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Abstract

The purpose of this article is to develop a test statistic for detection of a single
outlying observation vector in multi-response experiments conducted in a block
design set up. The test statistic developed is a multivariate extension of the Cook
statistic for detection of a single outlier in the usual block design set up for uni-
response experiments. The use of the proposed test statistic has been illustrated
with an example.
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1 Introduction

An outlier in a set of data is an observation (or an observation vector)
that appears to be inconsistent with the remainder of the observa-
tions in that data set. Occurrence of outlier(s) is common in every
field in which data collection is involved. In many experimental situ-
ations, data on more than one response variable is recorded from the
same experimental unit through application of same treatment. Such
experiments are known as multi-response experiments. Outlier(s) in
multi-response experiments is/are likely to appear. If an experimental
plot is heavily infested with pests, disease and/or weeds then all the
responses observed from that plot may be outlier(s). Outlier(s) may
also occur because of heavy irrigation on some experimental plot(s)
by mistake. Outlier(s) could very well be due to transcription errors.

1The authors of this article are three generations of students of Professor Aloke
Dey. We feel privileged to write this article in this special issue being brought out
to felicitate him on superannuation. His contributions to the theory of statistics
particularly to Design of Experiments have been monumental.
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The presence of outlier(s) in the data generated from multi-response
experiments may cause departures from the assumptions of parame-
ter estimation. The analysis of data in presence of outlier(s) may give
misleading results. Therefore, it becomes pertinent to detect out-
lier before analyzing the data from these experiments. Barrett and
Ling (1992) proposed a measure of influence for multivariate regres-
sion as an extension of measure given by Cook and Weisberg (1980)
for univariate regression. Test statistics, available in the literature
for detecting outlier(s) in multivariate regression cannot be applied
directly to the multi-response experimental settings because

i) design matrix of multi-response experiments is not of full column
rank as in multivariate regression.

ii) In multi-response experiments, interest is in a sub set of pa-
rameters (linear function of treatment effects) rather than the
complete set of parameters, as in multivariate regression.

Most of the literature available for detection of outlier(s) in the
experimental data and obtaining robust experimental designs in pres-
ence of outlier(s) is for single response situations [see e.g. Box and
Draper (1975), Gopalan and Dey (1976), John (1978), Ghosh (1983,
1989), Singh et al. (1987), Ben and Yohai (1992), Bhar (1997), Bhar
and Gupta (2001, 2003), Sarker (2002) and Sarker et al. (2003, 2005)].
John (1978) studied the problems that arise in detecting the presence
of outliers in the results from factorial experiments by applying the
Qk-statistic of Gentleman and Wilk (1975). Ben and Yohai (1992)
studied the asymptotic theory of M-estimates and their associated
test for a single-factor experiment in a randomized complete block
(RCB) design. Gopalan and Dey (1976) studied the robustness of
general block designs in the presence of a single outlier by minimiz-
ing the variance of discrepancy or bias in the measurement of error
variance (σ2). Singh et al. (1987) showed that the variance balanced
row-column designs satisfying the property of adjusted orthogonality
are robust against the presence of a single outlier. Bhar (1997) in-
vestigated the problem of outlier(s) in the experimental data for the
block designs and modified the Cook-statistic, Qk-statistic and AP-
statistic for detection of single outlier in experimental data for both
mean shift and variance inflation models. Bhar and Gupta (2001)
studied the robustness of block designs by minimizing the value of
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Cook-statistic. Bhar and Gupta (2003) made a study of outliers under
variance-inflation model in experimental designs. Sarker et al. (2003)
extended these results to the experimental situations where the inter-
est of the experimenter is only in a subset of all possible elementary
treatment contrasts (test treatments-control treatment comparisons)
rather than the complete set of all the possible elementary treatment
contrasts. Sarker et al. (2005) formulated a test statistic for detection
of a single outlier in block designs for diallel crosses. They also estab-
lished a correspondence between two existing criteria of robustness i.e.
minimization of average Cook-statistic and minimization of variance
of discrepancy or bias in estimation of error variance. It has been
shown that a proper binary balanced block design for diallel crosses
is robust against the presence of a single outlier. Block designs for
diallel crosses in which every line appears an equal number of times
in each block are also found to be robust against the presence of a
single outlier.

In multi-response experiments, for taking the advantage of corre-
lation structure among the response variables, multivariate analysis
of variance (MANOVA) of data should be performed for testing the
equality of treatment effects. The inference(s) drawn from MANOVA
may be misleading if outlier(s) are present in the data. Gananadesikan
and Lee (1970), Gnanadesikan and Kettenring (1972) and Kang and
Bates (1990) investigated the problems of outlier(s) in multi-response
data mostly in regression analysis situations. Very little work seems to
have been done on detection of outlier(s) in data from multi-response
experiments. Therefore, in the present investigation an attempt has
been made to develop a test statistic for detection of an outlier from
multi-response data generated through block design. The test statis-
tic is given in Section 3. We begin with some preliminaries in Section
2.

2 Preliminaries

Let there be v treatments laid out in a block design containing b blocks
such that jth block contains kj experimental units; j = 1, 2, . . . , b and

treatment i is replicated ri times,
b∑

j=1

kj =
v∑

i=1

ri = n, the total number

of experimental units. From each experimental unit p responses are
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observed. Let Y =
[
y1 y2 . . . yp

]
be an n×p matrix of observations,

where y is an n × 1 vector of observations corresponding to the sth

response (s = 1, 2, . . . , p).

For the sth response, the model is given by

ys = Xθs + εs, s = 1, 2, . . . , p (1)

where X = ⌊∆′ 1 D′⌋ is the design matrix for sth response parti-
tioned in conformity with the parameters, ∆′ is (n×v) design matrix
of treatments, 1 is the n dimensional column vector of all elements
unity and D′ is the design matrix of blocks.

θ = [τ ′

s µs β′

s] is a (v + b + 1) component vector, τ s being v-
component vector of treatment effects, µs the general mean and βs

the b-component vector of block effects for the sth response. εs is the
residual vector for sth response variable distributed as N(0, σssIn).

So the model for multi-response experiments in block design set up
is

Y = Zθ + ε (2)

where Y =
(
y′

1 y′

2 . . . y′

p

)
′

.

Now we can roll out the matrix Z as

Z = ⌊Ip ⊗ ∆′ Ip ⊗ 1 Ip ⊗ D′⌋ = Ip ⊗ X and θ =




τ

µ

β



 , (3)

where τ =
[
τ ′

1, τ
′

2, . . . , τ
′

p

]
′

, β =
[
β′

1, β
′

2, . . . , β
′

p

]
and

µ = (µ1, µ2, . . . , µp)
′ . We also assume that ε ∼ Np(0,Ω). where

Ω = D(ε)





σ11In σ12In · · · σ1pIn

σ21In σ22In · · · σ2pIn
...

...
...

σp1In σp2In · · · σppIn




= Σ ⊗ In. (4)

Here ⊗ denotes Kronecker product of matrices and D(·) denotes the
dispersion matrix. Further Σ = (σij). Using the Generalized Least
Square (GLS) estimation procedure, the normal equations are

(
Z ′Ω−1Z

)
θ = Z ′Ω−1Y . (5)
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The reduced normal equations for estimating the linear functions of
treatment effects are

C∗τ = Q∗ (6)

where

C∗ = Σ
−1 ⊗

(
∆∆

′ − ∆D′(DD′)−1D∆
′
)

= Σ
−1 ⊗ (∆S∆

′) = Σ
−1 ⊗ C (7)

Q∗ =
[
Σ

−1 ⊗
(
∆ − ∆D′(DD′)−1

)−1
D

]
Y = Σ

−1 ⊗ (∆SY ) = Σ
−1 ⊗ Q(8)

and S = I − D′(DD′)−1D.

Here C is the information matrix and Q is the vector of adjusted
treatment totals in the usual setup for the univariate case. A solution
of the reduced normal equations in (6) is

τ̂ = C∗−Q∗. (9)

The following theorem can be given for multi-response experiments.

Theorem 2.1

(i) E(Q∗) = C∗τ

(ii) D(Q∗) = Σ−1 ⊗ C = C∗ (10)

(iii) A design for multi-response experiment is connected for param-
eters τ iff Rank(C∗) = p(v − 1). In a connected design all con-
trasts of τ are estimable.

Here we assume that the design is connected i.e. all p(v − 1) or-
thonormalized treatment contrasts are estimable or equivalently Rank
(C∗) = p(v−1). Let the set of all p(v−1) orthonormalized treatment
contrasts for the parameters τ be given by Pτ , where P = Ip⊗L and
L is such that LL′ = Iv−1 and L′L = Iv −

1
v
11′, PP ′ = Ip ⊗LL′ =

Ip⊗Iv−1 and P ′P = I ′P = Ip⊗L′L = Ip⊗
(
Iv −

1
v
1v1

′

v

)
. The Best

Linear Unbiased Estimator (BLUE) of Pτ is given by P τ̂ , where τ̂

is any solution of the reduced normal equations in (6).

We have the following lemma:

Lemma 2.1 For a connected design for multi-response experiments,
the dispersion matrix of P τ̂ can be written as

D(P τ̂ ) = Σ ⊗ (LCL′)−1 = (PC∗P ′)−1. (11)
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Proof: We know that the information matrix for estimation of a
linear function of treatment effects for multi-response experiments run
in a block design is given by C∗ = Σ−1 ⊗ C. Therefore, P ′PC∗ =
Σ−1 ⊗

(
Iv −

1
v
IvI

′

v

)
C = Σ−1 ⊗ C. Also C∗P ′P = Σ−1 ⊗ C, so we

can write C∗P ′P = P ′PC∗.
Premultiplying P we get,

PC∗P ′P = PP ′PC∗ = PC∗

⇒ P = (PC∗P ′)−1PC∗.

This follows from the fact that PC∗P ′ = Σ−1 ⊗LCL′ and LCL′ is
positive definite using Lemma 2.1 of Bhar and Gupta (2001). There-
fore, PC∗P ′ is positive definite.

Post multiplying τ̂ we get,

P τ̂ = (PC∗P ′)−1PC∗τ̂

= (PC∗P ′)−1PC∗(C∗−Q∗).

The dispersion matrix of P τ̂ is given by

D(P τ̂ ) = (PC∗P ′)−1PC∗C∗−C∗C∗−C∗P ′(PC∗P ′)−1

= [PC∗P ′]
−1

. (12)

3 Detection of outlier in multi-response

experiments

Let us assume that a single observation vector is suspected to be an
outlier in the sense that its expected value is shifted from the expected
value of other observations. We consider the mean-shift model of the
form,

Y = Zθ + Uγ + ε (13)

where U = (Ip ⊗ u), u = (0 . . . 0 1(tth)0 . . . 0)′, if tth observation
vector is suspected as an outlier and Y and Z are as given in (2).
The dispersion matrix of ε from (4) is Ω∗ = D(ε) = Σ ⊗ I.

Now making use of Z as given in (2) reduced normal equations for
estimating the linear function of treatment effects under model (13)
are obtained as

C∗

(t)τ (t) = Q∗

(t) (14)
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where

C∗

(t) = Σ−1 ⊗ ∆S
[
I − u(u′Su)−1u′

]
S∆′,

= Σ−1 ⊗ [C − ff ′] . (15)

Q∗

(t) = Σ−1 ⊗ ∆S
[
I − u(u′Su)−1u′

]
SY ,

= Σ−1 ⊗ ⌊Q − w1/2fu′SY ⌋. (16)

where w = (u′Su)−1 and f = w1/2∆Su.
Following the definition of Cook-statistic for univariate case (Bhar

1997) we give the Cook-statistic for the set of contrasts Pτ of τ in
multi-response experiment as:

(CD)t =

[
P (τ̂ − τ̂ (t))

]
[D(P τ̂ )]

−1 [
P (τ̂ − τ̂ (t))

]

Rank [D(P τ̂ )]
for t = 1, 2, . . . , n. (17)

Lemma 3.2 The difference between the estimators of the contrasts of
τ under the model (2) and (13) can be expressed as

P (τ̂ − τ̂ (t)) = (I ⊗ LC−M)Y , (18)

where M = EC−F +F −EC−∆S, E =
ff

′

1−f
′
C

−
f

, F = w1/2fu′S.

Proof: From (15) we have

C∗

(t) = Σ−1 ⊗ [C − ff ′]

and a g-inverse of C∗

(t) is obtained as [Pringle and Rayner (1971, p.32)
and Dey (1993, Theorem 2)]

C∗−

(t) = Σ ⊗

[
C− +

C−ff ′C−

1 − f ′C−f

]
.

Thus

C
∗−

(t)
Q

∗

(t) =
“
Σ ⊗ C

−

” “
Σ

−1
⊗ Q

”
−

“
Σ ⊗ C

−

” “
Σ

−1
⊗ w

1/2
fu

′
SY

”

+

 
Σ ⊗

C−ff ′C−

1 − f ′C−f

!“
Σ

−1
⊗ Q

”
−

 
Σ ⊗

C−ff ′C−

1 − f ′C−f

!“
Σ

−1
⊗ w

1/2
fu

′
SY

”
.

Then

C
∗−

Q
∗
− C

∗−

(t)
Q

∗

(t) = Ip ⊗ w
1/2

C
−

fu
′
SY − Ip ⊗

C−ff ′C−

1 − f ′C−f
Q + Ip ⊗ w

1/2 C−ff ′C−

1 − f ′C−f
fu

′
SY .
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Then it follows

P
“
bτ − bτ (t)

”
= (Ip ⊗ L)

 
Ip ⊗ w

1/2
C

−
fu

′
SY − Ip ⊗

C−ff ′C−

1 − f ′C−f
Q

+Ip ⊗ w
1/2 C−ff ′C−

1 − f ′C−f
fu

′
SY

!

= Ip ⊗ w
1/2

LC
−

fu
′
SY − Ip ⊗

LC−ff ′C−

1 − f ′C−f
Q

+Ip ⊗ w
1/2 LC−ff ′C−

1 − f ′C−f
fu

′
SY

= Ip ⊗ LC
−

F Y − Ip ⊗ LC
−

EC
−

Q + Ip ⊗ LC
−

EC
−

F Y

=
“

Ip ⊗ LC
−

M
”

Y .

Now from (17) and (18) Cook-statistic for multi-response experiments
can be written as

(CD)t =
1

p(v − 1)
Y ′

(
I ⊗ M ′C−L′

) [
P

(
Σ

−1 ⊗ C
)
P ′

] (
I ⊗ LC−M

)
Y

=
1

p(v − 1)

[
Y ′

(
Σ

−1 ⊗ M ′C−M
)
Y

]
. (19)

Remark 3.1 For a Randomized Complete Block (RCB) design the
matrix S can be written as S = diag

[(
Iv −

1
v
IvI

′

v

)
,(

Iv −
1
v
IvI

′

v

)
, . . . ,

(
Iv −

1
v
IvI

′

v

)]
. Thus the matrices E and F sim-

plified as E = r
r−1

ff ′ and F = v−1
v

fu′S, where

f =
(
1 − 1

v
− 1

v
· · · − 1

v

)
. Using these simplifications, one can ob-

tain a (CD)t for tth observation in a RCB design

Belsely et al. (2004) have given a cut off point for (CD)t in case
of a multiple linear regression as 4/n. For any observation vector if
calculated value of (CD)t (t = 1, 2, . . . , n) is more than 4/n, then we
may conclude that the observation vector from the tth experimental
unit is an outlier. Approximate distribution of (CD)t(t = 1, 2, . . . , n)
is unknown and is an open problem. A SAS code has been written for
obtaining the test statistic for detection of outlier observation vector
and is given in the Appendix (Table 2).

The above test statistic helps in detection of a single outlier vector.
Once the outlier vector is detected, the next question arises as to
what to do with this observation vector? First check whether there
is any transcription error. If there are transcription errors, correct
them and perform the analysis. If one finds that outlying observation
vector is not due to transcription errors, then one simple way is to
delete the observation vector that is identified as an outlier or perform
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multivariate analysis of covariance by defining a covariate for each
outlier.

The above procedure is illustrated with the help of an example in
Section 4.

4 Illustration

Consider an experiment conducted during winter season of 2003-04 in
terai region of West Bengal to study the effect of integrated nutrient
management on growth and yield of late-sown Wheat. The experi-
ment was laid out in Randomized complete block (RCB) design with
14 treatments in 3 replications. The data on following 9 characters
were observed: plant height at harvest (cm), dry matter (DM) accu-
mulation at 90 days after sowing (DAS), leaf area index (LAI) at 75
DAS, number of spikes/sq cm, number of grains per spike, test weight
(g), grain yield (q/ha), straw yield (q/ha) and harvest index (%).

The data were analyzed for detection of single outlier observation
vector using the test statistic developed in Section 3. The results
obtained are given in Table 1 (Appendix). From Table 1, it can be
observed that the observation corresponding to treatment number 1
and replication 3 has value of (CD)t-statistic (0.1043) which is more
than the cut off value of (4/n = 0.09524). Therefore, we can say that
the observation vector pertaining to treatment number 1 in replication
3 is an outlier.

Multivariate analysis of variance for testing the equality of treat-
ment effect vectors was performed on original data and after deleting
the outlying observation vector. The significance of treatment and
replication effects was tested using Wilks Lamda criterion. Multivari-
ate analysis of covariance was also performed by defining a covariate
for the outlying observation vector as defined in (13). The results ob-
tained are given in Table 2 (Appendix). From the analysis of original
data given in Table 2, it is seen that replication effects are not signif-
icantly different at 5% level of significance whereas from the analysis
after deleting the outlying observation (observation number 3) it is
seen that replication effects are significantly different at 5% level of
significance. There is no change in the results pertaining to treat-
ment effects, though. It has been observed that deleting any other
observation does not change the result of original data.

One can also observe that the results with analysis of covariance
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and by deleting the outlier observation vector are same. Therefore,
these approaches may be able to take care of presence of outlier(s) in
the experimental data and any one of the two options can be used in
practice. However, it is necessary that the outlier(s) is (are) detected
at the first instance. The statistic developed for the detection of
outlier(s) in the experimental data may be very helpful.

5 Discussion

In the present investigation, a test statistic has been developed for
detection of a single outlier observation vector in multi-response ex-
periments conducted in block designs. It may happen that all the
components of the observation vector obtained from an experimen-
tal unit may not be outlier. Therefore, further efforts need to be
made for developing a test statistic for detection of any p1-component
sub-vector of a p-component observation vector as outlier. Further,
outlier(s) may exist in more than one observation vector. Therefore,
a test statistic for detection of outlier(s) in more than one observation
vector needs to be developed. Once an outlier is detected, one may
think of either deleting the observation(s) identified as outlier(s) or
carrying out the analysis of covariance. This procedure may be sub-
jected to criticism. Therefore, one way to deal with such a situation
is to develop robust procedure of estimation of treatment contrasts.
Therefore, research efforts need to be made for developing a proce-
dure of robust estimation in presence of outlier(s) in multi-response
experiments.

A lot of literature is available on designs that are robust in presence
of a single outlier in single response situations see e.g. Gopalan and
Dey (1976), Singh et al. (1987), Ben and Yohai (1992), Bhar (1997),
Bhar and Gupta (2001, 2003), Sarker (2002) and Sarker et al. (2003,
2005). A criterion of robustness of multi-response designs in presence
of a single outlying observation vector needs to be developed.

Acknowledgements: Authors are grateful to the annonymous ref-
eree for useful suggestions that led to considerable improvement in
the presentation of results.
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Appendix

Table 1 : Detection of outlier observation vector using the test statistic

Observation Plant DM LAI No. of Harvest
Number Treatment Replication Height at accumulation at 75 spikes/sq No. of Test Grain Straw Index (CD)

harvest at 90 DAS DAS m grains/ weight yield yield (%)
(cm) spike (g) (q/ha) (q/ha)

1 1 1 112.0 723.1 3.3 343.2 34.1 40.7 27.3 44.3 38.1 0.076812
2 1 2 133.0 729.0 4.2 325.0 37.0 49.0 32.0 36.0 37.0 0.078462
3 1 3 124.0 745.0 3.2 356.0 36.0 78.0 25.0 37.0 26.0 0.104318
4 2 1 111.1 784.6 3.7 372.2 38.2 41.4 29.0 47.0 40.3 0.040911
5 2 2 123.0 765.0 3.8 354.0 35.0 47.0 27.0 45.0 41.0 0.034252
6 2 3 112.0 734.0 3.2 345.0 32.0 43.0 29.0 48.0 43.0 0.063704
7 3 1 105.1 722.5 3.1 330.3 33.0 40.4 26.3 43.2 37.9 0.015557
8 3 2 110.0 734.0 3.4 323.0 32.0 46.0 27.0 46.0 38.0 0.0346000
9 3 3 109.0 720.0 3.2 354.0 36.0 42.0 26.0 43.0 39.0 0.049034

10 4 1 104.4 715.3 3.1 325.3 33.2 40.4 25.9 54.0 37.8 0.014674
11 4 2 109.0 726.0 3.5 342.0 34.0 46.0 25.0 52.0 36.0 0.026203
12 4 3 107.0 745.0 3.4 325.0 37.0 43.0 26.0 51.0 39.0 0.032702
13 5 1 106.8 729.2 3.2 337.2 45.0 40.5 26.9 43.9 38.0 0.014317
14 5 2 110.0 765.0 3.5 335.0 46.0 39.0 27.0 41.0 36.0 0.028023
15 5 3 107.0 754.0 3.2 342.0 41.0 42.0 25.0 42.0 41.0 0.035353
16 6 1 103.1 704.2 3.0 319.8 32.0 40.0 25.5 42.4 37.5 0.016434
17 6 2 109.0 765.0 3.1 323.0 29.0 43.0 25.0 43.0 38.0 0.060864
18 6 3 111.0 702.0 3.4 312.0 32.0 47.0 26.0 41.0 36.0 0.045580
19 7 1 102.6 696.9 2.9 315.3 32.1 40.0 34.0 41.8 37.4 0.035370
20 7 2 103.0 692.0 3.2 312.0 33.0 46.0 32.0 45.0 35.0 0.032348
21 7 3 109.0 723.0 3.0 321.0 35.0 42.0 29.0 43.0 36.0 0.046583
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Observation Plant DM LAI No. of Harvest
Number Treatment Replication Height at accumulation at 75 spikes/sq No. of Test Grain Straw Index (CD)

harvest at 90 DAS DAS m grains/ weight yield yield (%)
(cm) spike (g) (q/ha) (q/ha)

22 8 1 105.8 718.8 3.1 331.2 33.1 40.4 26.0 43.1 37.6 0.037268
23 8 2 105.0 726.0 3.2 335.0 31.0 46.0 27.0 42.0 39.0 0.021785
24 8 3 106.0 765.0 3.1 345.0 36.0 48.0 26.0 45.0 41.0 0.042323
25 9 1 109.0 761.9 3.5 362.5 37.0 41.0 28.7 46.4 38.2 0.030287
26 9 2 101.0 765.0 3.6 365.0 36.0 41.0 28.0 43.0 37.0 0.032326
27 9 3 109.0 786.0 3.4 356.0 38.0 46.0 29.0 42.0 38.0 0.018721
28 10 1 107.2 757.5 3.4 357.8 36.0 40.9 27.2 45.7 38.2 0.019468
29 10 2 110.0 725.0 3.5 357.0 40.0 42.0 25.0 48.0 39.0 0.062378
30 10 3 105.0 754.0 3.4 376.0 35.0 41.0 25.0 45.0 34.0 0.057845
31 11 1 110.7 769.5 3.6 363.3 37.5 41.2 29.6 46.9 38.7 0.049584
32 11 2 105.0 754.0 3.4 387.0 38.0 43.0 25.0 43.0 36.0 0.040707
33 11 3 113.0 767.0 3.4 367.0 36.0 41.0 28.0 39.0 37.0 0.029235
34 12 1 106.0 744.3 3.4 353.8 36.0 40.6 28.0 45.3 38.2 0.007566
35 12 2 106.0 765.0 3.3 356.0 35.0 42.0 29.0 45.0 35.0 0.036392
36 12 3 109.0 723.0 3.2 354.0 32.0 43.0 24.0 47.0 41.0 0.040477
37 13 1 105.0 738.9 3.3 350.5 34.9 40.6 27.7 44.9 38.2 0.047424
38 13 2 109.0 734.0 3.2 356.0 33.0 43.0 26.0 51.0 34.0 0.028278
39 13 3 110.0 743.0 3.2 354.0 35.0 40.0 28.0 48.0 37.0 0.012904
40 14 1 107.8 755.2 3.5 358.2 36.9 41.0 29.0 46.0 38.7 0.033924
41 14 2 112.0 765.0 3.4 343.0 36.0 40.0 28.0 46.0 39.0 0.024054
42 14 3 113.0 734.0 3.5 323.0 31.0 41.0 25.0 42.0 41.0 0.056339

*4/n = 0.095238
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Table 2: Multivariate analysis of variance/ covariance for simultaneous comparison
of treatment effects from original data, after removing the outlier observation vector
and by defining a covariate corresponding to outlier observation vector

Original Data After removing the Defining a covariate
outlying observation corresponding to
vector outlying observation

vector
Source Wilk’s Prob > F Wilk’s Prob > F Wilk’s Prob > F

Lambda Lambda Lambda
Treatment 0.0001 < 0.0001 0.0001 < 0.0001 0.0001 < 0.0001
Replication 0.2684 0.0556 0.2406 0.0443 0.2406 0.0443
Covariate - - - - 0.2058 0.0002

SAS code for detecting outlier observation vector from multi-response
experiments:
options ps=2000 ls=100;
data outlier;
input trt blk y1-y9;
cards;
1 1 112.0 723.1 3.3 343.2 34.1 40.7 27.3 44.3 38.1
1 2 133.0 729.0 4.2 325.0 37.0 49.0 32.0 36.0 37.0
1 3 124.0 745.0 3.2 356.0 36.0 52.0 25.0 37.0 26.0
...

...
...

...
...

...
...

...
...

...
...

14 1 107.8 755.2 3.5 358.2 36.9 41.0 29.0 46.0 38.7
14 2 112.0 765.0 3.4 343.0 36.0 40.0 28.0 46.0 39.0
14 3 113.0 734.0 3.5 323.0 31.0 41.0 25.0 42.0 41.0
;
run;
proc iml;
use outlier;
read all into d;
run;
n = nrow(d); *number of observations;
v = max(d[,1]); *number of treatments;
b = max(d[,2]); *number of blocks;
x1 = J(n,v,0); *x1 is del prime;
x2 = j(n,b,0); *x2 is d prime;
y = d[,3:ncol(d)];
p = ncol(y); *p is number of response variables;
do i = 1 to n;

do j = 1 to v;
if d[i,1] = j then x1[i,j] = 1;
end;

end;
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do i = 1 to n;
do j = 1 to b;
if d[i,2] = j then x2[i,j] = 1;
end;

do i = 1 to n;
do j = 1 to b;
if d[i,2] = j then x2[i,j] = 1;
end;

end;

x21 = j(nrow(y),1,1);
x = x1||x2||x21;
beta = ginv(x‘*x)*x‘*y;
yv0 = j(1,1,0);
do i = 1 to ncol(y);

yv0 = yv0//y[,i];
end;
print yv0;
yv = yv0[2:nrow(yv0),];
c0 = x1‘*x1-x1‘*x2*ginv(x2‘*x2)*x2‘*x1;
print c0;
q0 = (x1‘-x1‘*x2*ginv(x2‘*x2)*x2‘)*y;
print q0;
run;

b0 = x2‘*y;
b01 = b0[,1];
b02 = b0[,2];

tau0 = ginv(c0)*q0;

c01 = ginv(c0);

trssp = q0‘*c01*q0;

tssp = j(ncol(y),ncol(y),0);

do i = 1 to ncol(y);
do j = 1 to ncol(y);
tssp[i,j] = y[,i]‘*y[,j]-(y[+,i]*y[+,j])/(nrow(y));
end;

end;

Repssp=j(ncol(y),ncol(y),0);
do i=1 to ncol(y);

do j=1 to ncol(y);
Repssp[i,j]=b0[,i]‘*inv(x2‘*x2)*b0[,j]-(y[+,i]*y[+,j])/(nrow(y));
end;

end;
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ressp = tssp - repssp - trssp;
wl trt = det(ressp)/det(trssp + ressp);
wl blk = det(ressp)/det(repssp + ressp);

print trssp;
print repssp;
print ressp;
sig est = ressp/(nrow(y) - v - b + 1);
print sig est;
c = inv(sig est) @ c0;
q = (inv(sig est) @ (x1‘-x1‘*x2*ginv(x2‘*x2)*x2‘))*yv;
tau = ginv(c)*q;
/*Finding out Cook’s Distance for outlier detection */

S = i(nrow(y))-x2*inv(x2‘*x2)*x2‘;
u = i(nrow(y));
c d = j(1,1,0);

dd = j(1,2,0);
d = j(1,1,0);

do i = 1 to nrow(y);
w= inv(u[,i]‘*S*u[,i]);
f1= sqrt(w)*x1‘*S*u[,i];
F= sqrt(w)*f1*u[,i]‘*S;
E= f1*f1‘*inv(1-f1‘*ginv(c0)*f1);
M= E*ginv(c0)*F+F-E*ginv(c0)*x1‘*S;

C Dt=(yv‘*(inv(sig est)@(M‘*ginv(c0)*M))*yv)/(p*(v-1));
c d=c d/c d1;

dd=dd//(i||c d1);
end;
dd1= dd[2:nrow(dd),];
print dd1;
cut = 4/n;
print the cut off point is= cut;
run;


