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Abstract

We consider a variation on partition testing as introduced by Finner and
Strassburger (2002), demonstrating this variation to be a useful generalization
of traditional hypothesis testing. By choosing an appropriate partition of the
parameter space and testing each set in the partition with a size-α test, more
specific inferences are obtained compared to those provided by traditional methods
of hypothesis testing, while still controlling the probability of making any false
assertions to be at most α. Generalizing the traditional two-sided test of a point
null hypothesis, one choice of the partition results in rejection of all values except
those in the traditional two-sided confidence interval, and another choice of the
partition provides better directional inference at no cost whenever the traditional
point null hypothesis is rejected. Generalizing the traditional one-sided test, an
appropriate choice of the partition results in rejection of all values except those
‘accepted’ in view of the corresponding one-sided confidence bound. In short, the
proposed partition test generalizes traditional testing so as to make inferences for
the partition test exactly match those obtained by the corresponding confidence
estimation approach.
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1 Introduction

A standard, fundamental procedure in statistics is the two-sided test
of a point null hypothesis, testing the null hypothesis Ho : θ = θo

versus the two-sided alternative hypothesis Ha : θ 6= θo. Consider for
example a t-test, where under suitable assumptions (θ̂− θ)/s(θ̂) ∼ tν .
The standard two-sided t-test rejects the null hypothesis at signifi-
cance level α if |t| > tα/2,ν , using the test statistic t = (θ̂−θo)/s(θ̂). If
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the test statistic is in the rejection region—namely, if |t| > tα/2,ν—and
if α is small, then one has evidence against the null hypothesis and so
in favor of the alternative hypothesis. Any more specific conclusions
about θ within Ha generally depend on the operating characteristics
of the test, but little or no attention is generally given to this, even
though the broad conclusion θ 6= θo is often too general to be of much
use. If the null hypothesis is rejected, one would at least like to be
able to make a directional inference, such as to conclude that θ > θo

if θ̂ > θo—see Hsu (1996, p. 38) for related discussion. Two options
for directional inference come to mind.

As a first option, consider the 100(1−α)% confidence interval for
θ—namely, θ̂ ± tα/2,ν s(θ̂). As is well known, the above two-tailed
test fails to reject Ho : θ = θo if and only if θo is in this confidence
interval. If for example the null hypothesis is rejected at level α and
the confidence interval only contains values θ > θo, it seems reasonable
to conclude that θ > θo. Likewise, if the null hypothesis is rejected
at level α and the confidence interval only contains values θ < θo, it
seems reasonable to conclude that θ < θo. One may wonder if this is
rigorously justified.

As a second option, one can recognize that directional inference
is available at no additional cost, (see for example Pfizer, 1967). In
particular, if the null hypothesis is rejected—namely, if |t| > tα/2,ν—

suppose one asserts θ > θo if θ̂ > θo and one asserts θ < θo if θ̂ < θo.
If in fact θ ≤ θo, then one only erroneously asserts θ > θo if t =
(θ̂ − θo)/s(θ̂) > tα/2,ν , but the probability of this is at most α/2:

Pθ[(θ̂ − θo)/s(θ̂) > tα/2,ν | θ ≤ θo] ≤ α/2.

Similarly, if in fact θ ≥ θo, then one only erroneously asserts θ < θo

if t = (θ̂ − θo)/s(θ̂) < −tα/2,ν , but again the probability of this is at
most α/2:

Pθ[(θ̂ − θo)/s(θ̂) < −tα/2,ν | θ ≥ θo] ≤ α/2.

Furthermore, when the null hypothesis is true, the probability of erro-
neously rejecting Ho and so necessarily making an incorrect directional
inference is α. Hence, for any parameter value θ, the probability of
making an error in directional inference is at most α.

One goal of this paper is to make directional inference a more nat-
ural consequence of testing. Another goal is to tighten the connection
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between testing and confidence interval estimation. To this end, in the
next section we present a generalization of hypothesis testing based
on ideas borrowed from partition tests and the partitioning princi-
ple, introduced by Finner and Strassburger (2002) in the context of
multiple inference. Partition testing is a refinement of closed testing
introduced by Marcus, Peritz and Gabriel (1976), each providing a
means toward more powerful multiple tests strongly controlling fam-
ilywise error rates, though in this paper we focus on individual tests.
Our end result in some cases hinges upon the notion that confidence
intervals result from testing each parameter value, a notion exploited
by Stefansson, Kim and Hsu (1988) in the context of multiple estima-
tion.

2 Partition testing

Partition testing was introduced by Finner and Strassburger (2002),
and in its true sense it involves the testing of multiple hypotheses, par-
titioning the subset of the parameter space corresponding to the union
of these multiple null hypotheses, testing each set of this partition with
a size-α test, and using the fact that testing disjoint hypotheses us-
ing a size-α test for each provides a simultaneous size-α test. Unlike
Finner and Strassburger (2002), here we consider testing just a single
null hypothesis, so this is not a multiple testing setting per se. As
another distinction, rather than partitioning the subset of the param-
eter space corresponding to the null hypothesis, we instead partition
the entire parameter space. However, like Finner and Strassburger
(2002), we also test each set of the partition with a size-α test as if
testing multiple hypotheses, and it likewise follows that this provides
a size-α test—namely, the probability of making any false assertions
is at most α. So, adapting the approach of Finner and Strassburger
(2002) as just described, we propose and utilize the following variation
on their partition principle.

Partition Principle: Consider a partition Ω = ∪iΩi of the param-
eter space Ω = {θ : θ ∈ ℜ}. For each set Ωi in the partition, conduct
a size-α test of the null hypothesis Hoi : θ ∈ Ωi, and conclude θ 6∈ Ωi

for each i for which Hoi : θ ∈ Ωi is rejected. Then the probability of
making any false assertions is at most α.

Such a test is referred to as a partition test. The following example
illustrates simple directional inference as a consequence of a partition
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test.
Example 1. Instead of testing Ho : θ = θo versus Ha : θ 6= θo, con-

sider the partition of Ω = {θ : θ ∈ ℜ} consisting of Ω1 = {θ : θ < θo},
Ω2 = {θo}, and Ω3 = {θ : θ > θo}. For the corresponding size-α tests,
reject Ω1 if t > tα,ν , reject Ω2 if |t| > tα/2,ν , and reject Ω3 if t < −tα,ν ,

where t = (θ̂ − θo)/s(θ̂). The possible conclusions are as follows.
(i) If t < −tα/2,ν , reject Ω2 and Ω3 and conclude θ ∈ Ω1, i.e. θ < θo;
(ii) If −tα/2,ν < t < −tα,ν , reject Ω3 and conclude θ ∈ Ω1 ∪ Ω2, i.e. θ ≤ θo;
(iii) If −tα,ν < t < tα,ν , reject no Ωi, so conclude θ ∈ Ω1 ∪ Ω2 ∪ Ω3, i.e. θ ∈ ℜ;
(iv) If tα,ν < t < tα/2,ν , reject Ω1 and conclude θ ∈ Ω2 ∪ Ω3, i.e. θ ≥ θo;
(v) If tα/2,ν < t, reject Ω1 and Ω2 and conclude θ ∈ Ω3, i.e. θ > θo.

Directional inference follows immediately from the above refor-
mulation of the standard hypothesis test as a partition test, using a
three-set partition of the parameter space that is finer than the two-set
partition induced by the null and alternative hypotheses, and testing
each of the three sets instead of just the one corresponding to the
null hypothesis. This partition test is somewhat more powerful than
the “directional inference at no additional cost” obtained as option 2
in the Introduction, since here either direction can be rejected even
if the null hypothesis is not rejected—potentially useful information.
For example, for an experimental factor at two levels, in testing the
null hypothesis that the effect is zero, if one fails to reject the null
hypothesis, it may still be useful to conclude that the effect is not
negative, say.

Result (Finner and Strassburger, 2002). The partition principle
works for the following simple reason. Only one of the sets Ωi in
the partition will contain the true value of θ, and one can only make
an error if that set Ωi (and correspondingly the true value of θ) is
rejected. Since that Ωi is tested using a size-α test, the probability
of making a false assertion is at most α. It does not matter that one
does not know which set Ωi contains the true but unknown value of
θ.

The next example provides a true equivalence between the two-
sided test and the two-sided confidence interval.

Example 2. Instead of testing Ho : θ = θo versus Ha : θ 6= θo,
consider conducting a partition test, partitioning Ω = {θ : θ ∈ ℜ} as
Ω = ∪θ1

Ωθ1
, with a single-element set Ωθ1

= {θ1} for each θ1 ∈ ℜ. For
each θ1, reject Ωθ1

at level α if |t| > tα/2,ν , where t = (θ̂ − θ1)/s(θ̂).
For each value θ1, observe that θ1 is not rejected if and only if θ1 is
contained in the two-sided confidence θ̂± tα/2,ν s(θ̂). To reiterate, this
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partition test rejects with significance level α exactly those values of
θ not in the 100(1− α)% two-sided confidence interval for θ, and the
probability of erroneously rejecting the true value of θ is at most α.

From the perspective of directional inference, this partition test is
equivalent to the first option considered in the Introduction—namely,
asserting a direction based on whether θ is larger or smaller than
θo any time the null hypothesis Ho : θ = θo is rejected at level α.
Furthermore, this partition test further pins down the value of θ,
providing exactly the same information as provided by the two-sided
confidence interval. However, this partition test based on the partition
of Ω into sets of individual real values is less powerful for directional
inference than the three-set partition test of Example 1, since this
test fails to eliminate a direction when either −tα/2,ν < t < −tα,ν or
tα,ν < t < tα/2,ν .

Partition testing as a generalization of standard hypothesis test-
ing. The above discussion and examples suggest the following gener-
alization of the standard formulation of hypothesis testing. In short,
instead of formulating hypothesis testing as a test of a null hypothesis
versus an alternative hypothesis, corresponding to a partition of the
parameter space into two sets, and testing only the null hypothesis,
one should view hypothesis testing as a partition test, partitioning
the parameter space into more than two sets if that is beneficial, and
testing each set in the partition.

Directional inference. For the case of the standard two-sided test
considered above, if directional information is more important than
pinning down the value of θ, then one may prefer the three-set parti-
tion test of Example 1 over the confidence-interval-equivalent test of
Example 2 based on the finest possible partition, since the former may
eliminate a direction even when the value θo is not rejected. However,
if directional inference is not the top priority, then the approach of
Example 2 seems preferable, as it provides more information about
the value of θ whether or not the value θo is rejected. Both of these
partition tests rejects the value θo whenever the traditional test rejects
Ho : θ = θo.

In view of the above, we have established the following fundamen-
tal result.

Lemma 1: Equivalence of two-sided tests and two-sided confidence
intervals. The two-sided size-α partition test of Example 2, based on
the finest possible partition of Ω, rejects exactly those values θ not
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contained in the standard 100(1 − α)% two-sided confidence interval
for θ.

In the next section, we show analogously that one-sided partition
tests are equivalent to one-sided confidence bounds.

3 One-sided tests and confidence bounds

Suppose one is interested in conducting a one-sided test, say testing
Ho : θ ≤ θo versus Ha : θ > θo. The standard size-α test rejects
Ho and accepts Ha if t = (θ̂ − θo)/s(θ̂) > tα,ν . If the test statistic
is in the rejection region, one is able to conclude that θ > θo with
significance level α. Instead of conducting this one-sided test of hy-
potheses, some would prefer to use a 100(1 − α)% lower confidence
bound for θ, since then with 100(1−α)% confidence one can conclude
that θ > θ̂ − tα,ν s(θ̂). As is well know, the test results in a rejection
of the null hypothesis if and only if the lower confidence bound is
above θo. Hence, the lower confidence bound provides not only the
information needed to determine whether or not to reject the null
hypothesis—in cases where the test would reject the null hypothesis,
the lower confidence bound provides additional information by virtue
of providing a lower bound for θ that is strictly larger than θo.

Consider the following formulation of this testing problem using
the partition principle. As in Example 2, instead of testing Ho : θ ≤
θo versus Ha : θ > θo, consider partitioning Ω = {θ : θ ∈ ℜ} as
Ω = ∪θ1

Ωθ1
, with a single-element set Ωθ1

= {θ1} for each θ1 ∈ ℜ. For
each θ1 ∈ Ω, reject Ωθ1

at level α if t > tα,ν , where t = (θ̂ − θ1)/s(θ̂).
Observe that each value θ is not rejected if and only if θ is above the
one-sided lower confidence bound, θ̂ − tα,ν s(θ̂). So, as in the two-
sided testing problem, one again gets a perfect equivalence between
the information provided by the partition test and the information
provided by the lower confidence bound. In particular, one rejects at
level α exactly those values θ below the 100(1−α)% lower confidence
bound for θ.

In view of the above, we have established the following second
fundamental result.

Lemma 2: Equivalence of one-sided tests and one-sided confidence
bounds. Let t = (θ̂ − θ1)/s(θ̂). For the one-sided size-α partition test
that rejects Ωθ1

at level α if t > tα,ν , each value θ is not rejected if and
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only if θ is above the 100(1−α)% lower confidence bound, θ̂−tα,ν s(θ̂).
Analogously for one-sided inferences in the other direction, for the
one-sided size-α partition test that rejects Ωθ1

at level α if t < −tα,ν ,
each value θ is not rejected if and only if θ is below the 100(1 − α)%
upper confidence bound, θ̂ + tα,ν s(θ̂).

4 Closing remarks

Partition testing as considered in this paper provides a useful gen-
eralization of traditional hypothesis testing, providing more specific
conclusions without any loss of power. The standard approach to hy-
pothesis testing involves partitioning the parameter space based on
the null and alternative hypotheses and testing only the null hypoth-
esis. The generalization considered here—a variation on partition
testing as introduced by Finner and Strassburger (2002)—is to select
a finer partition of the parameter space, and to test each set in the
partition using a size-α test. The resulting partition test is a size-α
test, controlling the probability of making any false assertions to be
at most α. While an appropriate partition test rejects the traditional
null hypothesis whenever the traditional test does, the clear benefit
of the partition test is that, when the traditional null hypothesis is
rejected, the partition test provides more useful, specific inferences
than simply rejecting the null hypothesis in favor of the alternative
as in the traditional approach.

For example, compared to the standard two-tailed test of a point
null hypothesis, a partition test with the parameter space Ω parti-
tioned as finely as possible—namely, with one set in the partition
for each real value θ ∈ Ω—is exactly equivalent to constructing a
100(1−α)% two-sided confidence interval for θ. Alternatively, if direc-
tional inference is of primary interest in the two-tailed test setting, a
partition test using a three-set partition has the same rejection region
as the standard two-sided test but also provides powerful directional
inference while still controlling the probability of any false assertions
to be at most α. Compared to the standard one-tailed test, there is a
partition test with Ω partitioned as finely as possible that is exactly
equivalent to constructing a 100(1−α)% one-sided confidence bound
for θ.

To put the results of this paper in proper perspective, it is im-
portant to recognize that an equivalence between confidence sets and
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hypothesis testing is well known to exist—see for example Casella
and Berger (1990, pp. 406–408) and Hochberg and Tamhane (1987,
pp. 22–23)—though the equivalence illustrated here is somewhat dif-
ferent and, one might say, stronger in character. The standard notion
of equivalence is as follows. As is well known, one can invert a family
of tests to obtain a confidence set, the confidence set consisting of all
values θo for which Ho : θ = θo is not rejected; likewise, given a confi-
dence set, one can obtain a corresponding test by rejecting Ho : θ = θo

if θo in not in the confidence set. Casella and Berger (1990) refer to
this equivalence of testing and confidence sets as theoretically inter-
esting, noting that it is most useful for constructing confidence sets,
since it is relatively easy to construct tests and difficult to obtain confi-
dence sets. This traditional sense of equivalence, however, maintains
the traditional formulation of hypothesis testing, whereby the null
hypothesis is either rejected or not—“a YES-NO test of hypothesis”
in the words of Natrella (1960)—and rejection of the null hypothesis
provides evidence in support of the alternative hypothesis but nothing
more specific without consideration of the operating characteristics of
the test. In particular, the test does not provide the same informa-
tion as the confidence interval. In contrast, the equivalence considered
here is based on use of partition testing, a true generalization of tra-
ditional hypothesis testing, and the appropriate partition test provides
exactly the same information about the parameter θ as the analogous
confidence set, whether or not the null hypothesis is rejected. Thus,
the appropriate partition test and the analogous confidence set are
perfectly equivalent.

In the context of the traditional two-tailed test of a point null
hypothesis, one can perhaps do better still. Hayter and Hsu (1994)
and Finner (1994) considered directional inference and confidence sets
for θ if the traditional two-sided test of Ho : θ = θo results in rejection
of Ho : θ = θo. Interestingly, when Ho is rejected, besides directional
inference based on whether θ̂ is larger or smaller than θo, Finner (1994)
provides one-sided confidence bounds, bounding θ away from θo in the
appropriate direction, with a bound that is not only stronger than the
two-sided bound provided here but in some cases even approaching
the traditional one-sided bound one would have if one chose from
the outset the correct one-sided confidence bound—“correct” as if the
direction of θ from θo were known in advance.

The goal of this paper has been accomplished. In teaching two-
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sided hypothesis testing, I have often lamented the need to resort to
confidence intervals for directional inference when rejecting the point
null hypothesis—that directional inference is not a direct consequence
of the standard hypothesis testing formulation. The reformulation
and generalization of traditional hypothesis testing using partition
testing eliminates this problem, and furthermore provides a perfect
equivalence between testing and confidence sets.
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