature of the data.

In table 10, the modeling of the proposed density on remission time for bladder
cancer patients’ data shows that NMOE Burr-XII distribution shows more flexibility over
the neutrosophic Burr-III (N-Burr-III) and classical Burr-XII distributions due to the lowest
values of AIC, BIC, CAID, HQIC KS test and larger p-value for the KS test. It is also
observed that Burr-XII shows p-value as 0.000 which particularly shows its inadequacy for
the neutrosophic data, while NMOE Burr-XII and N-Burr-III both fit the data, but NMOE
Burr-XII provides very strong p-value which shows its superiority. Table 11 shows the
modeling of the proposed model on the relief time for COVID-19 data, the results shows
that the NMOE Burr-XII distribution shows more flexibility as compared to the N-Burr-III
and classical Burr-XII distributions due to the lowest values of AIC, BIC, CAID, HQIC KS
test and larger p-value for the KS test.

Furthermore, the proposed density demonstrates superior flexibility and provides ev-
idence across all three datasets compared to the classical Burr-XII and even the N-Burr-III
distribution. Importantly, it is observed that the classical Burr-XII distribution does not
fit well on both neutrosophic datasets (remission time for bladder cancer and relief time for
COVID-19 datasets), yielding a p-value of 0.000.

In conclusion, the neutrosophic Marshall-Olkin Extended Burr-XII distribution emerges
as a valuable tool particularly in scenarios where data is indeterminate, contrasting with the
classical Burr-XII distribution. Classical distributions are unsuitable for modeling indeter-
minate and ambiguous datasets. The two data examples discussed above fall under the
neutrosophic setup because they deal with lifetime data that inherently includes elements of
uncertainty and incomplete information, which are better handled using neutrosophic statis-
tics. While classical methods rely on precise probabilities, neutrosophic methods provide
a more comprehensive framework by incorporating indeterminacy and partial truth values,
thus offering more robust and realistic estimates in the presence of real-world complexities.
This allows for better decision-making and reliability assessments in environments where
data is not perfectly exact or complete.



362 SHAKILA BASHIR, BUSHRA MASOOD AND MUHAMMAD ASLAM [Vol. 23, No. 1

Ta
bl

e
10

:
M

od
el

se
le

ct
io

n
cr

it
er

ia
an

d
pa

ra
m

et
er

es
ti

m
at

es
fo

r
re

m
is

si
on

ti
m

e
da

ta

M
od

el
s

LL
A

IC
B

IC
C

A
IC

H
Q

IC
K

-S
p-

va
lu

e
N

M
O

E
B

ur
r-

X
II

[-4
05

.6
95

,-
40

7.
06

7]
[8

17
.3

90
,8

20
.1

34
][

82
5.

94
6,

82
8.

69
0]

[8
17

.5
83

,8
20

.3
27

][
82

0.
86

6,
82

3.
61

0]
[0

.0
33

,0
.0

39
][

0.
99

89
,0

.9
90

4]
N

-B
ur

r-
II

I
[-4

23
.5

62
,-

43
1.

38
3]

[8
51

.1
23

,8
66

.7
67

][
85

6.
82

8,
87

2.
47

1]
[8

51
.2

19
,8

66
.8

63
][

85
3.

44
1,

86
9.

08
4]

[0
.1

07
,0

.1
05

]
[0

.1
06

,0
.1

21
]

Bu
rr

-X
II

44
9.

98
3

90
3.

96
61

90
9.

67
0

90
4.

06
2

90
6.

28
4

0.
25

4
0.

00
0

Ta
bl

e
11

:
M

od
el

se
le

ct
io

n
cr

it
er

ia
an

d
pa

ra
m

et
er

es
ti

m
at

es
fo

r
th

e
C

O
V

ID
-1

9
(r

el
ie

f
ti

m
e)

da
ta

M
od

el
s

LL
A

IC
B

IC
C

A
IC

H
Q

IC
K

-S
p-

va
lu

e
N

M
O

E
B

ur
r-

X
II

[-7
7.

06
3,

-7
8.

73
6]

[1
60

.1
27

,1
63

.4
72

][
16

4.
33

0,
16

7.
67

5]
[1

61
.0

50
,1

64
.3

95
][

16
1.

47
2,

16
4.

81
7]

[0
.0

66
,0

.0
64

][
0.

99
83

,0
.9

98
9]

N
-B

ur
r-

II
I

[-8
0.

26
7,

-8
1.

90
1]

[1
64

.5
34

,1
67

.8
03

][
16

7.
33

7,
17

0.
60

5]
[1

64
.9

79
,1

68
.2

47
][

16
5.

43
1,

16
8.

69
9]

[0
.1

39
,0

.1
39

]
[0

.5
63

,0
.5

61
6]

Bu
rr

-X
II

-9
4.

29
8

19
2.

59
5

19
5.

39
7

19
3.

03
9

19
3.

49
2

0.
36

2
0.

00
0



2025] NEUTROSOPHIC MARSHALL OLKIN EXTENDED BURR-XII DISTRIBUTION 363

8. Conclusion

In this study, we introduce a novel model called the neutrosophic Marshall-Olkin Ex-
tended Burr-XII distribution. We demonstrate that this model is advantageous for analyz-
ing survival and reliability datasets with indeterminacies compared to classical distributions.
Various neutrosophic properties are explored, including the neutrosophic survival function,
hazard function, mean, variance, mode, skewness, and kurtosis. The distribution exhibits
left-skewed, right-skewed, and symmetric shapes. The hazard rate function displays a mono-
tonically increasing trend. Parametric values are determined using the maximum likelihood
method. A simulation study assesses the performance of estimators across small, medium,
and large sample sizes, revealing a decrease in mean square error with increasing sample
size. Additionally, the proposed NMOE Burr-XII distribution is applied to two real-life
datasets with uncertain values, demonstrating its superior flexibility compared to classical
distributions.
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Abstract
In this paper, we implemented the epidemiological Susceptible-Infected-Recovered

(SIR) model to estimate the basic reproduction number, R0, at both national and state levels
in India. To the best of our knowledge, it was the first study that attempted to estimate R0
for India and its different states, see Das (2020). As this was the first attempt, the study
used data until March 24, 2020. In the very early days of the pandemic, the data were sparse
and it was difficult to conduct analysis and make forecasts. Under such circumstances, we
developed a statistical machine learning model to predict future case numbers.

Our analysis showed that the situation in Punjab (R0 ≈ 16) was critical and required
immediate, aggressive intervention. We observed that the R0 values for Madhya Pradesh
(3.37), Maharashtra (3.25), and Tamil Nadu (3.09) all exceeded 3. The R0 values for Andhra
Pradesh (2.96), Delhi (2.82), and West Bengal (2.77) were higher than India’s overall R0 of
2.75, as of March 4, 2020. India’s R0 of 2.75 at that stage was comparable to that of Hubei,
China during the early phase of the outbreak in December, 2019.

Our analysis indicated that India’s early disease progression was similar to China.
With the lockdown in place, India could have expected a number of cases comparable to, if
not more than, those in China. If the lockdown had been effective, we anticipated fewer than
66,224 cases by 1 May 2020. The out-of-sample R2 was 0.9323, and the observed number
of cases on 1 May 2020 was 37,263, which was less than the predicted value, indicating the
lockdown’s effectiveness. All data and R code for this paper are available at
https://github.com/sourish-cmi/Covid19.
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1. Introduction

The World Health Organization (WHO) declared the outbreak of the novel coron-
avirus, COVID-19, a pandemic. It was estimated that it would take twelve to eighteen
months to develop a vaccine for COVID-19 (see Ferguson et al. (2020)). The absence of
a vaccine worsened the situation for India’s already overstretched healthcare system. For
example, the number of hospital beds per 1,000 population was less than one World-Bank
(2021)—just one indicator of the miserable state of India’s healthcare system. In the absence
of a vaccine, “social distancing” was considered the optimal strategy to control the spread
of the novel coronavirus Ferguson et al. (2020).

Aside from social distancing, widespread rapid testing and cluster testing were essen-
tial to identify infected individuals and isolate them. However, India did not have sufficient
testing capacity, as widely reported in the media Biswas (2020). Although Indian scien-
tists recently developed an affordable COVID-19 testing kit Pandey (2020), India needed a
complete overhaul of its healthcare system on a war footing. In this context, India’s Prime
Minister Narendra Modi announced an unprecedented three-week nationwide lockdown on
March 24, 2020. The purpose of the lockdown was to slow the spread of the novel coro-
navirus, allowing the government to pursue a multi-pronged strategy to add more beds to
its hospital network, scale up production of COVID-19 testing kits, and provide personal
protective equipment (PPE) for healthcare workers.

In such a grim scenario, the key question for Indian health officials was how many new
confirmed cases would emerge and by what time, with the hope that the national lockdown
would slow the virus’s spread and buy them time to overhaul the healthcare system. However,
there was uncertainty about whether the lockdown would provide the necessary slowdown of
virus transmission. Even if the lockdown helped India control the virus’s spread, it was not
economically sustainable to extend it further, given the large number of workers employed
in the informal sector as daily wage laborers. Therefore, in this policy paper, we attempted
to estimate the effect of the lockdown and proposed a framework to track its effectiveness.

In this paper, we developed an epidemiological SIR model and a statistical machine
learning model to predict disease progression in India. We implemented the SIR model to
estimate the basic reproduction number, R0, at both national and state levels, to identify
which states required more attention. Then, we applied the machine learning model to
predict the number of cases ahead of time, so that the Indian administration could be better
prepared in advance.

In Section (2), we introduced the database from which the data was downloaded and
the model was built. In Section (3), we presented the methodology used to analyse and
predict the data. In Section (4), we provided our analysis and prediction of the Covid-19
disease progression in India. Section (5) discusses the follow-up literature that came after
this initial work, and Section (6) concluded the paper.

2. Data

In this paper, we utilised the following major databases to gather relevant data for
our analysis and model development:
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1. The data repository for the 2019 Novel Coronavirus, maintained by Johns Hopkins
University. This globally recognized repository aggregates COVID-19 data from nu-
merous official sources worldwide. The database is available at: https://github.
com/CSSEGISandData/COVID-19.

2. Covid19India, a crowdsourced open-source database for India, which provides real-
time updates on COVID-19 cases across Indian states and districts. This database
offers a granular level of detail critical for region-specific analysis. It is available at:
https://www.covid19india.org/.

3. Kaggle-Covid-19 in India, a dataset available on Kaggle that compiles COVID-19 data
for India, including daily updates on confirmed cases, recoveries, and deaths. It also
features various features like population and testing data that help enhance the pre-
dictive power of models. This dataset is available at: https://www.kaggle.com/
sudalairajkumar/covid19-in-india.

These databases provided comprehensive and up-to-date information necessary for
tracking the disease’s progression and for building predictive models. By leveraging this
data, we aimed to generate accurate forecasts and offer actionable insights for public health
officials and policymakers.

3. Methodology

Legendary statistician Prof George Box, once said

“All models are wrong, but some are useful”, see Box (1976).

Keeping this in mind, in this paper, we took a model-agnostic, two-pronged approach. The
first was to understand the severity of the ground situation, and the second was to provide
predictions to help health officials make informed plans. Epidemic models for infectious
diseases provided insights into the dynamic behavior of disease spread. With these new
insights, health officials could develop more effective intervention strategies. Moreover, such
epidemic models were also used to forecast the course of the epidemic.

In addition to epidemic models, we considered statistical machine learning (SML)
models, which were highly effective for prediction. Often, the interpretability of SML models
was questioned. However, as we took a model-agnostic approach, we were able to use the
epidemic models to understand the ground reality while adopting SML models to achieve
better prediction accuracy.

3.1. SIR epidemiological model

The popular epidemic models for an infectious disease is the Susceptible, Infected,
Recovered (SIR) model. The model considers a closed population. To start with, a few
infected people are added to the population. It assumes that the mixing pattern is homo-
geneous. During the period of the sickness, the contagious people each infect on average
R0 other people, who each then go on to infect R0 others, who are susceptible. The R0 is
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popularly known as the Basic Reproduction Number. The R0 is the fundamental quantity
of the disease progression, and higher R0 means, more people will tend to be infected in the
course of the epidemic. The major advantage of the SIR model is it gives a number R0,
which can be used to benchmark and compare the ground situation of different states and
resource allocations can be made to those states which are hard hit. The SIR model can be
described as,

∂S

∂t
= −β

SI

N
∂I

∂t
= +β

SI

N
− γI (1)

∂R

∂t
= +γI

where S, I, and R are the number of people in the population that are susceptible, infected
and recovered. The β is the transmission rate. Each susceptible person contacts β people
per day; a fraction I

N
of which are infectious. Therefore β SI

N
move out of the susceptible

group and goes into the infected group. The transmission rate is the average rate of contacts
a susceptible person makes that is sufficient to transmit the infection. The parameter γ is
the recovery rate, and γI is the flow out of the infected crowd and goes into the recovered
group. The average duration a person spends in the infected group is 1

γ
days. For Covid-19,

1
γ

is around 14 days, see Ferguson et al. (2020).

In this paper, we followed the SIR implementation methodology as described in Tow-
ers (2012). Given R0, β, and γ, the implementation of the SIR model was fairly straightfor-
ward using the deSolve package, a solver for initial value problems of differential equations
(see Soetaert et al. (2020)). It was known that R0 = β

γ
, as noted in Brauer et al. (2008). We

considered γ as 1
14 , based on Ferguson et al. (2020). However, we needed reliable estimates

of R0 to implement the SIR model and predict the disease progression in India.

To estimate R0, we used the R package ‘R0’, a toolbox for estimating R0, as described
in Obadia et al. (2012). The time between the infection of a primary case and one of its
secondary cases is referred to as the generation time, see Svensson (2007). The ‘R0’ package
assumed that the generation time of the infection was known and required it as input. The
mean generation time for Wuhan was reported as 6.5 days Li et al. (2020). In this paper,
we assumed the generation time followed a Gamma distribution and we estimated the mean
and shape parameter of the Gamma distribution using data. Our estimated mean generation
time for the Hubei province turned out to be 6.7 days, as presented in Table 2. Upon recovery
from infection, we assumed that individuals were immune to re-infection in the short term,
consistent with the assumption made in Ferguson et al. (2020).

At that time, we deployed a grid search method over the mean and shape of the
Gamma distribution for the generation time process. For a particular choice of the mean (µ)
and shape (κ) parameter, we generated the generation times and then, using that as input,
we estimated R0 using the ‘R0’ package in R. For the estimated R0 and γ (assumed to be
1/14), we simulated the disease progression for the period during which we observed new
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incidences. We then calculated the Mean Square Error (MSE) in the following way:

MSE(µ, κ) = 1
T

T∑

t=1

(
Î(t) − iobs(t)

)2
, (2)

where Î(t) was the new incidence estimated from the SIR model described in (1) at time point
t, and iobs(t) was the actual incidence observed in the data at time point t. We estimated the
mean parameter µ and shape parameter κ for which the MSE in (2) was minimized. Then,
for the estimated mean and shape parameters, R0 was estimated using the ‘R0’ package.

3.2. Statistical machine learning model

The infection rate of a typical epidemic reaches its peak and then slows down. The
SIR model predicts when that peak will be reached very well because it captures the in-
herent dynamics of the epidemic. However, the SIR model is not as helpful for short and
medium-term predictions. We also need short and medium-term predictions to forecast
cases as quickly as possible so that health officials can make appropriate decisions. Statisti-
cal Machine Learning (SML) models are popular for their prediction accuracy in the short
to medium term Sambasivan et al. (2020). Consequently, SML and SIR models complement
each other.

It is important to note that SML models do not perform well in long-term prediction,
particularly when predicting when the peak will be reached. With this understanding, we
developed traditional SML models rather than deep learning models. We refrained from
developing deep learning models because they require a large amount of data, which is not
available in epidemiology. Additionally, the literature on how to apply deep learning to small
datasets is still insufficient. Therefore, we focused on developing traditional regression-based
SML models for short to medium-term predictions.

As different countries or provinces have varying population levels, we considered our
variable of analysis to be the number of cases per 100,000 people (also known as the Rate),

Rate = Cases
Population Size × 100, 000.

We then modeled the Rate as a function of time, country, and time-country interaction in
the following way:

ln{Rateit + 1} = β0 + β1t + β2t
2 + · · · + βptp

+αi + αit + αit
2 + · · · + αit

p + ϵ, (3)
where Rateit represents the Rate of the ith country at the tth time point, αi is the effect of
the ith country, αit is the linear effect of time on the Rate of the ith country, and αit

2 is the
quadratic effect of time on the Rate of the ith country. We considered the following countries
in our model: (1) India, (2) China, (3) US, (4) Iran, (5) South Korea, (6) Japan, (7) Italy,
(8) France, (9) Germany, and (10) Spain.

3.3. Model training strategy for India to measure the effect of the lockdown

On March 24, 2020, India announced a national lockdown. To measure the effec-
tiveness of the lockdown, we used all data up to March 24, 2020, to train the model and
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learn its parameters. Based on the trained model, we predicted the disease progression path.
Since the incubation period of COVID-19 is about 14 days, it was likely that for 14 days
following the start of the lockdown, the disease would follow the predicted path and then
begin to deviate downward. If the new confirmed cases fell below the predicted path, we
could conclude that this was due to the effect of the lockdown. On the other hand, if the
disease progression stayed on the predicted path, we would know that the lockdown did not
work. If the disease progression rose above the predicted path, we could conclude that the
situation worsened during the lockdown.

4. Analysis and prediction

Exploratory Data Analysis (EDA) was important for developing good predictive mod-
els. In Figure (1), we plotted the cases per 100,000 (also known as the Rate) for the US,
EU, and Iran. The worst-hit regions—US, EU, and Iran—had rates in the range of 70 to
250. On the other hand, disease progression among Asian countries was very different, as
shown in Figure (2). The disease progression in both India and Japan was similar. We
observed an exponential rise in India and Japan, but at a much lower rate than in Western
nations. China was able to flatten the curve, and South Korea managed to curb the rise
from exponential to linear. However, up to that point, South Korea experienced the worst
rate among the four major Asian countries.

Figure 1: Cases per 100,000 in the US, EU, and Iran. The plot illustrates the
rate of cases in the US, Italy, France, Germany, Iran, and Spain from early
March to early April, 2020. The rates range from 70 to 250 cases per 100,000,
with Spain and Italy experiencing the steepest rises, followed by Germany and
the US. The data highlights the rapid escalation in Europe and Iran compared
to the US during the observed period.

Prediction of Disease Progression for India from the SML model (3). The solid
black vertical line in Figure (3) represented March 24, 2020. The black points to the left of
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Figure 2: Cases per 100,000 in India, China, Japan, and South Korea. Note that
India and Japan’s cases per 100,000 are in exponential rise. However, China and
South Korea were able to flatten the curve. But at different levels. China was
able to flatten the curve at around 6 per 100,000 population; whereas South
Korea has partially flattened its curve and increasing as a linear scale.
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the vertical black line were the confirmed cases up to March 24, 2020. These black points
were used in model training. The solid red line indicated the predicted path of disease
progression. The blue points represented the out-of-sample test points, or the confirmed
cases that appeared after March 24, 2020. As of April 7, 2020, we had not yet seen the
effect of the lockdown. However, if the lockdown worked, its effect should have been visible
soon. The blue points should have appeared below the predicted red line. In Table (1), we
presented the actual predictions up to May 1, 2020. Had the lockdown been effective, we
anticipated case numbers would stay below 66,224 by 1 May 2020. With an out-of-sample
R2 of 0.9323, the actual case count on 1 May 2020 was 37,263; below the predicted value;
suggesting that the lockdown was indeed effective.

Figure 3: Predicted path of the disease progression in India. The solid black
vertical line represent the 24 March 2020. The black points left of the vertical
black line are confirmed cases till 24 March 2020. These black points are used in
model training. The solid red line is the predicted path of the disease progression.
The blue points are the out of sample test point or the confirmed cases that comes
after 24 March 2020. As of 07 April 2020, we don’t see the effect of lockdown.
However, if lockdown works - it should shows its effect any time soon now. The
blue point should appear below the predicted red line.

Comparison of R0 between India and China: In Table (2), the R0 with a 95% con-
fidence interval for Hubei province and China was around 2.5 during the first 23 days from
the start of the lockdown. India’s R0, with a 95% confidence interval, was computed using
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Table 1: The table presents the actual cases and prediction from the SML model
(3). We used all the data till the 24th March 2020. Here due to space constraint,
we present only 5 days interval and recent out of sample values at the daily level.
Outsample R2 = 0.9323. The actual values (marked in blue) were added in the
current version.

Dates Actual Case Prediction
1 2020-03-03 5 14.99
5 2020-03-07 34 22.42

10 2020-03-12 73 57.72
15 2020-03-17 142 158.74
20 2020-03-22 396 387.54
21 2020-03-23 499 456.29
22 2020-03-24 536 534.79
23 2020-03-25 657 624.10
24 2020-03-26 727 725.36
25 2020-03-27 887 839.85
26 2020-03-28 987 968.95
27 2020-03-29 1024 1114.20
28 2020-03-30 1251 1277.28
29 2020-03-31 1397 1460.05
30 2020-04-01 1998 1664.59
31 2020-04-02 2543 1893.20
32 2020-04-03 2567 2148.44
33 2020-04-04 3082 2433.18
34 2020-04-05 3588 2750.66
35 2020-04-06 4778 3104.50
39 2020-04-10 7599 4974.57
44 2020-04-15 12371 8838.36
49 2020-04-20 18544 15791.88
54 2020-04-25 26283 29126.81
59 2020-04-30 34867 57229.81
60 2020-05-01 37263 66223.94

two different starting points as breakouts. The first was from March 2, 2020, because the
number of cases in India started rising from that day. The R0 for India for the first 22 days
up to the lockdown was around 2.5, similar to China. However, if we used the data up to
April 4, 2020, the R0 was around 2.75. This indicated that the situation had worsened since
the lockdown, as was clear from Figure (3).

In the second approach, we considered India’s breakout from January 23, 2020. In
that case, if we considered the data up to March 24, 2020, the R0 with 95% confidence was
almost 1.9, and if we considered the data up to April 4, 2020, the R0 was nearly 2.1. This
meant that if we used the data prior to March 2, 2020, India’s R0 appeared better. In Figure
(4), we compared the incidences of Hubei and India in Figures (4:a) and (4:b). We considered
the date range for Hubei from January 23, 2020, to February 14, 2020, i.e., during the first
23 days of the Hubei lockdown. On the other hand, we considered the data for India from
January 2, 2020, to January 24, 2020, up to the lockdown. On January 23, 2020, Hubei had
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Table 2: R0 with a 95% confidence interval for Hubei province and China is
around 2.5 during the first 23 days from the start of the lockdown. India’s R0
with a 95% confidence interval is computed using two different starting points:
one from 02-Mar-2020, as the number of cases in India started rising from that
day. The R0 for India for the first 22 days until the lockdown is around 2.5,
similar to China. However, if we use the data until 04-Apr-2020, then the R0
value is around 2.75. In the second approach, we consider India’s breakout
from 23-Jan-2020. In that case, if we consider the data until 24-Mar-2020, the
R0 with a 95% confidence interval is almost 1.9, and if we consider data until
04-Apr-2020, the R0 is nearly 2.1.

R0 R0 R0 Initial Infections Mean Shape
Date Range Lower Upper Considered (µ̂) (κ)

Hubei 23-Jan-20 to 14-Feb-20 2.53 2.50 2.57 444 6.7 0.24
China 23-Jan-20 to 14-Feb-20 2.46 2.43 2.49 548 8.7 2.7
India 02-Mar-20 to 24-Mar-20 2.52 2.35 2.71 3 5.84 6.56
India 02-Mar-20 to 04-Apr-20 2.75 2.63 2.89 3 5.41 1.10
India 23-Jan-20 to 24-Mar-20 1.87 1.78 1.97 1 2.96 1.53
India 23-Jan-20 to 04-Apr-20 2.09 2.04 2.14 1 1.25 4.98

444 confirmed cases, and overall, China had 548 confirmed cases. On January 2, 2020, India
had only 3 confirmed cases, whereas on the day of lockdown, i.e., March 24, 2020, India
had 536 confirmed cases. So, on the day when the lockdown started, both India and Hubei
and/or China had a comparable number of cases.

Perhaps, we should have considered India’s R0 to be around 2.5, similar to the early
stage of COVID-19 disease progression in China. Even with the lockdown, China experienced
more than 80,000 cases. Perhaps, we should have prepared for at least that many cases, if
not more, in India.

State-wise R0: In Table (3), we presented the state-wise Basic Reproduction Number, R0,
as of March 4, 2020. We observed that Punjab’s R0 was the worst in the country. Punjab’s
high R0 ≈ 16 was likely due to a super spreader who ignored advice to self-quarantine
after returning from a trip to Italy and Germany (see BBC News (2020)). The situation
in Punjab was really complicated, and serious intervention was required. In Figure (5), we
presented the cases in Punjab over time. Since March 20, 2020, the number of confirmed
cases increased at an unprecedented rate.

From Table (3), we saw that the R0 for Madhya Pradesh (3.37), Maharashtra (3.25),
and Tamil Nadu (3.09) were all above 3. Clearly, the situations were complicated in these
three states. The R0 for Andhra Pradesh (2.96), Delhi (2.82), and West Bengal (2.77) were
also higher than India’s overall R0 of 2.75. These seven states needed special attention as
their R0 exceeded that of India. These numbers were as of April 4, 2020.

For the following states, we either did not have enough data to make inferences for
R0, or the algorithm failed to converge: (1) Andaman and Nicobar Islands; (2) Arunachal
Pradesh; (3) Chhattisgarh; (4) Goa; (5) Haryana; (6) Jharkhand; (7) Manipur; (8) Mizoram;
(9) Odisha; (10) Puducherry.
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(a) (b)

Figure 4: In this figure, we compare the incidences of Hubei and India in (a) and
(b). We consider the date range for Hubei from 23-Jan-2020 to 14-Feb-2020, i.e.,
during the first 23 days of Hubei lockdown. On the other hand, we considered
the data for India, from the 02-Jan-2020 to 24-Jan-2020, before the lockdown.
On the 23-Jan-2020, Hubei had 444 confirmed cases and overall China had 548
confirmed cases. On 02-Jan-2020, India had only 3 confirmed cases, whereas on
the day of lockdown, i.e., on 24-Jan-2020, India had 536 confirmed cases.

Figure 5: Confirmed cases of COVID19 in Punjab. The R0 = 15.89. The high R0
is likely due to a super spreader ignored advice to self quarantine after returning
from a trip to Italy and Germany, see BBC News (2020).
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Table 3: State Wise Basic Reproduction Number, R0, as of 04 March, 2020. Pun-
jab’s high R0 is likely due to a super spreader ignored advice to self quarantine
after returning from a trip to Italy and Germany, see BBC News (2020)

.

State/UT R0 Lower Upper
Andhra Pradesh 2.96 2.56 3.45
Bihar 2.13 1.35 3.40
Chandigarh 1.14 0.89 1.48
Delhi 2.82 2.60 3.08
Gujarat 0.98 0.84 1.15
Himachal Pradesh 1.59 1.00 3.13
Jammu and Kashmir 2.02 1.69 2.48
Karnataka 2.29 1.87 2.77
Kerala 1.62 1.52 1.74
Ladakh 1.54 1.17 2.18
Madhya Pradesh 3.37 2.73 4.14
Maharashtra 3.25 2.95 3.58
Punjab 15.89 4.12 149.27
Rajasthan 2.45 2.25 2.67
Tamil Nadu 3.09 2.74 3.53
Telengana 2.16 1.97 2.38
Uttar Pradesh 2.30 2.10 2.52
Uttarakhand 1.33 1.13 1.61
West Bengal 2.77 2.21 3.47
India 2.75 2.63 2.89

5. Discussion

The COVID-19 pandemic has prompted extensive research to understand transmis-
sion dynamics, evaluate the impact of interventions, and forecast its trajectory. Our early-
stage analysis provided a critical assessment of the severity of the situation across various
Indian states. We observed that the reproduction number (R0) for Punjab was alarmingly
high, requiring immediate and aggressive intervention. Madhya Pradesh (3.37), Maharash-
tra (3.25), and Tamil Nadu (3.09) also exhibited reproduction numbers above 3, indicating
the need for urgent action in these states. We noted that the R0 values for Andhra Pradesh
(2.96), Delhi (2.82), and West Bengal (2.77) exceeded India’s overall R0 of 2.75. As of 4
March 2020, India’s R0 was comparable to Hubei, China, during the early outbreak phase,
suggesting that India could experience a similar case trajectory if effective containment mea-
sures were not implemented. Based on the assumption of lockdown efficacy, we predicted
that the total cases in India might remain below 66,224 by 1 May 2020.

Subsequent studies built upon this initial analysis. Early estimates of the basic re-
production number (R0) for India by Das (2020) placed it around 2.75, similar to China’s
early pandemic stage. Later, Sinha (2020) revised this estimate to approximately 1.82 by
analysing time-series data of active cases in India and other countries, confirming that non-
pharmaceutical interventions, such as lockdowns, were effective in reducing transmission
rates but insufficient to completely halt transmission. Both Das (2020) and Sinha (2020)
highlighted regional variations in COVID-19 dynamics across India. Early studies like Mit-
tal (2020) employed Exploratory Data Analysis (EDA) to examine COVID-19 case trends in



2025] PREDICTION OF COVID-19 377

India up to 22 April 2020, offering insights into daily and weekly case patterns, comparing
trends with neighbouring and severely affected countries, and assessing India’s healthcare
preparedness for the pandemic.

Further descriptive studies, such as Bhatnagar et al. (2021), analysed COVID-19 cases
in India, examining factors like age, gender, travel history, transmission type, and patient
status. They found no significant correlation between age and susceptibility but observed
a strong relationship between gender and transmission type. Halder et al. (2022) analysed
mortality and recovery rates during the lockdown phases in India, revealing high correlations
between active cases and both death (R2 = 0.8754) and recovery rates (R2 = 0.9246), though
the results offered predictable insights with limited novelty.

Deo et al. (2020) extended the containment strategy analysis by developing a time-
series SIR model to predict COVID-19 dynamics in India. Their model incorporated pro-
gressive containment measures and provided forecasts for transmission rates and daily cases
under various scenarios, aligning with our early focus on timely intervention. The study by
Rath et al. (2020) applied Linear and Multiple Linear Regression models to predict daily
active COVID-19 cases in Odisha and India, achieving high accuracy (R2 close to 1). At the
state level, Tinani et al. (2020) explored COVID-19 modelling for hotspot states using the
ARIMA model to predict cases, recoveries, and deaths across key states like Maharashtra,
Delhi, and Gujarat, which corresponded with our findings on the need for focused attention
on states with higher R0 values.

The study by Ghosh et al. (2020) conducted a statewise COVID-19 analysis, pre-
dicting infection trends using ensemble models and categorising states by severity to guide
resource allocation, with recommended preventive measures for states with rising daily infec-
tion rates (DIR). Roy et al. (2021) employed ARIMA models and GIS-based spatial analysis
to forecast COVID-19 prevalence in India, identifying western and southern regions as partic-
ularly vulnerable, and demonstrated ARIMA’s effectiveness in epidemiological surveillance.
The study by Arora et al. (2020) applied deep learning models, particularly LSTM variants,
to predict COVID-19 case numbers in India with high accuracy (errors below 3% for daily
and 8% for weekly forecasts). They categorised states into zones based on case spread and
growth rates to identify hotspots, with preventive recommendations provided. Additionally,
they created a website to update these predictions for authorities and researchers.

Further studies, such as Tomar and Gupta (2020), utilised data-driven methods like
LSTM and curve fitting to forecast COVID-19 trends in India over a 30-day period, evaluat-
ing the effect of preventive measures and offering accurate predictions to aid health officials
and administrators. Tiwari (2020) employed an SIQR model to analyse COVID-19’s pro-
gression, estimating effective reproduction rates, doubling times, and infection-to-quarantine
ratios, while emphasising the link between testing rates and case detection, and suggesting
model enhancements for accuracy.

Recognising lockdowns’ role in controlling COVID-19, Das et al. (2020b) proposed a
Susceptible-Exposed-Infected-Recovered (SEIR) model to estimate Temporary Eradication
of Spread Time (TEST) and Critical Community Size (CCS) for Indian states, supporting
our initial analysis on the need for decisive action. Similarly, Kumar (2020) applied cluster
analysis to identify groups within COVID-19 data across Indian states and union territories,
enhancing monitoring strategies to support government and healthcare decision-making for
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improved resource allocation.

Beyond epidemiology, researchers examined socioeconomic and demographic factors
influencing COVID-19 outcomes. Chakravarty et al. (2021) analysed the impact of co-
morbidities, health expenditure, and life expectancy on case fatality rates across SAARC
nations, underscoring the importance of targeted interventions based on local vulnerabili-
ties, complementing our early epidemiological analysis. Broader impacts of the pandemic
were explored in studies like Pyne et al. (2020), who assessed social vulnerabilities to guide
post-pandemic recovery, particularly in India. Similarly, Dutta et al. (2020) analysed the
economic effects of lifting or partially implementing lockdowns in Maharashtra and Gujarat,
using statistical models to project future scenarios and providing additional perspectives on
the socioeconomic ramifications observed in the pandemic’s early stages.

Economically, Das et al. (2020a) examined the pandemic’s effect on payment transac-
tions in India, noting significant reductions in economic activity due to lockdowns, followed
by gradual recovery in digital payments, aligning with our initial analysis of the broader eco-
nomic impacts. Grover and Magan (2020) estimated Quality Adjusted Life Years (QALY) for
COVID-19 patients across Indian states, offering quantitative assessments of the pandemic’s
impact and providing further context to our initial predictions regarding the severity of the
pandemic in different regions. The study by Shruthi and Ramani (2021) analysed COVID-
19’s effects on financial systems, revealing that post-crisis oil market volatility impacted
agricultural commodities (excluding sugar), while pre-crisis risk transmission was minimal.

Methodologically, Venkatesan (2020) addressed modelling uncertainties using back-
calculation to reconstruct past infection patterns and predict future cases in India. Sarkar
(2020) proposed group testing methodologies to reduce mass testing costs, particularly valu-
able when disease prevalence was low. These methodological refinements complemented the
epidemiological insights from our early work, enhancing pandemic management approaches.

Internationally, Maleki et al. (2020) and Zhang et al. (2020) analysed COVID-19 dy-
namics in the U.S., with the former examining the association between comorbidities and
death rates across U.S. cities, and the latter identifying change points in the pandemic’s pro-
gression. These studies offered comparative insights that informed COVID-19 management
in India. A different study by Gupta et al. (2020) investigated the influence of weather,
particularly temperature and absolute humidity, on COVID-19 spread in the U.S., finding
significant case increases in states with absolute humidity levels between 4 and 6 g/m3. The
results aligned with global trends and identified Indian regions potentially vulnerable to
weather-driven COVID-19 transmission, underscoring weather’s role in transmission risk.

In summary, our early analysis laid the foundation for subsequent research on COVID-
19 in India, providing essential insights into the pandemic’s progression and emphasising
the need for swift, aggressive intervention in states with high R0 values. The extensive
literature that followed expanded upon these initial findings, offering deeper insights into
the epidemiological, socioeconomic, and policy dimensions of the pandemic, while validating
many of our initial predictions and observations.
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6. Conclusion

The conclusion of this study, aimed at predicting COVID-19 progression in India
using both the SIR epidemiological model and a statistical machine learning approach, pro-
vides several key insights into the trajectory of the disease under the national lockdown.
Conducted during the early phase of the pandemic, this research offers a valuable refer-
ence for understanding the dynamics of COVID-19 and implementing effective intervention
strategies.

Firstly, the results underscored the critical importance of timely and aggressive in-
terventions in mitigating the spread of COVID-19. The high basic reproduction number
(R0) observed in states such as Punjab, Madhya Pradesh, Maharashtra, and Tamil Nadu
indicated the urgent need for concentrated efforts in these regions. Punjab’s R0 of 15.89 -
driven by a super spreader event—highlighted the need for immediate and comprehensive
containment measures. Other states, including Andhra Pradesh, Delhi, and West Bengal,
also had reproduction numbers exceeding India’s overall R0, which was calculated at 2.75 as
of 4 March 2020. This finding highlighted the regional disparities in COVID-19 transmission,
necessitating tailored interventions to effectively curb the spread of the virus.

The study also revealed that India’s disease progression mirrored that of China’s
early pandemic phase, particularly in terms of the R0 values. With China’s experience
showing a similar reproduction number, it was evident that without a successful lockdown
and containment strategy, India could have faced a similar, or even greater, number of cases.
The model predicted that, if the lockdown was effective, the number of confirmed cases in
India by 1 May 2020 would remain under 66,224. However, the analysis demonstrated that
India’s R0 began to rise following the lockdown, indicating that while the initial lockdown
slowed the virus’s spread, it might not have been sufficient to halt transmission entirely.

Another significant outcome of this research was the validation of a hybrid modelling
approach, where the SIR model provided accurate long-term predictions of disease dynamics,
while the machine learning model excelled in short- to medium-term forecasts. This dual
strategy was especially useful in understanding the immediate impacts of the lockdown,
enabling public health officials to allocate resources more effectively and plan for the spread
of the virus. The efficacy of the lockdown could be evaluated by comparing the actual
number of cases after the lockdown to the predicted numbers based on pre-lockdown data.
If new cases fell below the predicted levels, it would suggest that the lockdown was working.
Conversely, if case numbers exceeded predictions, the lockdown measures would need to be
reconsidered.

The use of data from multiple sources, such as Johns Hopkins University’s COVID-19
repository and open-source platforms like Covid19India, was crucial in ensuring the accuracy
of the model’s predictions. The integration of both global and local datasets enabled a more
detailed understanding of the pandemic’s progression in India, a country with vast regional
differences in population density, healthcare infrastructure, and socioeconomic factors. These
variations were reflected in the model’s predictions, which highlighted states like Kerala, with
relatively lower R0 values, indicating that local intervention efforts were somewhat successful.

However, it is important to recognise that while this study provided early estimates
and predictions, the dynamics of the pandemic were rapidly evolving. Continuous data col-
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lection and refinement of models would be essential to ensure that public health responses
could adapt to new developments. The early prediction that India could experience over
66,000 cases by May 2020, assuming successful lockdown measures, offered a critical window
for the government to expand healthcare capacity and implement more targeted interven-
tions, such as scaling up testing, improving contact tracing, and ensuring the availability of
personal protective equipment (PPE) for healthcare workers.

In conclusion, this study offered a vital early framework for understanding and pre-
dicting the spread of COVID-19 in India, delivering actionable insights for policymakers.
The hybrid approach, combining epidemiological models with statistical machine learning,
allowed for more accurate short- and long-term predictions, helping to shape India’s pan-
demic response. The key takeaway is the necessity of timely, aggressive, and region-specific
interventions to control the spread of infectious diseases, particularly in a country as diverse
and densely populated as India. Moreover, the study emphasised the limitations of lock-
downs as a long-term solution and stressed the need for a robust healthcare infrastructure
and continuous policy adaptation based on real-time data.

Addendum

Prediction of Disease Progression for India: In Table (1), we presented the
actual predictions up to May 1, 2020. Had the lockdown been effective, we anticipated case
numbers would stay below 66,224 by 1 May 2020. With an out-of-sample R2 of 0.9323, the
actual case count on 1 May 2020 was 37,263; below the predicted value; suggesting that the
lockdown was indeed effective.

Table (1) Description: The table presents the actual cases and prediction from
the SML model (3). We used all the data till the 24th March 2020. The blue values were
added in the current version
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Abstract
In this short communication, we attempt to rework on Fellegi (1963) scheme for

sample size 3, taking clue from Choudhry (1981) and Sinha (1973, 1974).

Key words: Sampling designs; Sampling schemes; Inclusion probabilities of first and second
orders; Mixture designs.

1. Introduction

Brewer and Hanif (1983) reviewed sampling schemes with unequal probabilities with-
out replacement and compiled several selection procedures. Among the schemes, Brewer
(1963) and Fellegi (1963) schemes for n = 2 are described in text books such as in Hedayat
and Sinha (1991) but cannot be readily extended to n = 3. For Fellegi scheme, Choudhry
(1981) attempted to develop computational formulae using Fortran language specifically for
n = 3 and 4. However, satisfactory techniques are not yet available. We make an attempt
to extend Fellegi scheme from algebraic consideration. Our contribution in this study is
essentially a follow-up of Fellegi (n = 2) to n = 3. We are able to generalize Fellegi scheme
and we explain our procedure through a numerical example.

It may be noted that Choudhry (1981) made an attempt to work out a solution for
n = 3 underlying Fellegi scheme. He did not pursue any analytical exercise to solve for
the choice of p3(i) values. He used the second stage p-values (p2(i)) as trial values for the
third stage p-values (p3(i)) and developed a Fortran programme to approximately work out
stabilized third stage p-values.

2. Fellegi scheme (N, n = 3)

For Fellegi Scheme (N, n = 3), P (i, j, k) has to be chosen in such a way that at each
trial, inclusion probability of ith unit is pi for all i. Hence, overall inclusion probability for
ith unit is 3pi. To achieve this, set kth trial selection probability for ith unit = pk(i) for
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k = 1, 2, 3; i = 1, 2, 3, . . . , N where ∑N
i=1 pk(i) = 1 for each k. Then we have the expression

πi = p1(i) +
N∑

j(̸=i)
p1(j) p2(i)

1 − p2(j) +
N∑

k(̸=i)

N∑

j( ̸=i,k)
p1(k) p2(j)

(1 − p2(k))
p3(i)

(1 − p3(k) − p3(j)) = 3pi (1)

It may be noted that in the above, we are tacitly using the expression for p2(i) as was derived
by Fellegi (1963) for the case of n = 2. Set p1(i) = pi for each i = 1, 2, . . . , N .
So, p3(i)’s have to satisfy

N∑

k( ̸=i)

N∑

j(̸=i,k)
p1(k) p2(j)

(1 − p2(k))
p3(i)

(1 − p3(k) − p3(j)) = pi, i = 1, 2, . . . , N.

⇒ Bi = pi

p3(i)

[
1 − 2p3(i) − p2(i)

(1 − p2(i))(1 − 2p3(i))

]
(2)

where Bi =
N∑

k=1

N∑

j=1

p1(k)p2(j)
(1 − p2(k))(1 − p3(k) − p3(j)) −

N∑

j=1

p1(i)p2(j)
(1 − p2(i))(1 − p3(i) − p3(j))

−
N∑

k=1

p1(k)p2(i)
(1 − p2(k))(1 − p3(k) − p3(i))

−
N∑

k=1

p1(k)p2(k)
(1 − p2(k))(1 − 2p3(k)) + 2p1(i)p2(i)

(1 − p2(i))(1 − 2p3(i))

After simplifying (2), we obtain a quadratic equation in p3(i) as

2Bi(1 − p2(i))p2
3(i) − [2pi + Bi(1 − p2(i))]p3(i) + pi(1 − p2(i)) = 0 (3)

So, p3(i) =
(2pi + Bi(1 − p2(i))) ±

√
(2pi + Bi(1 − p2(i)))2 − 8Bipi(1 − p2(i))2

4Bi(1 − p2(i))
(4)

Remark 1: It must be noted that the expressions in (2) and (4) basically refer to only one
relation involving Bi and p3(i). A judicial choice of Bi for evaluation of p3(i) has, so far,
eluded us. Therefore, we have taken up an alternative approach that refers to a choice of
p3(i) as a function of pi and p2(i) with the solo objective: Choice of p3(i) must lead to the
3rd stage πi = 3pi to best possible approximation.

Remark 2: At this stage it is pertinent to note that we will be using the concept of mixture
designs of the type pD1 + qD2, 0 < p, q < 1, p + q = 1. We recall that Sinha (1973, 1974)
made a similar study with the provision that one of p and q would be negative, however,
satisfying the necessary condition that pD1(s) + qD2(s) > 0 for every sample ‘s’ in the
underlying design. In our study below we will follow Sinha’s approach to come up with a
solution.

Remark 3: This problem is simply stated and theoretical solutions are quite hard to obtain.
We make attempts to minimize the gap between πi and 3pi by making suitable choice of
p3(i)’s. Similar problem was encountered by Sinha (1973, 1974) who had developed a mixture
solution of the type: p3(i) = api + bp2(i) with choices of a and b subject to a + b = 1, by
admitting the solutions with negative values of a or b ! Of course, the mixture has to yield
all positive fractions. Our attempt is illustrated in the following example.
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Example 1: N = 6, p1 = 0.25, p2 = p3 = 0.20, p4 = p5 = 0.15, p6 = 0.05.
With reference to Fellegi (1963), for the case of n = 2,

(i) Solve for A from the equation: N − 2 =
N∑

i=1

√

1 − 4pi

A
, where A =

N∑

t=1

pt

1 − p2(t)
.

(ii) Solve for p2(i) from the equation: p2(i) = 1
2 −

√
1
4 − pi

A
.

Newton’s method is used to obtain: A = 1.24727, and then values for p2(i) are deduced as
given below in Table 1.

Table 1: Calculation of p2(i)

i 1 2 3 4 5 6 Sum
pi 0.25 0.2 0.2 0.15 0.15 0.05 1
p2(i) 0.27737 0.20058 0.20058 0.13981 0.13981 0.04184 1

Keeping the possibility of one of a and b being negative, after some trial and error,
we ended up with a = 2.55 and b = −1.55. The end-result is shown below.

Table 2: Computation of πi

i 1 2 3 4 5 6 Total
πi 0.73560 0.60475 0.60475 0.45445 0.45445 0.14598 2.99998

≈0.74 ≈0.60 ≈0.60 ≈0.45 ≈0.45 ≈0.15 ≈3
3pi 0.75 0.6 0.6 0.45 0.45 0.15 3

Table 3: Computation of πij = ∑
s∋(i,j) P (s)

πij

i j 1 2 3 4 5 6
1 0.40506 0.40506 0.28831 0.28831 0.08445
2 0.40506 0.31175 0.21547 0.21547 0.06174
3 0.40506 0.31175 0.21547 0.21547 0.06174
4 0.28831 0.21547 0.21547 0.14762 0.04202
5 0.28831 0.21547 0.21547 0.14762 0.04202
6 0.08445 0.06174 0.06174 0.04202 0.04202

Remark 4: We can readily verify numerically for n = 3 that πik > πjk whenever pi > pj

for all i ̸= j ̸= k and πiπj > πij for all i ̸= j.

3. Conclusion

From the above illustration it can be seen that if one can express p3(i) as a linear
combination of pi and p2(i) that is p3(i) = wpi + (1 − w)p2(i), with a suitable choice of w,
the Fellegi scheme for n = 3 can be constructed in a simple way. Further research is needed
to find an appropriate value of w, assuming that it can take negative values as well.
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