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Abstract 
 

We propose a generalized version of Chhabra et al. (2016) multi-stage optional 

unrelated question RRT model both for binary and quantitative response situations, wherein 

the prevalence of sensitive variable and the sensitivity level of the underlying sensitive 

question are estimated simultaneously using a two question approach. In the proposed model 

we have assumed the prevalence of non-sensitive characteristics also unknown. Simulation 

results indicate that the proposed models are more efficient than the corresponding one-stage 

model. 

 

Keywords:  Optional Unrelated Question Randomized Response Models; Simulation Study; 

Parameter Estimation; Sensitive Characteristics. 

___________________________________________________________________________ 
 

1.  Introduction 
 

Surveys on highly personal and stigmatizing questions concerning issues such as drug 

addiction, abortion, sexual behavior etc. can lead to unreliable data when people interviewed 

are required to answer directly. The development of an ingenious tool known as randomized 

response models by Warner (1965) for personal interview surveys has attracted a greater co-

operation to collect data on sensitive topics while ensuring respondent anonymity. Since then, 

have developed several other randomized response models for collecting data on both the 

qualitative and quantitative variables. 

 

 Instead of requesting the respondent to reply affirmatively or negatively to the 

sensitive research question as in Warner (1965), Greenberg et al. (1969, 1971) stated the 

alternatives differently. In this model the respondent face the randomizing device in which 

the sensitive question is asked with known probability   and an innocuous question is asked 

with probability     . A question may be perceived as sensitive by one subject and not by 

the other. Taking this into account, Gupta et al. (2002) introduced optionality in RRT models. 

In these models, the respondents for whom the research question is not personally sensitive 

are instructed to directly answer the research question. Rest of the respondent are asked to 

provide scrambled responses. This idea was integrated with the unrelated question models in 

Gupta et al. (2013). 

 

In optional RRT models, there are two parameters of interest-the sensitivity level of the 

question (proportion of respondents in the population who consider the question sensitive)  
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and prevalence of the sensitive characteristic in the population. Estimating these two 

parameters simultaneously often requires a split-sample approach, and hence a much larger 

total sample size. Sihm et al. (2016) proposed modified optional unrelated question models- a 

binary and a quantitative RRT model which offer the respondents the option of answering the 

sensitive question directly if they find the research question non-sensitive. In their approach, 

the sensitivity level is estimated first by using the usual Greenberg et al. (1969) model and 

then the prevalence of the sensitive characteristic is estimated from the same sample by using 

the Gupta et al. (2013) optional RRT model. Thus both parameters are estimated sequentially 

using the same sample but asking two questions from each respondent. 
 

Chhabra et al. (2016) proposed three-stage optional unrelated question RRT models 

both for binary and quantitative response situation. In these models a randomly selected 

proportion   of respondents answer the main research question truthfully and a known 

proportion    of respondents provide a randomized response to the research question using 

Greenberg et al. (1969) model or Greenberg et al. (1971) model (depending upon whether the 

response is binary or quantitative). The remaining respondents use the Gupta et al. (2013) 

model. The sensitivity level is estimated from the same sample by using the Greenberg et al. 

(1969) model and prevalence of the sensitive attribute using Gupta et al. (2013) model. In our 

current work we propose a generalized version of Chhabra et al. (2016) model by assuming 

the prevalence of unrelated characteristics while asking Question 1 and Question 2 to be 

unknown.  

 

In section 2, the theoretical framework for the generalized multi-stage unrelated 

question RRT models is discussed. A simulation study is presented in Section 3 and it helps 

validate the findings of Section 2. Some concluding remarks are made in Section 4. 

 

2.   The Proposed Model 
 

In this section, we propose a generalized multi-stage unrelated question RRT models-

one for binary response situations and one for quantitative response situations, which are 

generalizations of Chhabra et al. (2016) model. 

 

2.1  Binary Response Situation 
 

In the proposed binary model, all the respondents are asked two questions. The question 

about sensitivity is asked first via randomization device 1. In this randomization device, the 

sensitive question is “Do you consider the research question too sensitive for a direct 

answer?” prevalence of the corresponding unrelated characteristic is assumed unknown. The 

underlying sensitivity level   and its variance can be estimated from the sample using 

Greenberg et al. (1969) model. Then, in the model all the respondents of the same sample are 

asked another question to ascertain the prevalence of the sensitive characteristic in the 

population using randomization device 2. 

 

In randomization device 2, the same sample is used. A known proportion   of 

respondents answer the research question truthfully and a known proportion   of respondents 

provide a randomized response using the Greenberg et al. (1969) model in which the 

respondent uses the randomization device which bears sensitive question with the known 

probability    and an unrelated innocuous question whose prevalence is unknown which has 

no possible embarrassment, is answered with probability (    ). The remaining proportion 

        of respondents uses Gupta et al. (2013) optional unrelated question model, in 

which the respondent is given the option to answer the research question directly (or using 
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the Greenberg et al. (1969) model with known parameter   ) if they find the research 

question non sensitive (or sensitive). 

We use the following notation. Let 

   be the sample size, 

    be the unknown probability of an unrelated question used in Greenberg et al. (1969) 

model of randomization device 1 while asking Question 1, 

    be the unknown probability of another unrelated question used in Greenberg et al. 

(1969) model of randomization device 2 while asking Question 2, 

  be the unknown proportion of population that belongs to the sensitive group, 

    be the known probability of the respondent selecting the question about sensitivity in 

Greenberg et al. (1969) model of randomization device 1 while asking Question 1, 

    be the known probability of the respondent selecting the sensitive question in 

Greenberg et al. (1969) model of randomization device 2 while asking Question 2, 

   be the sensitivity level of the main research question in the population, 

     be the probability of ‘yes’ response from a respondent in randomization device 1 

while asking Question 1, 

      be the probability of ‘yes’ response from a respondent in randomization device 2 

while asking Question 2. 
 

Thus, using randomization device 1, we obtain  
 

aaaY pwpP )1(1       (1)
                                                        
 

Since there are two unknowns w and    we need two equations. So we split the whole 

sample of size n in two sub-samples of sizes n1 and n2. Different scrambling devices are used 

in both the sub-samples. 

 

Let  

    be the known probability of the respondent selecting the question about sensitivity 

in Greenberg et al. (1969) model of randomization device 1 while asking Question 1 

from a sub-sample of size n1, 

     be the known probability of the respondent selecting the question about sensitivity 

in Greenberg et al. (1969) model of randomization device 1 while asking Question 1 

from a sub-sample of size n2, 

      be the probability of ‘yes’ response by a respondent in randomization device 1 

while asking Question 1 from a sub-sample of size n1, 

      be the probability of ‘yes’ response by a respondent in randomization device 1 

while asking Question 1 from a sub-sample of size n2. 

Then, 

aaaY pwpP )1( 1111 
                                                (2) 

aaaY pwpP )1( 2212 
                                               (3)

 
Solving for w , 
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Solving for ,a
12

121112

aa

YaYa
a

pp

PpPp






                                                                                 (5)

 



10 B.K. DASS AND ANU CHHABRA               [Vol. 15, Nos. 1 &2 

 

Thus, the estimate of w is given by, 
21

121112 )1()1(
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w









                                   (6) 

where 11YP


 is the proportion of “yes” responses while asking Question 1 from a sample of 

size n1and 
12

ˆ
YP  be the proportion of “yes” responses while asking Question 1 from a sample 

of size 2n . 
 

 

After applying first order Taylor’s Approximation to equation (6) we have, 
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The expectation of


w , to the first order of Taylor’s Approximation, is given by 
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For Question 2, let 
2YP  be the probability of ‘yes’ response from a respondent to question 2. 

We have, 

    bbbbbbY ppwwFTppFTP  )1()1()1()1(2  .     (11)
     

 

Solving, the above equation we have 

 

 ))1(())1(1)(1(2 bbbY pTpwpFwP  bb FTwFp )}1(){1(    (12)
 
 

Since there are two unknowns  and    we need two equations.  So we split the whole 

sample of size n in two sub-samples of sizes n1 and n2. Different scrambling devices are used 

in both the sub-samples. Let 

     be the known probability of the respondent selecting the sensitive question in 

Greenberg et al. (1969) model of randomization device 2 while asking Question 2 from 

a sub-sample of size n1, 

     be the known probability of the respondent selecting the sensitive question in 

Greenberg et al. (1969) model of randomization device 2 while asking Question 2 from 

a sub-sample of size n2, 

      be the probability of ‘yes’ response from a respondent in randomization device 2 

while asking Question 2 from the same sub-sample of size n1, 

      be the probability of ‘yes’ response from a respondent in randomization device 2 

while asking Question 2 from the same sub-sample of size n2. 

 

 Thus, 

 ))1(())1(1)(1( 11121 bbbY pTpwpFwP  )}1({)1( 1 FTwFp bb   .   (13)
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 ))1(())1(1)(1( 22222 bbbY pTpwpFwP  )}1({)1( 2 FTwFp bb   .   (14)
 

Solving equation (13) and equation (14) for  b  we have, 
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Solving equation (13) and equation (14) for π, we have 
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Thus, the estimate of π is given by 
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After applying first order Taylor’s Approximation to equation (20) we have,
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The expectation of


 , to the first order of Taylor’s Approximation, is given by 
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2.2  Quantitative Response Situation 
 

In the proposed quantitative model, all the respondents are asked two questions. The 

question about sensitivity is asked first using randomization device 1. In this randomization 

device, the sensitive question is “Do you consider the research question too sensitive for a 
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direct answer?” prevalence of the corresponding unrelated characteristic is assumed 

unknown. The underlying sensitivity level   and its variance can be estimated from the 

sample using Greenberg et al. (1969) model. All the respondents of the same sample are 

asked another question to ascertain the mean prevalence of the sensitive characteristic   in 

the population. This is done using randomization device 2 using the same sample as the one 

used for the first question. With this randomization device, a known proportion  of 

respondents answer the research question truthfully and a known proportion   of respondents 

provide a randomized response using Greenberg et al. (1971) model in which the respondent 

uses the randomization device which bears sensitive question with the known probability    

and an unrelated innocuous question is answered with probability      . The remaining 

proportion       of respondents use Gupta et al. (2013) optional unrelated question 

model, in which the respondent is given the option to answer the research question directly 

(or by using the Greenberg et al. (1971) model with known parameter    and unknown mean 

and variance of the innocuous variable) if they find the research question non sensitive 

(sensitive). 

 

We use the following notation:  

   be the sample size, 

 w be the sensitivity level of the survey question in the population, 

 a be the unknown probability of an unrelated question used in Greenberg et al. (1969) 

model of randomization device 1 while asking Question 1, 

 ap be the known probability of the respondent selecting the question about sensitivity 

in Greenberg et al. (1969) model of randomization device 1 while asking Question 1, 

 bp  be the known probability of the respondent selecting the sensitive question in 

Greenberg et al. (1971) model of randomization device 2 while asking Question 2, 

 
Y  and 

2

Y  be the unknown mean and variance of an innocuous question used in 

Greenberg et al. (1971) model of randomization device 2 while asking Question 2, 

 X and 
2

X  be the unknown mean and variance of the sensitive question of the 

population, 

 Z be the reported quantitative response to randomization device 2 while asking 

Question 2 by a respondent. 
 

Then from randomization device 1, we obtain ŵ as an unbiased estimator of w and ŵ  

with its variance are given in equation (8) and equation (10) above respectively. 

 

From randomization device 2, we get 


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
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The expectation and variance of  Z is given by, 
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(25)                                                                                                                                                                                                    

and 
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    (26)
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   222)1()1()1( ZYYbb pwFTpF   .                         (27)
 
 

Since, there are two unknowns X  and Y  we need to follow split-sample approach. We use 

the same sample split as done in Question 1. 

 

Let 

 1bp  be the known probability of the respondent selecting the sensitive question in 

Greenberg et al. (1971) model of randomization device 2 while asking Question 2 from 

a sub-sample of size n1, 

 2bp  be the known probability of the respondent selecting the sensitive question in 

Greenberg et al. (1971) model of randomization device 2 while asking Question 2 from 

a sub-sample of size n2, 

    be the reported response to randomization device 2 by a respondent while asking 

Question 2 from a sub-sample of size n1, 

    be the reported response to randomization device 2 by a respondent while asking 

Question 2 from a sub-sample of size n2.  

 

We have, 
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Solving equation (29) and equation (31) for ,X  we have 
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After applying first order Taylor’s Approximation to equation (33) we have,
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The expectation of X̂  , to the first order of Taylor’s Approximation, is given by 
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Solving equation (29) and equation (31) for ,Y  we have 
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So,  
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
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                      (42) 

3.  Simulation Results 

In this section, the theoretical results obtained in Section 2 for our estimators X



 , ̂  

and ŵ  are verified empirically. All the simulations were conducted using SAS programming 

language. For the binary response models, parameters T and F , were allowed to vary while 

all other variables were fixed. We used number of trials = 10000, 9.0w , 3.0 , 1.0a , 

,7.0b  ,2.01 ap ,7.02 ap 3.01 bp , 9.02 bp and 1000n . The whole sample is 

equally divided in two sub-samples of sizes 5001 n  and .5002 n  For the quantitative 

response models, parameters T and F were allowed to vary while all other variables were 

fixed again and we used the number of trials = 10000, 9.0w , 1.0a , 2.01 ap ,

,7.02 ap 3.01 bp , ,9.02 bp 2X , 7Y  and 1000n . The whole sample is equally 

divided in two sub-samples of sizes 5001 n  and .5002 n  Further, X and Y are assumed to 

follow Poisson distribution with parameters X and Y respectively. Both the proposed 

models are valid for those combinations of T and F for which      . Thus, in tables 

given below, the combinations of T and F for which       are marked with a dash (  . 
 

3.1  Simulation of ̂  and ŵ  for generalized binary three-stage model 
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The table below shows the simulation results calculated using SAS programming 

language for different combination of T and F and the theoretical values are calculated using 

the results obtained in Section 2. 

Table 1: Simulation Results of Binary Model 

Trials =10000, ,9.0w 3.0 , ,1.0a ,7.0b ,2.01 ap 7.02 ap , 3.01 bp , ,9.02 bp ,5001 n

.5002 n  

F  
  T  

   0 0.1 0.3 0.5 0.7 

0 

 
Sim. Var )ˆ(w  0.0012883 0.0012722 0.0012722 0.0012722 0.0012722 

 
Theo. Var )ˆ(w   0.0012 0.0012 0.0012 0.0012 0.0012 

 
Sim. Mean )ˆ(w   0.9002187 0.9001922 0.9001922 0.9001922 0.9001922 

 
Sim. Var )ˆ(   0.000622665 0.000627936 0.000621135 0.000611242 0.000592475 

 
Theo. Var )ˆ(  0.000621077 0.000617938 0.000611236 0.000603969 0.000596138 

 
Sim. Mean )ˆ(  0.2998357 0.3003454 0.3004091 0.3004734 0.3003022 

 
Sim. Var )ˆ(  / Theo. Var )ˆ(  1.002556849 1.016179617 1.016195054 1.012042009 0.99385545 

0.1 
 

Sim. Var )ˆ(w  0.0012722 0.0012732 0.0012732 0.0012732 0.0012732 

Theo. Var )ˆ(w   0.0012 0.0012 0.0012 0.0012 0.0012 

Sim. Mean )ˆ(w   0.9001922 0.8998585 0.8998585 0.8998585 0.8998585 

Sim. Var )ˆ(   0.000634551 0.000617069 0.000611192 0.000603195 0.000593805 

Theo. Var )ˆ(  0.000621417 0.000618294 0.000611623 0.000604388 0.000596588 

Sim. Mean )ˆ(  0.300266 0.2998498 0.2999399 0.2999252 0.2999976 

Sim. Var )ˆ(  /Theo. Var )ˆ(  1.021135566 0.998018742 0.999295318 0.998026102 0.995335139 

0.3 
 

Sim. Var )ˆ(w  0.0012722 0.0012732 0.0012732 0.0012732 - 

Theo. Var )ˆ(w   0.0012 0.0012 0.0012 0.0012 - 

Sim. Mean )ˆ(w   0.8998585 0.8998585 0.8998585 0.8998585 - 

Sim. Var )ˆ(   0.000635883 0.000617936 0.000612398 0.000604051 - 

Theo. Var )ˆ(  0.000622092 0.000619 0.000612392 0.00060522 - 

Sim. Mean )ˆ(  0.3002504 0.2998577 0.2999395 0.2999288 - 

Sim. Var )ˆ(  / Theo. Var )ˆ(  1.022168747 0.998281099 1.000009798 0.998068471 - 

0.5 
  

 

Sim. Var )ˆ(w  0.0012722 0.0012732 0.0012732 - - 

Theo. Var )ˆ(w   0.0012 0.0012 0.0012 - - 

Sim. Mean )ˆ(w   0.9001922 0.8998585 0.8998585 - - 

Sim. Var )ˆ(   0.000636683 0.000618112 0.000612135 - - 

Theo. Var )ˆ(  0.00062276 0.000619699 0.000613154 - - 

Sim. Mean )ˆ(  0.3002484 0.2998882 0.299963 - - 

Sim. Var )ˆ(  / Theo. Var )ˆ(  1.022356927 0.997439079 0.998338101 - - 

0.7 
  

 

Sim. Var )ˆ(w  0.0012722 0.0012732 - - - 

Theo. Var )ˆ(w   0.0012 0.0012 - - - 

Sim. Mean )ˆ(w   0.9001922 0.8998585 - - - 

Sim. Var )ˆ(   0.000634322 0.000617312 - - - 

Theo. Var )ˆ(  0.000623421 0.000620392 - - - 

Sim. Mean )ˆ(  0.3002211 0.299885 - - - 

Sim. Var )ˆ(  / Theo. Var )ˆ(  1.017485776 0.995035397 - - - 
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The simulation results support our theoretical finding that ̂  and ŵ are unbiased 

estimators of   and w respectively up to first order Approximation. The theoretical and 

simulated variances of ŵ are very close and the theoretical and simulated variances of ̂ are 

also very close as indicated by the ratios in the last row of each block. For example, one may 

observe from Table 1 that for 3.0T and ,3.0F the theoretical value of 0012.0)ˆ( wVar

and simulated value of .0012732.0)ˆ( wVar Similarly, for 3.0T and ,3.0F the 

theoretical value of 000612392.0)ˆ( Var and simulated value of .000612398.0)ˆ( Var  

The first order Taylor’s Approximation was used to calculate the theoretical values for

)ˆ(wVar  and )ˆ(Var .  

3.2. Simulation of 
^

X  and 
^

w for generalized quantitative three-stage model 
 

The table below shows the simulation results calculated using SAS programming 

language for different combination of T and F and the theoretical values are calculated using 

the results obtained in Section 2.  

 

Table 2 : Simulation Results of Quantitative Model 

Trials = 10000, ,9.0w 2X , ,7Y  1.0a , 2.01 ap , 7.02 ap , 3.01 bp , 

,9.02 bp ,1000n  ,5001 n .5002 n  

F   T  

   0 0.1 0.3 0.5 0.7 

0 

 
Sim. Var )ˆ(w  0.0012869 0.0012869 0.0012869 0.0012869 0.0012869 

 
Theo. Var )ˆ(w   0.0012 0.0012 0.0012 0.0012 0.0012 

 
Sim. Mean )ˆ(w   0.8999578 0.8999578 0.8999578 0.8999578 0.8999578 

 
Sim. Var )ˆ( X  0.0127931 0.0122525 0.010834 0.0096872 0.0081281 

 
Theo. Var )ˆ( X  0.012853056 0.012222531 0.010895331 0.009479931 0.007976331 

 
Sim.Mean )ˆ( X  1.9998117 1.9999975 1.9997799 1.9995907 2.0000172 

 

Sim. Var )ˆ( X / 

Theo. Var )ˆ( X  0.995335273 1.002451947 0.994370892 1.021863978 1.01902742 

0.1 
Proposed 

Model  

Sim. Var )ˆ(w  0.0012869 0.0012869 0.0012869 0.0012869 0.0012869 

Theo. Var )ˆ(w   0.0012 0.0012 0.0012 0.0012 0.0012 

Sim. Mean )ˆ(w   0.8999578 0.8999578 0.8999578 0.8999578 0.8999578 

Sim. Var )ˆ( X  0.0128918 0.0123174 0.0109065 0.0097501 0.0082198 

Theo. Var )ˆ( X  0.012921753 0.012293678 0.010971378 0.009560878 0.008062178 

Sim.Mean )ˆ( X  1.999786 1.9999661 1.9996712 1.9996388 1.9999975 

Sim. Var )ˆ( X  / 

Theo. Var )ˆ( X  0.997681971 1.00192961 0.994086613 1.019791279 1.019550796 

0.3 
Proposed 

Model 

Sim. Var )ˆ(w  0.0012869 0.0012869 0.0012869 0.0012869 - 

Theo. Var )ˆ(w   0.0012 0.0012 0.0012 0.0012 - 

Sim. Mean )ˆ(w   0.8999578 0.8999578 0.8999578 0.8999578 - 

Sim. Var )ˆ( X  0.0130073 0.0124002 0.0110545 0.0098954 - 

Theo. Var )ˆ( X  0.013058331 0.012435156 0.011122656 0.009721956 - 

Sim.Mean )ˆ( X  1.9998812 1.9999859 1.9997499 1.9995702 - 
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Sim. Var )ˆ( X  / 

Theo. Var )ˆ( X  0.996092073 0.997188938 0.993872327 1.017840443 - 
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0.5 
Proposed 

Model 

Sim. Var )ˆ(w  0.0012869 0.0012869 0.0012869 - - 

Theo. Var )ˆ(w   0.0012 0.0012 0.0012 - - 

Sim. Mean )ˆ(w   0.8999578 0.8999578 0.8999578 - - 

Sim. Var )ˆ( X  0.0131078 0.0125434 0.0112264 - - 

Theo. Var )ˆ( X  0.013193819 0.012575544 0.011272844 - - 

Sim.Mean )ˆ( X  1.9999213 1.9999244 1.9996857 - - 

Sim. Var )ˆ( X  / 

Theo. Var )ˆ( X  0.993480356 0.997443928 0.99588001 - - 

0.7 
Proposed 

Model 

Sim. Var )ˆ(w  0.0012869 0.0012869 - - - 

Theo. Var )ˆ(w   0.0012 0.0012 - - - 

Sim. Mean )ˆ(w   0.8999578 0.8999578 - - - 

Sim. Var )ˆ( X  0.0132067 0.012656 - - - 

Theo. Var )ˆ( X  0.013328219 0.012714844 - - - 

Sim.Mean )ˆ( X  1.999889 1.9997843 - - - 

Sim. Var )ˆ( X  / 

Theo. Var )ˆ( X  0.990882578 0.995372023 - - - 

 

In this case also, the simulations results help validate our theoretical findings. It may be 

noted from Table 2 that unbiasedness of X̂  and ŵ is well-supported. The theoretical and 

simulated variances of X̂ are also very close as indicated by the ratios in the last row of each 

block. For example, note from Table 2 that for 3.0T and ,3.0F  the theoretical value of 
0012.0)ˆ( wVar  and corresponding simulated variance is 0012869.0)ˆ( wVar . Similarly, 

the theoretical value of 60.01112265)ˆ( XVar   and the corresponding simulated value is

0.0110545 . The first order Taylor’s Approximation was used to calculate the theoretical 

values for )ˆ(wVar  and )ˆ( XVar  . 

 

4.   Conclusions 
 

In this paper, we propose a generalized version of Chhabra et al. (2016) three-stage 

modified optional unrelated question RRT models for both binary and quantitative response 

situations. The simulation study shows that for appropriate choices of (T, F), the proposed 

models work better than the corresponding one-stage models (i.e. T=0=F). For example: one 

may observe from Table 1, that for 5.0T and ,3.0F the theoretical value of 

0.00060522)ˆ( Var  and 0T and ,0F the theoretical value of 70.00062107)ˆ( Var . 

Similarly, one may observe from Table 2, that for 5.0T and ,3.0F the theoretical value 

of 60.00972195)ˆ( XVar  and for 0T and ,0F the theoretical value of 

60.01285305)ˆ( XVar  . Also note that )ˆ( XVar  decreases steadily as T increases. This is 

because for our choice of various parameters, )ˆ( XVar  linear function of T with negative 

coefficient. Similarly for the binary case, )ˆ(Var has its maximum at -2.17 and hence 

decreases continuously in the 0 to 1 range.  
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