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Abstract

Gupta et al. (2014) introduced ratio and regression estimators for the mean of a sensitive
variable using optional additive RRT models which perform better than the Sousa et al.
(2010) and Gupta et al. (2012) ratio and regression estimators that were based on non-
optional additive RRT model. In the present study we extend Gupta et al. (2014) estimators to
the stratified sampling setting and compare them with the existing non optional estimators in
the stratified sampling setting proposed by Sousa et al. (2014). The performance of the
proposed estimators is also compared with the corresponding estimators in simple random
sampling.

Key words: Mean square error; Optional randomized response technique; Combined ratio
estimator; Combined regression estimator; Stratified random sampling.

1. Introduction and Terminology

The main goal of this paper is to extend the ratio and regression mean estimator results of
Gupta et al. (2014) to the case of stratified sampling. It is assumed that the study variable is
sensitive and a non-sensitive auxiliary variable is available which is positively correlated with
the study variable.

Many authors have presented traditional ratio and regression estimators for the population
mean in simple random sampling when both the study variable Y and the auxiliary variable X
are directly observable. These include Ray and Singh (1981), Kadilar and Cingi (2004, 2005),
Kadilar et al. (2007), Shabbir and Gupta (2007, 2010) and Nangsue (2009). Gupta and
Shabbir (2008) have suggested a general class of ratio estimators when the population
parameters of the auxiliary variable are known. Kadilar and Cingi (2003, 2005), Singh and
Vishwakarma (2008), Koyuncu and Kadilar (2008,2009, 2010) have proposed a family of
combined-type estimators in stratified random sampling. These estimators are identified as
members of the recently proposed class of estimators by Singh and Solanki (2013).Some
studies on estimation of the mean have been done with other sampling schemes such as Singh
and Solanki (2012) for a systematic sampling design and Singh and Vishwakarma (2007) in
double sampling.
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Gupta et al. (2014) suggested ratio and regression estimators for the sensitive variable Y
using a non-sensitive variable X improving the estimators of Sousa et al. (2010) and Gupta et
al. (2012) in simple random sampling without replacement (SRSWOR). The improvement
was seen as a result of using an optional additive RRT model (introduced in Gupta et al.
(2002)) as compared to the non-optional additive RRT model used by Sousa et al. (2010) and
Gupta et al. (2012). The introduction of optionality led to the estimation of W (the sensitivity
level) along with the estimation of population mean. It may be noted that the sensitivity level
W is the proportion of respondents in the population who consider the question sensitive
enough to not feel comfortable answering the question in a face-to-face survey. Recently
Sousa et al. (2014) extended the estimators of Sousa et al. (2010) and Gupta et al. (2012) to
the stratified sampling setting. Motivated by Sousa et al. (2014), we extend the estimators of
Gupta et al. (2014) to the stratified sampling setting.

This paper suggests a combined ratio estimator and a combined regression estimator for
the population mean of a sensitive variable using non-sensitive auxiliary variable and an
optional RRT methodology in stratified sampling. The Bias and the Mean Square Error
(MSE) of the suggested estimators are derived and they are compared theoretically and
empirically with the non-optional combined ratio and combined regression estimators of
Sousa et al. (2014). It is shown that among the proposed estimators the combined regression
estimator is always most efficient.

We denote the finite population by U :{Ul,Uz,...,UN} . The study population is divided

L
into L strata with strata sizes N, such thatd N, =N (h=1..,L). Let Y be the sensitive
h=1

study variable which cannot be observed directly. Let X be a non-sensitive auxiliary variable
which is positively correlated with Y. Let T be a scrambling random variable independent of

Y and X. We assume that z; = E(T)=0. Let W be the sensitivity level of the underlying
sensitive question. Each respondent in the sample is asked to report an additively scrambled
response for Y if he/she considers the question sensitive and a true response otherwise. Thus a
scrambled response on Y is received with probability W and a true response is received with
probability (1-W). The respondent always provides a correct response for the auxiliary
variable X. The reported response Z for the study variable can thus be written
7 _ Y +T , with probability W
|y, with probability (1-W)

We draw a sample of size n, from each stratum by using simple random sampling
L

without replacement (SRSWOR) such that Znh =n. Let y,,;and X, respectively be the
h=1

values of the i-th study variable Y and the auxiliary variable X in the h"stratum with

L L L
i=12,..,n,. Let ¥, =>5V,, X, =>.6,%, and z, =Y 5,2, be the stratified sample
h=1 h=1 h=1

_ 1 & _ 1 & _ 1 &
means, where ¥, =—> ., X, =—> X, and Z, =-—> 7, are the stratum sample
h i=l h i=l h i=l

means corresponding to population stratum means Y, =z, = E(Y,), X, =y, = E(X,),
Z,=u, =E(Z,), and & =N, /N are the known stratum weights.
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N _ Ny
To estimate Y =y, =) 6,1, We assume that X =u, = & uy is known. Let

h=1 h=1

Nh
Z=u,= Z5hﬂzh be the mean for the scrambled variable Z.

h=1

To discuss the properties of different estimators, we define the following error terms. Let

= N2 2 2
Ly —Hy Xst — Hx St stt Sost Szxst _
o = VB = B = ———5— and e, = 2= —2"%such that E(e,)=0

z Hx xst 2xst

(i=0123).
Below we list some existing mean estimators in the case of simple random sample.

(i) Gupta et al. (2014) Mean and Sensitivity Estimators:

Aoy =1 (1.1)
1 1 18 Y
NI 7+ =) 2
N = {nzll [nz }
W = 5 , when'Y has Poisson distribution (1.2)
A =\2
and W =2 —(szz) ,when C, =C, (1.3)
E(T
~ ~ 1-f 2 2
MSE(:UYW):\/ar(/uYW)z n (Sy +WST) (1.4)
where Sz— ! i Y and.S2 = LN(s.—y )i
Y -14z N-135"" °
(ii) Gupta et al. (2014) Ratio Estimator:
fry = Z[ﬂx J (1.5)
X
The Bias and MSE of /g, to first degree of approximation are given by
o —f
Blas(:uRW ); TIUY ( f - pszsz) (16)
~ 1-f 2 2
and MSE(/uR )_ —/'IY (C + C szszCx) (17)
2 S; Pyx -
where C; =CJ +W =L, p, = and C,, C and C, are the coefficients of
Y sZ
1+W —

y
variation of Z, Y and X respectively and 0 <W <1.
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(iii) Gupta et al. (2014) Regression Estimator:
/&RegW =Z+ ﬂ’\zx (:uX - )_() (18)
where ﬁzx is the sample regression coefficient between Z and X.

The Bias and MSE of /i, to first degree of approximation, are given by

R 1-f
Bias (IURe gw ) = _ﬂzx [—j{& - @} (19)
n Hin Mo

- 1-1) 52 > _(1=f )2 St
and  MSE(fpeqy )2 — |uic; 1-p, ) = el R A fe g B (1.10)
y
1 : ;
where g, =N—12(Zi —ﬂz) (Xi —ﬂx)

4=

For a stratified random sample the usual combined sample mean estimator, ignoring the
auxiliary information, is given by

Howst = Zggs (1.11)
which is the unbiased estimator of population mean g, .

The MSE of /i, is given by

L
MSE (2 ) = > 827, (S, +WsS2, ) (1.12)
h=1

Ny

1 1 1 1
where y, Z(n__N_j’ Sph = N _1Z(yhi — Hy, )2 and Sg, =N—_12(tm — M, )2
h h h i=1 h i=1

and O <W <1.

It is interesting to note that forW =1, we have

MSE(,[‘YWst) = MSE(I[‘Yst) (1.13)
where f1,, = Z,, the combined sample mean for a stratified random sample of non-optional

additively scrambled responses, is the unbiased estimator of population mean g, as given by
Sousa et al. (2014).

Also we observe from (1.4) and (1.12), that
MSE(I&YWst)< MSE(/&YW ) if

25,3 74(S2 +Ws2 )< (%j(sj +Ws?) (1.14)
h=1

a condition that can be ensured by a suitable stratification for all values of W :0 <W <1.
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In Section 2, we now introduce a combined ratio estimator and compare it to the ordinary
mean estimator and the ratio estimator (Gupta et al., 2014), and the combined ratio estimator
of Sousa et al. (2014). In Section 3, we propose a combined regression estimator and compare
it with the regression estimator proposed by Gupta et al. (2014) and the combined regression
estimator proposed by Sousa et al. (2014). In Section 4, we present a comparative simulation
study.

2. Proposed Combined Ratio Estimator
We propose the following combined ratio estimator
. _ (X
Hrwst = Zst(__j (2.1)
XS’[

Using Taylor’s approximation and retaining terms of order up to 2, (2.1) can be rewritten as

R N 2
Hrwst —Hz = Hy {eOSt — €t T €t —€ost elst} (2.2)

Under the assumption of bivariate normality (see Sukhatme and Sukhatme, 1970), we can get
the expressions for the Bias and MSE for i, , correct to first order of approximation, as
given by

L
Bias(/:lRWst); Hy Zé‘hzj/h {th _szh} (23)
h=1
L
and MSE(/[‘RWst)E ﬂ$Z§§7h (szh +C>§h _Zcth) (2.4)
h=1
s,

where szh = pthCzthh’ szh = th +W T2
Y

and Do :Azand 0<W <1.

1+WS—;'1
Sih

The Bias and MSE of the non-optional combined ratio estimator /i, , as proposed by Sousa et
al. (2014), correct to first order of approximation, is given by

L
Bia‘S(I&Rst)E /UY zéﬁyh {th _szh} (25)
h-1
L
and MSE(/&Rst)E Hy Z\thyh (szh +Cy — 2szh) (2.6)
h-1

2

S X
where szh :pthCzthh! szh :C)%h +L;and"02>(h - pyh

—
H f1+ 22“
yh
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As expected, our results for the Bias and MSE coincide with those of Sousa et al. (2014)
for W =1 and hence forW =1,

MSE (s ) = MSE(f1, ) @7

Below we compare the proposed combined ratio estimator (,[zRWSt) with the ordinary
sample mean estimator (2, ), Sousa et al. (2014) combined ratio estimator (i, ) and the
Gupta et al. (2014) ratio estimator (g, ).

It can be verified easily that

(i) From equations (2.4) and (1.12),

MSE(,[IRWSt ) < MSE(/&YWSt)’
if

L l L
Zé‘hZ?/hszh _Ezé‘hzj/hcfh >0
h=1 h=1

h=1 h=1

- 2 1 th = 2 1 th
3z5h hCauConl Pon — % >0 3z5h7/hcyhcxh Pyn — 5 >0
2C, 2C
Hence we can conclude
. AN S 1C,
MSE(IURWSI)< MSE(#YWst)Ifzah 7hCnCon| Py — 2C >0. (2.8)
h=1

(ii) From equations (2 4) and (2.6), MSE (g, ) < MSE(f2s,, ) if

w-1) Z5h ;/h N (2.9

ﬂY
which holds true if (W —1)< 0, a condition which always holds true as 0 <W <1.

(iii) From equations (2.4) and (1.7), MSE( gy ) < MSE (g, )if,

L 1-f
Zéf}/h {szh + th - 2pthCzthh }< T {sz + Cf - 2pszsz} (210)
h=1

a condition that can be ensured by a suitable stratification, for all 0 <W <1.

3. Proposed Combined Regression Estimator

We propose the following combined regression estimator for the population mean z,

:[lRegWst = Zst +ﬁc (i - )_(st)’ (31)
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L
Zéhzyhsth

where ﬂ ——IS the sample regression coefficient between Z and X, and
zé‘hzj/h xh
{Y+T W|th probability W,

is the optional additive scrambled response on Y.
Y,  with probability (1- W)} P p

Using Taylor’s approximation and retaining terms of order up to 2, (3.1) can be rewritten
as

/[lRegWst —Hz =y eOst - ﬂczux [elst + elSte3St - elsteZSt ]’ (32)
S 2
Z§h V1S
where g, = “"1— is the population regression coefficient between Z and X.

z5h7h xh

Considering a simple random sample selected from each population stratum we can
deduce, using Mukhopadhyay (1998, p.123), as in Sousa et al. (2014), that the Bias and MSE

of figequs 1O first degree of approximation are given by

Bias (:uRegWst) Zgr?yhﬂc {luuh Hosn } (3.3)
11 Hooan
and  MSE ()= 123 82,3 1 p2) (3.4)
h=1
Z5h 70S 2n 1 M

where p, = — =——> [z
\/Z5r127h5z2h \/z5ﬁ7hsfh )
h1 b

2
C;=Cj +W—T St 2and 0<W <1.
Y
The Bias and MSE of the non-optional combined regression estimator /., as proposed
by Sousa et al. (2014), correct to first order of approximation, is given by

Bias(/&Regst)E Zaﬁ hﬂc{#l2h IHOBh} (35)
Hain  Hoon
and MSE(/:[Regst) Hy 25h 7/h zh (1_ pc2 ) (36)

We again see that as expected, forW =1, our results for the Bias and MSE coincide with
those of Sousa et al. (2014). Hence forW =1, we again have

MSE (e quec) = MSE (fgegst) - (3.7)
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We compare below the proposed combined regression estimator ([lRegWSt) with the

ordinary sample mean ([JYWSt), the proposed combined ratio estimator(/szWst), Sousa et al.
(2014) combined regression estimator (,&Regst)and the Gupta et al. (2014) regression
estimator (g gy )-

It can be easily verified that

(i) From equations (3.4) and (1.12), MSE (fxegus) < MSE (fyye ) if

25h 71C zhpc (3.8)

(ii)) From equations (3.4) and (2.4), MSE (fgegwe) < MSE (st ) if

2

é‘hz}/hcth

L
5inCh — | >0 @9)
5?127hcfh

(iiii) From equations (3.4) and (3.6), MSE (£equs:) < MSE (e st ) i

L L
> 627,182 W82 + £.252 — 28,8, |- > 627,182 + 8% + B.2S% — 28,5, |< 0
h=1 h=1
L
which amounts to(W —1)>" 577,57 <0 (3.10)
h=1

The above holds true if (W —1)< 0, a condition that will always be true.

(iv) From equations (3.4) and (1.10), MSE(,&RegWSt)< MSE(,[zRegW)if,
L 1-f
Y 5inChl-p)< == Ctl-pi) (311)
h=1

a condition that can be ensured by a suitable stratification for all values of W :0 <W <1.

Also conditions (i), (ii) and (iii) will hold true for all values of W :0 <W <1, indicating
that, up to first order of approximation, the regression estimator performs better than ordinary
mean and ratio estimators in the optional setting in stratified sampling also, as it did in the
case of simple random sampling in Gupta et al. (2014).

4. A Simulation Study
In this section, we present a simulation study with particular focus on comparing the
performance of the proposed optional estimators fzp, and fig.,. t0 the ordinary mean

estimator /., to the corresponding estimators in simple random sampling (Gupta et al.,

2014) and to the non-optional estimators in stratified sampling (Sousa et al., 2014). For this
comparison we rely on Bias and MSE, correct up to first order of approximation.
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We consider abivariate normal population with aspecified mean vector and covariance
matrix to represent the distribution of (Y, X). The scrambling variable Tis taken to be a
normal distribution with mean equal to zero and standard deviation equal to 3. The reported
response for the study variable Y is given by Z = Y+TV,where V is a binomial random variable
with parameters n and p=W, where W is the probability of a respondent considering the
question sensitive.

We simulate two bivariate populations each of size N = 5000. These populations have
theoretical means of « =[6 4] and covariance matrices given by:

9 438 9 29
3= andX = .
{4.8 4 } [2.9 4 }

For this choice of covariance matrices we have the corresponding coefficients of
correlation: p,, =0.8 and p,, =0.4833. However, after we select 5000 observations from

these populations for the purpose of further simulations, the correlations are 0.8020 and
0.4926 respectively for the first and the second populations,.

The data consist of 5000 observations which are divided into two strata according to the
auxiliary variable X. We consider a total sample of size n = 200. The sample size from each
stratum is based on the Neyman allocation. We present below more detailed information on
the two finite populations used in the simulation study.

Bivariate Population I: p,, =.8020
Stratum 1: X < [0,6]

N, =4096, n, =150, p,,, =0.6964, S,,, = 2.5253
Y, =5.4463, S, = 2.4941, C,, =0.4579

X, =35678, S,, =1.4540, C,, =0.4075

Stratum 2: X >6

N, =904, n, =50, p,,, =0.8740, S,,, = 9.0265

Y, =8.5167, S,, =3.7689, C,, =0.4425
X, =6.0424, S,, =2.7401, C,, =0.4534

Bivariate Population 11: p,, =.4926
Stratum 1: X e [0,5]

N, =3366, n, =29, p,, =0.3542, S.., =1.2349
Y, =5.3508, S,, =2.7954, C,, =0.5224
X,=3.1025, S,, =1.2472, C,, =0.4020

Stratum 2: X >5
N, =1634, n, =67, p,., =0.4660, S,,, = 2.5590
Y, =7.3864, S,, =2.8949, C,, =0.3919

X,=59132, S,, =1.8968, C,, =0.3208
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We estimate the empirical Bias and MSE using 5000 samples of various sizes from the
study populations. The absolute relative bias (ARB), used in the tables below, is given by

Bias (4
M , Where 4 = YWst, RWst, Re gWst .

The empirical and the theoretical results for the two estimators under study are presented
in Table 1 and Table 2, for the higher and lower correlation respectively. From these tables
we can observe that the proposed estimators show similar Bias as compared to the RRT
mean.

Table 1: Empirical and theoretical absolute relative bias for the ratio estimator
(underlined) and for the regression estimator (bold) relative to the RRT mean estimator

Simple Random Sample (SRS) Stratified Random Sample (Str)

Population  n W Empirical ARB Theoretical ARB ~ Empirical ARB  Theoretical ARB
4 0.000055 0.000000 0.000477 0.000000
0.0 0.000322 0.000232 0.000152 0.000174
0.000055 0.000045 0.000303 0.000032
’ 0.001747 0.000000 0.002430 0.000000
0.1 0.001598 0.000232 0.001678 0.000177
0.001450 0.000042 0.001391 0.000060
4 0.000473 0.000000 0.000344 0.000000
0.2 0.000619 0.000232 0.001092 0.000180
0.000770 0.000066 0.001434 0.000066
4 0.001221 0.000000 0.002448 0.000000
0.3 0.001083 0.000232 0.003188 0.000181
0.000924 0.000060 0.003586 0.000065
4 0.004778 0.000000 0.003135 0.000000
0.4 0.004638 0.000232 0.003873 0.000182
0.004481 0.000068 0.004318 0.000051
N =5000 4 0.002804 0.000000 0.001307 0.000000
200 0.5 0.002664 0.000232 0.002050 0.000183
pr =0.8020 0.002507  0.000061 0.002534 0.000030
4 0.000857 0.000000 0.006586 0.000000
0.6 0.000736 0.000232 0.007353 0.000184
0.000560 0.000068 0.007854 0.000002
4 0.004414 0.000000 0.007273 0.000000
0.7 0.004290 0.000232 0.008038 0.000184
0.004117 0.000076 0.008581 0.000020
4 0.006108 0.000000 0.009377 0.000000
0.8 0.005992 0.000232 0.010134 0.000184
0.005811 0.000070 0.010724 0.000025
v 0.003888 0.000000 0.012151 0.000000
0.9 0.003775 0.000232 0.012904 0.000185
0.003590 0.000095 0.013536 0.000020
’ 0.005241 0.000000 0.010205 0.000000
1.0 0.005626 0.000232 0.009906 0.000185

0.005351 0.000091 0.009954 0.000013
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Table 2: Empirical and theoretical absolute relative bias for the ratio estimator
(underlined) and for the regression estimator (bold) relative to the RRT mean estimator
for a lower correlation

Simple Random Sample (SRS) Stratified Random Sample (Str)

Population n w Empirical ARB Theoretical ARB Empirical ARB ~ Theoretical ARB
v 0.000048 0.000000 0.000208 0.000000
0.0 0.000732 0.000595 0.000158 0.000353
0.000032 0.000030 0.000631 0.000037
" 0.001729 0.000000 0.002116 0.000000
0.1 0.001901 0.000595 0.001845 0.000354
0.001524 0.000018 0.001343 0.000076
" 0.000492 0.000000 0.000012 0.000000
0.2 0.000317 0.000595 0.000285 0.000354
0.000698 0.000042 0.000823 0.000062
" 0.001203 0.000000 0.001882 0.000000
0.3 0.001383 0.000595 0.001609 0.000354
0.000997 0.000036 0.001034 0.000061
" 0.004760 0.000000 0.005493 0.000000
0.4 0.004938 0.000595 0.005224 0.000355
0.004555 0.000040 0.004610 0.000006
N =5000 " 0.002787 0.000000 0.003373 0.000000
200 0.5 0.002962 0.000595 0.003093 0.000355
pxr =0.4926 0.002581  0.000032 0.002456 0.000037
" 0.000839 0.000000 0.001724 0.000000
0.6 0.001041 0.000595 0.001445 0.000355
0.000633 0.000063 0.000774 0.000007
r 0.004396 0.000000 0.005336 0.000000
0.7 0.004596 0.000595 0.005061 0.000355
0.004191 0.000066 0.004354 0.000053
" 0.006091 0.000000 0.007229 0.000000
0.8 0.006295 0.000595 0.006954 0.000356
0.005885 0.000060 0.006217 0.000058
" 0.003870 0.000000 0.005102 0.000000
0.9 0.004078 0.000595 0.004825 0.000356
0.003664 0.000086 0.004060 0.000077
" 0.005250 0.000000 0.005551 0.000000
1.0 0.006040 0.000595 0.005186 0.000356
0.005329 0.000073 0.004324 0.000034

Tables 3 and 4 below give the empirical and theoretical MSE’s for the proposed combined
estimators based on 1st order approximation. We use the following expressions to find the
percent relative efficiency (PRE) of proposed estimators as compared to the ordinary sample
mean in both designs:

- M x100,where « = RW, Re gW (simple random sampling)
MSE(4,)
MSE ( £z - .
and PRE,, = M x100, where f = RWst, Re gWst (stratified sampling)
MSE(4,)

These measures are calculated using first degree of approximation for MSE. We estimate
the empirical MSE using 5000 samples of size n from the simulated bivariate population.
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We obtain the Optionality Effect by calculating the ratio of non-optional RRT MSE
values (W=1) relative to the MSE of the corresponding Optional RRT estimator and

multiplying it by 100.

We also calculate the Design Effect (Deff) comparing the MSE’s of the proposed
estimators in stratified sampling (Str) relative to the ordinary sample mean in simple random

sample (SRS):

¢ MSE(i)

MSE(4,)

x100, where 2 = YWst, RWst, Re gWst .

[Vol. 15, Nos. 1&2

Table 3: Empirical and Theoretical MSE, PRE for the ratio estimator (underlined) and
for the regression estimator (bold) relative to the RRT mean estimator, PRE for the

simple random sample (SRS) relative to the stratified sample (Str)

Simple Random Sample (SRS) Optionality  Stratified Random Sample (5tr) Optionality

Population 1 W Empirical MSE Theoretical MSE PREp;  Effect  Empirical MSE Theoretical MSE  FRE;  Effect Deff
0.0422 0.0428 100,00 202.95 0.0367 0.0356 100,00 226.01 120.39
0.0 0.0101 0.0098 437.37  530.27 0.0163 0.0191 186,15 33851 22411
0.0094 0.0092 464.16 577.86 0.0173 0.0169 210.66 365.67 253.62

0.0483 0.0473 100.00  184.01 0.0408 0.0401 100.00  200.72 117.93

0.1 0.0142 0.0142 332.62 37943 0.0229 0.0238 168.20 271.64 108.36
0.0137 0.0136 346.41 391.01 0.0247 0.0214 187.05 288.35 220.58

0.0533 0.0517 100.00  168.30 0.0449 0.0446 100.00  180.52 115.96

0.2 0.0195 0.0186 277.51  289.53 0.0276 0.0285 106.505 227.37 181.53
0.0190 0.0181 286.20 295.47 0.0307 0.0259 171.81 23321 199,23

0.0574 0.0361 100,00 155.06 0.0488 0.0490 100,00  164.01 114.35

0.3 0.0242 0.0230 243.51 234.08 0.0319 0.0331 14836 19577 169.64
0.0236 0.0225 249.64 237.45 0.0366 0.0304 161.16 203.00 184,28

0.0620 0.0805 100.00 14375 0.0538 0.0335 100,00 150.27 113.01
0.4 0.0284 0.0274 220.44  196.45 0.0372 0.0376 14228 17202  160.79
0.0278 0.0269 225.08 198.48 0.0433 0.0349 153.28 176.90 173.22

¥ =5000 0.0650 0.0649 100.00 13398 0.0578 0.0580 100.00  138.85 111.88
200 0.5 0.0316 0.0318 203.76  169.24 0.0408 0.0422 137.58 15349 153.93
pre=08020 0.0310 0.0313 20745 17050  0.0483 0.0394 14721 15677  164.70
0.0893 0.0893 100,00 125.46 0.0648 0.0625 100,00  128.70 110.91

0.6 0.0371 0.0363 191.14  148.66 0.0464 0.0467 133.85 138.60 148.45
0.0364 0.0357 194.17 149.43 0.0550 0.0439 14240 140.76 157.93

0.0741 0.0737 100,00 117.95 0.0893 0.0670 100,00 120.09 110.07
0.7 0.0416 0.0407 18126  132.53 0.0512 0.0512 13080 126.38  143.97
0.0408 0.0401 183.81 13299 0.0614 0.0484 138.48 127.72 152.42

0.0785 0.0781 100.00 11129 0.0752 0.0715 100.00 11255 109.33

0.8 0.0463 0.0451 17331 119.57 0.0578 0.0357 12826 116.15 140.23
0.0456 0.0445 17551 119.82 0.0698 0.0528 135.23 116.89 147.85

0.0835 0.0825 100.00  105.34 0.0816 0.0759 100.00  105.90 108.69

0. 0.0519 0.0495 166.77 108.91 0.0643 0.0602 12612 107.47 137.07
0.0510 0.0489 168.70 109.01 0.0785 0.0573 13248 107.76 143,99

0.0883 0.0869 100.00  100.00 0.0858 0.0804 100,00 100.00 108.11

1.0 0.0564 0.0539 161.31  100.00 0.0644 0.0647 124.29  100.00 134.36
0.0555 0.0533 163.02 100.00 0.0787 0.0618 130.20 100.00 140.76
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Table 4: Empirical and Theoretical MSE, PRE for the ratio estimator (underlined) and
for the regression estimator (bold) relative to the RRT mean estimator, PRE for the
simple random sample (SRS) relative to the stratified sample (Str) for a lower
correlation

Simple Random Sample (SRS) Optionality  Stratified Random Sample (Str) Optionality

Populaion n W  Empirical MSE Theoretical MSE PREp;  Effed  Empirical MSE Theoretical MSE FRE;  Effect Deff
0.0422 0.0428 100.00 203.13 0.0386 0.0384 100.00 214,92 11141
0.0 0.0445 0.0433 9878  201.88 0.0384 0.0416 9237 20664 10291
0.0325 0.0324 132.04 236.17 0.0445 0.0345 111.28 22841 123.98
- 0.0483 0.0472 100.00 184.14 0.0444 0.0428 100.00 192,77 110.23
0.1 0.0484 0.0477 98.50 183.21 0.0441 0.0460 9304 186.69  102.56
0.0376 0.0368 128.20 207.87 0.0526 0.0388 110.43 203.30 121.72
T 0.0533 0.0516 100.00 168.40 0.0505 0.0472 100.00 17476 109.27
0.2 0.0536 0.0521 98.99 16771 0.0501 0.0504 9360 17026  102.28
0.0428 0.0412 125.18 185.62 0.0612 0.0432 109.22 182,29 119.35
- 0.0574 0.0580 100.00 15513 0.0554 0.0516 100.00 159.82 108.48
0.3 0.0581 0.0565 99.07  154.62 0.0550 0.0549 9407 15649 102.05
0.0470 0.0456 122.75 167.67 0.0685 0.0477 108.26 165.25 117.44
0.0620 0.0604 100.00 14381 0.0605 0.0580 100.00 147.24 107.81
0.4 0.0625 0.0609 99.14 14343 0.0604 0.0593 9448 14479 101.86
0.0514 0.0500 120.74 152.89 0.0764 0.0521 107.48 151.14 115.87
¥ =5000 T 0.0649 0.0648 100.00 134.02 0.0640 0.0604 100.00 136.49 107.24
0.5 0.0652 0.0653 99.19 13375 0.0631 0.0637 9483 13473 10169
Py =0.4926 0.0543 00544  119.06 14051  0.0815 00566 10683 139.26 11457
- 0.0694 0.0692 100.00 12548 0.0633 0.0649 100.00 127.21 106.74
0.6 0.0717 0.0698 99.25 12529 0.0624 0.0682 9514 12597 10136
0.0599 0.0589 117.63 129.98 0.0837 0.0610 106.29 129,13 113.46
- 0.0742 0.0736 100.00  117.97 0.0682 0.0693 100.00 119.11 106.31
0.7 0.0764 0.0742 9929 11784 0.0677 0.0726 941 11829 10144
0.0644 0.0633 116.40 120.92 0.0916 0.0655 105.82 120.37 112.50
0.0786 0.0780 100.00 111.30 0.0742 0.0737 100.00 111.97 105.93
0.8 0.0811 0.0786 99.33  111.23 0.0737 0.0770 9566 11149 10133
0.0689 0.0677 115.33 113.03 0.1003 0.0699 10542 112,74 111.67
- 0.0836 0.0825 100.00 10535 0.0795 0.0781 100.00  103.85 105.60
0.9 0.0864 0.0830 99.37 10531 0.0788 0.0814 9587 10543 10124
0.0742 0.0721 114.40 106.12 0.1083 0.0743 105.07 106.01 110.95
- 0.0883 0.0869 100.00  100.00 0.0819 0.0825 100.00  100.00 105.30
1.0 0.0916 0.0874 99.40  100.00 0.0815 0.089 907 100.00  10L16
0.0788 0.0765 113.57 100.00 0.1138 0.0788 104.71 100.00 110.25

According to the results in the two tables above, the Design Effect (Deff) shows an
increase in efficiency by using a stratified sample, more so when the correlation between the
auxiliary and study variable is high as seen in Table 3. All the PREg; values in Table 3 are
greater than100, indicating that the proposed combined estimators are more efficient than the
mean estimator. Also all the PREgs in Table 3 are greater than 100, indicating that the

estimators /g, and /g, perform better than the ordinary mean estimator /1, .This result
agrees with Gupta et al. (2014) findings for simple random sampling when the correlation is
high. We see in Table 3, that the proposed combined ratio estimator /i, and the proposed
combined regression estimator /i, are both efficient than the mean estimator /2, .1t can

be seen below that the theoretically obtained sufficient (but not necessary) condition in (2.8)
above given by

7 ViES 1C
MSE(luRWst)< MSE(#YWSt)IfZ5f12}/hCVhCXh Pyxn _E CXh
h=1

holds true for the stratum statistics for population | with

>0

yh
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L 1C
52}/ C CX p _ = Zxh
; h/7 h~yh h( yxh 2 C

] =0.000247029 > 0

yh

However the above condition does not hold for the stratum statistics for Population II, as

L 1C
52}/ C CX p _ = xh
; h/7 h™~yh h{ yxh 2 C

J =-0.0000885389 < 0

yh

Consequently we observe in Table 4, that the combined ratio estimator fiq,., IS no longer
more efficient than the mean estimator 4., However the proposed combined regression
estimator fig,., remains more efficient than both the proposed combined ratio estimator

Hawe @nd the mean estimator 4, in Table 3 and in Table 4. This is justified by the

theoretically obtained conditions (3.8) and (3.9) for the combined regression estimator
Hregwst Which always hold true.

We obtained theoretically in (2.10) and (3.10) that the proposed optional combined ratio
Hpys@nd combined regression estimator fig. . Will always be more efficient than the

corresponding non-optional combined ratio and combined regression estimator given by
Aaws and [ for (W =1). The same can be observed in both the Tables 3 and 4. Also it

can be verified easily that the stratification in both the populations is such that the condition
(1.14) holds true for both the populations and consequently we observe that

MSE (2, ) < MSE(£2,,, ) in both Tables 3 and 4.

The PREs; of all the proposed estimators fi,y, Arys aNd flg gy are greater than PREs; s

of the corresponding non-optional estimators (W =1) of Sousa et al. (2014) showing that the
use of optional RRT model has an advantage over the non-optional RRT model in the
presence of auxiliary information in the context of stratified sampling also. As expected, we
see that the optionality effect dissipates as the sensitivity level W increases.

5. Conclusions

From the discussions in Sections 2, 3, 4 and higher values of the optionality effect in
Table 1 and Table 2, we infer that the proposed optional combined RRT estimators are more
efficient than the corresponding non-optional combined estimators in Sousa et al. (2014).
Also higher values of the Design Effect (Deff) show that the proposed combined estimators
are more efficient than the estimators of Gupta et al. (2014) derived in simple random
sampling. Although both the ratio and regression estimators perform better than the ordinary
RRT mean estimator, the improvement is much larger with the regression estimator in both
simple random sampling and stratified sampling and is most efficient for all values of p,, .

Clearly both Design and Optionality effects are smaller with smaller correlation value. The
study also confirms that the estimation of the mean of a sensitive variable can be improved by
using a non-sensitive auxiliary variable. The main conclusion of this study is that the
advantage of using optional RRT model over the non-optional RRT model in the presence of
auxiliary information still holds in the context of stratified sampling.
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