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Abstract

In this paper, the class of life-time distributions is considered for Bayesian analysis. The
expressions for Bayes estimators of the parameter have been derived under four different prior
distributions assuming four different loss functions and the comparison between estimators is
made by using the mean square error through generated different sample sizes by using
simulation technique.
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1. Introduction

In Bayesian inference prior information about the parameter of a model is represented by
probability function. So in case of assortment of prior information we must be cautious. In more
general sense, prior information is a way to recapitulate the available information. There is no
exclusive way for the assortment of a prior distribution so the consequence may be negligible
and there is always a possibility of obtaining the final answer with the help of distorted prior
information. In case of very little explanatory information about the unknown parameter we use
non-informative prior. However, if one has sufficient information about the parameter(s), it is
better to choose informative prior. In order to handle such situation Laplace, Jeffreys, Lindley etc
provides different approaches. In the present study we consider two non-informative (Jeffery’s
and Quasi) and two informative (Inverse exponential and Pareto Type II) priors.

The class of life-time distributions is very imperative concept when we study the
reliability of the system. Schnabel (1991) commenced the Bayesian ideas life testing and
reliability analysis under symmetric loss function, Pander and Rai (1992), Dey et al. (2010)
explains the Bayesian estimation under different loss factions, Siu and Kelly (1998), Nigm et al.
(2003), Murthy et al. (2004) explained different cases of generalize Weibull distribution, Gupta
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& Kundu (2003) noted that the two-parameter EE distribution provides a better fit than the two-
parameter Weibull distribution for some specific data. Ahmad et al. (2014) studied the Bayesian
analysis of exponentiated inverted Weibull distribution under asymmetric loss functions. Kazimi
et al. (2012) explains the preference of prior of class of life time distributions using Jeffery’s,
Gamma and Gumbell type-I1 priors.

In this paper, we compare the Bayesian estimators of the parameter of the class of Life
time distribution using four different prior distributions (Jeffery, Quasi, inverse Exponential and
Pareto 1) distributions under four different loss functions (Squared error, Al-Bayatti’s, LINEX
and Weighted), the performance of the obtained estimators are compared by using the mean
square error, through generated many sample sizes by using simulation technique.

Let us consider a random sample X = (X, X,,...,X,) of size n taken from the class of life

time distributions (suggested by Prakash and Singh (2010)) with unknown parameter @, then the
probability density function is given as

f (x) a1 x¥le 0 9>0,0<X<oc (1.2
rge’
For different values of constants « and g the different distribution is
a /] Distribution
1 Gamma distribution
1 1 Negative exponential distribution
1 Positive Erlang distribution
integer

1 Weibull distribution
2 1 Rayleigh distribution
2 3/2 Maxwell distribution

The likelihood function of (1.1) is given as
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and the log likelihood function is given as
n Xia
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2. Aim of the Bayesian Estimation for the Class of Life time Distributions

The aim of this study is to show which prior (informative or non-informative) is more
preferable for our considered class of lifetime model under different loss functions. In this
section we studied Bayes estimators under four different loss functions. One is symmetric
(squared error) loss function and the others are asymmetric (LINEX, Al-Bayatti’s and Weighted)
loss functions. Posterior distribution is obtained when prior information is combined with the
likelihood. Therefore prior information is necessary for Bayesian approach. The prior
information is a purely subjective assessment of an expert before any data has been observed. So
here we employ two non- informative (the Jeffrey’s and the Quasi) priors along with two
informative (the inverse exponential and the Pareto type I) priors for the class of life time
distributions.

3. Bayesian Analysis using Jeffery’s Prior
The Jeffreys’ prior proposed by Al-Kutubi (2005) is given as

0,(0) = J1(6)

0% log f(x;6,c)
06?

Where [I (6?)] = —nE{ } is the Fisher’s information matrix. For the model (1.1),

1
9.(0) = G

Combining the prior distribution in (2.1) and the likelihood function, the posterior density of @is
derived as follows:

a 1 n in 1

(€] X) o< [ﬁj W]:[Xiaﬁ_l exp —ile 5 (3.2)
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7010 =Ky o)~ —

I'(pn)
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)

Hence the posterior distribution using Jeffery’s prior is given by

where K™ =



78 S.P. AHMAD ET.AL [Vol. 14 Nos. 1&2

n 'Bn n
Z X, j . Z X,
= = (3.3)

r(gn) o7 P T g

”1(9|X)[

which is the probability density function inverse gamma distribution with parameters gn and

3.1. Bayes estimator using Jeffrey’s prior under SELF
The squared error loss function (SELF) was proposed by Legendre (1805). By using

squared error loss function I(g?, 0) =c(é— #)*for some constant ¢ the risk function is given by

A QA An
R(0,0) = jc(e— 0)° FIﬂ 3 ﬁ exp[—%j do

pn A A _ _
_ T [ TN ,sT(Bn-1) T(sn-2)
r'(Bn) T/ T/ T/
Now solving M =0, we obtain the Bayes estimator as
00
o—_ 1 (3.4)
(Bn—-1)

3.2. Estimator using Jeffrey’s prior under Al-Bayyati’s loss function

Al-Bayyati, (2002) introduced a new loss function using Weibull distribution. By using

Al-Bayyati’s loss function | (6, é) =0% (é— 0)’, c, R the risk function is given by
An
T L exp(— Ij do

R©.0)= [0 0-0)' ¢ o i 09 =5
TCZ /\2 A 2
=F(,Bn){9 r(n—-c,)-20TI(fn—c,-H+T°I'(fn—c,—-2)

Now solving aR(GA, 9) =0, we obtain the Bayes estimator as

00

(3.5)

Q>
I

(,61’]—02 _1)
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3.3. Estimator using Jeffrey’s prior under Weighted loss function

By using weighted loss function1(g, 9) = © _09)2 , the risk function is given by
R(6 49)—?09_‘%)2 LIk exp(—I) do
’ .0 T(Bn) o’ 0
An _ A A
T |:F(ﬂn 1)_20F(ﬁn)+62 F(ﬂn+l):|

:F(ﬂn) Tﬁnfl T/}n -I-ﬂn+1
Now solving M =0, we obtain the Bayes estimator as
06
o—_" (3.6)
£n

3.4. Estimator using Jeffrey’s prior under LINEX loss function

The LINEX loss function was introduced by Klebanov (1972) and used by Varian (1979)
in the context of real life assessment. By using LINEX loss function

I(é, 0)=exp a[e 1} - a{a - 1} —1, the risk function is given by
0 0

oo T 0 0 T/ T
R©G.0)=[|epd Z-1|-a L-1|-1|————exp| - | dO
(©.0) ! P [9 J {0 J r(An) 67" Xp( ej

e [etrgn ,rgnen | rgm _rign

" T(Bn) T —ad) T/ T/ T
Now solving M =0, we obtain the Bayes estimator as

00

AT a
925{1_8Xp(_ﬂn+1} (3.7)

4. Bayesian Analysis using Quasi Prior

When there is no information about the parameter#, one may use the quasi density as
given by:

92(9)=9id ,0>0,d>0 (4.1)

The quasi prior leads to diffuse prior when d=0 and to a non informative prior for a case when
d=1.
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Combining the prior distribution in (4.1) and the likelihood function, the posterior density
of @is derived as follows:
R
= 1

a " 1 n ap-1 :
0| x — X: exp| —=———| — 4.2
010 | e T ee| -S| L &

1 ;X‘a
7r2(9|><)=l<6,ﬂn+d exp —"T

r(BAn+d-1)
n pn+d-1
oy

Hence the posterior distribution using Quasi prior is given by

n pn+d-1 n
(inaJ ina

E S =
r(Bn+d-1) o7 0|7 g

where K™ =

(4.3)

7, (0] %) =

which is the probability density function inverse gamma distribution with parameters gn +d -1
and T = (z xi“j
i=1

4.1. Bayes estimator using Quasi prior under SELF
By using squared error loss function I(é, 9):0(2’— ©)*for some constant ¢ the risk

function is given by

A 0 A T,Berfl 1 T
R(6,0) = | c(6—6)? exp| —— | d@
(©.0) {( ) r(fn+d-1) " Xp( 9)

CT Anrd-L Pz r(Bn+d _1)_2‘A9F(ﬁn+d -2) +F(,6’n+d —3)}

- r(gn+d-1 T An+d-1 T An+d-2 T Anvd=3
Now solving M =0, we obtain the Bayes estimator as
06
0= (4.4)

(Pn+d-2)
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4.2. Estimator using Quasi prior under Al-Bayyati’s loss function
By using Al-Bayyati’s loss functionl(6, é)=9°2 (6-6)?,c, eR the risk function is
given by

A 00 A Tﬂn+dfl 1 T
R(8,6) = | 6% (6- 6)* exp| —— | d@
©0.6) ! (0-0) r(pn+d-1) g°" Xp( 9)

T pred-L Pz r(gn+d—c,-1) ,sC(Bn+d—c,-2) T(Bn+d-c, —3)}

- r(pn+d-1) T Anrd-el T An+d-c,-2 T An+d—c,-3
Now solving M =0, we obtain the Bayes estimator as
06
0= T (4.5)
(fn+d-c,-2)

4.3. Bayes estimator using Quasi prior under Weighted loss function
A — p, 2 - - - -
By using weighted loss function|(g, 9)= (999) , the risk function is given by

N ©rn N2 pr+d-1
R(H,&):I(H o) _T L exp(—lj do
<6 T(Bn+d-1) 9" 0

T/ {r(ﬁmd—a_zgwgm}

= F(ﬂn+d _1) Tﬁn+d—2 Tﬂn+d—1 T,Bn+d
Now solving M =0, we obtain the Bayes estimator as
06
- (4.6)
(Mh+d-1)

4.4. Estimator using Quasi prior under LINEX loss function

By using LINEX loss function|(§,9):exp 3[9 1]_3[‘9_1}_1, the risk function is
o

.
given by
"o 0 0 TemL g [ TJ
R(@#,0)=||expa —-1|-a —-1|-1 exp| —— | dé@
(©.6) ! P 0 % r(Bn+d-1 e P 0

TA™1 e T(Bn+d—1) _sT(Bn+d) _T(Bn+d-1) T(Bn+d-1)
= -ad +a -
r(ﬁn +d _1) (I' _aé)ﬁmd—l Tﬂmd Tﬁn“”l T/3n+d*1
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Now solving M =0, we obtain the Bayes estimator as
06
AT a
0=—<:1-exp|— 4.7
a{ Xp( ﬂﬂ+dJ} “n

5. Bayesian Analysis using Inverse exponential Prior

It is assumed that the prior distribution of & is the Inverse exponential distribution with
hyper parameter a is given as:

gg(e):zgem(—agj; 9>04a,>0 (5.)
Combining the prior distribution in (5.1) and the likelihood function, the posterior density of is
derived as follows:

n
R a

(04 " 1 L ap-1 i a
0]x) | -Z X exp| L | Zexp| -2 5.2
@10 ] T op| -0 | o[- 2 ) 52
(@ +2. %)
i=1

1
7r3(¢9|x):K9ﬂn+2 exp| — )

r(gn+l)

n pn+l
(az +> xi“j
i=1

Where K™ =

Hence the posterior distribution using Inverse Exponential prior is given by
pn+l

@+x) | @ex)
B R i 53

which is the probability density function inverse gamma distribution with parameters gn +21and

T, :[az +Zn:xi“j )
i=1
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5.1. Bayes estimator using Inverse exponential prior under SELF

By using squared error loss function I(é, 9)=c(§— 0)*for some constant ¢ the risk
function is given by

pn+l
R(6,6) = jc(e 0)? F(Tﬂ T3 eﬂlm exp(—%j do

T, {HZF(,BHH)_Z@F(M) r(gn- 1)}

=1"([Bn+1) Tlﬂn+1 Tﬁn -I-,Bn—l
Now solving °R(0.6) =0, we obtain the Bayes estimator as
00
o= (5.4)
An

5.2. Estimator using Inverse exponential prior under Al-Bayyati’s loss function

By using Al-Bayyati’s loss function!(8,6) = 6 (é—e)z, ¢, € R the risk function is
given by

£n+l
R(0.0)= I 0% (0-0y r(Tﬂn 1) eﬁl"*z eXp(_%J 40

T~ 2 g 2
=———|0°T'(fn—-c,+1)-20T,I'(Bn—-cC,)+T,T'(fn-c, -1
F(ﬁn-i—l) |: (ﬁ 2 ) 1 (IB 2) 1 (ﬁ 2 )j|
Now solving M =0, we obtain the Bayes estimator as
80
p=_ 1 (5.5)
;Bn_cz
5.3. Bayes estimator using Inverse exponential prior under Weighed loss function

. Y
By using weighted loss function (g, 6) = © 9‘9) , the risk function is given by

~ ) _ 2 2 pn+l
[ em(—LJ v
)0 T(Bn+1)6* 0
pn+l A
F(ﬂn+l) -I—lﬂn Tﬁn+ T/}n+

1
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Now solving M =0, we obtain the Bayes estimator as
06
o= (5.6)
pn+l

5.4. Estimator using Inverse exponential prior under LINEX loss function

By using LINEX loss function |(§, 0)=exp 3[9 1} _ a[e _ 1] —1, the risk function is given by
o 0

N © ~ 2 A+l
R(0,0)=[{epa AP N Y gt L exp(—L] do
0 0 % r(gn+1) 6 0
T/™ le?r(Bn+l) _,T(Bn+2) _T(An+l) T(Bn+1)
= T 1 A -ad sz T @ Bl BAnil
(ﬂ n+ ) (Tl _ ae)ﬁ’n+l Tl Tl Tl
Now solving M =0, we obtain the Bayes estimator as
06
AT, a
0=-21-exp| - 5.7
a{ m( ﬁwzﬂ' 7
6. Bayesian Analysis using Pareto | Prior

It is assumed that the prior distribution of @ is the Inverse exponential distribution with

hyper parameter a is given as:

9,(0)=ba’ 0" ; 6O>b, a,b>0 (6.1)

Combining the prior distribution in (6.1) and the likelihood function, the posterior density of is
derived as follows:

Zx
mww)[ jgmﬂk”%m 5 bgr oo 62)



2016] BAYESIAN ESTIMATION FOR THE CLASS OF LIFE-TIME DISTRIBUTIONS 85

Zn:Xia

i=1

7

1
”4(‘9|X)=KW3XP -

r'(fn+b)

2]

where K™ =

Hence the posterior distribution using Pareto type | prior is given by
B n+b

S, [ e
”4(0|X): ll—:(ﬂn'i‘b) 0ﬂn+b+1 EXp _T

(6.3)

which is the probability density function inverse gamma distribution with parameters gn +1and

(&)

6.1. Bayes estimator using Pareto | prior under SELF

By using squared error loss function I(é, 9)=c(§— 0)*for some constant ¢ the risk
function is given by

A QA Tﬁ'n+b 1 T
R(8,6) = | c(6-6)? exp(——j do
! r(Bn+b) 7"+ 0

cT/m® {éz I(Bn+b) _2T(Bn+b-1) +r(ﬁn+b—2)}

20

= F(ﬂn+b) -I-ﬁrH—b Tﬁn+b—l Tﬁn+b—2
Now solving M =0, we obtain the Bayes estimator as
06
I (6.4)

(h+b-1)
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6.2. Bayes estimator using Pareto | prior under Al-Bayyati’s loss function

By using Al-Bayyati’s loss functionl(6, é)=9°2 (é— 0)*,c, eR the risk function is
given by

A = A Tﬂn+b 1 T
R(8,0) = | 6% (6—6)? exp| —— | d@
(6.6) ! (6-6) [(Bn+b) 7"+ Xp( 9}

T/ 5Tl T AT T Tl T
= o’ exp| —— dO-20———exp| —— |d0+ | ————— exp| —— |d¥
F(ﬂn+b) |: J.Hﬂmb—cgﬂ Xp( 9) '(‘)-eﬂmb—cz Xp( 0) J.Hﬁmb—cz—l Xp[ 9) :|

0

A

Now solving M =0, we obtain the Bayes estimator as
06
I — (6.5)
pn+b-c,-1

6.3. Bayes estimator using Pareto | prior under Weighted loss function
(0-0)?

By using weighted loss function (g, 9) =

N © 0 M2 Bn+b
R(0,0)=j(9 o _T lb . exp(—lj do
)"0 T(Bn+b)er 0

T Aneb {F(,Bn+b—1) _pfBn+b) 2 r(ﬂn+b+1)}

, the risk function is given by

= F(ﬂn+b) T,Bn+b—l Tﬁn+b Tﬂn+b+1
Now solving M =0, we obtain the Bayes estimator as
06
- (6.6)
(p+b)

6.4. Estimator using Pareto | prior under LINEX loss function

A

By using LINEX loss function |(§;, )= exp a[e _1J _ a[‘9 _ 1} —1, the risk function is given by
o o

A ® g é Tﬂn+b 1 T
R(0,0)=|{expa ——1|-a]l —-1|-1 exp| —— | d@
(6.6) ! P % 0 C(Bn+b) 7"+ Xp( ej

TP le®r(Bn+b) ~T(Bn+b+1) _T(Bn+b) T(Bn+b)
= A - ae n+b+1 +a An+b o pn+b
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oR(6,6)

00
T a

7. Real data analysis

Now solving =0, we obtain the Bayes estimator as

This section presents numerical example for the proposed estimates based on a real data
set. For illustration of our proposed estimates, we consider 55 observations of burning velocity
(cm/sec) of different chemical materials with « =1.0 and g = 1.0, the data is 68, 61, 64, 55, 51,
68, 44, 82, 60, 89, 61, 54, 166, 66, 50, 87, 48, 42, 58, 46, 67, 46, 46, 44, 48, 56, 47, 54, 47, 80,
38, 108, 46, 40, 44, 312, 41, 31, 40, 41, 40, 56, 45, 43, 46, 46, 46, 46, 52, 58, 82, 71, 48, 39, 41.
The source of the above explained data related to the burning velocity of different chemical
materials for the year 2005 is available on the website (http://www.cheresources.com/mists.pdf).
By using different non-informative priors i.e.Jeffreys and Quasi priors and non informative i.e
invese Exponential and Pareto 1 prior under different Loss functions i.e. Square Error loss
function, Albayyati loss function, Weighted loss function and LINEX loss function, the Bayes
estimates and Posterior variance of the posterior distribution are as follows where posterior
variances are in parentheses.

Table 1. Bayes estimates and Posterior variances

Prior SELF ABL WL LINEX
Co=2 Co=-2 a=0.5 a=-0.5
JP 62.1296 | 64.5192 | 59.9107 | 61.00 59.6440 | 60.1789
(0.5630) | (0.6071) | (0.5235) | (0.5427) | (0.5188) | (0.5282)
QP 62.7102 | 65.1456 | 60.4504 | 61.5596 | 60.1789 | 60.7235
(0.5735) | (0.6189) | (0.5329) | (0.5527) | (0.5282) | (0.5378)
IEP 61.0090 |63.3113 | 58.8684 | 59.9196 | 58.6109 | 59.1273
(0.5427) | (0.5844) | (0.5053) | (0.5235) | (0.5008) | (0.5097)
PP 61.5596 | 63.9047 | 59.3805 | 60.4504 | 59.1185 | 59.6440
(0.5527) | (0.5956) | (0.5142) | (0.5329) | (0.5097) | (0.5188)

JP=Jeffery’s Prior, QP=Quasi prior, IEP=inverse Exponential prior, PP=Pareto prior, SELF= Squared
error loss function, ABL= Al-Bayattis’s loss function, WL=Weighted loss function, LINEX=linear
exponential loss function.

On comparing the Bayes posterior variances of different loss functions, it is observed that the
LINEX loss function has less Bayes posterior variance than other loss functions. According to
the decision rule of less Bayes posterior variance we conclude that the LINEX loss function is
more preferable loss function.
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8. Simulation Study

This section shows how simulation can be helpful and illuminating way to approach
problems in Bayesian analysis. In our simulation study, we chose a sample size of n=25, 50 and
100 to represent small, medium and large data set. The Bayes estimates are estimated for the
class of Life time distributions using informative (Jeffrey’s and Quasi) & non informative
(inverse Exponential and Pareto 1) priors under different loss functions. In order to assess the
statistical performances of these estimates, we conducted a simulation study. The mean square
error using generated random samples of different sizes are computed for each estimator. The
value for the loss parameters c, is £2.0 and a is £0.5. The study has been carried out for different
values of € keeping o and gfixed. This was iterated 5000 times. The results are presented in

S.P. AHMAD ET.AL

tables for different selections of the parameters.

Table 2. Mean square error using Jeffery’s prior

[Vol. 14 Nos. 1&2

n 0 « ﬂ éSL éAL éWL éLL
Cr=2 Co=-2 a=05 |a=-0.5
25 [05 [05]05|0.2639 |0.4928 [0.1523 [0.1986 |0.1429 |[0.1624
1.0 0.0835 |0.1986 |0.0697 |0.0692 |0.0615 | 0.0685
0.5 [1.0[1.0[0.0159 |0.0097 |0.0231 |0.0194 |0.0241 |0.0222
1.0 0.6540 |0.7410 [0.6024 |0.6246 |0.5978 | 0.6074
0.5 |2.0[1.0[0.0464 [0.0380 |0.0562 |0.0514 [0.0374 |0.0550
1.0 0.0715 [0.1176 [0.0500 |0.0583 |0.0486 |0.0517
50 |05 [05]0.5]0.0219 |0.0359 [0.0147 |0.0176 |0.0142 [0.0153
1.0 0.0326 |0.0404 [0.0388 |0.0343 [0.0303 [0.0375
0.5 | 1.0 [ 1.0 [ 0.0046 [0.0054 |0.0047 |0.0046 |0.0046 |0.0047
1.0 0.0247 [0.0327 [0.0210 [0.0224 [0.0208 |0.0213
0.5 |2.0[1.0[0.0836 [0.0785 |0.0885 |0.0861 [0.0811 |0.0879
1.0 0.1439 [0.1248 [0.1628 |0.1534 |0.1651 |0.1605
100 [0.5 | 0.5[0.5[0.0207 |0.0276 |0.0156 |0.0179 |0.0150 |0.0161
1.0 0.1605 |0.0207 [0.0193 |0.0194 |0.0192 [0.0190
0.5 |1.0[1.0[0.0081 [0.0100 |0.0067 |0.0074 [0.0065 |0.0068
1.0 0.0099 [0.0090 [0.0114 |0.0106 |0.0117 [0.0112
0.5 |2.0[1.0[0.0706 [0.0681 |0.0731 |0.0718 [0.0634 |0.0728
1.0 0.0255 |0.0210 [0.0304 |0.0279 |0.0210 | 0.0298
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Table 3. Mean square error using Quasi prior

89

n 0 « ﬂ éSL éAL éWL gLL
C=2 Co=-2 a=0.5 |a=-0.5
25 (05 |05 |05 |0.1531]0.3139 |0.0825 | 0.1107 | 0.0770 | 0.0884
1.0 0.7909 | 1.5706 | 0.4356 | 0.5797 | 0.4071 | 0.4664
05 [1.0 |10 |0.0132]0.0215 | 0.0103 | 0.0112 | 0.0102 | 0.0104
1.0 0.4681 | 0.6764 | 0.3275 | 0.3910 | 0.3135 | 0.3423
05 |20 |10 |0.0266 | 0.0179 | 0.0356 | 0.0311 | 0.0367 | 0.0345
1.0 0.1810 | 0.2837 | 0.1187 | 0.1458 | 0.1130 | 0.1248
50 |05 |05 |05 |0.0963|0.1415 | 0.0664 | 0.0799 | 0.0635 | 0.0695
1.0 0.1232 |1 0.1994 | 0.0805 | 0.0986 | 0.0769 | 0.0845
05 |[1.0 |1.0 |0.0050 | 0.0062 | 0.0048 | 0.0048 | 0.0048 | 0.0048
1.0 0.0653 | 0.0884 | 0.0488 | 0.0563 | 0.0471 | 0.0505
05 |20 |10 |0.0734|0.0682 | 0.0784 | 0.0759 | 0.0790 | 0.0777
1.0 0.0622 | 0.0912 | 0.0405 | 0.0505 | 0.0382 | 0.0428
100 |05 |05 |05 |0.0415|0.0531 | 0.0324 | 0.0367 | 0.0315 | 0.0335
1.0 0.0295 | 0.0400 | 0.0237 | 0.0261 | 0.0232 | 0.0242
05 |10 |10 |0.0095|0.0116 |0.0078 | 0.0086 | 0.0076 | 0.0080
1.0 0.0099 | 0.0110 | 0.0098 | 0.0098 | 0.0098 | 0.0098
05 |20 |10 |0.0755]|0.0730 | 0.0780 | 0.0768 | 0.0784 | 0.0777
1.0 0.0201 | 0.0249 | 0.0165 | 0.0182 | 0.0162 | 0.0169
Table 4. Mean square error using inverse Exponential prior
n 0 @ IB éSL gAL gWL éLL
Co=2 Cp=-2 a=0.5 |a=-0.5
25 (05 |05 |05 |0.1710|0.3182 | 0.0984 | 0.1285 | 0.0923 | 0.1049
1.0 0.1749 | 0.3834 | 0.1004 | 0.1269 | 0.0962 | 0.1054
05 [1.0 |10 |0.0368 | 0.0574 | 0.0244 | 0.0298 | 0.0233 | 0.0256
1.0 0.0546 | 0.0878 | 0.0413 | 0.0460 | 0.0407 | 0.0422
05 [2.0 |10 |0.0536|0.0433 | 0.0632 | 0.0584 | 0.0643 | 0.0620
1.0 0.0794 | 0.1285 | 0.0544 | 0.0645 | 0.0525 | 0.0565
50 [05 |05 |05 |0.1146 | 0.1625 | 0.0815 | 0.0965 | 0.0782 | 0.0850
1.0 0.0537 | 0.0862 | 0.0409 | 0.0454 | 0.0403 | 0.0417
05 (1.0 |10 |0.0111|0.0152 | 0.0084 | 0.0096 | 0.0081 | 0.0086
1.0 0.0321 | 0.0437 | 0.0252 | 0.0281 | 0.0246 | 0.0258
0.5 |20 |10 |0.0558|0.0507 |0.0607 | 0.0583 | 0.0613 | 0.0601
1.0 0.0242 | 0.0320 | 0.0206 | 0.0220 | 0.0204 | 0.0209
100 |05 |05 (0.5 |0.0292 | 0.0379 | 0.0224 | 0.0256 | 0.0217 | 0.0232
1.0 0.0399 | 0.0544 | 0.0303 | 0.0345 | 0.0295 | 0.0313
05 [1.0 |1.0 |0.0025|0.0029 | 0.0024 | 0.0024 | 0.0024 | 0.0024
1.0 0.0109 | 0.0126 | 0.0101 | 0.0104 | 0.0100 | 0.0101
05 |20 |10 |0.0760 | 0.0735 | 0.0785 | 0.0772 | 0.0788 | 0.0781
1.0 0.0114 | 0.0133 | 0.0103 | 0.0107 | 0.0102 | 0.0104
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Table 5. Mean square error using Pareto 1 prior

n 0 a ﬂ éSL éAL éWL éLL
co=2 Co=-2 a=0.5 a=-0.5
25 |05 |05 |05 |0.1391 | 0.2505 | 0.0897 | 0.1094 | 0.0859 | 0.0938
1.0 0.1785 | 0.3232 | 0.1451 | 0.1533 | 0.1450 | 0.1459
05 |10 |1.0 |0.0151 |0.0217 |0.0133 | 0.0137 |0.0133 | 0.0133
1.0 0.0782 | 0.1170 | 0.0616 | 0.0677 | 0.0606 | 0.0628
05 |20 |1.0 |0.0421 |0.0322 |0.0516 | 0.0469 |0.0528 | 0.0505
1.0 0.2794 | 0.4061 | 0.1974 | 0.2339 | 0.1896 | 0.2057
50 [05 |05 |05 |0.0550 | 0.0812 |0.0386 | 0.0458 | 0.0371 | 0.0402
1.0 0.0682 | 0.1001 | 0.0566 | 0.0604 | 0.0561 | 0.0572
05 |10 |1.0 |0.0063 |0.0078 |0.0058 | 0.0059 |0.0058 | 0.0058
1.0 0.0420 | 0.0559 | 0.0331 | 0.0370 | 0.0323 | 0.0340
05 |20 |1.0 |0.0423 | 0.0373 | 0.0470 | 0.0447 |0.0476 | 0.0465
1.0 0.0669 | 0.0888 | 0.0513 | 0.0584 | 0.0497 | 0.0530
100 ({05 |05 |05 |[0.0176 | 0.0233 | 0.0135 | 0.0153 | 0.0130 | 0.0139
1.0 0.0314 | 0.0410 | 0.0263 | 0.0284 | 0.0259 | 0.0267
05 |10 |[1.0 |0.0028 | 0.0032 |0.0027 | 0.0027 |0.0027 | 0.0027
1.0 0.0244 | 0.0299 | 0.0201 | 0.0221 | 0.0197 | 0.0206
05 |20 |1.0 |0.0561 |0.0536 |0.0586 | 0.0573 |0.0589 | 0.0583
1.0 0.0167 | 0.0203 | 0.0142 | 0.0153 | 0.0139 | 0.0144

In table 2-5, Bayes estimation with LINEX Loss function provides the smallest values in
maximum cases especially when loss parameter a is 0.5. When the value of the parameters
a=2and g =1(i.e for Rayleigh distribution) Al-Bayatti’s loss function provides least mean

square. Similarly, the increased true parametric values impose a negative impact on the
convergence of the estimates. Also among the priors the inverse exponential prior (informative)
is compatible for the unknown parameter of the class of life-time distributions and preferable
over all other competitive priors because of having less mean square error. Moreover, when the
sample size increases from 25 to 100, the MSE decreases quite significantly.

9. Conclusion

We consider the Bayesian analysis of the class of life-time distributions using different
informative and non-informative priors. After analysis we conclude that the inverse exponential
prior (informative) is compatible for the unknown parameter of the class of life-time
distributions and preferable over all other competitive priors because of having less posterior
Variance and mean square error. As far as choice of loss function is concerned, one can easily
observe based on evidence of different properties as discussed above that LINEX loss function
has smaller mean square error. Further, as we increase sample size posterior variance and mean
square error comes down.
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