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Abstract

Affine resolvable designs with two blocks per replicate are combinatorially equiv-
alent to orthogonal arrays with two levels. While affine designs are known to be
Schur-optimal amongst all resolvable designs, their behavior with respect to the
MV-optimality criterion has been little studied. Here it is shown that the MV-
best affine designs must be MV-optimal for two and three replicates, but that
MV-optimality need not hold for four replicates.
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1 Introduction

An incomplete block design for v treatments in blocks of size k (< v)
is resolvable if the blocks can be partitioned into sets containing each
treatment exactly once. Thus resolvable block designs are exactly
those for which the blocks may be partitioned into replicates. Re-
solvable designs are used in a variety of fields for a variety of reasons
as discussed in papers like Patterson and Silvey (1980) and Bailey,
Monod, and Morgan (1995); also see the survey paper by Morgan
(1996). Typically the number of replicates, r, employed is small while
the number of treatments can be quite large.

1In honor of Professor Aloke Dey for his many contributions to the theory and
application of orthogonal arrays
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Now take any two blocks from different replicates of a resolvable design
and calculate the number of treatments common to both. If this
number is a constant, call it µ, independent of the pair of blocks
chosen, then the design is said to be affine resolvable. Using s to
denote the number of blocks per replicate, it follows that v = µs2 and
k = µs. Affine resolvable designs are known to be excellent resolvable
designs from many statistical perspectives, as shown in the following
result.

Theorem 1. (Bailey, Monod, Morgan, 1995) In the class of all resolv-
able designs having the same v, r, and k, an affine resolvable design
d minimizes

∑v−1

i=1
f(zdi) for every convex function f .

The quantities zdi in Theorem 1 are the canonical variances of design
d (see section 2). Thus A-optimality, D-optimality, and E-optimality
are among the many standard optimalities enjoyed by affine resolv-
able designs. Not addressed by Theorem 1 is the behavior of affine
resolvable designs with respect to the MV-optimality criterion. The
MV-value of a design is the maximal variance of the v(v − 1)/2 es-
timates of pairwise treatment contrasts; a design is MV-optimal if
it minimizes the MV-value over all relevant competitors. Because
the MV-value is not solely a function of the canonical variances, even
global optimality for canonical variances (as given in Theorem 1) need
not imply MV-optimality. Indeed it is easily shown that, despite hav-
ing identical canonical variances, different affine resolvable designs for
the same (v, r, k) can have different MV-values (see lemma 1 below).

Recently Morgan (2009) has undertaken a study to determine, among
all affine resolvable designs with given (v, r, k), the best with respect
to the MV criterion. This raises an important, and very interesting,
question:

If design d is MV-best among affine resolvable designs, is it
MV-best over all resolvable designs for the same (v, r, k)?

(1)

The answer to question (1), as will be seen, is “sometimes.”

Now consider the orthogonal arrays OA(v, r, 2) for two symbols 1 and
2. Precisely, a v×r array of 1’s and 2’s is an OA if the pairs formed by
the rows of any two columns are every ordered pair (1, 1), (1, 2), (2, 1),
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and (2, 2) with equal frequency v/4. Writing µ = v/4 for this count,
Shrikhande and Bhagwandas (1969) established the equivalence of
OA(v, r, 2) and affine resolvable designs with (v, r, k) = (4µ, r, 2µ)
having s = 2 blocks per replicate. It is these designs that will be
the focus here in addressing the question raised above, with special
emphasis on small replication r ≤ 4.

Interest in two-level orthogonal arrays as fractional factorial designs
has been strong since their introduction by Rao (1947), with many
notable advances having been achieved in the last two decades. Their
importance is reflected in their central roles in both applied and more
theoretical texts: see, for example, Dey (1985), Dey and Mukerjee
(1999), or Wu and Hamada (2000). The use of orthogonal arrays and
related combinatorial structures as resolvable designs, though having
been paid less attention, is nonetheless a valuable statistical applica-
tion, holding many unsolved problems.

2 MV properties of ARDs based on

OA(v, r, 2)

The variances of elementary treatment contrasts, also called pairwise
variances when scaled by the plot variance σ2, are easily determined
for affine resolvable designs. For any binary block design d, let λdij

be the number of blocks containing both treatments i and j, called a
treatment concurrence count.

Lemma 1. (Bailey, Monod, Morgan, 1995) When using an affine
resolvable design d, the pairwise variance pdij = Vard(τ̂i − τj)/σ

2 is
a linear function of λdij. Specifically,

pdij =
2[r − λdij + k(r − 1)]

kr(r − 1)
. (2)

More generally for block design d with v×bk treatment/plot incidence
matrix Ad and b × bk block/plot incidence matrix L, the pairwise
variances are calculated as

pdij = e′ijC
+

d eij (3)
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where eij is the v×1 vector with 1 in position i, -1 in position j, and 0
otherwise; Cd = A′

d(I − L(L′L)−1L′)Ad is the treatments information
matrix; and C+

d is the Moore-Penrose inverse of Cd. The v− 1 largest
eigenvalues of C+

d are the canonical variances mention in section 1.
Equation (3) is derived in Dey (1986, page 59).

So long as one is only discussing affine resolvable designs, lemma 1 says
the pairwise variances are completely determined by the treatment
concurrences, with MV-value found from the smallest concurrence.
For other resolvable designs this is not generally true, and because
direct calculation of (3) is usually not feasible other than on a case-by-
case basis (though see Theorem 2 below), other methods are needed
for evaluating MV-values. One of these is the bound of the next
lemma.

Lemma 2. (Jacroux, 1983) When using a resolvable design d having
r replicates in blocks of size k, the pairwise variance pdij must satisfy

pdij ≥
2k

r(k − 1) + λdij

(4)

Now consider an arbitrary resolvable design for two or three replicates
having two blocks per replicate. Let Bfg be the gth block in replicate
f . With no loss of generality it may be assumed that B11 ∩ B21 = S1

is a nonempty subset of the treatments, and write S2 = B11 ∩B22 for
the treatments in B11 other than those in S1. Then B12 = S3 ∪ S4

where S3 = B12 ∩ B21 and S4 = B12 ∩ B22 (see Figure 1). The first
two replicates are determined by the numbers of treatments ve in the
sets Se, e = 1, 2, 3, 4. A third replicate can now be described in terms
of subsets of the Se: let Sem be the subset of Se that occurs in block
m of the third replicate. With vem the size of Sem, any three-replicate
resolvable design with two blocks per replicate is determined by the ve

and the vem. Thus Figure 1 displays the general form for the designs
in question.

Theorem 2. The affine resolvable design having r = 2 replicates of
v = 4µ treatments in blocks of size k = 2µ is MV-optimal over all
resolvable designs for these values of (v, r, k).

Proof. The information matrix for a resolvable design d in this class
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Figure 1: Resolvable design with three replicates, two blocks per repli-
cate
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verified that the following matrix, found as C+
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Then for i ∈ S1 and j ∈ S4, the pairwise variance pdij , using (3) and
the fact that v1 = v4, is pdij = 1 + 2

v−2v1
. Similarly for i ∈ S2 and

j ∈ S3, using v2 = v3 = v
2
− v1, pdij = 1 + 1

v1
. All other pairwise

variances are smaller than these. The maximum of these two larger
variances is minimized when v1 = v2 = v3 = v4 = v/4, in which case
d is affine.

The proof of Theorem 2 goes through even when affineness is not
possible.

Corollary 1. The resolvable design having r = 2 replicates of v =
4µ + 2 treatments in blocks of size k = 2µ + 1, specified by v1 = v4 =
(v − 2)/4 and v2 = v3 = (v + 2)/4, is MV-optimal over all resolvable
designs for these values of (v, r, k).
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Any resolvable design (v, r, k = v/2) can be converted into a v × r
two-level array A as follows:

Aij =

{

1 if treatment i is in block 1 of the jth replicate,
2 if treatment i is in block 2 of the jth replicate.

If the resolvable design is affine, then A is an orthogonal array; this
is the equivalence mentioned in section 1. The design of corollary 1
corresponds to a balanced array (Chakravarti, 1956), proven type-1
optimal as a resolvable design in corollary 21 of Morgan and Reck
(2007).

For three replicate designs as in Figure 1, the MV-best affine design,
call it d∗, is specified (up to isomorphism) by v1 = v2 = v3 = v4 = v/4
and v11 = v22 = v32 = v41 = 0, v12 = v21 = v31 = v42 = v/4 (Morgan,
2009). Design d∗ has λd∗ij = 3 for v(v − 4)/32 pairs i < j, and all
other λd∗ij = 1.

Lemma 3. The design d∗ is the only resolvable design d for (v, r, k) =
(4µ, 3, 2µ) having no λdij equal to zero.

Proof. Let d be an arbitrary resolvable design for (v, r, k) = (4µ, 3, 2µ),
i.e. d has form displayed in Figure 1. There is no loss of generality
in assuming v1 = |S1| ≥ v/4 (if v1 < v/4 then reverse the blocks in
the second replicate and interchange subscripts e = 1 and e = 2 on
the Se and Sem). If d has all λdij > 0 then each treatment in S1 (S2)
is in at least one block with each treatment of S4 (respectively S3).
Inspection of Figure 1 shows that this implies λd0 = 0 where

λd0 ≡ #{(i, j) : λdij = 0 and i < j}

= v11v42 + v12v41 + v21v32 + v22v31 (5)

Each of the eight terms vem in (5) is a nonnegative integer, so λd0 = 0
says at least one of the two terms in each product is zero. If v11 = 0
then v12 = v1 − v11 = v1 ≥ v/4 ⇒ v41 = 0 ⇒ v42 = v4 − v41 = v4 = v1.
But v/2 = |B32| ≥ v12 + v42 = v1 + v4 ≥ v/4 + v/4 = v/2 ⇒ v12 =
v42 = v/4 = v1 = v4 ⇒ v21 = v31 = v/4 = v2 = v3; this is d∗. A
parallel argument reaches the same conclusion if v12 = 0. If both
v11 > 0 and v12 > 0 then v41 = v42 = 0 ⇒ v4 = 0, contradicting
v1 = v4.
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Theorem 3. The affine resolvable design d∗ is uniquely MV-optimal
over all resolvable designs for (v, r, k) = (4µ, 3, 2µ).

Proof. Putting λd∗ij = 1 for r = 3, k = v/2 in (2), the MV-value for
d∗ is MVd∗ = 2(v + 2)/3v. For any other resolvable design d, lemma
3 says λdij = 0 for some i, j, so by (4),

MVd ≥
v

3(v
2
− 1)

>
2(v + 2)

3v
= MVd∗

as claimed.

The positive results of Theorems 2 and 3 do not carry through for four
replicates. For (v, r, k) = (4µ, 4, 2µ) and v ≡ 4 (mod 8) every affine
resolvable design has at least (v − 6)/2 pairs i < j such that λdij = 0
(Morgan, 2009). Thus from (3) the MV-value is MVARD = (3v+8)/6v.
This is bested by the design d̃ constructed like this: the first three
replicates are as in Figure 1 with v1 = v2 = v3 = v4 = v/4 and
v11 = v41 = (v + 4)/8, v21 = v31 = (v − 4)/8; the fourth replicate has
one block consisting of S1 and S4, and one block consisting of S2 and
S3.

The information matrix for d̃ is easily worked out; needed here is an ex-
pression for that matrix amenable to calculating the MV-value. Write
A1 = c1c

′
1 for c1 = 1

2
(1,−1,−1, 1)′, A2 = c2c

′
2 for c2 = 1√

v21
(0′v11

, 1′v21
)′,

and A3 = c3c
′
3 for c3 = 1√

v11
(1′v11

, 0′v21
)′. Now define four orthogonal,

v × v projection matrices P1, . . . , P4 by

P1 = I4 ⊗ (I − A2 − A3) + (I − A1) ⊗ (A2 + A3 −
4

v
J), P2 = A1 ⊗ A2,

P3 =(I − A1 −
1

4
J4) ⊗

4

v
J, P4 = A1 ⊗ A3

Readers can check that Cd̃ =
∑

4

i=1
ed̃iPi where ed̃1

= 4, ed̃2
= 3 + 4

v
,

ed̃3
= 3, and ed̃4

= 3− 4

v
. Because the Pi are orthogonal projectors, this

is the spectral decomposition of Cd̃ and the ed̃i are the eigenvalues of
Cd̃ with multiplicities equal to the ranks of the Si. The Moore-Penrose
inverse of Cd̃ is simply C+

d̃
=

∑

4

i=1
zd̃iPi where the zd̃i = e−1

d̃i
are the

canonical variances. The largest pairwise variance, easily found from
direct inspection of C+

d̃
, occurs for any pair i, j such that i ∈ S11 ∪S41

and j ∈ S22 ∪ S32. Its value MVd̃ simplifies to

MVd̃ =
(3v − 2)(3v + 4)

6v(3v − 4)
<

(3v + 8)

6v
= MVARD,
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establishing the final result of this section.

Theorem 4. The MV-best affine resolvable design for
(v, r, k) = (4µ, 4, 2µ) with odd µ is never MV-optimal over all re-
solvable designs for these values of (v, r, k).

3 Discussion and conjecture

It has been shown that the MV-best affine resolvable designs based
on 2-level orthogonal arrays are MV-optimal resolvable designs for
two and three replicates, but need not be so for four replicates. At
the other extreme for r, the maximal replication for affine resolvable
designs with two blocks per replicate is v − 1, corresponding to a
saturated orthogonal array (equivalently, a Hadamard matrix of order
v). These (v− 1)-replicate designs are BIBDs and so are MV-optimal
over more than just resolvable designs. This with the similar result
for r = v − 2 is stated as Theorem 5.

Theorem 5. An affine resolvable design with r replicates in blocks
of size k = v/2 is MV-optimal over all block designs with (b, k) =
(2r, v/2), for r = v − 1 and for r = v − 2.

Proof. The result for BIBDs is well known. Deleting any one replicate
from the (v− 1)-replicate design gives d with all λdij ∈ {v

2
− 1, v

2
− 2}.

This is a group divisible design having λ2 = λ1 + 1, MV-optimal over
the full class by the unnumbered theorem on page 144 of Takeuchi
(1961).

While Theorems 2, 3, 4 and 5 provide some answers to the main
question in (1), there is still much to be done. In the spirit of Professor
Dey’s tireless educational and research efforts in experimental design,
here is a list of specific problems suggested by the work here:

• Are the non-affine designs d̃ for v ≡ 4 (mod 8) and (r, k) =
(4, v

2
) in fact MV-optimal resolvable designs? Notably, these

designs correspond to neither orthogonal nor balanced arrays.

• Are the MV-best affine resolvable designs for v ≡ 0 (mod 8) and
(r, k) = (4, v

2
), identified in Morgan (2009), MV-optimal over all

resolvable designs?
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• The MV-best affine resolvable designs for (r, k) = (5, v
2
) have

also been identified in Morgan (2009). Which of these, if any,
are MV-optimal resolvable designs?

My conjectures for the answers to the first two questions are both yes.
For the third, I suspect the answer is yes only for those designs with
all λdij ≥ 1.

More broadly, other than for simple cases like BIBDs and the one-
replicate deletions in Theorem 5, little seems to be known about MV-
optimality in the important class of resolvable designs. There are
many interesting combinatorial questions tied to the MV-problem,
including the relevance of balanced arrays or other generalizations of
orthogonal arrays that may prove to be useful in this context. The
challenging problem of MV-optimal resolvable designs is wide open.
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