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Abstract

The purpose of this paper is to develop the results on additive BIB designs
by Colbourn and Rosa (1999) and Matsubara et al. (2006) and Sawa et al.
(2007). Additive Steiner triple systems (STS) of order 3n, which include addi-
tive STS(9) constructed by Colbourn and Rosa (1999), are presented in relation
to affine geometry AG(n, 3). The concept of additivity is generalized for BIB
designs with the number of points not divisible by their blocksize. The merit
of additive BIB designs is also discussed. First, it is shown that for any odd
integer s, a B(s2k, sk, λ(sk − 1)/(k − 1)) can be constructed from additive
B(sk, k, λ). Applying this result to additive STS(32m−1) mentioned above yields
a B(32m−1, 3m, (3m − 1)/2) nonisomorphic to those constructed through affine
groups. Secondly, a close relationship between multiply nested BIB designs and
additive BIB designs is shown. As a by-product two infinite families of multiply
nested BIB designs are constructed.
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1 Introduction

A balanced incomplete block (BIB) design is a system with v points
and b blocks each containing k different points, each point appearing
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in r different blocks and any two distinct points appearing in exactly
λ different blocks (for example, see Colbourn and Dinitz (2007)). This
is denoted by B(v, b, r, k, λ), or shortly by B(v, k, λ) if there is no need
to express the values of b and r. The incidence matrix N = (nij)
of a BIB design is a v × b matrix such that nij = 1 or 0 for all i, j,
according as the ith point occurs in the jth block or otherwise. Thus
the incidence matrix N satisfies the following conditions.

1.
∑b

j=1 nij = r for all i = 1, . . . , v.

2.
∑v

i=1 nij = k for all j = 1, . . . , b.

3.
∑b

j=1 nijni′j = λ for all i, i′ = 1, . . . , v, i 6= i′.

Necessary conditions for the existence of a B(v, k, λ) are that

(a) λ(v − 1) ≡ 0 (mod k − 1),

(b) λv(v − 1) ≡ 0 (mod k(k − 1)).

It is known (see Wilson (1975)) that for given k and λ, the above two
conditions are also sufficient for sufficiently large v.

A BIB design with v points is called a Steiner triple system of order
v (STS(v)) if k = 3 and λ = 1. It is well known that an STS(v) exists
if and only if v ≡ 1, 3 (mod 6); for example, see Colbourn and Dinitz
(2007). Consider an STS(v) with a set of points V and a set of blocks
B = {Bj | j = 1, . . . , b}, where b = v(v−1)/6 is the number of triples.
A BIB design with points V and blocks C = {Cj | j = 1, . . . , b}, of size
k, is called a (k, λ; 3, 1)-nesting of (V,B) if Bj ⊆ Cj for j = 1, . . . , b.
By using (a) and (b), it is easy to see that a (k, λ; 3, 1)-nesting exists
only if λ = k(k − 1)/6 and k ≡ 0, 1 (mod 3).

The simplest nontrivial case arises when k = 4, that is, a (4, 2; 3, 1)-
nesting of an STS. A (4, 2; 3, 1)-nesting is closely related to a block
colouring (see Colbourn and Rosa (1999)), and is also useful to con-
struct optimal optical orthogonal codes of weight 4, as revealed in Yin
(1998). The next small block size to be considered is k = 6. Let

Di = (V,Bi), i = 1, 2, be STS(v) with Bi = {B
(i)
j | j = 1, . . . , b}.

Then D1 and D2 are said to be compatible if D{1,2} is a (6, 5; 3, 1)-

nesting of Di, where D{1,2} = (V,B{1,2}) with B{1,2} = {B
(1)
j ∪ B

(2)
j |

j = 1, . . . , b}. A merit of compatible STS(v) is to yield a nested
B(v; v(v − 1)/6, v(v − 1)/3; 6, 3). In Section 5 more results about
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nested BIB designs will be mentioned in relation to the notion of
compatibility of designs.

The concept of compatibility for two STS is naturally extended to
that for more than two STS.

Definition 1.1 (Colbourn and Rosa (1999)) Let v, ℓ be positive inte-
gers such that v ≡ 3 (mod 6) and 2 ≤ ℓ ≤ v/3. A set of ℓ STS(v),
say {Di | i = 1, . . . , ℓ}, is said to be ℓ pairwise compatible if there is
an ordering of triples of each STS satisfying the following condition:

(i) for distinct i, i′ = 1, . . . , ℓ, D{i,i′} is a (6, 5; 3, 1)-nesting of Di

and Di′.

In particular, this set is called a compatible minimal partition for v if
ℓ = v/3.

Definition 1.2 (Colbourn and Rosa (1999)) Let v, ℓ be positive in-
tegers such that v ≡ 1 (mod 6) and 2 ≤ ℓ ≤ (v − 1)/3. A set of ℓ
STS(v), say {Di | i = 1, . . . , ℓ}, is said to be ℓ pairwise compatible if
there is an ordering of triples of each STS satisfying the condition (i)
given in Definition 1.1. This is called a compatibly nested minimal
partition for v if ℓ = (v − 1)/3.

When v is divisible by k, the concept of compatibility for STS has
been extended to that for BIB designs in general; see Matsubara et
al. (2006), Sawa et al. (2007). Let (V,B) be a B(v, b, r, k, λ) with
B = {Bj | j = 1, . . . , b}. Then a B(v, b, r′, k′, λ′), say (V, C), with
C = {Cj | j = 1, . . . , b} is called a (k′, λ′; k, λ)-nesting of (V,B) if
Bj ⊆ Cj for j = 1, . . . , b. For two BIB designs, say Di, i = 1, 2, with
the same parameters, D1 and D2 are said to be compatible if D{1,2} is
a (2k, λ′; k, λ)-nesting of Di.

Definition 1.3 (Matsubara et al.(2006), Sawa et al. (2007)) Let
k, ℓ, s be positive integers with 2 ≤ ℓ ≤ s. A set of ℓ B(sk, k, λ),
say {Di | i = 1, . . . , ℓ}, is said to be ℓ pairwise additive if there is an
ordering of blocks of each BIB design satisfying the following condi-
tion:

(i) for distinct i, i′ = 1, . . . , ℓ, D{i,i′} is a (2k, λ′; k, λ)-nesting of Di

and Di′.

In particular, such designs are said to be additive if ℓ = s, that is,
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(ii) for any j = 1, . . . , b, it holds that
⋃s

i=1 B
(i)
j = V .

In Definition 1.3, it was noted (see Sawa et al. (2007)) that for ℓ
pairwise additive B(sk, k, λ),

λ ≥

{

(k − 1)/2 if k is an odd integer,
k − 1 otherwise,

(1)

which implies that the class of BIB designs with pairwise additivity
and coincidence number 1 yields the STS or the unreduced designs.
The introductory results on the additive BIB designs appeared in Mat-
subara et al.(2006). Since then, such BIB designs were largely inves-
tigated in Sawa et al. (2007) where the following important theorem
for design theory was proved.

Theorem 1.4 (Sawa et al. (2007)) Let s be an odd prime power.
Assume that there exist additive B(sk, sr, r, k, λ). Then, (i) there exist
additive BIB designs with parameters v∗ = s2k, k∗ = sk, λ∗ = r,
and (ii) for any positive integer t ≤ s, there exists a BIB design with
parameters vt = s2k, kt = stk, λt = t[(s+1)r−sλ](stk−1)/(s2k−1).

By use of Theorem 1.4, infinitely many BIB designs, whose exis-
tence was in doubt in literature, are constructed in [8]. Also, observe
that for given v and k, if λ = (k − 1)/2 and t ∈ {1, 2}, designs
constructed from Theorem 1.4 (ii) are minimal possible.

The purpose of this paper is to develop the results on additive
BIB designs appearing in Colbourn and Rosa (1999), Matsubara et
al. (2006) and Sawa et al. (2007). In Section 2, it will be proved that
for any positive integer n, there exists a compatible minimal partition
for v = 3n. As far as the authors know, this is the first infinite family
of compatible minimal partitions, which includes a compatible mini-
mal partition for STS(9) constructed in Colbourn and Rosa (1999). In
Section 3, Theorem 1.4 (i) will be improved so as to be applicable for
any odd integer s. Applying this result to a compatible minimal par-
tition for 32m−1 mentioned above gives a B(32m−1, 3m, (3m−1)/2) non-
isomorphic to those constructed through affine groups, and then this
construction is different from a classical method using finite groups.
In Section 4, the concept of compatibly nested minimal partitions for
STS will be extended to that for additive BIB designs in general. Two
infinite families of additive designs are presented. On the other hand,
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it is expected that results obtained in Colbourn and Rosa (1999),
Matsubara et al. (2006) and Sawa et al. (2007) might hold without
the restriction that v is not divisible by k. Particularly in Section 5,
a result which mentions a relationship between nested BIB designs
and additive BIB designs (see [Sawa et al. (2007), Theorem 2.3]) will
be generalized for v not divisible by k. As a by-product, two infinite
families of nested BIB designs are constructed.

2 Compatible minimal partitions

Let V be an n-dimensional vector space over Fq. Each vector of V is
regarded as a point of AG(n, q). A t-dimensional subspace or its coset
in Fqn is called a t-flat of AG(n, q). In particular 0-flats, 1-flats, 2-
flats and (n−1)-flats are called points, lines, planes and hyperplanes,
respectively. For a primitive element α of Fqn each nonzero point in
AG(n, q) is represented by αj. Let d = (qn − 1)/(q − 1). Then B0 =
{0}∪{αid | i = 0, . . . , q−2} is a line of AG(n, q). Given a, b ∈ Fqn with
a 6= 0, consider a mapping Ta,b : V → V defined by Ta,b(x) = ax + b.
It is well known that the group of all such transformations, denoted
by G = AGL(1, qn), acts sharply doubly-transitively on Fqn, and then
for any k-subset H of Fqn, (V, HG) forms a B(qn, k, k(k − 1)), where
HG denotes the image of H under G. If we take H to be B0, the
stabilizer K of B0 is isomorphic to AGL(1, q) since B0 is a subfield
of Fqn. Hence, (V, OrbG(B0)) is a B(qn, q, 1), the well-known design
derived from the set of lines of AG(n, q), where OrbG(B0) denotes the
G-orbit of B0. Choose a plane π0 and a line ℓ0 both through the origin
such that π0 = B0 ⊕ ℓ0, and let B̄0 = π0\B0. Then, observing that B̄0

is fixed by K, we have the following.

Lemma 2.1 The design (V, OrbG(B̄0)) is a B(qn, q(q−1), q2−q−1).

By virtue of Lemma 2.1, the following result is obtained.

Theorem 2.2 There exists a compatible minimal partition for v =
3n.

Proof. Let H0 be a hyperplane of AG(n, 3) through the origin such
that V = H0 ⊕B0. For any x, y ∈ H0 with x 6= y, let B = (B0 + x) ∪
(B0 + y) and ℓ0 be a line passing through x, y. Then (B0 ⊕ ℓ0)\B can
be written as a translate of B0, that is, (B0 ⊕ ℓ0)\B = B0 + (2x− y).



78 Masanori Sawa et al. [Vol.6, Nos.1 & 2

Thus, by Lemma 2.1, {(V, OrbG(B0+x)) | x ∈ H0} forms a compatible
minimal partition for v = 3n. �

Example 2.3 Let α be a primitive element of F33 such that α3+2α+
1 = 0. Then B0 = {∞, α0, α13} is a line passing through the origin.
Each point αj is abbreviated by its exponent j, and the notation ∞
means the origin. Here a set of lines parallel to B0 is considered as
follows:

L0 = {∞, 0, 13}, L1 = {1, 9, 3}, L2 = {14, 16, 22},
L3 = {4, 18, 7}, L4 = {17, 20, 5}, L5 = {2, 21, 12},
L6 = {15, 25, 8}, L7 = {10, 6, 11}, L8 = {23, 24, 19}.

A compatible minimal partition for v = 27 is obtained by developing
the base blocks in Table 1 by modulo 13.

Table 1: A compatible minimal partition for v = 27
Designs Base blocks
(F27,B1) L0 L1 L2 L3 L4 L5 L6 L7 L8

(F27,B2) L1 L2 L0 L5 L8 L7 L4 L3 L6

(F27,B3) L2 L0 L1 L7 L6 L3 L8 L5 L4

(F27,B4) L3 L5 L7 L4 L0 L8 L2 L6 L1

(F27,B5) L4 L8 L6 L0 L3 L1 L7 L2 L5

(F27,B6) L5 L7 L3 L8 L1 L6 L0 L4 L2

(F27,B7) L6 L4 L8 L2 L7 L0 L5 L1 L3

(F27,B8) L7 L3 L5 L6 L2 L4 L1 L8 L0

(F27,B9) L8 L6 L4 L1 L5 L2 L3 L0 L7

The following theorem was proved in [Sawa et al. (2007), Lemma
2.1] under the restriction that v is divisible by k. For further dis-
cussion, its proof is given here; in fact the result follows without the
above restriction.

Theorem 2.4 ([Sawa et al. (2007)]) Let v, k, ℓ, s be positive integers
with v = sk and 2 ≤ ℓ ≤ s. Assume that there exist ℓ pairwise
additive B(v, k, λ), say (V,Bi), i = 1, . . . , ℓ. Then, for any p-subset
R ⊆ {1, . . . , ℓ}, (V,BR) forms a B(v, pk, Λp), where

Λp =
λp(pk − 1)

k − 1
. (2)
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Proof. Let R be a p-subset of {1, . . . , ℓ}. For each h ∈ R, let Nh be
the incidence matrix of a BIB design in ℓ pairwise additive B(v, k, λ).
Since

(

∑

h∈R

Nh

)(

∑

h∈R

Nh

)T

=
∑

i,j∈R,
i<j

(

∑

h=i,j

Nh

)(

∑

h=i,j

Nh

)T

− (p − 2)
∑

h∈R

NhN
T
h

=
∑

i,j∈R,
i<j

(

(2r − λ′)I + λ′
J

)

− (p − 2)
∑

h∈R

(

(r − λ)I + λJ

)

,

where λ′ is the coincidence number of a nesting of (V,Bi), I or J
is respectively the identity matrix or the all-one matrix of order v,
∑

h∈R Nh is the incidence matrix of a BIB design. The coefficient of
the matrix J contributes the coincidence number of the design. By
(i) in Definition 1.3, we have

λ′ =
2λ(2k − 1)

k − 1
, (3)

and thus
(

∑

i,j∈R,
i<j

2λ(2k − 1)

k − 1
− (p − 2)

∑

h∈R

λ

)

J =
λp(pk − 1)

k − 1
J ,

which completes the proof.

Corollary 2.5 There exists a (3s, s(3s−1)/2; 3, 1)-nesting for all s =
2, . . . , 3n.

Proof. The result follows from Theorems 2.2 and 2.4.

It was shown (see [Sawa et al. (2007)]) that additive B(q2, q, (q −
1)/2) exist for any odd prime power. When q = 3, such designs form a
compatible minimal partition for v = 9 which is seen to be equivalent
to that constructed in [Colbourn and Rosa (1999)]. In Theorem 2.2,
another generalization is given for values of n. It remains unsolved
whether or not there exist additive B(qn, q, (q − 1)/2) for a positive
integer n > 2 and an odd prime power q > 3.
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3 A construction of BIB designs through

pairwise additivity

A construction of BIB designs is presented here by using additive BIB
designs.

The pairwise additivity can also be described in terms of matri-
ces, that is, ℓ pairwise additive B(v = sk, b, r, k, λ) are regarded as ℓ
incidence matrices N i, i = 1, . . . , ℓ, such that

(i’) for distinct i, i′ = 1, . . . , ℓ, N i + N i′ is the incidence matrix of
a B(sk, 2k, λ′).

In particular, the additivity requires that

(ii’)
∑s

i=1 N i = J ,

where J is of size v× b. Using such matrix-expression of additive BIB
designs enables us to develop a construction of BIB designs.

Construction 3.1 Let s be an odd integer, say s = 2m + 1, and for
a positive integer ℓ ≥ (s + 1)/2, assume that there exist ℓ pairwise
additive B(sk, sr, r, k, λ). Denote by N i, i = 1, . . . , ℓ, the ℓ incidence
matrices of the designs. Moreover, let C = (cij) be a circulant matrix
of order s defined by

cij =

{

1 if j = i + 1,
0 otherwise

and a matrix A = (aij) be

A =

m+1
∑

ℓ=1

ℓCℓ +

s
∑

ℓ=m+2

(2m + 2 − ℓ)Cℓ. (4)

Then we consider the matrix N
∗ defined by

N
∗ = [(N ij) : (J ij)],

where N ij = N aij
, J ij = δijJ (subscripts being reduced modulo s), J

is of size sk × (r − sλ) and δ is the Kronecker delta.
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It will be shown that the matrix N
∗ constructed above is the

incidence matrix of a BIB design. In order to prove this, we need
a lemma. Let (V,B) be a group divisible design of type (sk)s which
corresponds to the submatrix (N ij) of N

∗. Denote the point set V
by {(µ, ν) | µ = 1, . . . , sk, ν = 1, . . . , s}, where (µ, ν) is regarded as
the µth point of the νth group on the design.

Lemma 3.2 Let N i be the two incidence matrices of B(sk, sr, r, k, λ),
say (V,Bi), having pairwise additive structure, and let λ′ be the coinci-
dence number of a nesting of (V,Bi), i = 1, 2. Then for
µ, µ′ = 1, . . . , sk and ν, ν ′ = 1, . . . , s,

|{B ∈ B | (µ, ν), (µ′, ν ′) ∈ B}| =







sλ if ν = ν ′ and µ 6= µ′,
r if ν 6= ν ′ and µ = µ′,

(λ′−2λ)(s−1)
2 + λ if ν 6= ν ′ and µ 6= µ′.

Proof. Take a pair of points, say P = {µ, ν}. Then by Construction
3.1, if ν = ν ′, the contribution from (N ij) to the coincidence number
of P is obviously sλ. On the other hand, by noting (i) in Definition 1.3,
we have

N 1N
T
2 + N 2N

T
1 = (λ′ − 2λ)(J − I), (5)

where I and J are of order sk and λ′ is the coincidence number of a
nesting of (V,Bi), i = 1, 2. Hence, by use of Construction 3.1 with
(5), the contribution from (N ij) to the coincidence number of P is
calculated for the case where ν 6= ν ′.

Theorem 3.3 The matrix N
∗ defined in Construction 3.1 is the in-

cidence matrix of a BIB design with parameters

v∗ = s2k, b∗ = s[(s + 1)r − sλ], r∗ = (s + 1)r − sλ, k∗ = sk, λ∗ = r.

Proof. We use the same notations as those used in Lemma 3.2. By
Construction 3.1, it can be seen that the (J ij)-substitution part of
N

∗ does not contribute to the coincidence number of P if and only
if ν 6= ν ′. If ν = ν ′, the contribution equals r − sλ. Hence the result
follows from Lemma 3.2 with (3).

Corollary 3.4 (i) The existence of a resolvable B(3k, k, λ) implies
that of a resolvable B(3nk, 3n−1k, (3n−1k−1)/2) for any positive integer
n. (ii) There exists a B(32n−1, 3n, (3n − 1)/2) for any positive integer
n.
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Proof. (i) Let {Bi1, Bi2, Bi3}, i = 1, . . . , r, be the ith resolution set
of a resolvable B(3k, 3r, r, k, λ), say D. Identify a k-subset Bij with a
zero-one column vector Bij of length v such that x ∈ Bij if and only
if the xth coordinate of Bij equals 1. Then, the matrices N t defined
by arranging Bi,j+t−1 in the (3(i−1)+j)th column, where the second
subscript j + t−1 of Bi,j+t−1 is reduced modulo 3, form the incidence
matrices of additive B(3k, 3r, r, k, λ); see [Matsubara et al. (2006)].
Hence, by applying Theorem 3.3 inductively, a B(3nk, 3n−1k, (3n−1k−
1)/2) can be obtained for any n. The resolvability follows from the
ordering of columns in each N t.

(ii) Apply Theorem 3.3 to a compatible minimal partition given
in Theorem 2.2.

Remark 1 (i) The designs constructed by Theorem 3.3 have the same
parameters as those constructed by [Sawa et al. (2007) Theorem
5.8 (I)], which, however, is largely improved on s. Theorem 5.8 (I)
in [Sawa et al. (2007)] requires the very strict restriction that s is an
odd prime power, whereas Theorem 3.3 is valid for any odd integer s.

(ii) Consider a BIB design D given in Corollary 3.4 (ii). The cir-
culant matrix substitution part of D forms a simple incidence struc-
ture, since the coincidence numbers of the starting designs are 1.
Whereas, each block of the J-substitution part of D occurs exactly
r − sλ times in the system. On the other hand, a BIB design D′ with
the same parameters as those of D is constructed by taking together
the AGL(1, 32n−1)-orbits of suitable 3n-subsets of F32n−1 . It should be
noted that D and D′ are nonisomorphic. Otherwise, the J-substitution
part consists of AGL(1, 32n−1)-orbits. Since AGL(1, 32n−1) is doubly-
transitive on points, the J-substitution part shows a BIB design, which
is a contradiction. We thus conclude that Construction 3.1 is different
from a classical construction of BIB designs using the affine groups.

(iii) The designs constructed in Theorem 3.3 are minimal possible
for given v and k. Let k, s be odd integers and v = sk. Assume
that there exist additive B(sk, k, (k − 1)/2). Then by Theorem 3.3, a
B(s2k, sk, (sk − 1)/2) can be obtained. Given a BIB design with s2k
points and blocks of size sk, the coincidence number of this design is
given as r∗(sk−1)/(s2k−1), where r∗ is the replication number of the
design. Therefore if gcd(s2k−1, sk−1) = 2, the design is minimal on
coincidence numbers. For example, the coincidence number of a BIB
design with 243 points and blocks of size 27 is at least 13 and thus, in
this case, a B(243, 27, 13) is minimal.
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4 A generalization of compatibly nested

minimal partitions

In this section, the concept of pairwise additivity of BIB designs is
generalized for v not divisible by k. In particular, as a natural gen-
eralization of Definition 1.2, we consider only the case where v ≡ 1
(mod k).

Definition 4.1 Let k, ℓ, s, v be positive integers with v = sk + 1 and
2 ≤ ℓ ≤ s. A set of ℓ B(v, b, r, k, λ), say {Di | i = 1, . . . , ℓ}, is
said to be ℓ pairwise additive if there is an ordering of blocks of each
BIB design satisfying the condition (i) given in Definition 1.3. In
particular, such designs are said to be additive if ℓ = s.

Take a B(ν = sk + 1, b, r, k, λ). Then, by use of (a) and (b) in
Introduction, it holds that

r = λsk/(k − 1) and b = λs(sk + 1)/(k − 1). (6)

Let Bi = {B
(i)
j | j = 1, . . . , b}, i = 1, . . . , ℓ, be the sets of blocks

of ℓ pairwise additive B(v = sk + 1, b, r, k, λ). Then, for distinct
i, i′ = 1, . . . , ℓ, the coincidence number of (V,B{i,i′}) counts

2r(2k − 1)

v − 1
=

2λr(2k − 1)

λ(v − 1)
=

2λr(2k − 1)

r(k − 1)
=

2λ(2k − 1)

k − 1
.

Since 2k − 1 and k − 1 are relatively prime,

2λ ≡ 0 (mod k − 1) (7)

holds. Hence it follows that

λ ≥

{

(k − 1)/2 if k is an odd integer,
k − 1 otherwise.

(8)

A set of additive BIB designs which attain (8) plays a key role in
constructing BIB designs minimal for given v and k, as the following
theorem shows.

Theorem 4.2 Let p, ℓ, s be positive integers such that 2 ≤ p ≤ ℓ ≤ s.
The existence of ℓ pairwise additive B(v = sk + 1, b, r, k, λ) implies
that of a B(v, b, b− pr, v − pk, Λp), where

Λp =
λ(s − p){(s − p)k + 1}

k − 1
. (9)

In particular, Λp = λ(k + 1)/(k − 1) when p = ℓ − 1 = s − 1.
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Proof. Denote by Bi, i = 1, . . . , ℓ, the sets of blocks of ℓ pairwise
additive B(v = sk + 1, b, r, k, λ). Observe that in the proof of Theo-
rem 2.4 there is no need to restrict v being divisible by k. Thus for
any p = 2, . . . , ℓ, the design (V,B{1,...,p}) yields a B(v, b, pr, pk, λp(pk−
1)/(k − 1)). The complement of the design yields a BIB design with
coincidence number as

b − 2pr +
λp(pk − 1)

k − 1
=

λs(sk + 1)

k − 1
− 2p

λsk

k − 1
+

λp(pk − 1)

k − 1

=
λ(s − p){(s − p)k + 1}

k − 1

by (6).

Corollary 4.3 Under the same notation as those used in Theorem 4.2,
if ℓ = s = p + 1, then

Λs−1 ≥

{

(k + 1)/2 if k is an odd integer,
k + 1 otherwise.

(10)

Proof. By Theorem 4.2, Λs−1 = λ(k + 1)/(k − 1). Hence the result
follows by applying Euclidean algorithm to k ± 1.

Remark 2 A BIB design attaining (10) can be minimal possible for
given s and k ≡ 1 (mod 2). For example, if there is a set of additive
B(19, 3, 1), then the design constructed by Theorem 4.2 has coinci-
dence number 2. Since the coincidence number of a BIB design with
19 points and blocks of size 4 is at least 2, this design is minimal.
These observation provides a merit of additive BIB designs for v ≡ 1
(mod k).

We conclude this section by presenting two infinite families of ad-
ditive BIB designs. Let q = tk + 1 be a prime power and x be a
primitive element of Fq. Let H be the multiplicative subgroup of Fq

of order k. For i = 0, . . . , tk − 1 let Hi = {xiy | y ∈ H}.

Lemma 4.4 (Sprott (1954)) Let q = tk + 1 be a prime power and x
be a primitive element of Fq. Then, (i) the set of base blocks {Hi |
i = 0, . . . , t − 1} generates a B(q, k, k − 1), and (ii) if k and t are
respectively an odd integer and an even integer, then the set of base
blocks {Hi | i = 0, . . . , t/2 − 1} generates a B(q, k, (k − 1)/2).
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Theorem 4.5 For a prime power q = tk+1 the following statements
hold.

(i) There exist additive B(q, k, k − 1).

(ii) If k and t are respectively an odd integer and an even integer,
then there exist additive B(q, k, (k − 1)/2).

Proof. It suffices to show that the designs constructed in Lemma 4.4
are additive.

(i) It follows that for distinct i, j = 0, . . . , t − 1,

t−1
⋃

l=0

⋃

(a,b)∈Hi+l×Hj+l

{a − b} =

k−1
⋃

n=0

( t−1
⋃

l=0

k−1
⋃

m=0

{xl+mt · xj(xi−j−nt − 1)}

)

=
k−1
⋃

n=0

(Fq \ {0}), (11)

since xi−j−nt − 1 6= 0. Combining (11) with Lemma 4.4 implies that
each nonzero element of Fq occurs exactly 2(k−1)+2k = 4k−2 times
as the differences arising from the set {Hi+l ∪Hj+l | l = 0, . . . , t− 1}.
Hence BIB designs (Fq,Bi) with i = 1, . . . , t are formed, where each
Bi is obtained by developing Hj, j = 0, . . . , t − 1, according to the
ordering (Hi : Hi+1 : . . . : Hi−1) (subscripts reduced modulo t).

(ii) The result follows from an argument similar to that used in
the proof of (i).

Corollary 4.6 ([Colbourn and Rosa (1999), Theorem 22.12]) There
exists a compatibly nested minimal partition for a prime power q =
6m + 1.

Proof. The result follows from Theorem 4.5 (ii) with k = 3 and
t = 2m.

Example 4.7 Put m = 2 in Corollary 4.6. Then a set of additive
STS(13) is obtained by developing the base blocks modulo 13 given in
Table 2.
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Table 2: Additive STS(13)
Designs Base blocks
(F13,B1) {1, 3, 9} {2, 6, 5}
(F13,B2) {2, 6, 5} {4, 12, 10}
(F13,B3) {4, 12, 10} {8, 11, 7}
(F13,B4) {8, 11, 7} {1, 3, 9}

5 Multiply nested designs from pairwise

additive designs

In this section a relationship between pairwise additive BIB designs
and nested BIB designs is discussed.

A nested BIB design, say NB(v; b1, b2; k1, k2), is a nested block
design (V,B1,B2) which satisfies the following conditions:

(i) the first system is nested within the second, that is, each block
in B2 is partitioned into l subblocks of size k1 which form B1,
say, b1 = lb2 and k2 = lk1,

(ii) (V,Bi) is a BIB design with v points and bi blocks of ki points
each, i = 1, 2.

There are many relationships between nested BIB designs and other
designs. For example, a resolvable BIB design is a nested BIB design
with v divisible by k, and a near-resolvable BIB design is a nested BIB
design with v congruent to 1 modulo k. Whist tournaments Wh(4n)
and Wh(4n+1) are respectively a resolvable NB(4n; n(4n−1), 2n(4n−
1); 4, 2) and a near-resolvable NB(4n + 1; n(4n + 1), 2n(4n + 1); 4, 2).
Any nested BIB design with 2k1 = k2 = 4 is called a balanced dou-
bles schedule; see Henley (1980). Resolvable or near-resolvable BIB
designs are also called generalized whist tournament designs; see Abel
et al. (2003). Moreover, it is known (see Morgan et al. (2001)) that
partitioning the rows of a perpendicular array yields a nested BIB
design.

Whereas, not so many results which relate “multiply” nested BIB
designs and other designs have been published. A multiply nested
BIB design is a nested block design (V,B1, B2, . . . ,Bm) with param-
eters (v; b1, . . . , bm; k1, . . . , km) for which the systems (V,Bi,Bi+1) are
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NB(v; bi, bi+1; ki, ki+1). A multiply nested BIB design is a natu-
ral generalization of a nested BIB design and is denoted by MNB(v;
b1, . . . , bm; k1, . . . , km); see Morgan et al. (2001). A construction of
multiply nested BIB designs was presented in Sawa et al. (2007) by
using pairwise additive BIB designs.

Theorem 5.1 ([Sawa et al. (2007), Theorem 2.4]) Let ℓ be a pos-
itive integer with 2 ≤ ℓ ≤ s. The existence of ℓ pairwise addi-
tive B(sk, b, r, k, λ) implies that of an MNB(sk; 2m−1b, 2m−2b, . . . , b;
k, 2k, . . . , 2m−1k), where m = ⌊log2ℓ⌋ + 1 and ⌊x⌋ means the greatest
integer y such that y ≤ x.

Corollary 5.2 (i) There exists an MNB(v = 3n; 2m−1b, 2m−2b, . . ., b;
3, 6, . . ., 2m−13), where m = ⌊(n− 1)log23⌋+1 and b = 3n(3n − 1)/6.
(ii) For a prime power q = tk + 1, there exists an MNB(v = q;
2m−1b, 2m−2b, . . ., b; k, 2k, . . ., 2m−1k), where m = ⌊log2t⌋ + 1 and
b = (tk + 1)t. In particular when t and k are an even and an odd
integer respectively, the number of blocks in each subdesign can be
reduced half, that is, b = (tk + 1)t/2.

Proof. (i) Use Theorems 2.2 and 5.1.
(ii) Recall the proof of Theorem 2.4 in Section 3. Then, an argu-

ment similar to that used in the proof of [Sawa et al. (2007), Theo-
rem 2.4] shows that Theorem 2.4 can be modified to the case where
v is not divisible by k. Hence the result follows from Theorem 4.5. �

It is expected that results obtained in Colbourn and Rosa (1999),
Matsubara et al. (2006) and Sawa et al. (2007), other than [Sawa et
al. (2007), Theorem 2.3] on nested designs, could hold without the
restriction that v is not divisible by k. These will be discussed in a
forthcoming paper.
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