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Abstract

We present a complete set of combinatorially non-isomorphic orthogonal ar-
rays of types OA(12, 2s31), OA(18, 3s), OA(18, 213s), and OA(20, 2s51). To pro-
duce the complete catalog, we start from reduced sets of candidate orthogonal
arrays and apply the isomorphic checking algorithm proposed in Clark and Dean
(2001).
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1 Introduction

Orthogonal arrays have a great range of applications in many research
areas (see, for example, Hedayat, Sloane and Stufken, 1999, Preface;
Wu and Hamada, 2000, Chapter 7). Representative orthogonal arrays
of various sizes are listed by many authors; for example, by Dey and
Mukerjee (1999, Appendix A3) and Hedayat, Sloane and Stufken,
(1999, Chapter 12).

An orthogonal array, OA(n, ms1
1

ms2
2

), has n rows and s1+s2 columns.
There are m1 distinct symbols in each of the first s1 columns and m2

distinct symbols in each of the last s2 columns. An array of “strength
t” has all combinations of symbols occurring the same number of
times in every selection of t columns. For use in a factorial exper-
iment, columns are assigned to factors at random and the distinct
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symbols within a column are assigned at random to the correspond-
ing factor levels. The rows are randomly ordered to form the runs
of the experiment. This means that several arrays could lead to the
same design after randomization. Such arrays are called equivalent or
isomorphic. Non-equivalent or non-isomorphic arrays can never result
in the same design through randomization. Thus, access to a catalog
of non-isomorphic arrays gives the widest possible scope for selecting
a design for a given experiment.

Clark and Dean (2001) pointed out that there are two types of
isomorphism of factorial designs depending upon whether factors are
qualitative or quantitative. Called “combinatorial isomorphism” and
“geometric isomorphism”, respectively, by Cheng and Ye (2004), these
are defined as follows.

Two designs d1 and d2 with quantitative factors are geometrically

isomorphic if one can be obtained from the other by (i) reordering the
factors (columns of the array), (ii) reordering the runs (rows of the ar-
ray), and (iii) reversing the level label ordering for one or more factors.
Geometrically isomorphic designs have identical statistical properties
for the estimation of any given complete set of orthonormal factorial
trend contrasts. For qualitative factors, designs are combinatorially

isomorphic if one can be obtained from the other by (i) reordering the
factors, (ii) reordering the runs, and (iii) relabeling the levels of one or
more factors. This differs from geometric isomporphism in (iii) since
a numerical ordering of the factor levels is no longer implied. Combi-
natorially isomorphic designs have identical statistical properties for
estimation of any factorial contrasts.

Designs that are geometrically isomorphic are, by definition, also
combinatorially isomorphic, but combinatorially isomorphic designs
are not necessarily geometrically isomorphic. Note that some non-
isomorphic designs may still be “model equivalent” in the sense of
being equivalent for fitting a particular set of statistical models. For
work on model equivalence, see, for example, Tsai, Gilmour and Mead
(2000), Cheng and Wu (2001) but this is beyond the scope of this
paper.

Recently, considerable effort has been expended in determining
combinatorially isomorphic orthogonal arrays. Stufken and Tang (2007)
gave a method of complete enumeration of non-isomorphic two-level
orthogonal arrays of strength t with t+2 factors and run size n = λ2t,
for integer λ. Sun, Li and Ye (2008) constructed a complete catalog
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of combinatorially non-isomorphic arrays OA(12, 2s), OA(16, 2s) and
OA(20, 2s) using the approach of building the array one column at a
time. With the same approach, Tsai, Ye and Li (2006) obtained a
complete catalog of geometrically isomorphic arrays OA(18, 213s) and
OA(18, 3s). A purpose of the current paper is to classify these geomet-
rically non-isomorphic designs into equivalence classes of combinatori-
ally isomorphic designs, regarding the factors as qualitative instead of
quantitative. In addition, we also present the complete set of combi-
natorially non-isomorphic arrays OA(12, 2s31) and OA(20, 2s51) using
the arrays of Sun, Li and Ye (2008) as “base” designs. More details of
our methods of construction and classification are given in Section 2.
The results are summarized in Section 3 followed by some concluding
remarks in Section 4.

2 Method of construction and classifica-

tion

The necessary and sufficient conditions given by Clark and Dean
(2001) for combinatorial isomorphism of designs d1 and d2 lead to
an algorithm, Deseq2 , which proceeds as follows. First, the Hamming
distances between all pairs of runs are calculated, where the Hamming
distance between runs i1 and i2 is defined to be the number of factors
that are at different levels in these runs. A search is made for a col-
umn permutation {c1, c2, . . . , cf} of d2 and an n×n row permutation
matrix R such that, for every dimension p = 1, 2, . . . , f ,

H
{1,2,...,p}
d1

= R(H
{c1,c2,...,cp}
d2

)R′ , (1)

where H
{c1,c2,...,cp}
d is the matrix of Hamming distances obtained from

the subdesign consisting of factors (columns) c1, c2, . . . , cp. The al-
gorithm was illustrated for 2-level designs by Clark and Dean (2001)
and extended for 3-level designs by Katsaounis and Dean (2008). The
extended algorithm was adapted for the current work.

In the remainder of this paper, we often refer to “combinatorial
isomorhism” simply as “isomorphism”. To reduce the computational
burden of isomorphism checking, we started with a reduced set of
candidate arrays that contained a manageable number of designs yet
included all possible non-isomorphic cases.
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The candidate set of orthogonal arrays OA(12, 2s31) was constructed
by appending a three-level column to each non-isomorphic orthog-
onal array OA(12, 2s) in the catalog of Sun, Li, and Ye (2008) so
that all symbols in the three-level column appear the same number
of times. All possible arrangements of the three-level column were
examined and those arrangements that gave orthogonality between
the three-level factor and all two-level factors were retained. By this
method, we obtained a set of arrays OA(12, 2s31) that includes all
possible non-isomorphic cases, and in which it is clear that arrays
OA(12, 2s31) constructed from non-isomorphic arrays OA(12, 2s) must
be non-isomorphic. To reduce the number of orthogonal arrays in the
candidate set, a preliminary screen for non-isomorphism was then per-
formed. First the rows of each candidate design were sorted by the
values of the first three columns (with the first column representing
the three-level factor). All possible level permutations and column
permutations were then applied to one of the arrays, and its rows
resorted. If, in such a procedure, the two arrays become identical,
then they are isomorphic and one of them can be removed from the
list. Note again that this method does not identify all isomorphic
pairs as the complete row permutations are not applied. The same
approach was used to construct a set of candidate orthogonal arrays
OA(20, 2s51) using the complete catalog of arrays OA(20, 2s) of Sun,
Li, and Ye (2008).

In the case of arrays OA(18, 2p3s), we took advantage of the com-
plete catalog of geometrically non-isomorphic arrays OA(18, 2p3s) of
Tsai, Ye and Li (2006). This catalog was obtained using an efficient
algorithm for checking geometric isomorphism based on a polynomial
representation of factorial designs. To identify designs that are geo-
metrically non-isomorphic but combinatorially isomorphic, we applied
the algorithm Deseq2 as described earlier in this section.

3 Results

3.1 OA(12,2s31) and OA(20,2s51)

Our construction method reveals that orthogonal arrays OA(12, 2s31)
exist only for s ≤ 4 and arrays OA(20, 2s51) exist only for s ≤ 8.
Using the screen for non-isomorphism as described above, we obtained
a total of 15 orthogonal arrays OA(12, 2s) and 331 arrays OA(20, 2s)
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in the candidate list. We then applied the full isomorphism check (1)
to those pairs of designs that were not already known to be non-
isomorphic. The numbers of non-equivalent orthogonal arrays of each
type are listed in the right hand side of Table 1 together with the
number of orthogonal arrays in the candidate list that underwent the
complete isomorphism check (1). We found three equivalence classes
of arrays OA(12, 2331) and representatives are shown (transposed) in
the left hand side of Table 2. We found only one equivalence class
of orthogonal arrays OA(12, 2431) and a representative of this class
is listed by Hedayat, Sloane, and Stufken (1999) and an alternative
representative is shown in the right hand side of Table 2. We do not
list all arrays OA(20, 2s51) because of limitation of space but they are
available upon request or at http://www.umn.edu/∼wli. We found
only one equivalence class of arrays OA(20, 2851), and a representative
can be constructed using the procedure described by Wang and Wu
(1992).

Table 1: Number of Non-isomorphic Orthogonal Arrays together with
the number of candidate OAs evaluated for complete isomorphism (in
parentheses).

OA(18, 33) 4(13) OA(12, 3123) 3(10)
OA(18, 34) 12(133) OA(12, 3124) 1(6)
OA(18, 35) 10(332)
OA(18, 36) 8(478) OA(20, 5123) 10(22)
OA(18, 37) 3(284) OA(20, 5124) 15(82)

OA(18, 2133) 15(121) OA(20, 5125) 38(154)
OA(18, 2134) 48(1836) OA(20, 5126) 30(65)
OA(18, 2135) 19(1332) OA(20, 5127) 4(6)
OA(18, 2136) 12(1617) OA(20, 5128) 1(2)
OA(18, 2137) 3(726)

3.2 OA(18, 3s) and OA(18, 213s)

The numbers of non-isomorphic orthogonal arrays OA(18, 3s) and
OA(18, 213s) are shown on the left hand side of Table 1 together
with the number of geometric non-isomorphic orthogonal arrays in
parentheses. One can see that the number of combinatorially non-
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Table 2: Non-isomorphic arrays OA(12, 2s31), s=3,4; rows correspond
to factors and columns to runs

OA(12, 2331) OA(12, 2431)
1 000011112222 1 000011112222

001100110011 001100110011
010101010101 010100111100
011010010110 011001010101

011010101001
2 000011112222

001100110011
010101010101
011000111100

3 000011112222
001100110011
010101010101
100110011001

isomorphic OAs is much smaller than the number of geometrically
non-isomorphic arrays.

Our results show there exist only three non-isomorphic orthogonal
arrays OA(18, 37). The first one is well known, and the other two were
reported by Xu, Cheng and Wu (2004). We also show that there exist
only three non-isomorphic arrays OA(18, 2137). These correspond to
each of the three non-isomorphic arrays OA(18, 37) augmented with
an additional two-level factor. The (transposed) arrays are listed in
the leftmost column of Table 3. The first one is well known and can
be found in Taguchi (1987). The other two, as far as we know, have
not been reported before.

All non-isomorphic orthogonal arrays OA(18, 3s) are listed in
Table 3 in Appendix. Table ?? (in Appendix) lists the number of
geometric-isomorphic designs corresponding to each of these arrays.
One can observe that these numbers vary greatly among orthogo-
nal arrays of the same size. For example, the three non-isomorphic
OA(18, 37)s are equivalent to 204, 30, 50 geometrically non-isomorphic
designs respectively. The number of non-isomorphic arrays
OA(18, 213s) for s < 7 is much larger than that of arrays OA(18, 3s), so
we are unable to list all non-isomorphic OA(18, 213s)s. However, they
are available from the authors upon request or at
http://www.umn.edu/∼wli.
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3.3 OA(9, 3s)

It can be seen that the first listed OA(18, 33) and the first listed
OA(18, 34) in Table 3 in Appendix consist of a duplicated OA(9, 33)
and a duplicated OA(9, 34), respectively. No other 18-run orthogonal
array consists of duplicated 9-run orthogonal arrays for s ≥ 3. Thus,
each of the OA(9, 33) and the OA(9, 34) must be the unique case of
its size. This follows since if there were to exist two arrays OA(9, 33)
that are not isomorphic, their duplicates must be two non-isomorphic
arrays OA(18, 33). But we find only one OA(18, 33) equivalence class
consisting of duplicated arrays OA(9, 33). Therefore, there is only one
OA(9, 33) equivlance class. By the same argument, there is only one
equivlance class of arrays OA(9, 34).

4 Concluding remarks

The results in this paper, together with the results of Sun, Li and
Ye (2008) on orthogonal arrays OA(12, 2s) and OA(20, 2s), complete
the classification of 9-run, 12-run, 18-run and 20-run orthogonal ar-
rays under combinatorial isomorphism. Hedayat, Sloane, and Stufken
(1999, Table 12.7) list OA(12, 2s61) and OA(20, 2s101) only s ≤ 2.
For s = 2, there exists only one equivalence class in each case, and
the case s = 1 is trivial, as only full factorials are possible. The non-
existence of OA(12, 2s61) and OA(20, 2s101) for s ≥ 3 can be verified
numerically by attempting to augment a third two-level column to the
arrays OA(20, 22101) and OA(12, 2261). The cases that still remain to
be classified among the orthogonal arrays with fewer than 20 runs
are mixed-level orthogonal arrays with 8 runs and 16 runs, in partic-
ular, OA(8, 2s4t) and OA(16, 2s4t). This work is underway using an
approach similar to that presented in this paper.
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Appendix

Table 3: Non-isomorphic arrays OA(18, 3s) and OA(18, 2137); rows
correspond to factors and columns to runs

OA(18, 33) OA(18, 34) OA(18, 35) OA(18, 36)
1 000000111111222222 1 000000111111222222 1 000000111111222222 1 000000111111222222

001122001122001122 001122001122001122 001122001122001122 001122001122001122
001122112200220011 001122112200220011 001122112200220011 001122112200220011

001122220011112200 010212120102021201 010212120102021201
2 000000111111222222 010212211020202110 010212211020202110

001122001122001122 2 000000111111222222 012120020112212010
001122120201120201 001122001122001122 2 000000111111222222

001122112200220011 001122001122001122 2 000000111111222222
3 000000111111222222 001212120012121200 001122112200220011 001122001122001122

001122001122001122 010212120102021201 001122112200220011
001212120102120201 3 000000111111222222 010221121020202110 010212120102021201

001122001122001122 010212211020202110
4 000000111111222222 001122112200220011 3 000000111111222222 012120021012212001

001122001122001122 010212120102021201 001122001122001122
010212021201120102 001122120201120201 3 000000111111222222

4 000000111111222222 010212102021221100 001122001122001122

OA(18, 2t37) 001122001122001122 010212221100102021 001122112200220011
1 000000111111222222 001122120201120201 010212120102021201

001122001122001122 001212112020221010 4 000000111111222222 010221121020202110
001122112200220011 001122001122001122 012102200121122010
010212120102021201 5 000000111111222222 001122120201120201
010212211020202110 001122001122001122 010212102021221100 4 000000111111222222
012120020112212010 001122120201120201 012120020121212010 001122001122001122
012120201021120201 001212121020212010 001122120201120201
100110101001011010 5 000000111111222222 010212102021221100

6 000000111111222222 001122001122001122 010212221100102021
2 000000111111222222 001122001122001122 001122120201120201 012120020121212010

001122001122001122 001122120201120201 010212102120221001
001122112200220011 010212102021221100 010212221001102120 5 000000111111222222
010212120102021201 001122001122001122
010212211020202110 7 000000111111222222 6 000000111111222222 001122120201120201
012120021012212001 001122001122001122 001122001122001122 010212102120221001
012120200121120210 001122120201120201 001122120201120201 010212221001102120
100110101001100101 010212102120221001 010212102120221001 012120020121212010

012120020121212010
3 000000111111222222 8 000000111111222222 6 000000111111222222

001122001122001122 001122001122001122 7 000000111111222222 001122001122001122
001122112200220011 001122120201120201 001122001122001122 001212120102120201
010212120102021201 010212121020202101 001212120102120201 010122022110212001
010221121020202110 010122022110212001 011220212001021021
012102200121122010 9 000000111111222222 011220212001021021 012201121020200121
012120201012210201 001122001122001122
100110101001011010 001212120102120201 8 000000111111222222 7 000000111111222222

001221121020212010 001122001122001122 001122001122001122
001212120102120201 001212120102120201

10 000000111111222222 010122022110212001 010221021120212001
001122001122001122 012201121020200121 011220212001021021
001212120102120201 012102122010200121
010122022110212001 9 000000111111222222

001122001122001122 8 000000111111222222
11 000000111111222222 001212120102120201 001122001122001122

001122001122001122 010221021120212001 010212021201120102
001212120102120201 011220212001021021 011220212010020121
010221021120212001 012021201210211002

10 000000111111222222 012102122001201021
12 000000111111222222 001122001122001122

001122001122001122 010212021201120102
010212021201120102 011220212010020121
011220212010020121 012021201210211002
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Table 4: Number of geometrically non-isomorphic OA(18, 3s) designs
that are combinatorially isomorphic

OA(18, 33) 1 2 3 4
geo. distinct 2 4 5 2

OA(18, 34) 1 2 3 4 5 6 7 8 9 10 11 12
geo. distinct 2 6 3 7 16 4 24 10 13 14 30 4

OA(18, 35) 1 2 3 4 5 6 7 8 9 10
geo. distinct 20 36 6 15 30 123 40 17 42 3

OA(18, 36) 1 2 3 4 5 6 7 8
geo. distinct 186 24 44 15 123 43 38 5

OA(18, 37) 1 2 3
geo. distinct 204 30 50
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