
Statistics and Applications
Volume 6, Nos.1 & 2, 2008 (New Series), pp.207-233

Sequential adaptive designs in computer
experiments for response surface model

fit

Chen Quin Lam and William I. Notz

Department of Statistics, The Ohio State University,

1958 Neil Avenue, 404 Cockins Hall, Columbus, USA

Abstract

Computer simulations have become increasingly popular as a method for
studying physical processes that are difficult to study directly. These simula-
tions are based on complex mathematical models that are believed to accurately
describe the physical process. We consider the situation where these simulations
take a long time to run (several hours or days) and hence can only be conducted
a limited number of times. As a result, the inputs (design) at which to run the
simulations must be chosen carefully. For the purpose of fitting a response surface
to the output from these simulations, a variety of designs based on a fixed number
of runs have been proposed.

In this paper, we consider sequential adaptive designs as an “efficient” alter-
native to fixed designs. We propose new adaptive design criteria based on a cross
validation approach and on an expected improvement criterion, the latter inspired
by a criterion originally proposed for global optimization. We compare these new
designs with others in the literature in an empirical study and they are shown to
perform well.

Key words: Cross validation; Gaussian stochastic process model; Kriging; Non-

stationary response surfaces; Sequential designs; Adaptive designs.

Preamble: In the past four decades, Professor Aloke Dey has played
a major role in the development and teaching of experimental de-
sign theory. In line with his interests in designs for fitting response
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surfaces, optimality and robustness of designs, it is our pleasure to
contribute to this special issue honoring his work. And, we wish him
many more years of productive contributions to this field.

1 Introduction

In the last decade or so, computer experiments have become very
popular with the advent of affordable computing power. Traditionally,
physical experiments have been used to establish a cause-and-effect
relationship between input variables and the response output. Given
the increasingly complex nature of scientific research, many physical
experiments are difficult, if not impossible, to carry out. In their place,
computer simulations have been used to provide a representation of
the “real” physical system. Put in a simplistic way, these simulations
are attempts to represent the complex reality in a computer code (or
mathematical model). However, for code that runs slowly, it is not
possible to carry out computer simulations at very fine grids in any
realistic time frame. Thus, computer experiments are often performed
to allow one to determine an approximation to the unknown response
surface generated by the code. This has led to the development of
statistical methodologies for predicting the unobserved responses of
the code at selected input points. The approach taken in this paper
assumes that the response can be modeled as a realization from a
Gaussian stochastic process (see Sacks et al., 1989, and Santner et

al., 2003 ).

Using the Gaussian stochastic process (GASP) model as an ap-
proximation to the actual computer code, the focus of this paper is
on the selection of input points at which to run the simulations so as
to obtain a good overall fit (i.e., predictive accuracy) of the GASP
model. We propose several sequential adaptive designs and compare
them against one another and also against a fixed-point design.

Experimental designs relevant to computer experiments can be
broadly categorized into two classes: space-filling designs and criterion-
based designs. Given that the goal is to achieve good predictive accu-
racy, it is intuitive to consider a space-filling design strategy in order to
minimize the overall prediction error of the GASP model across the
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entire input space. Examples of space-filling designs include meth-
ods based on selecting random samples (e.g., Latin hypercube designs
(LHD)), distance based designs (e.g., maximin and minimax designs),
uniform designs, and even sequential space-filling designs (e.g., Sobol
sequences). See Santner et al. (2003), Koehler and Owen (1996)
and Bates et al. (1996) for thorough discussions of different design
strategies. While space-filling designs are good for initial exploratory
purposes, they are constructed based on the assumption that interest-
ing features of the true computer model are equally likely across the
entire input space. Selection of input points for these designs are not
adaptive to what we learn about the response surface as we observe
the code and space-filling designs may result in a loss of prediction ac-
curacy and efficiency in many situations. The second class of designs
are constructed based on some statistical criteria rather than the geo-
metric criteria used in space-filling designs. Designs based on certain
optimality criteria, such as mean squared prediction error and the
notion of entropy, have been used to construct designs for computer
experiments. However, they are not easily implemented because they
depend on the unknown correlation parameters present in the GASP
model.

The most popular designs for computer experiments are LHDs,
mainly due to availability of software to generate them easily even
when the number of inputs is large. A major limitation of the LHD
and fixed-point designs in general is that they make no use of in-
formation gained about the shape of the response surface as we add
observations. While designs based on certain optimality criteria, such
as mean squared prediction error and entropy, can be converted into
sequential designs, it is not clear if these designs will result in an ac-
curate predictive model, because they also make no use of what one
learns about the response surface from the observed responses. This
will be investigated further in the empirical study in Section 4.

In general, we are optimistic that sequential designs can be more
effective and efficient for prediction of responses at unobserved input
points than fixed-point designs if the sequential designs are adaptive
(i.e., the GASP model is updated sequentially and design points are
added based on the new information/features of the approximated
response surface). It is worth emphasizing that some space-filling de-
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signs are sequential (e.g., Sobol sequences) but not adaptive. Several
sequential as well as adaptive designs, based on cross validation and
a modified expected improvement criterion (Schonlau, 1997), are pro-
posed to obtain a GASP model that gives accurate predictions.

The outline of this paper is as follows. In Section 2, we present
the stochastic process model assumed in this study and the choice of
correlation functions used in the model. Following this in Section 3, we
present the various sequential design criteria proposed in this study.
Three examples are given in Section 4 to illustrate the effectiveness
of the various designs. We conclude with a discussion of the proposed
criteria and simulation results.

2 Statistical model

The computer code for simulation can be thought of as a function h
with inputs denoted by x ∈ X ⊂ ℜp. The output from the computer
code is denoted as y = h(x). In this paper, we restrict attention to
the case of a univariate output from the computer code or simulator.
One can treat the simulator as a black box and model the computer
ouput as a stochastic process to be described in Section 2. For our
approach, the best linear unbiased predictor is used to predict the
response at unobserved x, based on the available training data.

2.1 Model and best linear unbiased Predictors

Following the approach of Sacks et al. (1989), it is assumed that
the deterministic output y(x) is a realization of a stochastic process
(or random function), Y (x). The typical model used in computer
experiments is

Y (x) = fT (x)β + Z(x), (1)

where f (x) = (f1(x), f2(x), ..., fk(x))T is a k × 1 vector of known
regression functions, and β = (β1, ..., βk)

T is a k×1 vector of unknown
regression parameters. And, Z(x) is assumed to be a random process
with mean 0, variance σ2 and a known correlation function R(x1, x2).
The Z(·) component models the systematic local trend or bias from
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the regression part of (1) and the correlation function R(·) essentially
controls the smoothness of the process.

Suppose we have n observations from the computer simulator. Let
Y n = (Y (x1), ..., Y (xn))′ denote the responses from the computer
simulator and suppose the goal is to predict the response Y (x0) at
some untried x0 with a linear unbiased predictor

Ŷ (x0) = cT (x0) Y n.

Cressie (1993) provides more details on linear unbiased predictors in
the context of geostatistical kriging.

The best linear unbiased predictor (BLUP) finds the vector c(x0)
that minimizes the mean squared prediction error (MSPE)

MSPE[Ŷ (x0)] = E[(cT (x0)Y
n − Y (x0))

2] (2)

subject to the unbiasedness constraint E[cT (x0)Y
n] = E[Y (x0)]. The

BLUP can be shown to be

Ŷ (x0) = cT (x0)Y
n = fT (x0)β̂ + rT (x0)R

−1(Y n − F β̂), (3)

where β̂ = (F T R−1F )−1F T R−1Y n is the generalized least-squares
estimate of β and F = [f(x1), ..., f(xn)]T is the n × k matrix of
regressors whose (i, j)th element is fj(xi) for 1 ≤ i ≤ n, 1 ≤ j ≤ k.
The MSPE of the BLUP is then given by

MSPE[Ŷ (x0)] = σ2[1 − rT (x0)R−1r(x0) + (4)

(fT (x0) − rT (x0)R−1F )(F T R−1F )−1(fT (x0) − rT (x0)R−1F )T ].

where r(x0) = (R(x1, x0), ..., R(xn, x0))
T is the n × 1 vector of cor-

relations between observations at the previously sampled points, Y n,
and Y (x0). Usually, fT (x)β in (1) is simply assumed to be a constant
mean term, β, unless there is strong evidence that a more complex
function (e.g., a polynomial function or even a crude version of the
“simulator”) is needed to capture a global trend. In practice, use of
only a constant mean term has been found to work well. The stochas-
tic process Z(x) captures the local trend which usually suffices to
produce excellent fit.

Given that the correlation function R(·) is known, the BLUP can
be easily calculated using (3). Typically, the correlation parameters
have to be estimated (for example, by maximum likelihood estima-
tion) and the resulting predictor is termed as the empirical best linear

unbiased predictor (EBLUP).
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2.2 Parametric correlation functions

As seen from the equations (3) and (4) above, the correlation func-
tion R(·) plays an important role and has to be specified by the
user. This section presents a review of some of the neccessary re-
strictions imposed on R(·). A valid correlation function must possess

certain properties such as (i) R(0) = 1, (ii)
n
∑

i=1

n
∑

j=1

wiwjR(xi, xj) ≥

0, ∀n, ∀x1, . . . , xn, and all real w1, . . . , wn; (iii) R(h) = R(−h) and
does not depend on the location. We consider correlation functions
for x1, x2 ∈ S

R(x1, x2) = R(|x1 − x2|)

so that Z(·) in (1) is stationary. In higher dimensions (i.e. 2 or
higher), taking the products of correlation across each dimension is a
common practice for computational convenience,

R(x1, x2) =

p
∏

j=1

R(|x1j − x2j |).

These are sometimes called separable correlation functions. Two pop-
ular choices are the cubic and power exponential correlation functions
and their one-dimensional forms are given below.

Cubic correlation. The non-negative cubic correlation function
takes the form of

R(d) = 1 − 6
(

d
2

)2
+ 6

(

|d|
θ

)3

, |d| < θ
2

= 2
(

1 − |d|
θ

)3

, θ
2
≤ |d| < θ

= 0, |d| ≥ θ

where θ > 0 (see Currin et al., 1991, and Mitchell et al., 1990). This
correlation function permits a very local correlation structure since
the range parameter θ can be made very small. Another appealing
feature of this correlation function is that beyond distance θ, the corre-
lation between two points drops to zero, thus providing some intuition
concerning the interpretation of θ. The prediction function is a piece-
wise cubic spline interpolating predictor in the context of computer
experiments.
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Power exponential correlation. Another very popular correlation
function takes the form of

R(d) = exp(−θ|d|p), (5)

where 0 < p ≤ 2 and θ ∈ (0,∞). For the special case of p = 2,
this corresponds to the Gaussian correlation function which gives an
EBLUP that is infinitely differentiable. Taking p = 1 gives the expo-
nential correlation function. For 0 < p < 2, the EBLUP is continuous
but not differentiable. As θ increases, the dependence between two
sites decreases but does not go to zero. See Sacks et al. (1989) for
an application with this correlation function. If one knows that the
physical process being modeled by the simulator is smooth, p = 2
should be used.

Both the cubic and power exponential with p = 2 correlation func-
tions will be used for the examples in Section 4. We will also use the

product correlation structure, R(x1, x2) =
p
∏

j=1

R(|x1j − x2j |
∣

∣θj), and

let θ = (θ1, ..., θp)
′.

3 Sampling design criteria

The choice of design is crucial to the success of building an efficient
and accurate GASP model. This section begins with an introduction
to LHDs and some statistical design criteria, such as those based on
the mean squared prediction error and entropy, that have been used
to construct designs for computer experiments. Unfortunately, these
statistical design criteria are not implementable because they require
knowledge of the unknown parameters in the correlation function.
To overcome this problem, we consider a sequential implementation
of these criteria in Subsection 3.2 where previous observations are
used to estimate the parameters. We also consider several alternative
design criteria based on the cross validation approach in subsection
3.3. Finally, we consider an expected improvement (EI) criterion,
inspired by a criterion studied in Schonlau (1997) for our objective
of obtaining a good global model fit, specifically targeting subregions
with interesting features.
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3.1 Latin hypercube designs

Latin hypercube (LH) sampling was first introduced by McKay et

al. (1979) as an alternative to simple random sampling and stratified
sampling. LH sampling is a way to ensure that the input points
are spread evenly over the range of each input separately. Despite
their marginal space-filling properties, not all LHDs are space-filling
across the entire input space. Attempts are made to improve on this
by incorporating distance-based designs, such as maximin distance,
and other criteria-based designs within the class of LHD (see Santner
et al., 2003, and Koehler and Owen, 1996). There exist a number
of space-filling design criteria as mentioned in Section 1 but studies
(e.g., Marin, 2005) suggest they perform similarly. Thus, in Section 4
we use a maximin LHD as representative of a space-filling design.

3.2 Sequential criterion-based optimal designs

Mean squared prediction error designs. The mean squared pre-
diction error equation in (4) can be used as a design criterion. It can
be implemented sequentially by selecting a new input point, x0, with
the largest MSPE based on the constant mean GASP model that is
fitted using the existing input points,

max
x0

MSPE(x0) = max
x0

(

σ2

[

1 − rT (x0)R−1r(x0) +
(1 − 1′R−1r(x0))

2

1′R−11

])

.

(6)

Given that the correlation r(x0) decreases with increasing distance
between two input points (as is the case for the cubic and power
exponential correlation functions), this maximum MSPE design tends
to spread points out and often initially on the boundaries of the input
space. Unless important features of the true response surface are on
or near the boundary, the fitted surface can be poor unless the total
number of observations is large enough to guarantee the interior of
the design region is adequately sampled.

Sacks et al. (1989) considered the integrated mean squared predic-

tion error (IMSPE) criterion

∫

X

MSPE[Ŷ (x)]

σ2
w(x)dx (7)
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where w(.) is a non-negative function satisfying
∫

X
w(x)dx = 1. Typ-

ically, one might consider a uniform weighting and simply take the
average of the MSPE across all x. An n-point design is said to be
IMSPE-optimal if it minimizes (7) over the set of candidate points X .

Direct implementation of IMSPE as a sequential criterion has been
found to lead to clumping of new input points around existing points
(see Sacks et al., 1989). In our attempt to introduce new sequential
sampling designs, we propose a slight modification to the IMSPE cri-
terion by taking into account the distance of candidate points to the
existing input points and imposing a penalty to prevent the additional
design points from clustering together. The new criterion is to select
x0 that

min
x0∈X

{IMSPE(x0)/min(d(xi, x0))} (8)

where xi denotes an existing input point that is closest to x0. The
distance penalty is incorporated to push subsequent points away from
existing input points and hence prevent the clumping problem.

Entropy designs. The amount of information provided by an ex-
periment can also be used as a design criterion. Shewry and Wynn
(1987) introduced the notion of sampling by maximum entropy when
the design space is discrete. They showed that the expected change
in information provided by an experiment is maximized by the design
D that maximizes the entropy of the observed responses.

Recall in Subsection (2.1) that the training data have the following
conditional distribution

Y n|β, θ ∼ N(Fβ, σ2
zR).

Using a Bayesian approach, one can specify a prior distribution for the
β coefficients, say, β ∼ Np(b0, τ

2V 0). Then, the marginal covariance
matrix of the observations Y n|θ can be expressed as

σ2
zR + τ 2FV 0F

T . (9)

One can show (see Koehler and Owen, 1996) that the maximum en-

tropy design maximizes the determinant of the observation variance
in (9).

The choice of prior distributions for the β coefficients will affect
the quantity that the criterion is maximizing (see Koehler and Owen,
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1996). We consider two simple cases discussed in Koehler and Owen
(1996):
(i) If the β are treated as fixed (i.e. τ 2 = 0), the maximum entropy
criterion reduces to

det(σ2
zR). (10)

(ii) If the β are diffuse (i.e. τ 2 → ∞), one can show the maximum
entropy criterion becomes

det(σ2
zR) det(F T (σ2

zR)−1F ). (11)

The maximum entropy design criterion, either (10) or (11), can
also be modified for use as a sequential algorithm. R (which now
includes the candidate point as well) can be partitioned into

R =

(

Rn rn(x0)
rn(x0)

′ 1

)

, (12)

where Rn is the correlation matrix based on the existing n design
points only. The cross correlation between the observation at a new
candidate point x0 and observations at the existing design points is
denoted by the vector rn(x0). Hence, one can show the sequential
maximum entropy criterion based on (10) reduces to selecting a new
point that maximizes

1 − rT (x0)R
−1
n r(x0). (13)

Notice that (13) is very similar to (6) except for the last term. For
(11) where the β coefficients have a diffuse prior distribution, the
sequential maximum entropy criterion is equivalent to the sequential
MSPE criterion in (6).

3.3 Cross validation prediction error criteria

Cross validation is a popular method for estimating model parameters
and for model validation. We use cross validation to come up with a
semi-parametric (prediction-oriented) measure of the prediction error
as an alternative to the MSPE for the stochastic model specified in
(4). In turn, this prediction error will be used as a design criterion to
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select additional input points. This approach is motivated by noting
that the MSPE of the model depends only on the distance between
sampled input points, x, and the correlation function R(·), but not
the response values observed at these input points or the predicted
values given by the fitted surface. By considering criteria based on
cross validation, we use the observed and predicted responses.

Let x denote a candidate point and Ŷ (−j)(x) denote the EBLUP
of y(x) based on all the data except {xj , y(xj)} where j = 1, . . . , n,

while Ŷn(x) denotes the EBLUP of y(x) using all the data. To reduce
computational burden, the correlation parameters for the EBLUP are
estimated based on all n observations. The cross validation prediction
error (XVPE) criterion is then to pick the point, x, that has the largest
“mean” prediction error, in senses we now define.

We first consider the arithmetic mean in

XV PEA(x) =

√

√

√

√

1

n

n
∑

j=1

(Ŷ (−j)(x) − Ŷn(x))2 × min
j

(d(xj , x)) (14)

which was also considered in Jin et al. (2002) in the context of radial
basis function modeling. A penalty term, d(·), based on Euclidean
distance is incorporated to penalize candidate points that are closer
to existing sampled points to prevent the next point picked from being
close to one of the existing design points.

We propose three new criteria for the cross validation approach
that avoid the “distance” penalty by using the geometric mean, har-

monic mean, and the maximin error as alternative summaries of the
cross validation prediction variability. These three error summaries
also avoid selecting points very close to existing design points. Un-
like the maximum MSPE, maximum entropy, and the cross validation
method in (14), they do not make explicit use of the correlation matrix
R(·) or distance from existing points to penalize candidate points.

The geometric mean is appealing because, unlike the arithmetic
mean, candidate points close to existing design points will not likely
be selected as the product term penalizes the small (Ŷ (−j)(x)−Ŷn(x))
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prediction error components.

XV PEG(x) = n

√

√

√

√

n
∏

j=1

(Ŷ (−j)(x) − Ŷn(x))2 (15)

The harmonic mean tends to be more affected by small values than
large values. Since the harmonic mean of the set of n cross validation
prediction errors tends strongly toward the smallest elements of the
set, it tends (compared to the arithmetic mean) to mitigate the impact
of larger values and aggravate the impact of small ones. As a result,
it prevents subsequent design points from clumping together.

XV PEH(x) =
n

n
∑

j=1

1
(Ŷ (−j)(x)−Ŷn(x))2

(16)

The third summary is to compute the minimum cross validation
prediction error for every candidate point and choosing the next point
that has the largest error. We shall call it the maximin criterion given
by

XV PEM(x) = min
j

(Ŷ (−j)(x) − Ŷn(x))2. (17)

3.4 Expected improvement for global fit criterion

The expected improvement (EI) criterion proposed by Schonlau(1997)
was originally developed as a global optimization design criterion. In-
stead of locating the global optimum or optima, we consider a modifi-
cation of the criterion to obtain a good global model fit of the GASP
model. The objective is to search for “informative” regions in the
domain that will help improve the global fit of the model. By in-
formative we mean regions with significant variation in the response
values.

Suppose we have the computer outputs y(xj) at sampled points
xj, j = 1, ..., n. For each potential input point x, its improvement is
defined as

I(x) = (Y (x) − y(xj∗))
2 (18)
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where y(xj∗) refers to the observed output at the sampled point, xj∗ ,
that is closest (in distance) to the candidate point x. We shall de-
termine this nearest sampled design point using Euclidean distance.
The expected improvement for global fit (EIGF) criterion is to choose
the next input point that maximizes the expected improvement

E(I(x)) = (Ŷ (x) − y(xj∗))
2 + var(Ŷ (x)). (19)

The expected improvement in (19) consists of two search components-
local and global. The first (local) component of the expected improve-
ment will tend to be large at a point where it has the largest (re-
sponse) increase over its nearest sampled point. The second (global)
component is large for points with the largest prediction error as de-
fined in (4), i.e., points about which there is large uncertainty and, as
mentioned in Section 3.2, these tend to be far from existing sampled
points.

4 Examples

The following examples illustrate the implementation and prediction
performance of the various sequential designs and the fixed-point max-
imin LHD. Various functions are used as “true” functions to compare
the prediction performances of these designs using a small number of
sampled points. The design strategies to be compared are:

• Sequential maximum mean squared prediction error (m)

• Sequential maximum entropy (e)

• Cross validation approaches: arithmetic mean penalized by dis-
tance (xa), geometric mean (xg), harmonic mean (xh), maximin
criteria (xm)

• Sequential integrated mean squared prediction error, penalized
by distance (id)

• Expected improvement for global fit (ei)
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• Fixed-point or fixed sample size maximin Latin hypercube de-
sign (s)

(the abbrevations in parentheses will be used to denote these methods
later in the figures).

The total number of design points is fixed. For this number, N ,
we consider the rule of thumb suggested in Jones et al. (1998) for
selecting a fixed-point design, namely to use N = 10 × p points,
where p is the number of dimension of the input space. Due to the
complexity of the response surfaces used in our examples, the final
number of input points are at least 30, because this rule of thumb did
not always provide enough points for any method to perform well.

There is not a unique maximin LHD. In addition, the software that
we used does not neccessarily produce a maximin LHD but rather one
that is “nearly” a maximin LHD, and thus adds additional variation
to the choice of designs. Our comparisons are based on 30 runs of our
software for generating maximin LHDs. For sequential designs, this
means 30 different starting designs all approximately maximin LHDs.
In addition, different numbers of starting design points (denoted as
N0) are also considered for the sequential designs. The initial starting
designs are thus generated using an N0-point (nearly) maximin LHD.
N0 is chosen to be 5, 10, 15 or 20 depending on the example. For this
study, the smallest number of starting design points is taken to be
5 for the two-dimensional functions. We would suggest starting the
initial design with at least N0 = number of dimensions + 2 (i.e., 4 in
the two-dimensional functions) so as to capture the non-linearity of
the surface at the start of the algorithm. However in our study, we
chose to start with 5 points since the maximin LHD criterion is used
to generate the starting design points and it was found that starting
with 4 points put all points near or on the boundaries and did not
work well. Starting with 5 points tended to ensure at least one point
is in the interior region.

The values of the correlation parameters are estimated by max-
imum likelihood in this study and they are updated at every stage
when a new input point is added. For the cross validation methods,
we choose not to re-estimate the correlation parameters, θ, for each
of the jth observation deletions. The θ are estimated using the entire
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n observations at each stage.

Prediction accuracy of each of the designs is evaluated using the
empirical root mean squared prediction error (ERMSPE),

ERMSPE =

√

√

√

√

m
∑

i=1

(ŷ(xi) − y(xi))2

m
(20)

where xi, i = 1, ...m (m >> N0) are a grid of points used for evaluat-
ing the prediction accuracy and m is the total number of grid points;
ŷ(xi) is the predicted value at the xi; y(xi) are the true values. We
used a regular grid, but some other method (e.g., maximin LHD) of
choosing the m points could be used provided the points are evenly
spread over X . Boxplots are used for each of the test functions to
show the distribution of the ERMSPE for the 30 runs.

4.1 Test functions and features

In this study, three examples are used to evaluate the predictive per-
formace of the GASP model with the input points chosen by the
various design criteria. Details about the functions are given below
and a plot of the true response surfaces is shown in Figure 1.

Function 1: Six-hump camel-back function

This surface has features both at the boundaries and interior region.
The function for the six-hump camel-back surface proposed in Branin
(1972) is

f(x1, x2) = (4 − 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x

2
2,

where x1 ∈ [−2, 2], x2 ∈ [−1, 1]. The true surface is plotted in Figure
1 on m = 30 × 30 = 900 points which coincide with the m points used
to evaluate the designs in (20). Due to the complexity of the surface,
the final number of input points, N , is taken to be 40.

Function 2: Simulated surface

Next, we have a surface where most of the features of the surface
lie in the middle of the domain, where x1 ∈ [−5, 10], x2 ∈ [0, 15].
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This surface is generated by combining four bivariate Gaussian density
functions each centered at different locations of the input space. The
input domain is finely divided into m = 40 × 40 = 1,600 points.
This surface is constructed to examine the performances of the design
strategies in a setting where the boundaries are “flat”. The final
number of input points, N , is 40.

Function 3: Two-dimensional exponential function

We consider the two-dimensional exponential function as an example
of a non-stationary looking response function (also used in Gramacy,
2005) given by

y = x1 exp(−x2
1 − x2

2) (21)

for x1, x2 ∈ [−2, 6]. This surface has two distinctively different re-
gions (i.e. non-stationary) but the transition across the regions is
smooth. The features lie mainly in the region where x1 and x2 are
both negative. The input domain is finely divided into m = 40 ×
40 = 1,600 points. The final number of input points, N , is 30. The
motivation for comparing the various designs in a non-stationary set-
ting arose from studies by Gramacy (2005) and Farhang-Mehr and
Azarm (2005). One might expect that procedures based on a model
that assumes a stationary process would not perform well here but, as
we will see in Section 4.2, this is not neccessarily the case. It suggests
that a good design can lead to good fit with a GASP model even for
non-stationary looking functions.

4.2 Results: Comparison of design criteria

Results from our simulation study show that there are significant dif-
ferences in the final designs and predictive accuracy depending on
whether the cubic or Gaussian correlation function is used. For func-
tion 1, the use of the cubic correlation for all the designs results in
more accurate prediction of the response surfaces compared to the
Gaussian correlation (see Figure 2). As for function 2 (see Figure 3),
the Gaussian correlation function seems to perform better (with less
outlying ERMSPE values) at least for smaller starting designs (i.e.
N0 = 5 and 10). With N0 = 20, predictions using the two types of
correlation are comparable. The two correlation functions are com-
parable for function 3 (Figure 4). In all three cases, for the “best”
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designs, the cubic performs as well as the Gaussian. Based on various
examples that we have examined (including the three in this section),
the use of the cubic correlation function is found to be a more robust
option for designs that perform well. For subsequent discussions, pre-
dictive performances of the design criteria will be based on the cubic
correlation function.

Function 1 : The maximin LHD design (s) is the worst performer
among all the designs (see Figure 2). Both the maximum MSPE (m)
and maximum entropy (e) criteria outperform other sequential criteria
but the differences are not large. The other sequential procedures are
roughly comparable although the cross validation with the harmonic
mean and the maximin criteria (xh and xm) look the worst given their
larger ERMSPE median and spread. The fact that the maximum
MSPE (m) and maximum entropy (e) criteria select more points on
the boundaries seems to be an advantage in this example. Although
there are some larger values of ERMSPE for some of the criteria, the
predicted surfaces based on these designs reproduce the true surface
rather accurately except for the top-right corner of the surface.

Function 2 : Among the sequential designs, the cross validation,
with the geometric mean (xg) (except for N0 = 5) and the arithmetic
mean (xa), and EIGF (ei) designs are the better performers in this
example where most of the features are in the interior of the input
domain. This example again highlights the tendency of the maximum
MSPE (m) and maximum entropy (e) criteria to place relatively more
input points on the boundaries and thus results in a poorer fit for this
function (compared to function 1). Except for the EIGF criterion (ei),
the other sequential designs generally perform better with a larger
starting design. The fixed-point maximin LHD (s) and integrated
mean squared prediction error (id) designs do not perform too badly
in this example.

Function 3 : Here, for both correlation functions, the EIGF crite-
rion (ei) with N0 = 5 stands out as the best (see Figure 4). The closest
competitor is the cross validation with the arithmetic mean (xa) crite-
rion with N0 = 20, while the GASP model based on the other criteria
fails to approximate the response surface well in most of the 30 runs.
Interestingly, the fixed-point maximin LHD (s) outperforms many of
the sequential designs. Due to its “non-adaptive” space-filling crite-
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rion, it manages to detect some of the non-stationary features in the
bottom left region but too much sampling effort is wasted in the flat
region of the surface.

The narrow spread of the ERMSPE (in Figure 4) using the EIGF
criterion (ei) shows that it is not too sensitive to the variation in
the starting design that seem to negatively affect the other sequential
designs.

Figure 5 shows comparative plots of predicted surfaces of function
3 using the EIGF criterion (ei), cross validation with the arithmetic
mean (xa), and the fixed-point maximin LHD (s). In the second and
third row, it is very encouraging to see that the worst case prediction
using the EIGF criterion (ei) with N0 = 5 does not perform too badly
compared to the best case prediction using the cross validation with
the arithmetic mean (xa) criterion with N0 = 5. The EIGF criterion
(ei) manages to identify the irregular region very quickly and focuses
most of the sampling effort there. Again, the EIGF criterion (ei)
performs better with a smaller initial design of N0 = 5. It is noted
that starting the EIGF criterion (ei) with a larger design (N0 = 15)
leaves fewer points (15) to add and can sometimes result in most of
the added sampling effort being concentrated on only one of the two
“peaks”, as shown in the worst predicted surface in the fourth row of
Figure 5.

As an informal comparison, we note that the predicted surface with
N = 30 input points using the EIGF criterion (ei) is more accurate
(graphically) compared to the Bayesian Treed approach (see example
in Gramacy, 2005). This suggests that stationary GASP models with
good designs can fit non-stationary looking surfaces as well as meth-
ods that attempt to account for nonstationarity. This needs to be
investigated further to understand the roles design and model play, as
it may be that the Bayesian Treed model with a suitable design is very
efficient. Overall, the EIGF criterion (ei) with a small starting design
and the cross validation with the arithmetic mean criterion (xa) with
a larger starting design perform well in all examples with the cubic
correlation function.
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5 Discussion and conclusion

For the objective of achieving good global model fit, it has been
demonstrated that sequential adaptive designs typically outperform
fixed-point designs such as the maximin LHD used in our examples.
Studies in Marin (2005) suggests similar results will occur if other
fixed-point designs are used. Among the sequential adaptive designs,
the cross validation prediction error criterion with the arithmetic
mean and larger starting designs, and EIGF criterion with smaller
starting designs are very competitive in terms of prediction accuracy
using the GASP model with the cubic correlation. Both criteria with
a cubic correlation function are found to perform well in a variety
of examples and are never significantly outperformed by any of the
other designs. The adaptive property of these design criteria in this
study enable the GASP model to identify interesting features in the
input space and result in a more accurate statistical predictor. Also,
sequential algorithms have the desirable property that additional ob-
servations are naturally accommodated if an increased budget or the
need to improve the accuracy of the GASP model allows or requires
additional observation. Similar results have been noted for higher
dimensional examples not presented in this paper.

Other issues do arise during the implementation of these sequen-
tial designs. For instance, one of the key issues in sequential design is
the number of starting design points. This is crucial to their success
in surface predictions. Being the two top performing criteria in the
examples, the EIGF criterion seems to perform better with smaller
starting designs (N0 = 5) while the cross validation with the arith-
metic mean is superior with a larger starting design (e.g., N0 being
half of the final number of points, N). A decision also has to be
made on the final number of input points. Although this number has
been fixed in our examples, it is generally not clear exactly what this
number should be but one can make use of the usual cross validation
approach for assessing model fit to decide on a stopping criterion.

In applying the various designs to a non-stationary looking re-
sponse function, we have also shown that the naive approach of speci-
fying a single stationary GASP model across the entire input space of
a clearly non-stationary surface need not suffer in terms of prediction
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if the design criterion is able to target regions with high variation in
the response. Further refinements can be made to the design and/or
model approach taken in this paper. For example, one might combine
sequential adaptive designs with more complicated stochastic models,
such as the Bayesian Treed approach by Gramacy (2005). However,
this is the topic of further research. Here, we have seen that with an
appropriate adaptive design, GASP models can give good fit to even
non-stationary looking surfaces.
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Figure 1: Surface plots of the true surfaces. (a) Function 1: Six-hump
camel-back function (b) Function 2: Simulated surface, (c) Function
3: Two-dimensional exponential function
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Figure 2: (Function 1, Six-hump camel-back function) Boxplots of the
empirical root mean squared prediction error (ERMSPE) for 30 different
starting designs and Gaussian/cubic correlation functions - EIGF (ei), max-
imum entropy (e), maximum mean squared prediction error (m), integrated
mean squared prediction error with penalty (id), cross validation prediction
error (using arithmetic mean (xa), geometric mean (xg), harmonic mean
(xh), maximin criteria (xm)), fixed-point maximin LHD (s). N0 denotes
the number of starting input points for the sequential methods. A total of
N = 40 design points are selected in all the cases.
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Figure 3: (Function 2, Simulated surface) Boxplots of the empirical root
mean squared prediction error (ERMSPE) for 30 different starting designs
and Gaussian/cubic correlation functions - EIGF (ei), maximum entropy
(e), maximum mean squared prediction error (m), integrated mean squared
prediction error with penalty (id), cross validation prediction error (using
arithmetic mean (xa), geometric mean (xg), harmonic mean (xh), maximin
criteria (xm)), fixed-point maximin LHD (s). N0 denotes the number of
starting input points for the sequential methods. A total of N = 40 design
points are selected in all the cases.
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Figure 4: (Function 3, Two-dimensional exponential function) Boxplots of
the empirical root mean squared prediction error (ERMSPE) for 30 differ-
ent starting designs and Gaussian/cubic correlation functions - EIGF (ei),
maximum entropy (e), maximum mean squared prediction error (m), in-
tegrated mean squared prediction error with penalty (id), cross validation
prediction error (using arithmetic mean (xa), geometric mean (xg), har-
monic mean (xh), maximin criteria (xm)), fixed-point maximin LHD (s).
N0 denotes the number of starting input points for the sequential methods.
A total of N = 30 design points are selected in all the cases.
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Figure 5: (Function 3, Two-dimensional exponential function) Con-
tour plots of the true surface and predicted surfaces using the fixed-
point maximin LHD (s), EIGF (ei) and cross validation with the
arithmetic mean (xa) criteria. The plots show the best and worst
predicted surfaces based on ERMSPE among the 30 runs. N0 denotes
the number of starting input points for the sequential methods. The
red squares denote the location of the inital starting design points and
the black dots denote the remaining added points.




