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Abstract
In this paper we consider small area estimators using a selection approach based on a Mixed

Generalized Akaike Information Criterion statistic. The estimators are model-based that use aux-
iliary information represented by a set of explicative variables. The candidate models are defined
using different types of relationship between the response and the explicatives, going from a simple
univariate linear to a multivariate and non-parametric one.

Numerical results show that the procedure selects the estimators with the smallest mean squared
error from a set of candidates. The good performance of the selection procedure is also compared
with alternative selection approaches. In addition, the important practical advantages in a real
application are shown.

Key words: Akaike Information Criterion, Bootstrap, Fay-Herriot model, Generalized Degree
of Freedom, monotone model, spline regression, small area estimation.

1 Introduction

In recent years, the demand for small area estimation (SAE) has increased considerably due to
its use in the formulation of policies and programs, in the distribution of government funds and in
regional plans. Demand from the private sector has also increased significantly related with busi-
ness decisions. As a result, we found related to the subject: working groups, conferences (the Inter-
national SAE Conference, starting in 2005, that continues to be celebrated, among others) and re-
search projects (such European projects as EURAREA, SAMPLE and AMELI, among others), as
well as important papers published in international prestigious statistical and sampling journals.
One of the figures that has contributed to this growth is J.N.K. Rao, whose contributions have been
key in the methodological development in this field. It has also been a source of inspiration for all
our work in the field of small areas and in particular in this paper, in which we refer to some of his
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papers and books.

In what follows, we present an estimation selection approach based on a Mixed Generalized
Akaike Information Criterion statistic, accompanied by an important application with data from
the survey on income and living conditions in Galicia (north-west Spain) in 2015. A fundamental
aspect to determine the degree of social cohesion in a population is to know the distribution of
income. Being aware of this, at the European Summit in Laeken (Brussels) in 2001, the heads of
the European Union Member States set a series of indicators in order to quantify the progress in
the objectives of the fight against poverty and social exclusion. These indicators have since been
published by the Statistical Office of the European Union (Eurostat).

The region of Galicia has been characterized by a marked duality that is materialized in the ex-
istence of areas that have managed to successfully incorporate industrialization processes, access
to international trade or the development of a service sector of importance, as opposed to others
that have remained with more traditional productive models linked to primary, family farms. The
most visible consequence of these differences was the massive emigration in these last zones, with
the consequent depopulation.

Galicia is divided into four provinces: Coruña, Lugo, Ourense and Pontevedra. Each province
is hierarchically partitioned into counties and municipalities. Until now, the income differences
between households in Galicia only could be analyzed at the province or area level. In any case,
the provincial division hides important characteristics to which attention should be paid. For ex-
ample, in the province of Pontevedra, coastal areas are very different from the eastern areas, which
are more similar to their neighboring areas in the province of Ourense. Therefore, it is fundamental
to disaggregate the provincial analysis. There is an increasing interest in obtaining income data
at the smallest possible geographical level from local authorities, academics, commercial organi-
zations and independent researchers. These data are essential for the identification of deprived
and disadvantaged communities, provision of information to practitioners and for the profiling of
geographical areas.

The objective of this paper is to estimate the distribution of the mean income in the galician
counties. This will allow us to quantify social cohesion in order to assess the differences in the cit-
izens’ standard of living. The survey on income and living conditions (ILC) provides information
about the distribution of income and social exclusion. The sampling design of the ILC is stratified,
with strata defined by the size of the municipalities. Most of the municipalities are not represented
in the sample, so the direct estimates at the municipal or county level have a low accuracy. In
this context, estimating the mean income in the counties is an SAE problem, whose techniques
give more accurate estimators for individual areas, by borrowing strengh from other areas. Some
of the most relevant references in SAE are the monographs of Rao (2003) and Rao and Molina
(2015), and the reviews of Ghosh and Rao (1994), Rao (1999), Pfeffermann (2002, 2013) and
Jiang and Lahiri (2006). Some of the most important papers about income in SAE are Fay and
Herriot (1979), who obtain small area estimators of median income in small places of the U.S.A.
Ghosh et al. (1996) propose an extension of the basic Fay-Herriot model to handle time series and
cross sectional data to estimate the median income for four-person families for the fifty American
states and the district of Columbia. With these latter data Datta et al. (2002) propose a hierarchical
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time series model to estimate the median income. Molina and Rao (2010) propose an empirical
Bayes method, based on a nested error model to estimate poverty incidences and poverty gaps in
Spanish provinces by gender.

Small area estimators, based on area level models, are likely to achieve high precision when the
model is correctly specified. In this point, the question of model selection plays an important role.
We talk about estimation selection instead of model selection, in a small area context, as the model
is only an artifact to derive the area estimators. Even if a model is far from being true, the area esti-
mators derived from that model could be more accurate to estimate the parameter of interest rather
than using the direct estimator. In fact, the working model (the model used to analyze the data and
derive the estimators) is often simpler than the data-generating model (the unknown model that
generates the data). Moreover, working models with different types of relationship between the
response and the explicatives are considered in the selection process: nonparametric models based
on P-splines, models with monotone assumptions and linear models.

The general approach to the problem is as follows, a response vector (Y1, . . . , YD) is consid-
ered, where D is the number of domains of study and Yd ∼ N(md, Vd). A working model M is
defined as a mapping from RD to RD, which produces a vector of fitted values (m̂1, . . . , m̂D).
The first goal is to select estimators with the smallest Mean Squared Error (MSE), defined as
MSE =

∑D
d=1E(m̂d −md)

2.

In SAE, the main interests are the totals, means and proportions in each area. The formulations
of these in terms of parameters depends on the working model and usually, when that model in-
cludes random effects, the researchers consider the conditional means under the random terms as
the parameters of interest. A good selection of the working model from a set of candidate models
is very important because, if the model chosen to fit the data is a bad one, far from the generating
model, the corresponding estimators can lead to erroneous inferences.

In this paper, we propose to perfom the selection step using an AIC statistic. In general terms,
the value of AIC (Akaike (1973)) for a model M is defined as AIC(M) = −2log(l(M)) + 2P ,
where l(M) is the model likelihood and P is a penalty term. The model M with the lowest AIC is
selected. When mixed models are among the candidate models, different versions for the penalty
term, and either conditional or marginal log-likelihoods, have been considered in the literature.
Some references of interest are Vaida and Blanchard (2005), Muller et al. (2013), You et al. (2016),
and Lombardı́a et al. (2017) among others. From these papers we highlight three GAIC statistics
useful in small area problems: cGAIC, yGAIC and xGAIC, which will be defined in Section 2.

We show below that the xGAIC, proposed in Lombardı́a et al. (2017), almost always selects
the estimator with the smallest MSE. The candidate models are derived using different explica-
tives and functional forms relating the explicatives with the response. Moreover, this paper can be
viewed as an extension of Lombardı́a et al. (2017).

We organize the remainder of the paper as follows. The background defining parametric and
nonparametric models to fit the data, and the approach to estimate the MSEs and the GAIC statis-
tics, are given in Section 2. In Section 3, numerical studies, conducted to compare the MSE of
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the proposed strategy and others are considered. Finally, in Section 4, the real data are analyzed.
Section 5 contains the conclusions and discussion.

2 Background

A complete revision and discussion of the estimators in SAE can be seen in the monographs of
Rao (2003) and Rao and Molina (2015).

2.1 Area model-based estimators

Let Y be the response variable, in our case, the direct estimator of area mean log-income, and
d = 1, ..., D the domains of interest. In this section, we introduce the candidates for working
models:

Yd = µd + ed = θd + ud + ed, d = 1, ..., D;

where µd = θd + ud and θd = f(x1d, . . . , xpd), with p auxiliary variables; ud independent and
identically distributed as N(0, σ2

u), with σ2
u unknown and ed ∼ N(0, σ2

d) with σ2
d assumed known.

Model-based estimators are defined as m̂d = µ̂d = θ̂d + ûd, where θ̂d is the estimator of the
fixed part of the model and ûd the predictor of the random effect ud. Depending on the functional
form of θ, several small area models can be defined. We focus on three types of models: linear,
monotone and spline.

First, we consider θd as a linear function of the auxiliary variables, θd = xdβ, with xd =
(x1d, . . . , xpd) and β = (β1, . . . , βp)

′. The resulting working model is an area level model well-
known in SAE literature (Fay and Herriot (1979)):

(LM) : Yd = xdβ + ud + ed, d = 1, . . . , D.

To fit the model, Maximun Likelihood Estimation and the sae package in R language (Molina and
Marhuenda (2015)) are considered obtaining:

µ̂d = xdβ̂ + ûd, d = 1, . . . , D.

Here β̂ is the empirical best linear unbiased estimator of β and ûd is the empirical best linear
unbiased predictor of ud. More details about the estimation of the model parameters and variance
components can be seen in the monograph of Rao (2003), Rao and Molina (2015) and the paper
Lombardı́a et al. (2017), among others.

Secondly, we consider a semiparametric monotone model for θd:

θd =

p1∑
j=1

βjxjd +

p∑
j=p1+1

hj(xjd),

and the working model is:
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(MM) : Yd =

p1∑
j=1

βjxjd +

p∑
j=p1+1

hj(xjd) + ud + ed, d = 1, . . . , D;

with hj() monotone functions. To obtain the Maximun Likelihood estimators for the area parame-
ters and the estimator for the variance of the random effects, we use the methodology proposed in
Rueda and Lombardı́a (2012) and construct the model-based estimator as:

µ̂d =

(
1− σ2

u

σ2
d + σ2

u

)
θ̂d +

σ2
u

σ2
d + σ2

u

Yd, d = 1, . . . , D;

where θ̂ is the projection of Y onto K, P (Y|K), and K = L0 + S1 + . . .+ Sp2 is a convex region
in RD defined by the restrictions imposed. L0 is the linear subspace of dimension p1 spanned
by columns in matrix (x1, . . . ,xp1) and, for j > p1, each Sj is the order cone associated to xj ,
Sj = {u ∈ RD/ud ≤ ud′ ⇔ xjd ≤ xjd′}. P (Y|K) is obtained using a cyclic pool adjacent
algorithm (CPAVA) similar to the backfitting procedure built around the PAVA (Robertson et al.
(1988)). To obtain θ̂ and σ̂2

u, we propose an iterative procedure following the ideas of Rueda et al.
(2010) and Lombardı́a et al. (2017).

Finally,

θd =

p1∑
j=1

βjxjd +

p∑
j=p1+1

fj(xjd), d = 1, . . . , D;

where fj() are any smooth functions to be estimated using penalized spline regression.
So, we can write the working model as the following mixed effects model

(SM) : Y = θ + u + e = Xβ + Zv + u + e,

where Xβ+ Zv represents the spline function. According to the base used for P-splines, X and Z
have different forms. In particular, in this work we use B-Splines. Being X = [1,x, . . . ,x(d−1))],
with d the order of the differences in the penalty matrix, and Z = BRΣ−1/2, with B, is the matrix
of the spline basis obtained from the covariate X, while R and Σ are matrices that form part of the
decomposition in singular values of the penalty matrix. Having described the base, the connection
with a mixed model is immediate. Some applications of this type of model in SAE are Opsomer
et al. (2008) and Ugarte et al. (2009), among others.
In order to fit the model, it is suitable to treat Zv as a random effect term, with v ∼ N(0,Σv =
σ2
vIc−2), where c is the number of columns in the original base B. Using Maximun Likelihood

estimation we obtain:

µ̂d = xdβ̂ + v̂d + ûd, d = 1, . . . , D;

where θ̂d = xdβ̂ + v̂d. More details of the estimation process can be seen in Lombardı́a et al.
(2017).



274 MARÍA JOSÉ LOMBARDÍA ET. AL. [Vol. 16, No. 1

2.2 Mean Squared Error

An important problem in SAE is how to assess the prediction error: MSE(m̂d) = E [(m̂d −md)
2].

In practice, this measure cannot be estimated because the unknown model generating the data is
not usually the same as the working model. Nevertheless, under the working model, the MSE of
the predictor of the area characteristic of interest, MSE(µ̂d), can be estimated and is used as an
estimator of MSE(m̂d).

It is well known that the estimation of the prediction MSE is complicated because of the added
variability induced by the estimation of the model hyper-parameters. There are several works pub-
lished on this problem, taking the LM introduced in the previous section as the working model.
Prasad and Rao (1990) developed MSE estimators with a bias of order o(1/D), Datta and Lahiri
(2000) extended the estimation of Prasad and Rao to the more general mixed linear model and
Das et al. (2004) extended the estimation of Datta and Lahiri (2000) by relaxing some indepen-
dent assumptions. See Datta (2009) for an extensive review of methods for estimating the MSE of
the empirical best linear unbiased predictor under LM. As an alternative, the resampling methods
appear. We can cite among others: Lohr and Rao (2009) who give a jackknife estimator, and Hall
and Maiti (2006), González-Manteiga et al. (2008a) and González-Manteiga et al. (2008b), who
propose bootstrap estimators.

In this paper, we will use a parametric bootstrap to estimate the MSE. This allows us to give a
predictor based on any of the previous working models. The steps are as follows:

1. Calculate the estimators of the model parameters, which are used to generate the model in
the next step: θ̂d = f̂(x1d, . . . , xqd), ûd and σ̂2

u from LM, MM or SM.

2. Repeat B times (b = 1, . . . , B)

(a) Generate the random part of the model, u∗(b)d and e∗(b)d as independents N(0, σ̂2
u) and

N(0, σ2
d) respectively, d = 1, . . . , D. Now, construct the bootstrap model y∗(b)d =

µ
∗(b)
d + e

∗(b)
d = θ̂d + u

∗(b)
d + e

∗(b)
d .

(b) From each bootstrap sample {y∗(b)d ,xd}, calculate µ̂∗(b)d = θ̂
∗(b)
d + û

∗(b)
d , with θ̂∗(b)d =

f̂ ∗(b)(x1d, . . . , xpd) and û∗(b)d calculated as in step 1 from the b-th bootstrap sample.

3. Approximate the MSE by Monte Carlo,

M̂SE(µ̂d) =
1

B − 1

B∑
b=1

(µ̂
∗(b)
d − µ∗(b)d )2. (2.1)

2.3 GAIC statistics

A key element for the construction of estimators based on the model is to have a working model
that fits the data well. At this point, the selection methods become a tool of great interest, allowing
us to choose the best model under which the estimator will be built.

The model selection has received much attention in the literature, one of the most popular
approaches to model selection is to use the Akaike information criterion AIC (Akaike (1973)). In
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general terms, the value of the AIC for a model M is defined as AIC(M) = −2log(l(M)) + 2P ,
where l(M) is the model likelihood and P is a penalty term. The model M with the lowest AIC
is selected.

The penalty term was equal, originally, to the number of parameters in the model (p) or to the
Degrees of Freedom (DF), which coincides with p for simple models. However, for more complex
models, such as the lasso or shrinkage estimation, the concept of DF is not so simple (Kato (2009)
and Tibshirani and Taylor (2012)). A lot of work has been done over the recent years in deriving
measures of the complexity of models in such cases, in particular, to be used as a penalty term
in the AIC. Several related concepts have been used, the concepts of Divergence and Effective
Degrees of Freedom, for example, by Rueda (2013) or Hansen and Sokol (2014). Other authors
have used the concept of Generalized Degrees of Freedom (GDF ), originally defined in Ye (1998)
for normal models and also considered in different models by Shen and Huang (2006), Gao and
Fang (2011), Zhang et al. (2012), among others.

In the particular case of models with random effects, the problem of model selection is that it
considers different versions for the penalty terms and either conditional or marginal loglikelihoods.
In the context of SAE, Pfeffermann (2013) proposes to follow the ideas of Vaida and Blanchard
(2005), explaining that in linear mixed model selection the marginal likelihood should be used
when the interest is the population parameters and the conditional when the interest is the clus-
ters or domains. Rao and Molina (2015), following this idea, say that a conditional AIC is more
relevant when the focus is on the estimation of the realized random effects and the regression pa-
rameters. Han (2013) also gives a conditional AIC for the Fay-Herriot model. The most recent
contributions to the subject are the new definition ofGDF proposed by You et al. (2016), who also
derive AIC (yAIC) measures using the new GDF as the penalty, and Lombardı́a et al. (2017),
who deal with the issue of model selection in SAE problems when no linear models are considered
and where the new statistic, xGAIC, is also derived.

In this work, we compare the behavior of three AICs suitable for the selection of models in
SAE: cAIC built from a purely conditional approach; yAIC, which conbines the conditional
loglikelihood with the GDF proposed in You et al. (2016); and xAIC, which combines a quasi-
log-likelihood with a GDF estimator as proposed in Lombardı́a et al. (2017).

For the construction of these estimators, we follow the general AIC statistic for model M ,
AIC(M) = −2log(l(M)) + 2P . To calculate the loglikelihood, we consider the conditional
focus:

log(lc(M)) = −1

2
D log(2π)− 1

2
log |Vy|u| −

1

2
(Y − µ)

′
V−1y|u(Y − µ),

where Vy|u = V ar(Y|u) and µ = E(Y|u) = θ + u, assuming that Y|u ∼ N(µ,Vy|u). We
also consider the quasi-likelihood, as in Lombardı́a et al. (2017), which considers the focus in the
random effect and the total variability as follows:

log(lx(M)) = −1

2
D log(2π)− 1

2
log |Vy| −

1

2
(Y − µ)

′
V−1y (Y − µ),

where Vy = V ar(Y) is the marginal variance.
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For the penalty term, we consider the GDF , which is defined as a measure of the sensibility of
each fitted value m̂d, to the perturbation in the corresponding observed valuemd, for d = 1, . . . , D,
as follows:

GDF =
D∑
d=1

∂E(m̂d)

∂md

.

To estimate GDF, different expectations have been defined in the literature, the most recent be-
ing due to You et al. (2016) and Lombardı́a et al. (2017), where it has been calculated from the
conditional mean estimator µ̂d and the marginal expectation EY (Yd) = θd:

xGDF =
D∑
d=1

∂EY (µ̂d)

∂θd
. (2.2)

Assuming that the interest is the domain or area, we consider the version calculated from the
conditional mean estimator and conditional expectation (Vaida and Blanchard (2005), Lombardı́a
et al. (2017)):

cGDF =
D∑
d=1

∂EY |u(µ̂d)

∂µd
. (2.3)

Finally, we select the model with the smallest value of GAIC = −2 log(l(M̂))+ ĜDF , where
l(M̂) depends on the fitted model, and the GDF is a known quantity in simple models, but un-
known in complex modeling procedures. You et al. (2016) and Lombardı́a et al. (2017) propose
estimating (2.2) and (2.3) by bootstrap, so we denote the corresponding estimators by x̂GDF and
ĉGDF , respectively.

Considering the above mentioned, we can take a purely conditional measure

cGAIC(M) = −2 log(lc(M̂)) + cĜDF ;

the proposal of You et al. (2016), which combines the conditional loglikelihood with the xGDF

yGAIC(M) = −2 log(lc(M̂)) + xĜDF ;

and the mixed GAIC, xGAIC, introduced by Lombardı́a et al. (2017)

xGAIC(M) = −2 log(lx(M̂)) + xĜDF.

These measures will be studied and compared in the next section.

3 Simulation study

The objective of this simulation is to study the behavior of the estimators selected by the
xGAIC, yGAIC and cGAIC. We consider the MSE as a predictive measure of performance.

The data-generating models use auxiliary variables and other parameter values from the real
case analyzed in the next section.
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The simulated data are generated as yd = md+ed for each domain d = 1, ..., D, whereD = 53
and ed ∼ N(0, σ2

d). The values of σ2
d are those from the real case. Also, 10 times those values are

defined to account for scenarios with different variability.

To derive md, we consider six models, the first three are standard area level models in SAE,
a linear model (LM), a monotone but non linear mixed model (MM) and a non-monotone mixed
model (NM), as follows,

• (LM): md = α + βxd + ud;

• (MM): md = α− β
30∗(xd)3

+ ud;

• (NM): md = α + sin(π xd−minxd
maxxd−minxd

) + ud;

where xd is the variable 65age in the real case, α and β are the intercept and slope estimates from
fitting a linear model to the real data, and ud ∼ N(0, σ2

u) with σ2
u = 0, 0.2.

The other three models, (G1),(G2) and (G3), are defined in a similar way to those above, but
shifting the intercept term and the random effect for nine areas that have been randomly selected.
The models are given as follows,

• (G1): md = α + ad + βxd + vd

• (G2): md = α + 10 ∗ ad − β
30∗(xd)3

+ vd

• (G3): md = α + 2 ∗ ad + sin(π xd−minxd
maxxd−minxd

) + vd

where, vd ∼ N(0, σ2
vd

), σ2
vd

= σ2
u+cd. ad ∈ {0.12, 0.10,−0.15, 0.10,−0.15,−0.15,−0.12, 0.12, 0.12}

and cd ∈ {0.22, 0.11, 0.33, 0.11, 0.33, 0.33, 0.52, 0.22, 0.22} respectively for the nine areas se-
lected. ad = cd = 0 for the other 44 areas. Also, we consider σ2

u = 0, 0.2.

For each scenario, we fit the linear, monotone and P-spline models, and analyze data as follows:

• Repeat I = 500 times (i = 1, . . . , 500)

– Generate samples (yd, xd), d = 1, . . . , D under different models and record md.

– Fit the models and calculate for each: µ̂d, xGAIC, cGAIC, yGAIC

– Record the estimator selected by using the minimum xGAIC, cGAIC and yGAIC.

• Derive global statistics:

– Correct functional form classification rates from the xGAIC, cGAIC and yGAIC
measures.
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– Empirical MSE:

EMSE(µ̂d) =
1

I

I∑
i=1

(µ̂
(i)
d −m

(i)
d )2

with µ̂d calculated as in Section 2.1.

Next, we present the results of the simulation. Tables 1 and 2 show the results when data are
generated from the models LM, MM and NM, while Table 3 shows the results when models G1,G2
and G3 are considered.

Table 1 shows the percentage of times that the Fay-Herriot, Monotone or P-spline models are
selected by xGAIC, cGAIC or yGAIC. Correct classification rates are the numbers in the diag-
onals. xGAIC almost always selects the real model, whereas cGAIC and yGAIC do not. The
difference in the correct classification rates between the three methods are significant in the nine
scenarios considered.

Table 2, shows the EMSE for different estimators of md, the Direct estimator (which is the
generated observation), the model-based estimators from Fay-Herriot, Monotone and P-Spline
models, and the estimators selected by the xGAIC, cGAIC and yGAIC. It is shown that the
estimators selected by the xGAIC have a smaller EMSE compared with the estimators selected
by cGAIC and yGAIC, in the nine scenarios, even being up to 10 times smaller, in some cases.
In addition, the EMSE of the estimator selected by the xGAIC is smaller than the EMSE of the
Fay-Herriot model-based estimator, which is the most popular choice in SAE applications.

Finally, in Table 3, we give the EMSE for G1, G2 and G3. In these cases, we use a generator
model that does not match any working model. Also, in this case, the estimator selected by the
xGAIC is the one with the smallest EMSE.
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Table 1: Classification rates (%) using xGAIC, cGAIC and yGAIC.
xGAIC cGAIC yGAIC

Model FH Monotone P-Spline FH Monotone P-Spline FH Monotone P-Spline
σ2
u =

0, σ2
d

LM 95.5 0.0 4.5 44.0 53.0 3.0 76.7 18.8 4.5
MM 0.0 100.0 0.0 9.3 90.7 0.0 10.6 89.4 0.0
NM 0.0 0.0 100.0 0.0 96.7 3.3 24.1 52.8 23.1
σ2
u =

0.2, σ2
d

LM 85.8 3.5 10.8 53.0 39.1 7.9 66.8 24.7 8.5
MM 0.0 95.0 5.0 60.8 39.2 0.0 51.6 48.4 0.0
NM 1.2 25.5 73.3 38.4 55.7 5.9 45.7 49.8 4.5
σ2
u =

0.2, σ2
d∗

10
LM 78.4 6.6 15.0 52.9 40.0 7.2 74.5 13.8 11.7
MM 0.0 92.2 7.8 0.8 99.2 0.0 24.2 75.8 0.0
NM 7.5 27.1 65.4 11.4 84.0 4.6 26.9 62.7 10.3

4 Application to real data

In this application, we deal with data from the ILC in Galicia in 2015. The statistical popula-
tion in this survey is composed of all persons living in private households and the sample uses a
two-stage sampling with primary sampling unit stratification. The first stage is formed by census
sections grouped into strata, in agreement with the size of the municipality to which they belong.
The second stage is formed by main family dwellings. No sub-sampling is carried out within
this sample, investigating all dwellings that are their usual residence. The sample includes 9, 216
dwellings distributed in 512 census sections.

This survey is designed to obtain precise estimates at province and area level. The problem is
to get reliable estimates for unplanned small domains. Sample sizes in the unplanned domains may
be too small to obtain reliable direct estimates. Our domains of interest are the 53 counties and our
goal is to estimate the mean income in the private households in the counties of Galicia in 2015.
For this data set, the minimum sample size in the counties is 18, the first quartile is 49 and the
median 108. Therefore, obtaining reliable estimates for target domains is a small area estimation
problem and borrowing strength from auxiliary data is recommended.

The ILC does not produce official estimates at the domain level, but the analogous direct esti-
mates of the total Yd, the mean Ȳd = Yd/Nd and the size Nd are

Ŷ dir
d =

∑
j∈Sd

wj yj,
ˆ̄Y dir
d = Ŷ dir

d /N̂dir
d , N̂dir

d =
∑
j∈Sd

wj,

where Sd is the sample in domain d and wj is the official calibrated sampling weight. Considering
that the sample weights wj correspond to the inverse of the probability of selecting the individual
j, πj , then we have that
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Table 2: EMSE for Direct estimator (Dir), the estimator from Fay-Herriot, monotone and
the P-spline models, and for the estimators selected by the xGAIC, cGAIC and yGAIC.

Model Dir FH Monotone P-Spline xGAIC cGAIC yGAIC
σ2
u = 0, σ2

d

LM 0.0148 0.0004 0.0068 0.0004 0.0004 0.0038 0.0017
MM 0.0148 0.0143 0.0057 0.0023 0.0057 0.0068 0.0069
NM 0.0148 0.0164 0.0160 0.0014 0.0014 0.0155 0.0126
σ2
u = 0.2, σ2

d

LM 0.0148 0.0133 0.0135 0.0136 0.0133 0.0134 0.0134
MM 0.0150 0.0146 0.0136 0.0145 0.0136 0.0142 0.0140
NM 0.0148 0.0141 0.0139 0.0140 0.0136 0.0140 0.0140
σ2
u = 0.2, σ2

d ∗ 10
LM 0.1494 0.0765 0.0821 0.0826 0.0778 0.0792 0.0778
MM 0.1520 0.1260 0.0873 0.0842 0.0871 0.0878 0.0975
NM 0.1499 0.0992 0.0911 0.1407 0.0883 0.0960 0.0970

Table 3: EMSE for Direct estimator (Dir), the estimator from Fay-Herriot, monotone and
the P-spline models, and for the estimators selected by the xGAIC, cGAIC and yGAIC.

Model Dir FH Monotone P-Spline xGAIC cGAIC yGAIC
σ2
vd

= cd, σ
2
d

G1 0.0152 0.0098 0.0104 0.0107 0.0096 0.0098 0.0096
G2 0.0152 0.0147 0.0143 0.0136 0.0138 0.0145 0.0143
G3 0.0166 0.0148 0.0136 0.0111 0.0105 0.0137 0.0141
σ2
vd

= 0.2 + cd, σ
2
d

G1 0.0148 0.0136 0.0137 0.0136 0.0136 0.0136 0.0136
G2 0.0152 0.0149 0.0145 0.0143 0.0144 0.0148 0.0147
G3 0.0150 0.0143 0.0141 0.0139 0.0140 0.0142 0.0142
σ2
vd

= 0.2 + cd, σ
2
d ∗ 10

G1 0.1471 0.0809 0.0866 0.0839 0.0821 0.0846 0.0830
G2 0.1551 0.1327 0.1137 0.1033 0.1121 0.1147 0.1195
G3 0.1492 0.0995 0.0937 0.0875 0.0881 0.0940 0.0947

Ŷ dir
d =

∑
j∈Sd

wj yj =
∑
j∈Sd

1

πj
yj,

ˆ̄Y dir
d = Ŷ dir

d /N̂dir
d =

∑
j∈Sd

wj yj

N̂dir
d

.

If πj 6= 0, the variance estimator of the direct estimator would be:

V̂π( ˆ̄Y dir
d ) u

1

N̂2
d

∑
j∈Sd

wj(wj − 1)
(
yj − ˆ̄Y dir

d

)2
. (4.1)

This formula is obtained with the simplifications: wj = 1
πj

, πjj = πj and πij = πiπj for i 6= j in
the second order inclusion probabilities. Using this, we calculate the coefficient of variation of the
direct estimator for all the counties. We obtain five counties with the coefficient of variation higher
than 20%. At this point, it is desirable to take into account the fact, that, in the statistics of labour
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force, the Office for National Statistics (ONS) in the UK considers that an estimate is publishable
and therefore official, if the coefficient of variation is less than 20%.

The models are formulated using the log-income by private household as the response variable,

log( ̂̄Y dir

), where ̂̄Y dir

is the direct estimator obtained from the ILC. In our dataset, we also have
these auxiliary variables:

• Age: the percentage of population under 20 years (20age) and 65 years and over (65age).

• Population density: the population divided by total land area for each county (density).

• Education level: the proportion of people with low education (low) and higher education
(higher.educ).

Table 4 shows the correlations between the auxiliary variable and the response variable. From
this table, it can be seen that higher.educ is the most positively correlated variable with the log-
income. As expected, 65age and low are the most negatively correlated variables with the log-
income, that is, the regions with the oldest population and low education have lower incomes.

Table 4: Correlations between the predictors and the response.
density 20age 65age low higher.educ

log-income 0.30 0.35 -0.55 -0.50 0.59

In addition, non significative auxiliary variables have been discarded after fitting a Fay-Herriot
model, with the exception of Population density, selected by the experts. Figure 1 shows the
scatterplots from the auxiliary variables against the response variable for the chosen variables. The
assumption of a monotone relationship between auxiliary and response is reasonable.
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Figure 1: Relation between the auxiliary variables and the response variable.
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Several models have been fitted to the data set, taking two or three predictors. The problem of
the selection of auxiliary variables is solved simultaneously with the problem of the specification
of their functional form. The candidate models are formulated as those in Section 2: linear (LM),
monotone (MM) or non-monotone (SM), with different predictors. Relevant statistics are shown in
Table 5. From the numbers in this table, it can be seen that the xGAIC selects model M6, which is
defined by using the linear function for higher.educ and the non monotone function for 65age. In
contrast, cGAIC and yGAIC select model M7, which is defined using a non monotone function
for both higher.educ and 65age, and also with a greater estimated variance of the random effect
than M6.

Table 5: xGAIC, cGAIC, yGAIC and σ̂2
u for the fitted models.

Model label Predictors xGAIC cGAIC yGAIC σ̂2
u

M1 higher.educ/65age (LM) -92.28 -91.66 -92.28 0
M2 higher.educ/65age/density (LM) -93.89 -94.96 -93.62 0

M3 higher.educ (LM) 65age (MM) -87.78 -88.97 -88.21 0.00047
M4 higher.educ/65age (MM) -94.72 -94.19 -94.72 0
M5 higher.educ (LM) 65age/density (MM) -84.3 -84.9 -84.9 0

M6 higher.educ (LM) 65age (SM) -96.91 -98.12 -97.75 0.0003
M7 higher.educ/65age (SM) -81.51 -110.73 -103.73 0.0023
M8 higher.educ (LM) 65age/density (SM) -81.78 -108.82 -102.69 0.0022

Figure 2 plots the residuals for the two models selected, M6 and M7. The residuals are ran-
domly distributed above and below zero and no rare pattern is observed.
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Figure 2: Residuals for models M6 and M7.
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Figure 3 plots the model-based versus the direct estimates of the log-income in the counties of
Galicia for M6 and M7. We observe that the model-based estimators take values rather different
from the direct estimates. We also observe that the model-based estimates are in general smaller
than the direct ones.
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Figure 3: Model-based versus direct estimates of the log-income.

Figure 4 plots the parametric bootstrap estimates of the root mean squared errors (R̂MSE) of
the model-based estimators for models M6 and M7, and the R̂MSE for the corresponding direct
estimates from (4.1). It can be seen that the R̂MSE of the direct estimator is much greater than
the model-based estimators under M6 and M7. Also, that the estimator of the model M6 gives
the best results in terms of R̂MSE. Again, it is clear that the xGAIC shows the best behavior if
we compare it with cGAIC and yGAIC, which select a more complicated estimator and with a
higher R̂MSE. These results are in line with those obtained in the simulation study, see Table 2.

Finally, and from the previous results, Figure 5 maps the mean income in the counties for the
model-based estimator under M6. The colors are darker in areas with a higher level of income.
Note that the counties with the highest income are in the west, the north coast and the cities
of Lugo and Ourense. On the other hand, it can be observed that the provinces that are in the
southeast of Galicia, in general terms, have the lowest income values. The exception in this latter
situation is the dynamic county of Valdeorras, in the southeast of Galicia. Also, Figure 6 shows
the relative R̂MSE ( ̂RRMSE) of the mean income in the Galician counties estimated using
parametric bootstrap as follows from eq. (2.1) :

̂RRMSE(µ̂d) =

√
M̂SE(µ̂d)

µ̂d
.

As can be seen in Figure 4, we can observe that all the counties have an ̂RRMSE lower than
5.27% and all the values are much lower than the ̂RRMSE of the direct estimator.
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Figure 4: R̂MSE of direct and model based estimators of log-income.
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Figure 5: Map of the mean income in the Galician counties.

5 Conclusions

The first, and most important contribution, from the theoretical point of view, is the good
performance of the xGAIC, against cGAIC and yGAIC, to select the best model in terms of
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Figure 6: Map of the ̂RRMSE of the mean income in the Galician counties (%).

MSE. We verify this in the simulations and in the results obtained in the real case, where the
xGAIC selects a model with the lowest MSE. In fact, this paper can be considered an extension of
Lombardia et al (2017), which shows how xGAIC performs remarkably better than cGAIC with
a smaller missclassification rate. We have also shown that xGAIC is better than the alternatives
in terms of MSE.

The second most important conclusion of this paper is that the common practice of comparing
estimators by comparing the estimators of the mean-squared errors is not the most desirable, as the
MSE estimator is ussually model dependent. In practice, estimators are proposed that may not be
better than direct estimators because an incorrect model is being used. It is necessary to take this
fact into account, so it is important to carry out a wide model selection process that should include
parametric and non parametric formulations and different sets of auxiliaries.

As for the income results in Galicia, we can conclude that the northwest coast, in general terms,
is the most dynamic part with a higher level of income. There is a big problem in the southeast,
which is essentially rural. Fixing the population in rural areas, with decent living and income lev-
els, is a basic requirement to ensure territorial balance and environmental sustainability. Galicia is
aging, and this is more accentuated in rural areas, due to the emigration of young people and the
fall in the birth rate. This reality, with obvious economic and sociological consequences, demands
answers from social policies.
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Lombardı́a, M., López-Vizcaı́no, E., and Rueda, C. (2017). Mixed generalized akaike information
(xgaic) for small area models. Journal of Royal Statistical Society Series A, 180, 1229–1252.

Molina, I. and Marhuenda, Y. (2015). sae: An r package for small area estimation. The R Journal,
7(1), 81–98.

Molina, I. and Rao, J. (2010). Small area estimation of poverty indicators. Canadian Journal of
Statistics, 38, 369–385.

Muller, S., Scealy, J., and Welsh, A. (2013). Model selection in linear mixed models. Statistical
Science, 28(2), 135–167.

Opsomer, J., Claeskens, G., Ranalli, M., Kauermann, G., and Breidt, F. (2008). Non-parametric
small area estimation using penalized spline regression. Journal of Royal Statistical Society
Series B, 70, 265–286.

Pfeffermann, D. (2002). Small area estimation. new developments and directions. International
Statistical Review, 70, 125–143.

Pfeffermann, D. (2013). New important developments in small area estimation. statistical science.
Statistical Science, pages 40–68.

Prasad, N. and Rao, J. (1990). The estimation of the mean squared error of small-area estimators.
Journal of the American Statistical Association, 85, 67–72.

Rao, J. (1999). Some recent advances in model-based small area estimation. Survey Methodology,
25, 175–186.

Rao, J. (2003). Small Area Estimation. Wiley, New York.

Rao, J. and Molina, I. (2015). Small Area Estimation. Wiley, New York.

Robertson, T., Wright, F., and Dykstra, R. (1988). Order Restricted Statistical Inference. John
Wiley & Sons, New York.

Rueda, C. (2013). Degrees of freedom and model selection in semiparametric additive monotone
regression. J. of Multivariate Analysis, 117, 88–99.

Rueda, C. and Lombardı́a, M. (2012). Small area semiparametric additive isotone models. Statis-
tical Modelling, 12, 503–525.
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