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Abstract

The use of covariates model is well accepted in practice to reduce the experimental error in order
to obtain more accurate estimate of the parameters of interest. The choice of values of the control-
lable covariates for a given design for the estimation of covariate parameters attaining the minimum
variance (global optimality) has attracted the attention of many researchers in recent times. In the
present paper the problem of construction of globally optimal covariate designs have been under-
taken under the set-up of strongly balanced and balanced crossover designs with as many covariates
as possible in a given context. Hadamard matrices, mutually orthogonal Latin squares, orthogonal
arrays and Kronecker product play the key role in this study.
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1 Introduction
The use of covariates in modeling is a well accepted practice to control the experimental error.
Lopes Troya (1982a, 1982b) first studied the optimal treatments and non-stochastic controllable
covariates allocation in a completely randomised design(CRD) set-up for simultaneous estimation
of the (fixed) treatment effects and the covariate effects with maximum efficiency in the sense of
minimum generalised variance. Later on Das et al.(2003) undertook the study of optimal choice of
values of covariates in the set-ups of randomised block design(RBD) and some classes of balanced
incomplete block design(BIBD) which are known to be optimal for the estimation of contrasts of
treatment effects. Subsequently, many authors namely Wierich (1984), Kurotschka and Wierich
(1984), Chadjiconstantinidis and Moyssiadis (1991), Chadjiconstantinidis and Chadjipadelis (1996),
Liski et al. (2002), Rao et al. (2003) and Dutta and Das (2011, 2013) contributed to the development
of covariate designs for the optimum estimation of the covariate effects (regression parameters)
under different design set-ups. Dutta et al.(2009a) proposed optimum covariate designs in the set-
ups of split-plot and strip-plot designs. Dutta (2004) and Dutta et al. (2007, 2009b, 2010a, 2010c)
also considered optimal estimation of the regression coefficients under different set-ups where the
ANOVA effects are not orthogonally estimable. D-optimal designs in one way classification set-up
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for the estimation of both the ANOVA effects and the regression parameters were considered by Dey
and Mukerjee (2006) and Dutta et al.(2012). Dutta et al.(2010b) also considered D-optimal covariate
designs for the estimation of regression parameters only, in an incomplete block (IB) design set-up
when globally optimal design does not exist.

The problem of optimal choice of covariates in the set-up of crossover design has not been con-
sidered so far in the literature. A crossover design is used in an experiment in which a unit is exposed
to various treatments over different periods. In such an experiment, t treatments are assigned to n
experimental units each of which receives one treatment during each of the p periods. Such designs
are very often used in many industrial, agricultural, and biological experiments. Under the tradi-
tional model, it is assumed that each treatment assigned to an experimental unit (e.u.) has a direct
effect on the e.u. in the same period and also carryover effects (residual effects) in the subsequent
periods. Efficient estimation and testing of the direct effects as well as residual effects are of interest
to the practitioners from application point of view. The reader is referred to Stufken(1996), Hedayat
and Stufken(2003) and Bose and Dey(2009) for a review on this topic. In practice, situation arises
when controllable covariates are used conveniently in this set-up to control the experimental error.
For example in treating arthritis pain or prevention of heart disease, the duration of daily exercise or
walking plays a role besides the effects of medicines. Thus the duration of exercise or walking can
be viewed as a controllable covariate when formulating an appropriate model for the study of the
effects of different medicines in such cases. So the problem arises to propose appropriate designs
which will allow most efficient estimation of these covariate effects on the response. The present
paper aims at addressing this issue dealing with c covariates for some classes of strongly balanced
and balanced crossover designs which are known to be universally optimal for the estimation of
direct treatment effects and residual treatment effects in an appropriate class of competing designs.
The organisation of the paper is as follows. In Section 2, some preliminary definitions and notations
have been introduced. Section 3 focuses on the construction of optimum covariate designs for the
series of strongly balanced and balanced crossover designs which are obtained using the methods of
construction given in Stufken (1996), Williams (1949), Cheng and Wu (1980) and Patterson (1952).
The concluding remarks are presented in Section 4.

2 Preliminary Definitions and Notations
We assume t treatments, denoted by 1, . . . , t are to be compared using n experimental units over p
periods. Let Ωt,n,p denote the class of such crossover designs. A design d ∈Ωt,n,p is uniform on the
periods if each treatment is assigned to equal number of subjects in each period. A design d ∈Ωt,n,p
is uniform on the subjects if each treatment is assigned equally often to each subject. A design is said
to be uniform if it is uniform on the periods and uniform on the subjects. A crossover design is said
to be balanced, if no treatment is immediately preceded by itself and each treatment is immediately
preceded by every other treatment equally often. A crossover design is called strongly balanced if
each treatment is immediately preceded by every treatment (including itself) equally often.

In the present article, we deal with a covariate model allowing c covariates under the crossover
design set-up. Let d(i, j) denote the treatment assigned by d ∈ Ωt,n,p in the ith period to the jth

experimental unit; i = 1, . . . , p, j = 1, . . . ,n. The model of response for the observation yi j with z(l)i j ,

the value of the lth covariate Zl received in the ith period on the jth experimental unit is given by

yi j = µ +αi +β j + τd(i, j)+ρd(i−1, j)+
c

∑
l=1

γlz
(l)
i j + ei j, (2.1)

where µ is the general mean, αi is the ith period effect, β j is the jth experimental unit effect, τd(i, j)
is the direct effect due to treatment d(i, j), ρd(i−1, j) is the first order residual effect of treatment

94 GANESH DUTTA AND RITA SAHARAY [Vol. 11, Nos. 1&2



d(i− 1, j) with ρd(0, j) = 0 for all j = 1, . . . ,n; γl is the regression coefficient associated with the

lth covariate, l = 1, . . . ,c. As usual, the random errors {ei j}′s are assumed to be uncorrelated and
homoscedastic with the common variance σ2.

Writing the observations unit wise, in matrix notation the above model can be represented as

(Y, µ1np +X1ααα +X2βββ +X3τττ +X4ρρρ +Zγγγ, Inpσ
2) (2.2)

where Y is the observation vector of order np× 1, ααα , βββ , τττ , ρρρ and γγγ correspond respectively to
the vectors of period effects, experimental unit effects, direct effects, first order residual effects and
the covariate effects; X1, X2, X3 ,X4 and Z denote respectively the part of the design matrix cor-
responding to the period effects, experimental unit effects, direct effects, first order residual effects
and covariate effects, 1np is a vector of all ones of order np and Inp is the identity matrix of order
np.

In model (2.2) each of the covariates Zl’s, l = 1, . . . ,c is assumed to be a controllable non-
stochastic variable. Applying a location scale transformation of the original limits of the values of
the covariates, without loss of generality, it is assumed that the np values z(l)i j ’s taken by the lth

covariate Zl can vary within the interval [-1, 1], i.e.

z(l)i j ∈ [−1,1], i = 1, . . . , p; j = 1, . . . ,n; l = 1, . . . ,c. (2.3)

With reference to model (2.2), it is evident that orthogonal estimation of the ANOVA (analysis
of variance) effects and the covariate effects is possible whenever the following conditions

X′iZ = 0, ∀i = 1,2,3,4 (2.4)

are satisfied. Further the covariate effects are estimated with the maximum efficiency if and only if
(cf. Pukelsheim (1993))

Z′Z = npIc. (2.5)

Therefore, optimal estimation of each of the covariate effects is possible while the estimates of the
ANOVA effects remain unaltered, if and only if Z satisfies the conditions (2.4) and (2.5) simul-
taneously. The design which allows such kind of estimation of the parameters is termed in the
literature as globally optimal design (Shah and Sinha (1989)). Henceforth we shall be concerned
with such optimal estimation of the regression parameters only, in a covariate model under some
series of strongly balanced and balanced crossover design set-ups and by optimal covariate design,
to be abbreviated as OCD hereafter, we mean only globally optimal design in the given context. The
reader is referred to Hedayat, Sloane and Stufken(1999) for the definitions and discussions on Latin
squares, mutually orthogonal Latin squares and Hadamard matrices which are extensively used for
the construction of OCDs. In the sequel, any Hadamard matrix of order R is written as

HR = [h(R)
1 , . . . ,h(R)

R ]. (2.6)

For a Hadamard matrix in the seminormal form we assume, without loss of generality, h(R)
R to be 1.

We also refer to Rao(1973) for the definition of Kronecker product and Hadamard product which
turn out to be useful tools in the derivation of our main results.

Note that under model (2.2) for any d ∈ Ωt,n,p, X1 = Ip⊗ 1n and X2 = 1p⊗ In where ⊗ de-
notes the Kronecker product. Thus for d, conditions (2.4) and (2.5) are equivalent to the following
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conditions:

(i) z(l)i j = ±1 ∀ i = 1, . . . , p; j = 1, . . . ,n; l = 1, . . . ,c,

(ii)
p

∑
i=1

z(l)i j = 0 ∀ j = 1, . . . ,n; l = 1, . . . ,c,

(iii)
n

∑
j=1

z(l)i j = 0 ∀ i = 1, . . . , p; l = 1, . . . ,c,

(iv) ∑
(i, j):d(i, j)=k

z(l)i j = 0 ∀ k = 1, . . . , t; l = 1, . . . ,c,

(v) ∑
(i, j):d(i−1, j)=k

z(l)i j = 0 ∀ k = 1, . . . , t; l = 1, . . . ,c,

(vi)
p

∑
i=1

n

∑
j=1

z(l)i j z(l
′)

i j = 0 ∀ l 6= l′ = 1, . . . ,c.



(2.7)

Thus to obtain an OCD for any d ∈ Ωt,n,p it is required to construct the Z-matrix satisfying the
conditions laid down in (2.7). In general for any arbitrary d this problem of construction is combi-
natorially intractable. For the rest of the paper we take up the problem of construction of an OCD i.e.
optimum Z-matrix for strongly balanced or balanced crossover designs in Ωt,n,p which are known
to be universally optimal for the estimation of direct treatment effects and residual treatment effects
in an appropriate class of competing designs. Thereby the resultant design will be optimal for the
estimation of the ANOVA effects as well as controllable covariates’ effects. We handle this issue of
construction by adopting the technique used by Das et al.(2003) where each column of the Z-matrix
can be recast to a W-matrix. Using this idea, the lth column of Z-matrix, a vector of order np× 1
is represented in the form of the matrix W(l) of order p× n, where the columns correspond to the
experimental units in the order 1, . . . ,n and the rows correspond to the periods in the order 1, . . . , p.
To elucidate the idea, the lth column of Z-matrix is written as W(l)-matrix in the following way:

W(l) =


z(l)11 z(l)12 . . . z(l)1n

z(l)21 z(l)22 . . . z(l)2n
...

z(l)p1 z(l)p2 . . . z(l)pn

 , l = 1, . . . ,c. (2.8)

The requirement of the Z-matrix satisfying the conditions (ii) and (iii) of (2.7) is equivalent to
having zero row sums and zero column sums for each row and each column of W(l), l = 1, . . . ,c. To
visualize the conditions (iv) and (v) of (2.7) in terms of the W-matrix we define two more matrices
of order p×n as follows:

V1 =


d(1,1) d(1,2) . . . d(1,n)
d(2,1) d(2,2) . . . d(2,n)

...
d(p,1) d(p,2) . . . d(p,n)

 , V2 =


0 0 . . . 0

d(1,1) d(1,2) . . . d(1,n)
...

d(p−1,1) d(p−1,2) . . . d(p−1,n)

 .

(2.9)
Recalling that d(i, j) denotes the treatment assigned to the jth unit in the ith period of d ∈ Ωt,n,p,
i = 1, . . . , p, j = 1, . . . ,n, it is now easy to verify that the requirement of the lth column of the Z-
matrix satisfying the conditions (iv) and (v) of (2.7) is equivalent to the requirement of the sums of
z(l)i j ’s corresponding to the same treatment to be equal to zero after superimposition of W(l) on V1
and V2 respectively, l = 1, . . . ,c.
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Thus the necessary and sufficient conditions in terms of the elements of W(l), l = 1, . . . ,c for the
existence of an OCD are summed up as follows:

(C1) each of the elements of W(l) is either +1 or -1;
(C2) W(l)-matrix has all row sums equal to zero;
(C3) W(l)-matrix has all column sums equal to zero;
(C4) after superimposing W(l) on V1, for every treatment as specified in V1,

the sum of the elements of W(l) corresponding to the same treatment
is equal to zero;

(C5) after superimposing W(l) on V2, for every treatment as specified in V2

the sum of the elements of W(l) corresponding to the same treatment
is equal to zero;

(C6) the grand total of all entries in the Hadamard product of W(l) and
W(l′) is equal to np or zero depending on l = l′ or l 6= l′ respectively.



(2.10)

It is worthwhile to note that a covariate design Z for c covariates is equivalent to c W-matrices
which are convenient to work with.

Definition 2.1 With respect to model (2.2), the c W-matrices corresponding to the c covariates are
said to be optimum if they satisfy the conditions laid down in (2.10).

Remark 2.2 It is to be noted that if c = 1, only the conditions C1-C5 of (2.10) are to be satisfied by
the W-matrix for an OCD to exist.

Remark 2.3 The maximum number of covariates cannot exceed the error degrees of freedom for
the ANOVA part of a given set-up.

In the present paper we aim at constructing an OCD, in other words optimum W-matrices, with as
many W-matrices as possible for a crossover design which is uniform strongly balanced or strongly
balanced, uniform on the periods and uniform on the units in the first p− 1 periods or uniform
balanced. The construction of W-matrices is very much dependent on the particular method of
construction of the underlying basic crossover design. We will denote by c∗ the maximum value
of c, the number of covariates in a given context as attained by a given method of construction. In
reality a limited number of covariates turn out to be useful. Thus given the choice of c∗ optimum
W-matrices, the experimenter has the flexibility of selecting the optimum values of the required
number of covariates from a large pool of possible options, appropriate to the experimental situation
and availability of the resources.

3 Main Results
In this section the construction of W-matrices satisfying (2.10) for different series of strongly bal-
anced and balanced crossover designs obtained through different constructional methods are given.
We briefly discuss the method of construction of the underlying basic crossover design to understand
the construction of optimum W-matrices as their interdependency has already been pointed out.
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3.1 Strongly Balanced Crossover Design Set-up in Ωt,λ1t2,λ2t

It has been shown in Stufken(1996) that a uniform strongly balanced crossover design d∗ in Ωt,n,p is
universally optimal for the estimation of direct treatment effects and residual treatment effects and
can always be constructed using Latin squares and orthogonal arrays whenever n = λ1t2 and p = λ2t
for integers λ1 ≥ 1 and λ2 ≥ 2. We start with this particular method of construction of d∗ assuming
λ1 = 1 and obtain an OCD. The construction of OCD with n = λ1t2, λ1 > 1 will be taken up later.
Let At be an orthogonal array, denoted by OA(t2, 3, t, 2) with entries from S = {1, . . . , t}. Such an
orthogonal array can easily be obtained from a Latin square L = ((li j)) of order t, t ≥ 2 as follows:

At :

t times︷ ︸︸ ︷
1 1 . . . 1

t times︷ ︸︸ ︷
2 2 . . . 2 . . .

t times︷ ︸︸ ︷
t t . . . t

1 2 . . . t 1 2 . . . t . . . 1 2 . . . t
l11l12 . . . l1t l21l22 . . . l2t . . . lt1lt2 . . . ltt

. (3.1)

Let Bt be an orthogonal array OA(t2, 2, t, 2), obtained from At by deleting the third row in At .
For i ∈ {1, . . . , t−1} let Ai = At + i and Bi = Bt + i, where i is added to each element of At or Bt ,
modulo t. Let the two arrays A and B of order 3t× t2 and 2t× t2 respectively, be defined as

A =


A1
A2
...

At

 , B =


B1
B2
...

Bt

 . (3.2)

With λ2 ≥ 2, writing λ2 = 3δ1 +2δ2 for non-negative integers δ1 and δ2, the p× t2 array d∗ defined
by

d∗ = [A′, . . . ,A′, B′, . . . ,B′]′ (3.3)
consisting of δ1 copies of A and δ2 copies of B is a uniform strongly balanced crossover design in
Ωt,n,p.

We now present the actual construction of OCD, in other words optimum W-matrices for d∗ in
Ωt,t2,p under a variety of choices of t accommodating the maximum number of covariates as attained
by the given method of construction.

Case 1 : t = 0(mod 4)

The following theorem relates to an OCD for d∗ in Ωt,t2,3t .

Theorem 3.1 Suppose Ht , H3t and further s(≥ 2) mutually orthogonal Latin squares (MOLS) of
order t exist. Let d∗ in Ωt,t2,3t be constructed as described in (3.3). Then there exists a set of
(3t-1)(t-1)(s-1) optimum W-matrices d∗ ∈Ωt,t2,3t .

Proof: Without loss of generality we assume that Ht and H3t are in the seminormal form. Let
L1, L2, . . . ,Ls be s MOLS of order t, based on the symbols 1, . . . , t. Suppose Ls is used for construct-
ing At in (3.1) and L(q)

s = Ls+q, where q is added to each element of Ls modulo t, is used to develop
the third row of Aq, q = 1, . . . , t−1 in (3.2) to give rise to d∗ in Ωt,t2,3t as described in (3.3). Now
we proceed to construct the optimum W-matrices for d∗ in Ωt,t2,3t as follows:

In each of the Li, i = 1, . . . ,s− 1, replace the symbols 1, . . . , t by the elements of h(t)
j in order, for

j = 1, . . . , t−1. Let di j′
m denote the replaced mth row of Li, m = 1, . . . , t written with the symbols of

h(t)
j . Now juxtaposing side by side these t rows, we obtain a row vector D′i j of order t2 given by

D′i j =
(

di j′
1 : di j′

2 : . . . : di j′
t

)
. (3.4)
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Now we construct Wi j f of order 3t× t2 as follows:

W(l) = Wi j f = h(3t)
f ⊗D′i j; i = 1, . . . ,s−1, j = 1, ..., t−1, f = 1, ...,3t−1,

l = (i−1)(t−1)(3t−1)+( j−1)(3t−1)+ f .
(3.5)

Using the properties of Latin square, Hadamard matrices and the fact that Li, i = 1, . . . ,s− 1 is
orthogonal with L(q)

s , q = 1, . . . , t − 1, defined above, it is not hard to see that W(l)’s satisfy the
conditions of (2.10) and the maximum number of covariates in the given context attained by the
method of construction is c∗ = (3t−1)(t−1)(s−1).

An illustration of the above method of construction with t = 4 follows.

Example 1: t = 4, d∗ ∈Ω4,16,12

L1 =


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 , L2 =


1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

 , L3 =


1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2



and

A =



2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 1 4 3 2 3 2 1 4 4 1 2 3
3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
3 4 1 2 2 1 4 3 4 3 2 1 1 2 3 4
4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 3 2 1 4 1 4 3 2 2 3 4 1
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2



.

The forms of H4 and H12 for our use are

H4 =


−1 1 −1 1

1 −1 −1 1
−1 −1 1 1

1 1 1 1

 (3.6)
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H12 =



1 1 1 1 1 1 1 1 1 1 1 1
−1 1 −1 1 1 1 −1 −1 −1 1 −1 1
−1 −1 1 −1 1 1 1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 1 −1 −1 −1 1
−1 1 −1 −1 1 −1 1 1 1 −1 −1 1
−1 −1 1 −1 −1 1 −1 1 1 1 −1 1
−1 −1 −1 1 −1 −1 1 −1 1 1 1 1

1 −1 −1 −1 1 −1 −1 1 −1 1 1 1
1 1 −1 −1 −1 1 −1 −1 1 −1 1 1
1 1 1 −1 −1 −1 1 −1 −1 1 −1 1
−1 1 1 1 −1 −1 −1 1 −1 −1 1 1

1 −1 1 1 1 −1 −1 −1 1 −1 −1 1



. (3.7)

Now using h(4)
1 , the first column of H4 and L1, we construct D′11 as

D′11 =
(
−1 1 −1 1 : 1 −1 1 −1 : −1 1 −1 1 : 1 −1 1 −1

)
.

Hence using h(12)
1 , the first column of H12, W(1) = W111 = h(12)

1 ⊗
(
d11

1 , d11
2 , d11

3 , d11
4
)

takes
the form

W(1) =



−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1



.

Similarly 65 more choices of the optimum W-matrices can be constructed.

Remark 3.2 In practice in the above situation the experimenter has the flexibility to choose the
values of the required number of optimum covariates from the set of 66 possible optimum choices.

Remark 3.3 In particular for t = 4, three more optimum W(l) for d∗ in Ω4,16,12 can be constructed
as follows:
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W(67) =



1′4 −1′4 1′4 −1′4
1′4 −1′4 1′4 −1′4
1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4

1′4 −1′4 1′4 −1′4
1′4 −1′4 1′4 −1′4
1′4 −1′4 1′4 −1′4



, W(68) =



1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4

1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4

1′4 −1′4 1′4 −1′4
1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4

1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4

1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4



,

W(69) =



1′4 −1′4 −1′4 1′4
1′4 −1′4 −1′4 1′4
1′4 −1′4 −1′4 1′4
−1′4 1′4 1′4 −1′4
−1′4 1′4 1′4 −1′4
−1′4 1′4 1′4 −1′4

1′4 −1′4 −1′4 1′4
1′4 −1′4 −1′4 1′4
1′4 −1′4 −1′4 1′4
−1′4 1′4 1′4 −1′4
−1′4 1′4 1′4 −1′4
−1′4 1′4 1′4 −1′4



.

Theorem 3.4 Suppose Ht , and further s(≥ 2) mutually orthogonal Latin squares (MOLS) of order
t exist. Let d∗ in Ωt,t2,2t be constructed as described in (3.3). Then there exists a set of (2t-1)(t-1)s
optimum W-matrices d∗ ∈Ωt,t2,2t .

Proof: The proof is along the similar lines of the proof of Theorem 3.1. Note that d∗ ∈ Ωt,t2,2t as
described in (3.3) can be constructed without requiring to use Ls. So Ls can also be used to construct
the row vector D′i j (3.4) of order t2 as before, i = 1, . . . ,s; j = 1, . . . , t−1. Since Ht and hence H2t

exist, assuming both of these in the seminormal form, we construct W(l) of order 2t× t2 as follows

W(l) = Wi j f = h(2t)
f ⊗

(
di j′

1 : di j′
2 : ... : di j′

t

)
; i = 1, . . . ,s, j = 1, ..., t−1, f = 1, ...,2t−1,

l = (i−1)(t−1)(2t−1)+( j−1)(2t−1)+ f

with c∗ = (2t−1)(t−1)s in the given context.

Remark 3.5 For t = 4, four more optimum W(l) for d∗ in Ω4,16,8 can be constructed as described
below:
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W(64) =



1′4 −1′4 1′4 −1′4
1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4

1′4 −1′4 1′4 −1′4
1′4 −1′4 1′4 −1′4


, W(65) =



1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4
−1′4 1′4 −1′4 1′4

1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4

1′4 −1′4 1′4 −1′4
1′4 −1′4 1′4 −1′4
−1′4 1′4 −1′4 1′4


,

W(66) =



1′4 −1′4 −1′4 1′4
1′4 −1′4 −1′4 1′4
−1′4 1′4 1′4 −1′4
−1′4 1′4 1′4 −1′4

1′4 −1′4 −1′4 1′4
1′4 −1′4 −1′4 1′4
−1′4 1′4 1′4 −1′4
−1′4 1′4 1′4 −1′4


, W(67) =



1′4 −1′4 −1′4 1′4
−1′4 1′4 1′4 −1′4
−1′4 1′4 1′4 −1′4

1′4 −1′4 −1′4 1′4
1′4 −1′4 −1′4 1′4
−1′4 1′4 1′4 −1′4
−1′4 1′4 1′4 −1′4

1′4 −1′4 −1′4 1′4


.

Case 2 : t = 2(mod 4), t 6= 2,6

It is clear that Ht does not exist but if s MOLS of order t exist then (s−1) optimum W-matrices can
be constructed for d∗ ∈Ωt,t2,3t (vide (3.3)) using the same steps followed in the proof of Theorem 3.1

and the vector a1=
(

1′t
2
,−1′t

2

)′
and a2=

(
1′3t

2
,−1′3t

2

)′
instead of the columns of Ht and H3t respec-

tively. Similarly if H2t exists, (2t − 1)s optimum W-matrices can be constructed for d∗ ∈ Ωt,t2,2t

(vide (3.3)) following the same steps of Theorem 3.4 using the vector a1=
(

1′t
2
,−1′t

2

)′
instead of the

columns of Ht .

Case 3 : t = 2

Since a pair of MOLS does not exist for t = 2, the methods discussed in earlier cases do not apply
here to construct an OCD. We adopt trial and error method to construct optimum W-matrices.

Theorem 3.6 Let d∗1 in Ω2,4,6 and d∗2 in Ω2,4,4 be constructed as described in (3.3). Then there exist
2 optimum W-matrices for each of d∗1 and d∗2 .

Proof: Recalling (3.2) it is easy to see that d∗1 and d∗2 given below represent the strongly balanced
design in Ω2,4,6 and Ω2,4,4 respectively.

d∗1 :


2 2 1 1
2 1 2 1
2 1 1 2
1 1 2 2
1 2 1 2
1 2 2 1

 , d∗2 =


2 2 1 1
2 1 2 1
1 1 2 2
1 2 1 2

 . (3.8)

Optimum W-matrices denoted by W∗
1 and W∗

2 for d∗1 and W∗∗
1 and W∗∗

2 for d∗2 respectively, can be
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constructed as

W∗
1 =


1 1 −1 −1
1 −1 −1 1
−1 1 1 −1
−1 −1 1 1
−1 1 1 −1

1 −1 −1 1

 , W∗
2 =


1 −1 1 −1
1 1 −1 −1
1 −1 1 −1
−1 1 −1 1
−1 −1 1 1
−1 1 −1 1



W∗∗
1 =


1 1 −1 −1
−1 1 −1 1
−1 −1 1 1

1 −1 1 −1

 , W∗∗
2 =


1 −1 −1 1
−1 1 1 −1

1 −1 −1 1
−1 1 1 −1

 .

Case 4 : t = 6
It is known that for t = 6 a pair of MOLS does not exist and hence we take up the construction

of OCD in this case separately.
We start with a uniform strongly balanced crossover design d∗ ∈Ω6,36,18 constructed (vide (3.3))

using the Latin square L (say) given by

L =


1 2 3 4 5 6
2 1 4 3 6 5
6 5 1 2 3 4
5 6 2 1 4 3
4 3 6 5 2 1
3 4 5 6 1 2

 . (3.9)

Theorem 3.7 Let d∗1 in Ω6,36,18 and d∗2 in Ω6,36,12 be constructed (vide (3.3)) using L of (3.9). Then
there exist an optimum W-matrix for d∗1 and 11 optimum W matices for d∗2 .

Proof: Let D be a matrix of order 6×6 with elements ±1 as follows:

D =


1 1 1 −1 −1 −1
1 1 −1 −1 −1 1
1 −1 −1 −1 1 1
−1 −1 −1 1 1 1
−1 −1 1 1 1 −1
−1 1 1 1 −1 −1

=


d′1
d′2
d′3
d′4
d′5
d′6

 . (3.10)

It is to be noted that the row sums and column sums of D are zero. Moreover superimposing D on
L, it can be seen that for each symbol in L, the sum of the corresponding elements of D is also zero.
Thus an optimum W-matrix for d∗1 in Ω6,36,18 (vide (3.3)) using L of (3.9) can be formed taking
a=
(
1′9, −1′9

)′ and the rows of matrix D as

W(1) = a⊗
(
d′1 : d′2 :, d′3 : d′4 : d′5 : d6

)
.

But for d∗2 in Ω6,36,12 (vide (3.2)), 11 optimum W-matrices can be formed using H12 of (3.7) as
follows:

W(l) = h(12)
l ⊗

(
d′1 : d′2 : d′3 : d′4 : d′5 : d′6

)
, l = 1, . . . ,11.
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So far we have discussed the construction of optimum W-matrices for uniform strongly balanced
crossover design d∗1 in Ωt,t2,3t and d∗2 in Ωt,t2,2t separately. Let c∗1 and c∗2 denote the maximum number
of optimum W-matrices for d∗1 and d∗2 respectively in the given context. Now we will consider the
construction of optimum W-matrices for a strongly balanced crossover design d∗ in Ωt,t2,p (vide
(3.3)) where p = (3δ1 +2δ2)t for non-negative integers δ1 and δ2. Write

d∗ =
[

d∗′1 , . . . ,d∗′1 ,d∗′2 , . . . ,d∗′2
]′ (3.11)

taking δ1 copies of d∗1 and δ2 copies of d∗2 .
Define

δ0 = min{δ1, δ2} and c0 = min{c∗1,c∗2}. (3.12)

Corollary 3.8 Suppose Hδ1 and Hδ2 exist. Let d∗ in Ωt,t2,p be constructed as described in (3.11)
for p = (3δ1 + 2δ2)t, δ1, δ2 ≥ 0, non-negative integers. Then there exists a set of δ0c0 optimum
W-matrices for d∗ where δ0 and c0 are defined in (3.12).

Proof: Let the c∗1 optimum W-matrices for d∗1 be denoted by W∗
1, . . . ,W

∗
c∗1

and the c∗2 optimum

W-matrices for d∗2 be denoted by W∗∗
1 , . . . ,W∗∗

c∗2
. Then it can be easily seen that W(l) defined as

W(l) = Wi j =

(
W∗

i j
W∗∗

i j

)
; where W∗

i j = h(δ1)
i ⊗W∗

j and W∗∗
i j = h(δ2)

i ⊗W∗∗
j (3.13)

i = 1, . . . ,δ0, j = 1, . . . ,c0, l = c0(i−1)+ j,
are the required W-matrices for d∗.

Remark 3.9 Note that Hδ1 and Hδ2 are not necessarily assumed to be in the semi-normal form.

Thus h(δ1)
i and h(δ2)

i can as well be of the form of a vector all ones.

Remark 3.10 It is not hard to see that the set of δ0c0 W-matrices in Corollary 3.8 is not unique.

Remark 3.11 The construction of optimum W-matrices for a strongly balanced design d∗ in Ωt,λ1t2,p
for λ1 > 1 can easily be obtained by taking the Kronecker product of the rows of Hλ1 and the corre-
sponding optimum W-matrix of Ωt,t2,p whenever Hλ1 exists. In case of non-existence of Hλ1 for λ1
even, the role of the rows of Hλ1 above can be taken by the vectors 1′

λ1
and (1′

λ1
2

,−1′
λ1
2

)′. In case of

λ1 odd, the vector of all ones serves the purpose.

Case 5 : t odd
Whenever t is odd, it is easy to verify that an OCD for a uniform strongly balanced crossover design
d∗ in Ωt,t2,p as described in (3.3) does not exist as Condition C2 of (2.10) is not attainable. Let a
uniform strongly balanced crossover design d∗∗ ∈Ωt,λ1t2,p be defined as

d∗∗ = 1′
λ1
⊗d∗ (3.14)

for some positive integer λ1. The following theorem relates to the construction of OCD for d∗∗.

Theorem 3.12 Suppose Hλ1t , Hp and a pair of mutually orthogonal Latin squares of order t exist.
Let d∗∗ be defined as in (3.14). Then there exists a set of (λ1t−1)(p−1) optimum W-matrices for
d∗∗.
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Proof: Suppose L1 and L2 are pairwise orthogonal Latin squares of order t and L2 has been used
in (3.2) and (3.3) to construct a uniform strongly balanced crossover design d∗ in Ωt,t2,p. Now we
proceed to construct the optimum W-matrices for d∗∗. Assuming Hλ1t and Hp in the seminormal

form, for each i = 1, . . . ,λ1t−1, partitioning h(λ1t)
i into λ1 parts as

h(λ1t)
i =

(
h(λ1t)′

i1 , ...,h(λ1t)′
i j , ....,h(λ1t)′

iλ1

)′
(3.15)

we construct a row vector D∗′i j of order t2 considering L1 and h(λ1t)
i j , for every fixed j ∈ {1,2, . . . ,λ1},

following the steps as described in Theorem 3.1. Thus

D∗′i j =
(

d∗i j′
1 , d∗i j′

2 , ...,d∗i j′
t

)
. (3.16)

Now we construct W( j)
i f of order p× t2 as follows:

W( j)
i f = h(p)

f ⊗
(

d∗i j′
1 , d∗i j′

2 , ...,d∗i j′
t

)′
; i = 1, . . . ,λ1t−1, f = 1, . . . , p−1. (3.17)

Finally W(l) matrix of order p×λ1t2 is given by:

W(l) = [W(1)
i f , ...,W( j)

i f , ...,W
(λ1)
i f ], i = 1, . . . ,λ1t−1, f = 1, . . . , p−1, l = (i−1)(p−1)+ f .

It can be easily checked that these W(l)’s are the required optimum W-matrices for d∗∗ in Ωt,λ1t2,p
and c∗ = (λ1t−1)(p−1) in this given context.

Remark 3.13 If for p even, Hp does not exist, then a =
(

1′p
2
,−1′p

2

)′
can be used instead of h(p)

f in
the above theorem.

3.2 Strongly Balanced Crossover Design Set-up in Ωt,λ1t,λ2t+1

It has been shown in Stufken(1996) that a strongly balanced crossover design that is uniform on the
periods and uniform on the units in the first p−1 periods is universally optimal for the estimation of
direct treatment effects as well as residual treatment effects in Ωt,n,p. We now take up the construc-
tion of OCD for such design whenever t is odd and λ1 is even, as otherwise an OCD fails to exist.

Whenever t is odd, a uniform balanced design d∗0 exists in Ωt,2t,t , which is obtained by juxtaposing
two special Latin squares of order t side by side (cf. Williams (1949), Bose and Dey (2009)). A
strongly balanced design d̃∗∗ obtained by repeating the last period of d∗0 is uniform on the periods
and uniform on the units in the first t periods (cf. Cheng and Wu (1980)). Now for some positive
integer λ , taking λ copies of this design let a strongly balanced design d̃∗ in Ωt,2λ t,t+1 be constructed
as

d̃∗ = 1′
λ
⊗ d̃∗∗ (3.18)

Theorem 3.14 Suppose H2λ exists. Let d̃∗ be defined as in (3.18). Then there exists a set of 2λ −1
optimum W-matrices for d̃∗.

Proof: Assuming H2λ in the seminormal form, the optimum W(l)-matrix for d̃∗ in Ωt,2λ t,t+1 can be
constructed as :

W(l) = a∗⊗h(2λ )
l ⊗1′t , l = 1, . . . ,2λ −1,

where a∗ =
(

1′t+1
2
−1′t+1

2

)′
.
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It has been shown in Stufken (1996) that the above idea of Cheng and Wu (1980) to construct a
strongly balanced design from a uniform balanced design can be extended to cover p = λ2t+1. The
required uniform balanced design d∗0 in Ωt,λ1t,λ2t is a λ2×λ1 array of special Latin square of order
t. We refer to Stufken (1996) and Bose and Dey (2009) for the details of the construction. Now
repeating the last period of this uniformly balanced design, we get a strongly balanced design d̃∗ in
Ωt,λ1t,λ2t+1 which is uniform on the periods and uniform on the units in the first p−1 periods. The
following theorem deals with the construction of OCD for this d̃∗.

Corollary 3.15 Suppose Hλ2t+1 and Hλ1 exist. Then there exists a set of λ2t(λ1− 1) optimum W-
matrices for a strongly balanced d̃∗ in Ωt,λ1t,λ2t+1.

Proof: It is readily verified that assuming Hp and Hλ1 in the seminormal form,

W(l) = Wi j = h(λ2t+1)
i ⊗h(λ1)′

j ⊗1′t , i = 1, . . . ,λ2t, j = 1, . . . ,λ1−1, l = (λ1−1)(i−1)+ j (3.19)

are the required optimum W-matrices.

3.3 Balanced Crossover Design Set-up
In this section we consider the construction of OCD for Williams square and Patterson designs as
the basic designs which are uniform balanced crossover design with appropriate parameters.

It is known that for all even values of t, a uniform balanced design d∗0 in Ωt,t,t exists which is a
balanced Latin square and is referred to as a Williams Square in the literature. There does not exist
any optimum W-matrix for d∗0 in Ωt,t,t as t− 1 being odd, Condition C5 is not attainable. Let for
some positive integer λ , a uniform balanced crossover design be constructed as

d∗∗0 = 1′
λ
⊗d∗0 . (3.20)

We next deal with the construction of optimum W-matrices for d∗∗0 in Ωt,λ t,t .

Theorem 3.16 Suppose Ht and Hλ exist. Then there exist (t−1)2(λ −1) optimum W-matrices for
d∗∗0 in Ωt,λ t,t as defined in (3.20).

Proof: Assuming Ht and Hλ in the seminormal form

W(l) = Wi j f = h(λ )′
f ⊗h(t)

i ⊗h(t)′
j ; i, j = 1, . . . , t−1, f = 1, . . . ,λ −1, (3.21)

l = (i−1)(λ −1)(t−1)+( j−1)(λ −1)+ f

are the required optimum W-matrices for d∗∗0 in Ωt,λ t,t .

Remark 3.17 If Ht does not exist but Hλ exists then a set of λ −1 optimum W-matrices for d∗0 can
be constructed as

W∗
l = h(λ )′

l ⊗a∗⊗a∗′, l = 1, . . . ,λ

where a∗ =
(

1′t/2,−1′t/2

)′
.

Remark 3.18 An OCD for an uniform balanced crossover design in Ωt,t,t or Ωt,2t,t can not be
constructed for t odd.
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A popular choice of balanced crossover design is the one given by Patterson(1952) for p≤ t, as
this often involves moderate number of subjects while keeping the number of period small. For t a
prime or prime power, consider {Li}, i = 1, . . . , t−1, a complete set of MOLS of order t where Li+1
can be obtained by cyclically permuting the last t−1 rows of Li. Then the t× t(t−1) array P given
by

P = (L1, L2, ...,Lt−1) . (3.22)

yields a Patterson design in Ωt,t(t−1),t . Now, on deleting any t− p rows of P one gets a Patterson
design in Ωt,t(t−1),p with p < t (cf. Patterson (1952) and Bose and Dey (2009)). The construction of
optimum W-matrices for a Petterson design in Ωt,t(t−1),p is very much dependent on the existence
of the optimum W-matrices for a randomised block design (RBD). Hence we state some results of
Das et al. (2003) and Rao et al. (2003) for the construction of W-matrices for a given RBD with b
blocks and v treatments denoted by RBD(b, v) hereafter, when the observations vs. blocks and the
observations vs. treatments incidence matrices are given by Iv⊗1b and 1b⊗ Iv respectively.

1. If Hb and Hv exist, then (b−1)(v−1) optimum W-matrices can be constructed for RBD(b, v);

2. If H2b and Hv/2 both exist but Hb does not, then (b−1)(v−1)−(b−2) optimum W-matrices
can be constructed for RBD(b, v);

3. If b = 2 (mod 4) and if b− 1 is a prime or a prime power and further if Hv exists, then
(b−1)(v−1)− (b−2) optimum W-matrices can be constructed for RBD(b, v).

Now we consider the following theorem which gives the optimum W-matrices for a Patterson design.

Theorem 3.19 If there exists a set of c W-matrices of order p× (t − 1) for an RBD(p, t-1), then
there exists a set of c optimum W-matrices for a Patterson design in Ωt,t(t−1),p.

Proof: The optimum W-matrices for the Patterson design in Ωt,t(t−1),p can be obtained by replacing
1 by 1′t and -1 by -1′t in the W-matrices of RBD(p,(t−1)).

For t prime of the form 4u + 3, where u is a positive integer, a Patterson design exists in
Ωt,2t,(t+1)/2 which is formed by juxtaposing two special RBD((t + 1)/2, t) side by side. For de-
tails of the method of construction we refer to Patterson(1952).

Theorem 3.20 Suppose H(t+1)/2 exists. Then there exists a set of (t− 1)/2 optimum W-matrices
for a Patterson design in Ωt,2t,(t+1)/2.

Proof: Assuming H(t+1)/2 in the seminormal form,

W(l) = h(t+1)/2)
l ⊗ (1, −1)⊗1′t ; l = 1, . . . ,(t−1)/2 (3.23)

are the required optimum W-matrices.

4 Concluding Remarks
In this paper, we discussed the optimum choice of values for non-stochastic controllable covariates
for a series of strongly balanced or a balanced crossover design which are universally optimal for
the estimation of direct and residual effects in an appropriate class of competing designs. Thus
the resultant design becomes optimum for the estimation of ANOVA effects as well as covariate
effects. It has been observed that the construction of the optimum covariate design depends on the
layout of the basic crossover design. Further research is going on to characterize a specific optimal
covariate design in the crossover design set-up when the global optimal design does not exist. It is
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also worthwhile to identify optimal crossover designs in a covariate model when the values of the
covariates are predetermined.
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