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Abstract

The well-known de la Garza Phenomenon [de la Garza, 1954] relates to the informati-
on matrix of the parameters in a standard Gauss-Markov linear model involving a single
covariate in polynomial regression. It works well in the framework of approximate or con-
tinuous designs. For discrete or exact designs, one has to be careful in extracting its full
spirit. We propose to discuss some features of this highly fascinating area of research.
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1 Introduction

In the context of optimality studies in regression designs, the importance of de la Garza
phenomenon has been emphasized repeatedly in various forms and settings. The most ge-
neral known application is in the context of polynomial regression models involving a single
covariate. Vide Pukelsheim (1993, 2006). Less known are most recent studies in non-linear
parameter settings. Vide Yang (2010). In between, Liski et al (2002), Pukelsheim (1993,
2006), Khuri et al (2006) and Yang and Stufken (2009) have dealt with this phenomenon
and discussed its importance in the search for optimal designs. However, all these studies
[as also the original article by de la Garza in 1954, at least in spirit] relate to what is
known as approximate or, continuous design set-up. In this article our focus is exclusively
on exact or discrete design set-up.

Consider the problem of selecting an experimental design to furnish information on the
parameters in a linear model y = f ′(x )β + e, where y is the observable response variable,
β is a p× 1 vector of unknown parameters; the errors are assumed to be independent and
identically distributed with mean 0 and constant variance σ2, and f is a p×1 vector-valued
known continuous function of the q × 1 vector of design variables x that is constrained
to lie in a compact subset χ(x ) of Rq. An experimental design can be described as a
probability mass function ξ that places total mass on a finite collection of s points in the
design region χ(x ). In exact [or, small sample i.e., discrete] design, n(xi) is required to
be an integer for i = 1, ..., s, where n is the total sample size and n(xi) is the number of



observations attributed to the design point xi; i = 1, 2, ..., s;
∑

i
n(xi) = N. In a continuous

[or, approximate] design set-up, this integer restriction is not imposed and n(xi)/N is
replaced by the mass function ξi, for each i = 1, 2, ..., s. Virtually all optimality criteria
characterize the worth of a design through a concave functional φ(M) that depends only
on the p × p information matrix M(ξ) =

∑
i
ξif(xi)f

′(xi). In an exact design set-up
defined by [(xi, ni); i = 1, 2, ..., s;

∑
i
ni = N ], for a given N , we may write M as M =∑

i
nif(xi)f

′(xi), for brevity, with the obvious interpretation that it refers to the total
information content of the design based on N observations.

In Section 2, we present de la Garza phenomenon, as is known in the literature with re-
ference to continuous designs. We focus only on linear regression and quadratic regression
models. We also discuss related issues as are relevant for optimality studies. Next, in Secti-
on 3, we take up the models again and examine the validity of de la Garza phenomenon in
the context of exact designs for given N . In Section 4, we examine Loewner Order Domina-
tion property of information matrices for discrete or exact designs, and that too, for linear
and quadratic regression only. Finally, in Section 5, we make some concluding observations.

2 de la Garza Phenomenon

Consider a polynomial regression model of degree d in a single non-stochastic quantitative
regressor x assuming values in a finite non-degenerate interval which is taken, without any
loss of generality, to be the interval [−1, 1]. That is,

Ξ = [−1, 1],−1 ≤ x ≤ 1 (1)

where at the value x = xi, we have a set of uncorrelated responses [yij , j = 1, 2, , ni], each
with the model expectation

E(yij) = f ′(xi)β (2)

where β represents the (d+1)×1 vector of unknown parameters and f ′(x) = (1, x, x2, ..., xd)
for each x in Ξ. The associated errors in the model are assumed to be independently and
identically distributed with mean 0 and constant variance σ2.

For estimating the model parameters, the optimum experimental design is obtained so
as to maximize some function of the information matrix. Typically, the optimal designs
are studied under approximate theory. In this context, de la Garza (1954) established that
for every s-point approximate design, s > d+ 1, given by

Ds = [(xi, ξi), i = 1, 2, ..., s;
∑
i

ξi = 1] (3)

there exists a (d+ 1)-point approximate design D∗d+1

D∗d+1 = [(x∗i , p
∗
i ), i = 1, 2, .., d+ 1;

∑
i

p∗i = 1]. (4)

which is based precisely on d+1 distinct support points with xmin ≤ x∗i ≤ xmax, such that
M(Ds) = M(D∗d+1), where M(Ds) =

∑
i
ξif(xi)f

′(xi) and M(D∗d+1) =
∑

i
p∗i f(x∗i )f ′(x∗i )

represent the moment/information matrices for Ds and D∗d+1 respectively. Thus de la Gar-
za Phenomenon applies to dth degree polynomial regression model in terms of Information
Equivalence of any s[> d + 1]-point supported continuous design with that of a suitably
chosen exactly (d + 1)-point supported continuous design! Of course, the nature of sup-
port points x∗ in D∗d+1 and the choice of the revised weight vector p∗ = (p∗1, p

∗
2, ..., p

∗
d+1)
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are both governed by the description of the original design Ds we start with. Moreover,
x∗-values are covered by the range of the original x-values.

Remark 2.1 In the context of a very general form of the model, an important result due
to Caratheodory ( Caratheodory’s theorem) provides useful guidance.[cf. Silvey (1980).]
According to Caratheodory’s theorem, any moment matrix based on an arbitrary conti-
nuous design with k distinct support points can be realized by an alternative design with
at the most p(p+ 1)/2 + 1 distinct support points where p is the number of parameters of
the model, whenever k > p(p+ 1)/2 + 1. However, it may be noted that such designs may
not be easy to actually construct. Anyway, for the polynomial model in one independent
variable, de la Garza provides much better result since it achieves the Information Equiva-
lence with fewer number of distinct design points. Afterwards, several workers contributed
in this area and extended it in different directions (see e.g., Yang (2010) for all related
references).

As it transpires, this equivalence of information matrices relates to continuous design
set-up. It is not clear, how far it holds in the exact design case, especially when the sample
size is small. For large N , a continuous design can well be approximated by an exact design.
In this paper, as mentioned earlier, we are concerned with the study of the true nature of
this equivalence in polynomial regression set-up and in the exact sense for small values of
N and provide a lower bound to the value of N for the information equivalence to hold.
This should serve as a guiding rule in practice when we deal with small overall sample
sizes N .

3 Exact Design : Analysis of Information Equiva-
lence

3.1 Case of Linear Regression

Consider a linear regression model:

y = α+ βx+ e (5)

with usual assumption on error. The problem is to estimate the unknown fixed
parameters α and β by a suitably chosen exact or discrete design. To examine
the full spirit of the de la Garza phenomenon in the discrete case, let us start
with a 3-point design D(1) : [−1, 0, 1] so that s = 3 > 2. According to de la
Garza Phenomenon, under continuous design theory, whatever the weights 0 <
w−1, w0, w+1 < 1;w−1 + w0 + w+1 = 1 assigned to the three points −1, 0,+1, we
can find one 2-point design, say [(a, p); (b, 1−p)] such that −1 ≤ a < b ≤ 1, 0 < p < 1
and we have ‘Information Equivalence’ between the two designs. Let us consider its
discrete version below. Given a point-symmetric 3-point design with a given total
number of observations N and its decomposition into n−, n0, n+ - being assigned to
−1, 0, 1 respectively, can we now find a 2-point design i.e., [(a, na); (b, nb)] satisfying

(i)− 1 ≤ a < b ≤ 1, (ii)na + nb = N

where na and nb both assume integer values, and attaining Information Equiva-
lence? The solution to this problem depends on the nature of the original design
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and also on the value of N. In the above, the design points are already specified
[viz., −1, 0, 1] and so it depends on the total number N of design points and also
its decomposition into three parts, viz., n−, n0, n+ we start with. We set

D1 : [(−1, n−); (0, n0); (1;n+);n− + n0 + n+ = N ], (6)

D2 : [(a, na); (b, nb);−1 ≤ a < b ≤ 1;na + nb = N ]. (7)

This suggests, for information equivalence,

ana + bnb = n+ − n− (8a)

a2na + b2nb = n+ + n−. (8b)

Set
u = na, v = nb, T1 = n+ − n−, T2 = n+ + n−. (9)

From (8a) and (8b), in terms of (9), we obtain

a = [T1/(u+ v)] + /−
√
v[(u+ v)T2 − T 2

1 ]/u(u+ v)2], (10a)

b = [T1/(u+ v)] + /−
√
u[(u+ v)T2 − T 2

1 ]/v(u+ v)2]. (10b)

It can be readily verified that (u + v)T2 > T 2
1 so that the above solutions to a

and b are real. Let us choose

a = [T1/(u+ v)] +
√
v[(u+ v)T2 − T 2

1 ]/u(u+ v)2] (11a)

b = [T1/(u+ v)]−
√
u[(u+ v)T2 − T 2

1 ]/v(u+ v)2]. (11b)

so that b < a. Note that T1 and T2 are both known. We will now sort out values
of u and v subject to u+ v = N so as to satisfy the requirement that

[−1 ≤ b < a ≤ 1]. (12)

It is to be noted that a and b given by (11a) and (11b) depend on u and v only
through u/v or v/u. It can be shown, after a little algebra, that the requirement
(12) is realized if and only if

[P0(1− P0) + 4(P+(P−)]/[2(P−) + P0]2 ≤ u/v

≤ [2(P+) + P0]2/[P0(1− P0) + 4(P+)(P−)] (13)

holds, where
n−/N = P−, n0/N = P0, n+/N = P+. (14)

Let us write

L = [P0(1− P0) + 4(P+)(P−)]/[P0(1− P0) + 4(P+)(P−) + [2(P−) + P0]2], (15a)
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U = [2(P+) + P0]2/[P0(1− P0) + 4(P+)(P−) + [2(P+) + P0]2]. (15b)

Then (13) can be equivalently expressed as

NL ≤ na ≤ NU. (16)

Thus for a given set of frequencies n−, n0, n+ with n−+n0+n+ = N , it is possible
to find a two-point exact design achieving the same information matrix as that of the
original three-point design, provided an integer na satisfying (16) exists. This shows
that, for a given N , it is not always possible to have the information equivalence by
a two-point design unless (16) includes at least one integer. A sufficient condition
for this to happen is, of course, that the length of the interval viz. N(U − L) ≥ 1.
Even otherwise, a choice of na could be ensured.

Below we examine different specific situations involving the original 3-point de-
sign.

(1) P0 = P+ = P− = 1/3. This design is point and mass symmetric. Here we find
L = 2/5 and U = 3/5. So, for N = 3, NL = 6/5 and NU = 9/5, which do not
include any integer. So 3-point design with point and mass symmetry cannot be
replaced by a 2-point design whenever N = 3.

However, for N = 6, we have NL = 12/5, NU = 18/5 and these include the
integer 3. So there is a solution with support points at −(2/3), (2/3), each with
3 observations, as was mentioned before. For N = 9, we have NL = 18/5 and
NU = 27/5. These include 2 integers viz. 4 and 5. So we have two solutions :
[(−5/30, 4); (4/30, 5)] and [(−4/30, 5); (5/30, 4)].

(2) P0 = 2/7, P+ = 4/7, P− = 1/7 i.e., the initial exact design has size which is
a multiple of 7, say N = 7k. This design is point-symmetric but mass-asymmetric
and explicitly it is : [(−1, k); (0, 2k); (+1, 4k)] where k is an integer. From (15a) -
(15b), we observe that both L and U are independent of k and are given by :L =
13/21, U = 50/63. Let us consider different values of k and identify corresponding
solutions for the 2-point designs:

(a) k = 1 : N = 7;NL = 13/3 < NU = 50/9

so that we have one solution viz.

na = 5, a = 3/7 +
√

(1040)/70;

nb = 2, b = 3/7− 5
√

(1040)/140

and the corresponding design is

[(3/7− 5
√

(1040)/140, 2); (3/7 +
√

(1040)/70, 5)].

(b) k = 2 : N = 14;NL = 26/3 < NU = 100/9.

Here we have 3 solutions given by :

na = 9, a = 3/7 +
√

(520)/42;nb = 5, b = 3/7− 3
√

(2080)/140;
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na = 10, a = 3/7 +
√

(1040)/70;nb = 4, b = 3/7−
√

(260)/14;

na = 11, a = 3/7 +
√

(3432)/154;nb = 3, b = 3/7−
√

(3432)/42.

The corresponding designs are given by

[(3/7− 3
√

(2080)/140, 5); (3/7 +
√

(520)/42, 9)];

[(3/7−
√

(260)/14, 4); (3/7 +
√

(1040)/70, 10)];

[(3/7−
√

(3432)/42, 3); (3/7 +
√

(3432)/154, 11)].

(3) P0 = 3/5, P+ = P− = 1/5. The corresponding design is again point and mass-
symmetric and the initial exact design has size multiple of 5, say N = 5k. Explicitly
it is : [(−1, k); (0, 3k); (1, k)] where k is an integer. From (15a) and (15b) we have
L = 2/7, U = 5/7 which are independent of k. Then for k = 1, we get N = 5, 10/7 ≤
na ≤ 25/7 so that we have the following solutions:

(i) a = 3/
√

(15), b = −2/
√

(15); (na, nb) = (2, 3)

(ii) a = 2/
√

(15), b = −3/
√

(15); (na, nb) = (3, 2).

Again, for k = 2, N = 10, 20/7 ≤ na ≤ 50/7 so that the admissible values of na
are na = 3, 4, 5, 6, 7. Thus we have the following solutions:

(i) a = 6/
√

(210), b = −14/
√

(210); (na, nb) = (7, 3);

(ii) a = 14/
√

(210), b = −6/
√

(210); (na, nb) = (3, 7);

(iii) a = 4/
√

(60), b = −6/
√

(60); (na, nb) = (6, 4);

(iv) a = 6/
√

(60), b = −4/
√

(60); (na, nb) = (4, 6);

(v) a = 2/
√

(10), b = −2/
√

(10); (na, nb) = (5, 5).

We have a few more examples in the point symmetric case which can be proved
in a similar way:

(i) D[(−1, 1); (0, 2); (1, 1)] = D[(−1/(2), 2); ((1/(2), 2)]

(ii) D[(−1, 4); (0, 2); (1, 2)] = D[(−1/4−
√

(165)/20; 5); (−1/4 +
√

(165)/12, 3].

However, for [(−1, 2); (0, 1); (1, 1)], it is not possible to find a two-point exact
design satisfying the sufficient condition N(U − L) ≥ 1.

Remark 3.1.. Since the condition N(U − L) ≥ 1 is only sufficient, there is scope
for having an exact design which attains the information equivalence but does not
satisfy the condition. We may expand further on this matter. Writing P− = x, P0 =
y, P+ = z so that x+ y + z = 1, we see that

U =
(y + 2z)2

y + 4z
;L =

(y + 4z)− (y + 2z)2

y + 4x
.
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The expression for U − L can be simplified to

U − L =
y[2y(1− y) + y + 8xz]

(y + 4z)(y + 4x)
.

In the particular case of x = z = (1− y)/2, U −L simplifies to y/(2− y). Therefore,
N(U − L) < 1 iff y < 2/(N + 1), i.e., Ny < 2N/(N + 1). This forces Ny = 1
and hence N to be necessarily an odd integer, say N = 2k + 1. In that case, we
deduce NU = k+ 3k+1

4k+1 and NL = k+ k
4k+1 . Hence, there is no integer in this range

whenever N(U − L) < 1, in case P− = P+.

We now pass on to point asymmetric designs with three distinct points and
examine possibility of information equivalence.

Let us consider an example of a 3-point asymmetric design with N = 3 :
[(−1, 1); (a, 1); (1, 1)] with a 6= 0 and without loss of generality, we take a > 0.
Let us examine whether it is possible to have information equivalence of this design
by a two-point design. Consider an arbitrary two-point design [(u, 2); (v, 1)] with
−1 ≤ v < u ≤ 1. Equating the elements of the information matrices of the two
designs we get :

a = 2u+ v, 2 + a2 = 2u2 + v2.

This yields : u = a/3 − (2/3)
√

(a2 + 3), or, u = a/3 + (2/3)
√

(a2 + 3) and

for 0 < a < 1, it turns out that a/3 − (2/3)
√

(a2 + 3) < −1 and 1 < a/3 +

(2/3)
√

(a2 + 3). Hence, in this case, we fail to attain information equivalence by
a two-point discrete design ! For N = 6, naturally, equal allocation of 2 at each
of the 3 points: [−1, a, 1](a 6= 0) will yield the same negative result when we opt
for [(u, 4); (v, 2)]. It follows that [(u, 5); (v, 1)] also fails to yield any affirmative
result. We next try out equal allocation two-point design [(u, 3); (v, 3)]. For identical
information matrices of the two designs we require 2a = 3(u + v) and 4 + 2a2 =
3(u2 + v2) which yield a/3− (1/3)

√
(6 + 2a2) = u < v = a/3 + (1/3)

√
(6 + 2a2).

Note that for a = 0, we have the point symmetric design and then the solution
is : −

√
(2/3) = u < v =

√
(2/3) which has already been discussed. If a > 0, the

condition −1 < u < 1 leads to 0 < a < 2
√

3− 3.

It thus transpires that not all values of N are amenable to supporting the equi-
valence theorem of the information matrix. We need a minimum value and only
then it works!

3.2 Case of Quadratic Regression

Consider a symmetric n-point design Dn : [−1 ≤ x1 < x2 < ... < xn ≤ 1, each
x-value used only once so that N = n. Can we replace Dn by a suitably defined and
Information-Equivalent 3-point design, say D∗

3 : [(x, f); (y, n − 2f), (z, f)], where
−1 ≤ x < y < z ≤ 1 ? Towards the solution, we have the following :

Theorem 3.1: In a quadratic regression model with the usual model assumptions,
for every exact symmetric regression design D2k having support points [−1 ≤ −ak <
−ak−1 < ,< −a2 < −a1 < 0 < a1 < a2 < < ak−1 < ak ≤ 1], each occurring
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once, with k ≥ 2, and N = 2k, there exists an exact symmetric 3-point regression
design D∗

3 = [(−x∗, f); (0, N − 2f); (x∗, f)], satisfying I(θ;D2k) = I(θ;D∗
3), where

x∗ =

√∑
i
a4
i∑

i
a2
i

, 0 < x∗ < ak and f =
[
∑

i
a2i ]

2∑
i
a4
i

provided [
∑
i a

2
i ]

2 is an integer multiple

of
∑
i a

4
i .

Proof : Consider a 3-point exact mass-symmetric regression design D3 = [(x, f);
(y,N − 2f); (z, f)] where −1 ≤ x < y|z ≤ 1. Equating the first and the third
moments of the designs D2k and D3, we derive

f(x+ z) + (N − 2f)y = 0, f(x3 + z3) + (N − 2f)y3 = 0.

After some algebraic manipulation, this leads to

(N − 2f)y[y2
(N − 2f)2

f2
− 1− 3xz] = 0.

Now, to have a 3-point design, (N − 2f) must be greater than zero, i.e. we must

have f < k. Hence, either y = 0 or 3xz = 1+y2 (N−2f)2

f2 . However, the latter implies

(x − z)2 = −N(N − 2f)y2/f2 < 0, which is impossible. Hence, for the above to
hold, we must have that y = 0. For y = 0, it is easy to check that x = −z. Now,
equating the second and fourth moments of the two designs, we derive

z = x∗ =

√∑
i a

4
i∑

i a
2
i

; f =
[
∑
i a

2
i ]

2∑
i a

4
i

.

Clearly, 0 < x∗ < ak. Further, for f to be an integer we must have that [
∑
i a

2
i ]

2

is an integer multiple of
∑
i a

4
i . The design, so arrived at, is now identified as D∗

3 as
described in the statement of the Theorem 3.1.

A generalization to the case where the design D2k is point symmetric, but not
necessarily mass symmetric, results in the following theorem.

Theorem 3.2: In a quadratic regression model with the usual model assumptions,
for every discrete, point-and mass-symmetric regression design

D2k = [−1 ≤ ak < −ak−1 < ... < −a2 < −a1 < 0;

0 < a1 < a2 < ... < ak−1 < ak;

nk, nk−1, ..., n2, n1, n1, n2, ..., nk−1, nk],

with k ≥ 2, there exists an exact point and mass symmetric 3-point regression
design

D∗
3 = [(−x∗, f∗); (0, N − 2f∗); (x∗, f∗)],
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satisfying I(θ;D2k) = I(θ;D∗
3), where x∗ =

√∑
i
nia4i∑

i
nia2i

, 0 < x∗ < ak, provided

f∗ =
(
∑

i
nia

2
i )

2∑
i
nia4i

is an integer.

Proof : Consider a 3-point exact regression design D3 = [(x, fx); (y, fy); (z, fz)]
satisfying −1 ≤ x < y < z ≤ 1; fx + fy + fz = N =

∑
ni.

In order that the designs D3 and D2k be information equivalent we must have

fx + fy + fz = N

xfx + yfy + zfz = 0

x2fx + y2fy + z2fz = 2
∑
i

nia
2
i

x3fx + y3fy + z3fz = 0

x4fx + y4fy + z4fz = 2
∑
i

nia
4
i .

Putting y = 0 and solving the above equations, we get x = −z, fx = fz and

z = x∗ =

√∑
i nia

4
i∑

i nia
2
i

; fz = f∗ =
(
∑
i nia

2
i )

2∑
i nia

4
i

.

Clearly, 0 < x∗ < ak. Hence the theorem.

Remark 3.2: For a (2k + 1)-point discrete, symmetric design of the form

D(2k + 1) = [−1 ≤ −ak < −ak−1 < ... < −a2 < −a1 < 0;

0 < a1 < a2 < ... < ak−1 < ak;

nk, nk−1, ..., n2, n1, n0, n1, n2, ..., nk−1, nk]

an information equivalent 3-point discrete, symmetric regression design will be same
as that obtained in Theorem 3.2, except that the mass at zero will increase by n0 .

Examples.

(i) D6 : [(−1, 1); (−2/3, 1); (−1/3, 1); (1/3, 1); (2/3, 1); (1, 1)] is equivalent to the
3-point symmetric design D∗

3 : [(
√

(7)/3, 2); (0, 2); (
√

(7)/3; 2)],

(ii) D4 : [(−1, 1); (−1/2, 2); (1/2, 2); (1, 1)] is equivalent to the 3-point symmetric
design given by D∗

3 : [(−
√

3/2, 2); (0, 2); (
√

(3)/2; 2)].
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4 Exact Design: Loewner Order Dominance

In Section 3, we studied the existence of information-equivalent exact designs in
the light of the de la Garza phenomenon. It is noted that, though de la Garza
phenomenon holds in the continuous design set-up, it is not generally true in the
discrete or exact design set-up. A similar question also arises involving domination
of one information matrix by another in Loewner Order sense. Thus, in a linear
regression set-up, we may ask : Given an exact design with three or more support
points inside the closed interval [−1, 1], is it possible to have a 2-point exact design
whose information matrix dominates that of the given design in the Loewner Order
Domination [LOD] sense? A similar question may also be asked in the context
of quadratic regression model. Note that LOD refers to the difference of the two
matrices being an nnd matrix. Once LOD holds, the dominating design outperforms
the dominated design in the best sense and in respect of any sensible criterion of
bestness. However, it is generally hard to achieve, if not impossible. We examine
the domination aspect in this section.

4.1 Linear Regression

Let us first consider some specific cases involving the 3-point designs considered in
Section 3.

(i) D3 : [(−1, n−); (0, n0); (1, n+)], where n0 is even. Let us define a 2-point
design D∗

2 = [(−1, N−); (1, N+), where N+ = n+ +n0/2, N− = n− +n0/2. It is easy
to see that D∗

2 dominates D3 in the Loewner Order sense. The domination holds
even if we replace the support points +1,−1 in D3 by a,−a, where a < 1. However,
when n0 is odd, it is difficult to find a 2-point design dominating D3.

(ii) In the point and mass symmetric case with [(−1, 2); (0, 2); (1, 2)], the infor-
mation-equivalent 2-point symmetric design replicates each of the points −

√
2/3,

+
√

2/3 thrice. We can have Loewner Order Domination by stretching these two
points further to −1,+1, each replicated thrice. This also holds true for other point
and mass symmetric cases. Now, let us consider any arbitrary n-point point- and
mass-symmetric design Dn with total frequency N (even). The first two moments
of the design are µ

′

1 = 0;µ
′

2 > 0. In order that a two point symmetric design
D∗

2 = [(−b,N/2); (b,N/2] dominates Dn in the Loewner Order sense, we require
that the second order moment of D∗

2 is greater than µ
′

2, which gives µ
′

2 < b2. Also,
we must have b2 < 1. This result can be formalized in the following theorem:

Theorem 4.1: Given any arbitrary n-point point- and mass-symmetric design Dn

defined in the closed interval [−1, 1], with total frequency N (even) observations
and second order moment µ

′

2 , there exists a 2-point symmetric design D∗
2 =

[(−b,N/2); (b,N/2)] that dominates Dn in the Loewner Order sense whenever µ
′

2 <
b2 < 1. However for N odd, it is not possible to find a discrete 2-point symmetric
design having Loewner Order domination over Dn.
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Examples

(i) Consider D3 = [(−1, 1); (0, 2); (1, 1)]. Here N = 4 and µ
′

2 = 1/2. Then, in
order that the design D∗

2 = [(−b, 2); (b, 2)] dominates D3 in the Loewner Order
sense we must have 1/2 < b2 ≤ 1.

(ii) Consider D4 = [(−0.75, 1); (−0.25, 2); (0.25, 2); (0.75, 1)]. Here N = 6 and
µ

′

2 = 11/48. Then, the design D∗
2 = [(−b, 3); (b, 3)] dominates D4 in the Loewner

Order sense whenever 11/48 < b2 ≤ 1.

4.2 Quadratic Regression

In the case of quadratic regression, we wish to examine whether there exists a 3-
point design that dominates a given n-point design (n > 3) in the Loewner Order
Domination sense. Let us consider an n-point point- and mass-symmetric design
Dn, with total frequency N and second and fourth order moments given by µ

′

2

and µ
′

4, respectively. Let us further consider a 3-point symmetric design D∗
3 =

[(−b, f); (0, N − 2f) : (b, f)] with b < 1. The second and fourth order moments of
D∗

3 are µ∗
2 = 2b2f/N, µ∗

4 = 2b4f/N . In order that D∗
3 dominates Dn in the Loewner

Order sense, we must have [Vide Pukelsheim (1993, 2006)] µ∗
2 = µ2 and µ∗

4 > µ4,
which reduces to

(i)f = Nµ
′

2/2b
2,

which should be an integer,

(ii)µ
′

4/µ
′

2 < b2 < 1.

Further, we must have f < N/2, which is satisfied for b2 > µ
′

4/µ
′

2. From (i)
and (ii), we have that Nµ

′

2/2 ≤ f < N(µ
′

2)2/2µ
′

4) which is possible only when the

stated interval contains at least one integer which gives f, and, then b =

√
Nµ

′
2

2f .

The above may be summarized as follows:

Theorem 4.2: Given an arbitrary n-point point- and mass-symmetric design Dn,
n > 3, with total frequency N and second and fourth moments given by µ

′

2 and µ
′

4 re-
spectively, a sufficient condition for a 3-point symmetric design D∗

3 = [(−b, f); (0, N−
2f) : (b, f)] to dominate Dn in the Loewner Order sense is that the interval [Nµ

′

2/2,
N(µ

′

2)2/2µ
′

4)) contains at least one integer.

As an example, let us consider a 4-point symmetric design
D4 = [(−a, 1); (−c, 1); (c, 1); (a, 1)] and a 3-point design
D∗

3 = [(−b, 1); (0, 2); (b, 1)] to dominate D4. Here we have f = 1. Hence, for D∗
3 to

dominate D4 in Loewner Order sense, we must have that the interval [(a2+c2), (a2+
c2)2/(a4 + c4)) contains the integer 1, which is true provided a2 + c2 < 1. Thus,
if a = 0.4 and c = 0.3, so that a2 + c2 = 0.25, the design [(−0.5, 1); (0, 2); (0.51)]
dominates D4.

Now suppose D4 = [(−a, 1), (−c, 2); (c, 2); (a, 1)], 0 < c < a ≤ 1 and D∗
3 =

[(−b, f); (0, 6− 2f); (b, f)]. Then, by the theorem, D∗
3 dominates D4 if the interval

[(a2 + 2c2), (a2 + 2c2)2/(a4 + 2c4)) contains an integer.
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For a = 1, c = 0.5, the stated interval is [1.5, 2), which does not contain an
integer. Hence, there does not exist any 3-point design that dominates the design
[(−1, 1); (−0.5, 2); (0.5, 1); (1, 1) in the Loewner Order sense. However, in this case,
by taking f = 2 and b =

√
(3/4), we get an information-equivalent 3-point design.

If a = 0.5, c = 0.25, then the stated interval is [3/8, 2), which contains the
integer 1. Hence, f = 1 and b =

√
(3/8). Thus, the 3-point symmetric design

[(−
√

(3/8), 1); (0, 4); (
√

(3/8), 1)] possesses Loewner Order domination over the 4-
point symmetric design [(−0.5, 1); (−0.25, 2); 0.25, 2); (0.5, 1)]. For a = 1/25, c =
1/32, the stated interval is [0.0036, 2.8260). This time we have two choices : f =
1, b = 0.0596 and f = 2, b = 0.0421. Thus, both the designs [(−0.0596, 1); (0, 4);
(0.0596, 1)] and [(−0.0421, 2), (0, 2); (0.0421; 2)] dominate the design [(−1/25, 1);
(−1/32, 2); (1/32, 2); (1/25, 1)] in Loewner Order dominantion sense.

5 Concluding Observations

Some of the relevant references on characterization of optimal continuous designs for
inference on parameters of a very popular model viz., logistic linear regression model
[LLRM] include Abdelbasit and Plackett (1983), Minkin (1987), Khan and Yazdi
(1988), Wu (1988), Ford et. al. (1992), Sitter and Wu (1993), Hedayat et.al. (1997),
Mathew and Sinha (2001), and Stufken and Yang (2009). In particular, Mathew and
Sinha (2001) provided a unified approach for the derivation of D- and A-optimal
designs for the model parameters and functions thereof. However, for such non-
linear models, exact design theory is not applicable. With reference to exact design
framework, the so-called optimal design for estimation of ’ED50’ in LLRM turns
out to provide biased and inconsistent results. Vide Guiard and Pichlmeier (1999).
Again, with reference to logistic quadratic regression model [LQRM], a study by
Fornius and Nyquist (2010) hinted on a 1-point optimal design. Follow-up studies
by Nandy and Nandy (2013a, 2011, 2013b) suggested that the 1-point design, in
the exact sense, produces biased and inconsistent estimator of the parameter under
question. The latter authors suggested a 3-point design to produce asymptotically
unbiased and consistent estimator of the model parameter with high efficiency. The
study of exact designs in such non-linear model settings seems to be difficult. At
this stage, we need further research in the context of polynomial regression models,
involving exact designs, to check the validity of de la Garza Phenomenon.
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